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 ABSTRACT 

The thesis presents the first comprehensive analysis of energy demand in Sub-

Saharan Africa (SSA) by analysing the demand functions for both aggregated and 

disaggregated (by energy types) energy demand models. The main aim of the 

study is to explore the impact of income, price, economic structure, urbanisation 

and population on the demand for energy in SSA for the period 1980 to 2014. To 

achieve this aim, the study adopts a panel data model approach to analyse 

secondary data sourced from publicly available and widely used energy and 

economic databases.  

The aggregate demand model analysis reveals that income, urbanisation and 

energy prices are significant drivers of aggregate energy demand in the long run in 

SSA. The panel model was analysed using the panel cointegation technique. From 

the results, there is evidence that as consumers earn more, they are able to acquire 

more energy gadgets and appliances. Similarly, with economic growth, both new 

and existing firms can expand their production scale which increases the overall 

amount of energy consumed. The results also suggest that a rise in rural-urban 

migration increase the total energy consumed, as consumers move towards the use 

of modern energy equipment that is more accessible in urban areas. The results 

also indicate that, in accordance with economic theory and the law of demand, an 

increase in the price of energy reduces the total amount of energy consumed, 

though such response is found to be fairly inelastic.  

For the disaggregated models, the specific individual energy types analysed are: 

electricity, petrol, diesel, liquefied petroleum gas (LPG), kerosene and solid 

biomass. From the panel linear static models employed, the analysis shows that 

economic structure, urbanisation, population and income are all significant drivers 

of the demand for the energy types analysed in SSA. This suggests that as 

population increases, there will be an increase in demand for each energy type in 

the region. The same response applies to an increase in urban population and 

income. From the results, this study found that population is the predominant 

factor behind the increase in demand for the analysed energy types, with the 

highest elasticity. The results are in line with the theory of demand.  



ii 

The identified factors, their analysed impacts on the demand for energy and the 

reported elasticities, whilst increasing our academic knowledge of the main 

determinants of energy in SSA, can also help policymakers prepare evidence-

based and more effective energy demand management, to meet the energy need of 

consumers in the region. The findings suggest the need for stringent energy 

conservation policies through effective energy efficiency practice in all the sixteen 

countries analysed, to ensure that an increase in energy use does not lead to more 

greenhouse gas (GHG) emission and the produced energy is well utilized. 

Furthermore, there is a need for increased competition through the use of 

independent power companies to improve energy service delivery and markets in 

Sub-Saharan Africa.  
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Chapter 1 : Introduction 

1.1 Chapter overview 

This chapter starts with a brief overview of the context and background of the 

issue investigated in this PhD thesis. The research aim and objectives to answer 

the main research question are clearly stated, alongside the contribution to 

knowledge. The chapter concludes by introducing the overall structure of the 

thesis.  

1.2 Context and background 

It has been well articulated by academics that energy demand modeling plays a 

crucial role in effective energy planning, strategy formulation and sound energy 

policy recommendations (Bhattacharyya and Timilsina, 2010). The theory of 

demand provides a useful account of how changes in income and other factors, 

which influence the demand for energy, can be modelled. This has been used to 

model energy demand in both developed and developing countries.  

Energy is an integral part of a modern economy, because it is an important factor 

of production employed in the production of many goods and services, when 

combined with capital and labour (Keho, 2016). It is also the main factor behind 

global warming due to greenhouse gas emissions. The projected increase from 

46% to 58% in global energy demand is expected to be predominantly from 

developing countries (EIA, 2007). This may explain why the past decade has seen 

a rapid development of energy demand models in many developing countries, 

including Sub-Saharan Africa (SSA). The increase in energy demand modelling in 

SSA is due to many other compelling reasons. 

SSA population accounts for 14% of the global population but only 4% of the 

total energy consumed (IEA, 2014). Most of the energy consumed is derived from 

solid biomass like fuelwood and charcoal which accounts for 75% of the total 

energy consumed in the region (Lambe et al., 2015). The consumption of solid 
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biomass (see Figure 1.1) used by the residential sector for cooking has adverse 

effects on the environment and health (Rahut et al., 2016). Despite the adverse 

health implications, wood fuel use for cooking and heating is still on the increase 

across the region (Sulaiman et al., 2017). The associated health issue includes the 

risk of severe respiratory infections in the under 5 age group, lung cancer, and bad 

pregnancy outcomes. At both the micro and macro level, there are adverse 

implications linked to the use of solid biomass for cooking. At the macro level, 

research has shown that in 2010 for example, US$12 billion was lost in SSA due 

to the health, environmental and economic costs by households to biomass use 

(Lambe et al., 2015). Furthermore, at the micro and household level, the time used 

by women and young girls for collecting solid fuel could have been used for other 

productive activities. The time spent varies across the region, with an average of 

2.1 hours per day, while the time spent in Sierra Leone is as high as 5 hours per 

day (Rysankova et al., 2014). Even in urban areas of SSA, solid biomass is still 

widely used in the form of charcoal.  

Figure 1.1: Household sources of cooking fuel 

(Source: Rysankova et al., 2014) 

The majority of the population of 1.01 billion (World Bank, 2015) in SSA live in 

rural areas.  However, the last few decades have recorded an increase in urban 

population, from 22.1% in 1980 to 38% in 2015 (World Bank, 2015). The slump 

in commodity prices has also reduced the rate of growth of GDP (the percentage 

annual change of the size of the economy in terms of the dollar amount of goods 

and services produced) from an average of 6% recorded in the last decade to 3.5% 
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in 2015 (Newiak, 2016). According to Newiak (2016), a growth rate of 4% is 

projected for 2017, due to low commodity prices (World Bank, 2016).  

Figure 1.2:  Real GDP growth rate in SSA 

(Data Source: Newiak, 2016) 

The reported economic growth rates (see Figure 1.2) have not led to an increase in 

per capita income or the standard of living. The region has remained the poorest 

region in the world due to a higher increase in population than GDP growth 

(Newiak, 2016). The top 10 countries with the highest fertility rates in the world 

are in SSA (PRB, 2013). The number of young people between the age of 10 and 

24 in SSA is the highest in the world, currently at 324.5 million, a number 

expected to increase to 436 million by 2025 (UNFPA, 2012). An increase in 

energy supply would reduce the economic hardship in the region because it would 

provide more opportunities for the youthful population.  Modern energy can lead 

to the creation of more jobs (also through self employment) and good industrial 

and manufacturing sectors.  

Of course, energy is a ‘necessary but not sufficient’ condition for the economic 

growth of a country (Bildirici, 2013). Access to modern energy is needed to foster 
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economic growth, social development and healthy living (IEA, 2015). Studies 

have predicted that there will be a $15 increase in the Sub-Sahara African GDP 

for each dollar invested in the power sector (IEA, 2014). The power sector in SSA 

is the least developed when compared to other regions of the world, with a 

national electrification rate of only 32% (IEA, 2013).  

Evidence has also shown that people shift towards more modern energy sources as 

their income increases (see, for example, Brew-Hammond, 2007). An adequate 

power supply is a critical condition for sustainable development in the region, 

which is still afflicted by widespread poverty (70% of people in Sub-Saharan 

Africa live on less than US$2 per day, UNICEF 2014), high unemployment and a 

deficient healthcare system. Struggling small and medium scale enterprises 

(SMEs) and the few industries in the region would also perform better through a 

more adequate power supply, which would, in turn, aid the social and economic 

development of the region. In other words, for sustainable development in the 

region, energy is needed (Kaygusuz, 2012). This has been the focus of some 

research in developing countries, including Sub-Saharan African countries with 

several authors exploring the causality between economic growth and energy 

consumption (see, for example, the studies reviewed in Section 3.8 of Chapter 3, 

including Kraft and Kraft, 1978; Mensah, 2014; Akinlo, 2009; Odhiambo, 2009). 

1.3 The research gap 

A single empirical study that analyses both the cross-country aggregate energy 

demand and disaggregate demand by energy type in SSA, will provide 

information on the main determinants of energy demand. The findings of the 

study will guide academics, governments, policy makers and investors on how to 

meet the energy need of consumers so as to improve the standard of living, and 

also enhance SSA socio-economic development. Although a number of mostly 

single-country studies have investigated the determinants of energy demand in 

some African countries, no single study has examined the elasticities of energy 

demand at aggregate level and by energy type using the latest panel model 

techniques, for a large proposition of representative- SSA countries.   
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In addition, the present PhD study incorporates two important variables that have 

not been considered in previous studies that investigated energy demand in the 

region, namely, economic structure and the degree of urbanisation; both of which 

are important when considering the current trends and dynamics in SSA (as the 

results of this study will demonstrate). Furthermore, this is the most up-to-date 

study with a sample period ending in 2014 for the aggregate energy demand study 

in Sub-Saharan Africa. Likewise, it is the most up-to-date study for disaggregated 

energy demand by energy types in SSA, with a sample ending in 2013. 

1.4 Research aim and objectives 

The primary aim of this doctoral research is to fill the above gap in the literature 

by identifying and analysing the factors driving energy demand in SSA at 

aggregate and disaggregated level, by energy type. The empirical analysis 

investigates the impact of income, price, urbanisation, economic structure and 

population on aggregate and disaggregated (fuel type) energy demand in SSA. 

The specific objectives of the research are: 

(i) To provide a full and comprehensive analysis of the energy sources in the

region;

(ii) To critically review both the theoretical and empirical literature on energy

demand (energy consumption) in developing regions including SSA;

(iii) To provide a review of the aggregate and disaggregated pattern of energy

demand literature in the region;

(iv) To provide preliminary conclusions on the main energy issues and

prospects affecting the region;

(v) To develop a comprehensive econometric model for the analysis of a

cross-country aggregate and disaggregated (energy type) energy demand

function for SSA to estimate elasticities of energy demand to changes in

the explanatory variables;
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(vi) To make an original contribution to the existing body of knowledge on

energy demand in SSA and draw out relevant policy implications in light

of the research findings.

The focus of the research is Sub-Saharan Africa (SSA), which comprises of 47 

countries but 16 are analysed due to data constraints. The issue investigated is one 

which deserves attention so as to realise the economic and developmental 

potential of the region, and build the infrastructure needed to end energy poverty. 

Also, considering the urgent need for most of the countries to diversify from total 

dependence on mineral export, providing sufficient energy would open up more 

opportunities. Guided by a positivist approach, theory-based, a priori hypotheses 

are used and tested to verify and establish the demand for energy in SSA in this 

study.   

1.5 Contribution to knowledge 

This research makes an original contribution to knowledge because, to date, there 

is no single study of up-to date aggregate and disaggregated energy demand in 

Sub-Saharan Africa (SSA). The study analyses the demand for petrol, diesel, 

liquefied petroleum gas (LPG), electricity, kerosene and solid biomass in SSA. In 

other words, the impact of income, energy prices, urbanisation, population and 

economic structure on the demand for aggregate and disaggregate energy in SSA 

are investigated and presented in this PhD thesis. Secondary data from the 

International Energy Agency, the World Bank and the International Monetary 

Fund databases, which span over 33 years for 16 countries in the region, are used   

for the panel data econometric analysis.  

The findings can aid the development of an appropriate policy framework for 

meeting the energy need of consumers in the region while also enabling informed 

investment decisions in the development of interregional capital intensive energy 

systems across SSA. Especially when considering cash constraints and the 

expected future growth of energy consumption in developing countries, it is 

reasonable for policy makers and planners to be interested in evidence that can 
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guide decision making. It follows that information on present energy consumption 

patterns and the significant determinants of energy demand are critical tools for 

both investment and planning decisions in SSA. Therefore, the policy 

recommendations and implications that stem from the findings of the results of the 

study will guide governments across the region on how to reduce energy poverty 

across the region, and to meet the energy need of consumers.  

1.6 Thesis structure 

The structure of the thesis is as follows: 

Chapter 1 discusses the context and background of the issue, the research gap, 

research aim and objectives. The contribution made by the PhD research to 

knowledge is also stated in this chapter.  

Chapter 2 provides a detailed account of the different energy sources available in 

Sub-Saharan Africa. Both the renewable and non-renewable energy sources 

available in the region are discussed in detail using relevant statistics, to provide 

greater insights into the enormous energy sources in the region. The chapter 

concludes by pointing out that the account of the energy sources and infrastructure 

provided in the chapter, suggests that interregional cooperation of trade and 

supply of energy may be the way forward for the region, especially when 

considering the uneven distribution of the energy resources, the capital constraints 

and the low income level across the SSA region. 

In Chapter 3, a critical review of the main studies from the theoretical and 

empirical literature on aggregate and disaggregated energy demand in developing 

countries is presented. The first section of the chapter starts with coverage of the 

theoretical underpinnings of the study of energy demand, that is, the neo-classical 

economic theory of consumers’ utility optimising behaviour (Bhattacharyya and 

Timilsina, 2010; Dramani and Tewari, 2014). This theoretical lens is employed 

within utility theory and consumer behaviour in a microeconomic context, in the 

form of a household production function or a utility maximisation function. The 
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section concludes by showing how the microeconomics concept is used as the 

framework for the analysis at the macro level with mathematical derivations. The 

chapter then explores the different classifications of energy models in the 

literature, including static or dynamic, univariate or multivariate, top down or 

bottom up, identity versus structural or market share based approaches and 

forecasting models (see, for example, Jebaraj and Iniyan, 2006; Urban et al., 

2007; Swan and Ugursal, 2009; Suganthi and Samuel, 2012). The section ends by 

explaining the top down econometric models and the bottom up engineering and 

statistical models using relevant examples and studies from the literature. The 

chapter continues by reviewing different prior studies that analysed the aggregate 

and/or disaggregated energy consumption-economic growth nexus as well as 

energy intensity. The chapter concludes by identifying the main variables used for 

energy demand analysis, the shortcomings of existing studies and the frameworks 

used in the literature. The identified variables form the basis for the relevant 

variables to be considered for the empirical model in this PhD study.  

Chapter 4 provides an account of the methods used for the estimation of panel 

data models, which is the main methodological framework used for the empirical 

analysis in this PhD study. The definitions, derivations and interpretations of 

panel data models are discussed as adopted for the estimation of the aggregate and 

disaggregated analysis. The panel methods discussed is grouped under two main 

headings: panel linear models, and non-stationary linear models.   

Under the panel linear models, the fixed effects and random effects models that 

take into account the unobserved differences in the countries analysed in Sub-

Saharan Africa are discussed. The Prais-Winsten (PW) regression model is also 

explored due to its ability to correct for autocorrelation and heteroscedasticity, if 

detected. Under the other classification of panel models, the issues of stationarity 

and unit roots are explained, a basis which is then used for the discussion of panel 

unit root tests, before moving on to the discussion of panel cointegration. Both 

methods are used in the data analysis presented in Chapter 6. The chapter 

concludes with the motivation and rationale for the chosen methodological 

techniques for the empirical analysis.  
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Chapter 5 presents the dataset employed for the econometric analysis. In order to 

construct reliable econometric energy models and obtain valid results from which 

relevant inferences about energy policies can be drawn, it is important to have 

consistent long time series data on energy demand and the influencing factors 

(Pesaran et al., 1998). Therefore, the variables used are described for both the 

aggregate and the disaggregated energy demand in Sub-Saharan Africa. Sources 

of each of the variables used in the dataset are given, and the measurement 

problems associated with them is also discussed.  

 

Chapter 6 presents the results of the estimations obtained using the econometric 

software STATA 13. The econometric procedure employed for the aggregate 

energy demand analysis can be divided into three stages. First, the descriptive 

statistics of the data set used is examined alongside the analysis of the properties 

of each variable included in the regression through visual inspection of the plots 

of the relevant series and formal unit root tests. The a priori expectations of the 

relationship between the dependent variable and each of the independent variables 

are also stated. Second, the cointegration tests and the significance of the long-run 

estimated coefficients are presented and discussed. Third, the results of the 

corresponding Error Correction Model (ECM) estimates are illustrated and 

discussed.  

 

The results of the econometric analysis disaggregated by energy types is based on 

the determinants of demand for kerosene, petrol (gasoline), liquefied petroleum 

gas (LPG), solid biomass, diesel and electricity in SSA. The linear panel models 

in the context of fixed effects, random effects and Prais-Winsten models used in 

balanced panel models were used for the disaggregated analysis.  Attention was 

paid to the issue of multicollinearity, and the test was carried out in all the models 

that were analysed and presented.  

 

Chapter 7 offers a more in-depth discussion of the significance of the empirical 

results obtained. The discussion also reconnects with the findings of previous 

empirical studies that investigated areas closely linked to the objectives of the 
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present study. It is worth noting, however, that since no other study has attempted 

to analyse both the driving forces of aggregate energy demand and disaggregated 

energy demand by fuel types in Sub-Saharan Africa in a single study, a direct 

comparison of the results with previous empirical work was not straightforward. 

Chapter 8 begins with a summary of the main findings of the doctoral research. 

This is used to draw out various policy implications for SSA, whilst also 

highlighting the limitations of the research and profitable avenues for future 

research. 
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Chapter 2 : Energy Sources in Sub-Saharan Africa 

2.1 Chapter overview 

This chapter examines the main energy sources in Sub-Saharan Africa (SSA). It 

starts with a brief overview of the region, followed by the identification and 

discussion of energy sources. The chapter concludes by identifying the main 

energy issues affecting SSA.  

2.2 Regional overview of Sub-Saharan Africa 

Sub-Saharan Africa is located in the Southern part of the Sahara desert, 

comprising of four main sub-regions, Western, Central, Eastern and Southern 

Africa (as shown in Figure 2.1). The region is the second largest in terms of 

landmass after Asia, with 47 countries. It also has the second highest population 

when compared with other regions of the world. Sub-Saharan Africa occupies a 

land mass area of 23.6 million (sq.km) and is inhabited by 1.01 billion people 

(World Development Indicators, 2015).  

Approximately three quarter of the countries in the SSA region are among the top 

50 poorest countries in the world. In other words, 35 out of the 47 countries in the 

region are among the 50 poorest countries globally. Common features 

characterising these countries include: low income level; low production level; 

poor market structure; unskilled labour; and a high mortality rate. The average 

annual economic growth rate in the region is about 4%, while the percentage of 

people that live in poverty in Sub-Saharan Africa is 46.8% (World Development 

Indicators, 2014).  

Furthermore, from the total population in SSA of over a billion people, 

approximately 60% of them lack access to electricity, with 30 countries having 

systematic power shortages and/or rationing. The electrification rate and the 

average annual per capita consumption of power in the region are the lowest when 

compared to the other regions in the world. For instance, the electrification rate in 
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other developing regions like South Asia and Latin America are 70% and 94% 

respectively, compared to Sub-Saharan Africa at 32% (IEA, 2013). This is in 

sharp contrast to the abundant energy sources available in SSA (IEA Africa 

Energy Outlook, 2014; Onyeji, 2014). Therefore, the need to estimate the energy 

demand in the region cannot be overstated.  

The discussion that follows explores in detail the two main energy categories in 

SSA: non-renewable and renewable energy sources. However, it should be noted 

that the energy sources are not equally distributed across the region (Kebede et 

al., 2010, Mandelli et al., 2014), as will be shown in the discussion that follows.  

