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Abstract  
 

This thesis presents quasi-static Finite Element Methods for the analysis of the stress 

state occurring in a pair of loaded spur gears and aims to further research the effect 

of tooth profile modifications on the mechanical performance of a mating gear pair. 

The investigation is then extended to epicyclic transmissions as they are considered 

the most viable solution when the transmission of high torque level within a compact 

volume is required.  

Since, for the current study, only low speed conditions are considered, dynamic loads 

do not play a crucial role. Vibrations and the resulting noise might be considered 

negligible and consequently the design process is dictated entirely by the stress state 

occurring on the mating components. Gear load carrying capacity is limited by 

maximum contact and bending stress and their correlated failure modes. 

Consequently, the occurring stress state is the main criteria to characterise the load 

carrying capacity of a gear system. Contact and bending stresses are evaluated for 

multiple positions over a mesh cycle of a contacting tooth pair in order to consider 

the stress fluctuation as consequence of the alternation of single and double pairs of 

teeth in contact. The influence of gear geometrical proportions on mechanical 

properties of gears in mesh is studied thoroughly by means of the definition of a 

domain of feasible combination of geometrical parameters in order to deconstruct 

the well-established gear design process based on rating standards and base the 

defined gear geometry on operational and manufacturing constraints only. From this 

parametric study, suitable suggestions for enhancing the load carrying capacity of the 

tooth flank are made by showing that the use of non-standard geometric parameters 

can improve the performance of gears. 

As this study also aims to improve the performances of epicyclic gearings specifically 

for low speed-high torque operating conditions, the optimum parameters found in 

the preliminary parametric analysis were applied to this category of systems. The 

design procedure based on the area of existence of gear geometry was extended to 

this case which required the determination of the domain of feasible combination for 

gears in internal mesh with the addition of constraints addressed to epicyclic 
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configurations. Three epicyclic systems with same boundary design conditions but 

different combination of geometrical parameters have been modelled and analysed 

by means of quasi-static FEA. The results have shown that the improvements found 

for the case of two mating spur gears are also valid for the case of higher order 

systems in which multiple contacts are simultaneously occurring. Based on these 

results, suitable suggestions are made for the design of gears working in epicyclic 

systems for an enhanced torque capacity and a volume reduction for applications 

characterized by low speed and high loads conditions.  

An alternative solution to geared systems that guarantees compactness and high 

torque transmission capabilities has also been investigated; it consists of a cycloidal 

transmission system. The parametric equations for the cycloidal profile have been 

determined and an executive design, then manufactured, has been produced. The 

preliminary quasi-static Finite Element analysis has predicted the load sharing and 

stress distribution among multiple components confirming the mechanical 

advantage of this category of transmission systems.  
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1 Introduction 

 

In recent years, there has been an increasing desire to improve efficiency and reduce 

energy consumption for all manufactured products. Increasing efficiency is synonymous 

with better performance and since it often relies on multiple factors it can be achieved 

in different ways. For many products, improved handling involving reducing weight and 

volume is also critical.  

This research work focuses on the performance analysis of mechanical power 

transmission systems, more commonly called speed reducers or torque multipliers, and 

covers the aspect of design and performance analysis of these categories of 

mechanisms. Norbar Torque Tools Ltd., the main sponsor of this work, worldwide 

market leader in the field of high quality mechanical transmission devices for hand 

tooling and machinery applications, has launched a campaign of innovation aimed at 

improving the mechanical characteristics of devices in their range of production.  

 

1.1 Background 

Norbar’s product range is based on epicyclic spur gears systems (Norbar Torque Tools 

ltd., 2018). The main property of spur gears is the high load carrying capacity. The 

geometry on which any kind of gear tooth profile is based is the involute of a circle 

proposed by Leonhard Euler (Radzevich, 2012). The involute profile is universally used 

because of its advantageous characteristics both in terms of manufacturing and working 

conditions as it is able to deliver a constant transmission ratio also in presence of small 

manufacturing or assembling deviations. Gears are then assembled in order to create 

transmissions systems able to transmit power from a source to the user by performing 

a modification of speed and torque. Depending on the assembly arrangement different 

solutions can be found. The most traditional configuration involves gears mounted on 

parallel axis transmitting the power from one axis to the other. More complex 

arrangements exist as for the case of epicyclic configurations. Epicyclic systems are 

generally used when a high amount of power has to be transmitted in a limited 
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workspace. This typology of gearing systems is characterised by a concentric physical 

disposition that allows a reduction in terms of overall dimension compared to ordinary 

gear trains. Alternative mechanical solutions to geared mechanisms can be found in 

cycloidal drives. A cycloidal drive is a concentric axis device that use a cycloidal disk to 

transmit the power from the input to the output.  

The mechanical advantage given by any transmission systems is their ability to vary the 

quality of the power that passes through them by converting a low torque input into a 

higher value at the output by operating a conversion of speed into torque. In order to 

operate such conversion a transmission ratio is required. Epicyclic gear train have 

successfully satisfied the need of high transmission ratios in constrained physical 

boundaries by ensuring a high level of reliability. High ratios are achieved with a series 

of multiple reduction stages that necessarily have effects on their physical footprint. If 

an even higher reduction ratio is required and the need of a compact form is of primary 

importance, cycloidal gear trains can be the most viable solution. 

 

1.2 Technical terms 

In the following chapters a large number of technical terms is used to describe and 

explain designs and processes related to gears. A list of these terms, supported by a brief 

explanation, is given in Table 1.1 to facilitate the reader’s comprehension of the 

explained concepts.  

Table 1.1 – Technical terms  

Micro geometry Refers to those aspects of the involute tooth profile that 

can be modified to connect unwanted phenomena 

during the meshing process. Tip relief and lead crowning 

are an example of micro geometry modifications. 

Macro geometry The combination of geometrical parameters that define 

the tooth profile geometry.  

Design Space An enclosed area delimited by contour lines 

representing geometrical boundaries and operational 

constraints. 
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Pitch Point The point at which the pitch circles of a pair of mating 

gears are in mutual tangency. 

Involute profile The geometry of gear teeth that derives from the 

involute of a circle, universally adopted for gearing 

purposes.  

Transmission ratio (i) Is the value that indicates the speed conversion 

operated by the system between the input and output 

members.  

Epicyclic gearing An epicyclic gear train is a particular concentric axes 

arrangement in which one or more rotating gears 

revolve around a central gear. 

Mesh cycle Involves the entire action from the first to the last point 

of contact for a couple of mating teeth. 

Rack cutter The rack cutter is considered the reference generating 

system. It can be seen as a gear with an infinite number 

of teeth which makes it rectilinear with straight sides 

instead of curved profiles. The geometry is defined by 

geometrical parameters that are transferred to the 

generated gears. 

Pressure Angle (α) α is the angle between the tangent to any point of the 

involute curve and a radial line connecting the point with 

the gear centre. If the considered point of tangency lies 

on the pitch circle then α coincides with the angle of 

inclination of the cutter edges and is termed reference 

pressure angle. 

Addendum (Ha) Addendum is the distance between pitch and tip circle.  

Dedendum (Hf) Dedendum is the distance between pitch and root 

circle.  

Cutter Tip Radius (ρf) Is one of the parameters that define a rack cutter 

geometry. The cutter tip radius, is the fillet between the 

inclined and the straight side of the rack cutter and 

affects the tooth root geometry of the generated gear. 

Profile Shift (X) Profile shift is used to alter standard proportions of 

gears. It is a modification that consists in shifting the 
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generating tool radially, so that the tooth profile will also 

be shifted towards the gear centre. 

Manufacturing Parameters Refers to all those parameters related to the 

manufacturing process. Profile shift can be considered 

one of these as it is applied at the manufacturing stage 

of the gear production. 

Undercutting Undercutting is an unwanted effect during the gear 

generation process. It happens when a condition of 

interference occurs between the cutter and the non-

involute portion of the tooth. The effect is a  removal of 

material at the root of the gear tooth. 

Contact Ratio (ε) Contact Ratio indicates the average number of teeth in 

contact during a mesh cycle. For standard gears, on pair 

of teeth is in contact for 100% of the time while another 

carries part of the load for a time determined by ε. 

Internal Gears Internal gear is a gear with its teeth cut in the internal 

surface of a cylinder pointing towards its centre. 

Operational Parameters This category contains all those parameters that affect 

the correct operation of a gear system. An example is: 

corner interference, minimum tooth tip thickness, and 

minimum contact ratio. 

Corner Interference Corner interference is when the tip of one of the gears 

interferes with a non-involute portion of the tooth 

profile of the mating gear that lies below the base circle. 

Tooth Base Thickness (Sb) The thickness of the portion of a tooth at the root circle. 

Top land thickness (Sa) The thickness of the top portion of a tooth.  

Contact stress Contact stress occurs at the point of contact where the 

two active flanks are transmitting the force. It is of 

primary importance as represents the major cause of 

failure in gears. 

Pitting Pitting refers to the mechanism of surface fatigue failure 

of gears. It occurs due to repeated loading with the 

contact stress exceeding the surface fatigue strength of 

the material. 
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Bending stress Bending stress in gears occurs at the tooth root as 

consequence of the action of the force applied on the 

tooth flank. 

Load Sharing Ratio Is the amount of Load shared between multiple tooth 

pairs in contact related to the maximum load 

transmitted by a single toot pair. 

Symmetric Profile Refers to a tooth profile in which the active and 

unloaded sides have the same geometry. 

Asymmetric Profile Asymmetric gear tooth profile has the two sides 

generated with two different values of pressure angle. 

Generally the active flank has an higher pressure angle 

than the unloaded side which guarantees an improved 

load carrying capacity. 

Base pitch The base pitch is equal to the circular pitch of the gear 

on the base circle and must be a common dimension to 

both members of a pair of properly mating spur gears. 

Quasi static FEA Quasi-static refers to the method used for the numerical 

analyses and implies the solution of Dynamic problems 

by means of static Loads. 

Time-Varying Stress Contact and Bending stresses in gears have a variable 

nature. The Time-Varying Stress refers to the full 

spectrum of stresses generated during the mesh cycle of 

two or more mating gears. 

Arc of action The arc on the pitch circle through witch a tooth travels 

from the first point of contact with the mating gear tooth 

to the point where the contact ends. The Arc of action is 

divided in arc of access and Arc of recess. 

Line of contact The point of contact, while the two gears rotate, moves 

along a line tangent to the base circles of the mating 

gears and passes through the pitch point. This is the line 

of contact also called line of action along which the 

transmitted forces are directed. 

Power/Torque density This quantity indicates the amount of Power and torque 

that a transmission system is able to deliver in relation 
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to its physical volume. The lower the volume the higher 

the density for the same amount of Power/Torque. 

Cycloidal profile The cycloidal profile derives from the epicycloid curve 

and is adopted for cycloidal transmissions. 

 

1.3 Motivation 

The aim of this industry funded PhD project is to investigate the mechanics of gearing in 

order to enhance compactness and performance of gearing systems. Epicyclic gear 

trains find application in the field of hand torque multipliers in which Norbar Torque 

Tools Ltd. is leading the worldwide market.  

Epicyclic transmission systems have been the focus of much interest in recent years 

mostly because they represent a viable solution for all applications in which limited 

weight and compactness are primary aspects of a design choice. Despite the large 

amount of literature available on epicyclic transmissions, there is very little information 

about applications with low rotational speed and high levels of transmitted torque. For 

these specific conditions, the only standard entirely dedicated to Epicyclic gearboxes 

available confirms the knowledge gap, underlining the necessity of undertaking a 

detailed engineering study in order to satisfy the requirements for the design of epicyclic 

devices (ANSI/AGMA 6123-B06, 2006).  

The design of gears traditionally follows rigid rules imposed by the available design 

standards such as the ones published by ISO and AGMA. The aim of standards is 

simplifying the design process by reducing the number of parameters to define and have 

as result a standardisation of the gear geometry and quality. Such approach brings a 

balance of performance based on an acceptable compromise for the vast multitude of 

working condition to which a gear can be subjected to. 

In the last years, thanks also to the advent of new production techniques that allow the 

manufacture of almost any kind of geometry and shape, gear design engineers are 

inclined to exploring non-standard combinations of parameters in order to develop 

custom products built to satisfy the requirements of specific applications. This 

introduces the necessity of detailed studies oriented to understand and evaluate the 
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effect that individual geometrical parameters have on gear performance and evaluate 

the optimal combination in relation to the working condition in which the gear system 

will operate. 

The continuous request of compactness and space reduction expressed by Norbar has 

motivated the research of an alternative transmission system with similar characteristics 

to the traditional epicyclic but with an improved power to volume ratio, in order to 

minimise the size of their devices for hand tooling applications.  

 

1.4 Research Objectives 

Increasing market requirements for compactness and enhanced performance of 

mechanical components, introduces, in the field of transmission systems, the concept of 

high torque density (Kapelevich, 2013). The consequent reduction in size of components 

naturally implicates overloading conditions that result into premature failures. Gears 

generally fail when the tooth stress overtakes the material safe limit. The failure 

mechanisms for gears are related to the applied load which, combined with geometrical 

characteristics, determines the local stress distribution. Tooth breakage occurs when the 

generated stresses are exciding the endurance strength of the material. In order to limit 

the chances of mechanical failure both material and geometry can be improved.  

The main objective of this thesis was to find an appropriate combination of gear design 

parameters that would enhance the mechanical properties of epicyclic gear trains under 

low speed and high torque working conditions. To investigate the contact stress 

distribution occurring on gear tooth flank and bending stress distribution at the tooth 

base, numerical methods have been adopted and results compared with the available 

rating standards. The steps taken to fulfil the requirements of the research are described 

as follows: 

 A geometrical analysis has been carried out to assess the physical boundaries of 

the feasible combinations of parameters that define the geometry of a pair of 

spur mating gears in order to separate the design process from the existing 

design standards. 

 The definition of the domain boundaries as for above, for the case involving two 
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spur gears in internal mesh.  

 The understanding of the effect on gear performance of each geometrical 

parameter. Gear performance in this case is evaluated in terms of stress 

magnitude and distribution during the entire mesh cycle of a contacting tooth 

pair. 

  Evaluate the effect of modified geometrical parameters on a higher order 

system, namely the epicyclic gear train, by investigating the stress distribution 

occurring on the multiple mating teeth for the entire duration of a mesh cycle. 

 Determine the parametric equations for generating the cycloidal profile disk and 

the mating components with the aim of designing a cycloidal transmission with 

a 15:1 ratio.  

 

1.5 Research Methodology 

The research methodology undertaken is based on numerical and analytical methods. 

While the numerical approach has been used with the purpose of researching and 

analysing novel combinations of parameters that result in non-standard involute tooth 

shapes, the analytical approach, based on international design standards, has been 

carried out as validation methodology for numerical data. The analyses focus on a single 

pair of mating gears, considered a low order model, and on higher order model, with 

multiple gears in mesh, such as planetary gear trains. Force interactions and contact 

deformations can be numerically determined using Finite Element Analysis (FEA) 

software packages such as ANSYS® (2016). With the aid of CAD geometry, FEA studies 

can be performed and the results of which can be compared with analytical results. A 

comprehensive analysis of the involute profile geometrical parameters has been 

performed by means of Finite Element Methods capable of modelling gear pairs and 

gear systems and simulating their working conditions. Gear teeth are subjected to 

different loads during their mesh cycle. As the point of contact changes its position along 

the tooth flank while gears rotate, the effect of the applied load on different portion of 

the tooth generates a stress distribution that varies with gear’s rotation. In order to gain 

information on the time-varying stresses for the entire mesh cycle a quasi-static Finite 

Element Methodology is considered appropriate as shown by Zhan et Al. (2016). The 
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gear models are generated in accordance with the domain of feasible combination of 

geometrical parameters determined by applying the blocking contour technique. Such 

technique was also applied for the first time to the case of internal mating spur gears 

and it was further developed by considering the existing relations and constraints of 

epicyclic gear trains.  

The parametric equations for the design of the cycloidal disk profile have been derived 

starting from the definition of the epicycloidal curve. The generated model was analysed 

by means of 3D quasi-static finite element analysis in order to evaluate the distribution 

of the stress among the simultaneous multiple contact. The amount of load carried by 

each pin in the system has also been evaluated.  

The results of the applied methodology have shown good agreement with analytical 

results obtained from the application of the design standard for the case of a spur gear 

pair and epicyclic systems. Since there is no standards available for the design of 

cycloidal devices, experimental results from the ongoing testing will be compared with 

the ones resulting from the application of numerical techniques. 

 

1.6 Originality and contribution of this research 

The originality and major contributions of this work are presented in the following 

section. 

The definition of a domain of feasible combination of parameters is of fundamental 

importance for the design of non-standard gears. The multi parametric design space has 

been obtained by the superimposition of lines that have the physical meaning of 

extreme values for the gear geometry and work as limit of the feasible area.  

To the knowledge of the author, for the first time the concept of a multi parametric 

design space has been applied to spur gears in internal mesh. In this case, 

manufacturing, operational and geometrical constraints addressed to internal mating 

gears have been determined and applied in order to define the area of feasible 

combination of parameters. 
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And even more, the multi parametric design space has been applied for the design of 

epicyclic gear models. Assembling relations, typical of epicyclic arrangement, have been 

considered in the definition of the design space. The result is a design tool that allows 

the user to define any combination of parameters suitable for an epicyclic transmission. 

In order to evaluate the performance of a spur gear pair in mesh, the contact stress state 

occurring at the tooth flank has been evaluated by means of a 2D quasi-static Finite 

Element Method. The effect of the contact formulation on the quality of result has been 

extensively discussed and the optimum formulation found represents a novelty in the 

field.  

The time-varying stress distribution for the evaluation of contact and bending stress 

occurring respectively at the tooth flank and at the tooth base has been evaluated for a 

copious number of models that differ one from the other by the modification of a single 

parameter such as pressure angle, profile shift, addendum and dedendum factors. In 

total 17 different geometrical configurations were analysed for the evaluation of contact 

stress and how it is affected by geometrical parameters. Similarly, 21 geometrical 

configurations were investigated in order to quantify the variation of bending stress with 

geometrical parameters. This has resulted into a comprehensive analysis of the stresses 

related to the gear geometry that was not available in literature. 

The developed design method for planetary gear trains was applied to a case study in 

which three epicyclic transmissions with different parameters were designed and 

analysed by means of FEA. Gears with high values of pressure angle, found beneficial for 

the reduction of stress in the previous analysis, were applied to epicyclic systems and 

compared to a case standard. There is no mention in the available literature of planetary 

systems designed with a working pressure angle beyond 25°.  The case under 

investigation with αw ≈28° represents a novelty.  

The design of a cycloidal transmission is a complex task given that no standards and or 

design guidelines are available. A model capable of a transmission ratio 15:1 has been 

generated and then manufactured for testing purposes. The 3D digital model has been 

the subject of quasi-static FEA analysis in order to evaluate the time-varying stress 
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distribution during an entire mesh cycle. The stress distribution at the interface pin-

cycloidal disk has been evaluated along with the amount of load simultaneously shared 

between multiple pins. To the knowledge of the author a detailed study of the time-

varying stress distribution occurring on the contacting components of a cycloidal 

transmission is not available in literature.  

 

1.7 Thesis Outline 

This thesis focuses on the research performed on mechanical transmission systems in 

eight chapters. The following outlines the content of each chapter. 

Chapter 1 presents a general introduction of the topic and introduce the reader to the 

sphere of mechanical transmission systems along with the concept of performance 

analysis associated to this class of devices.  It outlines the objectives of this research as 

well as the methods taken to conduct the study. Finally, the major contributions to the 

field of gear design are outlined and the layout of the thesis is described.   

Chapter 2 provides an extensive survey of the existing literature currently available 

about the design and performance analysis of gearing systems. The chapter proceeds by 

discussing the concept of design space and the various techniques adopted for its 

determination. It follows with the description of performance analysis associated with 

the stress distribution. A review of the numerical methods adopted for the analysis of 

gears and gear trains is also done. The survey continues with the epicyclic gear trains 

along with the alternative category of cycloidal transmissions.  

Chapter 3 gives the basic concept of the involute profile. The construction method of 

the involute curve is determined in a parametric form. As gear geometry is function of 

multiple parameters, a detailed analysis of the effect caused by the modification of each 

parameter is given. Furthermore, the background theory of the finite element method 

used in this thesis, focusing in particular on the solution of non-linear problems such for 

the case of gears is explained. 

Chapter 4 focuses on the concept of area of feasibility of a rack based design process. 

The chapter describes the technique used to create a parametric multi-dimensional 
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design space by taking under consideration the factors that define the gear profile 

geometry. 

Chapter 5 provides an extensive description of the analysis conducted for the evaluation 

of the performance of a spur gear pair. The chapter content of the chapter spans from 

the generation of the models to the detailed settings for the numerical analysis along 

with the evaluation of the time-varying stresses for a number of gear configurations in 

the design space previously determined.  

Chapter 6 introduces the epicyclic transmission systems by describing their geometrical 

arrangement, meshing and assembling requirements. Successively, a design technique 

based on a multi-dimensional design space was developed also for the case of epicyclic 

gear trains. The characteristics of gears in internal mesh have been coupled with the 

constraints imposed by the epicyclic configuration. A case study consisting in the 

analysis of three different planetary gear sets has been conducted starting from the 

early stages of design up to the performance analysis and the definition of an optimum 

geometry for the application in low speed high torque working conditions.  

Chapter 7 deals with the design of a cycloidal transmission with the scope of finding an 

alternative solution to the more traditional epicyclic transmission. The parametric 

equations of the cycloidal profile have been determined and a model of the entire 

transmission has been designed and successively manufactured. By means of finite 

element method a performance analysis has been attempted. 

Chapter 8 summarises the general conclusion of the thesis and outlines the main 

contribution to the area of design and performance analysis of spur gears, epicyclic gear 

trains and cycloidal transmission systems. 
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2 Literature Review 

Gear and gear trains play a critical role in the family of mechanisms and machines since 

they were invented thousands of years ago. Dudley (1969) in his “evolution of the gear 

art” has classified the development of gears and gearing starting from mechanisms used 

in ancient populations and explains the development of gears in a chronological order 

from pre-Christian times, around 3,000 B.C. till modern times. Primitive form of gears 

consisted of wooden pins arranged on the periphery of a wooden wheel to drive the 

mating member, as shown in Figure 2.1. The historical change of tooth form is mainly 

accounted for by development in manufacturing technologies; the developments of new 

production methods have permitted the evolution from wooden pin toothed wheels to 

modern gears with involute profiles. 

Figure 2.1 - Ancient form of geared transmission consisting in wooden gear in mesh with a pin 

toothed wheel (Dudley, 1969). 

The beginning of modern gearing is dated between 1600 and 1800 A.D. when the 

involute curve was first postulated. According to Dooner (2012), the involute curve was 

first introduced by Philip de la Hire in 1669, but it was later, in the eighteenth century 

that the Swiss scientist Leonard Euler developed the mathematics to describe the 

involute curve and then introduced the involute of a circle as a viable geometry for tooth 

flank profiles. 

In recent times, gear design has become a complex subject that has to deal with many 

aspects of engineering. The main goal of a gear train is the transmission of power but 

restrictions such as maximum overall dimension, reduction in vibration and noise 

emission, low maintenance requirements, are some of the considerations that a modern 

copyrighted image removed from electronic version
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gear designer has to take into account, as well as minimum possible manufacturing costs 

(Maitra, 2012).  

Figure 2.2 - Evolutionary steps of gear design from the prehistoric form of gears to the gear 

standardization and the newly developed direct gear design (Kapelevich, 2013). 

Kapelevich (2013) summarises the evolutionary steps of gear design in the diagram given 

in Figure 2.2. In particular, he points out the way that gears were categorised and 

designed in the past, before gear standardisation appeared. For ancient engineers the 

manufacturing process was the second step of the gear design process and it was only 

taken into consideration when the gear design data were already known. Historically 

gears were produced for a particular application based on the performance 

requirements, often as one off production components. This is conceptually different 

and in contrast with what happens for the majority of the gear production after the 

introduction of gear standardisation based on the rack generation process. 

The concept of standardisation in gear design has meant that the established standard 

manufacturing process imposes the geometry of gears. In coincidence with the 

industrial revolution and the exponential increase in the demand of transmission 

components for all kinds of mechanisms and machines, the standardisation of gears 

began. 

The invention of hobbing machines as a more efficient manufacturing process was based 

on the application of the tooling rack for gear manufacturing. The size and proportion 
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of the cutting tool were standardised. In Figure 2.3 the main factors subjected to 

standardisation such as addendum ha, dedendum hf, cutter tip radius ρf, pressure angle 

α, and the radial clearance coefficient c, are shown. These parameters with the scale 

factor m, the module, completely define the geometry of the corresponding gear profile. 

Figure 2.3 - Tooth profile and dimention of standard rack cutter (KHK, 2015). 

A standardization of the gears in the first instance was required to guarantee the 

interchangeability of gears made by different manufacturers, but also for the use in 

different applications. The resulting design is a solution of compromise for the majority 

of applications. On the other hand, this standardisation can be seen as a limit for a 

further development of gear technology. It has simplified the design of gears making the 

process indirect  and dependent on the standard geometry of the manufacturing tool 

(Kapelevich, 2013). Designs based on the standard basic rack provide a satisfactory 

solution in terms of strength and life, but also vibration and noise emission. However, 

an average solution might not work for applications in which an optimization of a specific 

characteristic is required, or a high performance application. The majority of the 

research done on gear technology is based on the optimization of the micro geometry 

of gear profiles. This means that gear researchers and engineers have mainly focused on 
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the optimisation of those aspects of gear profiles generated with standard parameters 

without exploring the possibilities of new feasible proportions that define the macro 

geometry of gears.  

With the help of mathematical models, the use of computer-aided design software and 

finite element analysis, the exploration of new proportions of involute profiles is made 

more approachable (Amani et Al., 2017; Goldfarb et Al., 2005; Kapelevich et Al., 2013). 

Paired with new production technologies, this allows optimized solutions to be found 

for specific applications.  

2.1 Design Space 

The exploration of the design space includes the feasible geometries for gears in mesh 

and has been an area of particular focus in recent years.  

The design of gears and gear trains, even for the simplest case of two spur gears in mesh, 

is complex due to the number of parameters involved. By considering that, for a single 

gear, module, addendum, dedendum, pressure angle, cutter tip radius, face width and 

profile shift coefficient have to be determined and that each parameter can be chosen 

independently between the two gears in mesh, the problem already has a significant 

degree of complexity (Amani et Al, 2017). To combine the parameters listed above, their 

interaction has to be taken under consideration to identify the domain of feasible 

combinations. Amani et Al. (2017) presented a multi-parametric design space by 

considering manufacturing and geometrical limitations. In their research, the authors 

investigated the occurrence of undercutting and corner interference by combining 

values of pressure angle, module, number of teeth, cutter tip radius, dedendum, 

addendum and tooth thickness of two spur gears in mesh. As the study was focused on 

geometrical compatibility, the effects of the analysed design choices on stress and load 

carrying capacity were not considered.  In their geometrical analysis they have stated 

that the condition for a correct mesh is not necessarily dependent on the condition of 

equal pressure angle of the two mating profiles, but rather on the condition of base 

pitch compatibility (Kapelevich, 2013; Spitas et Al., 2014). The outcomes of the 

geometrical study highlighted that addendum and dedendum combinations correlate 

directly to radial interference. Changes to the pressure angle modifies the tooth 
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thickness by increasing the tooth base and reducing the width at the tip. The limitation 

is due to the condition of tip pointing. Dedendum, cutter tip radius and pressure angle 

have a combined effect on the occurrence of undercutting. Equations for the already 

mentioned geometrical and manufacturing constraints are given by the authors, and a 

large family of combinable plots has been presented for a pair of mating spur gears with 

regards to manufacturing feasibility and geometrical compatibility. The authors found 

that an increase in pressure angle reduces the feasible design space when the other 

factors under consideration are cutter tip radius, dedendum and cutter tip radius 

coefficients. Regarding the condition of interference, a combination of number of teeth, 

pressure angle, dedendum and cutter tip radius coefficients has been investigated and 

the result suggests that larger module and high pressure angles are more prone to 

interference problems. Regarding the undercutting limitation, by increasing the number 

of gear teeth, dedendum coefficient and pressure angle, the design space for non-

undercutting will be increased. Furthermore, suggestions about the design of high 

pressure angle and high contact ratio non-standard tooth forms that are already in use 

for high performance gear applications such as in automotive and aerospace industry 

are given. To the knowledge of the authors, the design of non-standard profiles is still at 

the stage of trial-and-error in industry practice. 

Goldfarb et Al. (2015) have introduced the concept of Dynamic Blocking Contours in gear 

design as a tool for designers to predict the gear’s quality at the initial stage of its design. 

The blocking contours are used to choose profile shift modifications for the pinion and 

gear. In this way, a specific profile shift coefficient is selected to obtain specified gear 

properties. With this approach, the rack parameters, including the number of teeth, 

have to be fixed leaving as the only independent parameter the profile shift. Given that 

the area restricted within isograms fulfils the conditions imposed by compatibility and 

manufacturing processes, all the possible combination of profile shifts for the two gears 

in mesh are feasible. In their work the authors give an example of a contour plot for a 

couple of spur gears respectively with 22 and 35 teeth, with 20° pressure angle and 

addendum coefficient, ha=1. They also assume a predetermined centre distance aw=58.5 

mm. Given that such a centre distance is indicated by a line that crosses the design

space, all the points that lie on that line are feasible combinations of profile shifts. They 
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also found optimum design choices for high contact ratio and the same specific sliding. 

Even though this work is comprehensive and covers the main aspects of gear design, it 

does not consider internal gearing, and does not give an indication of the resulting gear 

performance.  

In 2013 Kapelevich (2013) introduced the “area of existence of the gear pair” generated 

by means of the direct design method. The author considers the area of existence a 

research tool that allows engineers to explore “exotic” gear mesh solutions other than 

the ones commonly used, and to find a gear pair with certain characteristics that satisfies 

the required performance of a specific application. Figure 2.4 shows an example of area 

of existence for a pinion and a gear compared with the blocking contours of a gear pair 

generated with standard proportioned racks and three different pressure angles 20°, 25° 

and 28°. 

Figure 2.4 - Area of existence of a gear pair as function of profile angle at the tooth tip for the 

two mating gears ν1,2. Lines 1,2 and 3 are respectively pinion root interference, 

gear root interference and minimum contact ratio while 4, 5 and 6 determine the 

area of feasible combinations for a rack-based design with pressure angles 20°, 

25° and 28° respectively Kapelevich (2013). 

The area of existence for a gear pair is still a confined space within a blocking contour in 

which all the combinations of parameters are feasible and covers all the possible gear 

pair combinations that could be generated by any possible rack. Gear tooth profiles, in 

general, depend on preselected and standard set of parameters of the basic rack that 
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are all related to the manufacturing tool. With the direct design approach, tooth profile 

geometry is based on new independent parameters directly connected to the involute 

geometry such as number of teeth, base diameter, tip diameter and base tooth 

thickness. Kapelevich et Al. (2010) describe the construction of each isogram that 

defines the area of existence by considering the gear mesh characteristics including 

operational parameters such as corner interference, minimum tooth tip thickness, and 

the minimum contact ratio. Unlike design block contours, where profile shifts of the two 

gears in mesh are used as coordinates of the area of existence, this method uses the 

tooth base thicknesses of pinion and gear called respectively mb1 and mb2 in Figure 2.5. 

It is interesting to notice that the tooth fillet profile is not included in the geometry 

definition process as typically happens with the rack generation. In this case the tooth 

fillet profile is added in a second step and is shaped by the trajectory of the mating gear 

tooth tip. This second step completes the gear tooth geometry definition. 

 

 

Figure 2.5 - a) area of existence for a gear pair with N1=14 and N2=28. Iso-working pressure 

angle lines and iso-contact ratio curves are shown as function of tooth base 

thicknesses mb1 and mb2. Point A indicates αwmax=39.5° and ε=1; point B indicates 

αw=16.7° and εmax=2.01; oint C indicates αwmax=29.6° and ε=1; point D indicates 

αw=15.9° and εmax=1.64. b) Tooth profile geometries corresponding to the points 

A,B,C,D of Figure 2.5 a (Kapelevich, 2013). 

a 
b 
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In Figure 2.5 the area of existence for an external spur gear pair with number of teeth 

of pinion N1=14, and gear N2=28, is shown. In this figure the above mentioned isograms 

are plotted and characteristic points corresponding to different tooth geometries are 

indicated. The non-standard gear pair tooth profiles corresponding to the specific points 

are shown In Figure 2.5 b. The drawback of this methodology is that manufacturing of 

the gears is not considered during the design process and it does not rely on the 

standard and most commonly used production methods. This aspect means that Direct 

Gear Design is still of great interest for research and custom products, but it does not 

find application in large volume gear production.  

Another technique to design involute spur gear drives is presented by Alipiev (2011) and 

is based on the concept called the Generalised Basic Rack. The proposed approach 

follows the traditional principle of defining the gear geometry from the rack cutter 

proportions, but in this method, eight independent parameters have to be determined 

to completely define the basic rack geometry compared to the four of the traditional 

basic rack. Furthermore, a characteristic of this model is that gears are simultaneously 

modified in the radial and tangential directions; this influences thickness and profile of 

the cut teeth.  The generalised basic rack determines the geometry of two different rack 

cutters one for the pinion and the other for the gear teeth. Alipiev has applied this design 

method to symmetric and asymmetric gears with such a small number of teeth that 

cannot be obtained by using the traditional geometric design due to the occurrence of 

low contact ratios. To satisfy the necessary condition of contact ratio ε>1 that 

guarantees the continuous transmission motion from one gear to the other, the author 

introduced the Realized Potential Method in which the contact ratio of the gear drive is 

always the maximum achievable. 
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Figure 2.6 - a) Area of the realised potential of symmetric meshing with number of teeth N1=4 

and N2=6. b) Corresponding geometry of pinion and gear in simultaneous mesh 

with rack cutters and mating gear (Alipiev, 2011). 

 Figure 2.6 a shows the parametric area of gears with symmetric teeth generated with 

the Realized Potential Method. Each point in this area corresponds to a gear train with 

a specified geometry for which the contact ratio is always maximum and >1. In the 

example with N1=4, to fulfil the condition of ε>1, N2 must be greater than or equal to 6 

otherwise, for a smaller number of gear teeth the area does not exist. Once module, 

number of teeth for pinion and gear, pressure angle and fillet radii of the rack cutter 

have been chosen, the generated area allows the tangential and radial modification 

needed for the pinion to achieve the desired tooth tip thickness for the predetermined 

contact ratio to be determined, and gives the indication of the resulting pressure angle. 

Both radial and tangential modifications for the gear, have reciprocal values to the ones 

applied to the pinion. The obtained geometric models including the rack cutters are 

shown in Figure 2.6b in which is noticeable the difference compared to standard 

profiles. The pinion teeth are thicker than the gear ones because of the opposite 

modifications in the radial and tangential directions. The authors state that only when 

N1 is specified, the Realized Potential Method allows N2 to be determined for ε>1. To 

this end it is necessary to draw the areas for different combinations of N1 and N2 to find 

the desired condition. 

Regalado (2007) evaluates the effects on the performance of gears as consequence of 

nonstandard proportions of the gear geometry. The author analyses individual 

a b 
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manufacturing and operational parameters and shows how a profile shift affects them. 

Firstly, he correlated profile shift with pressure angle and number of teeth, to find the 

minimum profile shifting to avoid undercutting. On the other hand, the occurrence of 

the condition of pointed tooth tip imposes an upper limit to the variation of the profile 

shift. These two conditions are plotted together and define a feasible manufacturing 

area. To follow, the analysis is extended to two mating external spur gears. The author 

does not consider the condition of radial interference but considers the operational 

interference occurring between the tip and the root of the mating gear asserting that if 

the two gears in mesh are generated using a hob or a rack without the occurrence of 

undercutting, this guarantees the nonexistence of operating interference. Contact ratio 

has been studied in relation to centre distance and pinion profile shift. A reduction in 

centre distance and a negative profile shift produce an increased contact ratio in the 

gear set. The author has included in the study the geometry factors for bending and 

contact stress defined by the American Gear Manufacturers Association. He has 

observed that for enhanced pitting strength, an extended centre distance and a positive 

profile shift in the pinion are recommended without affecting the contact ratio. To 

improve the bending strength of the gear, a positive profile shift and an increased centre 

distance are needed.  

Several other works are related to gear design space boundaries, geometrical and 

operational parameters and their effect on gear proportions and gear drives 

performance.  

Alipiev et Al. (2013) proposed a generalized approach for defining the undercutting of 

involute teeth. The authors developed a new approach for the determination of the 

undercutting condition taking into account the rack cutter tip radius. Compared to the 

traditional approach, described by Litvin et Al. (2004), they added to the typical 

undercutting condition one called type I, and two other conditions of undercutting 

called type IIa and IIb. In the traditional approach the tip radius of the rack cutter is not 

considered. When this radius reaches a certain value, the traditional condition of non-

undercutting is satisfied but a portion of the root fillet still experiences a loss of material. 

The author describes the boundaries to the case of undercutting by providing the 

equations to generate the curves that represent the above mentioned limits. For the 
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type I undercutting condition, the limit has been defined as a function of profile shift by 

defining a minimum value, Xmin, that corresponds to the boundary case. For the other 

two conditions it has been shown how the boundaries vary for different values of 

pressure angle α and number of teeth N. In order to check the validity of the proposed 

model the authors manufactured three prototypes of undercut teeth and defined 

quantitative radial and tangential indices of the undercutting to specify the amount of 

material removed from the involute teeth profile in both directions. 

Miler et Al. (2017) have studied the influence of profile shift on the gear pair volume. By 

using a genetic algorithm, they created an automated five-variable optimization process 

that includes module, pinion tooth number, face width and profile shifts for the two 

mating gears. Tooth root strength and surface durability, calculated with the ISO 6336 

method B, were used as constraints for the analysis (ISO 6336, 2006). Boundaries of the 

explored domain were defined by the authors in relation to the ISO standard and based 

on practical considerations such as the tooth thickness at the tip diameter.  Results of 

the genetic algorithm formulation gave an indication that increasing the module and 

profile shift, and simultaneously reducing the facewidth rather than balancing the two 

gives the best results in terms of volume optimization. Optimized results have also 

shown that profile shift reduced the volume of the gear pair by 30% compared with a 

pair without the modification applied. This effect is explained by considering the 

influence that a positive profile shift has on tooth profile proportions. A larger tooth 

radius of curvature is beneficial for contact and root bending stress. Results were 

compared with those from the commercial software KISSsoft (2017) where the 

optimization criterion was focused on weight reduction. 

Rameshkumar et Al. (2010) studied the relation between addendum factor and contact 

ratio of a gear pair. By increasing the addendum factor from the standard 1 to 1.25, they 

raised the contact ratio of a standard gear pair to a value above 2. The normal contact 

ratio and the high contact ratio gear pairs were compared in terms of contact and 

bending stress. A 2D Finite Element Analysis was carried out for all the gear mesh 

positions with angular increments of 0.5°. The load sharing ratio has shown that while 

the normal contact ratio carries 100% of the load in the area of single tooth pair in 

contact, and 57% each when two pairs are in contact, instead the maximum transferred 
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load for the high contact ratio gear pair is 57% of the total. The variation of bending 

stress follows the same trend as the load sharing ratio, and results in a value 18% lower 

in the high contact ratio HCR compared to the normal contact ratio NCR gears. The tooth 

contact stress was analysed using the Hertz formula and using the loads from the 

previous analysis. Contact stress was reduced by 19% compared to the unmodified 

design. In summary, the authors stated that the load carrying capacity of their modified 

design was increased by 18% compared to the standard case. 

In recent years there has been a heightened level of interest in gear profiles with 

increased values of pressure angle. Studies on high pressure angle gears have been 

carried out by Handschuh et Al. (2010) for space mechanism applications, and have 

revealed the benefits of such design choice. The authors made considerations on the 

limits imposed by manufacturing and operational parameters on the increase of 

pressure angle. Pointed tooth top land and minimum contact ratio are both limiting 

factors for a higher pressure angle design choice. To avoid those conditions, the number 

of teeth for the 35° pressure angle gear was increased and the module reduced. In order 

to compare the influence of pressure angle on gear performance, two other designs with 

20° and 25° pressure angles respectively were made. The common parameters between 

the three models were centre distance, gearing ratio and facewidth. By means of finite 

element analysis and analytical calculations, it was found that sliding velocity, which is 

proportional to gearing losses and wear rate, was considerably smaller for the non-

standard profile. On the other hand, the separating forces acting on the bearings 

doubled with the high pressure angle design. Stress analysis results from the finite 

element analysis have shown fairly good agreement, with a lower bending stress for the 

20° pressure angle, and a lower contact stress for the 35° pressure angle design. In a 

companion paper, the authors have reported their testing carried out on the previously 

mentioned models. In particular, high-speed and a low-speed test modes were run. For 

the first case, by measuring the temperature of the lubricant which is a function of the 

gear meshing losses, a lower temperature change across the gearbox was found for the 

high pressure angle model. A further surface analysis has also shown the absence of any 

kind of contact failure after 3x108 cycles at 10,000 rpm. For the second case study, the 

applied rotational speed was 150 rpm for 5x105 cycles, and gears were lubricated with 
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grease. A difference in weight before and after the test was taken as an indication of 

wear rate. Also in this case, high pressure angle gears performed better than the other 

two designs under investigation, with less than half of the mass loss for the 25° pressure 

angle, and about a quarter of the mass loss for the 20° pressure angle gears. As a result, 

Handschuh et Al. (2012) stated that high pressure angle gears have shown an improved 

efficiency and lower wear rates compared to standard gear profiles. 

Miller (2017) has shown the mathematical calculations needed to determine the 

geometrical parameters of a gear pair with a high pressure angle. The method presented 

by the author considers the pressure angle as a final result of the calculation procedure 

and is a function of minimum top land thickness, whole tooth depth, contact ratio and 

cutter tip radius. Three configurations with 33.5°, 35° and 36° pressure angles were 

analysed and compared to a 25° gear profile considered as baseline. All the parameters 

involved in the design of a gear pair were kept constant. Stress results calculated using 

AGMA standards have shown a significantly reduced bending and surface contact stress 

for the higher pressure angle gears. The author suggested the application of high 

pressure angle gears where high power density and high gear tooth strength are 

required. Moreover, because of the higher separating forces due to the higher radial 

component of the applied load, it is suggested these are used in planetary applications 

as they are self-balanced systems. 

The improved effects of higher pressure angles were also studied for asymmetric gear 

design. Marimuthu et Al. (2016), by means of direct gear design, have created the area 

of existence for symmetric and asymmetric gears with similar parameters. The first part 

of the study was a comparison between symmetric spur gear models directly designed 

and conventionally designed respectively. The two models differed only in that the 

pressure angle was 25° for the first case and 28° for the second. Results have shown an 

8.4% bending stress reduction and 5.5% contact stress reduction for the higher pressure 

angle configuration compared to standard tooth proportions. A similar reduction was 

also shown in the case of asymmetric profiles. The root bending stress for loading 

applied to the high pressure angle side was approximately 8% lower than that for loading 

applied to the low pressure angle side. With regards to contact stress, the reduction was 

approximately 15%. Based on those findings, the authors suggested the use of higher 



26 
 

pressure angles on the loaded side of asymmetric teeth to enhance the load carrying 

capacity of a gear drive. Another consideration regarded the contact ratio, and the 

conclusion was that smaller contact ratios are preferred to improve the performance of 

the gear drive. Similar results were found by Olguner et Al. (2014); in their study on the 

design of symmetric and asymmetric external spur gears for pump applications. Their 

work focuses on various combinations of drive and coast side pressure angles and 

different profile shifts have been tested and compared. Also in this case, the results have 

shown that increasing the drive side pressure angle and the profile shift reduces tooth 

contact stress and bending stress significantly. Tooth stress was reduced by 20% by 

increasing the pressure angle from 20° to 40° respectively. For symmetric 20° pressure 

angle profiles a 15% reduction in contact stress was seen by increasing the profile shift 

coefficient from 0 to 0.6. The reductions were also confirmed for the root bending stress 

by the same amount and for the same geometrical modifications. Also for this case 

study, gears with larger pressure angles and positive profile shifts made a considerable 

contribution in increasing the load carrying capacity. 

 

2.2 Stress Analysis of gears  

Stress analysis of gears has been developed over the years with different calculation 

methods and approaches. Analytical formulations have been developed and constantly 

updated to more accurately predict the stress state occurring in gears and gear trains. 

The complexity of the gear geometry, dynamics and kinematics are all factors that 

contribute to the stress development, and make the results hard to predict. In this 

context, the advantages of FEA became apparent and in the years have almost entirely 

substituted the experimental methods based on photoelasticity. Coy et Al. (1985), 

Kawalek et Al. (2006), Spitas et Al. (2007) and many other authors have recognised the 

importance of Finite Element for the analysis of gears to the point that they claimed FEM 

being the most powerful method to accurately determine stress and deflection in gears. 

However, Coy pointed out critical aspects for a valuable and accurate analysis such as 

mesh quality, boundary conditions and geometry definition. 
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2.2.1 Root bending stress analysis 

Root bending stress is a concentrated stress at the base of the tooth. If the gear tooth, 

according to Lewis’ analysis (Lewis, 1893), is considered a cantilever beam, the highest 

stress concentration will occur at the root fillet. When bending takes place, the tooth 

base experiences a tensile stress on the side where the load is applied whereas the other 

side experiences a compressive stress. High root stress levels exceeding the allowable 

material limits lead to tooth breakage and consequent failure of gear transmission. The 

study of tooth root stress is of fundamental importance in the determination of gear 

performance, and in assessing the effectiveness of a gear design.  

Until the mid-20th century all the gear calculations were based on the considerations 

developed by Lewis about the relation between tooth geometry and bending strength. 

To estimate the strength of the teeth under load, Lewis inscribed a parabola of uniform 

strength within the tooth form, and at the point of tangency between the tooth and the 

parabola, the weakest cross-section has been determined. 

Latterly, Dolan et Al. (1942) have focused attention on localized stresses due to abrupt 

changes in the section of a stressed member.  They found that the form factor for gear 

teeth based on the Lewis’ equations did not take into account important geometrical 

factors such as the sharpness of the root fillet, which influences the generated stresses 

at the weakest section. Based on this assumption, the authors started a campaign of 

research by means of photoelastic techniques to clearly understand the effect of some 

geometrical variables on bending strength. Following this research, stress concentration 

factors were introduced to adapt the stress value calculated by means of Lewis equation 

to those measured experimentally. 

The current trend of gear design focuses on minimizing the root bending stresses with 

the ability to accurately model spur gears and obtain accurate bending stress results.  

Andrews (1991) was one of the first to apply the finite element method to the study of 

spur gears. The author focused on the validity of finite element gear analysis compared 

to the semi-empirical formulae generally adopted by the gear design standards, or those 

based on photoelastic experiments. Given that such technique requires the use of 
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physical models, it is impossible to analyse every proposed gear design to develop an 

accurate formulation that represents the actual stress state under load. Therefore, the 

author has proven the validity of the finite element method by making a direct 

comparison with photoelastic experimental results. Due to the limited computational 

power at this time, the model included a whole tooth and two halves of the adjacent 

teeth. The involute geometry has been generated by using the rack-gear meshing 

equations that determine three distinct portions of the tooth geometry: the involute 

portion, the trochoidal fillet and the root circle. The model was fully constrained and the 

load was applied in six different positions from the tip to the root. As the loading point 

moves along and descends down the flank, the tensile fillet stresses were decreasing 

due to the smaller bending moment associated with lower load application points. The 

trend changed for load positions closer to the root fillet. Due to the application of the 

load, an additional tensile component superimposes the stress at the fillet determining 

a “proximity effect”. The direct comparison between the results obtained by 

photoelastic experiments and those yielded by numerical analysis had shown a good 

agreement establishing the ability of the finite element to accurately represent the 

behaviour of a loaded gear. 

Kawalec et Al. (2006) provided a comparative analysis of tooth root strength between 

ISO 6336 (2006) and ANSI/AGMA 2101/D04 (2016) standards. Results were compared 

to FEM with the aim of understanding the existing limitations of the current gear 

standards. The authors conducted a comprehensive analysis of the impact of 

geometrical, manufacturing and operational parameters on gear performance. Gear 

design variables such as number of teeth, pressure angle and profile shift were studied 

in relation to the generated root stress state. Calculations were also performed for gears 

manufactured with rack cutters and gear cutting tools. Moreover, the influence of the 

location of load application was investigated. Stresses determined in accordance with 

ISO and AGMA were compared with results of finite element analysis of the 

corresponding gear models. The study revealed that the two standards tend to give 

different results due to their differences in the calculations of critical section 

parameters. An increase of pressure angle from 15° to 25° has resulted in a considerable 

root stress reduction for both ISO and AGMA. The increase of profile shift coefficient 
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from –0.5 to +0.75 has also determined, for the case of AGMA calculations, a reduction 

in root bending stress. The decreasing trend was confirmed by FEA but with a smaller 

percentage of reduction. ISO showed a minimum for x=0 and an increasing trend 

towards high profile shifts. An increase in normal module has also shown a stress 

reduction and in this case the three methods were in agreement both for load applied 

at the tip and at the highest point of single tooth contact (HPSTC). In all the calculations 

performed, tooth root stresses according to the ISO standard were showing greater 

values than that calculated according to AGMA while stress values computed with the 

use of FEM were generally in between the two. The difference was smaller, but still 

visible, in the case of load applied at the HPSTC compared with the load applied at the 

tip. In the case of gear profiles generated with racks, stresses computed with FEA were 

closer to the ISO results, whereas in the case of profiles generated with gear tools, these 

were closer to AGMA. The same comparison with the addition of experimental results 

was done by Lisle et Al. (2017); the authors introduced an experimental technique based 

on strain gauge technology to validate the accuracy of ISO, AGMA and FEA for gear stress 

analysis. The comparison was made for large 50 mm module single tooth geometry with 

strain gauges positioned at the tooth root. The applied load was normal to the tooth 

flank surface and positioned at the tooth tip. The stresses established from the strain 

gauge experiments have shown a minimal difference (0.5% on average) with those 

produced using FEA.  Also, in this case, ISO was more conservative than AGMA for the 

estimation of root bending stress while FEA gave the most accurate result, perfectly 

aligned with the experimental findings. Both Kawalek and Lisle stated that FEA is the 

most accurate stress analysis technique compared to ISO or AGMA. 

Spitas et Al. (2007) have developed an optimization procedure to reduce the root 

bending stress on a spur gear pair. The maximum tensile stress at the root fillet was 

calculated with boundary elements and validated through a photoelastic investigation. 

The optimization routine required constraints to reduce the domain of existence for the 

gear pair to existing values. The given active constraints were based on kinematic, 

manufacturing and geometrical limitations, and dictated by commercial standards or 

common practice in manufacturing. Since the aim of the study was the optimization of 

the gear pair for bending resistance, contact pressure (proportional to pitting resistance) 
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was also included in the constraints to ensure that the optimized design was not inferior 

in that respect. By comparing the results, it was noticed that the optimum solution was 

found for the case of an equal stress state on pinion and gear. This result was achieved 

by increasing the profile shift on the pinion and decreasing the corresponding profile 

shift on the gear.  As the centre distance was constrained a reciprocal modification was 

applied. The photoelastic experimental results have confirmed the numerical 

predictions, assuring a decrease of the maximum fillet stress up to 8%. 

Dai et Al. (2015) have performed a static and dynamic tooth root strain analysis for 

symmetric and asymmetric spur gear profiles. Their analysis is based on a finite 

element/contact mechanics approach with an extensive use of experimental data to 

validate the numerical results for an accurate prediction of the tooth root strain. The 

authors have focused on the shape of the dynamic and static strain curves and its 

relation with tooth geometry in the presence of profile modifications. Their model 

includes two full body gears in mesh in relative rotation and the contact area on the 

active flank is captured using a semi-analytical formulation. This configuration allowed 

the authors to keep the mesh relatively coarse near the tooth surface resulting in high 

computational efficiency. For the experiments, strain gauges were applied to the roots 

of five consecutive teeth, and tooth root strains were measured under static and 

dynamic conditions. For the case of static tooth root strain, the finite element approach 

used has accurately predicted the amplitude and the distribution of the static strains 

during the mesh cycle compared with experimental results. The authors have also 

explained the transition between single and double pairs of teeth in contact and its 

effect on the root strain and consequent stress. With regards to dynamic tooth root 

strains, the gear pairs were tested experimentally to validate the numerical models. Also 

in this case, the FEA model has predicted the root strain amplitude and shape for the 

entire duration of the mesh cycle. For the two cases considered, static and dynamic root 

strains are similar except for speeds close to resonance. When resonance occurs, due to 

large amplitude vibration, the strain curve showed multiple peaks during the mesh cycle, 

with a maximum strain about 50% higher than the corresponding static value. 
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2.2.2 Tooth flank contact stress analysis  

Contact stress in gears is generally known as Hertzian stress. Gear teeth undergo 

compression due to the pressure generated in the region where contact occurs. 

According to Juvinall et Al. (1983), While the bending stress is dependent on the 

geometry and shape of the gear tooth, contact stress is a function of the curvature, 

material surface, hardness and elasticity. Contact pressure at the point of mesh between 

a gear and pinion is of great importance for the estimation of gear resistance and 

durability. According to Kapelevich et Al. (2013) and Gopinath et Al. (2016) contact stress 

is the main cause of surface failure of gears. This is due to the extremely high contact 

pressure that is generated at the interface between the two tooth flanks in contact. The 

shared load is distributed over a limited area of contact within which contact stresses 

can reach values above the permissible limit. More than twenty different forms of tooth 

flank failures have been reported according to ISO 10825 (1995). A summary of gear 

failure methods was done by Gopinath et Al. (2016) and presented in a flowchart in 

figure 2.7. 

 

Figure 2.7 - Flowchart representing the modes of gear failures  (Gopinath et Al., 2016). 

The calculation of contact pressure and related stress is based on the theory developed 

by Enrich Hertz for two elastic cylinders in contact which was further developed by 

Archard (1953). It is clear that a proper evaluation of flank contact stress is one of the 



32 
 

most critical parameters to minimize in order to improve gear transmission durability 

and performance. Several research works have investigated the contact stress 

distribution of mating gears by means of analytical, numerical and hybrid methods. The 

available contents relevant to this study are summarized in the following paragraph.  

Hwang et Al. (2013) presented a contact stress analysis by means of FEA for a pair of 

mating gears. The model consists of three teeth from the pinion, and one tooth from 

the gear, in relative rotation to each other. The model was loaded with a torque on the 

pinion with the mating gear allowed to rotate by 27.4° in order to cover the full mesh 

cycle of a tooth pair. With this configuration the analyses were performed at different 

contact positions during the relative rotation to investigate the variation of contact 

stress along the line of contact.  The authors made the assumption that the load is 

perfectly split in half when two pairs of teeth are in contact. By calculating analytically, 

the position of the highest and lowest points of single-tooth contact, they applied the 

full load and half of the load depending on the position of the contact point. The finite 

element results in the area of single pair of teeth in contact showed an increasing trend 

with the maximum contact stress occurring around the lowest point of single tooth in 

contact. The results were compared with the contact stress calculated with the 

application of the AGMA standard. The analytical value matched exactly the FEA result 

at the highest point of single tooth contact. This value was not the overall maximum for 

the case of the finite element stress. By comparing the two maximum stress values the 

computed stresses were more severe than that of the AGMA standard. Similarly, 

Olguner et Al. (2014) have applied both analytical and numerical approaches to 

determine the contact stress on involute spur gear teeth. The authors developed a 2D 

finite element model of a three teeth pinion and gear by assuming a uniform load 

distribution along the facewidth. By creating three tooth gear model, the authors did 

not make any assumptions of the load distribution among tooth pairs in a simultaneous 

mesh. This configuration increased the fidelity of results. The variation of FEA contact 

stress during a complete mesh cycle was compared with AGMA analytical results 

showing a substantial similarity between the two except for the first point of contact 

where the radii of curvature are small and possibly the Hertzian theory deduced from 

two elastic cylinders in contact is not precise enough. The authors extended the analysis 
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to the effect of gear ratio on the generated contact stress. By increasing the number of 

teeth of the driven gear, three different contact ratios were achieved. The results have 

shown that an increase in the number of teeth of the gear significantly reduces the tooth 

contact stress. 

Gurumani et Al. (2011) have made a comparison between a standard external spur gear 

and two differently crowned spur gears for stress and tooth contact analysis. The 

crowning was applied longitudinally across the full facewidth. The authors described the 

contact stress distribution and its relation with the generated contact area. They also 

explained that while for standard involute profile the contact between two involute 

flanks can be considered equivalent to those of two cylinders with same radii of 

curvature, for the case of crowned profiles this assumption does not reflect the actual 

contact state. Instead this can be assumed as the contact between two spheres of 

different diameter. For the first case the contact stress is uniformly distributed along the 

facewidth on a rectangular area, and for the second case, the uniform distribution does 

not occur given that the contact area assumes an elliptical shape with higher contact 

stress at the centre and progressively lower contact stress towards the edges. The tooth 

contact analysis undertaken by the authors is based on the Hertz theory and is compared 

to numerical results. Also in this case a three teeth 3D model was used in order to 

consider the effect of adjacent teeth in the stress distribution. The authors considered 

the load applied at the pitch diameter and uniformly distributed on a line for the case of 

a standard profile, and concentrated at the point of contact in the case of crowned 

gears. The Von Mises stresses at the critical contact points were analytically calculated 

and compared with FEM results. The results showed a more severe stress state for the 

case of analytical calculations of 21% for the case of unmodified profile, 28% for the case 

of circular crowning, and 32% for the involute crowning modification. 

 Ristivojević et Al. (2013) have carried out a theoretical and experimental study to more 

accurately model the tooth flank contact stress and the load distribution in spur gears 

considering the influence of the manufacturing accuracy and the influence of the tooth 

geometry. The manufacturing accuracy was modelled by varying the base pitch of one 

of the two gears in mesh and for the tooth geometry, positive and negative profile shift 

coefficients were used for the driving and driven gear respectively. The authors found 
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that the base pitch difference in meshed teeth has an influence on the load distribution 

of meshed pairs only for a low magnitude of applied load. Once the load increases, the 

load distribution factor tends to a constant value which corresponds to the case of equal 

base pitch for the two gears in mesh. A numerical analysis of the flank contact stress was 

also presented by considering both manufacturing and geometrical deviations. For the 

case of zero profile shift, maximum contact stress occurs when only one pair of teeth is 

in contact. In the region where two pairs of teeth are in contact the maximum contact 

stress occurs at the first and last point of contact. For the case of profile shifted profiles, 

contact stress is the highest at the last point of contact of the entire cycle. This, for the 

authors, is the result of an unfavourable geometry of the mesh profile. The variation of 

base pitch only lightly affected the distribution of contact stress for the case of gears 

without profile shift applied. For the case of profile shifted teeth, the presence of 

manufacturing errors affected the contact stress distribution from the point of single 

tooth pair in contact (STPC) to the last point of contact of the meshing cycle. The degree 

of influence was proportional to the error.  

Ye et Al. (2016) have studied the contact characteristics of a high contact ratio spur gear 

pair. Influence factors such as axis misalignment and tooth flank modifications have 

been taken into consideration and studied by means of analytical tooth contact analysis 

and the finite element method. The authors described the influence of tooth contact at 

the tip edge.  The FEA model consist of a 3D full body gear pair in mesh in which the 

pinion is located axially and radially and can only rotate about its axis, and the gear is 

fixed in all six directions for each time sub-step. For the case of unmodified profiles, the 

ellipse-type stress distribution is evenly distributed along the facewidth, and for the case 

of lead crowned profiles, the ellipse is located at the centre and does not extend towards 

the edges. In this case the stress level is higher due to the smaller contact area and the 

increased curvature. In presence of axis misalignment, the lead crowning avoids the 

occurrence of edge contact at the face-end, and the consequent non-Hertzian contact 

stress, by relocating the point of contact towards the centre. For the case of pinion tip 

relief, while the contact stress mesh cycle for the unmodified profile showed a spike in 

the region of first contact due to tip corner impact, in the case of tip relief, the 

concentrated contact stress is avoided, but an increased amount of stress is shown in 
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the central area of the mesh cycle with a variation tendency similar to a gear pair with 

normal contact ratio. 

2.2.3 Combined Contact and Bending analyses 

Other studies have focused on a coupled analysis of contact and bending stress.  

Zhan et al (2015) have studied the time varying load capacity of a spur gear system 

through a quasi-static finite element analysis by means of the commercial software 

Ansys (2016). The quasi-static analysis allowed the estimation of the induced contact 

stress and bending stress as a function of contact position. The choice taken by the 

authors to use quasi-static analysis is justified by the slow rotational speed involved, as 

the inertial effect can be neglected. The 3D model includes the full body geometry of 

the two gears. All the degrees of freedom have been constrained except for the rotation, 

and a rotational velocity of 0.55 [rad/s] and a torque of 276 [N] were applied to the 

driving and driven gear respectively. The authors described in detail the approach they 

have followed to get these results and avoid the convergence difficulties due to normal 

contact stiffness, interface treatment, mesh density and non-linear contact 

characteristics. For the same gear design and load conditions the AGMA standard  was 

applied to estimate both contact and bending stress in order to compare and verify the 

numerical methodology (ANSI/AGMA 2101/D04, 2016). Contact stress and bending 

stress have shown a variation as function of the contact position with a sudden increase 

at the point when a single tooth pair is in contact. The FEA methodology has shown also 

the ability to consider deformations and deflections due to the load applied and its 

effect on the stress state. The comparison made has shown a good agreement with 

AGMA for the case of contact stress with a difference of 2.5% for the peak values. On 

the other hand, numerical bending stress results were more severe than that of AGMA 

with a difference at the peak value of 77% which makes the two results incomparable. 

The FEA result has been taken as the most reliable by the authors, and the large 

difference has been explained by taking into consideration that the AGMA standard is 

based on uniform beam theory which is far from the involute geometry of a gear tooth. 

Similarly, Lias et Al. (2017) developed a quasi-static model based on Ansys to conduct 

the analysis of time-varying strength of spur gears, and to compare the results to the 

analytical ratings.  For the authors, the complexity of the tooth geometry limits the 
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accuracy of analytical results due to the imperfection of the assumption needed. The 

physical model used for the quasi-static analysis was a 3D three tooth gear pair model 

allowed only to rotate about the central axis.  The equivalent Von Mises stress criterion 

was used to evaluate the time-varying surface contact stress for a time interval of 0.6 s 

and a 30° rotation of the pinion. The performed analysis showed the variation of tooth 

surface contact stress for different contact positions along the line of contact with an 

increase in magnitude of 26% when the engagement moved from a double tooth pair in 

contact, to a single tooth pair in contact, where the maximum stress condition was 

recorded. For the case considered, the contact stress predicted by the AGMA standard 

was 8% lower compared to the numerical analysis. A similar behaviour of a time-varying 

nature was shown for the case of tooth root bending stress for which the variation of 

number of teeth simultaneously in contact causes a fluctuation in the bending stress 

values. The worst loading condition was recorded at the HPSTC both for the pinion and 

the gear. In this case, the comparison made with the AGMA standard has shown a more 

severe result of 10% when compared to FEA. 

 Sánchez et Al. (2017) have developed an analytical model applied to internal spur gears 

based on the Minimum Elastic Potential Energy. The authors have computed their model 

accordingly with the ISO 6336 standard to calculate load sharing ratio, contact stress 

and bending stress for an internal gear pair. The model was able to estimate the 

variation of load sharing ratio and contact and bending stresses along the path of 

contact. Results are shown for a standard profile and a profile with a reduced 

addendum. The evolution of the contact stress along the path of contact was predicted 

and the critical point was found at the first point of contact where the radius of 

curvature of the involute profile has the minimum value. The evolution of the bending 

stress instead has shown a maximum located at the outer point of the interval of single 

pair tooth contact of the pinion i.e. HPSTC. These results have been validated by means 

of FEA through a 3D model included the external pinion and the internal gear in mesh. 

Values of stresses have been calculated for multiple position of the gear mesh by means 

of multiple static analyses. For each relative position, the gear was prevented from 

rotating while the pinion was delivering the torque. The analytic results showed higher 

values of bending stress compared to FEA. This effect was attributed to the fact that the 
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ISO standard only considers the tangential component of the force. The radial 

component, which in fact generates a compressive stress state around the root area, 

reduces the tensile stress state. On the other hand, contact stress was in good 

agreement with FEA. The authors have further developed their model including the 

contact stiffness for the calculations. In this case the model was applied to a couple of 

external spur gears in mesh and for a standard and high contact ratio configuration. 

Results of contact stress were showing that the critical stress can be located either at 

the HPSTC or at the first point of contact depending on the geometry for standard 

contact ratio spur gears. For the case of high contact ratio gears critical points were 

found at the first point of contact of the mesh cycle, or at the beginning and at the end 

of the interval with three teeth in contact. Tooth root stress was also computed and the 

evolution along the full arc of action has been shown for both normal and high contact 

gears. In this case the maximum was shown at the HPSTC for standard contact ratio 

gears and within the second interval of two pair tooth contact for high contact ratio 

gears. Also for this study the authors validated their model with FEA. The results show 

very good agreement with the analytical calculations except for the stress state at the 

first point of contact, for which the developed model tends to show a more severe stress 

state compared to FEA. This small discrepancy is accounted by the authors to the added 

stiffness to the FEA model due to the constraints applied. 

 

2.3 Coaxial drives: epicyclic and cycloidal systems 

This section provides the available literature on epicyclic and cycloidal drives. It includes 

an overview of designs from the first patents to the current design practice, followed 

by the literature review based on current scientific and industrial Research. 

High speed reduction ratios cannot be achieved using only single pairs of internal or 

external gears. Coaxial drives are the most viable solution for applications that require 

high speed ratios and compactness at the same time. Thanks to their physical 

disposition with concentric axes and the combination of internally and externally 

toothed gears they are able to provide weight reduction and compactness, typical 

properties for applications in which high power density is required (Höhn et Al., 2013a; 

Kapelevich et Al., 2011). Given that the pinion and gears can be combined in different 
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ways, Yu (1987) has classified a vast family of epicyclic gear trains by giving an 

appropriate nomenclature based on their physical arrangement. 

 

Figure 2.8 - Schematic of single epicyclic gear layouts: a) Planetary gear; b) Star gear; c) Solar 

gear (Yu, 1987). 

 

 

Figure 2.9 - Schematic of compound epicyclic gear layouts: d) Compounded Planetary gear; e) 

Compounded Star gear;  f) Compounded Solar gearing systems; (Yu, 1987). 

 

In epicyclic gear trains, the desirable high ratios are achieved by the compounded 

motion of gears and pinions that consist of a combined movement of the planet gears. 

The planets spin around their own axis and simultaneously revolve around the central 

axis of the gear train, for this reason Yu suggests using the term “moving axis gearing”. 

Figure 2.8 a) shows the planetary system, where the planet gears orbit around a central 

sun gear.  Figure 2.8 b) and 2.8 c) show a star and solar gearing system where the planet 

axis and the sun axis are fixed respectively.  Figure 2.9 d), 2.9 e) and 2.9 f) show the same 

configuration as before with compound planets, one side in mesh with the sun and the 

other in mesh with the ring or annulus.  Of the 6 combinations, Yu considers only 4 as 
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‘moving axis gearing’ because he does not consider as epicyclic gears the arrangements 

in which the planet axis (planet carrier) is fixed. A further generalization of epicyclic gear 

trains is based on the sign of the speed ratio. The negative or positive signs indicate the 

sign of the realized speed ratio. Two main categories have been reported by the author, 

called 2K-H(-) and 2K-H(+).The term “2K” means two coaxial central gears either 

internally or externally toothed.  “H” denotes the planet carrier and so the moving axis 

and the (-) or (+) is the sign of the resulting speed ratio. The basic 2K-H(-) arrangements 

are shown in figure 2.10 where all the systems have two central axis gears 2K and a 

planet carrier H. 

 

 

Figure 2.10 (a, b, c) –  Schematic layouts of 2K-H(–) type (Yu, 1987). 

Similarly, in Figure 2.11, members of 2K-H(+) are shown. In this case the systems also 

consist of two central gears and one carrier but the speed ratio is positive. 

 

Figure 2.11 d, e, f) -  Schematic layouts of 2K-H(+) type (Yu, 1987). 

Yu has developed empirical formulae for the efficiencies of each family and conclude 

that 2K-H(–) can achieve high efficiency with a limited maximum speed ratio (similar to 

that for a pair of external spur gears). On the other hand, 2K-H(+) type can achieve high 
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speed ratios in a compact size at the expense of efficiency. The author proposed the 

hybrid KHV combines the high efficiency and the high speed ratio in a relatively compact 

volume. The KHV system has the same basic layout of the current Cycloidal drives and 

is able to provide a speed ratio in a single stage between 40 and 200 with efficiency up 

to 92%. The physical realisation sees a single central gear (K), a planet and an Eccentric 

shaft which also functions as a planet carrier (H). The planet gear, carried by the 

eccentric shaft is in mesh with the central gear (ring), and experiences wobbling and 

rotating motions. To convert the compound motion and transmit the rotation and the 

power of the planet to an output shaft coaxial with the central axis, Yu introduced an 

equal angular velocity mechanism (V). In Figure 2.12, a version of the V mechanism 

called a 'Plate-shaft' type equal velocity mechanism is shown.  The output shaft flange 

is composed of pins that are turned by oversized holes radially placed on the planet 

gear.  The differential motion of the planet turns the cranks at reduced speed and high 

torque. To dynamically balance the system, two or more planets (cycloidal gears) are 

generally used. At high speeds the wobbling masses, a consequence of the compound 

motion, balance the centrifugal forces.  

 

 

Figure 2.12 - a) Schematic representation and b) Longitudinal section view of a Plate shaft 

(KHV) Equal Angular Velocity mechanism (Yu, 1987). 

A comparison of the physical size of Cycloidal drives with equivalent conventional 

drives is made by Botsiber et Al. (1956) as shown in Figure 2.13. They state that to 

achieve a speed ratio of 75:1, three reduction stages of conventional gear trains are 
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required.  Sizes of gear drives are determined by the load applied to the teeth and by 

the desired velocity ratio. Cycloidal drives are more compact than conventional gear 

trains with same capacities. Figure 2.13 shows a comparison between systems with a 

75:1 velocity ratio and same output power. As seen, the housing size for the differential 

gearbox is very much larger than the Cycloidal drive, even though their capacities are 

the same. 

 

 

Figure 2.13 - Size comparison between different speed reduction units (Botsiber et Al., 

1956). 

2.3.1 Planetary drives 

Planetary or Epicyclic gear trains have been invented and used since the first kind of 

transmission systems appeared. Dudley (1969) reports on the most ancient mechanisms 

created in China in about 3000 B.C., consisting in a complex differential gear system. For 

this reason, it is impossible to place in history the precise time of its invention. 

 

Figure 2.14 - Frontal view of a four planets epicyclic transmission system. 
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A simple planetary system as the one shown in Figure 2.14, can be connected in six 

different ways creating a different velocity ratio for each configuration. To determine 

the kinematics of the system two components can be controlled and the output is a 

function of these two inputs. Ferguson (1983) presented a governing kinematic equation 

that yields all possible velocity ratios and allows the evaluation of torque and efficiency 

of the system for any given planetary configuration. The governing kinematic equation 

for n independently controlled components is presented in the form:  

 𝜔𝐸1 = 𝑘1𝜔𝐸2 + 𝑘2𝜔𝐸3 + ⋯+ 𝑘𝑛𝜔𝐸(𝑛+1) 2.1 

where ωEn is the angular velocity of a given independently controlled component, and 

En and kn are constants that depend on the planetary gear geometry. Another method 

to calculate the velocity ratio is the most common tabular method explained by 

ANSI/AGMA 6123-B06 (2006) and Maitra (2012).  

The main characteristic of planetary drives is the ability to transmit high amount of 

power within compact volumes. Kapelevich et Al. (2011) presented an approach to 

optimize the gearbox arrangement and the gear geometry to increase the transmission 

density. This approach is based on the definition of a volume function. The maximization 

of the number of planets in an epicyclic gear stage reduces the volume function and 

increases the compactness of the gearbox. The authors applied the volume function to 

three different multi-stage arrangements: two stars, two planetary and a differential 

first stage followed by a star arrangement with a stationary carrier. Of the three, the 

volume function showed a minimum for the arrangement that includes the differential 

stage because part of the power is transmitted directly from the first stage to the output, 

hence loading the second stage less. In another research work, Novikov et Al. (2008) 

have further developed the double-stage gear train that includes the differential by 

adding asymmetric tooth gears. The system, composed by three planets at the first stage 

and five planets at the second, found application in a turboprop engine gearbox and 

provides the highest power transmission density for the required gear ratio. The design 

concept of asymmetric gears for applications in epicyclic transmissions with singular 

planet gears is based on the equalization of the contact stress safety factors as the two 

flanks of a planet gear tooth are simultaneously in contact with the sun gear in the 
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external mesh and with the ring gear in the internal mesh, where because of the 

convex/concave surfaces on contact, the stress level is lower.  

Höhn et Al. (2013) compared the volume, weight and efficiency of three one degree of 

freedom planetary transmissions. The aim was to find the configuration that maximizes 

the power density. The gears were designed in accordance with ISO 6336, with 

optimized parameters to reduce gear losses and increase the efficiency. The authors 

describe the geometrical constraints that determine the correct assembly of a certain 

number of planets within the sun and the ring gears. The number of teeth is determined 

by satisfying the geometrical constraints and, on the other hand, the desired reduction 

ratio and the requirements of reduced weight and volume. Regarding the design of low-

loss gears, the authors give suggestions about the positive influence of an increased 

pressure angle, a reduced module and a low contact ratio. As result, volume and weight 

are proportional to the gear ratio instead of centre distance that has a quadratic 

influence on volume and weight. 

Rameshkumar et Al. (2010) applied the concept of high contact ratio gearing to increase 

the load carrying capacity in a planetary gear train used in a military vehicle final drive. 

In order to increase the power density of the original gear drive the contact ratio was 

modified from 1.343 to 2.0106. To achieve this result, number of teeth, addendum 

factor ha, module and profile shift of the three gears were changed accordingly, with the 

initial assumption of maintaining the same centre distance. By means of a quasi-static 

Finite Element analysis, the authors made a comparison between the replaced normal 

contact ratio and the newly designed sun and planets in terms of bending stress, contact 

stress and deflection. FEA results revealed a considerable 25% reduction of bending and 

contact stress for the case of high contact ratio that imply an increased load carrying 

capacity of 25% for the same weight and volume. 

Kalyanshetti et Al. (2014) investigated the stress state on a loaded ring gear. Both 

bending stress and stresses developed across the thickness of the ring gear have been 

evaluated through a 3D FEA static model and experimental measurements. The rim 

thickness of the ring gear plays a crucial role in the reduction of volume and mass and 

hence power density. The experimental setup consisted of a three-planet planetary 
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drive with strain gauges applied on the outer surface of the ring gear in proximity to the 

meshing position between planet and ring. Tests and computational analyses were run 

for different input torque levels. Experimental stress values and numerical results were 

in strict agreement. 

Prueter et Al. (2011) have studied the root strain of the ring gear for a flexible-pin multi 

stage planetary drive for wind turbine applications by using 3D finite element and full 

scale system experiments. The system is composed of three stages as follow: one fixed-

carrier planetary stage, one differential planetary stage, and a third traditional helical 

pinion and wheel. The input torque goes into the system via the ring gear of the first 

stage and is also connected to the carrier of the second stage. The sun of the first stage 

is connected to the ring of the second stage. The sun gear of the second stage connects 

to the helical pinion of the third stage. The root strain at eight strain gauge locations 

placed across the facewidth was compared with the one obtained from FEA. The finite 

element technique used in this work is a hybrid combination of finite element and semi-

analytical to increase the computational efficiency due to the large dimension of the 

model. Strain data from the finite element model and data from the experiments were 

in close agreement. Maximum values of strain were measured both for experimental 

and computational strains near the constrained end of the ring. On the free end side, 

the peaks of strain are not visible because the body is allowed to deform in that area.  

Based on this result, and after the computational model was validated against 

experiments, the authors decided to test a more flexible ring gear. For the configuration 

with more compliance, a noticeable improvement was seen. The sharp spike 

disappeared also on the side of the constrained end, due to more deflection and a 

consequent improved load distribution across the facewidth. 

2.3.2 Cycloidal drives 

Cycloidal drives can be considered an alternative solution to epicyclic transmissions due 

to the fact that both have concentric input and output shafts. In fact, also the cycloidal 

transmission is an epicyclic-kind system and while its components and geometrical 

arrangement are different they have in common the same working principle with load 

shared between multiple components in simultaneous mesh. 
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The Cycloidal drive was invented by Lorenz Konrad Braren (1928) and presented in his 

patent in 1928US Patent # 1,694,031 of which the introductory page is shown in Figure 

2.15. 

 

Figure 2.15 - Lorenz K. Braren “Gear Transmission”, (Braren, 1928)-US Patent # 1,694,031. 

The design of current cycloidal drives is based on Braren's design concept. The working 

principle is based on conjugate surfaces that meshing with each other are able to 

transmit the load from a member to the other. In Braren’s design the conjugate 

surfaces consist of a cycloidal disk, defined by the author “intermediate” and a number 

of pins placed circumferentially around the disk and hold in place by the annulus that 

works as housing of the system as shown in Figure 2.15. A primary role in the cycloidal 

transmission is played by the cycloidal disk. The geometry of this component presents 

complex epicycloidal tooth profiles as shown in Figure 2.15. 



46 
 

 

Figure 2.16 - Braren's tooth profiles in 'Gear Transmission', (Braren, 1932)– US Patent # 

1,867,492: a)epitrochoid tooth profile. 

Braren (1932) describes the construction method of the epicycloidal profile used for the 

cycloidal disk and appropriate for a mechanical transmission. The curve generated by a 

point fixed inside a rolling circle designated as '41' in Figure 2.16. When the circle rolls 

without slipping on the outer periphery of a fixed pitch circle, marked '40' in Fig. 2.16, 

the path traced by the point '42' in Fig. 2.16 within the rolling circle describes a curtate 

epicycloid. According to Braren (1932) and Beard et Al. (1992), different curves can be 

generated depending on the distance between point 42 and the centre of circle 41; when 

such distance is shorter than the radius of circle 41 then the defined curve is called 

curtate. If point 42 lies on the perimeter of circle 41 the curve is defined normal 

otherwise, if the distance is greater than the radius of circle 41, the created curve is a 

prolate epicycloid. The speed ratio of the transmission is independent from the position 

of point 42 as it defined by the ratio of the diameter of the pitch circle 40 to that of the 

rolling circle 41. Such ratio should be a whole number, otherwise the locus of the point 

42 would not form a closed profile and the resulting geometry would be unusable for 

mechanical applications (Braren, 1932). In Braren’s design an equidistant curve to the 

original curtate profile is used in order to generate a prolate curve that represents the 

actual tooth working profile. The parameter defined “equidistant” corresponds to the 

annulus pin radius as shown in Figure 2.16 and is chosen such that the profile of the 

curve generated causes an appropriate tooth profile to mesh with the pins of the ring 

gear. Braren used the prolate form of the curve because of its advantageous geometry 
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given by the absence of cusps and consequently the absence of single line contacts 

between the tooth profile and its conjugate pin.  

Annulus pins are cantilever beams type with one end secured to the annulus member 

and the other end free for meshing with the tooth profiles of the cycloidal discs as shown 

in Figure 2.15. A support ring between the two discs is recommended for higher loads 

to assist in balancing the load on the pins (Braren, 1928).  

Although other patents have been published, Braren’s design still represents a valid 

guideline for the design of cycloidal transmission systems. An increasing number of 

research works have been conducted in order to define the geometrical and 

performance characteristics of cycloidal drives.  

With regards to the geometry of cycloidal drives, Litvin gave a major contribution to the 

field by writing rigid body equations using coordinate transformation (Litvin, 1989; Litvin 

et Al., 1998; Litvin et Al., 2004). This method has been utilised by several researchers for 

generating meshing equations and determine the actual cycloidal profile by taking under 

consideration annulus pins and eccentricity which guarantees an interference-free 

geometry. Litvin (2004) named the geometrical configuration of cycloidal gearing as 

“overcentrode cycloidal gearing” by the fact that cycloidal disk lobes are displaced with 

respect to the gear centrodes. In another publication Litvin et Al. (1996) covered the 

generation of cycloidal gearings geometry and focuses on the characteristics of such 

geometry in order to avoid profile and surface singularities. The determination of the 

cycloidal curve is indirectly determined by considering simultaneously the mating 

surface and the equation of meshing; from this, the curve conjugate to the annulus pins 

is determined. The authors investigated the presence of singularities in the cycloidal 

profile as they represent an unacceptable condition for working applications. The 

proposed mathematical formulation enables to determine the limiting value of the 

radius of curvature in order to avoid profile singularities.  

Yan et Al. (2002) have used the approach proposed by Litvin for the design of a cycloidal 

gear train with cylindrical tooth profile. By means of coordinate transformation and the 

equation of meshing the most appropriate geometry for the annulus/internal gear was 

defined and used for the generation of a solid model. 
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Hwang et Al. (2006) have illustrated the envelope theorem for the geometric design of 

a cycloidal speed reducer. The mathematical model for the pin-wheel meshing has been 

formulated using coordinate transformation and the envelope theorem. The curvature 

of the epicycloidal profile was analysed by first considering the curvature of the prolate 

epicycloid and then deriving the equation of curvature for the cycloidal wheel profile. 

The authors in a companion research work (Hwang et Al. (2007) have investigated the 

presence of singular points and the presence of undercutting on the cycloidal wheel 

profile. This approach has allowed the authors to determine a preliminary feasible 

design region of which the boundaries consist of undercutting curve and line of 

maximum pin radius. 

With regards to the definition of the lobe profiles Shin and Kwon proposed an analytical 

approach based on the principle of the instant velocity centre and the homogeneous 

coordinate transformation. Their calculations are based on Kennedy’s theorem (Shigley 

et Al., 2003) and determine the condition of absence of sliding between bodies in 

relative motion. The presence of sliding, as asserted by Hwang (2007), is indication of 

undercutting. By applying the method of instant velocity centres Shin et Al. (2006) were 

able to determine a limiting condition for the eccentricity e0 so that: 

 𝑒0 <
𝑟

𝑁𝑝
 2.2 

The developed design methodology has then been implemented in a computer-aided 

design program and different examples of cycloidal drives have been presented. 

The review of the available literature on cycloidal drives continues by focusing on the 

performance analysis of this category of devices. The most relevant content is 

summarised below. 

Hwang et Al. (2006) have used an analytical approach to define the forces shared 

between annulus pins and cycloidal wheel at the contact interface. The authors assert 

that the contact forces between annulus pins and cycloidal wheel are oriented in the 

direction of the common normal to the contacting surfaces. Moreover, even if all the 

annulus pins are in tangency with the cycloidal wheel at the same time, only half can be 

under load and if tolerances and manufacturing/assembling deviations are considered, 
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less than half would be able to transmit the load. The effect of tolerances on the contact 

force distribution among pins has been further investigated by Blagojevic (2014). The 

author proposed an analytical procedure for the calculation of the maximum 

deformations experienced by the cycloidal disk subjected to load. Based on the direct 

proportion between contact force and amount of deformation, considerations on the 

effect of clearances between the cycloidal disk and the annulus pins on shared loads and 

total number of pins in simultaneous contact were made.  The results have shown that 

the amount of deformation experienced by the cycloidal disk is inversely proportional to 

the facewidth. Deformation is a periodic function of time given the meshing process of 

mating components; the number of pins in contact is inversely proportional to the 

amount of clearance applied and decreases if clearance increases. A similar study was 

conducted by Tsetserukou et Al. (2015 in which the effect of machining tolerances on 

the contact force distribution was evaluated. The results of the study show that the most 

loaded pin, in the case of applied tolerances, is subjected to a 42% increase of normal 

force compared to the case of nominal profile. 

Once the force distribution acting on the cycloidal disk has been assessed the natural 

consequence is the analysis of the stress state occurring on loaded components for a 

performance evaluation. Blagojevic et Al. (2014) have investigated the stress state of the 

cycloidal disk using numerical and experimental methods. The stress state analysis was 

realised using Finite Element Method. As the analysis regarded only the cycloidal disk, 

fixed supports were applied at the centre and a Force was applied normally to the convex 

portion of the cycloidal profile. The applied loading simulated a single tooth meshing 

condition which never happens in reality for this category of devices. Maximum 

Equivalent stress occurred in the area where the force was applied and it was almost 

entirely addressed to contact stress to the point that bending stress was neglected. This 

was addressed to the favourable geometry of cycloidal disks with a large tooth base 

thickness and a high radius of curvature. Numerical stress values were validated with 

experimental tests on a cycloidal disk model. Numerical and experimental results have 

resulted being in very good agreement. 

Jiang et Al (2015) have modelled a cycloidal transmission by means of the commercial 
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Finite Element software Ansys® (2016). The authors aimed to analyse the load carrying 

capacity of a cycloidal drive by evaluating the stress distribution and the maximum value 

of stress occurring on the mating components. To do so, a 3D model including the 

cycloidal wheel and the annulus pins was created and subjected to applied loads and 

boundary conditions. In order to simplify the simulation, the movement of the cycloidal 

disk was approximated with simple rotation, neglecting the effect given by the eccentric 

input shaft. Results have shown a distribution of stress in the area where multiple pin 

contact occurs with maximum values always below the allowable strength of the 

material. Accuracy of results in this case is affected by the applied boundary conditions 

which not represents the real kinematics of the system. 

Another research work based on the numerical analysis of a cycloidal transmission was 

made by Thube et Al. (2012) at Sumitomo Drive Technologies. The paper discusses the 

stress distribution occurring on the cycloidal disk and annulus pins for nominal and shock 

loading conditions. In this case the model was constrained such a way that the cycloidal 

disk was able to replicate the characteristic wobbling motion due to the interaction with 

the eccentric shaft and the annulus pins. A constant input speed of 1800 rpm and a 

moment of 135 Nm were applied to the input shaft. The time duration of the simulation 

was set for 360° rotation of the input shaft and the time duration was divided in time 

increments in order to achieve a resolution of 2° rotations. Results have shown that the 

cycloidal disk shares load with 5 over a total 16 annulus pins. For shock loading 

conditions of 500% the nominal load, the maximum stress value recorded results only 

38% higher than the one evaluated for nominal conditions. The reaction forces acting 

on the annulus pins have shown that with a higher load applied more pins are in 

simultaneous contact. This confirm the ability of cycloidal drives to withstand shock 

loading conditions. Results show the general trend over the entire mesh cycle; due to 

the low resolution they are not able to capture variation of load and stress within small 

intervals. 

Cycloidal drives are currently becoming more popular in industrial applications, due to 

the ease of production of complex curves with Computer Numerically Controlled (CNC) 

machines. Some manufacturers have included the Cycloidal drive transmissions in their 

product range.  



51 
 

 

Figure 2.17 - Sumitomo's "Cyclodrive"; section view of a single stage “Cyclo 6000” 

transmission (Sumitomo Drive Technologies, 2017). 

Sumitomo Heavy Industries is a well-known producer of Cycloidal drives and Cycloidal 

gear motors. General purpose Cycloidal drives are sold by Sumitomo under the 

commercial terms "Cyclo" and an example is shown in Figure 2.17. Cycloidal drives are 

available with speed ratios in the range of 6:1 to 119:1 for single stage reduction units.  

Ratios in a range of 104:1 and 7569:1 are presented in double stage Cycloidal reduction 

units. The entire product range spans 23 sizes with torque ratings between 55 lb in and 

603000 lb in.  

Several advantages of cycloidal drives are listed below: 

 High Efficiency: SM Cyclo is reported to have about 95% efficiency rating 

for a single stage unit and about 85% for a double stage configuration. The 

reason is addressed to the pure rolling contact between internal 

components with consequent reduction of friction and operating wear. 

 Compact Size: since the Cycloidal drive is a high ratio drive, very high ratios 

can be easily achieved in single stage configurations. The small number of 

parts involved in the Cycloidal drive mechanism limits the overall size 

making cycloidal as very high torque density speed reducers. 

 Sumitomo claims that Cycloidal drives are able to withstand 500% Shock 

over loading conditions. This is addressed to the multiple contacts 
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occurring between at least 30% of the lobes with the mating annulus pins. 

Moreover, the components are loaded in compression rather than in 

tension, which eliminates the possibility of tooth shearing due to shock 

overload. 

 Overall economy: Cycloidal drives offer several advantages starting from a 

low initial cost, high reliability, working life up to 50,000 hours of operation 

with negligible component wear, minimum maintenance. 

 Capacity for frequent Start-Stop and severe reversing: The low inertia 

makes the drive respond quickly to changing loading conditions.  Shear free 

profiles have less wear rate. 

 Silent operating conditions due to the reduced speed of internal 

components combined with rolling motion with minimal or no sliding. 

 All are grease lubricated for life except a few high torque versions which 

need regular re-greasing.  

Similar characteristics to the ones listed above are given by other cycloidal drives 

manufacturers such as Nabtesco and Darali confirming the mechanical advantages 

provided by this class of transmission devices (Nabtesco Corporation, 2016; Sumitomo 

Drive Technologies, 2017). 

 

2.4 Available Design Standards  

Many international standards have been published to guide gear design and 

manufacturing procedures. Gear design and analysis methods are standardised by many 

international Organisations such as AGMA (American Gear Manufacturers Association), 

ISO (International Standard Organization), JIS (Japanese Industrial Standard) and DIN 

(Deutsches Institut fur Normung) to standardise the various aspects of gear design. 

Currently the most popular are those published by the International Standard 

Organization (ISO) developed over the years in Europe, and by the American Gear 

Manufacturer Association (AGMA) developed in the US (ANSI/AGMA 2101/D04, 2016; 

ISO 6336, 2006). ISO 6336 standard was first published in 1996 and then has been 

revised on several occasions and republished in 2006 with considerable improvements. 
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ISO 6336 consists of the following parts: 6336-1:2006 Basic principles, introduction and 

general influence factors 6336-2:2006 Calculation of surface durability (pitting) 6336-

3:2006 Calculation of tooth bending strength 6336-5:2003 Strength and quality of 

materials 6336-6:2006 Calculation of service life under variable load. AGMA published 

the first standard in 1982. The content has continuously been updated and revised until 

the last edition AGMA 2101-D04 of 2016. Both the standards provide formulas 

applicable for rating the pitting resistance and bending strength of internal and external 

spur and helical involute gear teeth operating on parallel axes. The formulas estimate 

gear tooth capacity as influenced by the major factors which affect gear tooth pitting 

and gear tooth fracture at the critical section. The models described in ISO and AGMA 

present some similarities but are not identical. Both are based on theoretical and 

experimental research but also industrial practice in the field. The two standards have 

critical geometrical and performance parameters different from each other and also the 

estimation of those parameters is based on different assumptions and mathematical 

relations. These differences determine a discrepancy of results obtained according to 

the ISO and the AGMA standards under the same conditions as revealed by Kawalec et 

Al. (2006) and Lisle et Al. (2017). Both the standards indicate the finite element method 

as the most precise way to compute gear tooth strength. 

The design of epicyclic gear trains is guided by the ANSI/AGMA 6123-B06 (2006) a 

dedicated design standard published by AGMA and titled Design Manual for Enclosed 

Epicyclic Gear Drives. The European Organisation ISO gives indications for the design of 

epicyclic gear trains in the ISO 6336 (2006) standard dedicated to spur and helical gears. 

Cycloidal drives are relatively new in the field of mechanical transmission. The only 

standard for Composite Cycloidal toothed gears (watch gears) is under the British 

Standard BS978 Part 2 1984: Specification for fine pitch gears – Cycloidal type gears (BS 

978 - 2 1984:978). 

2.5 Knowledge gaps in literature review 

In the undertaken literature review it has emerged that the research on gears geometry 

and performance mainly follows two different currents; while one focuses on the effect 

of macro geometrical factors such as module or number of teeth, the other aims to 
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improve the tooth mesh characteristics by applying micro modifications such as profile 

relief and crowning. In the vast literature available, a considerably small number of 

works focuses on the modification of the tooth profile geometry. This can be addressed 

to the reluctance of gear designer and manufacturer to move away from the established 

standards and develop new and custom products with enhanced performance suited to 

the specific applications.  

The recent advent of asymmetric gears has brought to attention the beneficial effect of 

high pressure angle gears compared to the standard 20° or 25°; contact and bending 

stress are drastically reduced with the use of high values of pressure angles and gear 

performance increase as a direct consequence. Despite this, the use of high pressure 

angles in symmetric spur gears is not common and few research works have been 

published on the topic. Other geometrical factors such as addendum and dedendum and 

their effect on gear performance has rarely been taken under consideration. In the 

available literature, researchers are prone to alter more parameters per time limiting 

the understanding of the properties of each single geometrical parameter. This 

suggested the need of a comprehensive analysis of the effect that geometrical profile 

modifications have on gear performance. 