Figure 2.1: Regional Map of Africa (Source: IEA, 2014)  This 

map is without prejudice to the status of or sovereignty over any 

territory, to the delimitation of international frontiers and 

boundaries and to the name of any territory, city or area.
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2.3 Non-renewable energy sources    

Sub-Saharan Africa (SSA) has abundant fossil fuels and uranium resources in 

different countries across the region. The region is endowed with oil, gas, coal and 

uranium resources which may be sufficient in meeting energy needs of SSA 

consumers. A special report by the International Energy Agency on Africa’s 

energy outlook (IEA, 2014) states that the proven oil, gas and coal reserves in the 

region would be sufficient for another 100, 600 and 400 years, respectively. These 

estimates include new oil and gas reserves found in the last five years in SSA, 

which account for 30% of the total new discoveries in the world (IEA, 2014).  

Specifically, new discoveries were made in Kenya, Tanzania, Uganda and 

Mozambique. Examples include the offshore Rovuma basin with a large gas 

deposit in Mozambique, the Kwanza Basin in Angola with a large deposit of pre-

salt oil and gas, and the Keta-Togo-Benin oil Basin in Nigeria. These findings by 

the IEA clearly suggest two things. The first, is the increased interest in the 

African oil and gas resources by the international community (market). The 

second, is the fact that the prevailing energy crisis (for example, low access to 

electricity) in the region is due to the low use of the available energy resources.  

Interestingly, Kebede et al. (2010) suggest that three countries in the region, 

namely South Africa, Namibia and the Republic of Niger, are among the top ten 

uranium producers in the world. In addition, South Africa is also home to the 

largest coal reserve in the region. The next subsection provides a more detailed 

account of the four non-renewable energy sources mentioned in this section.  

2.3.1 Fossil fuel 

According to the IEA (2014) report, about 7 percent of the total world reserve of 

crude oil estimated at about 65 billion barrels, is located in the Sub-Saharan 

Africa region, while the total gas reserve is estimated at 6 percent of the world 

total. Some studies assert that 13 countries in the region have oil in commercial 

quantity and are exporters of crude oil (EIA, 2013; KPMG, 2013). These include 
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Angola, Cameroon, Chad, Congo, Cote D’Ivoire, Democratic Republic of Congo 

(DRC), Equatorial Guinea, Gabon, Ghana, Niger, Nigeria, South Sudan and 

Sudan.  

Oil production is led by Nigeria and Angola, which might explain why Angola is 

the second largest exporter of oil to China, after Saudi Arabia (Vines, 2012). 

However, most of the oil and gas reserves are located in the western regions 

(Kebede et al., 2010). This is evident by the layout of the Gulf of Guinea which is 

the main oil basin in the region, with Nigeria having the highest number of 

reserves. The basin extends from the North-Western part of Angola from Guinea, 

to Nigeria, Ghana, Ivory Coast, Democratic Republic of Congo, Congo 

(Brazzaville), Gabon, and Cameroon (KPMG, 2013).  

Prior to 2012, Sudan and South Sudan followed Nigeria and Angola in the level of 

oil production, and thus were the third largest producer of crude oil in the region. 

Most of the oil reserves are situated in South Sudan which is a land-locked 

country. On the other hand, Sudan has a port known as the Bashayer port, which 

stretches across the Red Sea. South Sudan uses the Bashayer port in Sudan for the 

export of its crude oil to the outside world. The political conflict and oil revenue 

sharing formula between the two countries, post-independence (2011 onwards), 

affected the production level and oil exports.  

The discovery of the Jubilee field in the Gulf of Guinea in 2007 along the Western 

part of the shoreline, enabled Ghana to join the league of oil producing countries 

in Sub-Saharan Africa. The Jubilee field was discovered during the exploration of 

the deep waters through the drilling of Mahogany-1 by Kosmos Energy (KMPG, 

2013). Oil production and exploration in the deep water oil reserve started in 2010 

but they are still at a relatively low level when compared to Nigeria or Angola. To 

exemplify this point, the proven oil reserve in Ghana is 700 million barrels, 

compared to Nigeria and Angola at 37 and 13 billion barrels, respectively. 

Nevertheless, Nigeria is the leading oil producer in the region, followed by 

Angola, with Ghana producing the lowest amount of oil (see Figure 2.2 below). In 

2013, the top three oil producers in SSA were Nigeria, Angola and Gabon. Each 
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produced 32 billion barrels, 11 billion barrels and 3.9 billion barrels of oil, 

respectively. 

Figure 2.2: Oil Production in 2013 

(Data source: IEA, 2014)  

Shell BP discovered crude oil in 1956 in the Eastern part of Niger Delta in 

Nigeria, at Oloibiri. Exploration of the resource started in 1958, when 5,100 

barrels were produced the day the field came on stream. In the Central African 

region, oil in Cameroon was discovered in 1955, through the discovery of the 

Logbaba and Souellaba oil reserves. The commercial potential of the oil was 

realised in 1972, with the exploration of Betika oil basin.  New oil wells were also 

discovered in Congo and Gabon’s deep waters in 2013 (IEA, 2014). Furthermore, 

the Zifiro complex exploration in the North Western region of Bioko Island in 

Equatorial Guinea was the beginning of oil production in the late 1900’s in the 

country. Lastly, the construction of the Chad-Cameroon pipeline facilitated oil 

exports and enabled Chad to start oil production in 2003 (IEA, 2014). 

2.3.2 Gas 

The Sub-Saharan African region holds about 6% of the world total natural gas 

resource. The share of the gas reserve in the global percentage is due to an 

increase of 80% in the new gas reserves discovered within the last few years. The 
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close relationship between gas and oil, has led to several decades of waste of gas 

through gas flaring in the exploration process of crude oil. Recent awareness 

about the commercial and environmental impact of gas flaring, notably by 

regulations from the Global Gas Flaring Reduction Partnership (GGFR), have led 

to a reduction in the amount of gas flared in recent years. In 2008, 15.5 billion 

cubic meters (bcm) of the total marketable natural gas of 31.35 bcm in Nigeria 

was lost to the atmosphere through gas flaring, mainly due to lack of facilities 

required to capture the gas (Mandelli et al., 2014).  

Figure 2.3: Gas Production in SSA in 1990, 2000 and 2013 

(Source: IEA World Gas Statistics Database, 2015) 

From Figure 2.3, it is evident that there has been an increase in gas production in 

SSA in recent years. In 1990 (blue parts of the chart), only 5 out of 11 countries 

produced gas. That is, Angola, Gabon, Nigeria, Senegal and South Africa were 

the only gas producers. After a decade, more gas discoveries and exploration in 

Cote D’Ivoire and Mozambique with reduction in gas flaring, led to an increase in 

the total amount of gas produced. In recent years, there has been a noticeable 

increase in gas production in the region, coupled with a recorded reduction in gas 

flaring, which can be attributed to increased awareness and regulation. The 2013 

(Green section of Figure 2.3) part of the chart shows that, after the year 2000, four 

more countries joined the gas producing countries, with existing players 

producing more gas. Cameroon, Congo, Democratic Republic of Congo and 
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Tanzania joined in 2007, 2003, 2003 and 2004, respectively (IEA World Gas 

Statistics, 2015).  

The drilling of a well in the Pande field by Gulf oil in 1962 led to the discovery of 

gas in Mozambique. Sasol oil also drilled five wells in the Tamane area and now 

explores gas in 33 gas wells in the country. This comprises of 15 and 18 

production wells in Pande and Tamane respectively (Collings, 2002). 

Mozambique exports her gas via pipeline to South Africa. 

In 2012, Nigeria was among the top five exporter of LNG (Liquefied Natural Gas) 

in the world, and exported an estimated amount of 950 billion cubic feet of LNG 

through the country’s six LNG trains (EIA, 2013). Nigeria and Equatorial Guinea 

transports LNG to Asia, Latin America and Europe. Angola started the 

exportation of LNG in 2013. The other gas producing countries use their 

production for local gas consumption. In Cameroon, Congo, Cote D’Ivoire, South 

Africa, and Tanzania, the gas produced was used primarily for power production 

in industries. Table 2.1 below shows the domestic natural gas production in gas 

producing countries in the region, between 2009 and 2013. In the table, countries 

are also ranked on the basis of the total amount of gas produced.  

Table 2.1: Five years Natural Gas Statistics 

Country 2009 2010 2011 2012 2013 Total Rank 

Angola 690 733 752 760 885 3820 6 

Cameroon 315 318 331 346 346 1656 8 

Congo 56 103 151 157 157 624 9 

DRC 9 9 9 9 9 45 11 

Cote D'Ivoire 1518 1655 1632 1780 1780 8365 3 

Gabon 248 331 373 384 384 1720 7 

Mozambique 3000 3284 3444 3863 4309 17900 2 

Nigeria 24409 32540 38341 41201 34425 170916 1 

Senegal 20 28 45 46 46 185 10 

South Africa 1235 1543 1362 1170 1170 6480 4 

Tanzania 655 787 870 995 995 4302 5 

  (Data Source: IEA, World Natural Gas Statistics) 
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In Table 2.1, data are expressed in million cubic meters. DRC denotes the 

Democratic Republic of Congo. From the data presented in the table, gas 

production was led by Nigeria, followed by Mozambique, while the least 

production was recorded in Democratic Republic of Congo. A visual 

representation of the data in Figure 2.4 highlights the gas production in the 11 

countries, using percentages.

Figure 2.4: Chart Showing Gas Producers in SSA by % share, 2009-2013 

2.3.3 Uranium 

Three countries in Sub-Saharan Africa, Namibia, South Africa and the Republic 

of Niger, are among the top ten uranium reserve holders in the world. Studies 

carried out by the International Energy Agency (IEA, 2014) confirm that the 

amount of uranium owned accounts for about 18% of the world total uranium 

sources. Specifically, 16% of the uranium used for nuclear power production is 

extracted from Namibia and the Republic of Niger (Kebede et al., 2010). This is 

also supported by Kessides (2014), who points out that in 2011, four countries in 
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SSA were among the top 15 uranium producers in the world. Apart from the three 

countries mentioned above, Malawi was included in this ranking.  

In Namibia, uranium was discovered in a desert around 1928, while commercial 

exploration started in 1976. The country has the largest uranium reserves in the 

region. The three main mines operating in Namibia are Rossing, Trekopje and 

Langer Heinrich, which are located in the East and Northeast of Swakopmund and 

West of the Walvis Bay, respectively (WNA, 2014). In 2013, the annual volumes 

of uranium mined were 2,098, 2,043 and 186 tonnes of U (U for Uranium) at the 

Langer Heinrich, Rossing and Trekopje mining sites, respectively (WNA, 2014); 

which according to the International Energy Agency amounted to 8.2% of the 

total global uranium produced.  

The uranium ore in the Republic of Niger is referred to as ‘Africa’s purest’ 

because of its high quality. The Republic of Niger is Africa’s second largest 

uranium producer. The French Bureau de Recherches Geologiques et Minières 

(BRGM) discovered uranium during copper exploration in Niger in 1957 while 

the mining volume of uranium in commercial quantity started in 1971, with the 

country producing 7.7% of the total mined uranium in the world as at 2013. The 

three major mines in the country, namely the Somair, Cominak and Somina 

uranium mines in the mining town of Arit and Akokan, produced a total of 4,528 

tonnes of U in 2013 (WNA, 2014).  

Uranium was discovered in Malawi in the 1980s, while exploration and 

production started in 2009. South Africa has the second largest global accessible 

uranium reserve in the world but the uranium is derived as a by-product with gold 

or copper (Dasnois, 2012). Other countries in SSA are also considering the 

inclusion of uranium in their energy mix in order to reduce their dependence on 

oil. According to the World Nuclear Association, other countries with uranium 

resources in the region are: Botswana, Central African Republic, Gabon, Guinea, 

Kenya, Mali, Nigeria, Tanzania, Uganda and Zambia (WNA, 2016).  
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The Southern African Power Pool (SAPP), which comprises of 12 countries in the 

Sub-region, with a well-developed interconnection infrastructure, has a total 

installed capacity of 61,894MW (SAPP 2016 annual report). An estimated 3.5% 

of the total energy in the SAPP is generated by nuclear energy, with almost 80% 

of the total capacity in South Africa (SAPP, 2013). Therefore, most countries in 

the sub-region have nuclear power in their energy mix due to the regional 

integration of supply. South Africa is the only country among the 47 countries in 

the SSA region that has operating nuclear reactors located in Koeberg. South 

African nuclear energy makes up about 5% of the energy mix, representing the 

only country in the region with two functioning nuclear plants, both located in 

Koeberg (EIA, 2013).   

Nuclear power stations are more cost efficient than fossil fuel plants using oil and 

gas, due to relative price stability as most of the cost involved lies in building the 

nuclear plant itself.  Construction of nuclear reactors is expensive but it is required 

in SSA in order to reduce gas or oil shortage problems experienced in most of the 

electricity plants across the region. There is a need for all sub-region energy 

blocks in SSA to include nuclear power in their energy mix to bridge the energy 

demand deficit. Building a nuclear power plant is a very capital intensive project 

but energy integration and cooperation is thought to reduce the financial burden 

on individual countries. As part of plans to develop the West Africa Power Pool 

(WAPP), seven countries in West Africa signed a three-year action plan to jointly 

develop an integrated West Africa nuclear power station. West African Integrated 

Nuclear Power Group (WAINPG) was created in 2015 by Benin, Burkina Faso, 

Mali, Niger, Nigeria and Senegal (WNA, 2016). 

Mining of uranium has economic, political, social and environmental impacts 

which must be considered carefully. First, uranium is the major resource used in 

building nuclear weapons. This constitutes both social and political problems, and 

the need for all countries with uranium mines to be part of the Nuclear Non-

proliferation Treaty (NPT), to ensure safety and the use of this resource solely in 

nuclear power plants. Secondly, stringent policies and legislation must be 

implemented to ensure the safety of miners, local population near the site and 
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careful disposal of waste from the exploration. Lastly, SSA countries must ensure 

that policies that forbid the unlawful release of Uranium into the atmosphere are 

enforced. Dasnois (2012) highlighted some of the adverse environmental effects 

of uranium. The author argues that if released into the atmosphere, it could lead to 

the deterioration of water quality and a reduction of the water needed for 

biodiversity and a healthy functioning of the ecosystem along with the loss of 

habitat and associated threats to some plants and animals in the region. Despite its 

potential in meeting the region substantial energy demand, careful consideration 

and planning is required to eliminate the drawbacks associated with using 

uranium.   

2.3.4 Coal 

Most of the proven coal reserves are in the Southern part of Sub-Saharan Africa. 

The known 36 billion tonnes reserves are in South Africa, Mozambique, 

Botswana, Tanzania, Zambia, Swaziland and Malawi. South Africa has 90% of 

the reserve (IEA, 2014) and, on a global basis, it has the ninth largest recoverable 

coal deposit (EIA, 2013). 

The production of petrol liquids in South Africa is through the highly developed 

liquefaction of coal at the Secunda plant, in Sasolburg, where the production 

started in 1955 (Collings, 2002). This involves the production of synthetic 

gasoline and diesel from coal (CTL) and also, the production of petrol liquids 

from gas (LTG) at the Mossel Bay plant (EIA, 2014). The plant is one of the 

largest of such operations in the world (Collings, 2002). The Richards Bay coal 

terminal is used for coal export, seventy million tons of coal in 2013 were 

exported, which is about a quarter of the total coal produced that year (EIA, 

2014).  

A report from the US Energy Information Administration (EIA, 2013) estimates 

that coal made up 72% of the primary energy consumed in 2013. The report also 

states that a high reliance on coal makes South Africa the world’s 14th largest

carbon dioxide emitter and the first among the African countries (EIA, 2014), 
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which is clearly as a result of coal fired stations and plants in the country. Despite 

their inherent environmental challenges, the use of coal fired stations in South 

Africa has some advantages over oil and gas fired plants. These include low 

storage cost, little or low price fluctuations and, above all, lower carbon dioxide 

emissions than traditional biomass used mainly in SSA. Although Nigeria does 

not have coal in her energy mix, it is still ranked as the second emitter of CO2 due 

to gas flaring.  

Mozambique and Zimbabwe are also major exporters of coal in the region. While 

Mozambique is much under developed, Zimbabwe is still using the traditional low 

cost open cast method, which has slowed down the full exploration of coal 

resources (IEA, 2014). Furthermore, coal fired power plants are being installed in 

Madagascar, Zambia, Botswana and Zimbabwe, using the coal produced locally 

for the production of electricity. 

2.3.5 Hydrocarbon basins and energy infrastructure 

The hydrocarbon basins in Sub-Saharan Africa may be classified into five main 

categories. This comprises of the Niger Delta basin, East African rift, East African 

coastal region basin, West African transform margin, and West coast pre-salt 

(Figure 2.5). Studies carried out by the US geological survey (USGS, 2012) 
found that the Niger Delta basin is the 12th richest but non-fully explored

hydrocarbon basin in the world. The Niger Delta basin is composed of several 

hundreds of small deposits of oil wells, mainly located in the Nigerian water. The 

Eastern part of the well that is the Niger Delta basin, is the source of Cameroon 

and Equatorial Guinea oil production. The Eastern Africa coastal regions contain 

several gas reserves including the Rovuma basin, which is located in the Southern 

part of Tanzania and in the Northern part of Mozambique. 

Exploration in the last five years estimates the basin to have 5 tcm of natural gas 

(IEA, 2014). West Africa transform margin extends from Mauritania to the Niger 

Delta region. This includes the Jubilee oil field of Ghana, and Liberia, Sierra 
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Leone and Cote D’Ivoire's oil reserves. However, the commercialisation of the oil 

resources in Liberia, Sierra Leone and Cote D’Ivoire are yet to be explored. 

The discovery of the East African rift hydrocarbon basin changed the oil and gas 

industry traditional players in Sub-Saharan Africa, by including the East African 

countries in the production frontier (Vines, 2012). Specifically, in 2007, the 

KingFisher oil basin, with an estimated 1.7 billion barrels of oil was discovered in 

Uganda, also the Lokichar basin with about 600 million barrels of oil was 

discovered in Kenya, while the Ogaden basin was discovered in Ethiopia.  

The main oil and gas infrastructures in the sub-regions include the West African 

Gas Pipeline (WAGP) in four Western Africa countries, Pande and Tamane gas 

production wells pipeline from Mozambique to South Africa Secunda plant, and 

the Lamu Port South Sudan Ethiopia Transport Corridor (LAPSSET) deep-water 

pipeline under construction.  



24 

Figure 2.5: Hydrocarbon Basin and Infrastructure (Source: IEA, 2014)  This 

map is without prejudice to the status of or sovereignty over any territory, to the 

delimitation of international frontiers and boundaries and to the name of any 

territory, city or area.
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The West Africa Gas Pipeline is one of the most notable energy infrastructures in 

the region; the 678 km pipeline which runs from Nigeria to Benin, Togo and 

Ghana was completed in 2007. The pipeline, which was opened in 2010, is known 

as the first high pressure gas transmission network in Africa (Kessides, 2014). The 

governments involved in the pipeline construction aim to achieve a cleaner source 

of power generation and to provide long-term access to modern energy in the 

region (WAGPCO, 2013). The gas is to be supplied from Nigeria to three 

countries’ thermal power station plants in addition to Nigeria's own. Regional 

integration in the supply of purified natural gas in the four West African countries 

through the West African Gas Pipeline (WAGP) suggests that this could be a way 

forward in solving the energy crisis in the region. With only four countries 

connected to the pipeline out of the eighteen countries in the sub region, this 

creates opportunities for more intra-regional trade in the sub-region and at a 

continental level (studies that support this view include Guansounou et al., 2007; 

Iwayemi, 2008; Ouedraogo, 2013; Demierre et al., 2015; Uddin and Taplin, 

2015).  