Epicyclic gear configurations have been the focus of much research given the favourable 

mechanical characteristics of such systems. Despite the large amount of literature 

available on epicyclic transmissions, there is very little information about applications 

with low rotational speed and high levels of transmitted torque. For these specific 

conditions the only dedicated design standard ANSI/AGMA 6123-B06 (2006) confirms 

the knowledge gap, underlining the necessity of undertaking a detailed engineering 

study to satisfy the requirements for design of epicyclic devices. In the literature 

available on the topic, the time-varying stress distribution on the epicyclic gear train 

components has not been found. Moreover, there is no mention regarding the use of 

symmetric gears designed with non-standard parameters for the use in epicyclic drives. 

A design tool that allows the designer to select the most appropriate profile geometrical 

parameters for the use in epicyclic arrangements is missing. 
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With regards to cycloidal transmissions, the literature survey has shown that while some 

works have been done with regards to the geometry definition and geometrical 

characteristics of the cycloidal profile, very few publications are available addressing 

static and dynamic problems of cycloidal transmissions. The available literature on the 

topic focuses on the force distribution and the evaluation of stresses acting on the 

cycloidal disk and annulus pins. In general, the amount of available material is very small 

compared to the vast amount of documents available for gears and gear transmissions. 

These considerations suggest the necessity of undertaking research campaigns focused 

on the statics and dynamics of cycloidal devices in order to gain the necessary 

knowledge for further develop this class of devices with such unique characteristics. 
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3 Gear tooth geometry 
 

The tooth profiles in reciprocal mesh need to have certain geometrical characteristics in 

order to guarantee a constant and smooth energy transfer while rotating. At the base 

of a gearing concept is the need to transfer power from one member to the other by 

maintaining a constant velocity ratio. A couple of friction disks would ensure a smooth 

and accurate transmission with the angular velocities inversely proportional to the 

diameters of the cylinders. This arrangement has an obvious limit with regards to the 

transmitted power and the occurrence of slippage. Similar to the friction disks, mating 

gears roll without slipping on their pitch diameters producing a pure rolling motion. 

Since the contact occurs between mating teeth, their geometry has to be designed so 

that a constant velocity ratio is maintained during meshing; this condition is achieved 

only if the profiles in contact satisfy the law of gearing. To this end, the common normal 

to the tooth profiles at the point of contact must pass through the pitch point of the two 

mating surfaces (Litvin et Al., 2004). The curves that satisfy such a condition are called 

conjugate profiles. Within the vast range of possible curves that satisfy this condition, 

the involute geometry has been almost universally utilised for geared applications. The 

reasons for its diffusion are addressed to the ease in manufacturing, and more 

importantly to the singular property of this geometry to guarantee a constant ratio even 

in presence of an alteration of distance between the mating surfaces. In order to explain 

the contact action between conjugate surfaces, the geometry shown in Figure 3.1 will 

be considered as follows: 
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Figure 3.1 – Contact between two rigid bodies with conjugate surfaces realising the 

fundamental law of gearing (Maitra, 2013). 

The rigid bodies of Figure 3.1, which rotate about fixed centres O1 and O2 with angular 

velocities ω1 and ω2, touch at the instantaneous point of contact, C, where the two 

surfaces are tangential to each other. From there, the common tangent 𝑇𝑇̅̅̅̅  and the 

common normal 𝑁𝑁̅̅̅̅̅ at C can be drawn. As the transmission of forces takes place along 

𝑁𝑁̅̅̅̅̅, this line is also called the line of action. 𝑁𝑁̅̅̅̅̅ Intersects the line that connects the 

fixed centres 𝑂1𝑂2
̅̅ ̅̅ ̅̅ ̅ at point P.  P is the pitch point where the pure rolling motion occurs. 

For a constant angular velocity ratio, P stays stationary at a fixed point and the line of 

action, for every instantaneous point of contact, passes through P. In the case of involute 

profiles all the points of contact take place on the line of action 𝑁𝑁̅̅̅̅̅ during the mesh 

cycle. Since all the normals to the tooth profiles coincide with the line 𝑁𝑁̅̅̅̅̅, the law of 

gearing is satisfied. According to the Lewis theorem (Litvin et Al., 2004; Radzevich, 2012), 

P divides the line of centres into two segments 𝑂1𝑃̅̅ ̅̅ ̅ and 𝑂2𝑃̅̅ ̅̅ ̅ that determine the velocity 

ratio i as follows:  

 𝑂2𝑃̅̅ ̅̅ ̅

𝑂1𝑃̅̅ ̅̅ ̅
=

𝜔2

𝜔1
= 𝑖 3.1 

Segments 𝑂1𝑃̅̅ ̅̅ ̅ and 𝑂2𝑃̅̅ ̅̅ ̅ are also the radii of two circles having centres at O1, and O2, 

called pitch circles, that work as reference parameters of the two gears. Although the 
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gear mesh is kinematically equivalent to two friction disks, the gear teeth actually move 

with a combined rolling and sliding motion. Vectors M1=ω1r1 and M2=ω2r2 represent the 

instantaneous velocity vectors of which t1, t2 and n1, n2 are tangential and normal 

components. Since the two bodies are rigid, the velocity along the line of action has to 

be the same so that n1=n2=n. While n has a constant value during the mesh cycle, 

components t1 and t2 vary with the position of point Q along 𝑁𝑁̅̅̅̅̅ and their difference t1-

t2 gives the amount of relative sliding velocity between tooth flanks in contact. It is 

interesting to notice that when the contact occurs at the pitch point so that Q≡P, M1= 

M2 and consequently t1-t2=0 indicating pure rolling motion between the two gears 

(Maitra, 2012; Radzevich, 2012).  

 

3.1 Involute tooth geometry 

The tooth profile can be considered as the combination of four curves as shown in Figure 

3.2. The part of the tooth flank where contact occurs has an involute shape that is limited 

by the tip circle at the intersection with the outer diameter, and by the trochoidal fillet 

at the form diameter where the transition between the usable involute profile and the 

fillet of the tooth occurs (Gerpen et Al., 1989; Thurman, 1999). The fillet has a trochoidal 

shape and is delimited by the involute curve on one side and by the root circle on the 

other. During the generation of the envelope of the two conjugate surfaces, i.e. the 

cutting tool and the gear blank, the straight side of the rack generates the involute curve, 

and the rack fillet generates the gear fillet. Moreover, the dedendum circle is generated 

by the straight line consisting of the rack tooth tip while the addendum circle, if full 

length profiles are considered, is automatically generated as result of the enveloping 

process.  
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Figure 3.2 - Sequence of curves that generate a spur gear tooth profile (Bonori, 2005). 

3.1.1 Involute curve 

The geometry of involute curves is a particular case of conjugate profiles and is 

described by the trajectory of a point lying on a string that rolls without slipping on a 

circular geometry called the base circle (Maitra, 2012). For manufacturing purposes, the 

process has been engineered by means of a rack cutter having straight sides that rolling 

without slipping on the gear blank generates the gear profile as shown in Figures 3.4 and 

3.5. At the common point of tangency, the two surfaces experience a pure rolling motion 

so that an amount of rotation for the gear corresponds to an amount of translation of 

the rack cutter. The rack cutter pitch line is in continuous tangency to a point of the gear 

blank that satisfies the condition of enveloped surfaces.  

Figure 3.3 shows a graphical representation of the geometrical construction of the 

involute curve starting from the base circle of radius 𝑟𝑏 being generated by the pure 

rolling motion of the string 𝑐𝑏̅̅ ̅ on 𝑟𝑏.  
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Figure 3.3 – Geometrical construction of an involute curve (KHK, 2015).  

In order to derive the analytical description of the involute curve, the function 

represented by 𝑖𝑛𝑣𝛼 in Figure 3.3 has to be defined. Starting with a point 𝑏 on the tooth 

profile that lies on the pitch circle of radius 𝑟, and by connecting 𝑏  with point 𝑐, results 

in a line 𝑏𝑐̅̅ ̅ being always tangential to the base circle while the angle of rotation, 𝜃 varies 

from 0 to 𝜃𝑚𝑎𝑥. The rotation angle relative to point 𝑏 is a variable that allows to describe 

the involute curve. By considering the triangle 𝑂𝑐𝑏̂ and the parameter 𝜃,  trigonometric 

considerations yield: 

 𝑂𝑏̅̅̅̅ = 𝑂𝑐̅̅̅̅ + 𝑐𝑏̅̅ ̅ 3.2 

 𝑥𝑐 = 𝑟𝑏 cos 𝜃 3.3 

 𝑦𝑐 = 𝑟𝑏 sin 𝜃 3.4 

 𝑥𝑏 = 𝑥𝑐 + 𝑐𝑏̅̅ ̅ sin 𝜃 3.5 

 𝑦𝑏 = 𝑦𝑐 − 𝑐𝑏̅̅ ̅ cos 𝜃 3.6 

For the peculiar property of involute curves, 𝑐𝑏̅̅ ̅ = 𝑐𝑎̂ in length and by geometrical 

considerations relative to Figure 3.3 the following relation can be written: 
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 𝑐𝑏̅̅ ̅ = 𝑐𝑎̂ = 𝑟𝑏𝜃 3.7 

 𝑥𝑏 = 𝑟𝑏 cos 𝜃 + 𝑐𝑏̅̅ ̅ sin 𝜃 3.8 

 𝑦𝑏 = 𝑟𝑏 sin 𝜃 − 𝑐𝑏̅̅ ̅ cos 𝜃 3.9 

and a Cartesian representation of point 𝑏 can be calculated: 

 𝑥𝑏 = 𝑟𝑏 [cos 𝜃 + 𝜃 sin 𝜃] 3.10 

 𝑦𝑏 = 𝑟𝑏 [sin 𝜃 − 𝜃 cos 𝜃] 3.11 

In order to find the expression of the involute angle 𝑖𝑛𝑣𝛼 relative to point 𝑏, the relation 

between 𝑐𝑏̅̅ ̅ and 𝛼 has to be considered: 

 𝑐𝑏̅̅ ̅ = 𝑐𝑎̂ = 𝑟𝑏 tan 𝛼 3.12 

And by considering Equation 3.7 and that 𝜃 = 𝛼 + 𝑖𝑛𝑣𝛼 this yields: 

 𝑟𝑏(𝛼 + 𝑖𝑛𝑣𝛼 ) = 𝑟𝑏 tan𝛼 3.13 

hence: 

 𝑖𝑛𝑣𝛼 = tan𝛼 − 𝛼 3.14 

Other expressions of the involute curve can be determined by using the involute 

function 𝑖𝑛𝑣𝛼 and the variable parameter 𝛼 in Figure 3.3 as follows: 

 
𝑥𝑏 =

𝑟𝑏 cos 𝑖𝑛𝑣𝛼

cos 𝛼
 

3.15 

 
𝑦𝑏 =

𝑟𝑏 sin 𝑖𝑛𝑣𝛼

cos 𝛼
 

3.16 

From an engineering point of view, for the application of involutes in gears, it is 

interesting to note that the segment 𝑏𝑐̅̅ ̅ represent the instantaneous radius of curvature 



62 
 

along the tooth flank and 𝛼 is the pressure angle at the considered point. If point 𝑏 lies 

on the pitch circle then 𝛼 is the reference pressure angle.  

3.1.2 Trochoidal curve 

The fillet of a gear tooth has a trochoidal profile generated by the tip corner of the rack 

cutter during the envelope of rack and gear blank. The root fillet does not take part in 

the kinematics of the gears but does play a fundamental role for the strength of the 

gears. The root fillet is the area of maximum bending stress where stress concentration 

factors, due to the highly curved profile, occur. An accurate representation of the root 

fillet is necessary to numerically predict the strength of loaded gears. Two reference 

systems have to be defined, x0, y0 attached to the rack cutter in order to define 

coordinates of the cutter profile with respect to the pitch point P and another, x,y 

attached to the centre of the gear, as shown in Figure 3.4. By considering the position 

of point Q on the rack tool which is offset from P by x0 and y0, in the reference system 

x,y connected to the gear blank, it yields: 

 
𝑥 = 𝑟 + 𝑥0 3.17 

 𝑦 = 𝑟𝑡 + 𝑦0 3.18 

which implies the condition of pure rolling motion at point P. 
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Figure 3.4 – Simplified geometry of the rack tool with the pitch line tangent to the pitch 

circle of the gear being cut at the starting position. 

The trochoidal geometry of the tooth root is determined by tracing the trajectory of any 

point that lies on the edge of the rack cutter. For its generation, the enveloping motion 

described above for the involute profile, can be simplified with a rotation/translation of 

the rack cutter. The translation 𝑟𝑡 of the rack cutter and the rotation angle 𝑡 of the gear 

blank in Figure 3.5a are simplified by only moving the rack cutter with a 

rotation/translation compound motion. To do so, the entire system is rotated about the 

origin 𝑂 by an angle 𝑡. As a result, the gear returns to its default position while the rack 
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rolls without slipping around the stationary gear’s pitch circle as shown in Figure 3.5b.

 

Figure 3.5 – a) first motion of the system: translation of the cutter and rotation of the gear 

blank; b) second component of motion: the whole system is rotated about the 

origin O of an angle t. 

To find the position of point Q in the new configuration it is necessary to multiply 

Equations 3.10 and 3.11 by a clockwise rotation matrix (Litvin et ALl., 2004): 

 [
cos 𝑡 sin 𝑡

− sin 𝑡 cos 𝑡
] 3.19 

And considering the local coordinates of point Q: 

 𝑥0 = −1.25 𝑚 3.20 

 𝑦0

= −
1

4
 𝜋𝑚 + 1.25 𝑚 tan𝛼 

3.21 

the final parametric equation for the trochoidal fillet curve is: 

 
𝑥(𝑡) = (𝑟 − 1.25𝑚) cos 𝑡 + (𝑟𝑡 −

1

4
𝜋𝑚 + 1.25𝑚 tan𝛼) sin 𝑡 

3.22 
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𝑦(𝑡) = −(𝑟 − 1.25𝑚) sin 𝑡 + (𝑟𝑡 −

1

4
𝜋𝑚 + 1.25𝑚 tan𝛼) cos 𝑡 

3.23 

The involute and fillet tooth profile equations can be found in a number of references 

(Alaci et Al., 2008; Anon, 2014; Fetvaci, 2012; Litvin, 1989; Litvin et Al., 1998; Litvin et 

Al., 2004; Litvin et Al., 1993; Litvin et Al, 1996; Moya et Al., 2009; Simionescu, 2008).  

3.2 Spur gear design parameters 

The gear generating process based on the rack cutter implies the dependency of the 

generated tooth profiles on the geometry of the cutting tool shown in Figure 3.6. Within 

the involute system many variations of tooth form are possible by varying the 

proportions of the rack tooth profile. Each side of the rack geometry is a straight line 

which is a unique case of the involute curve with an infinite base circle diameter.  

 

Figure 3.6 – Basic metric rack geometrical parameters (KHK, 2015). 

Gear design in the metric system is based on modular proportioning which takes the 

module as the main parameter and relates all the relevant dimensions to it. The module 

refers to the gear tooth size and is defined as the ratio between the circular pitch at the 

reference diameter and π: 

 

𝑚 =
𝑝

𝜋
 

3.24 

where the circular pitch 𝑝 is: 
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𝑝 =

2𝜋𝑟

𝑁
 

3.25 

It follows that the reference diameter d is: 

 𝑑 = 𝑚𝑁 3.26 

In the modular proportioning system, the quantities such as addendum, dedendum and 

cutter tip radius are expressed by coefficients related to the module. In this way 𝑚 works 

as a scale factor for the geometry of the cutter (Figure 3.7), and hence for the gear that 

derives from it. Standard values for the module are available in ISO 54 (1996). This 

International Standard specifies the values of normal modules for straight and helical 

gears for general engineering and for heavy engineering. 

 

Figure 3.7 – Basic rack geometries as function of the module (KHK, 2015) 

Tooth profiles are limited by the external circle of radius 𝑟𝑎 at the tip and the internal 

circle of radius 𝑟𝑓 at the root. Given the pitch circle that is considered and the reference 

geometry, the radial distance between the tip and pitch circle is called addendum and is 

defined as ℎ𝑎. On the other hand, the radial distance between the pitch and root circles 

is called the dedendum and defined as ℎ𝑓. The values of addendum and dedendum have 

been standardised with the following quantities: 
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 ℎ𝑎 = 𝑚       ℎ𝑓 = 1.25 𝑚 
3.27 

The complete geometry of an involute profile needs the specification of a pressure angle 

α and cutter tip radius coefficient ρf. Values of pressure angle commonly used in industry 

are 14.5°, 20° and 25° with the 20° being the most popular. The two extreme choices 

give a solution respectively for applications where high contact ratio (less noise 

production), or high strength (high power transmission) are required, while the 20° 

solution is an acceptable compromise between the two. Regarding cutter tip radius, the 

standard ISO 53 (1998) reports three standard profiles with different tip radius 

coefficents, ρf as follows: 

1.25/0.38/1 ISO 53: 1998 Profile A 

1.25/0.30/1 ISO 53: 1998 Profile B 

1.25/0.25/1 ISO 53: 1998 Profile C 

As specified in the ISO 53, small cutter tip radii are for fine pitch gears with modules 

below 1.25 while for coarse pitch gears a value of 0.38 is recommended. These values 

are given only for a pressure angle of 20° while there is no mention for other pressure 

angle. Figure 3.8 shows the mentioned parameters. 



68 
 

 

Figure 3.8 – Nomenclature of a spur gear (Shigley et Al., 2003) 

When a modification to one of the values listed above is introduced the tooth profile is 

not considered standard anymore and is termed as corrected.  

In the following sections a detailed description of the geometrical values relevant to this 

study is given. It should be pointed out that cutter tip radius does not take part in this 

work given that tooth profiles here have circular root fillets.  

3.2.1 Addendum factor 

The variation of the addendum length can be considered as a pure geometrical 

alteration. The tooling cutter has to be designed with the required addendum factor, ha, 

in order to produce a longer or shorter tooth in the region above the pitch circle. The 

effective addendum modification in mm Ha is the product of the factor, ha, and the 

module m. For standard proportions ha=1 and so Ha=m. A modification to the addendum 

determines a variation of the tip circle diameter as the involute portion above the pitch 

circle is prolonged or shortened respectively for Ha>m or Ha<m. Figure 3.9 shows a 

comparison between tooth profiles generated with the same proportions, but with 

variations in the addendum factor. It can be seen that tooth thickness is constant for any 

of the addendum factors used while it varies in relation to the tip geometry.  By 
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increasing ha the top land thickness sa decreases resulting in a more pointed geometry. 

On the other end, a decrease of ha determines a thicker profile at the tip as a portion of 

the involute curve has been truncated. 

 

 

Figure 3.9 – Effect of addendum factor ha modification on the tooth geometry. 

3.2.2 Dedendum factor 

Dedendum modification can be considered the reciprocal of addendum modification as 

in this case the alteration involves the part of the involute below the pitch circle.  The 

tooling cutter geometry is modified in order to increase or reduce the depth of the cut 

on the gear blank. As for the case of the addendum, the effective dedendum length in 

mm Hf is the product of a factor hf times the module m. For standard proportions 

hf=1.25, that yields Hf=1.25*m. While the addendum modification operates on the tip 

diameter, the dedendum modification affects the other boundary that defines the tooth 

profile, the root circle.  An increase of hf determines a deeper cut and consequently a 

reduction of the root diameter. Inversely, for values of Hf<1.25*m the cut would be less 

pronounced and the root circle diameter bigger. Figure 3.10 shows a comparison 

between three profiles with different dedendum modifications. It can be seen that while 

the geometry of the upper part of the tooth remains unchanged, as Hf varies from 

Hf=1*m to Hf=1.5*m, the tooth section in proximity of the root becomes narrower. This 

modification does not affect the involute length because it occurs below the start of the 

active profile. 

ha=0.5 

ha=0.8 

ha=1.3 
ha=1.15 

ha=1 
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Figure 3.10 – Effect of dedendum factor hf modification on the tooth geometry. 

3.2.3 Profile shift (X) 

Profile shift is the most common modification feature in gear production and is applied 

at the manufacturing stage without requiring a specific cutting tool. Profile shift is 

generally called addendum modification due to its effect on the outside diameter of 

gears. In reality   both addendum and dedendum are simultaneously affected by 

applying a so called profile shift, whether positive or negative. The effective length in 

[mm] of the two quantities follows the relations: 

 𝐻𝑎 = 𝑚 ∗ (ℎ𝑎 + 𝑥)              𝐻𝑓 = 𝑚 ∗ (ℎ𝑓 − 𝑥) 3.28 

Profile shift is used to alter standard proportions of gears, namely gear thickness. In gear 

design, profile shift is mainly used to adjust centre distance, avoid the undercutting 

condition, and balance the stress levels between pinion and gear. The actual quantity in 

[mm] of profile shift is given by X and is determined by the dimensionless profile shift 

coefficient x times module m. The modification consists in shifting the generating tool 

radially, so that the tooth profile will also be shifted towards the gear centre; this means 

shifting the pitch line with respect to the reference pitch line. In this new configuration 

the gear pitch circle rolls without slipping on a new pitch line, parallel to the reference 

one with a X=x*m [mm] offset. A shift in the direction of bigger radii is defined positive, 

inversely it is defined negative. By shifting the teeth outward or inward, the active profile 

lies on a different portion of the involute generated from the same base circle.  Figure 

3.11 shows side by side a standard gear and a modified profile created with a positive 

profile shift. 

hf=1 hf=1.25 

hf=1.5 
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Figure 3.11 – Comparison between a) standard gear-rack mesh and b) with a positive profile 
shift applied; source (KHK, 2015). 

The main change due to the profile shift is related to the variation of the tooth thickness 

that will be increased for positive shifts and reduced for negative shifts. The tooth 

thickness at the new generating pitch circle becomes: 

 𝑆 =
𝑚𝜋

2
+ 2𝑥𝑚 tan 𝛼 

3.29 

Such a variation implies the shift of the mating gear centre in order to compensate for 

the tooth thickness variation and allow a correct mesh. This condition makes the two 

modified gears work on a different diameter called the operating diameter. In Figure 

3.12 a tooth profile with a positive modification is compared with a standard profile. 

Since the profile pressure angle varies continuously along the tooth flank, the pressure 

angle at the operating diameter is different than the one at the reference diameter and 

is called the operating or working pressure angle αw. Moreover, an increase in the radius 

of curvature as the diameter changes from reference to operating is seen in Figure 3.12. 

The modified radius of curvature R’, between the point of tangency T and A’ that lies on 

the operating pitch circle is longer than the radius of curvature, R, that occurs for 

standard profiles. The calculation of the profile shift coefficient is strictly related to the 

gear geometry and application. The two standards ISO/TR 4467 (1982) and ISO 21771 

(2007) give indications on the amount of profile shift and its distribution among the two 

mating gears depending on geometry and loading conditions.  
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Figure 3.12 – Comparison between a standard tooth profile (X=0) and a X=0.5 mm shifted 

profile. The diagram shows the pitch circle radius r and the radius of the 

operating or working pitch circle rw. The instantaneous radii of curvature R and 

R’ at the pitch points A and A’ of working and modified profiles are also 

shown.   

It has to be specified that in the case of two mating gears with a balanced profile shift 

where 𝑥1,2 = −𝑥2,1, the increase in diameter of one gear is balanced by the decrease of 

diameter of the other, with the result of an unchanged centre distance. This condition 

is also translated into the working pressure angle that, for such cases, is equal to the 

reference value. The applicability of a balanced profile shift is verified by the inequality:   

 𝑁1 + 𝑁2 > 2𝑁𝑚𝑖𝑛 3.30 

where N1,2 is the number of teeth of pinion and gear respectively and Nmin is the 

minimum number of teeth that do not produce undercut as expressed in Equation 3.44.  

If the condition above is not verified, reciprocal modifications cannot be used. This 

indicates a deviation of centre distance (aw) from the nominal value a. In this case, the 

modified centre distance aw changes the inclination of the line of action with a 

consequent variation of the pressure angle into αw. In order to find the working pressure 

A 

A’ 

R 

R’ 

O 

T 

r 

rw 

0 
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angle, an iterative process is needed. The inverse involute function that allows the value 

αw to be determined from 𝑖𝑛𝑣𝛼𝑤 = 𝑡𝑎𝑛𝛼𝑤 − 𝛼𝑤, cannot be solved in a closed form, 

and therefore an iterative process is needed. Based on geometrical considerations from 

Figure 3.12, 𝑖𝑛𝑣𝛼𝑤 can be expressed in terms of α, x1,2 and N1,2 as follows: 

 
𝑖𝑛𝑣𝛼𝑤 =

𝑚(𝑥1 + 𝑥2) tan𝛼

𝑚
(𝑁1 + 𝑁2)

2

+ 𝑖𝑛𝑣𝛼 

 

3.31 

In the example below (KHK 2015), iterations are performed by applying the Newton-

iteration method. The calculation starts with αw=1 rad and the quantity invαw derived 

from Equation 3.31 and is iterated until the solution does converge to a stable value of 

αw. 

 𝛼𝑤1 = 1 + (𝑖𝑛𝑣𝛼𝑤 − tan 1 + 1)/ tan2 1 

𝛼𝑤2 = 𝛼𝑤1 + (𝑖𝑛𝑣𝛼𝑤 − tan𝛼𝑤1 + 𝛼𝑤1)/ tan2 𝛼𝑤1 

𝛼𝑤3 = 𝛼𝑤2 + (𝑖𝑛𝑣𝛼𝑤 − tan𝛼𝑤2 + 𝛼𝑤2)/ tan2 𝛼𝑤2 

… 

… 

𝛼𝑤𝑥 = 𝛼𝑥−1 + (𝑖𝑛𝑣𝛼𝑤 − tan𝛼𝑥−1 + 𝛼𝑥−1)/ tan2 𝛼𝑥−1 

 

 

3.32 

Figure 3.13 shows how the working pressure angle αw varies as a function of profile shift. 

x, that varies in the range -1 to 1, has only been applied to the driven gear for a fixed 

number of teeth N. It can be noticed that for x=0 the working pressure angle coincides 

with the reference angle α=20° and then increases or decreases for positive or negative 

profile shifts respectively.  
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Figure 3.13 - Working pressure angle as function of profile shift coefficient for -1≤x2≤1;  
z1=20, z2=40, α=20°. 

As described above in this paragraph, the application of a profile shift changes the pitch 

circle diameters and consequently the centre distance. From Figure 3.12, the working 

pitch radius can be found as follows: 

 𝑟𝑤1,2 cos 𝛼𝑤 = 𝑟𝑏1,2 3.33 

 𝑟𝑤1,2 =
𝑟1,2 cos 𝛼

cos 𝛼𝑤
 

3.34 

Once the working pitch radii are known, the working centre distance is calculated as 

follows: 

 𝑎𝑤 = (𝑟1 + 𝑟2)
cos 𝛼

cos 𝛼𝑤
 

3.35 

 
𝑎𝑤 = 𝑎

cos 𝛼

cos 𝛼𝑤
= 𝑚

(𝑁1 + 𝑁2)

2

cos 𝛼

cos 𝛼𝑤
 

3.36 

Working centre distance is a fundamental parameter for the design of transmissions, as 

it is a basic constraint that comes from the layout of the gearbox.  
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3.2.4 Pressure angle (α)  

Pressure angle is usually associated with the cutting edge inclination of the rack cutter 

as visible in Figure 3.6. In general, if a tangent to any point of the involute curve is 

considered and a radial line connecting the centre of the gear with the considered point 

of tangency, the angle between these two lines is the pressure angle at that point as 

shown in Figure 3.14. This implies that pressure angle varies continuously along the 

tooth flank. If the considered point of tangency lies on the pitch circle, then α assumes 

its reference value and coincides with the angle of inclination of the cutter edges. The 

reference pressure angle α is one of the most important specification factors in the 

design of an involute gear. 

 

Figure 3.14 – Profile Pressure angle; source (KHK, 2015). 

The main effect of α on the involute geometry is due to its influence on the base 

diameter, such that an increase in the generating pressure angle results in a reduction 

of the base diameter according to the following equation:  

 𝑑𝑏 = 𝑑 cos 𝛼 3.37 

The involute geometry is strictly related to its base diameter. A change of db results in 

the creation of a different involute curve. Figure 3.15 shows a comparison between two 

profiles with α values of 20° and 30°, and their associated base circles. The two profiles 

have the same tip and root diameters and the same reference diameter. In this context 

it is important to notice the variation in length of the instantaneous radius of curvature 
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consequent to an increase of the pressure angle. An increased radius of curvature, at 

the instantaneous point of contact, creates a larger area on which the contact force is 

distributed that returns a reduced contact stress. 

 
Figure 3.15 – Comparison between two profiles with different reference pressure angles: 

α=20°; α=30°. 

3.2.4.1 Instantaneous radius of curvature 

As explained in the paragraphs above, pressure angle and profile shift both change the 

tooth flank curvature, and hence its behaviour under load. Variation of the reference 

pressure angle results in a change of the base diameter, and consequently the 

generation of a different involute, whilst a profile shift modification results in the 

working profile being part of a different portion further along the same involute. The 

instantaneous radius of curvature for any point of the involute curve can be determined 

by using the parametric Equations 3.10 and 3.11 and considering the generation process 

of the involute curve described earlier. As explained by Patrick (Patrick, 2009) the radius 

of curvature 𝑅 of any point on a curve is given by: 

 

𝑅 =

[(
𝑑𝑥
𝑑𝜃

)
2

+ (
𝑑𝑦
𝑑𝜃

)
2

]

3/2

𝑑𝑦
𝑑𝜃

𝑑2𝑥
𝑑𝜃2 −

𝑑𝑥
𝑑𝜃

𝑑2𝑦
𝑑𝜃2

 

 

3.38 

where: 
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 𝑑𝑥

𝑑𝜃
= −𝑟𝑏 sin 𝜃 + 𝑟𝑏 sin 𝜃 + 𝑟𝑏𝜃 cos 𝜃 = 𝑟𝑏𝜃 cos 𝜃 

𝑑𝑦

𝑑𝜃
= 𝑟𝑏 cos 𝜃 − 𝑟𝑏 cos 𝜃 + 𝑟𝑏𝜃 sin 𝜃 = 𝑟𝑏𝜃 sin 𝜃 

𝑑2𝑥

𝑑𝜃2
= 𝑟𝑏 cos 𝜃 −𝑟𝑏𝜃 sin 𝜃 

𝑑2𝑦

𝑑𝜃2
= 𝑟𝑏 sin 𝜃 + 𝑟𝑏𝜃 cos 𝜃 

 

 

 

3.39 

that yields: 

 
𝑅 =

[𝑟𝑏
2𝜃2 cos2 𝜃 + 𝑟𝑏

2𝜃2 sin2 𝜃]3/2

𝑟𝑏𝜃 sin 𝜃 (𝑟𝑏 cos 𝜃 −𝑟𝑏𝜃 sin 𝜃) − 𝑟𝑏𝜃 cos 𝜃 (𝑟𝑏 sin 𝜃 + 𝑟𝑏𝜃 cos 𝜃)
 

3.40 

and after rearranging the equation gives: 

 𝑅 = 𝑟𝑏𝜃 = 𝑟𝑏 tan𝛼 3.41 

that confirms what already stated with the geometrical construction in Equation 3.12. 

The radius of curvature varies continuously with θ. This is an important conclusion due 

to the effect that the profile curvature has on the area of contact and consequently the 

contact stress. Given that the curvature radius increases (curvature decreases) as the 

generating point moves away from the base circle, but also with an increase of α, less 

curved tooth flanks are generated with positively modified profiles and hence higher 

pressure angles. These two aspects will be extensively studied in the following chapters. 

 

3.3 Manufacturing and operational boundaries 

Non-standard proportions can be used to improve gear performance and make custom 

products optimised for a specific application. In order to produce tooth profiles with 

specific characteristics, the parameters listed above have to be modified with 

proportions different from the standard. However, the range of variation for each 

geometrical parameter is limited by manufacturing and operational boundaries. The 
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first category is addressed to the manufacturing process by means of the viability of the 

rack cutter geometry. On the other hand, operational boundaries relate to the meshing 

process between mating gears. Moreover, the way that these parameters affect both 

geometry and performance is not independent, and the effect can be either concurrent 

or divergent on the result. This condition introduces the existing relations between 

parameters and their mutual influence on the definition of boundaries that define an 

area of feasibility of involute spur gear profiles. Undercutting and pointed tooth 

conditions are constrained by the manufacturing process while tip/root interference 

and contact ratio are constrained by working or operational considerations.  

 

3.3.1 Undercutting 

Undercutting is a phenomenon that can occur during the manufacturing process due to 

a combination of factors. If gears are produced by a generation process that involves the 

meshing between the cutting tool and the gear blank, then the profiles potentially can 

be undercut. While the gear teeth are generated, if the cutter addendum extends 

beyond the base circle of the gear being cut, an extra amount of material will be 

removed at the root of the gear tooth creating a recess in the area. This effect produces 

a reduction of the gear thickness in proximity of the root that already is the weakest part 

in relation to bending. Clearly undercutting is an unacceptable condition due to the 

produced weakened geometry as shown in Figure 3.16.  
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Figure 3.16 – Undercut tooth profiles due to a negative profile shift. Gear parameters: 
alpha=20°, N=10, x=-0.5 (KHK, 2015). 

The condition of undercutting occurs when the cutter addendum line is below the point 

of tangency between the normal to the rack profile at the pitch point and the base circle. 

By referring to Figure 3.17, if line AA is below a parallel line passing through point N then 

undercutting occurs.  

 

Figure 3.17 – Limiting condition for the occurrence of undercutting. 

The configuration schematised in Figure 3.17 represents the condition limit with the two 

lines being coincident. By considering the geometry of Figure 3.16, it is possible to 

express the limiting condition for non-undercutting as follows: 
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 𝑟 sin 𝛼 sin 𝛼 = ℎ𝑎
∗𝑚 − 𝑥𝑚 3.42 

which yields: 

 𝑚𝑁

2
sin2 𝛼 = (ℎ𝑎

∗ − 𝑥)𝑚 
3.43 

and expresses the undercutting avoidance condition as function of N, α, m, ha and x. 

Equation 3.43 can be modified in order to find the minimum number of teeth for a given 

set of parameters. By turning Equation 3.43 into the following inequality and converting 

N into Nmin we get: 

 
𝑁𝑚𝑖𝑛 ≥

2(ℎ𝑎
∗ − 𝑥)

sin2 𝛼
 

3.44 

In Figure 3.18 the relation expressed in 3.44 is plotted between the minimum number 

of teeth on the limit of undercutting and the pressure angle α for a standard non-shifted 

spur gear.  The graph shows an exponentially decreasing trend for minimum number of 

teeth as the pressure angle increases. An increase in pressure angle, as explained in 

detail in section 3.2.4, causes a reduction in the base diameter (equation 3.37) which 

also causes the point N to drop below the line AA, hence preventing undercutting (Figure 

3.17). 
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Figure 3.18 – Minimum number of teeth in absence of undercutting as function of pressure 

angle α for x=0. 

In order to explain the effect of pressure angle and profile shift on the minimum number 

of teeth, a standard gear with a pressure angle α=20° is considered. For this 

configuration, from Figure 3.18, the minimum number of teeth without undercutting is 

given as 17. For applications that require the use of gears with smaller number of teeth, 

a solution with non-standard parameters and correction coefficients has to be 

considered in order to overcome the manufacturing limitation and still ensuring correct 

mesh operation. For example, a pinion with α=35° has a bottom practical limit of 7 teeth, 

for the same value of module. This results in a much smaller outside diameter compared 

to the previous case with α=20°.  Nevertheless, by taking into account the profile shift 

modification it would possible to achieve the same bottom limit Nmin=7 even with α=20°. 

As already described in section 3.2.3, a positive profile shift moves the actual cutter pitch 

line radially outwards. This allows the addendum line AA to stay above point N in Figure 

3.17 which represents the undercutting boundary. By rearranging Equation 3.44 in 

terms of x as function of Nmin for fixed α, the necessary amount of profile shift coefficient 

to avoid undercutting for a given pressure angle and rack cutter addendum coefficient 

can be found as follows: 

 
𝑥 = ℎ𝑎

∗ −
𝑁

2
sin2 𝛼 3.45 
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The graph plotted in Figure 3.19 indicates the required amount of profile shift coefficient 

for a given number of teeth and profile pressure angle in order to avoid undercutting. 

From Figure 3.19 it can be seen that a standard gear with α=20° and N=7 requires a 

profile shift x= +0.6 to avoid the condition of undercutting. On the other hand, for the 

same number of teeth, a gear with α=35° can tolerate a negative profile shift up to x=-

0.18 without presenting undercutting.   

 

Figure 3.19 – Minimum number of teeth without undercutting as function of profile shift 

coefficient for a range of pressure angles α. 

 

3.3.2 Top land thickness 

In the previous paragraph it has been shown that values of pressure angle and profile 

shift have a bottom boundary due to the occurrence of the phenomenon of 

undercutting. For the range of variation of α and x also an upper boundary exists and 

occurs due to the condition of pointed teeth.  If the intersection point between the two 

involute tooth flanks lies on a circle smaller or coincident with the tip circle, the top land 

thickness is zero and the tooth shows a pointed profile. This represents an unwanted 
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condition particularly for hardened gears, because a hardened pointed tooth tends to 

be brittle and an early breakage due to shock loads can occur. The tooth thickness at the 

tip circle can be found by geometrical considerations according Figure 3.20.  

 

The value of the profile pressure angle at the tip circle αa is derived from the following 

relation between tip and base radii: 

 𝑟𝑎 cos 𝛼𝑎 = 𝑟𝑏 3.46 

 cos 𝛼𝑎 =
𝑟 cos 𝛼

𝑟𝑎
 

3.47 

which yields: 

 
𝛼𝑎 = cos−1 (

𝑁𝑚

𝑑𝑎
cos 𝛼) 

3.48 

Through the profile angle σ, it is possible to relate the tooth thickness at the pitch circle 

(Equation 3.29 and Figure 3.8) to the tooth thickness on the tip circle: 

 
𝜎 =

𝑆

2𝑟
+ 𝑖𝑛𝑣𝛼 =

𝑆𝑎

2𝑟𝑎
+ 𝑖𝑛𝑣𝛼𝑎 

3.49 

From this equation, the top land thickness Sa is defined as follow:  

 
𝑆𝑎 = 2𝑟𝑎 (

𝑆

2𝑟
+ 𝑖𝑛𝑣𝛼 − 𝑖𝑛𝑣𝛼𝑎) 

3.50 

And by substituting Equations 3.46 and 3.48 into 3.50, the tooth thickness at the tip 

circle is given by: 

 
𝑆𝑎 = 𝑑𝑎 {

𝜋

2𝑁
+

2𝑥

𝑁
tan𝛼 + 𝑖𝑛𝑣𝛼 − 𝑖𝑛𝑣 [cos−1 (

𝑁𝑚

𝑑𝑎
cos 𝛼)]} 

3.51 

As for the other parameters in the metric gear system, also the thickness can be defined 

in terms of the module in order to create a non-dimensional factor sa. Recommended 

values of top land thickness are given by the standard AGMA 2101/D04 (2016) and span 

from 0.2 to 0.6. IS 3756 (2002) recommends thickness should be at least 0.4*m for 
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hardened gears and for exceptional cases can be reduced to 0.25*m. Kapelevich et Al., 

(2002) suggests a window of proportional values calculated as top land thickness divided 

by the base pitch between 0.06 and 0.12. 

 

 

Figure 3.20 – Schematic diagram for the calculation of the top land thickness Sa2. α is the 

profile angle at the pitch circle; αa2 is the profile angle at the tip circle. 

 

For positive values of addendum modification, the top land thickness becomes smaller 

and eventually results in a pointed tip. On the other hand, a negative profile shift has 

the opposite effect by making the top land thickness thicker as the addendum 

modification decreases. A similar effect is given by the pressure angle variation. Both 

positive profile shifts and increasing pressure angles push the active involute portion 

farther away from the base circle than for a standard gear making the resulting 

geometry thinner at the tip and thicker at the root (Goldfarb et Al., 2005). In order to 

evaluate the individual and combined effect of the two parameters, the variation of Sa 

as function of x and α has been plotted in Figure 3.21. It can be seen that for a fixed 

number of teeth, for a given profile shift as the pressure angle increases the top land 

Tip circle 

Pitch circle 
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thickness decreases up to values below the practical limit of Sa=0.25*m (red line). For a 

standard gear with N=20 and m=1, the boundary occurs for α=31°, while for a negatively 

corrected geometry with x=0.5 and the same value of pressure angle, Sa=0.596 mm, 

which is way above the imposed limit. On the other hand, by applying a positive 

addendum modification (x=0.5), the limit is reached for α=24° and presents the 

condition of pointed tooth for α=28°.  

Figure 3.21 – Top Land Thickness as function of pressure angle α for constant profile shifts; 

N=20; m=1. 

To conclude, the concurrent use of positive addendum modifications and increased 

pressure angles anticipates the occurrence of the pointed tooth condition. This suggests, 

for certain combination of parameters, the need of a balanced design choice to 

overcome the occurrence of undercutting without reaching the limiting condition of a 

peaking tooth tip. 

3.3.3 Tip/root interference 

The interference between tip and root of two mating gears is similar to the undercutting 

condition described earlier. While in the previous situation, the interference occurred 

between the cutter tip edge and the tooth root, in this case the tip of one of the gears 
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interferes with a non-involute portion of the tooth profile of the mating gear that lies 

below the base circle. The contact would result in a non-conjugate action i.e. due to 

interference, the tip of one gear would clash onto the flank of the mating gear in the 

region between the base and the root circles, impeding the gears from properly 

meshing.  

The path of contact is a portion of the line of contact limited by the points of first and 

last contact of two mating teeth. By definition, the line of action is tangential to the base 

circles of the mating gears and determines two limiting points of the path of contact 

corresponding with the points of tangency T1 and T2, as shown in Figure 3.22. Given that 

the involute does not exist below the base circle, each mating point that exists outside 

the segment 𝑇1𝑇2
̅̅ ̅̅ ̅̅  implies a non-conjugate action because one of the two mating 

surfaces is not an involute curve. The limiting condition of interference implies that 

points A and D must coincide with T1 and T2. If A and/or D are external to 𝑇1𝑇2
̅̅ ̅̅ ̅̅  it means 

that at the points of tangency the tip of one gear is still below the base circle of the 

other. This condition is equivalent to the one shown in Figure 3.17 in regards to the limit 

of undercutting where the cutting edge of the tool lies on the base circle of the gear 

being produced. By considering the limit of undercutting related to the manufacturing 

process, it is possible to derive the equation for interference by imposing the 

equivalence between the length of the path of contact and the condition of non-

undercutting. By referring to Figure 3.22, where the tip of the driven tooth comes in 

contact within the segment 𝑇1𝑇2
̅̅ ̅̅ ̅̅ , the limiting interference condition for the pinion can 

be expressed as follows: 

 𝑎𝑤 sin 𝛼𝑤 − 𝑟𝑏2 tan𝛼𝑎2 = 𝑟1 sin2 𝛼 − (ℎ𝑎1
∗ − 𝑥1)𝑚 3.52 

Similarly, for the gearwheel we get: 

 𝑎𝑤 sin 𝛼𝑤 − 𝑟𝑏1 tan𝛼𝑎1 = 𝑟2 sin2 𝛼 − (ℎ𝑎2
∗ − 𝑥2)𝑚 3.53 

And by substituting equations 3.36, 3.43 and 3.44, into 3.53 yields: 
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 (𝑁1 + 𝑁2) cos 𝛼 tan 𝛼𝑤 − 𝑑𝑏2 tan𝛼𝑎2

= 𝑁1 sin2 𝛼 − 2 (ℎ𝑎1
∗ − 𝑥1) 

3.54 

 (𝑁1 + 𝑁2) cos 𝛼 tan𝛼𝑤 − 𝑑𝑏1 tan 𝛼𝑎1

= 𝑁2 sin2 𝛼 − 2 (ℎ𝑎2
∗ − 𝑥2) 

3.55 

Equation 3.54 and 3.55 express the interference limit for the pinion and gear 

respectively as function of α, x and ℎ𝑎
∗ . 

 

Figure 3.22 – Geometrical description of Tip/Root interference condition. 

3.3.3.1Path of contact  

The path of contact is a portion of the line of contact and can be defined as the 

geometrical locus of points on which contact occurs during the relative rotation of one 

gear to the other. At the intersection between the line of contact and the tip circles of 

the mating gears, two characteristic points are determined: A, the first point of contact 

that occurs at the intersection between the line of action and the gear tip circle; D, the 

last point of contact, located at the intersection between the line of action and the 

pinion tip circle. In order to calculate the length of the path of contact 𝐴𝐷̅̅ ̅̅  in Figure 3.22, 
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working centre distance, tip and base circles radii must be known. For the calculation of 

the radii, accordingly to the geometrical configuration of Figure 3.22 we get: 

 

𝑇1A̅̅ ̅̅ ̅ = a𝑤 sin(α𝑤) − √ra2
2 − rb2

2  
3.56 

 
rA = √T1A2̅̅ ̅̅ ̅̅ − rb1

2  
3.57 

 
T2D̅̅ ̅̅ ̅ = a𝑤 sin(α𝑤) − √ra1

2 − rb1
2  

3.58 

 
rD = √T2D2 − rb2

2  
3.59 

The length of the contact segment AD, can be calculated once base radii and tip circles 

radii are known as follows: 

 
AD = √ra1

2 − rb1
2 + √ra2

2 − rb2
2 − a𝑤sin (α) 

3.60 

As the path of contact is the locus of points where contact occurs, some other 

characteristic points with specific properties can be found. Firstly, the Pitch point, P, that 

lies on the point of tangency between the operating pitch circles of the mating gears 

and is defined by the intersection between the line of action and line connecting the 

centres of the two wheels. Pitch circle radius r1,2 is one of the basic gear dimensions and 

is determined by equation 3.26. Points B and C represent the meshing positions at which 

the number of teeth in contact changes. Starting with two pairs of teeth in contact 

between A and B, when the contact point reaches B the first pair of teeth disengages 

and only one pair of teeth is in mesh. From C to D a new pair engages and again two 

couples are in contact at the same time as shown in Figure 5.14. 
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Figure 3.23 – Distribution of the tooth pairs in simultaneous contact along the tooth flank for 

a complete mesh cycle. 