The pipeline used for the export of Mozambique’s gas to South Africa is an 

integrated 865km pipeline network that runs from the Pande and Tamane gas 

production wells in Mozambique to South Africa’s Secunda plant (Collings, 

2013). The pipeline according to one of the reports of the Sasol petrochemical 

company, which operates the coal liquefaction plant in South Africa, will enable 

the production of a cleaner energy through gas, with less environmental pollution 

associated with the production of synthetic fuels from coal in South Africa 

(SASOL, 2012). It will also provide more resources to be used in the production 

of petrochemicals and green power in South Africa.  

The ongoing Lamu Port South Sudan Ethiopia Transport Corridor (LAPSSET), 

whose construction began in 2012, is a deep-water port in Northern Kenya (Vines, 

2012). The pipeline will integrate oil production and transport oil between Kenya, 

South Sudan and Ethiopia, through regional pipelines, railways and roads in the 

countries. Vines (2012) also suggest that the revenue from the oil and gas in the 

region should be used in building more regional infrastructure.  
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From the discussion above, most of the energy infrastructure seems to be suitable 

for the trade or transport of non-renewable energy sources (see, for example, oil 

and gas pipelines, and power lines in Figure 2.5), in particular for oil and gas 

distribution in the region. The presence of more fuel based infrastructure may be 

explained, for example, by the fact that most of the power generation in the region 

is produced from fossil fuel. In 2011, over 80% of the regional power generated 

emerged from fossil fuels (Kessides, 2014). The main power pools are Southern 

Africa Power Pool (SAPP), East African Power Pool (EAPP), West African 

Power Pool (WAPP) and the Central African Power Pool (CAPP).  

Despite the existence of the above pools, there is still a need to provide for 

additional inter-regional power pool to cater mainly for renewable energy sources, 

to make some projects (such as the Grand Inga Dam proposed to be built in the 

Democratic Republic of Congo) economically viable. This will require extended 

cross border distribution and electricity transmission links between the home and 

host domestic economy, because it is expected that the power generated will be 

more than what is needed in the host domestic economy. According to Kessides 

(2014), the resultant effect of more inter regional connections are technical and 

political constraints. The construction of long electricity transmission cables in the 

region requires high technical know-how and skills, in terms of engineering and 

construction skills, and may also be affected by some political factors like 

conflicts and poor land tenure systems (Kessides, 2014). 

2.4 Renewable energy sources 

The sections above focused on the non-renewable energy sources, hydrocarbon 

basins and the energy infrastructure in Sub-Saharan Africa. The sub sections that 

follow highlight the renewable energy sources in the region in more detail. Sub-

Saharan Africa is not lacking in renewable energy sources, which could be 

exploited to meet the energy demand in the region. As argued by Onyeji (2014), 

the available energy resources are in abundance and could be used to meet both 

the present and the future energy needs in the region. Each of the renewable 
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energy sources available in SSA will be discussed in detail below, notably: 

hydropower, solar power, wind power, geothermal sources and bioenergy. 

2.4.1 Hydropower 

The river systems in Africa are among the largest in the world and account for 

about 13% of the total hydropower potential available globally. As noted by 

Kebede et al. (2010), five of Africa’s rivers - the Nile, the Congo, the Niger, the 

Volta, and the Zambezi - form the largest river systems in the world. Specifically, 

all the rivers mentioned are located in Sub-Saharan Africa, except the Nile which 

passes through Egypt to empty into the Mediterranean Sea. Furthermore, most of 

the hydropower potentials are in Cameroon, Congo, Democratic Republic of 

Congo, Ethiopia, Nigeria, Guinea, Senegal, Angola and Mozambique (IEA, 

2014).  

Hydropower ranks top among the different renewable energy sources used in Sub-

Saharan Africa, and its percentage in the total energy mix in the region is 

estimated to be about 16% (Onyeji and Jones, 2014). The river system in the 

Democratic Republic of Congo, known as the Congo, is the second largest river in 

the world after the Amazon, with a 42,000m3/s (meter cubic per second) flow

speed, and is also the second biggest in Africa after the River Nile, covering a 

land area of 4,700 kilometers (Onyeji and Jones, 2014). However, most of the 

hydropower potential available in the river has not been tapped to meet the energy 

demand in the region, due to financial constraints and conflicts in the country. 

This issue is at the forefront of discussions among policymakers in the region, 

including the New Partnership for Africa’s Development (NEPAD).  

A consensus was reached among major stakeholders to use the available 

hydropower potential to meet the power needs of the consumers in Sub-Saharan 

Africa. Stakeholders include governments in the region, national agencies (SAPP, 

NEPAD) and international organisations like the World Energy Council, World 

Bank, Africa Development Bank and the European Investment Bank. Propositions 

by the major stakeholders led to the proposed lnga lll (4.8GW) and Grand lnga 
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project of 44GW, in the Western side of the Democratic Republic of Congo, 

which will be implemented in seven phases. However, it should be borne in mind 

that as with any river system, the river is subject to seasonal variation on a year-

to-year basis. Also, building the large hydro plant will require more developed 

interconnection of energy supply systems and power pool in the region, as the 

power generated will be too large (estimated at 40,000 MW) for domestic supply 

and will need to be exported to other parts of the continent (Onjeyi, 2014). Hence, 

the infrastructure and projects that will facilitate the expansion of interconnections 

among the sub-regions should be taken seriously (Kalitsi, 2006).  

Hydropower is estimated to have the cheapest on-grid cost of generating 

electricity at $55/ MWh among the different renewable sources, based on different 

studies (see on-grid large hydro cost in Figure 2.6). Moreover, as argued by 

Kalitsi (2006), building dams and hydro projects have the advantage of facilitating 

water supply, irrigation systems, fishing activities and could also be a good source 

of tourist attraction where they are built. As stated earlier, there are many unused 

sources of hydro potential in Sub-Saharan Africa. The total estimated hydropower 

potential in the region is 283 GW, out of which only about 10% has been used so 

far. For instance, in 2012, the total on grid power generation capacity in the region 

was 90GW, which comprises of 45% coal mainly from South Africa, 22% hydro, 

17% gas from Nigeria, while 14% was from oil (IEA, 2014). Clearly, if more 

hydropower is exploited and employed to provide more power, this will reduce 

the prevailing energy poverty in the region.  
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Figure 2.6: Comparative cost of on-grid and off-grid power generation sources 

(Source: IEA Africa Energy Outlook, 2014) 

Apart from the low cost of production associated with using hydropower for 

energy generation, there are additional advantages that are associated with using it 

as a means of energy supply. This was highlighted in the study by Oyedepo 

(2012), who suggested additional benefits such as reduced impact on the 

environment, the potential of constructing a fishery, irrigation systems, flood 

prevention and, of course, power generation.  

Figure 2.6 above, presents the cost of different on-grid and off-grid power 

generation sources in SSA. Coal has the cheapest cost, while the cost of plant 

using gas varies depending on the specification. Wind has the second lowest cost, 

while solar is the most expensive out of the renewable on-grid sources of 

generating electricity. The lower part of the chart highlights the cost of off-grid 

power solutions. 

2.4.2 Solar power 

Sub-Saharan Africa has one of the best solar energy potential in the world. This 

stems from a geographical location near the equator, which provides the region 

320 days of sunshine (in most countries) per annum. The irradiance level varies 

across sub-regions, with the Southern sub-region having the highest insolation 
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level of 2,500KWh per m2 per day (IEA, 2014). However, in general, the whole

region has an insolation level of about 2,000 KWh per m2 per day in a year (IEA,

2014). This suggests that most part of the region meets the recommended 

threshold of 5 KWh/m2/day needed for the efficient functioning of solar thermal

facilities (Deichmann et al., 2010). This is also supported by Onyeji and Jones 

(2014), who argued that the average solar power intensity between the range of 

3,000 to 7,000 W/h/m2 in Sub-Saharan Africa, is higher than what is needed

normally to supply domestic loads.  

The power cost for a large on-grid and small off-grid solar PV technology, 

estimated to be approximately US $180/MWh and $310/MWh (IEA, 2014), 

represents the highest cost of producing electricity among the renewable energy 

sources. The relatively higher cost of production, however, has not discouraged 

some of the governments in the region. For instance, there is a 155MW Nzema 

plant in Ghana. Furthermore, photovoltaic panels provide a solution to the low 

electrification level in most of the countries in the region, by enabling the use of 

lighting, simple gadgets operation, rooftop systems in homes, in both the rural and 

urban areas. This particularly suits the off grid market in most of the countries in 

the region, as there is abundant sunlight to power the systems. Most countries 

across the SSA region encourage the use of small off-grid solar panels, but there 

is still a need for governments to make it more affordable through appropriate 

incentives and subsidies. Especially for the rural off-grid market, as this would 

also boost socio-economic development and reduce rural-urban migration.  

2.4.3 Wind energy 

Wind resources vary widely across Sub-Saharan Africa. Depending mainly on the 

country’s geographical location, each country has different on-shore and offshore 

potential. To be specific, most of the wind power potential lies in the Horn of 

Africa, the Eastern part of Kenya, the side of the West and Central Africa located 

around the borders of the Sahara, and lastly some areas in the Southern part of the 

region (Mukasa et al., 2015). A feasibility study on the Sub-Saharan Africa wind 

power potential by the African Development Bank (AfDB, 2012), found that 
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Somalia has the highest potential, followed by Sudan, Mauritania, Madagascar, 

Chad and Kenya, all with a high on-shore wind power. The study also highlighted 

that Namibia, Mozambique, Tanzania, Angola and South Africa have large 

offshore wind energy potential in the region.  

The result of the feasibility study, is supported by an earlier study by the African 

Development Bank Group (2004), as cited by Mukasa et al. (2013) who using a 

Wind Energy Simulation Toolkit (WEST) found that wind energy is highest in 

countries in the coastal areas, with wind speeds of about 7.0 m/s and 7.5 m/s.  

Specifically, the coastal area countries identified in the study are Eritrea, 

Seychelles, Somalia, Cape Verde, South Africa, and Lesotho. The wind energy in 

these countries could be used for commercial electric power generation (Mukasa 

et al., 2013), by building a wind power station, which is built in places with a high 

wind speed by putting in place wind farms.  

The exploitable wind power in SSA is about 1,300 GW (Mandelli et al., 2014). 

However, very little of the available wind power has been used. This is evident by 

the installed capacity at the end of 2013, which was about 190 MW. Most of the 

existing wind turbines are located in Namibia, Mauritius, South Africa, Kenya and 

Eritrea (Mukasa et al., 2013). In 2013, the smaller windmills in the Assab wind 

park in Eritrea, Mozambique and Namibia generated about 1MW, 300kW and 

200kW of energy in their energy mix, respectively. 

2.4.4 Geothermal sources 

SSA has one of the best geothermal potential in the world, which is mostly 

concentrated in the Eastern part along the rift valley, with an estimated potential 

between 10GW and 15GW (IEA, 2014). Two countries in the Eastern region, 

Kenya and Ethiopia, have the best geothermal sources in SSA, and Kenya being 

the first country in the region to use geothermal for power generation. The 

exploration of geothermal sources started in the 1960’s through the drilling of two 

wells in the Olkaria area of Kenya.  
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Further, the establishment of the Geothermal Development Company (GDC) in 

Nairobi, the capital city of Kenya, by the Kenyan government has the aim of 

harnessing the country’s huge geothermal potential, and producing energy from 

the cleaner source. Studies by the International Energy Agency, estimate that 

geothermal added about 250MW to the energy mix in Kenya, and with the annual 

drilling of forty wells per annum in the country, another 280MW will be added in 

the next two to three years (IEA, 2014).  

The government in Ethiopia, the Power Africa Initiative and other investors are all 

working to harness the available geothermal sources to produce power in the 

country. To illustrate this, the proposed Corbetti power project which aims to 

generate about 1GW is currently under development and planning, to be built in 

different phases over the next ten years (IEA, 2014).  

Geothermal as an energy source has some advantages over other renewable 

energy sources. Firstly, it is not seasonal nor fluctuates at different times like 

other renewable sources with annual variations in supply, like hydro power or 

solar power sources which cannot be available 24 hours a day, or all year round. It 

provides a reliable source of energy due to its non-intermittent nature. Secondly, 

with its low emission rate, geothermal is considered to be a clean source for 

energy production. Lastly, geothermal could also be used to reduce the energy 

poverty in SSA, as it provides a good alternative to using oil fired plants which 

could be expensive and unpredictable in terms of cost due to high dependence on 

oil which is susceptible to fluctuations in price.  

2.4.5 Bioenergy 

Several studies support the view that solid biomass is the dominant domestic fuel 

for cooking, drying and heating in SSA, and is also a key renewable energy source 

in the region (Kebede et al., 2010; Brew-Hammond, 2007; Karekezi, 2002). This 

may be explained by the high use of traditional biomass by the majority of the 

population in the residential sector, and also the availability of forest resources. 

Indeed, 33% of the landmass in SSA is dominated by forest, illustrating the 
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dependence on solid biomass by countries in the region. Wicke et al. (2011) 

argued that the primary energy supply in most of SSA is composed of 70- 90% of 

biomass, while at the same time the total energy consumption in these countries is 

made up of up to 95% of biomass. Furthermore, IEA (2014) estimates that there 

are about 130 billion tonnes of forest biomass in the region. Most of the forest 

regions are in Central and Southern Africa, with the largest share located in the 

Congo basin area. This may explain why traditional biomass from the use of 

firewood, animal dung and waste, make up a large percentage of the energy mix 

in most of the countries, as mentioned earlier. 

Previous studies such as Owen et al. (2013) have noted the benefits of biomass 

energy for SSA. The benefits of the consumption of biomass highlighted by the 

study are: large availability; familiarity and lower price than most fossil fuels and 

electricity sources; job creation, energy security and diversity; reduced climate 

change; avenue for technological advancement and modernity; commercial 

investment in electricity generation from combined heat and power (CHP) plant 

using biomass as the main fuel; amongst others. Jobs can be created with the 

construction of biofuel plants, which will also help to provide a clean source of 

energy. The authors argued that biomass in form of charcoal and firewood can be 

bought according to household income, and its supply is never scarce unlike 

liquefied petroleum gas. They explained further that when wood fuels are sourced 

in a sustainable way, they are carbon-neutral and can help to mitigate climate 

change. This suggests that the adoption of technology for biomass creates 

advancement for both domestic and commercial application (Owen et al., 2013). 

As further pointed out by Onyeji (2014), the use of biofuels and biogas has some 

advantages. First, the fuel from biomass residues could be used for operating 

cooking appliances. Second, it reduces the indoor air pollution and green house 

gas (GHG) emissions associated with the traditional use of biomass through 

burning, resulting in improvements in health conditions. The time used in 

gathering the biomass residues especially firewood, animal waste and other 

agricultural residues could be spent on other productive activities. Lastly, in the 

rural areas, both bioethanol and biodiesel could be used as cost efficient 
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alternatives for use in vehicles used for transport purposes and the running of 

some of the agricultural equipments in the farms.  

Wicke et al. (2011) add that the decrease in the use of traditional biomass could 

be linked to the increase in income levels in some countries, which shows clearly 

that the problems associated with the use of this form of energy, could be as a 

result of the widespread poverty in SSA. For example, according to a report by 

Mundi (2014), 60.5% of the population in Zambia lives below the poverty line 

(that is, below $2 per day), which may also explain why most of the people in the 

rural areas use biomass for cooking, while at the same time about 90% of the 

household in Zambia use charcoal for cooking. This suggests that both variables 

are closely linked. For example, in Nigeria, in 2011, traditional biomass made up 

83% of the primary energy consumed (EIA, 2013), while the poverty figure stood 

at more than 70% of the total population, in spite of the increase in economic 

growth (see appendix 1). 

Further, in countries like Burundi, Rwanda, Mozambique, Burkina Faso, Benin, 

Niger and Madagascar, the amount of traditional biomass in their energy mix 

ranges between 85 and 91% (UNECA, 2006 as cited in Dasappa, 2011). Recent 

data also confirms the high use of biomass in SSA as depicted in Figure 2.7 

below. In 2013, traditional biomass accounted for most of the total energy 

consumed: 96% in Angola, Benin, Gabon, Mozambique and Togo; 97% in 

Cameroon, Congo, Cote D’Ivoire, Eritrea, Kenya and Zimbabwe; 99% in Nigeria 

and Democratic Republic of Congo; 98% in Niger; 83% in Bostwana and 

Cameroon; 89% in Senegal; 94% in Sudan and Zambia. Namibia had the least 

proportion of solid biomass in her energy mix at 52%. Figure 2.7 below, 

illustrates the data more clearly.  

It is evident from Figure 2.7 that energy supply and economic growth have both 

been outpaced by a higher increase in population size. This may explain why the 

use of traditional biomass has increased in some SSA countries over time. For 

instance, the amount of solid biomass in Niger energy mix was 85% in 2006 but 

the proportion increased to 98% in 2013 due to an increase in the population 
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growth rate.  Niger population increased by 30.35% between 2006 and 2013 

(World Development Indicators, 2015). The same trend is observed in other 

countries with high biomass consumption.   

Figure 2.7: Energy Consumption by Energy Types in 2013 

(Source: IEA Energy Consumption Data, 2015) 

However, despite the wide use of traditional biomass and the high level of poverty 

(above 50%, World Bank, 2014) in most of the countries in the region, some of 

the countries in SSA are adopting the use of bioenergy systems as part of their 

energy supply mix. To exemplify this, in the Eastern and Southern Africa region, 

the installed existing energy from bioenergy is around 325MW. This needs careful 

consideration, as some studies have shown that energy from bioenergy sources are 

more expensive and less competitive when compared to those produced from 

fossil fuel (see, e.g., IEA, 2014). However, this is to be expected as most 
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renewable energy sources are more expensive than using fossil fuel like coal for 

power generation.  

Clearly, at the regional level, there are opportunities to reduce the energy poverty 

and the high reliance on the traditional use of biomass but challenges and 

limitations exist. 

2.5 Chapter summary 

The objective of this chapter was to highlight the main energy sources in SSA, 

and to discuss each of the available sources in more detail so as to provide a 

context for this PhD study, and present the energy outlook for the region under 

investigation. From the previous studies reviewed, and also using reports and data 

from energy institutions, it is evident that Sub-Saharan Africa has abundant 

energy resources that can be used to meet the energy needs of consumers. The 

discussion of the non-renewable and renewable energy sources reveals that both 

energy sources are available in considerable quantities but they are not evenly 

distributed across the region. Moreover, the account of the energy sources and 

infrastructure presented in this chapter clearly shows that interregional 

cooperation in trade and the supply of energy presents a way forward for the 

region, considering the capital constraints and the low income level in the region.  

The next chapter presents a critical review of the theoretical and empirical 

literature on energy demand.  
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Chapter 3 : A Critical Review of the Literature on Energy 

Demand 

3.1 Chapter overview 

A considerable amount of studies have been published on both the aggregate and 

disaggregated energy demand in the energy literature. Several attempts have been 

made at estimating energy demand, with researchers using various methods and 

obtaining different results, which have either confirmed or contradicted earlier 

findings. The empirical model used in this study is based on the knowledge gained 

from the review of the existing literature on energy demand. Specifically, various 

models which analyse energy demand in developing regions are reviewed and 

used to develop a comprehensive framework for the empirical analysis in this 

study. 

The objective of this chapter is to undertake a systematic review of the established 

theoretical and empirical studies on energy demand according to the techniques 

used for the analysis, in order to provide a framework for the analysis of energy 

demand in Sub-Saharan Africa (SSA) that accounts and addresses gaps and 

shortcomings of previous research in this field.  

Energy studies, in both developed and developing countries, may be classified 

into four main groups: 

 Aggregate demand for energy

 Disaggregated demand for energy

 Energy consumption and economic growth

 Determinants of energy intensity

Previous findings based on the classification above will be reviewed critically in 

this chapter. However, before the studies are discussed, the next section provides 
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a discussion of the general theoretical framework underpinning the study of 

energy demand.  

3.2 Theoretical background: Energy demand 

The main economic theory used by researchers for the study of energy demand, is 

based on the neo-classical economic theory of consumers utility optimising 

behaviour (Bhattacharyya and Timilsina, 2010; Dramani and Tewari, 2014). This 

is employed within utility theory and consumer behavior in a microeconomic 

context, in the form of a household production function, or a utility maximisation 

function. Researchers that studied either the industrial or commercial energy 

demand have analysed the demand in each sector within the theory of the firm as 

well (Bhattacharyya and Timilsina, 2010). The microeconomics concept that is 

used as the framework for the analysis at the macro level is discussed below.  

Central to the whole discipline of economics, is the investigation of how prices 

and income impact on the demand for goods and services. To this end, economic 

theory has provided some (now well established) theoretical models for such 

analysis (Lawler and Seddighi, 1987). This is the microeconomics basis for the 

total energy demand analysis. As pointed out by Lawler and Seddighi (1987, p.1), 

‘the establishment of the law of demand is the main objective of the theoretical 

frameworks in economic modelling’. Furthermore, Samuelson and Nordhaus 

(1992) argued that the law of demand states that when the price of a good 

increases, the quantity of the commodity consumers will be willing to buy will 

reduce. Similarly, buyers will be willing to buy more of a good when the price is 

reduced. This suggests that there is a direct link between the market price and the 

quantity demanded of a commodity, ceteris paribus. The negative relationship 

between the price of a good and the quantity demanded is known as the demand 

curve (Samuelson and Nordhaus, 1992).  

This concept finds its microeconomic underpinnings in household utility 

maximisation theory. The demand curve is explained using the concept of utility 

and consumer behaviour, which can then be used to explain the total demand in an 
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economy (Samuelson and Nordhaus, 1992), at both the micro and macro level 

(Mensah, 2014). On one hand, the theory of consumer behaviour states that the 

household tries to maximise utility by dividing the limited money income between 

different goods and services. That is, the consumer spends his or her income in 

such a way that the highest level of satisfaction is derived from the consumption 

of both energy and non-energy goods.  

The definition of consumer behaviour given above also suggests that the theory 

would be useful in analysing how consumers respond to changes in income and 

price, so as to enable them to derive maximum satisfaction (utility) given the 

budget constraint at different times (Gould and Lazear, 1989).  

According to a definition provided by Samuelson and Nordhaus (1992, p.172),  

‘utility is a scientific construct that economists use to understand how rational 

consumers divide their limited resources among the commodities that provide 

them with satisfaction’.  

In essence, utility is a common denominator used by individuals or households to 

compare the satisfaction obtainable between different commodities (Lawler and 

Seddighi, 1987). This logic assumes that consumers are rational, and know the 

available preference sets. The preference ordering may be represented using a 

utility function, and such consumer will choose the most preferred set 

(Bhattacharyya and Timilsina, 2010). Following consumer theory, utility is 

measured in an ordinal and not a cardinal sense, suggesting that the numerical 

value assigned to the utility function is not important provided the ranking of the 

goods and the consumer preferences are represented (Samuelson and Nordhaus, 

1992).  

The assumptions underlying the key concepts unpacked in the paragraphs above 

were deduced by Alfred Marshal in his ‘Principles of Economics’ (1890) in which 

they were used to derive the law of demand, later named as ‘Mashallian Demand 

Theory’. Marshall (1890) sets out nine assumptions as follows: commodities have 

a fixed price; the budget is limited to the money income received by the 
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consumer; there is perfect information about the commodities available; the use of 

goods and services gives the consumer satisfaction; the satisfaction obtainable is 

dependent on the quantity of goods and services consumed; the satisfaction 

derived from the use of goods and services is measured in a cardinal sense; 

consumers are rational decision makers; diminishing marginal utility is associated 

with the consumption of commodities and the total satisfaction derived by the 

consumers from a set of goods or services can be added together to know the total 

utility derived by the consumer. 

As mentioned earlier, the concept of utility is represented using a utility function, 

to provide an objective function for the consumer, which in turn is used for utility 

maximisation in decision making problems (Lawler and Seddighi, 1987). 

Therefore, a utility function represents the level of utility or satisfaction derived 

from the bundle of commodities; a great tool to be used for the analysis of 

consumer behaviour (Gould and Lazear, 1989).  

Based on the micro analysis, the household energy demand is formulated and 

solved mathematically using the utility function written below (3.01), to 

represents a consumer or a household consumption utility function, based on the 

micro analysis. The consumption of energy is not a ‘direct demand’ deriving from 

the demand of services provided by energy, suggesting that it is a ‘derived 

demand’. In other words, energy is always used together with other machineries, 

household appliances as well as other consumer durables (Pesaran et al., 1998). 
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First, the utility function of a consumer is represented by: 

U = U (𝑋1,𝑋2, 𝑋3, … … … … … … , 𝑋𝑛)  (3.01) 

The budget constraint of the consumer can be written as 

Y  =    𝑃1𝑋1 + 𝑃2𝑋2 + 𝑃3𝑋3 + ⋯ … … … … … … + 𝑃𝑛𝑋𝑛 (3.02) 

Next, the Lagrange (L) is set so as to maximise the consumer’s utility subject to 

the budget constraint: 

L = U(𝑋1, 𝑋2, 𝑋3, … . . , 𝑋𝑛) − 𝜆 (𝑌 − (𝑃1𝑋1 + 𝑃2𝑋2 + 𝑃3𝑋3 + ⋯ … … + 𝑃𝑛𝑋𝑛)) 

(3.03) 

The partial derivatives of L are set with respect to 𝑋1,𝑋2, 𝑋3, … … … … … … , 𝑋𝑛, 

while 𝜆 is set to zero in all the equations to obtain the necessary conditions 

𝜕𝑙 𝜕𝑋1⁄ = 𝜕𝑈 𝜕𝑋1⁄ − 𝜆𝑃1 = 0

𝜕𝑙 𝜕𝑋2⁄ = 𝜕𝑈 𝜕𝑋2⁄ − 𝜆𝑃2 = 0

𝜕𝑙 𝜕𝑋3⁄ = 𝜕𝑈 𝜕𝑋3⁄ − 𝜆𝑃3 = 0 

⋮ 

⋮ 

𝜕𝑙 𝜕𝑋𝑛⁄ = 𝜕𝑈 𝜕𝑋𝑛⁄ − 𝜆𝑃𝑛 = 0

𝜕𝑙 𝜕𝜆⁄ = 𝑌 − 𝑃1𝑋1 + 𝑃2𝑋2 + 𝑃3𝑋3 + ⋯ … … . . +𝑃𝑛𝑋𝑛 = 0 (3.04) 

To solve the equations above, one can equate them to one another and solve for 

lambda, to get the marginal rate of substitution (MRS), i.e., the marginal rate of 

substitution of one commodity for the other 

𝜕𝑙 𝜕𝑋1⁄ 𝜕𝑙 𝜕𝑋2 = 𝑃1 𝑃2 ⁄⁄⁄ ≅ 𝑀𝑅𝑆 = 𝑝𝑟𝑖𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 

𝜆 =
𝜕𝑈 𝜕𝑋1⁄

𝑃1
=  

𝜕𝑈 𝜕𝑋2⁄

𝑃2
= ⋯ … … … . =

𝜕𝑈 𝜕𝑋𝑛⁄

𝑃𝑛
(3.05) 

The last step is to derive the demand function for energy which is a function of 

price and income. The assumption here is that both price and income are 



42 

homogenous of degree zero, and the necessary condition is solved for each 

equation. The resulting demand equation is represented by the equations:  

𝑋1 = 𝑑1(𝑃1, 𝑃2, 𝑃3, … … … … , 𝑃𝑛, 𝑌)

𝑋2 = 𝑑2(𝑃1, 𝑃2, 𝑃3, … … … … , 𝑃𝑛, 𝑌)

⋮ 

𝑋𝑛 = 𝑑𝑛(𝑃1, 𝑃2, 𝑃3, … … … … , 𝑃𝑛, 𝑌) (3.06) 

Equation (3.06) signifies that the demand for energy is a function of both the 

relative prices and real income of the consumer. 

However, for use in empirical modelling, other factors that are identified to 

influence the demand for energy are included, which makes the empirical model 

to be in the form presented in equation (3.07) below. Where the vector N, 

represents other driving factors or forces of energy demand. 

𝑋𝑛 = 𝑑𝑛(𝑃1, 𝑃2, 𝑃3, … … … … , 𝑃𝑛, 𝑌, 𝑁 ) (3.07) 

In addition, it is important to discuss how the production sector, which includes 

industries and firms within them, demands energy as an input in the production 

process, and achieves the objectives of total cost minimisation and profit 

maximisation. This is traditionally based on the theory of producers, in the 

microeconomics branch of economics. The main idea of how the objective is 

achieved, is based on three main assumptions, as pointed out by Bhattacharyya 

and Timilsina (2010): (i) a technical limitation to the amount of goods that could 

be produced in the production process; (ii) machinery cannot produce beyond 

certain limits at any given period of time; (iii) the inputs used in the production 

process may not constitute a surplus, or they may be limited (Bhattacharyya and 

Timilsina, 2010). Having stated the three assumptions, similarly to the household 

utility maximisation, the firm maximises profits at any given level of production, 

at the point where the rate of technical substitution is equal to the ratio of input 

prices.  
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The account above is intended to provide the theoretical background of the study 

based on the micro level analysis, which as it is argued by Mensah (2014) can be 

further extended to analyse energy demand for the entire population (or the whole 

economy) at the macro level. This could be achieved by treating the whole 

population under study, like the representative household used in the example 

above, that takes the consumption decision of energy and non-energy goods, 

while considering income, prices and other exogenous factors. 

To conclude, it is reasonable to suggest that the task of the researcher is to provide 

a suitable theoretical framework which explains the data from actual markets 

based on empirical evidence drawing from the theoretical underpinnings covered 

above. It can be further stated that studies that have analysed the energy demand 

in a specific sector of the economy, like the residential sector, have also used 

household production theory, on the assumption that the household produces 

energy services such as cooling, warming or lighting through the combination of 

electricity with electrical appliances  (see, for example, Blazquez et al., 2013). 

3.3 Energy demand models 

This section provides a review of some of the models used for the analysis of 

energy demand. Energy models could also be used for the forecast of energy 

demand through the use of macroeconomic variables, whilst the results from the 

analysis are used for managing energy from the demand side, for example, by 

using them in the planning and drafting of policies aimed at those objectives 

(Suganthi and Samuel, 2012). However, the modelling of energy demand is not as 

straightforward when compared to the empirical models used for the analysis of 

other goods and commodities. This is due to the derived nature of the demand for 

energy (Pesaran et al., 1998), as explained earlier in section 3.2. 

Energy models in the energy literature have been classified in several ways, such 

as static or dynamic, univariate or multivariate, top down or bottom up, identity 

versus structural or market share based approaches, forecasting models (see, for 

example, Jebaraj and Iniyan, 2006; Urban et al., 2007; Swan and Ugursal, 2009; 
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Suganthi and Samuel, 2012). Furthermore, Pesaran et al., (1998) classified energy 

models into three main classes. The authors argued that the structural engineering 

approach, end-use approach or the econometric approach provide the best 

frameworks for the estimation of energy demand and associated analysis.  

Swan and Ugursal (2009) provide a comprehensive review of the different models 

used in the analysis of residential sector energy consumption by different studies 

in the energy literature. They point out that two main model-categories are used, 

the top-down and the bottom up approach. The authors give an account of each 

technique by highlighting the strengths, objectives and the drawbacks of each 

model. Furthermore, they assert that the models require different information 

levels, implementation techniques, and also produce different results which could 

be used in different situations. 

Other researchers, including Torriti (2014), have also attempted to classify energy 

models used for the residential sector electricity demand, according to the 

discipline of the researcher and the datasets used for the analysis of energy 

demand. Such classifications include energy econometricians using aggregate 

macroeconomic data and electrical engineers using actual or simulated end-user 

data. 

Until now, research on energy demand has focused more on developed countries 

rather than developing countries, mainly due to low skills and data constraints 

(Endresen, 2004). Therefore, it is crucial for the researcher to assess the suitability 

of the model used, to ensure it captures the specific energy system characteristics 

of the developing countries context. As argued by Urban et al. (2007), the 

economies and the energy systems in developing countries vary from those in 

developed countries and should be modelled in a different way. This has become 

even more important in the last few decades due to the increased participation of 

some of the developing countries resulting from globalisation and greater 

economic integration, especially China in the global energy scene (Bhattacharyya 

and Timilsina, 2010). 
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Researchers including Shukla (1995), Pandey (2002), Urban et al. (2007) and 

Bhattacharyya and Timilsina (2010) hold the view that energy models intended 

for developing countries should be built taking into account the developing 

region’s peculiar characteristics rather than just adapting models that have been 

used for developed countries. The authors point out that the common factors in the 

countries in the developing world include: the prevalence of the use of traditional 

energy sources like biomass; a large number of informal energy sectors; the 

existence of a high level of inequality and poverty; structural changes from 

traditional to a modern way of living; high demand/supply deficit; limited capital; 

and a low rate of technological diffusion. 

It follows that energy models should be built with the understanding of these 

dynamics, and the inclusion of these characteristics, so as to improve the quality 

and reliability of the results and hence provide a more accurate account of the 

contextual energy situation. However, as argued by Urban et al. (2007), the lack 

of adequate data is a typical constraint to modelling energy demand in developing 

countries.    

Having discussed the main classifications of energy demand models in the 

literature, the next few sections evaluate the approaches used in relevant literature, 

under two broad headings: bottom up (engineering or statistical models), and top 

down (econometric models). As stated earlier, despite the intrinsic merits of each 

method, both have limitations and drawbacks. 

3.4 Bottom up models 

The bottom up category is a technology explicit model, where the inputs, outputs, 

unit costs and other technical and economic characteristics, of each important 

energy-using technology, are identified and analysed using that information 

(Loulou et al., 2004). Also, the researchers that have employed this technique 

have used energy consumption data from a representative household to deduce the 

estimate at a national or regional level (Swan and Ugursal, 2009). In other words, 

the bottom up models employ the use of disaggregated data in energy demand 
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modelling (Urban et al., 2007). This class of models could be classified further 

into the statistical and engineering approach (Swan and Ugursal, 2009).  

In the engineering approach, the demand for a particular fuel type is estimated in 

relation to the machinery it is used for, how efficient the machinery or equipment 

is, and the equipment level of usage (Pesaran et al., 1998). Examples of the data 

used for the modelling include variables such as average energy efficiency, 

average appliance power ratings, and end use features (Torriti, 2014). 

Mathematically, as illustrated by Pesaran et al. (1998), the demand for fuel (g) 

using this method, takes the form of the expression below:  

𝐸𝑔𝑡 = ∑ 𝑒𝑔𝑘𝜑𝑘𝑡𝑘 𝑙𝑘𝑡 (3.08) 

In the equation above, 𝑙𝑘𝑡 is the amount of machinery of type l in use at time t, 

𝜑𝑘𝑡 is the degree or amount of usage (utilisation) at time t, 𝑒𝑔𝑘 is the technical 

energy coefficient of fuel g when used in combination with machinery l. The price 

and income effect, including the time lags of the variables, in both the short and 

long term on the demand for energy or fuel is estimated through the analysis of 

𝑒𝑔𝑘, 𝜑𝑘𝑡 and 𝑙𝑘𝑡. Examples of this approach used in the residential sector energy 

consumption modelling include population distribution, archetype and sample 

(Swan and Ugursal, 2009).  

Swan and Ugursal (2009), argue that the engineering method is the only energy 

model that can analyse a sector energy consumption, without the use of any 

historical data. They add that the method is especially suited for estimating new 

technologies with no prior consumption information.  

Pesaran et al. (1998) point out three main strengths of using this approach. The 

three things which could be improved through the knowledge gained from the use 

of the model are: (i) investment in new machineries; (ii) improving the energy 

efficiency of the existing machineries; and (iii) altering the usage of the existing 

machineries or equipment. Despite the merits of this approach, it has a major 

drawback. The approach is data-driven since it requires the use of a considerable 
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amount of data which might not be available especially for developing countries 

(Pesaran et al., 1998). 

Examples of the bottom up model used in the energy literature include the 

MARKAL, TIMES and the LEAP model. The Long-range Energy Alternative 

Planning System (LEAP) is used in the study by Ouedraogo (2017) to project 

energy demand in the four main sub-regions in Africa, for the period between 

2010 and 2040. The MARKAL model, stands for ‘MARKet ALlocation’, is a 

mathematical model that employs the use of a technology-based technique in 

energy analysis (Loulou et al., 2004). It was first developed by the Energy 

Technology Systems Analysis Program (ETSAP), as a least cost linear 

programming model (Suganthi and Samuel, 2012).  

Fishbone and Abilock (1981) provided the equations for the first MARKAL 

model, which represents both the supply and the demand components of the 

energy system. The energy system represented by the equations could be 

estimated at the state, national or regional levels. However, in the last few 

decades, many improvements have been made to the system of equations so as to 

facilitate its use for a more in-depth and detailed analysis (Suganthi and Samuel, 

2012). Suganthi and Samuel (2012) argue further that the MARKAL model could 

be used for uncovering the implications of carbon reduction programs and the 

impact of policy changes (Kanudia and Loulou, 1999, Loulou et al., 2004). 

Several researchers have used the MARKAL model to create different scenarios 

using various policy conditions, to estimate how air pollution emission reduction 

or the greenhouse gas mitigation are achieved during the implementation of the 

different policies, and their associated benefits. This was used for Shanghai by 

Chen et al. (2002), Kan et al. (2004) and Changhong et al. (2006), among others. 

A more recent study for Taiwan by Tsai and Chang (2013) also took a similar 

approach, but modelled the GHG mitigation under different technology 

development scenarios, using the same emission reduction target. The model has 

also been used for the allocation of energy resources across sectors in an economy 

(Mallah and Bansal, 2010, in India), and for the analysis of sectoral energy 
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consumption pattern and carbon emissions (see Shrestha and Rajbhandari, 2010, 

for Nepal).  

The statistical approach uses mainly regression techniques for the estimation of 

end-user energy consumption, like the residential sector, as well as for forecasting 

different aspects of energy. Swan and Ugursal (2009) grouped the statistical 

approach into regression, conditional demand analysis and neural network, in the 

residential sector energy consumption modelling. The authors defined each of the 

classifications as follows. First, in the regression technique, the coefficients of the 

input variables in the model are determined through the use of regression analysis 

(while in the conditional demand analysis the end use appliance data is used as the 

basis of the regression analysis). The coefficients from the regression analysis of 

the total residential energy consumption are based on the number of owned 

appliances, and the result obtained is interpreted as the level of usage of such 

appliances in the sector. Lastly, the neural network (NN) is developed based on 

the densely interconnected parallel structure of biological neural networks, which 

is built into a mathematical model. They argued further that just like in the 

regression techniques, the model used in the neural network tries to minimise 

error by accounting for non-linearity through the use of scaling or activation 

functions (Swan and Ugursal, 2009).  