Figure 3.23 shows the distribution of the pair of teeth in simultaneous contact along the 

tooth flank and the limiting points of the single pair of teeth in contact. Point B lies on 

the largest radius at which a single tooth pair is in contact and is generally referred as 

HPSTC acronym of Highest Point of Single Tooth Contact. On the other end, point C lies 

on the smallest radius of single contact and is called LPSTC or Lowest Point of Single 

Tooth Contact (Raptis et Al., 2012). The following relations, based on Figure 3.22 allow 

rB and rC to be found for both pinion and gear: 

 
T1B̅̅ ̅̅ ̅ = a𝑤 sin(α𝑤) − T2D̅̅ ̅̅ ̅ −

2πrb1

N1
 

3.61 

 
rB = rLPSTC1 = √T1B̅̅ ̅̅ ̅ − rb1

2  
3.62 

 
T2C̅̅ ̅̅ ̅ = a𝑤 sin(α𝑤) − T1A̅̅ ̅̅ ̅ −

2πrb2

N2
 

3.63 

 
rC = rLPSTC2 = √T2C̅̅ ̅̅ ̅ − rb2

2  
3.64 

 
T1C̅̅ ̅̅̅ = T1A̅̅ ̅̅ ̅ +

2πrb1

N1
 

3.65 

 
rC = rHPSTC1 = √T1C2̅̅ ̅̅ ̅̅ − rb1

2  
3.66 
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T2B̅̅ ̅̅ ̅ = T2D̅̅ ̅̅ ̅ +

2πrb2

N2
 

3.67 

 
rB = rHPSTC2 = √T2B̅̅ ̅̅ ̅ − rb2

2  
3.68 

Where 
2πrb1,2

N1,2
 are the base pitches of pinion and gear respectively. The geometrical 

approach used here can also be found in Niemann (1982). 

3.3.4 Contact ratio 

In order to ensure a continuous tooth action and a continuous power transmission, as 

one pair of teeth is approaching the point of disengagement, a succeeding pair must 

already have been engaged.  Considering two gears in mesh, the value of contact ratio, 

ε, indicates the average number of teeth in contact during a mesh cycle and has a great 

influence on the correct working condition of the transmission. The contact ratio, for 

spur gears, is usually in the range between 1 and 2 and is function of the quantities AB, 

CD and BC of Figure 3.23.  

The geometrical explanation of the contact ratio is given in Maitra (2012). In this 

approach the contact ratio ε is defined by the ratio between the angle of action and the 

pitch angle and is calculated as follows in this paragraph. By considering the initial and 

end point A and B of the path of contact in Figure 3.24, it is possible to derive the position 

of points a and b that lie on the base circle by following the involute trace of the tooth 

flank. Moreover, given that A and B lie on the tangent to the base circle, from the 

properties of the involute curve, the following relation can be determined: 

 
𝑇1𝑎̂ = 𝑇1𝐴̅̅ ̅̅ ̅ 3.69 

 𝑇1𝑏̂ = 𝑇1𝐵̅̅ ̅̅ ̅ 3.70 

and subtracting one from the other yields: 

 
𝑇1𝑏̂ − 𝑇1𝑎̂ = 𝑇1𝐵̅̅ ̅̅ ̅ − 𝑇1𝐴̅̅ ̅̅ ̅ = 𝑎𝑏̂ = 𝐴𝐵̅̅ ̅̅  3.71 
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This means that the arc length 𝑎𝑏̂ is equal to the length of the path of contact 𝐴𝐷̅̅ ̅̅ , 

already known from Equation 3.60. Since the angle θ subtended by the arc ab at the 

centre O1 is equal to the angle subtended by the arc a1b1 to the centre O1, where a1 and 

b1 are traced from points a and b along the involute to the pitch circle, then the following 

relations can be determined: 

 𝑎1𝑏1̂ = 𝑟1𝜃 3.72 

 𝑎𝑏̂ = 𝑟1𝜃 cos 𝛼 3.73 

Which yields: 

 
𝑎1𝑏1̂ =

𝑎𝑏̂

cos 𝛼
 

3.74 

The contact ratio is given by:  

 
𝜀 =

𝜃

𝜑
 

3.75 

Where θ is called angle of action and can be calculated from the equations above as: 

 
𝜃 =

𝑎1𝑏1̂

𝑟1
=

𝑎𝑏̂

𝑟1 cos 𝛼
=

𝐴𝐵̅̅ ̅̅

𝑟1 cos 𝛼
 

3.76 

And ϕ is the pitch angle: 

 𝜑 =
𝜋𝑚

𝑟1
 3.77 

Which yields: 

 
𝜀 =

𝐴𝐵̅̅ ̅̅

𝑟1 cos 𝛼

𝑟1
𝜋𝑚

=
𝐴𝐵̅̅ ̅̅

πmcos 𝛼
 

3.78 

And by considering equation 3.60 becomes: 
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𝜀 =

√𝑟𝑎1
2 − 𝑟𝑏1

2 + √𝑟𝑎2
2 − 𝑟𝑏2

2 − 𝑎𝑤 sin 𝛼𝑤

𝜋𝑚 cos 𝑎
 

3.79 

From Equation 3.79 it can be noticed that if the path of contact 𝐴𝐵̅̅ ̅̅  is equal to the base 

pitch pb, the contact ratio would be 1. This happens because only one tooth and the 

adjacent vain would fit the entire path of contact and so only one pair of tooth would 

be in contact during a complete mesh cycle.    

 

Figure 3.24 – Geometrical description of contact ratio as function of the path of contact and 

base pitch (Maitra, 2013; modified by the author). 
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For values of ε<1 the basic requirement of a constant transmission ratio is not satisfied. 

The pulsating torque delivery and the impacts between teeth would be an unacceptable 

solution for any transmission system. By taking into account manufacturing and 

assembling deviations, the limit for ε is increased to a minimum of 1.2 with typical values 

ranging from 1.4 to 1.6 (Goldfarb et AL., 2005; Kapelevich, 2013; Maitra, 2012). The 

physical meaning of a contact ratio, for example 1.6, is that during the period of 

engagement one pair of tooth is permanently in contact, while during the same period, 

another pair is also in mesh for 60% of the time only. The contact ratio, as defined above, 

is function of both working pitch and base circle radii and working pressure angle.  

For conventional gears with a number of teeth above the limit of undercut, an increase 

in pressure angle determines a consequent reduction in contact ratio as shown by the 

solid line in Figure 3.25. Nevertheless, for gears with a small number of teeth in which 

the undercutting condition occurs, increasing the pressure angle has a positive effect 

(dashed line in Figure 3.25) on contact ratio.  

 

Figure 3.25 – Contact ratio variation as function of pressure angle for constant profile shifts 

and fixed number of teeth.  
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3.3.5 Summary 

The interaction between geometrical parameters explained above can be summarised 

in a chart in which the influence of each modification on the described boundaries and 

how the tooth profile geometry would be affected are considered.   

As already discussed, increasing the pressure angle over the standard α=20° has a 

positive effect on gear performance thanks to an increased thickness at the tooth base 

and a reduced profile curvature of the tooth flank. Another main advantage is 

preventing the occurrence of undercutting due to the reduction of the base diameter. A 

similar effect is with regards to the tip/root interference in which an increased α pushes 

the limit further way. On the other end, by increasing α profiles become more prone to 

the tip pointed condition. Moreover, a reduction of contact ratio is experienced. 

Pressure angle only affects the base diameters that decreases as α increases. Tip and 

root diameters stay constant as well as the centre distance. 

Similarly, to pressure angle, a positive profile shift variation from the standard x=0 has 

a positive effect on the undercutting and tip/root interference. In this case the reason is 

not addressed to the base diameters that stays constant but rather to the shift of the 

pitch line/circle compared to the standard condition. Reduced top land thickness and 

reduced contact ratios are the negative effects. Vice versa, if the modification is negative 

with x<0, the effects are reciprocal to the ones already described.  Centre distance, tip 

and root diameters change accordingly with x by increasing or decreasing whether x is 

positive or negative.  

Addendum factor ha is the parameter that defines the length of the tooth portion above 

the pitch circle. Since it refers to the gear geometry it does not influence undercutting 

which is, in fact, affected by the rack cutter addendum ha
*. As the Tip/Root interference 

is function of the addendum length of the mating gears, with an increased ha the gear 

addendum can result being below the line of action at the extreme point of the path of 

contact generating interference. However, before the limit for interference occurs, a 

longer addendum determines an increase of contact ratio given that the path of contact 

becomes longer without changing the base pitch. On the other hand, by elongating the 

tooth length outwards from the gear centre, the two sides of a tooth profile become 
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closer with a consequent reduction of the tooth thickness. With a variation of ha the 

outside diameter is the only geometry that varies. 

Dedendum coefficient, Hf is the parameter that indicates the length of the tooth portion 

below the pitch circle. Dedendum factor hf, strictly relates to the condition of 

undercutting given that in order to generate a tooth profile with a longer dedendum the 

cutter needs a longer Ha
* that can eventually generate undercut profiles. In general, as 

Hf increases the tooth thickness at the tooth root is reduced with a consequent reduction 

of the load carrying capacity. A dedendum variation do not affect the active portion of 

the tooth profile as it acts at the tooth root by only affecting the root diameter of the 

gear. 

The Interaction between geometrical parameters and their mutual effect on limiting 

manufacturing and operational conditions is shown in the diagram below. 

 

 

 

 

 

 

Figure 3.26 – Interaction between geometrical parameters and their mutual effect on 

limiting manufacturing and operational conditions. 

 

3.4 FEA Background 

Structural analysis can be divided in two macro areas: Analytical or modelling methods 

and Experimental methods. Finite element method (FEM) belongs to the first category 

and consists of the solution of partial differential equation systems. It only requires a 

digital representation of the model to be analysed, and some computational resources 

to find a solution to an engineering problem. Alternatively, experimental methodologies 

require the production of physical models and all the necessary equipment for data 
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acquisition and analysis. This “ease” in performing structural analysis with just 

computational resources, combined with a proved reliability of results, has made the 

finite element method the most used structural analysis technique, often leaving to the 

experimental methodology the role of validating the results achieved at the last stage 

of the design process.  

The Finite Element Method is a numerical technique to solve boundary value problems. 

Its basic concept is the hypothetical decomposition of a system in a continuous number 

of sub-systems called elements as shown in Figure 3.27. Each element defines a small 

region but does not introduce any discontinuity such as cracks or surfaces within the 

continuum of the system.  

 

Figure 3.27 - Discretization of a 3D gear pair solid body with hexahedral elements. 

Elements are characterized by a certain number of nodes, each one with a finite number 

of degrees of freedom. Nodes also act as joints between adjacent elements. Once the 

position of nodes is determined, the combination of elements and nodes determines a 

network, called a mesh, through which mutual nodal information are shared.    

The real distribution of a field variable throughout a physical system is generally an 

unknown continuous function. The basic building block of Finite Element Analysis is the 

definition of a shape function that defines the properties of each element. The shape 

function is a mathematical formulation that correlates the considered field variable at 
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the nodes and its distribution within the element by performing numerical 

interpolations. The interpolation order can be a constant, linear or quadratic 

approximation of the real distribution, and certainly determines the quality of the 

analysis as shown in Figure 3.28. The order is determined by the number of nodes used 

in the element; the higher the order of the elements that describe the system, the lower 

is the degree of approximation, and the increase in the computational requirements.  

 

 

 

 

 

 

  

Figure 3.28 - Approximation of a generic displacement function by means of a) constant; b) 

linear; and c) quadratic shape function. 

 Figure 3.29 shows the shape and nodal position for the most common elements used 

in structural analysis. Generally, elements that have nodes only at their corners are 

known as first-order or linear elements. Those with mid-side nodes are quadratic or 

second-order elements.  

 

Figure 3.29 - Graphical representation of FEA elements (image source Studioseed.net). 

To calculate the distribution of a field variable within a system, it is a commonly accepted 

procedure in structural FEA to first determine the nodal displacements and then use 

element element element 

constant linear quadratic 
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displacements to derive the required field variable. For the case of stress analysis, 

displacements are used to find strains, and then elemental stresses, by applying 

constitutive relations. The displacement field which is assumed within each element is 

written in terms of nodal displacements in the form: 

 {𝑢} = [𝑁]{𝑑} 3.80 

where {𝑢} is the unknown displacement field within the element, {𝑑} is the vector of 

nodal displacements and [𝑁]is the shape function. By considering that strain is defined 

as a variation in length compared to the original length, in matrix form this can be 

expressed as shown in Equation 3.81 

 {𝜖} = [𝛿]{𝑢} 3.81 

In which [𝛿] is a partial differential operator matrix used to convert the displacement 

vector {𝑢} into the required strains vector{𝜀}. By combining the Equations 3.80 and 3.81 

we get Equation 3.82 

 {𝜀} = [𝜹]{𝑢} = [𝛿][𝑁]{𝑑} = [𝐵]{𝑑} 3.82 

 
where [𝐵] = [𝛿][𝑁] is called strain-displacement matrix. By applying Hooke’s law in 

which [𝐸] is a symmetric matrix that contains the material stiffnesses, stresses are 

derived from strains as follows: 

 {𝜎} = [𝑬]{𝜀} → {𝜎} = [𝐸][𝛿][𝑁]{𝑑}

= [𝐸][𝐵]{𝑑} 

3.83 

From Equations 3.83, strain and stress vectors can be calculated once the displacement 

vector {𝑢} is known. 

After model discretisation, the calculation of governing equations for each element is 

required. Once the element type and the formulation to describe the shape function 

have been chosen, the stiffness matrix for each element is computed. By calculating the 

work done by the external forces applied to the system as in Equation 3.84  

 
𝑊𝑒 =

1

2
{𝑑}𝑇[𝐾𝑒]{𝑑} 

3.84 



99 
 

and the virtual internal work made by the internal forces as in Equation 3.85 

 
𝑊𝑖 =

1

2
∫{𝜀}𝑇[𝜎]𝑑𝐴

𝐴

 
3.85 

Applying the principle of Virtual Work that imposes equality between external and 

internal work done we get: 

 1

2
{𝑑}𝑇[𝐾𝑒]{𝑑} =

1

2
∫{𝜀}𝑇[𝜎]𝑑𝐴

𝐴

 
3.86 

Equation 3.86 allows the stiffness matrix for each element of the system to be 

determined as: 

 {𝑑}𝑇[𝐾𝑒]{𝑑} = ∫{𝑑}𝑇[𝐵]𝑇[𝐸][𝐵]{𝑑}𝑑𝐴

𝐴

 
3.87 

Rearranging Equation 3.87, the element stiffness matrix is determined as follows: 

 [𝐾𝑒] = ∫[𝐵]𝑇[𝐸][𝐵]𝑑𝐴

𝐴

 
3.88 

After individual element stiffness matrices in the system are computed the next step is 

to assemble them into a form of global stiffness matrix [𝐾] that represents the whole 

body. The matrix assembly process results in a system of algebraic equations that 

include element stiffnesses, nodal displacements and loading/boundary conditions. 

Equation 3.89 is the one to be solved in the case of static analysis is expressed in the 

form: 

 [𝐾]{𝑑} = {𝐹} 3.89 

where [𝐾]is the global stiffness matrix, {𝑑} is the nodal displacement vector that refers 

to the whole system and {𝐹} is the vector that contains external forces applied to the 

nodes. After boundary conditions are applied to the relevant nodes, the nodal 

displacement solution involves the inversion of the stiffness matrix in Equation 3.89:  

 {𝑑} = [𝐾]−1{𝐹} 3.90 

The solution process explained above is defined implicitly and requires the inversion of 

the stiffness matrix in order to solve the unknown displacement vector (Gavin, 2016).  
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The full process of Finite Element Analysis can be divided in three different steps that 

require the geometry definition and material characteristics at the first step. Once the 

geometry is defined, boundary conditions and constraints involving supports and 

external loads are applied to the model. The last step of the pre-processing phase is the 

mesh generation, after the element type has been chosen. Once this step is 

accomplished, the Solution phase described above takes part and ends with the stress 

evaluation. The last phase, called post-processing, consists of a critical analysis of the 

obtained results. This can then either lead to a reiteration of the whole process to 

improve a specific aspect of the analysis, or the acceptance of the outcomes. 

3.4.1 Static and Quasi-static analyses 

A static analysis calculates the effects of steady loading conditions on a structure, while 

ignoring inertia and damping effects, such as those caused by time-varying loads. As a 

consequence, static analysis is generally used to calculate the system response caused 

by loads that do not induce inertia and damping effects. To achieve this condition, the 

basic assumption is that the applied loads and the structure’s response do not vary with 

respect to time. If the loading conditions are varying slowly, such that inertial and 

damping effects are considered negligible, then they can be considered as quasi-static 

loads. Quasi-static formulations are governed by the static equilibrium equation as 

applied for static analyses (Zienkiewicz et Al., 2000). For the case of the gear meshing 

process, which includes relative motion of gears in mesh, the problem can be 

approached as quasi-static by conducting a series of FEA calculations at different relative 

positions of the gears. Each position is determined by a fixed angular displacement for 

the driven gear and an external load being “statically” applied to the driving gear. In a 

problem conditioned such as this, the equilibrium conditions have to be verified at each 

predetermined analysis step by applying the static analysis formulation written in a way 

that takes into consideration the dependency of the stiffness matrix on the unknown 

DOF values: 

 [𝐾𝑡]{𝑑𝑡} = {𝐹𝑡} 3.91 

Therefore, even though the applied loads and boundary conditions (except for contact 

boundaries defined later) are known for the entire time domain, the stiffness matrix [𝐾𝑡] 
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depends on the unknown displacements {𝑑𝑡} due to the change in geometry of the 

system. This non-linear condition is defined as geometrical nonlinearity and will be 

explained in more detail in the next section.  

A description of geometrical and contact non-linearity is provided in the following 

section along with a description of the Newton-Raphson iterative procedure used to 

solve non-linear problems. Due to the importance that contacts play in the analysis of 

gear systems a further explanation is given in the next paragraph. 

3.4.2 Non-linear structural analysis 

One of the first studies about computational procedures applied to the analysis of static 

and dynamic response of non-linear structures was carried out by Mondkar et Al., 1977. 

The main reasons for non-linearity in structural analysis are because of material 

behaviour, large deformations and contact conditions. Material non-linearity occurs 

when materials with a load-dependent response are used. In this case the solution of 

the analysis relies on the actual loading history. Geometric non-linearity is introduced 

when large displacements are encountered during the analysis. To handle analysis of 

systems that behave in such way, the current nodal coordinates are used in the element 

stiffness matrices, so that the analysis becomes position dependent. Contact non-

linearity or boundary non-linearity arises for contact conditions between parts. Contacts 

can be regarded as discontinuous boundary conditions that depend on the actual 

system’s configuration and applied loads. When contact occurs, the applied loads and 

generated displacements are not linearly related.  

3.4.3 Non-linear structural solution method 

A Quasi-static finite element formulation is defined by the set of matrices in Equation 

3.91.This expresses the equilibrium condition at a specific time increment, t, through 

the stiffness matrix[𝐾𝑡], between the applied load vector {𝐹𝑡}, and the unknown nodal 

displacements, {𝐷𝑡}. As force and displacements are not linearly related, the system of 

resulting equations are non-linear. For such problems, Equation 3.91 can no longer be 

solved with a single solution based on the initial stiffness matrix [𝐾] due to the 

dependency of the non-linear stiffness matrix, [𝐾𝑡], on displacements, material and 

contact conditions (Nielsen 2013). In order to achieve a solution, an iterative process 
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with a series of linear approximations is needed. The iterative process solved with 

Newton-Raphson method implies the division of the load into multiple steps defined as 

load increments. Inside each load increment there are iterations based on results of the 

previous increment (Equation 3.92). 

 {𝑑𝑡+∆𝑡
(𝑖)

} = {𝑑𝑡+∆𝑡
(𝑖−1)

}

+ {∆𝑑(𝑖)} 

3.92 

Displacements and reaction forces are evaluated by applying the static formulation as 

follows: 

 [𝐾𝑡]{∆𝑑(𝑖)} = {𝐹𝑡+∆𝑡} − {𝑅𝑡+∆𝑡} 3.93 

in which the stiffness matrix [𝐾𝑡] is updated at the beginning of each load increment  

and {∆𝑑(𝑖)} is the nodal point vector of incremental displacements corresponding to 

iteration (i).  

The second part of equation 3.93 represents the out of balance forces between the 

external nodal applied forces {𝐹𝑡+∆𝑡}, and the internal forces representing the system 

response {𝑅𝑡+∆𝑡}. The iterations continue until the difference between internal and 

external forces {𝐹𝑡+∆𝑡} − {𝑅𝑡+∆𝑡} is within an imposed tolerance determined by the 

convergence criterion used. Convergence is an indication of how well equilibrium is 

satisfied. 

The schematic of the Newton-Raphson method applied to the solution of a one DOF 

problem is represented in Figure 3.30 where the iterative solution of a non-linear force-

displacement function requires four equilibrium iterations before achieving 

convergence.  
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Figure 3.30 – Newton-Raphson iterative solution, (ANSYS®, 2016; ANSYS 15.0, 2015). 

The iteration method starts with setting up the stiffness matrix [𝐾𝑡] for the first iteration 

by using the initial conditions imposed to the system. After the first iteration, with the 

stiffness matrix [Kt] represented by segment 2 in Figure 3.30 and the internal forces {𝑅}, 

it is possible to determine the Incremental displacements {∆D} that have to be added to 

the previous displacement solution. Equilibrium iterations are performed at each load 

increment until the difference between external and internal loads is within the 

accepted tolerance. Typical values for force convergence criteria range from 0.1 to 0.5% 

of the applied load. 

3.4.4 Solution of Structural Contact Problems 

The interaction between structural parts plays a crucial role in the analysis of mechanical 

systems. Mechanical problems that involve contacts are inherently non-linear due to the 

produced change in status of the system. Depending on the contact condition between 

parts, the stiffness of the whole system can experience an abrupt change resulting in a 

highly non-linear behaviour (Konter, 2000). Because of the variable nature and the 

number of relevant factors involved, solution of contact problems is a difficult task. 

Contact conditions depend on the material properties, applied loads and boundary 

conditions that determine deformations, and eventually contact when two separate 

Displacement 

ΔU 

R 

Kt 

Force 
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surfaces become mutually tangent. Due to the highly non-linear dependency with the 

above mentioned parameters an iterative solution scheme is required to conduct 

contact analyses (Oysu, 2007).  

Contact can be considered as a discontinuous constraint that is only applied when the 

actual interaction between mating parts occurs. In the areas where contact is expected, 

special elements have to be defined in order to include the relevant formulation. 

Contact elements conform to the underlying geometry and existing mesh and add 

contact compatibility conditions to the local and global stiffness matrices. An element’s 

formulation is modified by taking into account the contact force (Fc) as an external force 

acting on the system as indicated by Equation 3.94  

 [𝐾𝑡 + 𝐾𝐶]{∆𝑑(𝑖)} = {𝐹𝑒𝑥𝑡} − {𝐹𝑐(𝑑)} − [𝐾]{𝑑} 3.94 

The non-linear Equation 3.94 is an extended version of Equation 3.93 and includes an 

extra term for the stiffness matrix that takes into account the influence of contact on 

system’s response as well as the contact force applied from one body to the other, to 

avoid inter-penetration at the contacting interface. This prevention of inter-penetration 

is defined as contact compatibility enforcement, and is performed by penalty-based 

contact formulations. For such formulations contact force is expressed by Equation 3.95 

 {𝐹𝐶} = [𝐾𝐶]{𝑥𝑝} 3.95 

where [𝐾𝐶] is the contact stiffness that depends on the material stiffness of contacting 

bodies and {𝑥𝑝} indicates the amount of penetration as shown in Figure 3.31 

 

Figure 3.31 - Two bodies in contact that experience penetration (ANSYS®, 2016). 



105 
 

Penalty-based formulations tolerate a small amount of interpenetration in order to 

increase the robustness of the solution. This allows the contact to be stable avoiding the 

oscillatory effect due to a sudden change between penetration and presence of gap. 

Given that both force and displacement on the contact boundary are unknown, a 

contact search is necessary at each iteration to find nodes that violate the 

impenetrability condition and apply a correction force (contact force) to re-establish 

compatibility. The two-step contact formulation process is shown in Figure 3.32 where 

violated nodes (B) within contact element candidates (A) are found and a contact force 

is applied to re-equilibrate the system. 

 
 

Figure 3.32 - Schematics of the process to re-establish compatibility and the applied contact 
force (ANSYS®, 2016). 

Contact is not necessarily detected at nodal locations; penalty-based formulations use 

a number of virtual integration points in order to increase the number of sensible 

points on the element area as shown in Figure 3.33. In Equation 3.96 the resultant 

contact force Fc is the result of the sum of smaller contact force components acting at 

the integration points. 

 

𝐹𝐶 = ∑𝐹𝑐𝑖

𝑁𝑛

𝑖=1

 

 
3.96 

 

Figure 3.33 - Virtual integration points for contact detection (ANSYS®, 2016). 

A B 
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If, as for the case of gears in mesh, there is friction between the two bodies in relative 

motion a contact force in the tangential direction also exists. Similarly, for the 

impenetrability condition, in the tangential direction a sliding condition is imposed. The 

formulation is equivalent to the one explained above for normal contacts and is 

expressed with Equation 3.97 as follows 

 {𝐹𝑓} = [𝐾𝑓]{𝑠} 3.97 

where{𝐹𝑓} is the friction force that is generated when two bodies stick, [𝐾𝑓] is the 

tangential stiffness that relates to the shear strength of the contacting bodies material 

and {𝑠} indicates the sliding distance. On the other end, for the case of frictional contacts 

that allow sliding and relative motion, the Coulomb friction force is expressed as follows: 

 {𝐹𝑓} = [𝜇]{𝐹𝐶} 3.98 

In Equation 3.98 [𝜇] represents the friction coefficient and is function of material 

properties and surface roughness, and {𝐹𝐶} is the normal contact force that balances 

the external loads. 

 

3.5 Conclusion 

The construction method of the involute tooth profile geometry is given in a parametric 

form. As gear geometry is function of multiple parameters, a detailed analysis of the 

effect caused by the modification of each parameter is done in this chapter. To this 

follows the analytical definition of geometrical, manufacturing and operational 

boundaries used in the following chapter for the determination of design domains of 

spur gear pairs. Furthermore, the background theory of the finite element method used 

in this thesis, focusing in particular on the solution of non-linear problems such for the 

case of gears has been treated in detail. 
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4 Parametric multi-dimensional design space 
 

Conventional gear design is based on a standard rack cutter of which size and 

proportions such as addendum, dedendum, cutter tip radius and pressure angle have 

standard values and completely define the rack geometry. Standardization has also been 

adopted to simplify the gear design process and hence reduce the number of 

parameters to define. In fact, once the number of teeth is defined in accordance with 

the desired transmission ratio, the design choice changes from being multi-parametric 

to mono-parametric with the only variable left to be determined being the profile shift. 

To ensure correct meshing, the geometry of tooth profiles has to be carefully 

determined. As the number of possible independent design parameters, even for the 

simplest case of a spur gear, is sizeable, there is the necessity to control the synergic 

effect of design parameters and identify a practical range of values that leads to the 

definition of a confined domain (Amani et Al., 2017). The domain boundaries are 

determined by the limiting conditions imposed by manufacturing processes and 

geometrical compatibility, and delimit an area that contains all the feasible combination 

of parameters that fulfil the pre-imposed geometrical requirements. A graphical study 

of the imposed limiting conditions determined in the previous chapter by Equations 

3.44, 3.51, 3.55, 3.79, finds a useful graphical representation with the use of two 

dimensional blocking contours as described by (Goldfarb et Al., 2005; Kapelevich, 2013). 

This technique uses a number of multi-level curves representing the aforementioned 

manufacturing and operational conditions for the mating gears. The graphical 

representations of Equations 3.51, 3.54, 3.55, 3.79 describing top land thickness, corner 

interference and contact ratio are surfaces in the x1x2 domain as shown in Figures 4.1, 

4.2, 4.3. Although any set of variables could have been used for the two axes, x1,2 were 

used due to the vast use of profile shift in industry in order to facilitate the 

comprehension of the generated domains. The range of variation for x1 and x2  from -3 

to +3 displays the geometrical functions in their entirety but does not represent the 

practice in which the actual range is considerably smaller.  
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Figure 4.1 - Graphical representation of the top land thickness function in the x1x2 domain for 

gears with N1,2=20, α=20° and m=1 mm. 

 

Figure 4.2 -  Graphical representation of the corner interference function in the x1x2 domain 

(for N1,2=20 α=20° and m=1 mm). 

 

Figure 4.3 -  Graphical representation of the contact ratio function in the x1x2 domain (for 

N1,2=20, α=20° and m=1 mm). 
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The intersection of the surfaces with a planes parallel to x1x2 and placed at a certain 

height corresponding to the value of interest for the variable under consideration gives 

the limiting curves of a design space shown singularly in Figures from 4.4. to 4.7 and in 

the form of a design domain shown in Figure 4.8. 

A Matlab® script (appendix A) has been written in order to generate an enclosed area 

delimited by contour lines corresponding to the geometrical boundaries and operational 

constraints such as Tooth tip thickness, Undercutting, Contact Ratio and Tip/Root 

Interference.  

Figure 4.4 shows the limiting lines for tooth thickness at the addendum circle. The lines 

plotted in Fig 4.4 lie on three different levels of the vertical axes in Figure 4.1 and 

represent the minimum allowable top land thickness sa1,2=0.2 determined from practice, 

the generally used sa1,2=0.4 and the theoretical minimum for sa1,2=0 corresponding to 

pointed gear teeth. It can be seen that by increasing the tooth thickness at the 

addendum circle the area left between the opposite curves is reduced. 

 

 

Figure 4.4 - Top land thicknesses in the x1,2 domain for a spur gear pair with α=20°, N1,2=20, 

m=1 and standard profile parameters according to ISO 53 A. 

 

Figure 4.5 shows the lines that determine the absence of interference for correct 

meshing. The limiting condition of interference is defined at the level Int1,2=0 of Figure 

4.2 when the tooth tip is tangent to the root fillet of the mating gear. In Figure 4.5, the 
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conditions of interference for the pinion and gear defines an enclosed area within which 

only positive values are present. Inside the lines, the mating gears are not interfering 

making any combination of profile shifts possible. 

 

 

Figure 4.5 - Tip/root interference limit in the x1,2 domain for a spur gear pair with α=20°, 

N1,2=20, m=1 and standard profile parameters according to ISO 53 A. 

 

The third operation criterion considered is the Contact ratio shown in Figure 4.6. Also in 

this case the curve is the surface profile plotted in Figure 4.3 at the levels of interest. 

Contact ratio has a theoretical limit ε =1 in order to ensure a constant velocity ratio. This 

value has to be increased to ε =1.2 if manufacturing and assembling deviations are 

considered. Standard values of ε for normal contact ratio gears span from 1.4 to 1.6. By 

increasing the limit for ε, the limiting curves move towards the centre limiting the use 

of high values of profile shift coefficients as shown in the figure below. 
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Figure 4.6 - Normal contact ratio in the x1,2 domain for a spur gear pair with α=20°, N1,2=20, 

m=1 and standard profile parameters according to ISO 53 A. 

 

In addition to the cases already considered it is necessary to add the limiting condition 

for undercutting. The minimum amount of profile shift to use in order to avoid 

undercutting is expressed by equation 3.45 and is shown in Figure 4.7 represented by 

two straight lines for x1 and x2. 

 

Figure 4.7 - Undercutting limits in the x1,2 domain for a spur gear pair with α=20°, N1,2=20, 

m=1 and standard profile parameters according to ISO 53 A. 
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The intersection between the above-mentioned limiting curves defines an enclosed 

region that allows any combination of profile shifts for the given geometrical 

parameters. For a spur gear pair, the domain boundaries depend on the desired gear 

ratio and so the number of teeth of the mating gears and on initial basic rack parameters 

such as module, pressure angle and addendum factor. Moreover, they depend on the 

pre-defined value imposed by the designer, whether based on standards or practical 

considerations for the case of custom/non-standard designs or for research purposes.  

 

4.1 Multi-dimensional contour plots 

The superimposition of the limiting conditions shown in the previous paragraph leads to 

the definition of an enclosed area defined by the intersection of lines representing 

operational and manufacturing limits. 

Figure 4.8 shows the area of feasible values for a standard spur gear pair of parameters 

N1,2=20, ha1,2*=1, α=20°, m=1 of which, the considered limits assume their minimum 

possible value in accordance with practical considerations to maximise the size of the 

internal area. The point corresponding to the combination of x1 and x2 must lie within 

the area in order to fulfil the criteria stated above. However, Figure 4.8 includes 

additional lines in the plane x1 x2 that have a peculiar physical meaning. The actual centre 

distance lines aw are plotted as they represent, with the gear ratio, basic requirements 

usually predetermined at the beginning of the design process.  



113 
 

 

Figure 4.8 - Multi-dimensional design space in the x1,2 domain  for a spur gear pair with α=20°, 

N1,2=20, m=1 and standard profile parameters according to ISO 53 A. 

 

The area of possible combination, for the set of parameters used, is limited in the first 

quarter by the minimum contact ratio and for the remaining part by lines that indicate 

the occurrence of undercutting for the pinion and gear. The point of coordinates x1=-

0.169; x2=1.242 lies at the intersection between minimum top land thickness and corner 

interference for the gear, the undercutting limit for the pinion and minimum contact 

ratio.  Similarly, the point with coordinates x1=1.242; x2=-0.169 is at the intersection of 

the minimum top land thickness and interference for the pinion, the limit of non-

undercutting for the gear as well as minimum contact ratio. Furthermore, two green 

lines with constant centre distance aw are shown: one is passing through the centre of 

the plot and corresponds to the condition of balanced profile shift with a null overall 

value such that ∑x1,2=0; the other is a tangent to the minimum contact ratio ε=1.2 that 

limits the region of possible combination in the first quarter. In red are shown the lines 

that represent the working pressure angle αw: one passing through the centre and the 
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other tangential to the limit condition imposed by the contact ratio. If the sum of profile 

shifts is null, then the working centre distance and the working pressure angle would 

coincide with the reference values. In this case, the two line passing through the centre 

are coincident and with values aw=a=20 mm; αw=α=20° (aw=19.99 is only for display 

reasons otherwise the two lines would have been indistinguishable). The other set of 

lines indicate the maximum value of centre distance and consequently working pressure 

angle achievable by applying a positive profile shift combination. In this case aw=21.09 

mm and αw≠α=26.9°. As they both are directly interconnected, a line representing aw or 

αw is always coincident with the line representing the other parameter of the two. If 

those lines cross the area of feasible combinations, then it is possible to choose the 

corresponding profile shift coefficients for any point that lies on them. 

 

4.1.1 Influence of pressure angle 

A further evolution of the domain is made by taking into account a third fundamental 

design variable, the profile pressure angle α.  While the application of profile shifts does 

not involve the modification of the cutting tool, varying the geometrical proportion of 

the tooth profile would determine a deviation from the standard rack geometry. If 

pressure angle α is the considered variable, the combination of x1, x2, and α give singular 

kinematic and load carrying characteristics while fulfilling the required manufacturing 

and operational requirements. This enables the design of custom non-standard gear 

drives based on the requirements of a specific application.  

In order to study the effect of modifying α, the evolution of the feasible domain is shown 

across a number of plots for different pressure angles in Figure 4.9. For all the plots, the 

only geometrical parameter that has been varied is α while N1,2=20 and the other 

parameters are in accordance with ISO 53 Profile A. Starting with a value of α=20°, the 

same as the one plotted above, it can be noticed that the domain of interest becomes 

smaller when the pressure angle increases. The first effect produced is that the limit of 

undercutting increases and lets other boundary conditions to limit the area. From the 

second plot, for α=22.5°, minimum top land thickness and interference occur in the 
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second and fourth quarters while in the third quarter the limit for undercutting is 

replaced by corner interference.  

The condition described becomes more evident for a further increase in pressure angle 

to the point that for α=32° the area of existence does not include any positive value of 

profile shift as the minimum top land thickness lines are intersecting at x1,2=0. For this 

condition only a narrow range of negative profile shifts is usable before the interference 

limit occurs. As already seen in section 3.3.4, an increase of pressure angle determines 

a reduction of contact ratio; this is shown in the plots with the curves of ε=1.2 getting 

closer to the centre, reducing the feasible domain. In the last plot, for α=32°, the contact 

ratio does not work as a limiting condition because of the occurrence of the sa limit. For 

that condition, due to the primary influence of minimum top land thickness, the 

maximum possible contact ratio is given by the curve that passes through the 

interference point sa1,2 and is equal to 1.29.  A variation of profile pressure angle also 

limits the centre distance to be increased and consequently the maximum achievable 

αw. Maximum centre distance occurs at the intersection with εa=1.2 and is equal to 21.09 

mm, which corresponds to a maximum working pressure angle of 26.9°. For α=22.5° the 

maximum aw decreases to 21.02 mm and for that configuration αw assumes a value of 

28.48°. For α=25° maximum aw drops below 21 mm and at the point of tangency is equal 

to 20.94 mm while αw=30.05°. The trend explained can be followed in Figure 4.9 by 

tracking the line of aw=21 mm in all the plots. It is important to notice that as pressure 

angle does not alter the centre distance for any value of α, the lines corresponding to 

the reference centre distance (20 mm in this case) in accordance with module and 

number of teeth pass through the origin x1,2=0 and are always coincident with the lines 

of reference pressure angle α that varies for any plot.  
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4.1.2 Influence of addendum length 

Similarly, to what explained with regards to pressure angle, the influence of the 

addendum length on the x1x2 domain is carried out in the following Figure 4.10, where 

a number of pinion geometrical configurations with different addendum lengths, ha1
 are 

plotted. The basic rack addendum factor (Figure 3.6 in section 3.2) is one of the main 

parameters that defines the overall tooth geometry and has been standardized with a 

value of 1. Other values are used in practical applications where a deep tooth form or 

short cut toothing is used. In order to achieve a modification of the addendum length of 

the actual gear, the base rack addendum ha1
* needs to be adjusted by the quantity 

ha1
*=ha1. A variation of the addendum length does not cause an alteration of the 

undercut limit as the modification occurs above the pitch circle and so x1,2 min is the same 

for any value of ha
*. As the modification is applied to the pinion while the gear has 

standard proportions, only the top land thickness of the pinion sa1 changes while sa2 is 

constant. Corner interference occurs at the upper portion of the gear fillet with the tip 

of the pinion clashing on the non-involute portion of the gear; for this reason, by 

modifying ha1 the limit for interference affected is the one occurring at the gear fillet 

int2. Contact ratio is simultaneously affected by the geometry of the two gears and so 

varies as function of ha1. Also in this case, N1,2=20 and α=20° determine a centre distance 

of 20 mm and a working pressure angle of 20° for x1=x2=0 and ∑x1,2=0. Starting with the 

standard tooth geometry (ha1=1), also shown in Figure 4.10 and extensively described 

above, a reduction in the addendum length for gear 1 creates a smaller x1,x2 domain due 

to the limitation imposed by the contact ratio. For the set of parameters used here, 

ha1=0.5 is the minimum usable addendum length for x1=x2=0; for any smaller addendum 

length the plot centre would lie in the domain of contact ratios < 1.2. The area in this 

case is delimited by ε and x2 min in the second quarter, by x1 min and x2min in the third and 

by ε and x1min in the fourth quarter. The imposed tooth thickness for the pinion sa1=0.2 

is far from the delimited area. By increasing ha1 to 0.8 the contact ratio increases and, at 

the same time, the interference limit for the gear becomes closer to the area as well as 

to sa1=0.2. For ha1=1.15, above the standard value ha1=1, the condition of corner 

interference starts to delimit the area in the first, second and fourth quarter in 

conjunction with contact ratio and undercut limits. The limit condition is reached for 
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ha1=1.3 for which a very narrow window of possible x1x2 in between int2 and sa  is shown 

placed almost entirely in the first quarter of the plot. Finally, in the plot for ha1=1.4, an 

area cannot be determined due to the fact that sa=0.2 crosses the curve of int2 cancelling 

out the area shown for ha1=1.3. 
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4.2 Conclusion 

The domain of feasible combination of geometrical parameters allows the limiting 

conditions for a given selection of involute profiles to be defined and visualized, and 

allows the location of the feasible gear pairs that fulfil the manufacturability and 

geometrical compatibility limitations. The multi-parametric model considers the 

simultaneous effect of pressure angle, module, addendum and dedendum length and 

number of teeth of the mating gears. Production limitations in terms of tooth pointing 

and undercutting were considered as well as geometrical compatibility and generated 

contact ratio. The multi parametric design approach shown above can be adopted for 

the study of any dependent or independent geometrical parameters. It allows the 

analysis of multiple possible gear combinations in order to find the most suitable 

solution for the application requirements. This implies an advantage in performance 

that consequently increases the competitiveness of the products to the point of 

justifying the extra cost for custom cutting tools. For advanced engineering products 

such as gearboxes used in aviation and automotive the application of non-standard 

geometries is the norm given that the maximization of the transmitted power within a 

lighter and smaller size is of main importance (Kapelevich et Al., 2002).  
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5 Spur gear pair performance analysis 
 

In this chapter numerical analyses of spur gear pair with different geometrical 

characteristics are presented and results elaborated in detail. Contact and bending 

stresses have been evaluated by means of the Finite Element Method and the 

mechanical characteristics for each geometrical configuration have been estimated and 

compared to a baseline with standard parameters. Several driving/driven gear models 

were considered and of the two gears in mesh, only the geometry of the driven gear has 

been changed so that the effect of the modification is isolated and not compensated 

with a corresponding profile alteration on the mating gear. For the case of pressure 

angle the modification was applied to both gears in order to ensure regular meshing. 

The stress state is evaluated for 100 contact location points along the gear tooth flank 

and compared with the one corresponding to the stress state of a reference profile 

tooth: ISO 53.2 Profile A (hf 1.25/ ρf 0.38/ ha 1.25), α=20° and x=0 (ISO 53, 1998). To 

reduce the number of parameters studied, the number of teeth, module and root fillet 

radius have been fixed accordingly to Table 5.1. The range of variation for the modified 

parameters was imposed by functional and manufacturing limitations as described in 

Chapter 3 and 4.  

Table 5-1 – Gear parameters for driving and driven gears 

Parameter Driving Driven 

Number of teeth N 20 20 

Module [mm] 1 1 

Dedendum factor. hf 1.25 1<hf<1.5 

Root fillet radius coeff. ρf  0.38 0.38 

Addendum factor. ha 1 0.5<ha<1.3 

Pressure angle α [°] 20<α<32 20<α<32 

Profile shift coeff. x 0 -0.2<x<0.5 

A graphical representation of the tooth profiles affected by the considered geometric 

parameters is given in Figure 5.1 where the extreme cases of the parameters range of 

variation are shown. The standard ISO 53.2 Profile A, with α=20° and x=0 (blue) is 

compared with: α=32° tooth profile in green, and x=+0.5, and x=-0.2, in red and black 

respectively, and in yellow a profile with ha=1.3.  
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Figure 5.1 – Comparison between tooth profile outlines including the standard ISO 53.2 A 

against non-standard profiles in which only one parameter per time is modified. 

This chapter also introduces the machine design software KISSsoft®, through which all 

the gear models for this study are created. KISSsoft® was also used for the performance 

calculations in accordance with the rating standard ISO 6336 method B (2006). In the 

next paragraphs, there follows a detailed explanation of FEA settings for the solution of 

gear problems in order to achieve convergence and perform the most accurate results 

possible in relation to the applied loads and constraints; the description focuses on mesh 

modelling, contact modelling, and analysis settings. In the end, in-depth analyses and 

explanations of performance results supported by graphical displays are given and 

justified. 

 

5.1 KISSsoft® 

Traditionally, the design of gears and transmissions requires an in depth knowledge of 

the rating standards in the field. Despite that, the high amount of technical 

considerations coupled with the considerable number of iterations needed to reach a 

result with an acceptable compromise of performance intended as strength, life, weight, 

or efficiency can be extremely long. This happens even more for complex systems such 

as planetary gear trains where multi-mesh conditions occur.  
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KISSsoft®, developed by KISSsoft AG., is one of the most frequently used computer 

programs for the design of machine components. The software is specifically developed 

for the sizing of gears, shafts and bearings, screws, springs, joining elements, and belts 

and in general all the components that are found in a transmission system. Optimization 

routines are also implemented in order to optimize existing designs or fine tune the 

design for a specific requirement. The software includes a library of the currently valid 

rating standards (ISO, AGMA, DIN) and performs the calculations according to them. 

Geometry of components can be evaluated and customized on the base of the user 

requirements. Strength calculations, safety factors, fatigue life and many other 

performance parameters can be calculated and easily exported in a detailed report. 

Graphical animations and display are also features offered by KISSsoft that allow 

comparison between different design solutions. Gear tooth profiles can be modelled in 

accordance with the standards or customized by varying each single parameter that 

defines the tooth shape. The modifications can be applied both to the cutting tool and 

to the final tooth profile by using the “constructed involute” function. Usefully, any 

determined geometry can be exported into the 3D CAD software Solidworks®. The direct 

associative interface between the two software ensures that the real tooth form is 

maintained in the file transfer which guarantees accuracy in the following analysis or in 

the manufacturing stage.  

In this thesis KISSsoft (2017) has been largely used for the generation of gear models to 

be exported into the FEA environment. The software has also been used to perform 

analytical calculations based on the current standard ISO 6336 Method B (2006) for all 

the geometries studied. Results were used as guideline and were compared with Finite 

Element Analysis in order to find the level of agreement between numerical and 

analytical methods used for validation. 

 

5.2 Gear Modelling 

One of the critical aspects in the numerical analysis of mechanical systems is the creation 

of the solid model. Geometry clearly plays a crucial role on the accuracy of results so it 

is of fundamental importance that the mechanical component is modelled as accurately 
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as possible. In this study the gear models are generated in two consecutive steps; first, 

to generate gear profiles, the KISSsoft constructed involute function, that allows a full 

customization of the involute profile, has been used. The second step sees the geometry 

data transfer from KISSsoft through a direct associative interface to SolidWorks. 3D 

models are automatically created in the CAD environment when the export function in 

KISSsoft is used. Even for the case of a multiple-gear system, gear models are generated 

individually.  

If the purpose is to study the gear system in its interity, then the assembly process is 

required. SolidWorks allows the user to create multi-body systems through “mate” 

functions in order to place bodies in the space in relative positions and replicate real 

world constraints. For a gear system this translates into the definition of the position of 

gear centres by applying the working centre distance value and the tooth mesh 

positioning in order to avoid any gap or superposition between solid parts (mating teeth) 

as shown in Figure 5.2. 