Models used by researchers include multiple regression analysis, panel threshold 

regression, linear regression models and multivariate regression models. Some of 

the studies include Tunc et al. (2006), who employed the use of regression 

analysis to forecast Turkey’s electricity consumption for the period 2004-2020, 

using a data set from 1980 to 2001. The electricity consumption of Italy up to 

2030, was predicted using the annual historical data of electricity consumption, 

Gross Domestic Product (GDP), GDP per capita and population in a multiple 

regression framework, the data used were from 1970 to 2007 by Bianco et al. 

(2009). The least square method was used by Aranda et al. (2012) to forecast the 

yearly energy consumption in the Spanish banking sector, by estimating the 

regression coefficients using a data set of 55 banks in Spain. Two types of 

statistical models were used by Kialashaki and Reisel (2013) to forecast the 
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United States’ residential sector energy demand. The multiple regression model 

and artificial neural network were employed in the energy consumption prediction 

between 2010 and 2030, using the data from 1984 to 2010.  

However, despite the strength of the bottom up modelling technique, its ability to 

analyse technological options available is limited by the high level of information 

needed in the model (Swan and Ugursal, 2009). Moreover, the model output could 

be biased if incomplete technological data are inputted into the system (Urban et 

al., 2007). 

3.5 Top down models 

Top down models use econometric modelling techniques, employing aggregated 

data from economic indicators such as GDP or price elasticities, to estimate and or 

predict energy demand (Urban et al., 2007). Such models do not provide any 

information about the state of technology or its level of efficiency but they 

provide historical references in relation to economic frameworks (Urban et al., 

2007). Bhattacharyya and Timilsina (2010) argue that such models are used to 

validate economic theories empirically, by analysing if there is any significant 

relationship statistically. The models are used to know how the identified 

variables impact on the demand for the different energy sources, through the 

estimation of the independent variables elasticity estimates (Zarnikau, 2003). 

However, the approach is most suitable if there is long historical data available on 

energy consumption, population, income and prices (Pesaran et al., 1998). 

Pesaran et al. (1998) point out that the formulation of an appropriate energy 

demand equation derived from either households or firms’ decision making based 

on utility optimising behaviour, is used as the theoretical foundation of such 

analysis. Furthermore, Karimu and Brannlund (2013) argued that most of the 

econometric models used in the study of energy demand in the literature, range 

from simple static models to dynamic models, which mostly take a linear or log-

linear form. The authors grouped the models into parametric and non-parametric 

energy demand models. The parametric category is further divided into three 
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forms, which are: log-linear, linear and trans-log models. Karimu and Brannlund 

(2013) also assert that the log-linear specification is the most commonly used in 

the analysis by researchers, perhaps due to the ease in its specification and 

estimation. In this model, before the regression is carried out, both the dependent 

variable and the explanatory variables are first converted into their natural 

logarithm forms (Zarnikau, 2003). This will be the approach used in the analysis 

of the present study, also to ensure that the estimated coefficients can be 

interpreted as elasticities.  

On the other hand, the non-parametric model is a data-driven approach, where the 

true relationship between the variables is assumed to be provided through a kernel  

regression (Zarnikau, 2003). This is shown by the equations below proposed by 

Zarnikau (2003) to illustrate the three functional forms of the parametric models. 

This equation could be considered by a researcher analysing, for instance, the 

household demand for electricity in a specific country. 

Linear    

𝐾𝑊𝐻𝑦 = 𝑎𝑥 + 𝑏𝑥 ∗ 𝑃𝐸𝑦 + 𝑏𝑗 ∗ 𝑃𝑁𝑦 + 𝑏𝑦 ∗ 𝐼𝑁𝐶𝑦 + 𝑏𝐻𝐷 ∗ 𝐻𝐷𝑦     (3.09)

Log-Linear:  

Log (𝐾𝑊𝐻)𝑦 = 𝑎𝑥 + 𝑏𝑥 ∗ log(𝑃𝐸𝑦) + 𝑏𝑗 ∗ log(𝑃𝑁𝑦) + 𝑏𝑦 ∗ log(𝐼𝑁𝐶𝑦) + 𝑏𝐻𝐷 ∗

log(𝐻𝐷𝑦)                        (3.10) 

Trans log 

𝑆𝑇𝐸𝑦 =  𝑎𝑥 + 𝑏𝑥 ∗ 𝑃𝐸𝑦 + 𝑏𝑗 ∗ 𝑃𝑁𝑦 + 𝑏𝑦 ∗ 𝐼𝑁𝐶𝑦 + 𝑏𝐻𝐷 ∗ 𝐻𝐷𝑦       (3.11)

where 𝐾𝑊𝐻𝑦 represents the household’s total consumption of electricity, 𝑃𝐸𝑦 is 

the price paid by all households for electricity, ST𝐸𝑦 is the total expenditure of 

household (y) on electricity, 𝐻𝐷𝑦 denotes the degree of days of heating, 𝐼𝑁𝐶𝑦 is 

the income of the households, 𝑃𝑁𝑦 stands for  the price of natural gas, which is 

another source of energy (substitute) for heating purposes.  
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It appears that some methods are more suitable for aggregate analysis, while 

others may be more appropriate for a sector or sub-sector specific analysis of 

energy demand. For instance, Bhattacharyya and Timilsina (2009) point out that 

three main energy models are used for the analysis of the demand in the transport 

sector. The three models are: identity models, structural models and the market-

share model. However, despite the numerous groupings of energy models, there 

are some similarities and overlaps among the different models, especially in the 

hybrid models which involve the use of features from multiple models in the 

analysis of energy demand. For example, a hybrid model could use both the top 

down and the bottom up approach in the analysis of residential electricity 

consumption, and such models have been proven to provide a more detailed level 

of information (Swan and Ugursal, 2009). 

The models are used for both the aggregate and the sectoral level energy demand 

analysis. The main sectors studied are residential, industrial, transportation and 

commercial. Some of the studies that used this technique (the econometric 

approach) for either the aggregate or sector level analysis, are discussed in the 

next few sections.  

3.6 Aggregate demand for energy 

The aggregate demand for energy refers to the total energy demanded for all 

services, which is needed to operate in all economic sectors of an economy. 

Endresen (2004) argues that the aggregate demand for secondary or converted 

energy in a country refers to the sum of all energy required in all economic 

sectors, to make available the energy required for all services that need energy. 

Endresen (2004, p.104) argued further that 

 “a limited source of fuel type could be used to provide some service like 

commercial road transport, while service such as electricity could be provided 

using many types of fuel”.  
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The researcher also asserted that some of the fuel types like petrol could be used 

directly while others like uranium, in the form of nuclear energy, need to be 

converted first to a state that can be used for providing energy services. However, 

some fuels like diesel have a dual use in the sense that they could be used directly 

for the running of machineries or used indirectly by first converting them into 

electricity, which is then, in turn, used to run the machineries. 

Against this background, some researchers (e.g., Chakravarty, 2002) have 

attempted to analyse the role played by different factors or variables in total 

energy demand, the changes in the variables over a period of time under different 

situations and assumptions, within a parametric or non-parametric energy demand 

framework. Specifically, some of such studies in the literature include those by 

Al-faris (1992), Eltony and Hoque (1996), Mohammad and Eltony (1996), Masih 

and Masih (1996a and b), Brenton (1997), Diabi (1998), Ghali (1998), Pesaran et 

al. (1998), Sinton and Fridley (2000), De Vita et al. (2006), and Wolde- Rufael 

(2006). 

Some of the exiting studies in the literature, mostly those in developing countries, 

will be discussed in more detail later in this chapter. They are based on the law of 

demand and the assumption that the demand for energy mostly behaves as a 

normal good, which suggests that the main variables that influence the demand for 

energy are price and income. This theory has been discussed in the earlier section 

under the theoretical background of the study (section 3.2).  

Furthermore, as pointed out by Samuel et al. (2013), the key determining 

variables for the demand for energy include per capital real GDP, industrial 

growth, real price of energy, population, air temperature, financial development 

variables, capital stock, foreign direct investment and efficiency variables. The 

use of some of these variables, with the price and income variables in the model 

specification is largely dependent on data availability, and the technique used 

which has led to different results in terms of size and sign of the elasticities in 

both the short- and the long-run. 
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In their study on Namibia, De Vita et al. (2006) estimated the demand function at 

the aggregate level and by specific fuel types (electricity, petrol and diesel), 

within an autoregressive distributed lag (ARDL) bounds testing approach to 

cointegration (3.16) derived from equation in (3.15) showing the long run energy 

demand function for Namibia.  

e𝑑𝑡 = 𝛼 +  𝛽1𝑦𝑡 + 𝛽2𝑝𝑡 + 𝛽3𝑥𝑡 + 𝜇𝑡          (3.12) 

where e𝑑𝑡 represents the consumpton of energy, 𝑦𝑡 stands for GDP, and 𝑝𝑡 is the 

energy price. Quarterly end user data between for the period 1980-2002 were used 

for the analysis.  

(3.16) is used to test the cointegrating relationship among the variables, within an 

ARDL framework, which is particularly useful in overcoming the problems of 

mixed order of integration, that is I(0) or I (1), among the regressors (De Vita et 

al., 2006).  

∆𝑒𝑑𝑡 =  𝑐0 + 𝑐1𝑡 + ∑ ∝𝑖
𝑚
𝑖=1 ∆𝑥𝑡−1 + ∑ 𝛽𝑗

𝑛
𝑗=0 ∆𝑦𝑡−𝑗 + ∑ 𝛿𝑘∆𝑝𝑡−𝑘 +𝑝

𝑘=0

∑ ∅𝑟
𝑞
𝑟=0 ∆𝑥𝑡−𝑟 + ∅𝐷𝑡 + 𝜋1𝑒𝑑𝑡−1 + 𝜋2𝑦𝑡−1 +  𝜋3𝑝𝑡−1 +  𝜋4𝑥𝑡−1 + 휀𝑡        (3.13)    

where 𝑐0 𝑎𝑛𝑑 𝑐1 represent the intercept and time trend components respectively, 

and ∆  denotes the first difference of each variable. The results from the estimation 

of the model conform to theory prediction, that is, the price elasticity was negative 

while the income elasticity was positive, as we would expect a priori. The 

empirical study also looked at the price elasticity of each of the different fuel 

types, and found that the price elasticity of petrol was the highest, followed by 

that of electricity, with diesel showing no significant price elasticity. Further, the 

different energy forms gave no evidence of cross price elasticities in the analysis 

for Namibia, during the study period. This could suggest that consumers do not 

necessarily change their consumption level or energy mix according to changes in 

income or prices of the different energy types, as they appear to maintain the use 

of certain appliances and equipment for energy generation (De Vita et al., 2006). 
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Despite the rigorous empirical analysis carried out, no attempt was made in the 

study at estimating the short run elasticities of the variables, as the study 

concentrated on the analysis of the long-run. This was the first study in the energy 

literature to use the ARDL bounds testing approach to cointegration and end-user 

data for the Namibian economy. 

In the analysis of aggregate energy demand, some authors only estimated specific 

fuel or energy types, but still following the standard econometric approach that 

includes establishing the variables’ integration (unit root) and cointegration 

properties in addition to the coefficient elasticities. For example, following De 

Vita et al. (2006), Akinboade et al. (2008) estimated the demand for gasoline in 

South Africa between 1978 and 2005, using annual time series data, within an 

ARDL framework. The results of the analysis show that the demand for gasoline 

is a normal good. However, the demand increases as the income level increases, 

but not at a proportional rate.  

The same modelling technique of cointegration was employed by Amusa et al. 

(2009) in the analysis of aggregate electricity consumption in South Africa, over a 

sample period from 1960 to 2007. In contrast to the determinants of gasoline 

demand by Akinboade et al. (2008), the authors found that income is the only 

factor that drives electricity demand in South Africa, while the price of electricity 

has no impact during the study period.  

Specifically, holding all other factors constant, from the long run income elasticity 

result of electricity demand, a one percent increase in income leads to a 1.67 

percent increase in electricity demanded at the aggregate level in South Africa. 

Amusa et al. (2009) claim that the result of the income elasticity could be linked 

to electricity consumption and income in three possible ways. First, an increase in 

the size of the South African economy (GDP) will increase the use of electricity 

because of its important role in the industrial and manufacturing processes. 

Second, more durable and electricity driven machinery will be acquired when 

there is an increase in the production process. Lastly, households will increase the 

amount of electricity using appliances and services as their income level 
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increases. However, the result of the price elasticity of electricity demand 

contradicts a prior expectations and the prediction of economic theory, through a 

positive price elasticity result of 0.30, which is not statistically significant.  

The researchers explained these results by using the South African context. They 

highlighted the lack of no close substitutes, the long period of subsidy by the 

government, and price reduction strategies used over past decades, as major 

causes why changes in the price charged for electricity appeared to have no 

adverse effect on electricity demand in South Africa.  

A similar cointegration approach was used for the estimation of petroleum 

products demand elasticities in Nigeria between 1977 and 2006 by Iwayemi et al. 

(2010). The authors found that both income and price elasticities of petroleum 

demand in Nigeria had the signs predicted by theory, except those of the diesel 

demand models. Factors such as inadequate supply that sometimes creates 

artificial scarcity of the product was used to explain the unexpected elasticity 

(Table 3.1) results for diesel by the authors. Furthermore, income and price are the 

two most important factors determining energy demand in the country. Among all 

the products having an inelastic demand, gasoline recorded the highest income 

elasticity, followed by kerosene. One possible implication of these results is that 

the Nigerian government could use tax to increase fiscal revenues and also use 

this to achieve energy consumption conservation plans (Iwayemi et al., 2010). In 

other words, tax could be used to control the level and structure of energy 

consumption in Nigeria.  

These results are in agreement with Abdullahi’s (2014) findings which also 

suggest that the demand for petroleum products in Nigeria is both income and 

price inelastic, and the low elasticities figures for the products could give room for 

more fiscal revenue generation by the government. Furthermore, in Abdullahi’s 

(2014) study he was able to take into account the impact of structural or technical 

changes in the analysis through the use of a structural time series model, which 

was not taken into account in the earlier study by Iwayemi et al. (2010). These 
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extensions made the findings more interesting and robust, as it was found that 

none of the models used for the fuels had a deterministic linear trend.  

An earlier study by Expo et al. (2011) investigated the dynamics of electricity 

demand and consumption in Nigeria, also using the same approach to 

cointegration. The most interesting finding in the study was that price of 

electricity has no significant impact, as the coefficient was not statistically 

significant. It seems possible that this result may be due to the involvement of the 

Nigerian government through electricity price regulation (Expo et al., 2011). 

Furthermore, GDP per capita, population and industry output were found to be the 

main factors that explain electricity consumption both in the short- and long-run. 

The period covered by the study was between 1970 and 2008. 

Adom et al. (2012) analysed the driving forces of the domestic demand for 

electricity both in the short- and long-run in Ghana, for the period from 1975 to 

2005, within an ARDL framework. The researchers used a log linear model with 

the use of annual time series data on real capita GDP, industry efficiency, 

structural changes in the economy, total domestic electricity consumption and the 

degree of urbanisation variables. Their study does not take account of the effect of 

the price variables on electricity demand in Ghana during the period of the study 

due to lack of relevant data. Therefore, the study did not detect any evidence for 

the impact of changes in price on electricity in Ghana in the analysis. This would 

have perhaps made the findings more robust.  

The inclusion of the impact of structural changes in the analysis is due to the shift 

towards more energy intensive sectors, which may have led to an increase in the 

amount of electricity consumed (Adom et al., 2012). The results of the analysis 

show that, during the study period, real per capita GDP, industry efficiency, the 

degree of urbanisation and structural changes are the main long-run factors that 

influence the demand for electricity in Ghana. Surprisingly, the authors found the 

coefficient of industry efficiency to be negative and significant. The results 

suggest that energy in the form of electricity is saved, as firms make use of more 

energy efficient technology in their production process. Thus, reducing the overall 
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energy intensity through a reduction in the industry electricity intensity. In other 

words, there should be appropriate electricity efficiency policies and regulations 

for each sector of the country.  

These results are consistent with those obtained by Adom (2013) who also found 

that income, industry efficiency and economic structure are the main factors that 

impact electricity consumption in Ghana. However, there are some important 

differences between the two studies. First, the elasticities figures obtained are not 

the same for the variables, which may be due to differences in the econometric 

technique employed and the different study period covered by the two studies. 

Second, Adom (2013) used the Quandt-Andrews test to explore the presence of 

structural breaks in the data during the study period, and found the year 1987 to be 

the most likely point of break during the study period. Lastly, he gave evidence of 

changing policy regimes in his analysis, which made the findings more robust.  

The importance of taking into account the impact of policy regime changes was 

explored further by Adom and Bekoe (2013), in modelling the demand for 

electricity in Ghana. The authors assert that the inclusion of policy regime 

changes in the analysis is due to the fact that the decision rule changes because 

new individuals change their behaviour as new structural policies are put in place 

(see also Inglesi- Lotz, 2011). The sample used for the analysis was divided into 

the pre-reform, post-reform and the full-period. The results from the fully 

modified ordinary least squares regression gave evidence of the pre-reform period 

being more energy saving than the post-reform period. Furthermore, there seems 

to be a shift towards the less energy intensive sector after the economic reform in 

Ghana during the study period between 1971 and 2008. 

The estimation of the demand for natural gas in the energy literature could be 

attributed to its increased importance in the energy mix, and as argued by Ackah 

(2014), it is cheaper than petroleum and cleaner than coal to burn. This and other 

factors led to the investigation of the determinants of natural gas demand in 

Ghana by the above-mentioned author between 1989 and 2009 for the aggregate, 

residential and industrial sectors. The results of the three models specified by the 
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author using four lags, reveal that all the price and income elasticities had the sign 

predicted by economic theory.  

 

The debate was taken a step further by Mensah (2014) who explored the modeling 

of demand for LPG in Ghana using two techniques. Specifically, Mensah (2014) 

stated that the use of the ARDL and PAM (Partial Adjustment Model) techniques 

in his study serves the purpose of identifying the best model to be used for a 10 

year forecast of the fuel. The quarterly time series data used in both models, 

between 1992 and 2012, show that income, price and urbanisation are the main 

determinants of natural gas demand in Ghana in the long run. The author added 

that the ARDL is a better model for forecasting future LPG consumption. This led 

to the use of this model by the author to forecast 10 year ex-ante demand for LPG 

in Ghana, based on the three different scenarios presented by the researcher. The 

result of the projections from the three scenarios gave evidence that the demand 

for LPG might, by the year 2022, reach a minimum value of 5.0 million metric 

tons (Mensah, 2014). 

 

A cross-country study of the factors that drive energy demand in SSA is provided 

by Keho (2016), who used the bounds testing approach to cointegration at 

individual country level between 1970 and 2011. The author found that in the 12 

countries analysed, economic growth, industrial output and population are the 

major drivers of energy demand. 

 

Most of the studies reviewed so far in this section of the chapter explored the 

factors that drive the demand of non-renewable energy sources like crude oil and 

LPG, and not of the renewable energy sources. This motivated the study by some 

researchers including Ackah and Renatas (2015), who investigated the 

determinants of the demand for renewable energy in oil producing economies in 

Africa. Their findings using three panel data models of random effect, fixed effect 

and a dynamic model, suggest that the main factors that influence demand are real 

income, energy resource depletion, carbon emissions and energy prices. The price 

and the income variables had the expected inverse relationship with demand, as 

expected theoretically. The main implication of the study for the oil producing 
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countries considered, is the need for the governments in these countries to reduce 

the barriers in terms of technology and investment climate, so as to attract 

investors and, in turn, increase the consumption of renewable energy by 

consumers.  