 

Figure 5.2 – Assembling procedure in SolidWorks of a 3D spur gear pair. 
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From this, all the models are exported, again through a direct associative interface, into 

the FEA environment for the final numerical analysis. Due to a lack of computational 

resources, the problem has been downgraded and treated as a 2D analysis in order to 

reduce the solution time. To obtain this conversion, an extra step is needed. The 3D 

models previously assembled are treated in the ANSYS built-in CAD environment 

‘DesignModeler’ for surface extraction. Due to the axisymmetric shape of the gear 

bodies, the “mid-surface” corresponding to the central cross section has been extracted 

and used for the subsequent 2D numerical analyses.  

The process described above ensures that the geometrical details of the original model 

are maintained without losing any accuracy. The process is also interactive as any 

upstream modification is automatically implemented in the following stages.  

 

5.3 ISO 6336 Method B 

As already introduced in the literature survey chapter, ISO 6336 (2006) is composed of 

five parts. Part 1 covers the basic principles of gearing and provides the general influence 

factors; part 2 and 3 cover the calculations respectively for surface durability and 

bending strength; part 5 covers the aspects related to materials and allows to establish 

limit stress numbers; Part 6 provides the information necessary for the calculation of 

the service life of gears subject to variable loading. 

The analytical calculations according to ISO 6336 Method B were performed in KISSsoft 

for all the considered geometries and a brief description of the ISO calculation procedure 

including the main analytical expressions and the factors of influence is given below. 

Starting with the calculation of maximum and permissible contact stress, these two 

quantities are based on Hertzian contact theory adjusted by modification factors. The 

three main fundamental stress equations 5.1, 5.2, 5.3 given below allow to calculate the 

quantities σH0, σH and σHP respectively nominal contact stress, calculated contact stress 

and permissible contact stress.: 

 

𝜎𝐻0 = 𝑍𝐻𝑍𝐸𝑍𝜀𝑍𝛽√
𝐹𝑡

𝑑𝑙𝑏

𝑢 + 1

𝑢
 5.1 
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 𝜎𝐻 = 𝑍𝐵𝜎𝐻0√𝐾𝐴𝐾𝑉𝐾𝐻𝛽𝐾𝐻𝛼 ≤ 𝜎𝐻𝑃 5. 2 

 
𝜎𝐻𝑃 =

𝜎𝐻𝑙𝑖𝑚𝑍𝑁𝑇

𝑆𝐻𝑚𝑖𝑛
𝑍𝐿𝑍𝑉𝑍𝑅𝑍𝑊𝑍𝑋 5. 3 

The relations between the calculated quantities are such that contact stress σH must be 

less than the permissible contact stress σHP for preventing failure and verify the design. 

In equation 5.3, the term 𝜎𝐻𝑙𝑖𝑚 is the allowable contact stress number described in ISO 

6336 part 5, and is based on a contact pressure that may be sustained for a specified 

number of cycles without the occurrence of progressive pitting.  The factors used in 

equations 5.1, 5.2 and 5.3 can be distinguished in two categories: Z-factors are 

determined by gear geometry, material and lubricating conditions; K-factors are related 

to conditions of general influence.  Since the values used in this work for comparison 

and reference reasons are the ones relative to nominal contact stress, a general 

description of the factors in Equation 5.1 only is given hereafter:  

 ZH is defined as zone factor and takes into account the effect of flank curvature 

at the pitch point on the Hertzian pressure. It transforms the tangential load at 

the reference cylinder to tangential load at the pitch cylinder. 

 ZE is the elasticity factor and takes into account the influence of material 

properties such as moduli of elasticity and Poisson ratios of the mating gears. 

 Zε is the contact ratio factor and accounts for the influence of the effective length 

of the lines of contact on the load capacity of cylindrical gears. 

 Zβ is the helix angle factor which accounts for the influence of the helix angle on 

the load capacity of helical gears. For spur gears Zβ=1. 

Description and calculation methods for any other geometric factor can be found in (ISO 

6336-2, 2006) while general influence factors are described in (ISO 6336-1, 2006).  

Similarly, to surface load capacity, the calculation of tooth bending strength involves the 

calculation of nominal, actual and permissible stresses. The actual stress is calculated as 

the product of the nominal root bending stress σF0 and a number of stress correction 

factors to take into account various aspects of loading condition. σF needs to be smaller 

or at least equal to the permissible stress in order to consider the design valid. To follow, 
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the equations to calculate the root bending stresses are given and the factor of main 

importance are briefly described. 

 
𝜎𝐹0 =

𝐹𝑡

𝑏𝑚𝑛
𝑌𝐹𝑌𝑆𝑌𝛽𝑌𝐵𝑌𝐷𝑇 

 

5.4 

 𝜎𝐹 = 𝜎𝐹0𝐾𝐴𝐾𝑉𝐾𝐹𝛽𝐾𝐹𝛼 5.5 

 
𝜎𝐹𝑃 =

𝜎𝐹𝑙𝑖𝑚𝑌𝑆𝑇𝑌𝑁𝑇

𝑆𝐹𝑚𝑖𝑛
𝑌𝛿𝑟𝑒𝑙𝑇𝑌𝑅𝑟𝑒𝑙𝑇𝑌𝑋 =

𝜎𝐹𝐺

𝑆𝐹𝑚𝑖𝑛
 

5.6 

σF0 in Equation 5.4 is the nominal tooth root stress also defined as the maximum local 

principal stress produced at the tooth root for the case of an error-free gear pair is 

loaded by the static nominal torque. The error free condition involves the absence of 

any production and assembling errors. σFP is the permissible bending stress and 

represents the limit value of tooth root stresses after taking into account material 

characteristics and gear dimensions. The term σFlim represents the nominal bending 

stress number determined by testing reference test gears which takes into account 

influences of material, heat treatment and surface roughness. Values of σFlim are 

available in ISO 6336 part 5 (2006) in tabular and graph forms. Stress correction factors, 

also in this case are divided into two categories: Y-factors are related to the gear 

geometry and material and their calculation methods can be found in ISO 6336 Part 3 

(2006) and ISO 6336 Part 5 (2006); K-factors instead are factors of general influence 

mainly related to loading conditions. Also for the case of root bending stress, values 

from numerical analyses are compared to the nominal stresses. The influence factors in 

σF0 (Equation 5.4) are briefly described as follows:  

 YF is the form factor which takes into account the tooth form when the load is 

applied at the point of single tooth pair in contact. 

 YS converts the nominal tooth root stress to the local root stress by taking into 

account the curvature radius of the root fillet. 

 Yβ is the helix angle factor which accounts for the reduced bending moment as a 

consequence of the oblique line of contact in helical gears.  For spur gears Yβ=1. 

 YB is the rim thickness factor which takes into account the extra stress due to thin 

rimmed gears. 
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 YDT is the deep tooth factors which adjusts the calculated tooth root stress for 

the case of high contact ratio gears with 2 ≤ 𝜀 ≤ 2.5. 

Description and calculation methods for other geometric factors can be found in ISO 

6336-3 (2006) while general influence factors are described in ISO 6336-1 (2006).  

𝑆𝐻𝑚𝑖𝑛 and 𝑆𝐹𝑚𝑖𝑛 are the minimum safety factors that have to be considered for the 

design and follow considerations based on the risk analysis by taking into consideration 

the consequences caused by a possible failure. 

The factors in the ISO standard can be calculated by three methods A, B or C. In method 

A, the factors are derived from full-scale testing. This is clearly the least used method 

because of the amount of resources needed to perform the tests. Method B is based on 

analytical calculations and allows deriving factors with reasonable accuracy for most 

gear geometries. Method C is similar to Method B but involves some simplifications and 

approximations for the evaluations of the relevant factors.  

For the purpose of this study, KISSsoft has been set up to perform calculations according 

to Method B. Factors of general influence are set equal to 1. The Nominal values of 

analytical contact and bending stress are compared to the numerical results, as the FEA 

analysis tend to simulate the system in its integrity without taking into account 

adjustment coefficients and safety factors. 

 

 5.4 FEA methodology and analysis settings 

The main goal of modelling a spur gear pair by means of the Finite Element Method is 

the evaluation of contact and bending stresses, the principal causes of failure in gears 

according to ISO 10825 (1995). The simulation of a mating gear pair is a hard task to 

solve with general purpose FEA software such as ANSYS due to the high level of non-

linearity of the system. Specific analysis settings are required in order to overcome the 

convergence difficulties and obtain accurate results from the analyses. 

Two gears in mesh are considered highly non-linear and the reasons are:  
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 geometrical nonlinearities given that the structure geometrical configuration 

changes continuously during the relative rotation, and experiences a large global 

deformation;  

 contact non-linearity due to the non-linear Hertzian contact deflection and the 

variation of the area of contact as function of the radii of curvature of the tooth 

profiles.  

An example of the non-linear response of a mating gear pair is shown in Figure 5.3 where 

the normalised tooth flank contact stress for the entire mesh cycle is plotted as a 

function of the applied torque. In this case a linear increase/decrease of the applied load 

does not result in a linear response of displacements and stresses.  

Geometrical nonlinearities are considered in ANSYS with the option “large deflection” 

that accounts for changes in the geometry during the course of the analysis.  

 

Figure 5.3 - Predicted normalised tooth flank Contact Stress for three Torque levels  

The model used for the following parametric study is a two-degree of freedom spur gear 

pair in which shafts and bearings are considered as rigid entities. Another simplification 

regards the condition of perfect mesh: all the possible inaccuracies derived from 

manufacturing and/or assembly processes are considered negligible in this study. 

Furthermore, for the following analysis, in order to justify the quasi-static assumption, 
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low speed rates have been used so that the inertial effect produced in the gear pair is 

modest and can therefore be ignored.  

5.4.1 Load Inertia 

To support the assumption made in this work that inertial forces and the associated 

dynamic effects are negligible in the relevant cases and that, for those cases a quasi-

static FEA approach can be appropriate to represent the time-varying stress distribution 

for a spur gear pair in low speed operating conditions, actual values of load inertia are 

calculated. 

Inertia is the property of an object to resist change in acceleration and for a rotational 

body represents the resistance to angular accelerations about a given axis. As stated by 

Roos et Al. (2004) the inertia of a spur gear can be reasonably approximated using the 

equations for a cylinder with the external diameter equal to the pitch diameter. The sum 

of the products of each element of mass in the body and the square of the element’s 

distance from the axis of rotation gives the wanted value of inertia as in equation 5.10. 

 
𝐼𝑖 =

1

2
𝑚𝑖𝑟𝑖

2 5.10 

For a gear system composed of a spur gear pair, the Moment of inertia of gear 1 (input) 

is calculated as follows: 

 
𝐼1 =

1

2
𝑚1𝑟1

2 5.11 

that, with a mass of 22.558 g and a pitch radius of 10 mm is equal to 1.128E-06 kg m2. 

Another parameter to take into account when a certain load is transmitted by means of 

a mechanism such as a gear train is the reflected inertia; this means reflecting the inertia 

of the driven component back to the input member. Mazurkiewicz (1995) states that for 

any transmission system, the load inertia reflected to the motor is a squared function of 

the speed ratio which, in this case, gives: 

 

𝐼𝑟 =

1
2𝑚2𝑟2

2

𝑖2
 5.12 

The total inertia of the gear train to be considered is then: 

 

𝐼𝑡 = 𝐼1 + 𝐼𝑟 =
1

2
𝑚1𝑟1

2 +

1
2𝑚2𝑟2

2

𝑖2
 5.13 
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and is equal to 2.2558E-06 kg m2.  

In order to determine the actual force of inertia acting against the input torque, the 

moment of inertia I has to be multiplied for the angular acceleration experienced by the 

gear body. By considering, as described in the previous paragraph, two time-steps of 

0.25 and 1 s within which a rotation of 9 and 36 ° is applied, the gear body accelerates 

in the first time step with a constant angular acceleration of 2.513 rad/s2 generating a 

load inertia of 0.00567 Nmm. In the second time step, the constant rotational velocity 

does give 0 inertia. The calculated load inertia results either 0 or a value five orders of 

magnitude lower than the applied torque (500 Nmm) which makes it negligible and 

supports the initial assumption made. 

5.4.2 Plane stress/strain 

The simulation of the gear models has been treated as a 2D analysis in order to reduce 

the requirement for high computational resources and time. This decision involves the 

approximation of the actual 3D stress condition at the area of contact, and in proximity 

of the tooth root, with a 2D model that can be either plane stress or strain. In two 

dimensional models one of the principal stresses is assumed to be zero, as given in 

Equation 5.7 where the stress state is perpendicular to the z axis. 

 {
𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0

𝛾𝑥𝑧 = 𝛾𝑦𝑧 = 0
 

5.7 

As a general rule, based on the elasticity theory, components with an axial dimension 

considerably smaller than the other two in-plane (x-y) loading and boundary conditions 

can be considered to be under a plane stress state (Richards, 2001) for the calculation 

of displacements and stresses. In the 2D study of gear models, Wang et Al. (2006) found 

the plane stress state to be more accurate for small thicknesses while plane strain and 

plane stress approximations were produced equivalent results when applied to 

geometries with thicker bodies. The thickness variation in their study spans from 5 to 

300 mm. Conrado et Al. (2007) confirmed the validity of the approximations by saying 

that the plane strain or plane stress model can be used without approximations only in 

the case of infinite, or infinitesimal, facewidth. Several examples of models based on the 

plane stress assumption are presented by some authors (Arafa et AL., 1999; Lewicki et 
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Al., 1997), whilst other authors present those based on plane strain theory (Kuang et Al., 

1992; Sirichai, 1997). Based on these previous considerations and given the gear 

facewidth of the models in this study being under 5 mm, the same as the one studied by 

Wang et Al. (2006), the plane stress approximation was considered the most 

appropriate. If the problem is well conditioned and the assumption made is appropriate, 

the distribution and magnitude of stress and strain are the same for both 3D and 2D 

plane stress analysis. 

5.4.3 Finite Element Mesh 

Nodal displacement is the primary unknown when a finite element solution is 

attempted. The finite element method uses the approximate solution for displacement 

to evaluate approximate values of stress and strain that may be considered as second 

order unknowns. Ideally the computed FEA displacement converges to the exact value 

as the size of the discretized elements tends to zero. If the value of those displacements 

calculated during the FEA analysis is either too high or too small compared to a range of 

reasonable values based on material, loading and constraints characteristics, then the 

solver experiences convergence difficulties. Lepi (1998) defines the convergence of 

displacement as: 

 
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =

𝑒2

𝑒1
= (

ℎ2

ℎ1
)
𝑝+1

 5.8 

where the convergence is defined as the ratio between errors e1 and e2 associated with 

two solutions, where h1 and h2 are the largest element size in each model and p is the 

order of the interpolation function. Similarly, strain or stress convergences are defined 

as: 

 
ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =

𝑒2

𝑒1
= (

ℎ2

ℎ1
)
𝑝+1−𝑟

 5.9 

where the extra term r takes into account the higher order of the unknown (Wang, 

2003). It can be noticed that stress does not converge as quickly as the displacement for 

a given degree of interpolation; this translates into practical applications by considering 

that coarser mesh might be sufficient for the analysis of displacements while more 

refined mesh would be required for accurate stress analysis (Lepi, 1998).  
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5.4.3.1 Mesh settings for gear performance analysis 

The use of an adequate finite element mesh is crucial for the quality of numerical results. 

An adequate mesh consists of an appropriate discretization of the model as already 

described, coupled with the use of proper elements. For the study of 2D solid elastic 

models, also for the case of non-linear analyses, quadrilateral elements are the most 

appropriate, especially for the case of complex geometries as they are able to adapt 

closely to the curved profiles and represent the model in its entirety. The rate of 

adaptation to the underlying surface increases with the order of the elements such that 

quadratic elements follow the geometry better than similarly sized linear elements 

(ANSYS®, 2016; Lepi, 1998).  

In this study, the finite element model of the gear pair is created using PLANE183 

elements shown in Figure 5.4. They are quadratic elements defined by 8 nodes having 

two DoF at each node: translations in the nodal X and Y directions (ANSYS®, 2016). 

 

Figure 5.4 – PLANE 183 element (ANSYS®, 2016).  

In order to model the contact regions with sufficient accuracy, as the location of the 

contact point changes while gears rotate, the entire tooth flank surface requires a 

refined mesh. The other area necessitating a finer mesh is the one near the root fillet of 

the tooth that is carrying the load. For the remaining part of the gear, which includes 

the area around the gear hub and the teeth far away from the contacting area, a minor 

refined mesh is required.  By following the mesh convergence analysis outcomes, for all 

the analysis in the following parametric study, the element side length of 0.001 mm was 

used to discretize the area of contact and the root fillet of interest coupled with a coarser 

mesh (0.01 mm) for the neighbouring area. A coarser mesh, with an element side length 
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of 0.1 mm was used for the gear hub and teeth away from the contacting area. The 

resulting mesh is illustrated in Figure 5.5 and consists of a 171,330 quadrilateral 

elements. A detailed diagram of the area marked as “D”, which is the highly refined 

mesh distributed along the tooth flank and root fillet of the contacting teeth, is shown 

in Figure 5.6. 

 
Figure 5.5 – 2D model of the reference spur gear pair after element discretization and with 

applied boundary conditions. 

 

 

Figure 5.6 – Detailed view of the refined mesh area around D.  

5.4.3.2 Mesh convergence study 

A mesh convergence study has been carried out with respect to flank contact stress, 

root bending stress and total displacement in order to find an acceptable compromise 

between computational cost and time, and accuracy of results for a gear pair with 

standard proportions. It involves a number of 2D FEM calculations of a pair of mating 

gears with characteristics listed in Table 5.2. 

D 

D 
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Table 5.2 –FEA model’s Gear parameters for driving and driven gears including material properties 

Parameter Driving  Driven  

Number of teeth N 20 20 

Module m [mm] 1 1 

Facewidth L [mm] 5 5 

Pressure angle α [°] 20 20 

Profile shift coeff. x 0 0 

Addendum factor ha 1 1 

Dedendum factor hf 1.25 1.25 

Young’s modulus E [MPa] 2x105 2x105 

Poisson ratio ν 0.3 0.3 

density ρ [kg/m3] 7850 7850 

mass [kg] 0.0225 0.0225 

 

The gear model is positioned such that the contact occurs at the highest point of contact 

for a single tooth pair. The gear wheel is constrained at the inner hub while the pinion 

is free to rotate around its own axis (constraints B and C in Figure 5.5). A moment of 500 

Nmm (C in Figure 5.5) is applied to the pinion inner hub.  

Two critical stresses were calculated: Maximum Von Mises contact stress (σMXc) at the 

area of contact, and Maximum Von Mises bending stress (σMXb) at the root fillet of the 

driven gear. Total displacement (Utot) of the tooth in contact has been evaluated for the 

point at the centre of tooth top land as shown in Figure 5.7.  

 

Figure 5.7 – Plot of Von Mises stress distribution for a single tooth pair in contact at the pitch 

circle. The area of maximum bending stress occurring at the tooth root is 

indicated by σMXb while the area of maximum contact stress occurring on the 

tooth flank is indicated by σMXc. Utot indicates the node where the total 

displacement is measured. 

σMXc 

σMXb 

Utot 
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Table 5.3 reports the results for a number of mesh densities from a coarse mesh model 

with 51,966 nodes to the final model with a highly refined mesh of 877,232 nodes. The 

controlled variable was the element side length in proximity to the area of contact and 

root fillet, as shown in Figure 5.6 and reported in Table 5.3. 

 

Table 5.3: FEA calculation results for the mesh convergence study 

Element side 

length [mm] 

Node no. (σMXc) [MPa] (σMXb) [MPa] Utot [mmx10-4] 

0.0001 877232 429.3744384 38.916 8.158 

0.00025 450000 429.0316049 38.903 8.1582 

0.0005 299054 429.5017765 39.818 8.1584 

0.00075 213306 429.8935862 38.917 8.1583 

0.001 171330 428.93 38.918 8.1584 

0.002 115000 426.0930323 38.9 8.158 

0.003 85000 424.1339839 38.903 8.1579 

0.005 72641 417.786667 38.903 8.1576 

0.0075 65402 410.263921 38.906 8.1583 

0.01 61547 394.3172668 38.887 8.1589 

0.025 54792 332.5190843 38.752 8.1564 

0.03 54127 300.1262186 38.509 8.1485 

0.0375 53430 301.477962 38.606 8.159 

0.04 53373 262.2871983 38.43 8.1533 

0.05 53459 191.477393 38.606 8.1999 

0.075 52348 107.7378681 37.291 8.0985 

0.1 51966 88.15130195 39.451 8.3245 

 

The number of nodes demonstrates an exponential increase, as shown in Figure 5.8, as 

function of the element side length. By considering the computing time being directly 

dependent on the number of nodes/elements, an exponential increase is expected with 

a reduced element side length. 
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Figure 5.8 – Nodes number variation as function of element side length.  

Figure 5.9 clearly shows that for an element side length just over 0.025 mm, 

corresponding to a model with 450000 nodes, the total displacement Utot converges to 

a value of ≈ 8.15X10-4 mm. For the same mesh density, also the tooth root bending stress 

shows convergence to a value of ≈38.9 MPa (Figure 5.10). On the other hand, the stress 

at the contact point does not appear to have converged for the same mesh density. 

Figure 5.11 shows the asymptotic trend followed by σMXc that stabilises to a value of ≈ 

429 MPa for an element side length of 0.001 mm.  

 

Figure 5.9 – Tooth tip total deformation as a function of element side length.  
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Figure 5.10 – Von Mises bending stress at the tooth root as a function of element side length. 

 

 
Figure 5.11 – Von Mises flank contact stress as a function of element side length. 
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the major cause of solution non-convergence. The point of contact (which in reality 

becomes an area if the elasticity of the material is considered) continuously moves along 

the mesh area with a mixed pure rolling and sliding motion condition. Moreover, it 

transfers from the current mating tooth pair to the next in the cycle. For these complex 

contact conditions, appropriate contact element formulations are necessary in order to 

achieve the most accurate solution possible. 

5.4.4.1 Contact settings for gear performance analysis 

Finite Element Analysis simulates the condition of contact by means of special elements 

placed in between contacting components. Contact modelling starts with the definition 

of parts in contact. For the case of 2D gear analysis, the tooth flank surface is replaced 

by an edge to edge contact. 5 edges for each gear corresponding to the tooth flanks that 

would experience contact during the mesh cycle across the 36° of rotation of the wheels 

where selected. 

After the contact surfaces are created, the next step is to define the functions to 

determine their reciprocal interactions. First in order of selection is the definition of 

contact type. For gears, the type of contact closest to reality is the one defined as 

frictional. With this setting, the two contacting geometries can carry shear stresses up 

to a certain magnitude across their interface before they start sliding relative to each 

other. The equivalent shear stress at which sliding begins is a fraction of the contact 

pressure. Once the shear stress is exceeded, the two geometries will slide relative to 

each other (ANSYS®, 2016). Based on this consideration, the contact regions between 

pinion and gear were defined as frictional, with a null coefficient of friction. The ANSYS 

contact elements that correspond to this setting are CONTA172 and TARGHE169. These 

are then generated over the underlying mesh already created on the gear surfaces. 

Contact and target element formulation define the characteristics of the contacting 

surfaces such that only the contact surface can penetrate the target surface between 

nodes as the surfaces come into contact. ANSYS (2016), in the section of its manual 

dedicated to contact mechanics, gives guidelines on how to define contacting surfaces 

in terms of either contact or target. The guidelines are based on the assumption that a 

difference in terms of material, refinement and/or order of the mesh, geometry and size 

of the components exists. Once in this case no differences exist between the contacting 
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surfaces, the pinion tooth flank was defined as contact and the gear tooth flank as 

target, based on the consideration that force is transferred from the pinion to the gear. 

To avoid mutual penetration between contact and target elements the “symmetric 

behaviour” option was selected. As part of the advanced contact options, the detection 

method played a crucial role in the quality of the obtained results. To explain the effect 

of this detection method an example is presented.  

Figure 5.12 shows the contact stress distribution in the area around the lowest point of 

single tooth contact for a 28° pressure angle gear pair configuration. It can be noticed 

that results are highly affected by the contact detection method used, and depending 

on the formulation chosen, the degree of instability increases or decreases. The 

influences of mesh density and number of substeps have also been investigated for the 

“program controlled” option. Between all the possible detection methods available in 

ANSYS, the most appropriate result for the Contact stress distribution was found with 

the “Nodal-projected Normal from Contact” option with an element side length of 

0.001mm (defined by the mesh convergence study), and 360 substeps as shown in 

Figure 5.12. In fact, in the region of single tooth pair in contact, between HPSTC and 

LPSTC, there is no geometrical and/or load variations that can justify a non-constant 

stress distribution which does not justify the random variation of the evaluated stress 

distribution in such area of the mesh cycle. Moreover, a value of Equivalent contact 

stress of 382 MPa for α=28° is in perfect agreement with the analytical result calculated 

by means of ISO 6336 B (2006). 
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Figure 5.12 – Effect of FEA contact detection method on the quality of contact stress results 

for a mating spur gear pair for N1,2=20, α=28°, x1,2=0. 
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stress free state, enhances the probability of convergence and hence success. 
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was preferred to have a better control of the load increments in order to achieve a 

resolution of 0.1 degrees of rotation. The loading time has been divided in two steps of 

0.25s and 1 s for a total time window of 1.25 s. The first step was used for system 

stabilization and to overcome initial convergence difficulties. The second step time 

window instead covers the entire cycle from engagement until disengagement of the 

tooth pair under investigation. For step 1 a number of load increments spanning from 

20 to 90 has been used depending on whether solution was converging or not. Step 2 

has a constant number of sub steps equal to 360 in order to achieve the 0.1° resolution 

over the 36° of gears rotation. In order to model the gear pair under the initial 

assumption of quasi-static behaviour, the Time Integration function is deactivated, so 

that inertial effects are not considered. 

5.4.6 Boundary conditions 

A constant rotational velocity is applied to the driven gear hub with a 45° rotation angle 

corresponding to 1.25 s in time. The angle is divided in 9° and 36° for the first and second 

load step respectively. The result is a constant rotational velocity of 6 rpm (0.628 rad/s) 

in a counter clockwise direction. The driving gear is loaded at the centre of the hub with 

a clockwise moment that ramps from 0 to 500 Nmm in 0.25 s, and is constant at 500 

Nmm for the second load step. Both driving and driven gears are supported at the centre 

hub by means of a remote displacement that allows rotation about the Z axis only, while 

fixing the other 5 DoF. A graphical representation of the boundary conditions applied is 

shown in Figure 5.10 where moment and rotation are displayed in red and yellow 

respectively.  

5.4.7 Validation of results 

The absence of an experimental test rig to test and validate numerical data from the 

modelling work done has led to find an alternative validation methodology results based 

on International Design Standards. ISO 6336 Method B, briefly described in the 5.3 

above, is currently the most used design and calculation method for gears and gear 

trains. Many studies have been published regarding the effectiveness of analytical 

calculations to determine stress state, load sharing ratio, dynamic effects and any aspect 

that has to be evaluated at the design stage of a gear transmission. Rating standards are 
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based on analytical calculations corrected by coefficients determined empirically by 

means of repeated testing campaigns. As consequence, accurate results are given for 

standardised geometries as they are highly tested and analysed, instead, for non-

standard geometries, the method is less accurate and results can only be considered 

estimations of the effective stress state. This aspect is clearly indicated in the ISO 6336 

Part 1 (2006) which suggests that users confirm their results by experience when 

operating pressure angles exceed 25° (McVittie, 1998). This statement confirms that 

when the geometry reaches a certain level of modification, the calculation method is 

inaccurate due to the inappropriate correction coefficients. Rating standards have 

reached a high level of precision in predicting the stress state of standard profiles as 

shown by La Bath et Al., (2004) and Lisle et Al., (2016) after comparing the generated 

stress state on a 20° pressure angle profile with experimental and Finite Element 

Method results. Both analytical and numerical method in this case were found in good 

agreement with the experiment outcomes. On this basis, it has been decided to validate 

the Finite element approach used with the standardised profile ISO 53 Profile B against 

the results of calculations in accordance with ISO 6336 B performed by means of the 

machine design software KISSsoft. Later in this paragraph, it will be seen that a perfect 

agreement between analytical and numerical methods is achieved for standard profiles, 

while, for non-standard geometries the gap increases with the amount of modification 

applied.  

 

5.5 Evaluation of Contact Stress for a spur gear pair 

During the meshing process, the forces shared between the two surfaces in contact 

modify the profile geometry due to the Hertzian elastic deformation experienced by the 

material (Wang, 2003). Locally limited to the theoretical point of contact, the surface 

profiles change their geometry, creating an area of contact on which the transmitting 

force is distributed, hence generating a pressure. The deformation modifies the tooth 

flank profile’s geometry modifying it from the perfect involute condition. In an ideal 

system, perfectly manufactured and assembled, without errors such as axis 

misalignment and centre distance variation and without taking into account the stress 

concentration occurring at the sharp edges, contact stress is uniformly distributed along 
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the tooth facewidth and varies in magnitude across the mesh cycle. The contact stress 

variation is visible in Figure 5.13 where the stress distribution field for three meshing 

positions, respectively at beginning of contact, highest point of single tooth contact and 

end of contact are shown.  

   

Figure 5.13 – Generated stress field for three meshing positions: beginning of contact, highest 

point of single contact, end of the mesh cycle. 

Two main reasons can be found to justify the continuous variation of contact stress; the 

two-step oscillation is accounted for by the variation in number of tooth pairs in contact 

within the mesh cycle as consequence of the gear rotation. This effect in Figure 5.14 is 

indicated by the sharp rise in contact stress at AI B and DIC corresponding to the 

beginning and end of the single tooth pair contact phase. The second reason is due to 

the continuous variation of the area of contact, Ac, as the contact point moves along the 

tooth flank. The effect corresponds to the variation of contact stress in the intervals AAI, 

BC, and DID in Figure 5.14. An explanation can be given by taking into consideration the 

pressure acting on the tooth flank for any contact position in the mesh cycle. Contact 

pressure and consequently stress is function of the instantaneous force locally applied 

and the instantaneous area of contact generated as consequence of the applied force. 

Since the force varies as function of the contact position as described by the load 

distribution, and the area of contact follows the non-linear localized contact deflection 

(Wang, 2003) the ratio F/Ac is not constant determining a non-constant stress state. 
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Figure 5.14 - Equivalent tooth flank Contact stress distribution during the entire mesh cycle 

for the reference spur gear pair. 

5.5.1 Load distribution 

The load distribution indicates the amount of load shared between two mating teeth 

at any position of the mesh cycle. Local surface deflection and global tooth deflection 

coupled with the mesh stiffness due to the variation of contacting tooth pairs, 

determine a continuous variation of transmitted load along the mesh cycle. Only for 

the phase when a single tooth pair is in contact the sharing load is constant and equal 

to the maximum value. The numerical result of contact force distribution among the 

mesh cycle for the reference gear pair loaded with a 500 Nmm torque is shown in 

Figure 5.15. 

 

Figure 5.15 – Effective load distribution for the entire mesh cycle calculated by means of FEA. 
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The effective load distribution is of main importance for the analytical calculation of the 

instantaneous area of contact, and to analytically evaluate the stress state at any 

positions of the mesh cycle different than the ones at the HPSTC diameter or at the pitch 

diameter prescribed by the rating standards. 

5.5.2 Influence of reference pressure angle α 

The variation of numerical contact stress is calculated by means of quasi-static FEM for 

a range 20°<α<32°. Figure 5.16 shows the time-varying contact stresses for all values  of 

α in the given range. This enables the overall stress reduction, given by an increase of 

pressure angle, to be visualised in comparison with that for the standard 20°. Each trend 

of the plotted numerical contact stresses assumes an almost concentric arc shape in the 

interval BC, where a single tooth pair is carrying the load. The equivalence in shape is 

not confirmed for the “legs” AB and CD of the contact stress variation. As visible in Figure 

5.16, for α=20°, the contact stress is decreasing in the approach phase and increasing 

during the recess. This trend is not found in any other case studied. For higher pressure 

angle geometries intervals AB and CD see an increasing contact stress and the gradient 

increases with the pressure angle. A similar decreasing/increasing trend for a 20° 

pressure angle gear pair was found by Olguner (2014). 

Figure 5.16 – Variation in equivalent contact stress for a complete mesh cycle 

for a range of 20° <α< 32°. 
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By collecting the maximum values of contact stresses given in Figure 5.16 for the nine 

geometrical configurations tested, the contact stress variation as function of pressure 

angle can be estimated.  

Figure 5.17 shows the variation of maximum values of equivalent contact stress for 

corresponding values of pressure angle. Numerical results are plotted against analytical 

result calculations following the standard ISO 6336 method B (2006). For both numerical 

and analytical results, contact stress decreases almost linearly with an increase in 

pressure angle from a maximum of 403 MPa for α=20°, to a minimum for α=32° of 

370.37 or 381.2 MPa if numerical or analytical results are considered. This linearity can 

be explained considering the size of the area of contact and its variation with pressure 

angle. Generally an increase in pressure angle determines a linear increase of the tooth 

profile’s radius of curvature (Maitra, 2012)and a consequent linear increase of the area 

of contact as shown in Figure 5.18. For the geometrical configurations tested, the 

increase in pressure angle from the standard 20° to 32° would increase the load carrying 

capacity of the tooth flank by 13% if numerical results are considered and 10.5% if based 

on analytical results. A similar percentage reduction was found by (Marimuthu, 2016) 

by increasing the pressure angle of the drive side of an asymmetric gear from 23° to 33°. 

It can be noticed in Figure 5.17 that numerical and analytical results are very close for 

α=20°, 25°, 28° while, for other values in the considered range, a gap of maximum 2.9% 

is shown for α=32°. Values calculated by means of ISO 6336-B are generally more 

conservative than the numerical ones.  

 
Figure 5.17 – Maximum values of Contact stresses for varying pressure angles (α) compared 

to nominal contact stress calculated using ISO 6336-B. 
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5.5.3 Area of contact  

In contact mechanics contact stresses are usually estimated through the use of Hertzian 

theory. The most relevant standards in the field: ISO 6336-2 (2006) and ANSI/AGMA 

2101/D04 (2016)  apply the Hertz theory to gears with the addition of correction factors 

determined empirically. Involute tooth flanks are approximated as two cylinders pressed 

against each other, with the radii of the two cylinders simulating the two involutes at 

the instantaneous point of contact. During the meshing process, the forces shared 

between the two surfaces modify the profile geometry due to elastic deformation of the 

material. Locally, around the theoretical point of contact, the surface profiles change 

their geometry creating an area over which the applied load is distributed. The area has 

a rectangular shape with length equal to the gear facewidth (L) and width (b) that can 

be calculated according to the elastic Hertz theory with the following Equation (Maitra, 

2012):  

 

𝒃 = √
8F [

1 − v1
2

E1
+

1 − v2
2

E2
]

πL (
1
R1

+
1
R2

)
 

 

5.14 

The size of the area of contact in Equation 5.10 is function of material and radius of 

curvature of the contacting surfaces for a constant value of facewidth. In Figure 5.18 the 

instantaneous radii of curvature at the pitch point are plotted against pressure angle, as 

well as the area of contact at the pitch point. 

 

Figure 5.18 – Effect of pressure angle (α) on the area of contact (Ac) and instantaneous radius 

of curvature (R) at the pitch diameter. 
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A further analysis of the area of contact has been carried out in order to investigate its 

local variation as function of the contact point position on the tooth flank. Also for this 

case the FEA analysis result was compared to the analytical method based on the Hertz 

theory and calculated accordingly to Equation 5.10. The time varying area of contact was 

analytically determined by considering the instantaneous radii of curvature as function 

of the relative position of the two mating profiles and the instantaneous transmitted 

force numerically determined in the load distribution analysis as shown in Figure 5.15. 

The results plotted in Figure 5.19 show the time varying contact area for both analytical 

and numerical methods  

 

Figure 5.19 – Time varying instantaneous area of contact for a complete mesh cycle calculated 

by means of numerical and analytical procedures for the reference gear pair. 
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combination of modified profiles listed in Table 5.1 is plotted in Figure 5.20. FEM results 

show a variation of equivalent contact stress when a single pair of teeth is in contact. 

Within the segment BC, contact stress shows a different behaviour, depending on 

whether the modification is positive, null or negative. For positively corrected profiles 

the stress state is lower because of the overall increase of operating pressure angles 

(Miler et Al., 2017). Moreover, a further reduction is visible when the point of contact 

moves towards point C. The opposite happens for negatively corrected profiles, for 

which a higher stress state is followed by a further increase when the point of contact 

moves from B to C. A similar variation was not shown for the case of two standard 

profiles in mesh for which the generated stress in the 𝐵𝐶̅̅ ̅̅  time interval shows a slight 

concavity, with the two extremes at the same stress value. The cause can be explained 

by taking into consideration the size of the instantaneous area of contact during the 

time interval between the HPSTC and the LPSTC (Gurumani et Al., 2011).  

 

Figure 5.20 – Time varying Contact stress for a complete mesh cycle for different profile shift 

coefficients (-0.2<x<0.5). 
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to the maximum area of contact and then has a slight decrease as C lies on the 

descending part of the curve BC. For the case without modifications, points B and C are 

placed symmetrically relative to the highest point of the curve BC. The small variation 

between the extreme points and the maximum explains the slight concave trend shown 

by the stress state for x=0. For the negatively corrected profile, point B is placed just 

before the highest point while point C lies on the descending part of the curve. In this 

case the trend followed by the contact stress between HPSTC and LPSTC is descending 

at the beginning and then increases towards C. while the point of contact is moving 

towards LPSTC. Also in this case, the area of contact and generated contact stress show 

the same trend.  

 

Figure 5.21 – Instantaneous area of contact as a function of time (for one 

complete mesh cycle), highlighting the region where a single tooth pair is in 

contact for x=-0.2, x=0 and x=0.5. 
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reduction in contact stress (Olguner et Al., 2014). A comparison between the standard 

profile with x=0 and the two extremes considered leads to an increase of contact stress 

of 3%, resulting from both analytical and numerical calculations, when the negative 

modification (x=-0.2) is applied. On the other side, the positive profile shift x=+0.5 

generates a contact stress reduction of 7.5% calculated by means of FEA and 5.8% if 

numerical results are considered. 

 
Figure 5.22 – Maximum values of Contact stress versus profile shift coefficient (x) compared 

to nominal contact stress from ISO 6336-B. 
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Figure 5.23 – Time varying equivalent contact stress for a complete mesh cycle for different 

values of addendum coefficient, 0.5<ha<1.3. 

Increasing the driven gear outside diameter by increasing the addendum length 

increases the approach action: point A moves to the left as the addendum factor 

increases. In Figure 5.23 the recess stays constant as the last point of contact, 

corresponding to point D, for all the combinations tested, always occurs at time 1.01 s. 

Another consideration with regards to addendum factor is about its influence on contact 

ratio. Whilst point B is fixed, point C moves from the left to the right as the addendum 

factor decreases; this is the result of a reduction of the average number of teeth 

simultaneously in contact. Having two pairs of teeth in contact that share the load for 

longer time intervals reduces the exposure of the tooth profile to high stress states. In 

Figure 5.24 the contact time duration for a single tooth pair in contact are plotted, as 

well as the contact ratio as a function of the addendum factor ha. This plot shows how 

much the addendum length modifies the contact ratio, and consequently the time 

interval when a single pair of teeth is in contact, which is associated to a prolonged high 

stress level. 

 

200

250

300

350

400

450

500

0 0,25 0,5 0,75 1 1,25

Eq
u

iv
al

e
n

t 
co

n
ta

ct
 s

tr
e

ss
 [

M
P

a]
 

Time [s]

ha=0.5

ha=1

ha=1.3

ha=1.15

ha=0.8

A 

B 

C 

D 



154 
 

 

Figure 5.24 – Single tooth pair contact time interval and contact ratio (ε) as function of 

addendum factor (ha).  

 

5.6 Evaluation of root bending stress for a spur gear pair 

Root bending stress is the result of the transmitting force applied to a generic point 

along the tooth flank that generates a moment at the root where the tooth is attached 

to the gear rim. The time-varying equivalent bending stress generated at the tooth root 

for the entire mesh cycle is plotted in Figure 5.25. Root bending stress depends entirely 

on two factors: the applied force and the distance between the tooth root and the 

position where the force is applied. At point A of Figure 5.25 the contact on the driven 

gear profile occurs in correspondence of the tip point while another tooth pair is 

simultaneously in contact. In the interval AAI the Equivalent bending stress shows a 

constant trend that is the result of the product between the increasing shared force 

shown in Figure 5.15 and the progressive reduction of the bending arm as the force 

application point moves from the tip towards the root as shown in Figure 5.13. In the 

time interval BC only one pair of teeth is in contact and carries the entire load applied. 

The stress state is clearly higher in such an interval and decreases because the bending 

arm progressively decreases while the transmitted force is constant (Figure 5.15). The 

recess action DID sees the root bending stress decreasing due to the simultaneous 

reduction of the applied force and bending arm as the contact point is moving towards 

D, where the considered tooth pair disengages. 
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Figure 5.25 - Time varying Von Mises root fillet stress along the entire mesh cycle for the 

reference gear pair. 

5.6.1 Effect of pressure angle  

The quasi-static FE method was also used to evaluate the generated root bending stress 

for different pressure angles in the range 20°<α<32°. Plots of nodal time-varying 

Equivalent root fillet stress are shown in Figure 5.26. Also for the case of root bending 

stress, the sudden change in values corresponding to the beginning and end of the single 

tooth pair in contact is shown, and its duration (interval BC in Figure 5.26) varies as 

function of pressure angle. Increasing the pressure angle reduces the contact ratio that 

corresponds to an increase of the segment length, BC. From the full root bending stress 

spectrum, it can be noticed that an increase of α corresponds to a lower stress state in 

the interval where a single tooth pair are in contact but also to a longer exposure to a 

higher stress state when two pairs of teeth are in contact. 
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Figure 5.26 - Time varying Von Mises root fillet stress along the entire mesh cycle for 

20°<α<32°. 

Maximum values of bending stress at the root fillet are shown in Figure 5.28 as function 

of pressure angle. The trend indicates a minimum for bending stress corresponding to a 

28° pressure angle. This result can be explained by taking into consideration the tooth 

fillet radius and its necessary variation for values of pressure angle above 28°. By making 

a geometric consideration based on Figure 5.1 it can be seen that to an increase in 

pressure angle corresponds a thicker tooth base with a consequent reduced space 

between two adjacent teeth. Furthermore, for α=28° the base circle is close to the root 

circle reducing the space available for the fillet. The consequence is that the root fillet 

radius decreases as shown in Figure 5.27 and effects of stress concentration start to be 

evident. The standard root fillet radius for the standard ISO 53 Profile A fixed at 0.38 mm 

is maintained for values of α up to 28°. For α=30° ρf is reduced to 0.30 mm and the 

minimum is for α=32° where the root fillet radius is 0.22 mm. 
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Figure 5.27 - Comparison between tooth profiles and root fillet radii for 20°<α<32°. 

If a balance between the positive effect of a thicker tooth base and the negative effect 

of a small root fillet radius on the bending stress reduction can be made, the 28° 

pressure angle geometry would be the transition point. Up to α=28° the effect of a 

thicker tooth base overcomes the negative effect of a higher stress concentration at the 

root fillet. For bigger values of α, the stress concentration effect overcomes the 

beneficial effect given by a thicker tooth base, so the root bending stress inverts the 

trend and starts to increase. Numerical and analytical methods give different results for 

the considered analysis as shown in Figure 5.28. The concave trend followed by 

numerical values is not replicated by analytical results. ISO 6336 shows almost a linear 

decreasing trend going from the standard α=20° to α=32° with a small increase for values 

above 28° and gives more conservative results compared to FEA (Lisle et Al., 2017). The 

inaccuracy in the calculation of the stress state for high pressure angle gear pairs is 

confirmed in the ISO 6336 Part 1 which suggests that users confirm their results by 

experience when operating pressure angles exceed 25° (McVittie, 1998). For numerical 

results, the maximum gap of root bending stress occurs between α=20° and α=28° with 

a reduction of 28.2% for α=28°. If the same comparison is made by considering 

numerical calculations a reduction of 13.9% is seen. The maximum gap resulting from 

the numerical analysis occurs between α=20° and α=32° and is equal to 17%. 
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Figure 5.28 – Maximum values of root bending stress for varying pressure angles (α) compared 

to nominal root stress from ISO 6336-B. 

5.6.2 Effect of profile shift coefficient on root bending stress 

The parametric study has also been carried out with regards to the variation of profile 

shift coefficient on root bending stress. The resulting time-varying root bending stresses 

along the mesh cycle calculated by quasi-static FEM for five different profile shifts are 

shown in Figure 5.29. Time-varying stresses for the analysed cases see almost parallel 

trends that decrease as the profile shift increases. By referring to the standard geometry 

with x=0 it can be noticed that negative shifts are responsible for higher stress states 

while positive shifts give a stress reduction. Another aspect that can be noticed in Figure 

5.29 is the variation of approach and recess actions: Positive profile shifts on the driven 

gear bring a reduced approach and an extended recess, inversely negative values for x 

imply a longer approach. This determines the shift for all the time-varying plots towards 

the left where the first point of contact A occurs. Profile shift modifies contact ratio in 

the same way as for the case of pressure angle, the time interval BC of single tooth 

contact increases with positive profile shifts. The variation in length in this case is not 

symmetric as it was for the pressure angle in Figure 5.26. 
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Figure 5.29 - Root bending stress along the mesh cycle for varying profile shift coefficients -

0.2<x>0.5. 

Also for this case, the maximum values of bending stress were plotted against profile 

shift coefficient, as shown in Figure 5.30. The values show a linear decreasing trend in 

maximum bending stress as the profile shift coefficient increases. Given the similarities 

that profile shift has with pressure angle on the tooth geometry, limited to the range of 

profile shifts used, αw varies from 19.1° for x=-0.2, to 23.3° for x=0.5. As expected, the 

trend shown in Figure 5.30 is similar to the initial part of the one presented in Figure 

5.28. Analytical results also show a linear decreasing trend for the variation of x from 

negative to positive values being in close accordance with that found by means of FEA.  

 

Figure 5.30 - Effect of varying profile coefficient on maximum root bending stress. 
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5.6.3 Effect of dedendum factor hf on root bending stress 

The time varying maximum bending stress is also evaluated for the case of a variation in 

dedendum factor in the range 1<hf<1.5. Dedendum factor has an effect on the region of 

the tooth below the pitch diameter. An increase in hf results in an increased tooth length 

with negative effects on the maximum bending stress because of the increased moment 

applied to the tooth root. Plots of variation of nodal Von Mises stress along a complete 

mesh cycle are shown in Figure 5.31.  

 

Figure 5.31 -  Maximum root bending stress as function of dedendum coefficient for 1<hf<1.5. 

 

By comparing the entire spectrum of root bending stress for the five cases tested it can 

be seen that position of all the characteristic points in the cycle are fixed as consequence 

of the constant contact ratio. Variations in terms of stress magnitude are accentuated 

in the area of single tooth pair in contact and result smaller when two pairs are 

simultaneously in contact.  Also for this case, maximum values of equivalent root filet 

stress are plotted in Figure 5.32 and compared with analytical results. The outcome is a 

linear increasing trend as the dedendum coefficient increases for both calculation 

methods, although the numerical analysis results are slightly more conservative than 

the ones according to ISO 6336 (2006). 
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Figure 5.32 - Effect of dedendum factor on bending stress. 

5.6.4 Effect of addendum factor ha on root bending stress 

The addendum factor, ha, has an effect on tooth geometry in the region above the pitch 

diameter. Despite an increase in tooth length, in this case the maximum bending stress 

result from FEA does not show any variation in terms of peak value, as shown in Figure 

5.33. This effect can be addressed by the fact that the addendum factor, in this study, is 

varied only for one of the mating gears. To clarify this aspect, the addendum factor has 

also been varied for the pinion in order to achieve a long addendum profile for the two 

gears in mesh. A further increase was not possible due to the occurrence of tip root 

interference condition. Root fillet maximum bending stress results for this last case are 

also plotted in Figure 5.33 with a red line, and show a reduction of bending stress peak 

value of 9.5% compared to all the other cases in which the modification was applied only 

to the driven gear. The addendum factor also has an effect on the time interval during 

which the maximum range of values occur as explained in 5.8.4. As the average number 

of teeth in contact increases with the addendum coefficient, the time interval for a single 

pair of teeth in contact decreases, reducing prolonged high stress states acting on the 

gear. The contact ratio varied from ε=1.207 for ha=0.5, to ε=1.746 for ha 1.3. For the case 

in which the modification was applied to both pinion and gear, the contact ratio was 

ε=1.941.  
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Figure 5.33 - Equivalent root bending stress as function of addendum coefficient for 

0.5<ha<1.3. 

 

5.7 Conclusion 

This chapter focuses on the influence of relevant geometrical parameters on the contact 

and bending stresses that develop in loaded mating involute profile gears. Von Mises 

contact and bending stresses have been estimated by means of finite element analysis 

and compared to analytical values calculated in accordance to the ISO 6336 Standard. 

An established procedure to overcome convergence difficulties due to the high degree 

of non-linearity of the mating gear system is used. Moreover, the effect of contact 

detection methods, which contribute to the quality of the achievements, is investigated 

and the optimal setting proposed. A number of gear geometries characterised by 

pressure angles, profile shift coefficients, addendum and dedendum factors were 

studied with respect to the effective contact and bending stress distribution during a 

complete mesh cycle of a tooth pair.  Results have shown the role played by the 

geometrical parameters investigated in terms of highest stress magnitude and duration. 

The following observations can be made on the basis of this parametric study:  
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 For a given combination of geometrical parameters with fixed module and 

number of teeth, an increase in pressure angle and profile shift coefficient has 

resulted in an overall reduction of the stress state. 

 FEM results show a constant decreasing trend of contact stresses from 428.63 or 

427.3 MPa to 427.3 or 381.21 MPa for numerical and analytical results 

respectively when the pressure angle is increased in the range 20°<α<32°. This 

trend is comparable to the one generated with analytical results. While the 

numerical analysis shows a linear decreasing trend, the analytical one, following 

the ISO 6336 standard, displays a trend which is linear with a discontinuity for 

α=28° (382.21 MPa). 

 FEM result of the equivalent bending stress occurring at the tooth root fillet 

shows (in the range 20°<α<32°) a clear minimum of 30.40 MPa for a pressure 

angle of 28° which is 28.2% lower than 42.35 MPa corresponding to α=20° and 

6.9% lower than 32.66 MPa for α=32°. The minimum is not confirmed by 

analytical calculations according to ISO 6336 as they generate an almost linear 

trend from 40.45 MPa to 33.49 MPa. 

 Given that a positive profile shift coefficient leads to an increase in operating 

pressure angle, it also contributes to a reduction in contact stress and bending 

stress. In a range of profile shift between X=-0.2 mm and X=+0.5 mm the 

minimum value of contact and bending stress is found for X=+0.5 mm where the 

maximum value of operating pressure angle occurs. Numerical and analytical 

results are comparable for the case of profile shift variation for both contact and 

bending stress and show an overall decreasing trend with a minimum of 403.75 

or 396.22 MPa for contact and 32.37 or 28 MPa for bending stress if analytical or 

numerical analyses are considered. 

 Addendum factor has an effect on contact stress distribution by affecting the 

contact ratio. The addendum factor variation modifies the time interval when 

the tooth profile is subjected to a higher stress state. Moreover, by reducing the 

driven gear outside diameter, an increase of maximum contact stress in the area 

of single tooth pair contact is registered. Also for the case of bending stress, 
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varying the addendum coefficient affects the duration of the maximum bending 

stress interval but without having any influence on its magnitude. 

 Dedendum factor does not have any influence on the contact stress values. On 

the other hand, bending stress is directly affected by a dedendum factor 

variation and increases with hf. The linear trend shown by FEA results is 

confirmed by analytical calculations and shows its minimum of 35.49 MPa for 

hf=1 and the maximum value of 51.75 or 45.6 MPa if FEA or ISO 6336 are used 

for hf=1.5. 

 Numerical and analytical results are generally in good agreement for the 

calculation of Equivalent contact stress. Also with regards to Equivalent root 

bending stress a good agreement is seen for values of α<25° while for higher 

values of pressure angles the difference between results calculated from ISO 

6336-B is generally because these are more conservative than the ones 

calculated by means of FEA.  

 

The outcome of the parametric study gives clear guidance of how to enhance the 

load carrying capacity of a gear pair, through the variation of what are often 

considered as standard parameters. 
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6 High pressure angle planetary drives 
 

Epicyclic gear arrangements are generally known for their improved power to weight 

ratios and maximised power density compared to traditional parallel axis gearboxes. 

Epicyclic gearboxes are traditionally used in hand tools (Figure 6.1) as their main 

requirements are compactness and lightweight. These devices are typically used for 

tightening and loosening fastenings on wind turbine assemblies, oil and gas pipeline 

installations, and in general for applications in which an accurate and quick tightening 

of high number of fasteners is required. The gear system provides the power 

transmission from the user to the output device achieving a mechanical advantage when 

a high amount of torque is required, especially in limited workspaces. In those cases, 

epicyclic gear trains are the most viable solution due to their concentric axes physical 

disposition that provides weight reduction and compactness as consequence of an 

improved power density (Höhn et Al., 2013; Kapelevich et Al., 2011).  

 

Figure 6.1 - Single and multiple stages hand torque multipliers. Part number 16012 from the 

NORBAR® catalogue (Norbar Torque Tools ltd., 2018). 

Despite the large amount of literature available on epicyclic transmissions there is very 

little information about applications with low rotational speed and high levels of 

transmitted torque. For these specific conditions, the only standard entirely dedicated 

to Epicyclic gearboxes ANSI/AGMA 6123-B06 (2006), confirms the gap in knowledge, 

underlining the necessity of undertaking a detailed engineering study in order to satisfy 

the requirements for the design of epicyclic devices. In this part of the study, an attempt 
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to further increase the load carrying capacity of planetary transmissions has been 

attempted by applying the concept of “high pressure angle gears” previously 

determined.  

This chapter will cover critical design considerations for epicyclic gear arrangements. 

The design space for internal mating gears has been defined and further constraints 

typical of epicyclic configurations have been included. A case study was conducted in 

order to investigate the simultaneous influence of non-standard geometrical 

parameters on the distribution of stresses and load carrying capacity in planetary drives. 

 

6.1 Geometrical arrangement of epicyclic drives 

Basic Epicyclic gearing configurations consist of four different members. The simplest 

arrangement is composed by the planets engaged with the sun which is placed at the 

centre of the system and with the ring gear that includes all the mating components 

working as casing. The planets are held in their relative position by a carrier connected 

with the output shaft as Shown in Figure 6.2. Usually two or more planets are used to 

distribute evenly the transmitted load and balance the dynamic forces.  The term 

epicyclic derives from the mathematical function epicycloid, which is the shape of the 

curve traced by a generic point of the planet gear when it rolls around the sun while is 

carried by the planet carrier (ANSI/AGMA 6123-B06 2006). In (non-differential) Epicyclic 

systems, depending on which member if fixed, the resulting arrangement is designated 

by a different name. We refer to “solar” systems when the sun is fixed with the ring gear 

and planet carrier working differently as input and output. If the carrier is the fixed 

element, the arrangement is called “star”. It is interesting to notice that for this 

configuration the planet does not follow an epicycloid because it is prevented from 

rotating about the axis of the system, and is only free to rotate about its own axis. 

Nevertheless, it is common to consider star configurations as epicyclic gearings. The 

third possible configuration involves a fixed ring gear and is called “planetary”. In a 

planetary configuration, with the internal gear prevented from rotating, the planets 

orbit around the sun gear and provide the output torque through the carrier. Depending 

on the arrangement of the transmission, speed ratio and rotational direction change 
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accordingly. From now on, the investigation will focus on the planetary arrangement as 

it is the appropriate configuration for the use in hand tools products.  

The speed ratio output/input of a planetary gear train with the sun gear being the input 

and the planet carrier the output members is determined by Equation 6.1 where Ns and 

NR are number of teeth of sun and ring gear respectively (ANSI/AGMA 6123-B06 2006, 

Ferguson 1983, KHK 2015): 

 

𝑖 =

𝑁𝑠

𝑁𝑅

1 +
𝑁𝑠

𝑁𝑅

=
1

𝑁𝑅

𝑁𝑠
+ 1

 6.1 

Input and output members rotate in the same direction. 

 

 

Figure 6.2 - Frontal view and trimetric cross-sectional view of a 5:1 reduction ratio, four planet, 

single stage epicyclic speed reduction system. 

6.1.1 Meshing and assembly requirements 

Epicyclic gear systems, due to the simultaneous mesh between multiple components, 

can be considered higher order systems compared to classical parallel axis 

arrangements. The geometrical disposition of mating elements, that involves multiple 

planet gears simultaneously in mesh with the sun gear and enclosed within the ring gear, 

imposes further constraints over the ones typically addressed for parallel axis systems. 
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For an epicyclic configuration centre distance and number of planets have to be 

considered in order to allow a correct assembly and meshing conditions. Three main 

conditions have to be fulfilled in order to determine a relation between the number of 

teeth of sun, planet and ring gears (ANSI/AGMA 6123-B06 2006, KHK 2015).  

 First, the equality of centre distances between sun /planet and planet/ring must be 

guaranteed: awe= awi. This is a general condition and is valid for both standard and non-

standard geometries. 

 The second condition to satisfy is related to the even distribution of planets around the 

sun gear which is expressed by the following relation: 

 (𝑁𝑠 + 𝑁𝑟)

𝑛
= 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

 

 The last condition ensures that adjacent planets are not so close as to interfere with 

each other during assembling and working operations. The general rule, valid for both 

standard and non-standard geometries is expressed by the inequality: 

 𝑑𝑎𝑝 < 2𝑎𝑤 sin𝛽 6.2 

Where dap is the tip diameter of the planet gear and β is half of the angle between 

adjacent planets.  

The above mentioned constraints, impose limitations on the number of teeth that can 

be chosen and directly affect the maximum speed ratio that can be achieved. The 

ANSI/AGMA 6123-B06 standard reports the maximum values of gear ratio achievable 

with standard profiles for the different epicyclic arrangements. For the case of simple 

planetary configurations, the maximum achievable gear ratio is reported as being 12.5 

and can be achieve by using 3 planets only. As the number of planets increases the 

maximum overall ratio decreases up to a value of i=2.7 if 8 planets are used. As this is a 

guideline only valid for standard profiles, by means of non-standard corrected tooth 

geometries and non-standard centre distances it is possible to achieve different gear 

ratios and match the requirements of specific applications by varying these other 

parameters.  

In addition to the three basic constraints above, the geometrical limits of internal gears 

also have to be taken into consideration. 
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6.2 Internal gears geometry definition 

The most frequent applications of internal gears is in epicyclic gear systems. Due to the 

peculiar characteristic of internal mating gears, that determine a reduced centre 

distance compared to an equivalent external gear pair, a more compact design is 

achieved for any particular reduction ratio. Also the concave/convex contact interface 

gives a reduction in contact stress, and the wider tooth base is responsible for reduced 

bending stresses. The internal mesh also determines a longer line of action which results 

into an increased contact ratio with consequent distribution of the transmitted load over 

more teeth in simultaneous contact.  

In order to define the geometry of internal gears, the same considerations already 

applied in Chapter 3 with regards to external gears can be used after appropriate 

modifications that take into account the inverted profile of teeth. A sketch of two gears 

in internal mesh is shown in Figure 6.3. As can be seen, the basic geometric quantities 

are inverted compared to external mating gears: tip diameter is smaller than pitch and 

root diameter. For the case of internal gears pitch and base diameters are calculated in 

the same way as for external gears by Equations 3.26 and 3.37. The tip and root 

diameters are calculated as follows: 

 𝑑𝑎𝑖 = 𝑑 − 2(ℎ𝑎𝑖 − 𝑥𝑖)𝑚 6.3 

 
𝑑𝑓𝑖 = 𝑑 + 2(ℎ𝑓𝑖 + 𝑥𝑖)𝑚 6.4 

From this, addendum and dedendum lengths [mm] are derived and equal to: 

 𝐻𝑎𝑖=(ℎ𝑎𝑖−𝑥𝑖)𝑚 6.5 

 

𝐻𝑓𝑖=(ℎ𝑓𝑖+𝑥𝑖)𝑚
 6.6 
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Figure 6.3 – Graphical representation of internal mating gears with highlighted basic 

geometrical quantities of internal gears: dbi base diameter; dai tip diameter; di 

pitch diameter; dfi root diameter. 

Figure 6.3 also shows the distance between centres of the two gears in internal mesh. 

In this case the external gear is placed inside the internal gear so centre distance 𝑂𝑖𝑂𝑒
̅̅ ̅̅ ̅̅  is 

not the sum of the working pitch radii as for the case of mating external gears (Equation 

3.35) but rather the difference, as given in Equation 6.7 for a non-corrected gear pair. 

 
𝑎 =  𝑚

(𝑁𝑖 − 𝑁𝑒)

2
 6.7 

If a profile shift coefficient is applied, also in this case, the diameter of the pitch circles 

changes and becomes a working quantity to be calculated with Equations 3.33 and 3.34. 

Profile shift in internal gears is considered positive when the shift is applied in the 

opposite direction of the centre while the negative profile shifts are applied towards the 

gear centre. The choice of such reference systems helps in the calculations as it makes 

the shift direction consistent with the one used for external gears. For such a 

configuration, if the profile shift applied to the two mating gears is both positive and of 

the same quantity, then the modification will be balanced and no centre distance 

variation will occur. For the sake of clarity, KISSsoft applies profile shifts in the opposite 

directions compared to the ones defined here. If +x1≠+x2, then the working pitch radii 

require αw to be calculated. The iterative method for the determination of the working 

pressure angle from the involute function is the same as the one explained in 3.2.3 for 
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external mating gears. The involute function is adjusted for the case of internal mating 

gears as given in Equation 6.8  

 
𝑖𝑛𝑣𝛼𝑤𝑖 = 𝑚

(𝑥𝑖 − 𝑥𝑒) tan𝛼

(𝑁𝑖 − 𝑁𝑒)
2

+ 𝑖𝑛𝑣𝛼 6.8 

The working centre distance for unbalanced profile shifts applied to internal mating 

gears can now be calculated as follows: 

 𝑎𝑤 = 𝑎
cos 𝛼

cos 𝛼𝑤
= (𝑟𝑖 − 𝑟𝑒)

cos 𝛼

cos 𝛼𝑤
𝑚  

6.9 

6.2.1 Internal gearing geometrical and operational boundaries 

Manufacturing and operational boundaries can be defined also for the case of internal 

mating gears. The involved parameters do not differ from the ones defined for external 

gearing except for the fact that the “negative” of the tooth profile has to be taken into 

consideration. The existing relations between geometrical parameters and their mutual 

influence allow an area to be defined where a feasible combination of parameters 

determines the geometry of involute internal spur gear profiles. The relations that 

determine the boundaries of the feasible xi,e domain for internal gears are given as 

follows. 

6.2.1.1 Geometrical Interference 

The geometrical Interference defined in Section 3.3.3 with regards to external gears is 

replaced, in the case of internal mating gears, by three different types of interference 

namely: Involute, Trochoid and Trimming interference as shown in Figure 6.4.  

 Involute interference occurs between the addendum of the internal gear and the 

dedendum of external gear and is comparable to the condition of non-undercutting of 

external gears in Section 3.3.1. This type of interference is relevant when the number of 

teeth of the external gear is small. The limiting condition that expresses the interference 

of the involute is given in the Equation below: 

 𝑑𝑒 ≥ 𝑑𝑖 tan 𝛼𝑤 −𝑑𝑖 tan𝛼𝑎𝑖  6.10 
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Where αw is the working pressure angle and αai is the pressure angle at the tip 

diameter of the internal gear tooth, and is calculated as follows: 

 
𝛼𝑎1 = cos−1 (

𝑑𝑏𝑖

𝑑𝑎𝑖
) 6.11 

 Trochoid Interference occurs between the addendum of the external gear and the 

addendum of internal gear. This interfering condition tends to happen when the 

difference in the number of teeth between the two gears is small. The limiting condition 

is expressed by Equation 6.12: 

 
𝜃𝑎𝑖 ≤ 𝜃𝑎𝑒

𝑑𝑒

𝑑𝑖
𝑖𝑛𝑣𝛼𝑤 − 𝑖𝑛𝑣𝛼𝑎𝑖  6.12 

In which, angles θa,i refers to the sketch in Figure 6.4 for the part relative to the 

trochoid interference. 

 
𝜃𝑎𝑒 = cos−1 (

𝑟𝑎𝑖
2 − 𝑟𝑎𝑒

2 − 𝑎2

2𝑎𝑟𝑎𝑒
) + 𝑖𝑛𝑣𝛼𝑎𝑒 − 𝑖𝑛𝑣𝛼𝑤 6.13 

 
𝜃𝑎𝑖 = cos−1 (

𝑟𝑎𝑖
2 − 𝑟𝑎𝑒

2 + 𝑎2

2𝑎𝑟𝑎𝑖
) 6.14 

 Trimming Interference refers to the manufacturing process of internal gears by means 

of pinion cutter and also to the assembly process of the internal/external gear pair. 

When one of the two gears is moved in a radial relative motion with respect to the other, 

the addendum of the external gear might interfere with the addendum of the mating 

internal gear. The limiting condition for the trimming interference is expressed by: 

 
𝜃𝑎𝑒 + 𝑖𝑛𝑣𝛼𝑎𝑒 − 𝑖𝑛𝑣𝛼𝑤 ≥

𝑑𝑖

𝑑𝑒

(𝜃𝑎𝑖 + 𝑖𝑛𝑣𝛼𝑎𝑖 − 𝑖𝑛𝑣𝛼𝑤) 6.15 

Where θa,i related to the trimming interference condition shown in Figure 6.4 
are: 

 

𝜃𝑎𝑒 = sin−1

√

1 − (cos 𝛼𝑎𝑒/ cos 𝛼𝑎𝑖)2

1 − (
𝑑𝑒

𝑑𝑖
)
2  6.16 
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𝜃𝑎𝑖 = sin−1

√

1 − (cos𝛼𝑎𝑖/ cos 𝛼𝑎𝑒)2

(
𝑑𝑖

𝑑𝑒
)
2

− 1

 6.17 

The equations presented in this paragraph are derived from the following sources (KHK 

2015, Litvin 1989, Maitra 2012, Savage et al 1986). 

 

Figure 6.4 - Involute, Trochoid and trimming interference conditions occurring in internal 

mating gears. 

6.2.1.2 Top land thickness and root space between adjacent teeth 

The unwanted condition of a tooth top land that results in it being brittle and is a 

possible cause of early breakage due to reduced thickness also exists for internal gears. 

The literature suggests a range of minimum values for the coefficient of top land 

thickness of internal gears sai that spans from 0.2 to 0.4 depending on material, 

geometry and operational conditions (ANSI/AGMA 2101/D04, 2016; Kapelevich, 2013; 

Maitra, 2012). The thickness at the top land of internal gears can be found by 

geometrical considerations based on the parameters shown in Figure 6.5 (Tomori et Al., 

2016). Starting with the profile pressure angle at the tip circle of the internal gear αai, 

derived from the following relation between tip and base radii. 

 𝑟𝑎𝑖 cos 𝛼𝑎𝑖 = 𝑟𝑏𝑖 6.18 

 cos 𝛼𝑎𝑖 =
𝑟𝑖 cos 𝛼

𝑟𝑎𝑖
 6.19 

which yields: 
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𝛼𝑎𝑖 = cos−1 (

𝑁𝑖𝑚

𝑑𝑎𝑖

cos 𝛼) 
6.20 

The tooth thickness at the pitch circle: 

 𝑆𝑖 =
𝑚𝜋

2
− 2𝑥𝑚 tan𝛼 6.21 

is related to the tooth thickness at the tip circle of internal gears by means of the profile 

angle σi as follows: 

 
𝜎𝑖 =

𝑆𝑖

2𝑟𝑖
− 𝑖𝑛𝑣𝛼 =

𝑆𝑎𝑖

2𝑟𝑎𝑖
− 𝑖𝑛𝑣𝛼𝑎𝑖 

6.22 

By rearranging 6.22, the top land thickness Sai is determined in the equation below: 

 
𝑆𝑎𝑖 = 2𝑟𝑎𝑖 (

𝑆𝑖

2𝑟𝑖
+ 𝑖𝑛𝑣𝛼 − 𝑖𝑛𝑣𝛼𝑎𝑖) 6.23 

And by substituting Equations 6.18 and 6.20 into 6.23, the tooth thickness at the tip 

circle of internal gears is expressed by: 

 
𝑆𝑎𝑖 = 𝑑𝑎𝑖 {

𝜋

2𝑁𝑖
−

2𝑥𝑖

𝑁𝑖
tan𝛼 − 𝑖𝑛𝑣𝛼 + 𝑖𝑛𝑣 [cos−1 (

𝑁𝑖𝑚

𝑑𝑎𝑖

cos 𝛼)]} 6.24 
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Figure 6.5 –Schematic diagram for the calculation of the top land thickness  Sa3 in internal 

gears;. α is the profile angle at the pitch circle; αa2 is the profile angle at the tip 

circle. 

When the top land thickness of internal gears is plotted as a function of profile shift it 

follows a concave trend as shown in Figure 6.6. Differently from the case of external 

gears where a reduction in top land thickness was the result of an increase in pressure 

angle and/or profile shift coefficient, here, once the minimum value is derived and this 

results in values being above the imposed limit, then the profile shift can be changed 

without restrictions with respect to this limiting parameter. On the other hand, the 

pressure angle affects the top land thickness. The combined effect of simultaneous 

variations of α and x on sai is shown in Figure 6.6. It can be seen that for a given profile 

shift, as the pressure angle increases the top land thickness decreases linearly. This 

consideration suggests that the top land thickness of internal gears is a less strict 

limitation than the equivalent for external gears, and usually does not limit design 

choices unless very high values of pressure angle, α are used. 
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Figure 6.6 – Top Land Thickness of an internal gear, Sai, as function of profile shift coefficient, 

xi, for three pressure angles α (N=71; m=1). 

Tooth space at the root of internal gears Sfi is equivalent to the top land thickness 

calculated for external gears with Equation 3.51. The only modification required involves 

the change of the tip diameter da in 3.51 with the actual root diameter dfi of internal 

gears. Hence, the final Equation for the determination of Sfi is given as: 

 
𝑆𝑓𝑖 = 𝑑𝑓𝑖 {

𝜋

2𝑁𝑖
+

2𝑥𝑖

𝑁𝑖
tan𝛼 + 𝑖𝑛𝑣𝛼 − 𝑖𝑛𝑣 [cos−1 (

𝑁𝑖𝑚

𝑑𝑓𝑖
cos 𝛼)]} 6.25 

The space at the root of internal gears between two adjacent teeth is a parameter that 

has not been standardised so there is no information about the range of possible values. 

The only source found is in KISSsoft which suggests values for Sfi bigger than 0.2*m. A 

reduced space at the root may be the source of manufacturing problems and an area of 

stress concentrations due to the resulting pointed shape. 

6.2.1.3 Contact ratio in internal gears 

The contact ratio in internal gears is usually greater than the equivalent for external 

gears. Due to the geometrical configuration and the meshing process of internal mating 

gears, in which the external gear teeth are entirely covered by the internal gear teeth, 

the line of action is longer and in comparison more teeth are in simultaneous contact 

within a mesh cycle. An example can be considered by comparing the contact ratios of 

internal and external mating gears equivalent in geometry; if the values N1=16, N2=71, 
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α=20°, x1,2=0 are compared to Ne=16, Ni=71, α=20°, x1,2=0, the resulting contact ratio is 

for the external couple ε=1.65 while for the internal couple εi=1.88. 

The geometrical explanation of contact ratio for internal gears is based on Figure 6.7 

and differs from the one given in Equation 3.79, because of the position of the external 

gear that is placed inside the external one.  In this approach the contact ratio ε is defined 

by the ratio between the length of the line of action AD and the base pitch. 

 

Figure 6.7 – Geometrical description of path of contact AD for internal gears. 

In order to derive the length AD it is necessary to know the position of five fundamental 

points that lie on the line of contact highlighted in Figure 6.7. Point A is placed at the 

intersection between the line of contact and the tip circle of the external gear rae; point 

D lies on the line of contact at the intersection with the tip circle of the internal gear rai; 

T1 and T2 are the points where the line of contact is tangent to the base circle of external 

(rbe) and internal (rbi) gears respectively; P is the pitch point where the pitch circles of 

the mating gears are in mutual tangency. Once the position of the above-mentioned 

points is known, the segments AT1, T1T2 and T2D can be calculated accordingly to Figure 

6.7 as follows: 

 
𝐴𝑇1 = √𝑟𝑎𝑒

2 − 𝑟𝑏𝑒
2  6.26 
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𝐷𝑇2 = √𝑟𝑎𝑖

2 − 𝑟𝑏𝑖
2  6.27 

 𝑇1𝑇2 = (𝑟𝑖 − 𝑟𝑒) sin 𝛼𝑤 6.28 

Which yields: 

 𝐴𝐷 = 𝐴𝑇1 − (𝐷𝑇2 − 𝑇1𝑇2) 6.29 

Now, by considering the initial assumption also valid for external mating gears: 

 𝜀 =
𝐴𝐷

𝑝𝑏
 6.30 

And by substituting Equations 6.29 and 3.24 into 6.30 and rearranging it, yields the 

contact ratio for internal gears: 

 

𝜀𝑖 =
√𝑟𝑎𝑒

2 − 𝑟𝑏𝑒
2 − √𝑟𝑎𝑖

2 − 𝑟𝑏𝑖
2 + (𝑟𝑖 − 𝑟𝑒) sin 𝛼𝑤

𝜋𝑚 cos 𝑎
 

6.31 

Also for this case, if the path of contact 𝐴𝐷̅̅ ̅̅  is equal to the base pitch pb, the contact 

ratio would be 1.  

The contact Ratio for internal mating gears varies as a function of pressure angle and 

profile shift as shown in Figure 6.8. Similarly, for the case of external gears, an increase 

in α corresponds to a decrease in contact ratio. Profile shift also plays a role with regards 

to contact ratio and in particular, as can be seen in Figure 6.8, the application of a 

positive profile shift translates the curve ε-α towards lower values of ε; inversely, if 

negative shifts are used, higher values of contact ratio will be obtained. Also for this 

case, the theoretical minimum contact ratio that can be achieved is 1, but when 

manufacturing tolerances and assembly errors are taking into account then the actual 

minimum to consider is εi=1.2. 
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Figure 6.8 - Dependency of contact ratio for internal gears on pressure angle and profile 

shift. 

 

6.3 Case study 

The case study considered here is the design of the last stage of a multiple-stage 

planetary transmission gearbox produced by NORBAR®, for several hand power tools in 

their production range (Figure 6.9). Hand power tools demand compact gearboxes to 

meet safe handling requirements. A very compact transmission with high load carrying 

capacity is essential to reduce weight and volume, and improve power-to-weight ratio. 

For these applications, weight and physical compactness are the most effective 

characteristics to make the products attractive on the market. The design choices 

undertaken were aimed at reducing the stress on the components in order to evaluate 

the possibility of downsizing the existing design for the same amount of maximum 

torque transmitted. The size constraints listed in Table 6.1 were based on the original 

design of the power tool code n°18033-PT2000 produced by Norbar shown in Figure 6.9 

(Norbar Torque Tools ltd., 2018). 
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Figure 6.9 – Technical drawing of a power tool PT2000 designed by NORBAR® (Norbar Torque 

Tools ltd. 2018b). 

Table 6.1 – Design constraints of a planetary drive for power tools applications 

Torque ratio i 5.5±2%   

Input Speed vi [rpm] 13±5% 

Centre distance [mm] 22 

Number of planets  4 

Facewidth [mm] 15 

Ring gear OD [mm] 80 

 

6.3.1 Design process 

The following design process has been undertaken to model three epicyclic 

transmissions with a combination of standard and non-standard parameters. Once the 

design constraints and boundary conditions were defined, the design procedure was 

guided by the pressure angle with the aim to achieve a value of αw as close as possible 

to 28° at the sun/planet interface where the highest stress levels occur. The choice of 

such value is dictated by the outcomes of the performance analysis in Chapter 5 from 

which it is evident that 28° pressure angle gives the best response in terms of root 

bending stress which contributes to the reduction of tooth flank contact stress. This 



181 
 

choice is further justified by the slow rotational speeds involved. Since a high value of 

pressure angle reduces the contact ratio with a consequent reduction on the 

smoothness of the mesh, vibration and noise then normally become important design 

constraints. In this case, and for other applications in which low speed rates are involved, 

as the dynamic load can be considered negligible, vibration and consequent noise are 

not relevant so that the stress level dominates the design process (Kapelevich, 2016; 

Novikov et Al., 2008).  

The determination of the number of teeth for sun, planet and ring (internal gear) 

requires the fulfilment of multiple design constraints such as speed ratio, centre 

distance and outside diameter. In addition, the geometrical constraints imposed by 

planetary arrangements, and the geometrical constraints for external and internal gears 

have to be simultaneously considered.  

Since transmission ratio, centre distance and overall transmission diameter were pre 

imposed design constraints, a combination of number of teeth that satisfied those 

constraints was determined as follow. Starting from the sun gear, the number of teeth 

has been chosen in consideration of the condition of undercutting. As shown in Figure 

3.19, for a module m=1 mm, the minimum number of teeth that do not experience 

undercutting is 17. However, Ns=16 is a valid candidate as the amount of undercutting 

is negligible, only 0.064 mm, while it helps minimising the gear diameter. Once the 

number of teeth for the sun gear has been determined, the planet gear is a direct 

consequence dictated by the centre distance. In order to achieve the imposed condition 

a=22 mm, Np=28 is the only option possible if no profile shifts are applied. The third 

mating component, the internal gear, has to fulfil the condition imposed by the centre 

distance as it is concentric with the sun and the condition imposed by the speed ratio 

listed in in Table 6.1. The number NR that fulfils the two conditions is NR=72. 

Nevertheless, NR=72 does not fulfil the condition of trochoid interference expressed by 

Equations 6.12, 6.13, 6.14 in Section 6.2.1.1, due to an excessive thickness of the internal 

gear teeth. To overcome the interference condition, it has been decided to reduce the 

number of teeth to NR=71 and apply a positive profile shift that in order to both reduce 

the tooth thickness and increase the working centre distance to aw=22 mm. The module 

chosen was 1 mm. The design process for all the remaining parameters follows the 

method based on the blocking contour construction covered in Chapter 4 for the 
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external gears and previously in this chapter with regards to internal mating gears. 

Considering all the parameters described above and their mutual interaction, three 

different gear sets have been generated fulfilling the constraints imposed by planetary 

gear systems. Two gear sets had a resulting 28° working pressure angle at the sun/planet 

interface and above 30° at the planet/ring interface. This result is partially in compliance 

with the AGMA 6123-B06 (2006) standard in which it is stated that “best strength to 

weight ratio is achieved with high operating pressure angles at the sun to planet mesh 

and low operating pressure angles at the planet to ring mesh”. A third gear set with a 

standard 20°/23.3° working pressure angle was also modelled for comparison purposes.  

The design process described above can be schematised through a flow chart as shown 

in Figure 6.10. The diagram starts with a block containing basic design constraints 

addressed to the transmission system such as gearing ratio, centre distance and external 

diameter. The second step regards the selection of module and reference pressure angle 

which plays a crucial role on the gear properties and mechanical characteristics of the 

drive. The number of teeth of the sun gear are defined on the basis of manufacturing 

and geometrical constraints typical of external spur gears such as undercutting and 

pointed tooth tip. If one of the constraints is violated, given the value for module and 

pressure angle chosen in the previous step, there is the need to step back and adjust the 

pressure angle accordingly. Otherwise, when the design parameters are in a feasible 

range, the design routine can proceed to the next phase. With regard to the number of 

teeth of the planet gears, both limitations imposed by geometrical and manufacturing 

parameters and by the pre-imposed working centre distance aw have to be considered. 

As for the previous step, if undercutting and/or pointed tooth tips happen, a step back 

to modify the reference pressure angle is necessary. Moreover, given that centre 

distance is function of module, number of teeth and profile shift, if a deviation from the 

pre-determined aw is obtained then a modification of module and/or profile shift of sun 

and planet is required. The last design step is about the determination of the number of 

teeth that constitute the ring gear. The value of number of teeth in this case is function 

of two parameters already defined: gearing ratio (Eq. 6.1) and centre distance given the 

existing condition for epicyclic arrangements awe≡ awi. Internal gears are subjected 

mainly to operational and geometrical constraints such as conditions of interference and 
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sharp tooth fillet edges. In this case, given the impossibility to modify the profile shift 

fixed by the centre distance limitation, if interference or pointed tooth roots occur, a 

modification of pressure angle is necessary to make the gears working and mesh 

properly. By following the steps listed above, it is possible to design an epicyclic gear 

system involving either standard or non-standard gears. 

 

Figure 6.10 - Flow chart of the design process of epicyclic gear transmissions step by step in a 

logical order. 
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6.3.2 Geometry-based external/internal contour plots 

Based on the equations given in the previous paragraphs, a multi-parametric design 

space was generated in order to study the geometrical properties of a gear train that 

includes an internal/external mesh as for the planetary configuration. In this paragraph, 

contour plots for the geometries studied are presented both for the external sun/planet 

and the internal planet/ring meshes. The design process, based on the concept 

explained in Chapter 4, is applied here in order to determine the necessary combination 

of geometrical parameters and fulfil the condition imposed by manufacturing and 

operational boundaries with the considerations of the extra assembly constraints 

imposed by the physical arrangement of epicyclic gears. The design process for epicyclic 

transmissions by means of the blocking contour technique has been attempted for the 

first time here. The literature survey in the field has not shown any study previously 

carried out with such a technique for the determination of internal gear parameters and 

even more for the geometrical definition of gears for epicyclic systems. The closest 

research work available is the one published by Goldfarb et Al. (2005) in which the 

authors explain the generation of blocking contours for external mating gears and 

attempt to further apply the contour blocking technique to internal mating gears. 

To follow, the plots for the three cases studied are shown in the range of Figures 6.11 – 

6.19 and a detailed analysis of the considerations involved is given. Starting with the 

standard 20° pressure angle system used as baseline for comparison, the first 

geometrical analysis considers planet and sun in external mesh. The plot in Figure 6.11, 

shows the area of feasible combination of geometrical parameters in the x1x2 domain 

where 1 and 2 refer to sun and planet respectively. The enclosed area, highlighted in 

grey, exists only in the second and third quarters of the diagram and is confined by the 

minimum contact ratio, minimum top land thickness for the sun, the limiting condition 

for undercutting for both sun and planet and corner interference occurring at the sun 

gear root fillet. The condition for x1=0 is not available due to the number of teeth N1=16 

being below the minimum of 17 for α=20°. Given the imposed constraint centre distance 

a=22 mm, the possible combinations x1x2 lie on the inclined line for constant a=22 mm 

passing through the centre and being coincident with the line representing the constant 

pressure angle α=20°. The x1=0.065 and x2=-0.065 combination chosen had to be 
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reciprocal in order to maintain the imposed centre distance and the desired condition 

of a working pressure angle αw=20°. The value of x1 was chosen according to the 

boundary geometrical limit in order to avoid the occurrence of undercutting while the 

negative x applied to the planet allows the profile shift to be balanced while maintaining 

a constant centre distance equal to 22 mm.  

 

Figure 6.11 – Feasible domain for involute spur gears in external mesh with α=20°, N1=16, 

N2=28, m=1, ha1,2=1, hf1,2=1.25. 

Once the x1,2 combination is defined and fulfil all the imposed restrictions the plot in 

Figure 6.12 representing the planet/ring meshing conditions can be considered. In this 

case the area of feasible xe,i combinations is bounded by the limit of undercutting and 

minimum top land thickness of the planet gear, with corner interference occurring at 

the dedendum of the planet, trochoid interference and minimum contact ratio. As the 

profile shift for the planet is known from the considerations above, it can be used with 

the plot for xe= -0.065, which intersects the line of constant aw=22 mm, allowing the 

amount of profile shift to be applied to the internal gear in order to maintain the desired 

centre distance; in this case xi=0.4757. For the determined parameters it can be seen 

that, due to the unbalanced profile shift conditions and an overall positive value 

xe+xi=0.5407, the resulting working pressure angle is higher than the reference α and is 
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equal to 23.31°, as indicated by the red line. Figure 6.12 also shows the line indicating 

the minimum top land thickness of the internal gear. In fact, the function sai follows a 

concave trend presenting a minimum for a particular value of xi as shown in Figure 6.6. 

This condition ensures that top land thickness for all the possible combinations xe,i   

within the feasible area would not be smaller than 0.841 which is above the suggested 

range of limit values. 

 

Figure 6.12 – Feasible domain for involute spur gears in internal mesh with α=20°, Ne=28, 

Ni=71, m=1, hae,i=1, hfe,i=1.25. 

The same design method has been followed for the geometry definition of the 28° 

pressure angle system, as shown in Figure 6.13. This gives a considerably smaller area 

when compared with the one for the case of α=20° previously considered. The reason is 

mainly because of the reduction in tooth top land thicknesses of the two mating gears 

because of of the increased pressure angle. Also the contact ratio is reduced and so the 

curve for constant ε=1.2 is closer to the centre. The increased limit for the undercutting 

of the two gears determines a shift of the feasible area towards negative values of x1,2, 

resulting in the feasible are being located almost at the centre of the plot. For this case, 

given that the line indicating the constant centre distance a=22 mm crosses the grey 

area, and passes through the plot centre x1,2=0, then no profile shifts were used.  
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Figure 6.13 – Feasible domain for a high pressure angle involute spur gear pair in external 

mesh with α=28°, N1=16, N2=28, m=1, ha1,2=1, hf1,2=1.25. 

The design continues with the geometric definition of the internal ring gear by means of 

the plot in Figure 6.13. Also for this case the feasible area is shifted towards the third 

quarter and includes the condition for xe=0 that corresponds to the one for x2=0 

previously determined. The area is still limited by minimum contact ratio, minimum top 

land thickness for the planet, corner interference and by a new introduced coefficient 

sfi that describes the distance between two adjacent flanks at the root of internal gears. 

An increase in pressure angle, as known, increases the tooth thickness at the tooth root 

and consequently reduces the width of the space between two adjacent teeth. If the 

space is too small, manufacturing problems arise and stress concentration becomes 

more evident. The limit imposed for sfi is 0.2 (KISSsoft, 2017). By entering the plot with 

xe=0, the corresponding xi is found at the intersection between xe=0 and aw=22 mm. This 

combination returns a value of xi=0.5196 which corresponds to a working pressure angle 

αw=30.36°. 
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Figure 6.14 – Feasible domain for high pressure angle involute spur gear pair in internal mesh 

with α=28°, Ne=28, Ni=71, m=1, hae,i=1, hfe,i=1.25. 

The last of the three design choices regards the definition of geometrical parameters for 

a 24° pressure angle planetary system with the aim of achieving a working pressure 

angle of approximately 28° at the interface between the sun and planet. The plot in 

Figure 6.15 shows the area of feasible combinations for the case considered here. The 

line of constant centre distance crosses the area of feasibility, and determines the 

existence of a x1,2 combinations that fulfil the imposed a=22 mm condition. On the other 

hand, it is shown that the line for constant pressure angle αw=28° is parallel to the one 

for a=22 mm and coincident with a line giving a working centre distance aw=22.74 mm. 

The condition of non-coincidence implies that with the set of parameters chosen, the 

two pre-imposed constraints aw=22 mm and αw=28° cannot be fulfilled.  
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Figure 6.15 – Feasible domain for involute spur gears in external mesh with α=24°, N1=16, 

N2=28, m=1, ha1,2=1, hf1,2=1.25. 

By taking into consideration that centre distance is related to gear size, it can be seen 

that it is necessary to reduce gear diameters in order to match the desired parameters. 

To do so, the number of teeth and/or module must be modified. Although the number 

of teeth was fixed in order to match the required transmission ratio, the module was 

not constrained by any of the pre-imposed conditions. The value for the module, initially 

set to 1, was reduced to the point where the line for a=22mm was coincident with the 

line for αw=28° (actual value 28.15°) as shown in Figure 6.15. The confined area 

determined for the new configuration, with a module of 0.956 mm, is geometrically 

equivalent to the one shown in Figure 6.15 confirming the assumption that the module 

has the effect of a scale factor for gear parameters. For the case with the modified 

module, all the points lying on the lines for aw=22 mm and αw=28° in the portion within 

the feasible domain x1,2 satisfy the required design constraints. The point actually 

chosen is defined by the coordinates x1=0.592 and x2=0.2727, and is based on the 

consideration that a positive profile shift applied to the gear with the smallest number 

of teeth (sun) returns an increased load carrying capacity, with improvements for both 
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root bending and flank contact stresses. In order to balance the potentially improved 

performance of the sun gear, a positive but less pronounced profile shift has also been 

applied to the planet gear resulting in the abovementioned x1,2 combination. 

 

Figure 6.16 – Feasible domain for involute spur gears in external mesh with α=24°, N1=16, 

N2=28, m=0.965, ha1,2=1, hf1,2=1.25. 

 

As for the previous cases, the plot in Figure 6.17, representing the geometrical 

parameters of the gears in internal mesh and defined for m=0.965, is accessed from the 

X axis with the value determined above x2=xe=0.2727. It can be noticed that the 

candidate point with coordinates xe=0.2727 and xi=1.7424 determined at the 

intersection between xe=0.2727 and the line for a=22 mm is outside the area of feasible 

parameters. For the combination of geometrical factors considered here, the limiting 

condition related to the root space width of internal gears sfi limits the area from above 

reducing the range of possible value that fulfil the desired aw=22 mm condition. 
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Figure 6.17 – Feasible domain for a involute spur gears in internal mesh with α=24°, Ne=28, 

Ni=71, m=0.965, hae,i=1, hfe,i=1.25. 

In order to increase the feasible domain in the upper region of the plot, the dedendum 

coefficient hf of the internal gear was reduced until the point of interest was lying on the 

line that describes the limit for sfi=0.2 as shown in Figure 6.18. The value of hf after this 

consideration was reduced from the standard 1.25 to 1.05. The resulting working 

pressure angle for such modified parameters is αw=30.51° as indicated by the red line 

coincident with the line for aw=22 mm in Figure 6.17. 
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Figure 6.18 – Feasible domain for involute spur gears in internal mesh with α=24°, Ne=28, 

Ni=71, m=0.965, hae,i=1, hfe=1.25, hfi=1.05. 

All the geometrical values determined above and listed in Table 6.2 uniquely define the 

tooth profile shapes. The result of the application of these parameters on the physical 

tooth geometries is shown in Figure 6.19 where tooth traces of sun, planet and ring gear 

are plotted against each other for comparison purposes. 

All the plots above were generated by means of a Matlab® program written for the 

specific case of internal mating gears. The program and the related functions are listed 

in Appendix B. 
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Table 6.2 – Geometrical and functional parameters for sun, planet and ring for chosen design cases 

Gear/Parameter Sun Plan Ring Sun Plan Ring Sun Plan Ring 

Reference 
pressure angle α 
[°] 

20° 28° 24° 

Module [mm] 1 1 0.965 

Number of teeth 

N 
16 28 71 16 28 71 16 28 71 

Profile shift coeff 

x 
0.065 -0.065 0.4757 0 0 0.5196 0.592 0.2727 1.7424 

Addendum factor 
ha 

1 1 1 1 1 1 1 1 1 

Dedendum factor 
hf 

1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.05 

Working 
pressure angle 
αw [°] 

20° 23.31° 28° 30.36° 28.16° 30.51° 

Contact Ratio ε 1.56 1.79 1.35 1.44 1.32 1.30 

Tooth base 

thickness Sb 

[mm] 

1.81 1.97 2.83 2.12 2.37 3.19 2.26 2.22 2.97 

Root fillet radius 

ρf  [mm] 
0.38 0.38 0.35 0.38 0.38 0.24 0.37 0.37 0.2 

Overall 

transmission 

ratio i 

5.438 
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SUN PLANET RING 

   

Figure 6.19- Comparison between tooth profile traces for the geometries listed in Table 6.2. 

Sun, Planet and Ring gear profiles for the three pressure angle configurations 

α=20°, 24° and 28°are shown respectively in black, red and blue.  

 

6.4 Planetary drive modelling 

The modelling of the three planetary systems resulting from the design process 

undertaken has followed the process described in section 5.2 which involves a multi-

step routine in order to create the 3D models of single gears, assembling them into a 

planetary arrangement and then downgrading them from 3D to 2D for the subsequent 

FE analysis. The combinations of parameter given in Table 6.2 have also been modelled 

in the Machine Design Software KISSsoft®. Successively, 3D gear models were exported 

through a direct interface into SolidWorks for assembling together in a full system 

model, as shown in Figure 6.19. Also a “motion study” has been performed to observe 

whether any physical interference was occurring during the meshing process. Due to the 

computational weight of the systems as consequence of the high number of nodes and 

the complex contact conditions, it was decided to model only one of the four planets as 

shown in Figure 6.20.  
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Figure 6.20 – Isometric view of the 3D assembly of the designed planetary gear train showing 

only a single planet configuration. 