3.7 Disaggregate demand for energy 

Recently, researchers have shown a growing interest in the determinants of energy 

demand of the different fuel types, in different sectors of the economy, in both the 

developed and developing countries. However, most studies focus on the 

developed countries. This is also referred to as the sectoral analysis of the energy 

forms in different sectors of the economy. In the paragraphs that follow, some of 

the main studies on the energy demand in the residential, industrial and  transport 

sectors in different countries are discussed. 

Ziramba (2008) asserts that the most common variables used for the modelling of 

residential sector electricity consumption are income, price of electricity, price of 

substitute energy source and temperature variables. However, due to the lack of 

relevant data for the analysis by Ziramba (2008), he explored the determinants of 

electricity demand in South Africa using per capita income and the real price of 

electricity as the sole explanatory variables. This, perhaps, limited the scope and 

findings of the study, as more relevant variables would have made the results 

more robust, and may have given more insight into the factors influencing 

electricity demand. The author used a double logarithmic form model (3.19) for 

the analysis, following the work undertaken by Narayan and Smyth (2005), who 

identified income, temperature and price as the determinants of electricity in 

Australia, for the study period 1969-2000. 

𝑙𝑛𝐸𝐶𝑡 = 𝛼0 +  𝛼1𝑡 + 𝛼2𝑙𝑛𝑌𝑡 + 𝛼3𝑙𝑛𝑃𝑡 + 휀𝑡 (3. 14) 

where lnEC, which is the dependent variable, stands for the natural log of per 

capita residential electricity consumption (kWh per capita), ln Y is the natural log 

of real per capita income, lnP represents the natural log of the real residential 
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electricity price (R/kWh), t is the time trend and 휀 is the error term. Economic 

theory predicts 𝛼2 and 𝛼3 to be positive and negative respectively, as explained 

earlier, under the theoretical background.  

The bounds testing approach to cointegration within an autoregressive-distributed 

model was used for the empirical analysis using the data from 1978 to 2005. The 

author found that the demand for electricity is a normal good, and the price of 

electricity is price inelastic in both the short- and long-run during the study period. 

However, due to the statistical insignificance of the price variable, the researcher 

found that income is the main driver of electricity in South Africa. 

Most of the studies reviewed so far used either the linear or the log-linear 

approach for the estimation of energy demand. However, Lescaroux (2011) 

modelled energy demand both at the aggregate and sectoral levels for a panel of 

101 countries, using a non-linear technique of iterative least squares. The author 

found that income and price had a significant effect, as predicted by economic 

theory on the demand for energy, even when a non-linear approach is employed. 

The impact of changes in income on energy demand was found to be positive, 

whereas the effect of changes in price is negative on the demand for energy. The 

author argues further that the impact of changes in income is mostly felt in the 

industry and service sector, while the residential and the service sectors saturation 

levels are more affected by changes in the price level.  

Evidence of the long-run variables that explain the residential demand for 

electricity was given by Dramani and Tewari (2014) for Ghana. The authors used 

a dummy variable in the ARDL model, to account for structural breaks in the 

demand for electricity. The equation used within an ARDL framework is: 

𝑙𝑛𝐸𝐶𝑡 =∝0+ ∑ 𝑚𝑡=0 ∝1 𝑙𝑛𝑅𝑃𝐸𝑡−𝑖 + ∑ 𝑛 ∝2𝑖=0 𝑙𝑛𝑃𝐶𝑡−𝑖 + ∑ 𝑝 ∝3𝑖=0 𝑙𝑛𝑈𝑃𝑡−𝑖 +

∑ 𝑞 ∝4𝑖=0 𝑙𝑛𝑃𝐾𝑡−𝑖 + ∑ 𝑟 ∝5𝑖=0 𝑙𝑛𝐿𝑃𝐺𝑡−𝑖 + ∑ 𝑠 ∝6𝑖=0 𝑙𝑛𝐸𝐼𝑡−𝑖 +  𝜃𝐷𝑈𝑡−𝑖 +∈𝑡

(3.15)    
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where EC is electricity consumption, RPE stands for the price of electricity, LPG 

represents the price of gas, PC is per capita GDP, UP stands for urbanisation, EI is 

the intensity of the residential consumption of electricity, PK denotes the price of 

kerosene, ∈𝑡  is the error term. The price of gas and kerosene is included as 

alternative energy sources to electricity, and the result gave evidence that 

electricity demand in Ghana is inelastic. In other words, consumers in the 

residential sector consider electricity as a necessary commodity and kerosene and 

gas would only be used as a complementary of electricity by them (Dramani and 

Tewari, 2014).  

 

All the variables were found to be cointegrated and the results of the ARDL 

model showed that the variables have all the expected signs. The coefficient of the 

degree of urbanisation was found to be positive and significant statistically, which 

could be because urban dwellers could acquire more appliances because of their 

increased chance of securing a higher paying employment than the people who 

live in the rural areas- this is the case for most of the countries in Sub-Saharan 

Africa.  

 

Dramani and Tewari (2004) argued further that due to a more improved electricity 

markets and distribution systems, the positive impact of the effect of increased 

urban population on electricity consumption, could be linked to better access to 

electricity and appliances utilisation.  

 

The study was also interesting due to the use of FMOLS and DOLS techniques 

employed by the researcher to correct for endogeneity bias.  However, due to 

some differences in the results of the three models, and also the statistical 

insignificance of some of the variables in the FMOLS and DOLS, the researcher 

argued that the ARDL is more robust (see also Mensah, 2014) than the two other 

models, because it is not dependent upon the econometric technique used, and - 

therefore - provides the best framework for estimating Ghana’s electricity demand 

function.  
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The determinants of household use of clean and renewable energy sources for 

lighting in SSA were investigated by Rahut et al. (2017), using Ethiopia, Tanzania 

and Malawi as case studies. In the multinomial logit and ordered probit models 

employed by the authors, the results suggested that wealthier and more educated 

households use electricity and solar energy for lighting, whereas, poorer 

consumers use solid fuels, batteries and kerosene for lighting. They also found 

that households with female as the head are more likely to use clean and 

renewable sources of energy than those with male head, in the countries analysed. 

3.8 Energy demand studies in non SSA countries 

Kumar (2008) investigated the determinants of energy demand in Fiji for the 

period 1970-2005. Using a four period lag length, he found a cointegrating 

relationship between energy prices, GDP and energy consumption. Both income 

and energy prices had the expected elasticities signs and were both statistically 

significant. The unit income elasticity of energy demand suggests that energy 

demand rises with the same proportion with the change in the income level. The 

time series techniques within a General to Specific (GETS) and Johansen 

Maximum Likelihood (JML) were employed for the analysis by the author. The 

JML was further used by the author to test for the direction of causality among the 

variables both in the short- and in the long-run. The author found that both in the 

short and in the long run economic growth led to energy consumption. In other 

words, there is a unidirectional causality running from GDP to energy 

consumption in Fiji, both in the short- and long-run. 

In contrast to the findings in other countries in the developing region, Alter and 

Syed (2011) found no evidence that the demand for electricity is a normal good 

both in the short and long-run, in Pakistan. The authors found that over the 1970-

2010 sample period, the demand for electricity behaves as a luxury good in the 

long run. From their analysis using the Johansen cointegration approach, the 

authors found that as regards to the price elasticities, for all the sectors analysed, 

only the aggregate and industrial analysis result confirmed that the demand for 

electricity is a necessity. Whereas, in the residential, commercial and the 
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agricultural sectors, it appeared to be a normal good. A similar observation was 

also recorded in the income elasticities, where only the aggregate and the 

commercial sectors showed that the demand for electricity in these sectors in 

Pakistan is a necessity. These results may be explained by the fact that only 30 to 

40% of the entire population in Pakistan is connected to the national grid, as 

confirmed by the studies by Khan and Qayyum (2008) and Jamil and Ahmad 

(2010). 

Zachariadis and Pashourtidou (2007) investigated the electricity use in the 

residential and the service sectors in Cyprus, using a data set between 1960 and 

2004. Income, prices and weather were used as the regressors in the analysis. The 

inclusion of the weather variable, proxied by the degree days, is due to the use of 

air conditioning during the high temperature seasons, and likewise the use of 

energy for heating when the temperature becomes very low. The VEC equation 

used is: 

∆𝑒𝑡 = ∝01+ ∝11 ∆𝑒𝑡−1 +∝21 ∆𝑦𝑡−1 + ∝31 ∆𝑃𝑡−1 +∝41 ∆𝑡𝑑𝑑𝑡 +∝51 (𝑒𝑡−1 +

𝑏𝑦𝑡−1 + 𝑐𝑝𝑡−1 + 𝑑) + 𝑢1𝑡 (3.16) 

where e stands for electricity consumption, p is the price variable, y represents 

income, and tdd is the total degree-days variable. The error correction term 

derived from the cointegration analysis is in parenthesis.  

The researchers found that electricity in Cyprus has no close substitutes, as all the 

tests for competing fuels were insignificant. Furthermore, the inclusion of 

‘degree-days’ as the weather variable seems appropriate, because of the statistical 

significance of the coefficient. The researchers also analysed the direction of 

causality among the factors that influence electricity consumption. The results 

show that in the short- and long-run, in the residential sector, there is a 

bidirectional causality running between private income and residential electricity 

consumption. However, no Granger causality was observed in the variables in the 

model for commercial electricity consumption.  
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Al-Azzam and Hawdon (1999) analysed energy demand in Jordan using a linear 

log model in the estimation of the Jordan energy demand with a dataset based on 

the 1968-1997 sample period. The Stock-Watson Dynamic Ordinary Least 

Squares (DOLS) and the Error Correction Model (ECM) techniques were used to 

investigate the relationship between energy consumption, real income, real energy 

prices and construction activity. The long-run specification was: 

Log (𝑄𝑡) = 0 + 1 log(𝑃𝑡) + 2 log(𝑌𝑡) + 3 log(𝐴𝑡) + 4𝐷𝑖 + 𝑡 (3.17) 

where 𝑄𝑡 stands for the aggregate energy consumption, 𝑃𝑡 represents the real price 

of energy, 𝑌𝑡 is the real income (GDP), 𝐴𝑡 stands for the total area constructed in 

square meters. 𝐷𝑖 stands for a dummy variable for conflict and political stability, 0 

is the intercept, 1,2 ,3 and 4 are the elasticities of total energy demand, and t is the 

error term.  

The authors found that the best method to obtain a robust result was the DOLS 

technique due to its ability to work well even in the presence of a mixed order of 

integration in the variables, small sample size, and also to correct the problems 

found when using the error correction model framework, hence giving more 

reliable estimates of the elasticities. Further, both the Johansen Maximum 

Likelihood (JML) and the DOLS techniques confirm that the variables were co-

integrated in the long run. The price elasticities of energy demand were found to 

be low and statistically insignificant. The income elasticity of the total energy 

demanded was found to be close to unity, suggesting that the amount of increase 

in the demand for energy induced by the growth in the economy is proportional.  

There are a number of similarities between the studies by Al-Azzam and Hawdon 

(1999) and Saed (2004), as both investigated the factors influencing energy 

demand in Jordan using the same techniques (DOLS and ECM), and they also 

included dummy variables in their models to account for conflict and political 

instability during the study period. Moreover, the results of both studies in terms 

of the income elasticities of energy demand show that there is a positive 

relationship between energy consumption and income.  
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However, there are a number of important differences between the two studies, 

including the data sets used, the size of the long run price elasticities obtained, and 

also the implications. While Al-Azzam and Hawdon (1999) found that energy 

demand is not price responsive, Saed (2004) found that energy demand is price 

responsive and conservation policies could be achieved through the use of 

taxation. This inconsistency could be as a result of the different datasets used for 

the analysis. Furthermore, another major drawback of the approach used by Al-

Azzam and Hawdon (1999), and Saed (2004), is the failure to estimate the short 

run linkages among the variables in the study. Perhaps, this would have made the 

findings more robust and interesting in terms of being comparable to other 

studies.  

 

Alves and Bueno (2003) studied the short run, long run and cross elasticities of 

gasoline demand in Brazil, using price, income and the price of alcohol as 

independent variables, within a co-integration model. Alcohol-based fuel is 

chosen because in Brazil it has been developed as a close substitute to gasoline, 

and it is commonly used as a major fuel for automobiles. The study covered the 

period between 1974 and 1999 for all the variables, including gasoline 

consumption per capita, real per capita GDP, and the real price of gasoline. They 

found that both price and income had the expected sign, as predicted by demand 

theory. Also, a positive sign for the cross-price elasticity of gasoline for alcohol 

was recorded. The result of the cross-price elasticity of alcohol and gasoline from 

the error correction model, may suggest that in the long run consumers are not 

very sensitive to changes in the price of fuel. This is in line with the hypothesis 

that the price elasticity of gasoline is inelastic in both the short- and long-run.  

 

Alves and Bueno (2003) estimated the cointegrating equation: 

 

 ln𝐶𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝑌𝑡 + 𝛽2𝑙𝑛𝑃𝑡 + 𝛽3𝑙𝑛𝐴𝑡 + 𝑒𝑡    (3.18) 
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where 𝐶𝑡  stands for the yearly gasoline consumption per capita measured in 

liters, 𝑌𝑡  represents the yearly real per capita GDP, 𝑃𝑡 is the annual real gasoline 

price, 𝐴𝑡 is the yearly real alcohol price while the 𝑒𝑡 is the error term.  

(3.13) long run elasticities are given by:   

𝜕𝑙𝑛𝐶𝑡

𝜕𝑙𝑛𝑌𝑡 
= 𝛽1;  

𝜕𝑙𝑛𝐶𝑡

𝜕𝑙𝑛𝑃𝑡
= 𝛽2;  

𝜕𝑙𝑛𝐶𝑡

𝜕𝑙𝑛𝐴𝑡
=  𝛽3 (3.19) 

𝛽1, 𝛽2 𝑎𝑛𝑑 𝛽3 represent the income elasticity, gasoline price elasticity and the 

alcohol cross-price elasticity, respectively.  

Dilaver and Hunt (2011) forecasted the demand of electricity in the residential 

sector in Turkey, using a structural time series model between 1980 and 2008.  

The model used was: 

𝐸𝑡 = 𝑓(𝑌𝑡, 𝑃𝑡 , 𝑈𝐸𝐷𝑇𝑡) (3.20) 

where 𝐸𝑡  represents the residential electricity demand, 𝑌𝑡  stands for the real 

household total final expenditure, 𝑃𝑡  is the real residential electricity price and 

UEDT is the residential sector underlying energy demand trend. 

The authors concluded that household total final consumption expenditure, real 

energy prices alongside underlying energy demand trends, are the main factors 

that determine the demand for energy.  

Sharma et al. (2002) studied the demand for three main forms of energy using a 

log-linear form, in four main sub-sectors (residential, services, industries and 

miscellaneous) in the state of Kerala in India. An OLS regression was employed, 

with the residential sector model taking the functional form: 

ln (𝐸𝑅𝑖/𝑃𝑖)  = 𝛽0+𝛽1ln (𝑄𝑖 𝑃𝑖)/(𝑄𝐵 𝑃𝐵) + 𝛽2 ln(⁄⁄ 𝑁𝑖/𝑁𝐵) (3.21) 
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where ER is the energy demand, P is the population, Q is the state domestic 

product, and N represents the number of electrified residential dwellings. 

 

Similar models for each sectors were specified but with different explanatory 

variables used as appropriate for each sector under study. The coefficient of 

determination (R-squared) of the models, showed that the models provided a 

‘good fit’. An important finding was that by the year 2020, the energy 

consumption in Kerala will be four times the demand recorded in 2002, when the 

study was carried out.  

 

Hung and Huang (2015) studied the dynamic demand for electricity in Taiwan 

under seasonality and increasing block pricing. A significant difference in the 

electricity demand was found between the summer and non- summer periods. This 

result highlighted the importance of the inclusion of a climate variable in the 

analysis. Also, a larger amount of electricity was consumed in the summer months 

than in the non-summer months. A possible explanation for this observed pattern, 

according to the researchers, is the need for cooling by the use of air conditioners 

in the summer months, and also because it might be difficult for consumers to 

reduce their electricity consumption level when the weather is hot. This suggests 

that the higher the temperature, the higher the amount of electricity consumed - a 

situation rather similar to that of Sub-Saharan African countries with more periods 

of hot weather. The results from the study also gave evidence of increased use of 

electricity due to the higher price elasticities of the non-summer months from the 

analysis. 

 

Having reviewed critically some of the literature on both the aggregate and the 

sector level energy demand, it is important to discuss the direction of the causality 

between energy consumption and economic growth in an economy. And also, 

how energy efficiency is important in the debate and, more importantly, the 

factors that influence its impact on energy consumption. These two important 

aspects, and the studies that have analysed them, will be discussed in the 

subsequent sections below.    
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Table 3.1 summarises some of the elasticities reported by the studies discussed in 

this chapter, while more work has been done in Asia and the Middle East on 

energy demand analysis. The reviewed studies in Sub-Saharan Africa show that 

most of the work in the region focused on individual countries, where either a 

particular fuel type or sector was estimated. However, the findings from 

individual countries could be used for the understanding of the demand function 

for energy in all the countries in the SSA region, as they all have similar energy 

issues that include the high rate of traditional use of energy sources like biomass, 

a high number of informal energy institutions, and similar energy policies.   
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     Table 3.1: Table showing the empirical results of selected studies on energy demand 

Author Sector/fuel 
type 

Elasticities 
Regressors Period Method Country Price 

LR 
Price 
SR 

Income 
LR 

Income 
SR 

Diabi  (1998) Electricity 0.01 0.09 

Price 
income 
Urbanisation 
Appliances price 
Weather 

1980-
1992 OLS Saudi Arabia 

Al-Azzam and Hawdon 
(1999) Energy -0.22

0.95
-0.08
0.98

Price 
Income 
Total area 

1968-
1997 JML 

DOLS 
Jordan 

Lundmark et al. (2001) Electricity 0.51 0.86 
Income 
Coal prices 
Electricity price 

1980-
1996 OLS Namibia 

Alves and Bueno (2003) Gasoline -0.09 0.12 
Income 
Gasoline price 
Alcohol price 

1974-
1999 ECM Brazil 

De Vita et al. (2006) 

Energy 
Electricity 
Petrol 
Diesel 

-0.34
-0.30
-0.86
-0.11

1.27 
0.59 
1.08 
2.08 

Price 
Income 
Air temperature 
HIV/AIDS rate 

1980-
2005 ARDL Namibia 

Atakhanova and Howie 
(2007) 

Aggregate 
Residential 
Service 
Industrial 

-0.04
-0.21
-0.12
-0.07

0.37 
0.12 
0.76 
0.41 

Price 
Income 
Population 
Structural changes 
Efficiency 
improvement 

1994-
2003 GMM Kazakhstan 

Zachariadis and 
Pashourtidou (2007) 

Residential 
Commercial 

-0.30
-0.43

1.12 
1.11 

Price 
Income 
Weather 

1960-
2004 

VECM 
Granger 
Causality 

Cyprus 

Akinboade et al.(2008) Gasoline -0.47 0.36 Income 
Gasoline price 

1978-
2005 ARDL South Africa 
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Author Sector/fuel 
type 

Elasticities 
Regressors Period Method Country Price 

LR 
Price 
SR 

Income 
LR 

Income 
SR 

Kumar (2008) Energy -0.30 1.00 Price 
Income 

1970-
2005 

GETS and 
JML Fiji 

Amusa et al. (2009) Electricity -11.41 1.67 Price 
Income 

1960-
2007 ARDL South Africa 

Iwayemi et al. (2010) 

Energy 
Gasoline 
Diesel 
Kerosene 

-0.11
-0.06
0.11
-0.12

0.66 
0.75 
0.11 
-0.12

Income 
Price 

1977-
2006 Cointegration Nigeria 

Alter and Syed (2011) 

Aggregate 
Residential 
Industrial 
Commercial 
Agricultural 

-0.19
-0.42
-0.21
-0.30
-0.14

0.32 
0.18 
0.06 
0.00 
0.72 

Income 
Price 
Electric appliance 
stock 
Number of 
customers 

1970-
2010 Cointegration Pakistan 

Adom et al. (2012) Electricity 1.59 

Income 
Industry efficiency 
Structural changes 
Urbanisation 

1975-
2005 ARDL Ghana 

Adom (2013) Electricity 

2.12 Income 
Economic structure 
Industry electricity 
intensity 

1971-
2008 

Phillip-
Hansen Ghana 

Adom and Bekoe (2013) Electricity 0.81 

Income 
Industry output 
Industry energy 
efficiency 
Urbanisation 

1971-
2008 

Phillip-
Hansen Ghana 



71 

Author Sector/fuel 
type 

Elasticities 
Regressors Period Method Country Price 

LR 
Price 
SR 

Income 
LR 

Income 
SR 

Abdullahi (2014) 

Gasoline 
Diesel 
Kerosene 
Fuel oil 
LPG 

-0.23
-0.30
-0.20
-0.18
-0.58

0.11 
0.17 
0.10 
0.27 
0.64 

Price 
Income 

1978-
2010 STSM Nigeria 

Ackah (2014) 

Gas 
aggregate 
Residential 
Industrial 

-1.81
-0.52
-6.3

-0.36
-0.47
-0.41

1.95 
0.53 
3.70 

0.38 
0.48 
0.25 

Price 
Income 
population 

1989-
2009 STSM Ghana 

Mensah  (2014) LPG -0.28 0.45 
Price 
Income 
Urbanisation 

1992-
2012 ARDL PAM Ghana 

Dramani and Tewari    
(2014) 

Residential 
Electricity 

-0.08
-0.15
-0.14

- 0.05 0.94 
0.44 
1.38 

0.60 

Price 
Income 
Urbanisation 
Intensity of 
residential 
consumption 

1970-
2010 

ARDL 
FMOLS 
DOLS 

Ghana 

Mensah et al (2016) 

Gasoline 
Diesel 
LPG 
Kerosene 
Biomass 
Residual 
fuel oil 
Electricity 

-0.55
0.32
-0.26
-0.48
-0.76

1.32 
3.56 
2.77 
-3.63
-0.59
1.74
2.71

Price 
Income 
Urbanisation 
Economic structure 

1979-
2013 ARDL Ghana 
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3.9 Energy consumption, economic growth and carbon emission 

Existing research recognises the critical role played by energy consumption in the 

economic growth of countries, in both developed and developing countries, 

starting from the seminal paper by Kraft and Kraft (1978) on the nexus between 

these variables for the USA.  In the last few decades, this has been the focus of 

some researchers in the energy economics literature, especially in Sub-Saharan 

Africa with a very low energy consumption rate, which may be measured by the 

low electrification rates in the region. Furthermore, the growing level of income in 

these countries has led to an increase in electricity consumption (Ouedraogo, 

2010), which could also explain the rise in the amount of research in this area. 

Lastly, the energy dependence of some of the SSA countries, resulting perhaps 

from the increase in economic activity in the region, reinforces the importance of 

a reliable long run demand trend estimate to plan the needed energy supply 

(Odhiambo, 2009); thus highlighting the importance of the aim of this research 

project.  

Ozturk (2010) categorised the direction of the causality between energy 

consumption and economic growth in a survey of the literature on energy 

consumption and GDP growth between 1978 and 2009 into four main categories, 

based on their implications in the formulation of appropriate energy policies.  

The first category is referred to as the ‘neutrality hypothesis’, according to which 

there exists no linkage between energy consumption and economic growth. That 

is, the use or consumption of energy in an economy will have no impact on the 

growth of the economy. Examples of studies that support the neutrality hypothesis 

in the energy literature for the US, include the work of Akarca and Long (1980) 

for the period between 1950 and 1970, using the Sim’s technique. Yu and Jin 

(1992), on the other hand, used the cointegration and the Granger causality test for 

datasets between 1974 and 1990. Payne (2009) in an earlier study for the US used 

the Toda- Yamamoto causality test for the period 1949-2006. Soytas and Sari 

(2009) gave the same evidence for Turkey also using the Toda-Yamamoto 

causality test, between 1960 and 2000. Evidence for SSA countries was added to 

the literature in the study by Menegaki and Tugcu (2016), for the period between 
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1985 and 2013. Furthermore, evidence for the neutrality hypothesis was provided 

in the study between 1971-2012 for South Africa, using GMM by Maladoh Bah 

and Azam (2017). 

The second category pertains to studies which found that the conservation or 

reduction in energy use will have no negative effect but a positive impact on the 

growth of GDP. This is referred to as the ‘conservation hypothesis’. This 

hypothesis found support in the studies by Kraft and Kraft (1978) for the USA 

over the period between 1947 and 1974, Aqeel and Butt (2001) for Pakistan using 

a data set between 1955 and 1996, Ang (2008) for Malaysia using Johansen 

cointegation and VEC models between 1971 and 1999, and Zhang and Cheng 

(2009) for China, among others. 

Thirdly, is the ‘growth hypothesis’, which postulates that energy could serve as a 

complement to both labour and capital to enhance economic growth in the 

production function. In other words, an increase in the use of energy would lead to 

an increase in GDP growth and, likewise, a reduction in the amount of energy 

consumed will reduce the growth rate of the economy. Studies in support of the 

growth hypothesis include those by Oh and Lee (2004) for Korea, Wolde-Rufael 

(2004) for Shanghai, Lee and Chang (2005) for Taiwan, Ho and Siu (2007) for 

Hong Kong and Iyke (2015) for Nigeria. 

The last category is the ‘feedback hypothesis’, according to which there is a two-

way relationship between energy consumption and economy growth. This would 

mean that both energy consumption and economic growth affect one another. See 

for example, Hwang and Gum (1991), Glasure (2002), Paul and Bhattacharya 

(2004), Erdal et al. (2008) and Menegaki and Tugcu (2016).  

The verification of these hypotheses and other factors mentioned earlier, 

motivated the study by several researchers, including Wolde-Rufael (2006) who 

explored the long run causal relationship between electricity consumption and 

economic growth in 17 African countries, using a dataset between 1971 and 2001. 

Using the bounds test approach to cointegration, the author found that a long run 

relationship exists between electricity consumption and economic growth in nine 
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countries. Specifically, the results suggest that in Benin, Cameroon, Congo 

Republic, Gabon, Morocco, Nigeria, South Africa, Zambia and Zimbabwe, 

economic growth and electricity consumption are cointegrated in the long run. As 

with most of the studies that analyse the relationship between economic growth 

and energy consumption in the literature, Wolde-Rufael (2006) explored further 

the direction of the causality between the two variables in the countries he studied. 

The results show that in Cameroon, Ghana, Nigeria, Senegal, Zambia and 

Zimbabwe, there is evidence of a one-way causality running from economic 

growth to electricity consumption.  

However, according to the author, caution should be applied in the interpretation 

of the results, due to the severity of the energy crisis in the countries in question, 

as the use of energy conservation policy may worsen the energy crisis experienced 

in those countries. Furthermore, Wolde-Rufael (2006) asserts that the results of 

his study may be particularly interesting for the case of Nigeria and Senegal with 

high electric power transmission and distribution losses if appropriate 

conservation policies are implemented, which might help to improve the energy 

efficiency levels in these countries.  

In Benin, the Democratic Republic of Congo and Tunisia, the evidence from the 

study suggests that a unidirectional causality runs from electricity consumption to 

GDP. Whereas in the case of Eygpt, Gabon and Morocco, evidence of a two-way 

causality was found on the basis of a modified Wald test (Wolde- Rufael, 2006).  

The conclusions and findings by Wolde-Rufael (2006) would have been more 

interesting if other variables were included, as it is not only energy consumption 

that impact on the economic growth in an economy. Perhaps, the inclusion of 

other complements like capital and labour could have led to a more convincing 

result (Wolde-Rufael, 2009). Moreover, the study findings might have been 

affected by the omission of variables bias which happens in bivariate causality 

models (Odhiambo, 2009; De Vita and Trachanas, 2016). 

Chontanawat et al. (2006) noted that the lack of consistent results across countries 

may be due to institutional differences among them. The lack of uniformity in the 

results for individual country by researchers, is surprising leading to different 
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explanations by authors in the energy literature. According to Masih and Masih 

(1997), as cited by Chontanawat et al. (2006), possible reasons for the differences 

in findings, for example may be due to differences in the way variables are 

specified, the econometric approach employed, number of lags used, and other 

methodological issues.  

To exemplify this further, the study by Akinlo (2008) investigated the causal 

relationship between energy consumption and economic growth in 11 SSA 

countries, within an ARDL framework and applying Granger causality tests. 

Akinlo (2008) found evidence of no causality between energy consumption and 

economic growth in Nigeria, Kenya and Togo. These results contradict those by 

Wolde-Rufael (2006) who suggested that an increase in economic growth would 

lead to more electricity consumption in Nigeria. Also, while Wolde- Rufael 

(2006) found that in Ghana there is a unidirectional relationship from economic 

growth to electricity consumption, Akinlo (2008) found evidence of a 

bidirectional relationship between economic growth and energy in Ghana. 

However, as suggested earlier, the differences in findings should also be 

interpreted with caution because of differences in the sample periods, econometric 

techniques used for the causality tests, and the definition and measure 

specification of the variables employed for the analysis. The inclusion of two 

control variables by Akinlo (2008), made the study more robust and interesting. 

Specifically, government expenditure and price variables were added by the 

author to prevent the problem of simultaneity bias and perhaps omission of 

variables bias in bivariate models, which could make the results incorrect when 

testing for the direction of causality between energy consumption and economic 

growth (Akinlo, 2008).  

The findings in the study by Wolde-Rufael (2006) were revisited by Wolde-

Rufael in 2009, and the model used was made more robust by the inclusion of two 

additional explanatory variables. The same datasets were used as in 2006, but the 

author added labour and capital as additional variables, and analysed the data in a 

multivariate framework. The findings led to two interesting points. First, in most 

of the countries under study, there was a reverse of the direction of causality when 
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compared to the earlier study. Second, the author found that labour and capital are 

the two most important determinants of economic growth.  

According to Wolde-Rufael (2009), four possible factors accounted for the 

difference observed in the two studies as regards to the direction of causality. 

First, is the fact that the bivariate case might lead to bias as there are other factors 

that influence economic growth, and thus the use of just two variables may be 

inadequate to capture the factors that impact on output growth. Wolde-Rufael 

(2009) argues further that the consumption of energy in a country, is inadequate to 

cause economic growth in that country, as suggested in the bivariate case. This 

further confirms the omission of variables bias associated in the energy literature 

to the use of bivariate models.  

The second argument is that the implementation of economic liberalisation in 

some of the sample countries such as Nigeria and Sudan, could have resulted in an 

increase in the demand for energy through an increase in the economic growth 

recorded in these economies. This view is corroborated by the argument put 

forward by Wolfram et al. (2012), who assert that the recent increase in the 

economic growth of developing countries, has led to more demand for energy 

through improvements in their economic condition.  

The third factor pointed out by Wolde-Rufael (2009), is the manner and pace in 

which the privatisation policies were implemented in some of the countries. As 

regards to this, the author citied Ghana and Zimbabwe as two countries where a 

gradual move to privatise the power sector has led to higher economic growth, in 

contrast to Kenya, where the process seems to be have been hurried and has led to 

more crisis in the availability of energy. Lastly, the wide variation in the level of 

energy efficiency in the countries was also used to explain the reversed causality 

in the new study by Wolde-Rufael (2009). However, despite the merits of the 

study, the use of the cointegation approach would have made the findings in the 

multivariate model more robust and convincing, especially when compared to the 

univariate framework used in the earlier study.  
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Very little is known about the relationship between energy consumption and 

economic growth at the sub-regional level. This was explored in the study by 

Kebede et al. (2010), who used cross-sectional time series data for 20 countries 

from 1980 to 2004. The total energy demanded is measured by the addition of 

wood fuel (traditional energy), electricity and petroleum. The model used is: 

 

ED = ƒ (GDP, OPR, PGRT, AGR, IND)                 (3.22) 

 

ED represents energy consumption, GDP stands for real GDP, OPR is world 

crude oil price, PGRT is population growth, AGR represents value added to 

agriculture, while IND is value added to industry. The three models used for the 

regression in the analysis are: 

LEDit =β0 + β1LGDPit + β2LOPRit + β3PGRTit + β4GRit + β5INDit +εit        (3.23) 

 

LEDit =β0 + β1LGDPit + β2LOPRit + β3PGRTit + β4AGRit + β5INDit + β6DC+    

β7DE + β8DS + εit                                (3.24) 

 

LEDit =β0 + β1LGDPit + β2LOPRit + β3PGRTit + β4GRit + β5INDit + β6DC + β7DE 

+ β8DS + β9DC*PGRT + β10DE*PGRT + β11DS*PGRT + εit                  (3.25) 

 

In the equations above, i and t stand for country index and time, respectively. 

LEDit  is the log transformation of energy consumption in country i at time t, 

LGDPit and LOPRit  represent the  log of real GDP and crude oil price in country i 

at time t. A dummy variable is used to distinguish one sub-region from the others 

in the models used. The results show that energy demand is a normal good and its 

demand is highly inelastic in all the countries considered. In other words, because 

the consumers in these countries depend on energy for many activities, a one per 

cent change in the price of oil will lead to a 0.1% fall in the quantity demanded of 

oil, as expected theoretically. Furthermore, evidence of a positive relationship 

between energy demand and the rate of population growth was found in all the 

sample countries. Likewise, agricultural expansion was found to lead to an 

increase in energy demand while a negative relationship was found between the 

industrial share of value added and energy demand.  
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Evidence for South Africa was given using time series data in the study by 

Odhiambo (2009), which covered the period between 1971 and 2006. This study 

employed a trivariate framework that included electricity consumption, real per 

capita GDP and employment level as explanatory variables, and used a Granger 

causality test. The researcher found that there exists a bidirectional causality 

between electricity consumption and economic growth, in both the short and long-

run in South Africa. Furthermore, a unidirectional causality from employment to 

economic growth was also found in the study. However, the findings differ from 

Menyah and Wolde-Rufael (2010), who found a unidirectional causality running 

from CO2 emissions to economic growth, and from energy consumption to 

economic growth. Furthermore, unlike Odhiambo (2009), who used a trivariate 

model, the study employed the use of a multivariate framework and a 

cointegration approach for the analysis. The results of Menyah and Wolde-Rufael 

(2010) for South Africa, are corroborated by the findings in the study by 

Odhiambo (2010), who explored the causal relations between energy 

consumption, prices and economic growth in three SSA countries: South Africa, 

Kenya and the Democratic Republic of Congo. Using the ARDL approach and the 

Granger causality test, the researcher found that there is a unidirectional causal 

flow from energy consumption to GDP growth in both South Africa and Kenya, 

while as in Congo (DRC) it is economic growth that leads to an increase in energy 

consumption.  

In the case of Burkina Faso, Ouedraogo (2010) used the ARDL and a Granger 

causality test to examine the causal directions between electricity consumption 

and economic growth, between 1968 and 2003. The author found that both in the 

short- and long-run, there is a two-way relationship between electricity 

consumption and real GDP. This would suggest that both energy use and the 

growth in the economy complement one another (Ouedraogo, 2010).  

Evidence for Ghana, Senegal and Morocco was given in the study by Adom et al. 

(2012).  However, the authors deviated slightly through the inclusion of carbon 

dioxide emissions, technical efficiency and industrial structure, and the omission 

of energy consumption in their specified empirical model. The short- and long-run 

relationship among the variables was analysed through the use of the ARDL 
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bounds cointegration test, while the causal dynamics was explored using the 

Granger causality test. For the three countries, there was evidence of a long-run 

cointegrating relationship among the variables. For Ghana, during the study 

period, carbon dioxide emissions in the long run could be explained by industrial 

structure, technical efficiency and economic growth. The findings would have 

been more interesting if the authors included energy consumption in the analysis, 

especially considering the rigorous econometric procedure employed. 

Researchers have also explored the relationship between economic growth, carbon 

dioxide emissions and energy consumption within a bivariate and multivariate 

panel data framework. Ozturk et al. (2010) investigated the relationship between 

energy consumption and economic growth, using a panel data set of 51 low- and 

middle-income countries between 1971 and 2005. The authors divided the 

countries into three groups based on their level of income: low-income group, 

lower-middle-income group, and upper-middle-income group, so as to resolve the 

‘lump-together’ problem associated with the use of panel data. The results of the 

panel cointegration test show that in all the three income groups, energy 

consumption and economic growth are cointegrated. The Granger causality test 

gave evidence of a unidirectional causality running from economic growth to 

energy consumption in the low-income group, whereas in the two middle-income 

countries, there exists bidirectional causality between energy consumption and 

GDP. However, for all the income groups the authors found no evidence to 

support that energy consumption could cause economic growth. A serious 

weakness of this study, however, is the use of a bivariate model (see also Narayan 

and Narayan, 2010; and Ouegraogo, 2013). The inclusion of new variables such 

as real gross fixed capital formation, labour force, carbon dioxide emissions, GDP 

deflator, population, exchange rates, interest rates (Ozturk, 2010), within a 

multivariate model would have made the findings more convincing and 

interesting.  

Other studies, including Mulali and Sab (2012), investigated the impact of energy 

consumption and carbon emissions on GDP growth and the financial development 

of a country. The study by Mulali and Sab (2012) covered SSA over the period 

1980-2008, in a panel data model context. It is interesting to note that in all the 
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thirty SSA countries in this study, it was found that primary energy consumption 

had a positive impact on both financial development and GDP growth. The panel 

cointegration method was used for the analysis, which seems to be much more 

robust than the time series cointegration method, because of the larger dataset 

across both time and space.  

A multivariate panel data framework was employed in the study by Jebli et al. 

(2015) to analyse the relationship between carbon emission, gdp growth, 

renewable energy consumption and trade in 42 SSA countries. The findings of the 

study gave evidence of a bidirectional relationship between economic growth and 

carbon emission in the short run. Esso and Keho (2016) also investigated the long-

run and causal relationships among energy consumption, carbon dioxide (CO2) 

emissions and economic growth in a sample of 12 SSA countries, between 1971 

and 2010. The authors used bounds test to cointegration and Granger causality 

tests in their analysis. They found that in most of the analysed countries in the 

long run, energy consumption and economic growth are linked with increase in 

carbon emission in most countries.  

It is worth noting that despite the large amount of work that has been carried out 

in the energy literature on identifying the true direction of the causality between 

energy consumption and economic growth, some of which have been reviewed 

critically in this section of the chapter, the studies have all led to conflicting and 

mixed results, which suggests that the debate is continuing with no clear 

consensus on what the right direction of causality is.  