From this, all the models are exported into the ANSYS FEA environment first for the 

extraction of 2D surfaces and successive FE Analysis.  

 

6.5 Finite Element Analysis 

The planetary gear systems designed as described in the previous section have been 

analysed by means of Finite Element Analysis with the aim of understanding how the 

stresses induced within the system were distributed among the components. The FEA 

procedure follows the same steps as for the performance analysis of spur gears 

described in detail in Section 5.4. The 2D mesh density used in that case, based on an 

element side length of 0.001 mm for the elements near to the contact areas, has also 

been used for this case. This was based on the size of the area of contact and by 

considering that the smallest area of contact, shown in Figure 6.28, is comparable but 

generally bigger than the one shown in Figure 5.19 in Chapter 5. Hence it is assumed 

that the discretization would produce results as accurate as the ones previously 

achieved. By using an element side length of 0.001 mm, a higher level of discretization 

is achieved as can be seen in Figure 6.20. The remaining part of the model has been 

discretized with elements with side lengths of 0.03 mm. 
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Also with regards to the definition of the contact elements, the settings described in 

5.4.4 were used. In this case contact elements were placed at the sun/planet interface 

and planet/ring interface and were defined as frictional. Another contacting area is at 

the interface between the carrier and planet gear where the formulation used for the 

contact elements was “frictionless” in order to simulate the presence of a bearing.  

The material used for the analysis was a structural steel with characteristics listed in the 

Table below. 

Table 6.3 –FEA model’s material properties 

Young’s modulus E [MPa] 2x105 2x105 

Poisson ratio ν 0.3 0.3 

density ρ [kg/m3] 7850 7850 

 

6.5.1 Time step Controls 

The analysis history has been divided in two steps of 0.25 s and 0.75 s for a total time 

frame of 1s. For the first step, the automatic step control function available in ANSYS 

has been used in order to optimize the number of load increments necessary for the 

solution to converge. For the second step that covers the mesh cycles of interest, a 

constant number of substeps equal to 600 was used in order to achieve a resolution of 

≈0.1° over the 54.38° of rotation of the sun relatively to the carrier and a resolution of 

0.025° over 15.35° degrees of planet rotation. 

6.5.2 Boundary conditions 

The system has been loaded through the sun gear by applying a ramped moment from 

0 to 1.5 Nm in the 0.25s of the first time step and then kept constant for the entire 

second substep of 0.75s. The rotational velocity has been simulated by applying at the 

carrier a rotation angle of 5° for the first time step, and a successive angle of 10° for the 

second time step. The resulting average rotational speed over the 1s time frame is 2.5 

rpm for the carrier while 13.6 rpm was the resulting sun input speed as required by the 

specifications in Table 6.1.  

The sun gear is supported by a cylindrical support that allows only rotations about its 

own axis. Also the planet carrier is supported by a cylindrical support concentric with 
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the one applied to the sun gear. The planet gear is supported by the carrier and, in this 

configuration, can replicate the compound motion divided into rotation about the 

central axis of the system and the rotation about its own axis. The outer face of the ring 

gear was defined as rigidly constrained. A summary of the boundary conditions applied 

is shown in Figure 6.21. 

 

Figure 6.21 – 2D model of the plant gear mesh with boundary conditions applied. 

 

6.6 Results and Discussion 

The application of quasi-static FEA for the study of the stress distribution among 

components in a planetary gear train has returned a time-varying stress distribution at 

the two mating points through which the input load is simultaneously transmitted within 

the system. Both equivalent contact and bending stresses have been evaluated for a 

total meshing time of 1 s. Such a time of engagement for the considered rotational 

velocity corresponds locally at the mating points, to two complete mesh cycles of 

sun/planet and planet/ring contacting profiles for each condition tested. The evaluation 

of root bending stress involves the study of stresses at the root of each gear in mesh 

that, because of the different geometry, reacts differently to the applied force. On the 

other hand, contact stress is evaluated at the point of contact of the mating tooth flanks 

and is equally distributed between the two contacting components. For this reason, only 
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the contact stress at the interface between sun and planet gear and at the interface 

between planet and ring gear are needed to determine the entire contact stress 

distribution field for the three components in simultaneous contact. Figure 6.22 shows 

the Von Mises stress distribution within the system as a consequence of the applied 

input moment to the sun gear and the resistance at the carrier applied by the imposed 

rotation. In can be seen that, because of the distribution of forces, while the sun pushes 

the planet in the anti-clockwise direction, the planet, subjected to the rotational motion 

about its own axis shares forces with the ring gear which also reacts by pushing the 

planet clockwise. The sum of the two tangential components of the forces applied to 

the planet is opposed by the force due to the reaction torque applied from the carrier 

to the planet. This force acts in the anti-clockwise direction, determining an area of 

compressive stresses at the planet/carrier interface. It is also interesting to notice that 

due to the difference in working pressure angles occurring at the two contact interfaces, 

and being generally higher for the mating couple planet/ring than for planet/sun, the 

radial component of the force at planet/ring interface is higher than the one at the 

sun/planet interface resulting in an unbalanced radial component acting on the planet 

bearing and pointing towards the centre. This force has to be taken into consideration 

for the design of the planet carrier.  

 

Figure 6.22 - Von Mises stress distribution among the planetary system subjected to applied 

torque at the sun gear and reaction torque at the planet carrier. 
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This study focuses on the stress distribution that occurs at the mating tooth. Root 

bending stresses were recorded at the tooth root fillet of adjacent teeth during the 

entire arc spanned by the planet position for the time of the analysis, in order to follow 

the time-varying meshing progress and the related stress variation. Similarly, for the 

detection of contact stresses, nodal solutions of equivalent stress were recorded along 

the tooth flanks of adjacent teeth in mesh, in order to follow the progress of the contact 

point over the entire time of the analysis.   

6.6.1 Bending stress 

Starting from the sun gear through which the input torque is transmitted to the system, 

the time-varying equivalent stress distribution for the three geometrical configurations 

studied is shown in Figure 6.23. The plot shows the typical root bending stress 

distribution explained in detail in Section 5.6 for a single mesh cycle. In this case, as the 

investigated time frame of 1s covers two entire mesh cycles, the stress distribution at 

the tooth root is repeated twice. No evident differences between the first and the 

second mesh cycle have been detected. The time intervals between one and two tooth 

pairs in simultaneous contact follows the variation of contact ratio which is maximum 

for α=20°, decreases for α=28° and is minimum for α=24° as listed in Table 6.2. For the 

case of α=24° the contact ratio is lower compared to the other two models due to the 

simultaneous use of a higher reference pressure angle and a sizeable positive profile 

shift that have been shown as having a concurrent effect on the reduction of contact 

ratio (Section 3.3.4). Because of the variation of ε, the time interval in which the mating 

gears are subjected to these high stresses varies accordingly.  

By analysing the equivalent root bending stress results occurring at the sun gear, it is 

found that the gear designed with α=20° is the one subjected to the maximum stress 

state compared to the other two models. This is accounted for by the higher tangential 

component of the force Ftps. Because of the resulting working pressure angle αw=20° at 

the sun/planet interface, when the transmitted force Fps is decomposed into the radial 

and tangential components, the second of these, responsible for the root bending 

stress, is higher when compared to the other two cases designed with αw≈28°. 

Moreover, as the amount of profile shift used is equal to the minimum geometrical 
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boundary to avoid undercutting, the tooth thickness at the base is equal to 1.81 mm, 

which is considerably smaller when compared to the two other geometries. The 

combination of a higher tangential force and a reduced tooth thickness are the causes 

responsible for the increase in root bending stress. Lower values of root bending stress 

are found for the geometry designed when the reference pressure angle equals to 28°. 

In this case the tangential force Ftps is lower at the expense of the radial component Frps. 

The higher radial component, which is undesirable because this generates an extra load 

on the sun gear support, contributes to the reduction of root bending stress due to the 

induced localized compressive stress state which is subtracted from the tensile 

component responsible for the bending stress. To this, a tooth base thickness of 2.12 

mm has to be added in order to justify the stress reduction compared to the standard 

case α=20°.  

The third model tested was built with the intention of taking into account both higher 

pressure angles and positive profile shifts in order to achieve a working pressure angle 

at the sun/planet interface of ≈28° (αw=28.13°). Interestingly, the root bending stress for 

the geometry of this model gives lower results compared to the other two cases despite 

the lower module adopted: 0.965 instead of 1 mm. The combination of a non-standard 

reference pressure angle α=24° and positive x1, x2 generates a tooth geometry with the 

largest tooth base of the three, equal to 2.26 mm. The shared forces are equivalent to 

the previous case as the resulting pressure angle here is αw=28.13°. The slightly smaller 

root fillet radius due to the reduced module does not affect the root bending stress. 

Arguably, the stress concentration at the root fillet is not that high to overcome the 

benefits of a thicker tooth base for the reduction of bending stress. 
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Figure 6.23 - Equivalent root bending stress for the sun gear for two consecutive mesh cycles. 

Similar considerations can be made for the study of root bending stress for the planet 

gear at the planet/sun mesh interface. Compared to the sun gear, the planet has a higher 

number of teeth which implies for the same module, larger pitch, tip and root diameters 

according to Equations 3.26 and 3.27. A larger root diameter implies teeth with thicker 

bases. The 28 tooth planet, even in presence of a small negative shift of -0.065 mm for 

α=20°, has a tooth base thickness of 1.97 mm. This geometrical characteristic 

determines the reduction in root bending stress from 68.25 MPa acting on the sun to 

56.07 MPa acting on the planet for the same amount of shared force, as shown in Figure 

6.24. In the analysis of root bending stress for the planets, for the two non-standard 

geometries, unlike the previous result for the sun gear, the more stressed geometry is 

the one with α=24°. Also in this case the reduced tooth base thickness is the quantity 

that accounts for this result; the reference pressure angle α=24° and the positive shift 

of 0.2727 mm generate a tooth geometry with a tooth base thickness of 2.22 mm while 

the geometry with α=28° and no shift applied has Sb=2.37 mm. As the contact ratio is 

obviously the same as the one described for the sun gear, in this plot the time intervals 

that correspond to a single and double pair of teeth in contact are equivalent to the ones 

shown in Figure 6.24. 
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Figure 6.24 - Equivalent root bending stress at the planet gear at the planet/sun interface for 

two consecutive mesh cycles. 

In the epicyclic arrangement the planet gear is in simultaneous mesh both at the 

sun/planet interface and at the planet/ring interface. In figure 6.25 it can be seen that 

the time interval corresponding to a double pair of teeth in contact is considerably 

longer, especially for the case with α=20°, then the ones previously described for the 

sun and planet in mesh. This is due to the higher contact ratio ε=1.79 for α=20°. For 

α=28° there is a drop of contact ratio to a value of 1.44, and the resulting working 

pressure angle is αw=30.36°. Because of such a high value of αw, the tangential 

component of the reaction force Ftrp applied to the planet as consequence of the 

planet/ring load sharing, is smaller in value compared to the one occurring at the 

sun/planet mesh. The combination of the reduced tangential and increased radial 

components of the transmitted force, along with a tooth base thickness of 2.37 mm, 

gives a reduction of the maximum value of root bending stress compared to the 

standard case with α=20° (αw=23.31° and Sb=1.97 mm). 

The last case to consider, with a reference pressure angle α=24°, due to a very high 

profile shift coefficient of 1.7424 (*0.956) applied to the ring gear, gives a working 

pressure angle of 30.51° similar to the one found for the previously considered case for 
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α=28°. This configuration, due to a tooth base thickness of 2.22 mm, is subjected to a 

root bending stress between the other two condition tested. 

 

 

Figure 6.25 - Equivalent root bending stress at the planet gear at the planet/ring interface for 

two consecutive mesh cycles. 

The last gear to analyse is the ring gear. For this component, the same considerations 

made for the case of the planet gear at the planet/ring mesh regarding contact ratio and 

working pressure angle are valid. Also the force Fpr is equal to the Frp previously analysed. 

The bending stresses occurring at the tooth root of the internal gear are on average 32% 

lower compared to the ones acting on the planet at the same mating interface. This is 

due to the stronger tooth form of internal gears than those of the corresponding 

external gears (Maitra 2012). Stronger teeth mean having a thicker tooth base compared 

to their equivalent external profile. For the case of α=20°, a Sb=2.83 mm coupled with a 

generous root fillet radius of 0.35 mm gives a root bending stress of 27.74 MPa as shown 

in Figure 6.26. A similar value of bending stress is also found for the case of α=24°. For 

this case, the high value of the working pressure angle αw=30.51°, and the increased 

tooth base thickness of 2.97 mm as a result of a 24° reference pressure angle and 

positive profile shift coefficient of 1.7424, do not compensate the reduced root fillet 

radius ρfi of only 0.2 mm. The root radius coefficient of the internal gear may arguably 

be considered the source of the increased bending stress due to stress concentrations 
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occurring at the tooth root. The tooth profiles of the ring gear required an addendum 

reduction in order to meet the minimum required space between adjacent teeth sfi=0.2. 

The last configuration tested, with α=28°, presents the thicker tooth base of the three 

configurations, equal to 3.19 mm, which is the result of the high reference pressure 

angle and the positive Xi=0.5196 mm applied. The expected drop of root bending stress 

due to the thicker tooth base did not take place; evidently a reduced root fillet radius of 

only 0.24 mm accounts for the presence of stress concentration at the toot root.  

 

Figure 6.26 - Equivalent root bending stress at the ring gear at the ring/planet interface for 

two consecutive mesh cycles. 

6.6.2 Contact stress 

Contact stress is directly related to the size of the area of contact as already explained 

in Section 5.8. In turn, the area of contact depends on the radii of curvature of the 

mating tooth profiles and so on pressure angle and profile shifts applied. Figure 6.27 

shows the time-varying tooth flank contact stress for the three tested geometries of the 

external mating gears. By starting with the analysis of the standard α=20° geometrical 

configurations, it was expected that this would give the highest stress. The maximum 

value of equivalent tooth flank contact stress over the two mesh cycles is equal to 504.55 

MPa and about 18% higher compared to the other two cases investigated. In fact, both 

the non-standard geometries have a resulting working pressure angle ≈28° due to the 
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combination of reference pressure angle and profile shift applied. This circumstance 

gives a corresponding change in maximum flank contact stress to 417.05 MPa for α=24° 

and 402.57 MPa for α=28°.  

 

Figure 6.27 - Equivalent tooth flank contact stress at the sun/planet interface for two 

consecutive mesh cycles. 

In epicyclic gear systems the planet gear is in simultaneous contact with the sun and the 

ring gears. However, a substantial difference occurs at the interface between mating 

components depending on the meshing condition and on whether these are external or 

internal gears. Gears in external mesh, as for the case of the sun and planet, have convex 

tooth profiles that create an area of contact Ac, responsible for the generated contact 

stress, as described in Section 5.8.2.1. On the other hand, when internal gears are 

meshing, the contact occurs between convex and concave profiles. The resulting contact 

area, responsible for the stress state at the contact point, is larger compared to a 

convex/convex contact interface. The surfaces in contact in this case can be 

approximated to a cylinder pressed against a cylindrical groove. By applying Hertzian 

theory to the case of convex/concave contacting surfaces, Equation 5.10 is adjusted by 

modifying the radius of curvature R2 at the instantaneous point of contact with R2 valid 

for the case of concave profiles as in Equation 6.32.  
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6.32 

Once the width of the contact area is known, the instantaneous area of contact 

generated at the planet/ring interface can be calculated as: 

 𝐴𝑐𝑖 = 𝑏𝑖𝐿 6.33 

An example of how the area of contact calculated at the pitch point for both external 

and internal gears in mesh varies as function of pressure angle is shown in Figure 6.28.  

 

Figure 6.28 - Comparison between the area of contact at the pitch point of the internal and 

external mating gears as function of pressure angle; N1=16, N2,e=28, Ni=71, m=1, 

x1=0, x2/e=0, xi=0. 

Such a difference in the value of the area of contact explains the difference in magnitude 

of contact stress shown between Figures 6.27 and 6.29 respectively at the sun/planet 

and planet/ring interfaces. The average reduction of ≈50% reflects the increase in the 

area of contact shown in Figure 6.28 between external and internal mating gears.  

The analysis of the time-varying flank contact stress at the ring/planet in internal mesh 

is shown in Figure 6.29. Also for this case the Maximum values of equivalent contact 

stress depends entirely on the pressure angle. Due to the combination of α and x, the 

working pressure angle at the internal mating gears assumes values of 23.31°, 30.36° 

and 30.51° respectively for the reference α=20° and the non-standard values α=28° and 

α=24°. Therefore, a sizeable difference of maximum values of contact stress between 
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standard profiles and profiles generated with non-standard combination of parameters 

was expected. This is evident in Figure 6.29 in which an average reduction of ≈11% 

between the nodal results for α=20° and the results for the other two configurations can 

be appreciated. For the three cases, Maximum contact stress occurs at the initial point 

of the single tooth pair interval and reduces towards the end of this interval.   

 

Figure 6.29 - Equivalent tooth flank contact stress at the planet/ring interface for two 

consecutive mesh cycles. 

After results of the numerical analyses were produced, peak values of Equivalent root 

bending stress and flank contact stress across the two mesh cycles and for the three 

tested geometries were compared to analytical results calculated in accordance with 

the standard ISO 6336 by means of KISSsoft. The results are summarised in Table 6.4 

and 6.5 for Bending and Contact stress respectively. 

Table 6.4 - Maximum Root Bending stress [MPa] 

Bending FEA KISSsoft (ISO) Variation % 

 20° 24° 28° 20° 24° 28° 20° 24° 28° 

SUN 59.35 33.93 41.69 51.29 40.84 46.01 13.6 -20.4 -10.4 

PLANET/SUN 56.07 38.81 33.56 48.53 45.42 40.71 13.4 -17 -21.3 

PLANET/RING 44.17 37.24 36.45 43.31 45.96 38.28 1.9 -23.4 -5 

RING 27.74 26.68 25.56 31.16 31.78 29.03 -12.3 -10.3 -13.5 

140

160

180

200

220

240

260

280

0,0 0,2 0,4 0,6 0,8 1,0

Eq
u

iv
al

e
n

t 
to

o
th

 f
la

n
k 

co
n

ta
ct

 s
tr

es
s 

[M
P

a]

time [s]

α=20°

α=24°

α=28°



208 
 

 

Table 6.5 - Maximum Flank Contact stress [MPa] 

Contact FEA KISSsoft (ISO) Variation % 

 20° 24° 28° 20° 24° 28° 20° 24° 28° 

SUN/PLANET 504.55 417.05 402.57 472.96 435.5 434.15 6.2 4.4 -7.8 

PLANET/RING 254.29 223.75 228.44 194.45 195.51 190.74 23.5 12.6 16.5 

The values listed in Tables 6.4 and 6.5, where the comparison between stresses 

calculated by means of FEA and ISO 6336 B is done, show a discrepancy between results 

obtained with the two methods. Interestingly with regards to Equivalent root bending 

stress FEA results for the non-standard configurations are always smaller than analytical 

results. On the other hand, for the standard α=20° design, the numerical results are 

generally and sometimes considerably higher than the ones calculated according to the 

standard.  

FEA results for tooth flank contact stress are generally more conservative than numerical 

ones. Also for this case the maximum difference occurs for α=20° at the ring gear and is 

equal to 23.5%. 

The ISO 6336 part 3, suggests the use of a mesh load factor Kγ to take into consideration 

the uneven distribution of load over the individual meshes when the evaluation of the 

stress state in an epicyclic arrangement is attempted. In part 1 (ISO 6336-1, 2006) it is 

stated that when a gear drive has two or more mating gears simultaneously in contact 

it is necessary to include the factor Kγ for the evaluation of the tooth root stress. The 

standard suggests determining Kγ by measurement or alternatively to estimate its value 

from literature, but no further indications are given. ANSI/AGMA 6123-B06 (2006) is 

dedicated to enclosed epicyclic drives, and gives suggestions for the value of Kγ (mesh 

load factor) in a table as a function of operating conditions and gear manufacturing 

quality. It also states that if the system contains more than one planet gear, than it is 

recommended to use values of mesh load factor according to the given table. For an 

epicyclic arrangement with one planet gear the suggested mesh load factor is 1. 

Suggested values are based on the general assumption that the used reference pressure 

angle is the standard α=20°.  
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After this analysis, for the standard configuration α=20°, a value of Kγ=1.2 even for the 

case of single planet gear seems appropriate in order to reduce the difference between 

results calculated by numerical and analytical methods. For standard gears in external 

mesh, after applying a mesh load factor of 1.2, the % difference drops from 13.6% to -

3.7% for the sun and from 13.4% to -3.8% for the planet gear. 

 

6.7 Conclusions 

This chapter has presented the application of the “high pressure angles” to planetary 

gear trains with the aim of increasing the load carrying capacity of such systems for their 

applications in hand tools. The design process followed was based on the blocking 

contours technique that, in order to be applied to the case of planetary transmissions, 

requires the novel determination of the area of feasible combinations for the case of 

internal gearing. To this end, the analytical determination of the limiting conditions 

typical of internal gears was presented. The design process undertaken started with the 

determination of geometrical parameters for the external mating gears. The profile shift 

value chosen for the planet was then used as input parameter for the determination of 

x to apply to the internal gear. The outcome of the design process was three planetary 

systems equivalent in terms of centre distance and number of teeth but differing in the 

geometrical parameters that define the tooth profiles. The generated models were 

analysed by means of quasi-static FEM and the time-varying nodal stress results acting 

on each component were plotted for the three considered geometries for comparison 

purposes. For the same configurations, stresses were calculated according to ISO 6336 

method. Differences between the numerical and analytical results were also highlighted 

by means of a calculated percentage variation in Table 6.5. The designs involving non-

standard parameters have shown improvements in the load carrying capacity as both 

contact and bending stresses were reduced compared to the configuration 

characterised by a standard 20° reference pressure angle. The two non-standard 

configurations have shown a similar behaviour, sign that the effect of the working 

pressure angle (equal for both configurations) has a predominant effect compared to 

the other geometrical parameters. 
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The outcome can be considered a suitable suggestion for the design of planetary 

systems for enhanced torque carrying capacity and physical packaging volume 

reduction, for applications characterized by low speed conditions. Norbar Torque Tools 

has implemented the findings of this work in their production by designing a new torque 

multiplier suitable for the application on power tools. The comparison between the new 

(grey) and old (red) designs in Figure 6.29 is explanatory of the achieved improvement 

in terms of compactness for the same rated torque and working life. 

  

Figure 6.30 - Comparison between two 4 stage planetary drives that differs for the value of 

gear profile pressure angle but are equivalent in terms of speed ratio and 

output torque. a) isometric view of the two models with highlighted overall 

dimensions; b) longitudinal section view of the two models. 

Both the devices are four stages planetary transmissions with a velocity ratio i=1:280 

and capable of a maximum output torque of 2700 Nm. For the design of the new model 

a profile pressure angle α=25° has been used in combination of positive profile shift in 

order to achieve a working pressure angle αw≈28°. The new device features a volume 

reduction of 43% compared to the old design with standard 20° pressure angle. This 

demonstrates the existence of room for improvements of this class of devices when non-

standard combination of parameters is used. 

 

 

a b 
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7 Design and analysis of a cycloidal speed reducer 
 

The mechanical advantage of multiplying the torque can be achieved through a variety 

of devices based on different concepts. In the previous chapter, an epicyclic geared 

transmission arranged in a planetary configuration has been analysed on geometrical 

and performance bases. In this chapter, the alternative category of cycloidal speed 

reducers is analysed because considered a viable solution for the torque multiplication 

in industrial applications (Hwang et Al., 2006). The motivation to investigate this further 

category of mechanical reduction systems was given by Norbar Torque Tools Ltd. 

Traditional epicyclic single and multi-stage gearboxes are at the basis of Norbar 

production and an investigation of the alternatives to the universally used epicyclic 

gearing was required and attempted. The aim was to design a gearbox capable of an 

improved torque to weight ratio by maintaining the same characteristics of robustness 

and reliability provided by the well-known epicyclic systems.  

Despite the increasing popularity of cycloidal drives, only few literature sources are 

available. Moreover, the absence of a dedicated design standard makes the design 

process complex and requires the use of numerical and experimental approaches for 

the evaluation of performance. 

In a Cycloidal system, the principal component, the cycloid disk, in its interaction with 

the external pins replaces the multiple contacts between gears occurring in epicyclic 

gear trains (Braren, 1928; Braren, 1932). As the main component of a cycloidal 

transmission is the cycloidal wheel, the geometrical relations of the cycloidal profile are 

investigated in this chapter. The theoretical findings were then applied to practice with 

the design of a 1:15 gearing ratio cycloidal speed reducer. The designed model, exploded 

in Figure 7.1, was used for numerical analyses aimed to evaluate the time-varying stress 

distribution acting on the cycloidal disk at the interface with the annulus pins. The model 

has also been manufactured by Norbar Torque Tools Ltd. for testing purposes. 
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Figure 7.1 – Exploded view of the designed cycloidal transmission. 

 

7.1 Geometrical arrangement of a cycloidal speed reducer 

A cycloidal speed reducer in its simplest arrangement is made by four basic components 

namely: input eccentric shaft, cycloidal disk, ring gear and output shaft. The cycloidal 

disk is driven by the eccentric cam which is rigidly connected to the input high speed 

shaft and provides the power to the system. The eccentric cam, by rotating inside the 

central bore of the cycloidal disk, determines a conversion of the rotating motion into a 

reciprocating motion of the cycloidal disk. This is the result of the interaction between 

the lobes lying around the external circumference of the disk and the pins evenly 

distributed along the internal circumference of the ring gear. The reciprocating motion 

of the cycloidal disk is then converted into a rotational motion by means of an output 

shaft. The continuous tangency between the pins flanged to the output shaft and the 

output holes on the cycloidal disk ensures a constant rotational velocity of the output 

shaft concentric to the input shaft. For each revolution of the high speed shaft, the 

cycloidal disk steps one position in the ring gear housing in the opposite direction with 

Housing 

Output member 

Epicycloidal Wheel 

Annulus pins 

Output pins 

Input member 



213 
 

respect to the input shaft (Shin et Al., 2006). The number of revolutions of the input 

shaft in order to make the cycloidal disk completing an entire cycle within the ring gear 

depends on the gear ratio. 

 

7.2 Geometrical analysis 

A cycloidal curve finds an engineering application in cycloidal gear trains. These types of 

devices have their principal component, the cycloidal disk, with the external profile 

shaped following an epicycloidal curve. In the following paragraph the parametric 

equations of the basic cycloid curve and subsequently of the epicycloid are determined 

and applied to the design of a cycloidal gear train.  

7.2.1 Parametric Equation of a cycloidal curve 

A common cycloidal is the curve created by tracing the trajectory of a point P fixed on a 

circle that rolls without slipping on a straight line as shown in Figure 7.2. As the circle 

rolls, the point of tangency between the circle and the line which is also the centre of 

instantaneous rotation (C) is moving of the same distance along the line so that the 

distance travelled by the point P on the straight line is equal to the arc length k described 

on the circle by point P due to the pure rolling condition. 

Although the cycloidal curve can be expressed by an explicit equation, especially for 

engineering applications, a parametric equation is simpler to use. In this formulation, 

equations for x and y, coordinates of the curve, are produced relative to a single 

parameter θ, corresponding to the angle of rotation of the circle. Figure 7.2 shows a 

portion of the cycloid curve and its generating circle after it has experienced a rotation 

θ from the origin C. 
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Figure 7.2 – Generation process of a cycloidal curve. 

 

After θ revolutions, the centre of the circle at the instantaneous position has been 

named O1 and a triangle 𝑂1𝑃1𝑅̂ is formed as shown in Figure 7.2. The horizontal and 

vertical sides of the triangle represent the distance of P1 from the centre O1. 

The coordinates of O1 are (C1,r), where the distance C1, corresponding to the x 

coordinate, is equal to the arc length k.  

By using the right triangle trigonometry on triangle 𝑂1𝑃1𝑅̂ and the following geometrical 

relations between distances: 

 𝑟 sin 𝛼 = 𝑃1𝑅̅̅ ̅̅ ̅ 7.1 

 𝑟 cos 𝛼 = 𝑅𝑂1
̅̅ ̅̅ ̅ 7.2 

 𝜃 = 180 − 𝛼 7.3 

And by considering the following trigonometric identity: 

 sin(180 − 𝛼) = sin 𝛼 7.4 

and the relation: 

 
sin 𝜃 = sin 𝛼 =

𝑃1𝑅̅̅ ̅̅ ̅

𝑟
 

7.5 

It is possible to parametrise the coordinates of P(x, y) in terms of the angle θ. 

Since the coordinates x and y of P1 are equal to:  

 𝑥(𝑃1) = 𝑘 − 𝑃1𝑅̅̅ ̅̅ ̅ 7.6 
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 𝑦(𝑃1) = 𝑟 + 𝑂1𝑅̅̅ ̅̅ ̅ 7.7 

 

and including the following relations: 

 𝑘 = 𝑟𝜗 = 𝐶𝐶1
̅̅ ̅̅ ̅ 7.8 

 𝐶𝐵̅̅ ̅̅ = 𝐶𝐶1
̅̅ ̅̅ ̅ − 𝐵𝐶1

̅̅ ̅̅ ̅ = 𝑟𝜃 − 𝑟 sin 𝜃 7.9 

 𝐵𝑃1
̅̅ ̅̅ ̅ = 𝑟 + 𝑂1𝑅̅̅ ̅̅ ̅ = 𝑟 − 𝑟 cos 𝜃 7.10 

 

It yields the parametric equations for the cycloidal geometry: 

 𝑥(𝜃) = 𝑟(𝜃 − sin 𝜃) 7.11 

 𝑦(𝜃) = 𝑟(1 − cos 𝜃) 7.12 

The graph traced by point P after θ rotations is a periodic function and repeats every 

2π*r. In the simplified case of radius r equal to 1, since point P traces the cycloid, it takes 

one complete revolution or 2π to find again the x-axis as shown in Figure 7.3. 

 

Figure 7.3 – Repeated cycloidal curves showing a period of 2π.  

 

The graph shows smooth and continuous curves between the sharp turns in which a 

minimum of the function occurs. Moreover, relative maximum points may occur at the 

turning point 2π and 3π when the trend changes from ascendant to descendent.  
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7.2.2 Parametric equation of an epicycloid curve 

From the definition of the cycloid curve as above, it is possible to move on to the 

epicycloid curve. The epicycloid, as for the case of the cycloid, is a cyclic curve used in 

engineering to shape the lobes of an epicycloidal disk or also called cycloidal disk.  

The epicycloid is defined as the curve generated by the trajectory of a point fixed to a 

circle, called epicycle, which rolls without slipping on a fixed circle of radius r. 

 

 

Figure 7.4 – Generation process of an extended epicycloid. 

As shown in Figure 7.4, the epicycloid is obtained by tracing the path of point P rigidly 

connected to the rolling circle of radius r0 that rolls without slipping on a fixed circle of 

radius r. θ indicates the angle of rotation between two successive positions of the circle 

of radius r0.  

In order to work out the coordinates of point P (xp, yp) as a function of angle θ, the 

trajectory of point P is defined by the superimposition of the two motions: P in terms of 

A, centre of the mobile circle, and A in terms of O, centre of the fixed circle. 

 
𝑃(𝑥, 𝑦) → {

𝑥 = 𝑒0𝑐𝑜𝑠𝛽
𝑦 = 𝑒0𝑠𝑖𝑛𝛽

 
7.13 

 

 
𝐴(𝑥, 𝑦) → {

𝑥 = (𝑟0 + 𝑟)𝑐𝑜𝑠𝜃
𝑦 = (𝑟0 + 𝑟)𝑠𝑖𝑛𝜃

 
7.14 
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Due to the pure rolling condition of motion between the two circles of radii r0 and r, and 

by considering C the instantaneous centre of rotation, it is possible to define the 

following relations between angles: 

 𝑟𝜃 = 𝑂𝐴𝑃̂𝑟 0 → 𝑂𝐴𝑃̂ =
𝑟

𝑟0
𝜃 7.15 

 𝑂𝐴𝑃̂ − 𝛽 + 𝜃 = 𝜋 7.16 

 𝛽 = 𝑂𝐴𝑃̂ + 𝜃 − 𝜋 7.17 

Using the information from above and after transformations we obtain the following 

equations: 

 

𝑃(𝐴){

𝑥 = 𝑒0 cos (
𝑟

𝑟0
𝜃 + 𝜃 − 𝜋)

𝑦 = 𝑒0 sin (
𝑟

𝑟0
𝜃 + 𝜃 − 𝜋)

 →  {

𝑥 = −𝑒0 cos [𝜃 (1 +
𝑟

𝑟0
)]

𝑦 = −𝑒0 sin [𝜃 (1 +
𝑟

𝑟0
)]

 

  

7.18 

And after combining P and A coordinates it yields the parametric equation of an 

extended epicycloid as function of the parameter θ where the radii r0, r and the distance 

e0 are known parameters. 

 𝑋𝑃 = (𝑟0 + 𝑟)𝑐𝑜𝑠𝜃 − 𝑒0 cos [𝜃 (1 +
𝑟

𝑟0
)]

𝑌𝑃 = (𝑟0 + 𝑟)𝑠𝑖𝑛𝜃 − 𝑒0 sin [𝜃 (1 +
𝑟

𝑟0
)]

 

 

7.19 

Depending on the position of generating point P relative to the rolling circle r0, different 

geometrical configurations can be achieved: 

 If P lies on the edge of the circle (e0=r0), the generated curve will be a normal 

epicycloid. 

 If P is placed anywhere inside the circle (e0< r0), it will generate a shortened 

epicycloid. 

 If P is outside but still rigidly connected to the circle (e0> r0), the resulting curve 

will be an extended epicycloid. 

The three possible configurations are shown in the Figure 7.5 below. 
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Figure 7.5 - Comparison between a normal (left), shorten (centre) and extended (right) 

epicycloid profiles. 

If we consider that the circle of radius r0 has rotated of an angle 𝑂𝐴𝑃̂ = 2𝜋 by making a 

complete rotation, then equation 7.15 can be rewritten as follow: 

 𝜃 = 2𝜋
𝑟0
𝑟

 7.20 

After a complete rotation of the circle r0, one entire lobe of the cycloidal profile is 

generated. The process continues until the lobes are evenly distributed along the fixed 

circle r. Therefore, the epicycle of radius r0 has to complete a number of rotations before 

it covers the entire perimeter of the fixed circle; this entails that the length of the arc 

2πr is a multiple of 2πr0 and their ratio defines the number of lobes of the epicycloid 

profile as follows: 

 𝑟

𝑟0
= 𝑁𝑙 

 7.21   

It is an obvious consideration that the number of lobes must be an integer in order to 

generate a closed and continuous curve suitable for mechanical applications. 

7.2.3 Epicycloid working profile 

The profile generated by the coordinates Xp and Yp as above, is termed as Theoretical 

because it is not functional for engineering applications such as cycloidal gears. As 

explained by Alipiev (1998), the reason is attributed to the sharp turning points between 

the end and the beginning of two adjacent lobes. As the force in such systems is shared 

between the lobes on the cycloidal disk and the pins placed circumferentially on the 

annulus, the radius of curvature of the concave portion of the epicycloidal profile has to 

be always bigger than the radius of the annulus pins in order to avoid motion 

discontinuities and intermittent torque delivery which are unacceptable conditions for 

a speed reducer. This introduces the necessity of modifying the theoretical profile with 
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an equivalent geometry that does not exhibit unwanted characteristics but that still 

satisfies the law of gearing. 

In order to prove that the epicycloidal profile is conjugate to the pins, Figure 7.6 shows 

the normal to the epicycloidal profile (dashed red line) at point Oc
I that passes through 

the point of instantaneous rotation or pitch point Po
I and divides the line of rotation 

centres O1O0
I in the two segments O1Po

I and Po
IO0

I such that: 

 𝑂1𝑃0
𝐼̅̅ ̅̅ ̅̅

𝑃0
𝐼𝑂0

𝐼̅̅ ̅̅ ̅̅
=

𝜔0

𝜔1
= 𝑖 7.22 

Therefore, the vector velocity of the point OC
i is always tangent to the epicycloidal curve 

and normal to the line connecting OC
i and the centre of instantaneous rotation Po

i. This 

condition satisfies the law of gearing and determines the two surfaces being conjugate 

(Litvin 1989, Litvin et Al., 2004). 

 

Figure 7.6 - Schematics of the profile generation process. The normal to the profile (dashed 

red) passes through the instantaneous pitch point KI. Source (Alipiev, 1988) 

modified by the author. 

By combining Equations 7.21 and 7.22 and after considering that for cycloidal systems 

the difference between number of annulus pins and number of cycloidal disk lobes is 

equal to 1, the following important relations are found: 
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 𝑖 = 𝑁𝑙 = 𝑁𝑝 − 1   7.23   

7.2.3.1 Parametric equations of the cycloidal working profile 

The tooth profile of the epicycloidal disk is defined by starting from the theoretical 

profile T-T in Figure 7.7. If a circle is selected, which moves fixed to the epicyclic (red 

circle) that rolls without slipping on the pitch circle (green), it creates a curve equidistant 

to the theoretical called working profile and identified in Figure 7.7 with W-W. The 

selected circle can be considered as a profile generating geometry for the working 

profile of epicycloidal disks, equivalent to the rack cutter in involute gears.  

 

 

Figure 7.7 - Generation process of the working profile W-W by starting from the theoretical 

profile T-T. In red the epicycle of radius r0, in green the pitch circle of radius r and 

in blue the generating circle of radius rc and centre P. The dashed line is the normal 

to the profile passing through the pitch point. ∆x,y determine the position of the 

equidistant curve WW from the original TT. 
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In order to define the coordinates of the new generating point P’(x, y), it is necessary to 

introduce two factors ∆x,y that take into account the displacement of the curve from the 

original theoretical profile. 

 𝑋𝑤 = 𝑋𝑃 + ∆𝑋 7.24 

 𝑌𝑤 = 𝑌𝑃 + ∆𝑌 7.25 

The quantities ∆x,y  can be calculated by using the unit normal vector to the theoretical 

profile multiplied by the radius of the generating circle rc that indicates the actual 

distance between the two equidistant curves.  

 ∆𝑋= 𝑟𝑐 𝑃𝑛𝑥⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ 7.26 

 ∆𝑦= 𝑟𝑐 𝑃𝑛𝑦⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ 7.27 

The unit normal vector of components is obtained by deriving the tangent vector 

components: 

 𝑃𝑡
⃗⃗  ⃗ = (𝑥𝑝, 𝑦𝑝) 7.28 

as function of the turning angle θ. In order to complete the coordinate transformation, 

the order of the components has to be inverted and the sign of one of them has to be 

changed as follow: 

 
𝑃𝑛
⃗⃗  ⃗ = (−

𝜕𝑦𝑝

𝜕𝜃
,
𝜕𝑥𝑝

𝜕𝜃
) 

7.29 

The two components of the normal vector 𝑃𝑛
⃗⃗  ⃗ corresponds respectively to the horizontal 

and vertical sides of a right triangle of which the hypotenuse is oriented in the normal 

direction to the curve as schematised in Figure 7.8. 

 

Figure 7.8 - Normal vector unit and its components along the x and y axes. 

By applying the right triangle relations and by considering the following components: 
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 𝑃𝑛𝑥⃗⃗ ⃗⃗ ⃗⃗  ⃗ = −
𝛿𝑦𝑝

𝛿𝜃
;  𝑃𝑛𝑦⃗⃗⃗⃗⃗⃗⃗⃗ =  

𝛿𝑥𝑝

𝛿𝜃
 7.30 

It yields: 

 

𝑃𝑛⃗⃗⃗⃗  ⃗ = √(−
𝛿𝑦𝑝

𝛿𝜃
)2 + (

𝛿𝑥𝑝

𝛿𝜃
)2 7.31 

And by considering the relation below: 

 
𝑃𝑛⃗⃗⃗⃗  ⃗ cos 𝜇 = −

𝛿𝑦𝑝

𝛿𝜃
 

7.32 

 
𝑃𝑛⃗⃗⃗⃗  ⃗ sin 𝜇 =

𝛿𝑥𝑝

𝛿𝜃
 

7.33 

After substitution and transformation of both the equations it yields: 

 

𝑐𝑜𝑠𝜇 =
−

𝛿𝑦𝑝

𝛿𝜃

√(−
𝛿𝑦𝑝

𝛿𝜃
)2 + (

𝛿𝑥𝑝

𝛿𝜃
)2

 
7.34 

 

𝑠𝑖𝑛𝜇 =

𝛿𝑥𝑝

𝛿𝜃

√(−
𝛿𝑦𝑝

𝛿𝜃
)2 + (

𝛿𝑥𝑝

𝛿𝜃
)2

 
7.35 

Once both 𝑠𝑖𝑛𝜇 and 𝑐𝑜𝑠𝜇 are known values, the equations that describe the coordinates 

of the modified curve result as follow: 

 

𝑋𝑊 = 𝑋𝑝 + 𝑟𝑐
−

𝛿𝑦𝑝

𝛿𝜃

√(−
𝛿𝑦𝑝

𝛿𝜃
)2 + (

𝛿𝑥𝑝

𝛿𝜃
)2

 
7.36 

 

𝑌𝑊 = 𝑌𝑝 + 𝑟𝑐

𝛿𝑥𝑝

𝛿𝜃

√(−
𝛿𝑦𝑝

𝛿𝜃
)2 + (

𝛿𝑥𝑝

𝛿𝜃
)2

 
7.37 

Where the terms −
𝛿𝑦𝑝

𝛿𝜃
 and 

𝛿𝑥𝑝

𝛿𝜃
 are respectively: 
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−

𝛿𝑦𝑝

𝛿𝜃
= (𝑟0 + 𝑟) sin 𝜃 + 𝑒0 (1 +

𝑟

𝑟0
) sin 𝜃 (1 +

𝑟

𝑟0
)] 7.38 

 𝛿𝑥𝑝

𝛿𝜃
= (𝑟0 + 𝑟) cos 𝜃 − 𝑒0 (1 +

𝑟

𝑟0
) cos 𝜃 [𝜃 (1 +

𝑟

𝑟0
)] 7.39 

The equations above describe the working profile of an epicycloid and can be used for 

geometrical modelling of cycloidal disks. This profile construction method allows the 

minimum radius of curvature being always bigger than the pin radius, which is as seen 

the basic requirement for the application of an epicycloid in gearing applications. The 

resulting geometry and a comparison between a theoretical profile and its 

corresponding working profile are shown in Figure 7.9: 

 

Figure 7.9 - Comparison between epicycloidal theoretical profile in blue and the 

corresponding working profile for the set of parameters of Table 7.1 and 7.2.  

7.2.3.2 Design considerations   

Some considerations can be done based on the analytical relations determined in the 

previous paragraph. It can be seen that the geometry of the cycloidal disk is based on 

some independent variables. The values to be attributed to these variables follow 

considerations in order to guarantee a correct mesh between cycloidal disk and the 

mating annulus pins.   

To follow, an explanation of the physical meaning of these variables and their 

geometrical relations: 
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 Radius of the annulus pins rp; 

 Radius of the pitch circle r; 

 Gearing ratio i; 

 Eccentricity e0;  

The radius of the annulus pins rp has to be equal to the radius of the generating circle rc 

in Figure 7.7. This guarantees a correct mesh condition due to the fact that the 

epicycloidal profile is shaped by means of the generating circle.  

The imposition of the gearing ratio i, univocally determines the second reference 

geometry, namely the epicycle or circle of radius r0 given the relation 𝑖 =
𝑟

𝑟0
. Moreover, 

by following the relations 7.21 and 7.23, the number of annulus pins and cycloidal disk 

lobes is univocally defined. 

The eccentricity e0 is the fundamental parameters for the generation of cycloidal disks 

as it determines the type of epicycloidal if shortened, normal or extended.  Moreover, 

the value e0 corresponds to the centre distance between the cycloidal disk and the 

input/output shafts and determines the wobbling motion of the wheel within the 

annulus.  

7.2.4 Design process and geometrical considerations 

In this paragraph geometrical considerations for the design of the cycloidal drive are 

discussed and the calculated geometrical parameters necessary for the modelling of the 

considered components listed. 

7.2.4.1 Cycloidal disk 

The cycloidal disk represents the principal component of the cycloidal transmission 

system and characterises this type of devices from the more common geared systems. 

The disk is in simultaneous contact with three mating components allowing the power 

transmission from the input to the output shaft. The external contact occurs with the 

annulus pins; internally it is driven by the eccentric input shaft and midways it is in 

contact with the output pins. In order to guarantee a correct mesh between the cycloidal 
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disk and the annulus pins the appropriate geometry has to be determined as explained 

in the previous paragraph.   

The design of the cycloidal disk started with a number of considerations based on the 

size of the device: 

 The first decision made was with regards to the gearing ratio. Norbar has 

suggested a 15:1 overall ratio as the idea was to expand their HT4 series with a 

device capable of transmitting a considerable torque within a relative compact 

size (Norbar Torque Tools ltd., 2018). 

 Secondly, the diameter of the annulus pins was predetermined as they were 

available in stock at Norbar in diameter of 14 mm. 

 Thirdly, the pitch circle radius was determined by following considerations based 

on a size factor. The pitch circle radius of 66 mm was determined after few 

iterations by considering the limiting condition e0=r/Np (Shin et Al., 2006), the 

gearing ratio i=15:1 and the dependent variable r0. In fact, in order to obtain a 

shortened epicycloidal profile as suggested by Alipiev (1988) and Litvin (1989), 

the relation between the eccentricity and the radius of the epicycle needs to be 

such that: e0<r0. This condition allows the construction of a working profile 

without undercutting and geometrical singularities that would make the profile 

unusable for mechanical applications (Litvin et Al., 2004). 

Once the independent variables have been assigned, the values of dependent 

parameters have been determined with the following geometrical relations: 

Theoretical addendum circle radius → 𝑟𝑎𝑡 = 𝑟 + 𝑟0 + 𝑒0 7.40 

Theoretical dedendum circle radius → 𝑟𝑑𝑡 = 𝑟 + 𝑟0 − 𝑒0 7.41 

Working addendum circle radius → 𝑟𝑎𝑤 = 𝑟𝑎𝑡 − 𝑟0 − 𝑟𝑝 7.42 

Working dedendum circle radius → 𝑟𝑑𝑤 = 𝑟𝑑𝑡 − 𝑟0 − 𝑟𝑝 7.43 

Tooth depth → ℎ = 𝑟𝑎𝑤 − 𝑟𝑑𝑤 = 2𝑒0 7.44 

The geometrical values listed in Tables 7.1 and 7.2 define univocally the cycloidal disk 

profile. The result of the application of those parameters on the physical geometry is 

shown in Figure 7.10 where the sketch of the cycloidal wheel is shown. 
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Table 7.1 – Theoretical Cycloidal Profile parameters 

Independent Dependent 

Gearing ratio i 15 Epicycle radius r0 4.4 [mm] 

Pitch circle radius r 66 [mm] Addendum radius rat 74.4 [mm] 

Eccentricity e0 4 [mm] Dedendum radius rdt 66.4 [mm] 

  Number of lobes Nl 15 

 

Table 7.2 – Working Cycloidal Profile parameters 

Independent Dependent 

Gearing ratio i 15 Number of lobes Nl 15 

Pitch circle radius r 66 [mm] Number of pins Np 16 

Annulus pin radius rp 7 [mm] Addendum radius raw 63 [mm] 

Eccentricity e0 4 [mm] Dedendum radius rdw 55 [mm] 

  Tooth depth h 8 [mm] 

 

Figure 7.10 – Frontal view of the cycloidal dick with indicated relevant measures. 

7.2.4.2 Annulus 

Consequently, the annulus included into the housing was designed. Also for this case, 

geometrical relations based on the same independent variables as before, allow to 

determine the basic geometry of the part. The following geometrical relations were 

used: 
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Annulus pitch circle radius → 𝑟2 = 𝑟1 = 2𝑟𝑎𝑤 − 2𝑒0 + 2𝑟𝑝 7.45 

Annulus dedendum circle radius → 𝑟𝑑𝑎 = 𝑟2 − 𝑟0 + 𝑟𝑝 7.46 

Annulus addendum circle radius → 𝑟𝑎𝑎 = 𝑟2 − 𝑟0 − 𝑟𝑝 7.47 

The values resulting from the calculations are listed in Table 7.3 and the corresponding 

model is shown in Figure 7.11. 

 

Table 7.3 – Annulus Design parameters 

Independent Dependent 

Gearing ratio i 15 Epicycle radius r0 4.4 [mm] 

Pitch circle radius r 66 [mm] Pitch circle radius r2 66 [mm] 

Eccentricity e0 4 [mm] Addendum radius raa 59 [mm] 

  Dedendum radius rda 73 [mm] 

  Number of lobes Nl 15 

It can be noticed that for the case of nominal dimension, the radii of cycloidal dedendum 

circle and annulus addendum circle are coincident and equal to 55 mm. 

 

Figure 7.11 – Frontal view of the annulus pins. 

7.2.4.3 Output shaft 

The output member has the task of transmitting the power from the system to the user. 

The power transmission is required to be as smooth and linear as possible in order to 

avoid the start of unwanted vibrations during working operations. In a cycloidal system, 
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the load is transmitted from the cycloidal disk to the output shaft by means of the 

contact between holes placed in the internal circumference of the cycloidal disk and pins 

rigidly connected to the output member. The pins are placed on a pitch circle concentric 

to the shaft axis. Once the diameter of the output pins 𝑑𝑜𝑝 has been determined, the 

diameter of the corresponding holes 𝑑ℎ on the cycloidal disk follows the relation: 

 𝑑ℎ = 𝑑𝑜𝑝 + 2𝑒0 7.48 

The frontal view of the output shaft is shown in Figure 7.12. 

 

Figure 7.12 – Frontal view of the output shaft with indicated relevant measures. 

7.2.4.4 Input Shaft 

The input shaft, as indicated by the name, is the member connected to the power 

source. Industrial speed reducers are for most cases connected and driven by electric 

motors and have the function of converting their typical high rotational speed in a higher 

torque level. For the case of cycloidal reducers, the input shaft needs to provide the 

required eccentricity in order to properly move the cycloidal disk. The component is 

designed in such a way that the main axis is concentric with the output and annulus 

members and an eccentric cam put the cycloidal disks in motion. Even though using a 

single disk is not ideal due to the resulting unbalanced centripetal forces, the choice was 

dictated by the manufacturing considerations. 

The frontal view of the designed Input shaft is shown in Figure 7.13. 
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Figure 7.13 – Frontal view of the input shaft drawing in which the measures of overall 

diameter and eccentricity are shown. 

7.2.4.5 Secondary components 

After the geometry of the main parts of the system was defined, the drawings were 

forwarded to the engineering group at Norbar for considerations on thickness of the 

components and sizing of the remaining parts. It was decided to support the annulus 

and output pins by roller bearings in order to make the pins rotating and minimise the 

sliding friction at the contact. The input and output shafts are supported by roller 

bearings as shown in the section view in Figure 7.14.  

 

Figure 7.14 - Isometric view of the 3D cycloidal transmission model. 
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7.2.4.6 Manufacturing 

The material and the specific heat treatments were decided for each component and 

tolerances were given. All the relevant information is included in the technical drawings 

in Appendix C. Figures 7.15 and 7.16 show the manufactured components and the top 

view of the assembled cycloidal drive. 

 

 

Figure 7.15 – Manufactured components of the designed cycloidal transmission including 

housing, cycloidal plate, roller bearings and input and output shafts. 

 

 

Figure 7.16 – Top view of the designed cycloidal components after the assembly operations. 
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7.3 Cycloidal drive modelling 

The modelling of the cycloidal systems resulting from the design process undertaken 

started with the generation of 3D models of each component then assembled into a 

cycloidal arrangement and successively used for the FE analysis. Each part has been 

modelled in SolidWorks by using the reference dimensions in table 7.2, 7.3. The cycloidal 

disk profile was created by means of the function implemented in Solidworks called 

“equation driven curve”. Such command allows drawing a curve by inserting a 

parametric equation of the wanted geometry rather than constructing it by single points 

then manually joined with a spline curve. After the whole model was assembled as 

shown in Figure 7.14, a “motion study” has been performed in order to observe whether 

any interference was occurring during the meshing process. The model built with 

nominal dimensions has resulted interference free.  

The successive step of the analysis was with regards to performance by means the FEA 

analysis. In order to conduct the numerical analysis, given the complexity of the 

geometry, it was decided to use a simplified version of the cycloidal gear train, still able 

to represent entirely the dynamics and kinematics of the system but, at the same time, 

lighter from a computational point of view. The simplified model is shown in Figure 7.17.  

 

Figure 7.17 - Isometric view of the 3D assembly of a simplified version of the designed 

cycloidal gear train. 
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From this, all the models are exported into the ANSYS FEA environment for the 

successive 3D FE Analysis. 

7.3.1 Finite Element Analysis 

The cycloidal system designed as described in the previous section was the object of a 

preliminary study by means of Finite Element Analysis with the aim of understanding 

the stress state occurring at the interface between the cycloidal disk and the annulus 

pins. The FEA procedure follows the same quasi-static approach used for the 

performance analysis of a spur gear pair in Chapter 5 and the investigation on planetary 

gear trains in Chapter 6 in order to evaluate the time varying stress among the entire 

mesh cycle with the only difference that for this case a 3D model was used instead of a 

2D model as for the previous cases.  

7.3.1.1 3D Finite Element Mesh 

Since a 3D model was used for the numerical analysis of the designed cycloidal 

transmission, a 3D mesh was required in order to discretise the entire geometry in 

elements of volume. The use of an adequate finite element mesh is crucial for the quality 

of numerical results and guarantees an appropriate discretization of the model coupled 

with the use of proper elements is the key to achieve accurate results as already 

described in 5.4.2. For the study of 3D solid elastic models, hexahedral elements are the 

most appropriate especially for the case of complex geometries, as they are able to 

adapt closely to the curved profiles and represent the model in its entirety. The rate of 

adaption to the underlying surface increases with the order of the elements such that 

quadratic elements follow the geometry better than similarly sized linear elements 

(ANSYS®, 2016; Lepi, 1998).  

In this study, the finite element model of the gear pair is created using SOLID186 

elements shown in Figure 7.18. They are quadratic elements defined by 20 nodes having 

three DoF at each node: translations in the nodal X,Y and Z directions (ANSYS®,. 2016). 
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Figure 7.18– SOLID186 element (ANSYS®, 2016).  

In order to model the contact regions with sufficient accuracy, as the location of the 

contact point changes the entire surface requires a refined mesh. Unfortunately, due to 

the high computational cost induced by the complex contact condition in the system 

and the limited computational resources a refined mesh was not possible. In order to 

balance the required solution time with a reasonable quality of results, a refined mesh 

with element side lengths of 1 mm was used to discretize the cycloidal disk and the 

annulus pins while input and output shafts were discretised with elements with a side 

length of 2 mm. This was the limit found for the computational resources available as 

for any further refinement of the step the solver was not able to perform the solution 

due to a lack of memory. The resulting mesh is illustrated in Figure 7.19 and is composed 

of 832179 nodes and 188230 elements. 

  

Figure 7.19 – 3D mesh of the cycloidal system model. 
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7.3.1.2 Finite Element 3D Contact model 

The next type of elements necessary to completely define the finite element model is 

contact elements. For the analysis of a cycloidal gear train, contact conditions are of 

primary importance as the power transmission from one member to the other occurs 

through the interaction of various parts of the model. Contact modelling starts with the 

definition of parts in contact. For the case of a 3D model, the cycloidal disks thickness is 

selected as a contact surface as it would experience contact with the mesh cycle. The 

mating part is represented by the annulus pins of which, the external face has been 

selected as target. Input shaft and cycloidal gear have also been selected as contacting 

surfaces being the eccentric cam the contact and the inner surface of the central hole of 

the cycloidal gear, the target. A representation of the selected contacting surfaces is 

shown in Figure 7.20. 

 

Figure 7.20 – Selection of contact and target surface between cycloidal disk and annulus pins 

and eccentric cam (hidden) and cycloidal disk. 

 

After the contact surfaces are created, the next step is to define the functions to 

determine their reciprocal interactions. The Contact regions between cycloidal disk and 

annulus pins were defined as frictional with a null coefficient of friction. Instead, for the 

input shaft/cycloidal interface a frictionless contact formulation was used in order to 

simulate the presence of a bearing which eliminates the frictional forces. For contact 

and target elements a “symmetric behaviour” option was selected as explained in 5.5. 

For the current analysis, the “program controlled” option was selected in order to 

control the the advanced contact functions except for the “interface treatment” that 
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was set as “adjust to touch” to overcome the risk of convergence failure by reducing the 

initial penetration and/or closing any initial gap between contacting parts. 

7.3.1.3 Time step Controls 

The loading history has been divided in three steps, two of 1.5 s and one of 3 s for a total 

time frame of 6s. For the first step, the automatic step control function available in 

ANSYS has been used in order to optimize the number of load increments necessary for 

the solution to converge. For the second step, a constant number of substeps equal to 

180 was used in order to achieve a resolution of =0.5° over the 90° of rotation of the 

input shaft. For the third step, 360 substeps cover a rotation angle of the input shaft 

equal to 180° for a corresponding resolution of 0.5°. The total angle of rotation across 

the 6s time frame is 360°.  

7.3.1.4 Boundary conditions 

The system has been loaded through input shaft by applying a ramped moment in 

counter clockwise direction from 0 to 50 Nm in 1.5s for the first time step and then kept 

constant for the following substeps. The rotational velocity has been simulated by 

applying at the input shaft a rotation angle of 90° for the first time step and a successive 

total 270° across the second and third substeps. The resulting input shaft average 

rotational speed over the 6s time frame is 10 rpm.  

The output shaft was rotated in accordance with the overall gearing ratio i=15:1 of a 

total angle of 24° across the 6s time frame. The assigned rotational direction is 

clockwise, opposite to the input shaft one. In order to simulate the physical constraints 

given by bearings and flanged supports, the following configuration was used. The input 

shaft is supported by a cylindrical support that allows only rotations about its own axis. 

Also the output shaft is supported by a cylindrical support concentric with the input 

shaft. The annulus pins are kept in their spatial position by a fixed support applied to the 

free ends while the entire pin is subjected to the force applied perpendicularly by the 

cycloidal disk. And finally, the cycloidal disk is kept in place by a translational support 

which allows the component to move free on the XY plane constraining any 

displacement along the Z axis. The cycloidal disk is then moved by the eccentric cam and 

by the reaction forces due to its interaction with the annulus pins. In this configuration, 
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the cycloidal disk can replicate the wobbling motion divided into rotation about its own 

central axis and a translation on the XY plane. A summary of the boundary conditions 

applied is shown in Figure 7.21 and the mechanical characteristics of the material used 

for the analysis are listed in table 7.4. 

Table 7.4 –Cycloidal system FEA model material properties. 

Young’s modulus E [MPa] 2x105 2x105 

Poisson ratio ν 0.3 0.3 

density ρ [kg/m3] 7850 7850 

 

 

Figure 7.21 – Simplified 3D model for numerical analysis with boundary conditions applied. 

7.3.1.5 Results and Discussion 

 

The application of quasi-static FEA for the study of the stress distribution within the 

cycloidal gear train has returned the time-varying stress distribution occurring on the 

cycloidal disk and annulus pins. The Von Mises induced stress state has been evaluated 

for a total meshing time of 6 s corresponding to one rotation of the input shaft. Such 

meshing time for the considered rotational velocity corresponds, locally at the mating 

points, to the change in position of the cycloidal disk from one pin to the immediate 

next. Unfortunately, due to the coarse mesh used as consequence of the limited 

computational results, stress values cannot be considered accurate. In fact, an element 

side length of 1 mm is not small enough in order to model the area of contact generated 

by the force shared between the two mating components. Based on this consideration, 
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it was decided to normalise the values of stress and plot them in percentage of the 

maximum load.   

Figure 7.22 shows the Von Mises stress distribution within the system as consequence 

of the applied input moment and the resistance at the output given by the imposed 

rotation. By the resulting stress distribution, it can be seen that, while the eccentric cam 

rotates anti-clockwise and pushes the cycloidal plate against the annulus pins, at the 

same time, the disk is subjected to a reaction force from the annulus pins. This reaction 

force generates a moment in the clockwise direction around the cycloidal disk axis that 

is transferred to the output shaft through output pins in continuous contact with the 

holes placed on the cycloidal disk.  

 

Figure 7.22 – Von Mises stress distribution at t=5.9 s among the cycloidal system subjected 

to applied torque at the eccentric cam and reaction torque at the output shaft. 

This study mainly focuses on the stress distribution that occurs at the interface between 

the mating surfaces. The Von Mises stress state was evaluated on each annulus pin 
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during the 360° rotation spanned by the eccentric input shaft for the time of the analysis 

in order to follow the time-varying meshing progress and the related stress variation. 

As the main characteristic of cycloidal transmissions is the contact of multiple pins with 

the cycloidal disk, the evaluation of the stress state for the entire mesh cycle allows to 

quantify such interaction. 

The study of the quasi-static FEA results started with the analysis of the time-varying 

stress distribution developed at the interface between the cycloidal disk and the annulus 

pin number 9 in Figure 7.22 for a complete mesh cycle. The time-varying stress 

distribution plotted in Figure 7.23 shows that pin number 9 is subjected to the maximum 

stress value at t=3.1 s which corresponds to a 180° rotation angle of the input shaft, 

when the eccentric cam is pointing towards pin 9. The graph also shows that the first 

interaction between the pin and the cycloidal disk occurs at t=1.85 s while the last point 

of contact is placed at t=4.56 s, when the pin and cycloidal disk disengage. Within this 

time interval, the stress fluctuates and 7 distinct peaks can be recognised. The peaks 

indicate the engagement and disengagement of the disk with other pins in the proximity 

of pin 9. As the force is shared between multiple pins in simultaneous contact, the 

shared force and consequently the generated stress first increases and then decreases 

almost symmetrically to the peak for t=3s. The first peak occurring at t=2.08 s 

corresponds to an angle of rotation of the input shaft of 126° for which pin 6 is fully 

engaged and is carrying the maximum load. After that, at t=2.45 s the second peak and 

at t=2.81 s the third peak occur. These peaks happen respectively for an angle of 144° 

and 167°, when pin 7 and then 8 are fully engaged. This trend shows that while the lobe 

of the eccentric input shaft is approaching the pin under consideration, the load to which 

the pin is subjected increases. After the instant of maximum stress, the time-varying 

stress distribution shows a decreasing trend almost symmetrical to the approaching 

part. In the descending part, pin 9 is still subjected to the stress generated by the contact 

with the cycloidal wheel as it still participates in sharing the load with other pins. At 

t=3.55 s, t=3.85 s and t=4.15 s, corresponding angles of the input shaft are 213°, 231° 

and 249°, while the pins that are carrying the majority of the load are 10, 11 and 12 

respectively. 
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Figure 7.23 – Percentage distribution of the time-varying Equivalent stress state on the 

annulus pin number 9 for 360° rotation of the input shaft. 

The combination of time-varying stress distributions for all pins is shown in Figure 7.24. 

In this case, as the investigated time frame of 6 s covers the entire rotation of the input 

shaft and all the pins come into contact with the cycloidal wheel, the stress distribution 

on the pins is repeated 16 times. No evident differences between the 16 mesh cycles 

are detected. The time intervals between two successive pins depends on the number 

of output pins and consequently, as asserted by Equation 7.23, on the gearing ratio. In 

Figure 7.24, if a vertical line is traced, then the number of curves encountered is equal 

to the number of pins in simultaneous contact at the time of interest. 
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Figure 7.24 – Percentage distribution of the time-varying Equivalent stress for the 16 annulus 

pins for 360° rotation of the input shaft. 

As already mentioned above in this paragraph, because of the interaction between 

multiple pins and multiple lobes of the cycloidal disk at the same time, the total 

transmitted force is distributed at each instant over a number of contacts. The effect of 

such distribution is shown in Figure 7.25 in which, at t=3.1 s, the total force is 

simultaneously shared between 7 pins, from pin n° 7 to pin n° 12, resulting into a 

convenient loading conditions as no components in the system are loaded with 100% of 

the applied force. From Figure 7.25 it can be seen that pin 9 is loaded with a 20.5% of 

the entire shared force while the pins in the proximity are subjected to lower values, 

down to 9% for pin 6 and 8% for pin 12. The considerable number of component that 

share simultaneously the load is a characteristic feature of cycloidal gear trains that 

determines their high power density and advantageous power to weight ratio compared 

to their direct competitor, the epicyclic transmission. 
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Figure 7.25 –Percentage distribution of the total load simultaneously shared between 

multiple annulus pins. 

 

7.4 Conclusion 

This chapter presented the entire process of designing a cycloidal transmission from the 

preliminary geometrical calculations, to the manufacturing stage. The design process 

included the definition of the epicycloidal profile, from theoretical to the actual working 

profile of cycloidal disks. The parametric equation of the cycloidal profile was 

determined as function of basic parameters of the gearing system and allowed defining 

the appropriate geometry for the required characteristics. From the definition of the 

cycloidal disk, the appropriate annulus and the input shaft geometries were determined.  

Once the profile of the cycloidal disk and the geometry of the mating parts were known, 

a prototype system was manufactured at Norbar Torque Tools Ltd. Considerations on 

the most suitable manufacturing process, applied tolerances and materials were also 

made.  

A simplified version of the model was used to perform a quasi-static 3D FE study to 

determine the amount of load shared between the annulus pins and the actual stress 

distribution at the cycloidal disk/annulus pins interface.  The outcome, due to the limited 

computational resources, is not considered accurate in terms of absolute value of 
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shared loads and generated stresses. Therefore, the time-varying stress distribution 

found has been analysed in terms of percentage of the maximum value. The results have 

shown that for an entire mesh cycle corresponding to 360° rotation of the input shaft, 

each pin is loaded 7 times. The time-varying stress occurring on the annulus pin 9 has 

shown 7 peaks of stress. The stress distribution follows an increasing-decreasing trend, 

symmetric to the maximum value which occurs when the eccentric cam is oriented in 

the direction of the considered pin. The transmission force was shared simultaneously 

among 7 over the total of 16 pins. The maximum force applied on a single pin is only the 

20% of the total force, while the remaining 80% is shared between 6 other pins in the 

immediate proximity.  

In general, the approach used has been shown to be appropriate for the design of a 

cycloidal transmission. Further investigation is needed to establish the magnitude of the 

generated stress and to determine the maximum performance of the transmission. 

Experimental testing is also necessary to validate the numerical approach. 
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8 Conclusions and future research 
 

The thesis focuses on the improvement of mechanical characteristics of geared 

mechanical transmission systems. As Norbar Torque Tools Ltd. bases its business on the 

production of hand tools torque multipliers for a vast range of industrial applications, 

the aim was to improve the characteristics of such systems in order to achieve an 

advantageous power to weight ratio that would increase the competitiveness of their 

products on the market. 

An alternative solution to the epicyclic systems for the use in torque multipliers was 

attempted with the design and a preliminary analysis of a cycloidal transmission. 

 

8.1 General conclusion 

This thesis presented the application of a validated numerical approach for predicting 

the mechanical characteristics of spur gears in mesh for various combinations of profile 

geometrical parameters. The numerical model was able to analyse the entire mesh cycle 

providing detailed information of the variation of stress as consequence of the change 

in contact status.  

Various gear tooth profiles were investigated and compared to a standardised design. 

Non-standard gear profiles have also worked with epicyclic transmissions showing an 

average stress state reduction of 11% for both contact and bending stress conditions. 

The same approach was used for the analysis of epicyclic gear trains. The baseline 

consists of a standardised profile in accordance with the ISO 6336 Profile B which is 

almost entirely used in industrial gearing applications. A modification of such geometry 

has shown room of improvement with an optimum showing 13% of flank contact stress 

and 28% of bending stress reduction.  

The work on tooth profile modifications investigated the effects on the contact and 

bending stress distribution of various type of profile modifications. The gear geometry 

was defined by applying the blocking contour technique in which a combination of lines 

defines a enclosed design space and represents an area of feasible combination of 

parameters. Each line is the physical representation of a boundary condition or a 
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physical constraint. The multi-parametric design space considers the simultaneous 

effect of pressure angle, module, addendum, dedendum, and number of teeth of the 

mating gears. In accordance with the limitations found, seventeen gear pairs with 

different geometrical characteristics have been modelled. They include a range of 

pressure angles from the standard 20° to very high values for symmetric gears of 32°; 

short, intermediate and long addendum and dedendum; a range of profile shifts 

spanning from negative to positive values. The contour plot technique, in primis 

developed by Goldfarb et Al., (1998), has been modified to define non-standard gear 

profiles. This further development can be considered a novelty in the filed as it has been 

attempted for the first time and successfully implemented as gear design tool. 

The same approach of developing an area of feasible combination of geometrical 

parameters has been used for the determination of gears for epicyclic transmission 

systems. For this case, the design procedure undertaken consisted in a multiple step 

process. First, the design space for the two gear in external mesh has been defined; then, 

the design space for the internal mating gears has been developed and the fundamental 

relations valid for epicyclic systems have been taken under consideration. This process 

has resulted into the determination of a design tool for epicyclic transmissions that takes 

into account geometrical, operational and manufacturing constraints and is able to 

return any possible combination of geometrical parameter within the defined area. The 

newly developed methodology was implemented for the design of three planetary 

systems equivalent in terms of centre distance and number of teeth but differing in the 

tooth profile geometry. In this part of the research two novelties can be clearly 

identified: one consists in the definition of a design area for internal mating gears, while 

the other regards the use of high pressure angles in epicyclic transmissions. In fact, there 

is no mention in the available literature of symmetric spur gears arranged in epicyclic 

configurations designed with values of pressure angle above 25°. The current cases 

under investigation with αw≈28° represent a novelty in the field. 

Gear models and systems have been analysed by means of numerical methods based on 

the software package ANSYS®. A procedure to overcome convergence difficulties due to 

the high degree of non-linearity of the mating gear system is proposed. Moreover, the 

effect of contact detection methods, which contribute to the quality of the 
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achievements, is investigated and an optimal setting for the analysis of mating gears is 

established. A wide range of FEA problems were solved in order to study the effective 

stress distribution for a complete mesh cycle of a number of gear geometries 

characterised by alteration of pressure angles, profile shift coefficients, addendum and 

dedendum factors. The numerical results have shown that the working pressure angle 

plays a crucial role in the reduction of the contact and bending stress state.  

The effect of generating pressure angle α has been found to be the critical parameter to 

control in order to affect the bending and contact stress distributions. Generally, to 

higher working pressure angles correspond lower stress states as highlighted by the 

analysis results. In particular, a linear reduction of contact stress has been found as 

consequence of an increase in pressure angle from a maximum of 403 MPa for α=20°, 

to a minimum for α=32° of 370.37 MPa which, in percentage terms, corresponds to a 

substantial 13% reduction of the stress acting on the tooth flank. The same effect is seen 

when the profile shift and its relation with the working pressure angle is studied. For the 

range of profile shifts used, αw varies from 19.1° for x=-0.2, to 23.3° for x=0.5. A 

comparison between the standard profile with x=0 and the two extremes considered 

led to an increase of contact stress of 3% when the negative modification (x=-0.2) is 

applied and a reduction of 7.5% when x=+0.5. 

The quasi-static FE method was also used to evaluate the generated root bending stress 

for the same range of profile modifications as above. In this case an asymmetric concave 

trend has been determined with a maximum, again for α=20°, of 42.35 MPa and a 

minimum, for α=28°, of 32.66° MPa resulting in a percentage root bending stress 

reduction of 13.9%. The evaluated stress for α=32° is 32.66 MPa.  

Further analyses on the tooth profile modification include the effect of addendum and 

dedendum length on the occurring stress state and the duration of the high stress stage. 

While dedendum has not shown any influence on the generated contact stress, a 

reduced addendum ha=0.5 implies a contact stress of 558 MPa which is 22% higher 

compared to the standard ha=1 (433.61 MPa). On the other hand, dedendum length has 

an effect on the root bending stress and in particular, increasing the dedendum leads to 

an increase from 42,35 MPa for the standard hf=1.25 to 51,75 MPa when hf=1. 
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High pressure angles gears were also used for the generation of planetary gear trains 

with the end to increase the load carrying capacity. 3D models were analysed by means 

of quasi-static Finite Element Model and numerical contact and bending stresses 

compared to analytical results obtained by the application of the ISO 6336 standard. As 

result, the designs involving non-standard parameters have shown improvements in the 

load carrying capacity as both contact and bending stress were reduced if compared to 

the standard configuration with 20° reference pressure angle. This study has shown 

again that the working pressure angle is the critical parameter that influences the 

contact and bending stress state. More in detail, it has shown that both methods to 

increase αw, either by modifying the profile pressure angle or by changing the profile 

shift, are effective and lead to a stress reduction. The standard of the three models, with 

α=20°, has seen a maximum tooth flank contact stress at the sun/planet interface of 501 

MPa, about 18% higher compared to the other two cases investigated with equivalent 

αw≈28°. An even more pronunced stress reduction occurs with regards to the root 

bending stress on the sun gear that drops from 58 MPa to 48 MPa by changing αw from 

20° to 28°. A drop of 41% of root bending stress also occurs for the same geometrical 

configurations on the planet gear while a 23% reduction is seen at the tooth root of the 

internal gear. As a consequence of the global reduction of the stress state acting on the 

tooth profile the load carrying capacity of such gears results increased and permits to 

achieve a mechanical advantage for the entire transmission system. 

For validation and comparison purposes, for each geometrical configuration analysed, 

equivalent contact and bending stresses have been estimated by means of the ISO 

standard 6336 method B (ISO 6336 2006). The result of such comparison has shown that 

current standards are not well suited to the application and analysis of High Pressure 

angle gears. On average, a difference of 7% can be appreciated between numerical and 

analytical methods, with values calculated by means of ISO 6336-B being generally more 

conservative than numerical results. 

 

The parametric study gives clear guidance on how to enhance the load carrying capacity 

of a gear pair through the variation of what are often considered standard parameters 
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and can be considered a suitable suggestion for the design of planetary systems for 

enhanced torque carrying capacity and physical packaging volume reduction.  

In order to give a valid alternative to epicyclic systems, cycloidal transmissions have been 

studied. Given the fact that no design standards are available for this class of devices, 

the profile geometry has been derived and implemented in order to create the physical 

model of the cycloidal transmission. A full scale prototype was manufactured at Norbar 

Torque Tools ltd and a simplified model was used to perform a quasi-static 3D Finite 

Element study. The outcome, consisting in the time-varying stress distribution, has 

shown that for an entire mesh cycle corresponding to 360° of the input shaft rotation, 

each pin is loaded 7 times and subjected to 7 peaks of stress across the entire mesh 

cycle. Each pin carries a maximum 20% of the total applied force while the remaining 

80% is shared between 6 other pins in the immediate proximity. In general, the followed 

approach has shown to be appropriate for the design of a cycloidal transmission. 

Although it is not possible to extrapolate absolute values of stress from the performed 

analyses, general considerations can be done with respect to the improvements given 

by the cycloidal system compared to a planetary system. As seen, in a 16-pins cycloidal 

transmission, the load is shared between 7 pins allowing a consistent repartition of the 

generated stress. A possible analogy is with the number of planets in an epicyclic 

transmission through which the load is simultaneously shared. However, the number of 

planets is usually in a range between 3 and 5 making the number of load sharing 

positions modest compared to cycloidal systems where the higher the transmission ratio 

the higher the number of pins and so the entity of load distribution.  

Further investigations are needed in order to establish the magnitude of the generated 

stress and determine the maximum performance of the transmission.  

 

8.2 Future Work 

The following points summarise the areas that, in the light of this thesis, necessitate of 

further research. 
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 Definition of a 3D domain of existence by including the variation of a third 

variable. This would generate a volume of feasible values of geometrical 

parameters within which any combination fulfils all the imposed boundaries and 

constraints.  

 The point above necessitate of a further addition consisting of iso-performance 

lines in order to allow the user to predict the working performance of a given 

geometrical configuration. This would determine a performance based domain 

of existence which allows the designer to predict performance for any of the 

possible combinations. 

 Also for the case of cycloidal transmission the definition of a design space would 

simplify the design process. Limiting conditions of eccentricity and annulus pins 

radii should be determined and used as boundaries of a dominium of feasible 

combinations of geometrical design parameters. 

 Further numerical method investigation and study should be conducted on full-

scale 3D models in order to evaluate the stress state along the face width without 

making the simplistic assumption of plane-stress state. 

 Further Finite Element analysis should be conducted under dynamic loading 

conditions including the inertial effect that would reduce the amount of 

approximation introduced with the quasi-static analysis. 

 Further numerical analysis should be conducted for the study of cycloidal gear 

trains. An appropriate 3D mesh is required for the evaluation of stresses 

occurring on the cycloidal disk lobes and on the annulus pins.  

 Experimental testing is necessary and should be carried out in order to provide 

further validation of the outcome of the study of high pressure angle 

configurations.  

 Further experimental testing should be carried out on non-standards epicyclic 

systems in order to evaluate the failure mechanisms due to higher pressure 

angles configurations. 

  Further testing of cycloidal gear train at low-speed high-torque conditions 

should be carried out for the evaluation of the maximum transmittable torque. 

The evaluation of the stress distribution on the cycloidal disk and annulus pins 
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by means of strain gauges would help to validate numerical results which in this 

case result difficult to compare given the absence of rating standards and 

established calculation methods for this category of devices. 
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Appendix A: Contour plot generator for external mating gears 
 

 

clear all 
close all 
clc 

  

  
m=1;     %module 
z1=16;   %pinion 
z2=28;   %gear  

  

  
alpha_degree=20;   %reference pressure angle 
alph=alpha_degree/180*pi; 

  
ha1_c=1; %pinion addendum factor 
ha2_c=1; %gear addendum factor 

  
hau=ha1_c;   %pinion producing cutter dedendum factor 
had=1;       %pinion producing cutter addendum factor 
hl=hau+had; %heigth factor of the rectilinear sector of pinion 

producing cutter 

  
% working pressure angle 
al_deg=alpha_degree; 
al_deg1=28.15; 
al_deg2=28.48; 

  
% working centre distance 
aw=22; 
aw1=22.74; 
% aw2=21.02; 

  
n=240; 
xx1=linspace(3,-3,n); 
xx2=linspace(3,-3,n); 
[X1,X2]=meshgrid(xx1,xx2); 

  
for i=1:n 
    for j=1:n 
        i; 
        j; 
        x1=xx1(j); 
        x2=xx2(i); 
        Alphaw(i,j)=inv_alpha2(x1,x2,z1,z2,alph); 
    end 
end 

  

  

  
db1=m.*z1.*cos(alph);  %base diameter pinion 
db2=m.*z2.*cos(alph);  %base diameter gear 

  
y=(z1+z2)./2.*(cos(alph)./cos(Alphaw)-1); %centre distance 

modification coefficient 
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ha1=(ha1_c+y-X2).*m;   %addendum pinion 
ha2=(ha2_c+y-X1).*m;   %addendum gear 

  

  
da1=m.*z1+2.*ha1;      %tip diameter pinion 
da2=m.*z2+2.*ha2;      %tip diameter gear 

  
a_w=(((z1+z2)/2)+y).*m; %working centre distance 

  

  

  
% atest=(((z1+z2)/2)+((z1+z2)./2.*(cos(alpha)./cos(20/(180*pi))-

1))).*m 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
Q1=db1./da1; 
Q1(Q1>1 | Q1<-1)=nan; 
Q2=db2./da2; 
Q2(Q2>1 | Q2<-1)=nan; 
alpha_a1=acos(Q1);  %pinion tooth profile angle at the tip diameter  
alpha_a2=acos(Q2);  %gear tooth profile angle at the tip diameter 

  
inv_alpha=tan(alph)-alph;          %inverse involute functions 
inv_alpha_a1=tan(alpha_a1)-alpha_a1; 
inv_alpha_a2=tan(alpha_a2)-alpha_a2; 
inv_alphaw=tan(Alphaw)-Alphaw; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%% working pressure angle 

  
Alpha_deg=Alphaw*(180/pi); 

  
figure(1) 
contour (X1,X2, Alpha_deg, [al_deg al_deg],'r','ShowText', 

'on','DisplayName','\alpha_w [°]'); 
hold on 

  
% title('area of feasible combinations'); 
set(gca,'fontweight','bold','fontsize',10); 
xlabel('x_1','fontweight','bold','fontsize',20); 
ylabel('x_2','fontweight','bold','fontsize',20); 
set(get(gca,'ylabel'),'rotation',0) 

  
%%%%%%%%%%%%%%%%%% working centre distance 

  

  
contour (X1,X2, a_w, [aw aw],'g','ShowText','on','DisplayName','a_w'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%% contact ratio 
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eps_a=1; 
eps_a1=1.2; 
eps_a2=1.4; 

  
%constant value of contact ratio 

  
CR=1./(2.*pi).*(z1.*tan(alpha_a1)+z2.*tan(alpha_a2)-

(z1+z2).*tan(Alphaw)); 

  
contour(X1,X2,CR,[eps_a 

eps_a],'b','ShowText','on','DisplayName','\epsilon'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%condition of non undercutting 

  

  
x1_undercut=(hl-hau)-(1/2).*z1.*sin(alph)^2 
x2_undercut=ha2_c-(1/2).*z2.*sin(alph)^2; 

  
contour(X1,X2,X1,[x1_undercut 

x1_undercut],'ShowText','on','DisplayName','x_1 min'); 
hold on 
contour(X1,X2,X2,[x2_undercut 

x2_undercut],'ShowText','on','DisplayName','x_2 min'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%Isograms of interference 

  
INT_p=-z2.*cos(alph)*tan(alpha_a2)+(z1+z2)*cos(alph)*tan(Alphaw)-

z1*sin(alph)+2*(((hl-hau)-X1))/sin(alph); 

  
INT_g=-z1.*cos(alph)*tan(alpha_a1)+(z1+z2)*cos(alph)*tan(Alphaw)-

z2*sin(alph)+2*((ha2_c-X2))/sin(alph); 

  
contour(X1,X2,INT_p,[0 0],'c','ShowText','on','DisplayName','int_1'); 
hold on 
% contour(X1,X2,INT_p,[0.3 0.3],'ShowText', 'on'); 
% hold on 
contour(X1,X2,INT_g,[0 0],'m','ShowText','on','DisplayName','int_2'); 
hold on 
% contour(X1,X2,INT_g,[0.3 0.3],'ShowText', 'on'); 
% hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
% tooth thickness 

  
Sa1=0.2;  
Sa2=0.2; 
Sa11=0;  
Sa22=0; 
Sa111=0.4;  
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Sa222=0.4; 

  
TT_p=da1.*((pi./(2*z1))+((2*X1/z1)*tan(alph))+inv_alpha-inv_alpha_a1); 

  
TT_g=da2.*((pi./(2*z2))+((2*X2/z2)*tan(alph))+inv_alpha-inv_alpha_a2); 

  

  
contour(X1,X2,TT_p,[Sa1 

Sa1],'y','ShowText','on','DisplayName','s_a_1'); 
hold on 
contour(X1,X2,TT_g,[Sa2 Sa2],'Color',[1 0.5 

0],'ShowText','on','DisplayName','s_a_2'); 
hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 
legend('\alpha_w [°]','a_w [mm]','\epsilon','x_1 min','x_2 

min','int_1','int_2','s_a_1','s_a_2','Location','southwest'); 
% legend('s_a_1','s_a_2','Location','southwest'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
x1_xaxis=0; 
x2_yaxis=0; 

  
contour(X1,X2,X1,[x1_xaxis x1_xaxis],'k'); 
hold on 
contour(X1,X2,X2,[x2_yaxis x2_yaxis],'k'); 
hold on 
contour (X1,X2, Alpha_deg, [al_deg1 al_deg1],'r','ShowText', 

'on','DisplayName','\alpha_w [°]'); 
hold on 
% contour (X1,X2, Alpha_deg, [al_deg2 al_deg2],'r','ShowText', 

'on','DisplayName','\alpha_w [°]'); 
hold on 
contour (X1,X2, a_w, [aw1 aw1],'g','ShowText', 

'on','DisplayName','a_w'); 
hold on 
% contour (X1,X2, a_w, [aw2 aw2],'g','ShowText', 

'on','DisplayName','a_w'); 
hold on 
contour(X1,X2,CR,[eps_a1 

eps_a1],'b','ShowText','on','DisplayName','\epsilon'); 
hold on 

 

 

Where the MATLAB function inv_alpha2 calculates the working pressure angle for 

external mating gears. 

 

function [alphaw]=inv_alpha2(x1,x2,z1,z2,alpha) 

  
TOLL=1e-3; 
invalphaw=2*(x1+x2)/(z1+z2)*tan(alpha)+tan(alpha)-alpha; 
alphaw=1; 
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for i=1:1000 
    alphaw_new=alphaw+(invalphaw-tan(alphaw)+alphaw)/tan(alphaw^2);  
    if abs(alphaw_new-alphaw)<TOLL 
        break; 
    end 
    alphaw=alphaw_new; 
end 

  
if i==1000 
    alphaw=nan; 
end 
    alphaw(find(alphaw<0))=nan; 
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Appendix B: Contour plot generator for internal mating gears 
 

 

 

clear all 
close all 
clc 

  
m=0.965;     %module 
z1=28; 
z2=71; 
i=z2/z1; %gearing ratio 
alpha_degree=24;   %reference pressure angle 
alpha=alpha_degree/180*pi; 
ha1_c=1; %rack addendum coefficient 
ha2_c=1; 
hf2_c=1.25; 

  
n=241; 
xx1=linspace(-3,3,n); 
xx2=linspace(-3,3,n); 
[X1,X2]=meshgrid(xx1,xx2); 

  
for i=1:n 
    for j=1:n 
        i; 
        j; 
        x1=xx1(j); 
        x2=xx2(i); 
        Alphaw(i,j)=inv_alpha2_int(x1,x2,z1,z2,alpha); 
    end 
end 

  

  
db1=m.*z1.*cos(alpha);  %base diameter pinion 
db2=m.*z2.*cos(alpha);  %base diameter gear 
y=(z2-z1)./2.*(cos(alpha)-cos(Alphaw))./cos(Alphaw); %centre distance 

modification coefficient 
ha1=(ha1_c+X1).*m;   %addendum pinion 
ha2=(ha2_c-X2).*m;   %addendum gear 
hr2=(hf2_c+X2).*m; 
da1=m.*z1+2.*ha1;    %tip diameter pinion 
da2=m.*z2-2.*ha2;    %tip diameter gear 
dr2=(z2+(2.*(hf2_c+X2)).*m); 
a_w=(((z2-z1)/2)+y).*m; %working centre distance 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
Q1=db1./da1; 
Q1(Q1>1 | Q1<-1)=nan; 
Q2=db2./da2; 
Q2(Q2>1 | Q2<-1)=nan; 
alpha_a1=acos(Q1);  %pinion tooth profile angle at the tip diameter  
alpha_a2=acos(Q2);  %gear tooth profile angle at the tip diameter 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
L1=db2./dr2; 
L1(L1>1 | L1<-1)=nan; 
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alpha_a3=acos(L1); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
inv_alpha=tan(alpha)-alpha;          %inverse involute functions 
inv_alpha_a1=tan(alpha_a1)-alpha_a1; 
inv_alpha_a2=tan(alpha_a2)-alpha_a2; 
inv_alphaw=tan(Alphaw)-Alphaw; 
inv_alpha_a3=tan(alpha_a3)-alpha_a3; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 
figure(1) 

  

  
% working pressure angle 

  
al_deg=alpha_degree; 
al_deg1=30.51; 
Alpha_deg=Alphaw*(180/pi); 

  
contour (X1,X2, Alpha_deg, [al_deg al_deg],'r','ShowText', 

'on','DisplayName','Alpha_deg'); 
hold on 

  
set(gca,'fontweight','bold','fontsize',10); 
xlabel('x_e','fontweight','bold','fontsize',20); 
ylabel('x_i','fontweight','bold','fontsize',20); 
set(get(gca,'ylabel'),'rotation',0) 

  
% working centre distance 

  
aw1=21.50; 
aw2=22; 
aw3=20.74; 

  
contour (X1,X2, a_w, [aw1 

aw1],'g','ShowText','on','DisplayName','a_w'); 
hold on 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%contact ratio 

  
eps_a=1.0;    %constant value of contact ratio 
eps_a1=1.2; 
CR=1./(2.*pi).*(z1.*tan(alpha_a1)-z2.*tan(alpha_a2)+(z2-

z1).*tan(Alphaw)); 

  
contour(X1,X2,CR,[eps_a 

eps_a],'b','ShowText','on','DisplayName','eps'); 
hold on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%condition of non undercutting 

  
x1_undercut=ha1_c-(1/2).*z1.*sin(alpha)^2; 

  
contour(X1,X2,X1,[x1_undercut 

x1_undercut],'ShowText','on','DisplayName','und_2'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
%tooth thickness 
% eta=cos(z2*m*cos(alpha)./da2) 
Sa1=0.2; 
Sa2=0.2; 

  

  
TT_p=da1.*((pi./(2*z1))+((2*X1/z1)*tan(alpha))+inv_alpha-

inv_alpha_a1); 
TT_p(find(TT_p<0))=nan; 

  
TT_r=(dr2.*((pi./(2*z2))+((2*(X2)/z2)*tan(alpha))+inv_alpha-

inv_alpha_a3)).*m; 

  
TT_g=da2.*((pi./(2*z2))-((2*X2/z2)*tan(alpha))-

inv_alpha+inv_alpha_a2); 
TT_g(find(TT_g<0))=nan; 

  
M=min(TT_g); 
L=min(M) 
N=L+0.0000001 
contour(X1,X2,TT_p,[Sa1 

Sa1],'y','ShowText','on','DisplayName','TT_2'); 
hold on 
contour(X1,X2,TT_r,[Sa2 Sa2],'ShowText','on','DisplayName','TT_r'); 
hold on 
contour(X1,X2,TT_g,[N N],'color',[1 0.5 

0],'ShowText','on','DisplayName','TT_3'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%% 

  
% % Isograms of interference 
Int_1=(z1/z2)-1+tan(alpha_a2)./tan(Alphaw); 

  
contour(X1,X2,Int_1,[0 0],'c','ShowText','on','DisplayName','Int_1'); 
hold on 

  
k=((da2.^2-da1.^2-4.*a_w.^2)./(4.*a_w.*da1)); 
k(find(k>1))=nan; 
p=acos(k); 
teta1=p+inv_alpha_a1-inv_alphaw; 

  
b=(4.*a_w.^2+da2.^2-da1.^2)./(4.*a_w.*da2); 
b(find(b>1))=nan; 
teta2=acos(b); 
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Int_2=(teta1.*(z1./z2)+inv_alphaw-inv_alpha_a2)-teta2; 

  
contour(X1,X2,Int_2,[0 0],'m','ShowText','on','DisplayName','Int_2'); 
hold on 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 

  
legend('\alpha_w [°]','a_w [mm]','\epsilon','x_e 

min','s_a_e','s_a_i','int_1','int_2','Location','southeast'); 

  
contour (X1,X2, a_w, [aw2 

aw2],'g','ShowText','on','DisplayName','a_w'); 
hold on 
contour (X1,X2, a_w, [aw3 

aw3],'g','ShowText','on','DisplayName','a_w'); 
hold on 
contour(X1,X2,CR,[eps_a1 

eps_a1],'b','ShowText','on','DisplayName','CR'); 
hold on 
contour (X1,X2, Alpha_deg, [al_deg1 al_deg1],'r','ShowText', 

'on','DisplayName','Alpha_[deg]'); 
hold on 

  
x1_xaxis=0; 
x2_yaxis=0; 

         
contour(X1,X2,X1,[x1_xaxis x1_xaxis],'k')%,'DisplayName','X1'); 
hold on 
contour(X1,X2,X2,[x2_yaxis x2_yaxis],'k')%,'DisplayName','X2'); 
hold on 

 

Where the the MATLAB function inv_alpha2_int calculates the working pressure angle 

for internal mating gears: 

 

function [alphaw]=inv_alpha2_int(x1,x2,z1,z2,alpha) 

  
TOLL=1e-3; 
invalphaw=2*(x2-x1)/(z2-z1)*tan(alpha)+tan(alpha)-alpha; 
alphaw=1; 

  
for i=1:1000 
    alphaw_new=alphaw+(invalphaw-tan(alphaw)+alphaw)/tan(alphaw^2);  
    if abs(alphaw_new-alphaw)<TOLL 
        break; 
    end 
    alphaw=alphaw_new; 
end 

  
if i==1000 
    alphaw=nan; 
end 

     
alphaw(find(alphaw<0))=nan; 
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Appendix C: Cycloidal drive, technical drawings  
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