3.10 Energy intensity 

Some authors took the energy demand and the debate on the causality between 

energy consumption and economic growth further, by exploring the factors that 

determine the rate or level of energy intensity in a country, which could be 

defined as the ratio of energy consumption to total output (Wu, 2012). This 

definition is also referred to as the aggregate measure of the total energy use in 

GDP (Allcott and Greenhouse, 2012).  
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Despite the numerous practical advantages associated with increased access to 

modern energy, the role played by energy as a prerequisite for the reduction in the 

poverty level, and for the realisation of the sustainable development goals 

(SDGs), including higher economic growth and development, especially in the 

developing countries context, cannot be overemphasised (Ouegraogo, 2013). 

However, increased access to modern energy also has some adverse effects, the 

most serious disadvantages seem to be the environmental changes, which are 

linked to the pollution of the air, water and soil (Wu, 2012). These issues have 

motivated some researchers, policymakers and other stakeholders to look for ways 

to reduce such adverse effects, especially the part contributed by the increase in 

energy consumption, mainly through the increase in the level of energy efficiency. 

To exemplify this, a report on the GHG emissions in 2010 showed that 35% of the 

emissions came from the energy sector (IPCC synthesis report, 2014). Energy 

efficiency is also believed to provide a platform where both stringent energy 

conservation policies and good ways of reducing negative impacts of energy use 

can be achieved (Allcott and Greenhouse, 2012).  

 

Based on the foregoing, it appears that the implementation of a good energy 

efficiency policy in a country has several benefits, and it may also help in meeting 

the growing demand for energy, through saving some of the available energy 

(Wang et al., 2012). Most of the studies on energy intensity for a developing 

region are from China due to the high level of economic growth, and China’s 

position as the largest consumer of energy in the world (Wu, 2012). The authors 

who have explored this topic have identified several factors that influence the 

energy intensity level, and have also investigated the impact of the energy 

efficiency policy pursued. It should be noted that energy efficiency is the inverse 

of the level of energy intensity, and, therefore, the former could be used as a good 

indicator of the latter. Nevertheless, following earlier work (e.g., Wu, 2012), 

many researchers have sought to shed more light on the factors that drive energy 

intensity in an economy. The model used by Wu (2012) to investigate the driving 

forces of the energy intensity level in China’s regional economies is explained 

below: 

 

𝑌𝑖𝑡 =∝0+ ℇ𝑗 ∝𝑗 𝑋𝑖𝑗𝑡 +∈𝑖𝑡                  (3.26) 
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where 𝑌𝑖𝑡 stands for either the efficiency index or the structural change index for 

region i at time t, 𝑋𝑖𝑗𝑡 represents region specific characteristics. 

Other variables in the model include price, income, the capita-labour ratio and the 

growth rate of capital stock. The capita-labour ratio is used to represent the level 

of technology. The author (Wu, 2012) posits that growth in an economy could 

bring about an improvement in the level of energy efficiency, which was 

measured by Wu (2012) using per capita gross regional product (GRP). Price is 

expected to have a negative coefficient that is, as the price of energy increases the 

level of energy intensity reduces. In other words, the energy efficiency level will 

increase as the price paid for energy increases, which may be because consumers 

are expected to reduce the amount of energy used due to a higher cost, or buy 

more energy efficient equipment and gadgets.   

Using the generalised method of moments (GMM) methodology, the author found 

a decrease in the average level of energy intensity in China over the study period 

between 1997 and 2007. This finding suggests that the energy efficiency level has 

improved during the study period. However, at the regional level there seem to be 

differences, with respect to the rate at which an increase in the rate of energy 

efficiency was achieved. In other words, while in some regions there was 

evidence of a dramatic decline in the energy intensity level, an increase of up to 

seven times higher than the lowest was found in others. Furthermore, Wu (2012) 

argued that income, energy prices and the introduction of new technologies are 

the main factors that determine the energy intensity level in an economy. 

Evidence on a disaggregated basis from the industrial sector in China was given in 

the study by Wang et al. (2012), who investigated the energy intensity of 30 

provinces for the five year period between 2004 and 2009. Using the total factor 

energy efficiency framework, the authors found that in the Eastern region only 

33.3% of the total provinces explored had an efficiency level below 0.9, while six 

provinces in the central region had this level, and so did all the provinces in the 

Western part. The authors point out that Shanxi is the province with the lowest 

energy efficiency level in China, and argued further that this result could be linked 

to the province’s abundant energy resources, and lack of any form of energy 
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efficiency in place. However, the main weakness of the study is the failure to 

analyse the factors that drive the Chinese industrial sector energy intensity level. 

This would have made the study more interesting and relevant, by shedding more 

light to this important part of the debate, especially for a country (China) that is 

the largest consumer of energy and GHG emitter in the world (EIA, 2015).  

In their detailed analysis of the determinants of energy intensity in China, Zeng et 

al. (2014) were able to bring more evidence of the ten year period from 1997 to 

2007 to the energy literature. The authors, who employed the use of a structural 

decomposition analysis (SDA), included the energy intensity, energy mix, sectoral 

energy efficiency, production structure, final demand structure among sectors, and 

final demand composition as the decomposition variables. The model used for the 

analysis is presented below: 

∆𝑒 = 𝜏𝐸𝑡�̂�𝑡
∗𝐿𝑑,𝑡

∗ 𝑦𝑠𝑒𝑐,𝑡𝑦𝑐𝑎𝑡,𝑡 − 𝜏𝐸𝑡 − 1�̂�𝑡
∗ − 1𝐿𝑑,𝑡

∗ − 1𝑦𝑠𝑒𝑐,𝑡 − 1𝑦𝑐𝑎𝑡,𝑡 − 1       (3.27) 

The evidence from this study suggests that increased efficiency at the sectoral 

level could explain the reduction in the energy intensity level, while at the same 

time the rise in exports level brought about by changes in the production structure 

and demand composition, might account for the increase trend observed between 

2002 and 2007 in China. Taken together, these results suggest that the Chinese 

government may need to structure the exports from the production structure and 

the demand in a more energy efficient way so to reduce the energy intensity level. 

However, despite the robust findings of the study, no attempt was made by the 

authors to use the newly developed cointegration method which would have made 

the study more reliable.  

A panel study of 76 developing countries, by Sadorsky (2013) suggests an that 

increase in income in these countries reduces energy intensity, while an increase 

in industrialisation leads to a higher energy intensity level. The author also 

analysed the impact of urbanisation on energy intensity in the model used for the 

analysis, and gave three main reasons for the inclusion of the variable. Firstly, is 

the role played by urbanisation in leading to economies of scale through an 

increase in the amount of economic activity in urban areas. Secondly, is the 
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increase in demand for energy caused by more motorised traffic as a result of the 

increase in mobility and transport in the cities. Lastly, is the shift towards more 

energy intensive goods or sectors, which could be linked to a need for more 

infrastructure in the urban areas to cater for the higher number of people in cities. 

However, despite the use of both homogenous and heterogeneous panel models by 

the author, a mixed result of the impact of urbanisation on energy intensity was 

found in the study. Furthermore, lack of distinction between the countries to 

eliminate the lump-together problem, perhaps by income group or other distinct 

categories, reduced the worth of the study. Also, the use of a panel cointegration 

technique would have been more suitable considering the unbalanced nature of 

the panel used for the analysis.  

In another study by Adom and Kwakwa (2014), it was found that, using the 

cointegration technique, the effect of changing technical characteristics of the 

manufacturing sector in Ghana led to a reduction in energy intensity. Furthermore, 

the effect of FDI, trade openness and urbanisation were also analysed. They found 

that energy efficiency was adversely affected by the degree of urbanisation, while 

a negative impact of trade openness was found, the impact of FDI was positive 

and insignificant statistically. The importation of more energy efficient machinery 

through increased economic integration reduced the amount of energy used, while 

the transfer of new technology through FDI seems not to have improved the 

energy efficiency level. The impact of FDI needs to be interpreted with caution 

due to the statistical insignificance of the coefficient in the analysis. However, no 

explanation was provided by the authors on the role played by income and energy 

price on the energy intensity level in Ghana.  

Furthermore, the impact of energy intensity on carbon emission in 12 SSA was 

investigated in the study by Shahbaz et al. (2015), using the panel cointegration 

approach. The long run results from the analysis between 1980 and 2012, in the 

study show that energy intensity has a positive and statistically significant impact 

on CO2 emissions in the analysed countries. 
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3.11 Methodological issues raised by the reviewed studies 

Many of the empirical studies reviewed in this chapter suffer from shortcomings 

in the methodological approach adopted by the researchers, type of data used, the 

reliability of the data sources, and the econometric tests performed. As pointed out 

by Urban et al. (2007), top down models which include the econometric approach 

used by many of the authors of the studies reviewed, could result in the estimation 

of incorrect computed outputs elasticities, if an incorrect economic framework is 

specified and used by the researcher.  

The economic framework used for the analysis could be misleading in several 

ways. For instance, the use of a bivariate model could have led to spurious results 

in some studies through the bias stemming from the omission of relevant variables 

(Akinlo, 2008), whereas the specification of a multivariate model for the analysis 

could have corrected for this. A multivariate model is used for the analysis in this 

study.  

The cointegration technique seems to be a more reliable and rigorous econometric 

technique for panel data analysis, where multiple countries are analysed. The use 

of cointegration in empirical analysis requires a longer time period to be efficient. 

The study uses 34 years in the aggregate demand analysis, where the cointegration 

method is employed, whereas, some of the reviewed studies used a shorter time 

period (see for example, Akinboade et al., 2005; Iwayemi et al., 2010; Mensah, 

2014 in Table 3.1 above).  

Some of the reviewed studies also neglected the time series properties of the 

variables and their order of integration. In other words, where a mixed order of 

integration was found among the variables, the methodological approach 

employed by some of the studies did not take this into consideration. This 

important point is taken into account in the econometric approach chosen and 

used in this study. The Pooled Mean Group (PMG) technique is used in the 

analysis, where a mixed order of integration is found in this research. PMG is a 

panel extension of the Autoregressive Distributed Lag (ARDL) model popularly 

used in time series analysis due to its ability to estimate a cointegration 
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relationship among variables even when they have a different order of integration 

(Martins, 2006; Morshed, 2010; Frimpong and Adu, 2014).  

 

Likewise, most of the reviewed studies in SSA seem to have neglected some 

important variables like the degree of urbanisation and economic structure, both 

of which are important when considering the current trends and dynamics in SSA 

(Mensah, 2016). These two variables will be included in the cross-country 

econometric model analysed in this study.  

 

In view of these limitations, the study attempt to overcome the shortcomings 

identified in the reviewed literature by taking into account the characteristics of a 

developing country for the variable specification of the model used, and also by 

using a comprehensive data set from reliable data sources, employing the use of 

the cointegation technique, linear panel models and performing all the necessary 

econometric tests.  

 

3.12 Chapter summary 

The purpose of this chapter was to discuss the theoretical framework for the study, 

and also to identify the relevant variables to be used for the analysis of energy 

demand in Sub-Saharan Africa (SSA). This was achieved through the critical 

review of the previous studies on the subject, especially those in developing 

countries.  

 

Most of the studies at the aggregate level concluded that income and price 

variables are the main determinants of energy demand. This is in line with 

economic theory of the law of demand. Changes in the economic structure, the 

degree of urbanisation and the price of substitutes are also important factors that 

influence total energy demand, as evidenced in the results of some of the studies 

reviewed in this chapter.  

 

The choice of the variables to be used for the disaggregated energy demand study 

depends on the sector under study, and other variables are added to the price and 

income variables in the analysis, while at the same time the particular variables 
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chosen depend on their relevance to the sector to be analysed as well as data 

availability.  

Since the seminal paper by Kraft and Kraft (1978) and other subsequent studies, 

there are conflicting and mixed results on the true direction of the causality 

between economic growth and energy consumption. These include studies on 

carbon emissions as a variable in the model. However, the review of the research 

on the determinants of energy intensity shows that it may have a role to play in the 

energy security issues, and to mitigate climate change in developing countries. 

The next chapter discusses the methodology to be used for the analysis in this 

study. 
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Chapter 4 : Econometric Methodology 

4.1 Chapter overview 

This chapter provides an account of the methods used for the estimation of panel 

data models, which is the main methodological framework used for the empirical 

analysis in this PhD study. The definitions, estimations and interpretations of 

panel data models are discussed as adopted for the estimation of the aggregate and 

disaggregated energy demand analysis.  

The chapter is structured as follows. First, the definition of panel data is 

introduced in the first section, in addition to a discussion of limitations and 

benefits of using panel data. In the sections that follow, the panel methods 

discussed are grouped under two main headings: panel linear models, and non-

stationary linear models.   

Under the panel linear models, the fixed effects and random effects models that 

take into account the unobserved differences in the countries analysed in Sub-

Saharan Africa (SSA), are explored. The Prais-Winsten (PW) regression model is 

explained in the last sub-section. Under the other division of panel models, the 

issues of stationarity and unit roots are explained, a basis which is then used for 

the discussion of panel unit root tests, before moving on to the discussion of panel 

cointegration. The chapter concludes with the motivation and rationale for the 

chosen methodology for the empirical analysis.  

4.2 Introduction to panel data 

Panel data are a type of data that includes, in addition to the temporal element, the 

cross section of observations of economic variables over time (Baltagi, 2008, p. 

1). The definition suggests that panel data entail cross section as well as time 

series components. The Sub-Saharan African energy demand panel dataset, the 

dataset used in this PhD study, gives us an ample opportunity for analysing the 

driving forces behind energy demand between 1980 and 2013 in Sub-Saharan 

Africa by building an econometric model for the analysis. Panel data may be 

classified depending on the number of the ‘group’, into micro panels and macro 
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panels. Group is defined in the econometric literature as the observation units in a 

panel dataset. A micro panel data set is collected for a large group over a short 

time period. While, the second classification of panel data comprises of a small 

number of groups and it is observed annually over a relatively long time period, 

between 20 and 60 years (Baltagi, 2008).  

The Sub-Saharan African (SSA) energy demand model is a macro panel dataset, 

because it includes a cross section of different economic variables of the studied 

countries in the region over 33 years. The difference between the two types of 

panel data lies on the relative number of N and T. Macro panel data sets have a 

moderate N size (for example, aggregated into a region or sub-regions)  and a 

large T (long time period) dimension. In general, macro panel datasets tend to 

suffer from the nonstationarity issue in the time series (at least in some variables), 

like unit roots, as well as structural breaks, a problem that arises because of the 

long time series dimension.  

Cross-country dependence is another issue to be considered when estimating a 

macro panel dataset, or a panel data that has a large cross section and time series 

dimension. Failure to account for this might lead to making wrong or misleading 

inferences (Baltagi, 2008). Chudik and Pesaran (2013) provide a survey of the 

techniques that have been proposed in the literature for overcoming the problem 

of cross dependence of errors. In their study, Chudik and Pesaran (2013) 

evaluated techniques such as, the factor error structure employed in cross-

sectional dependence, principal components techniques, the common correlated 

effects approach, and the quasi maximum likelihood estimator, among others.  

Despite the few limitations of panel data mentioned in the paragragh above, the 

use of panel data offers many advantages over studies that use conventional data 

sets such as time series or cross sectional data. The use of nonstationary panel 

data enables the combination and derivation of the advantages of both cross 

section and time series data. That is, to get the best of both worlds in terms of the 

availability of more data and power across the cross section and also the 

advantages that comes with removing unit roots in time series data. 
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According to Hsiao (2014), there are several benefits of using the panel data 

approach over the traditional time series or cross sectional data tehniques. Some 

of the advantages highlighted by Hsiao (2014) include: panel data have a large 

dataset, which makes it more informative with high degrees of freedom and 

reduced collinearity among the regressors, thereby improving the reliability of the 

econometric estimations of the model; panel data are more suitable for studying 

the dynamics of adjustment than cross sectional data; panel data reduce the impact 

of omitted or unobserved variables in the results of the model; panel data enable 

the researcher to model and test more complicated behaviour models, thus 

allowing for tests of various levels of heterogeneity in the sample and; the unit 

root tests employed in macro panels have standard asymptotic distributions unlike 

the case of traditional time series data, which is known to have nonstandard 

distributions.  

It seems evident from the discussion above that special techniques have to be 

employed when using a panel dataset in an empirical study, so as to estimate the 

parameters in the model correctly. The section that follows discusses the panel 

data regression models and how they are estimated and specified for econometric 

analysis. 

4.3 Panel linear models 

In this section, the specifications, definitions and interpretations of linear panel 

models are discussed. The fixed effects model, random effects model and PW 

models work best in a balanced panel. Since the disaggregated energy demand 

dataset used in this study is a balanced panel, these models will be employed for 

the estimations. Therefore, in the sub-sections that follow, each of these models is 

discussed one after the other. Relevant tests used to validate the reliability of 

estimated coefficients are also discussed.   

4.3.1 Panel data regression model 

A regression model analyses the relationship between a dependent variable and 

one or more explanatory variables. For instance, if z is the dependent variable and 
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y is a vector containing different independent variables, the regression equation 

can be written as: 

𝑧𝑖𝑡 = 𝛼 + 𝛽𝑦𝑖𝑡 + 𝑢𝑖𝑡 (4.1) 

where i represents i, 2,3,…..,N and t stands for 1,2,3,…T  

i is the cross-sectional units while T is the total time period that corresponds to 

each cross sectional unit and 𝑢𝑖𝑡 is the ‘white noise’ error term, expected to be 

normally and independently distributed with zero mean and constant variance.  

We can derive the expected value of z, and represent it as: 

E (z/y) = 𝛼 + 𝛽𝑦 

The OLS estimator can be used to estimate the regression model above. However, 

in order not to have an unbiased estimate some conditions must be met. Some of 

the assumptions which must be met were highlighted by Gujarati and Porter 

(2009) and Al-Kuwari (2007), and discussed briefly below: 

a) Error term: The disturbance term mean or expected value is zero given the

value of y, that is

E(𝑢𝑖𝑡/𝑦)= 0 

b) Homoscedasticity: This condition states that the variance of the error term

is constant regardless of the value taken by y, that is,

var (𝑢𝑖𝑡/𝑦)=𝜎2

c) Linearity: The regression model in equation (1) above is linear in

parameters, although the variables themselves may be nonlinear in nature.

d) Normality: The error term should be normally distributed. That is

𝑢𝑖𝑡~𝑁(0, 𝜎2).

e) Serial correlation: There should be no autocorrelation in the error term in

the model. That is,

cov(𝑢𝑖𝑡,𝑢𝑖(𝑡−1)) = 0 

f) Degrees of freedom: In a regression model, the number of observations

must be greater than the estimated parameters.
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g) Multicollinearity: There should be no perfect linear relationship among the

independent variables in a model. An assumption usually verified by

computing a correlation matrix for all the variables in the model; as a rule

of thumb, a correlation higher than 0.75 would display a concerning level

of collinearity, while correlation values below 0.75, would indicate

relatively low and hence innocuous levels of collinearity.

h) Zero covariance: The error term and the explanatory variable should have

a zero covariance, that is,

cov(𝑢𝑖𝑡,𝑦𝑖𝑡)=0 

If the stated assumptions hold, OLS is said to be the best linear unbiased estimator 

(BLUE) otherwise the OLS estimate is biased if any of them is violated. 

Therefore, it is important to perform all necessary statistical tests to ensure that all 

conditions of OLS are met in empirical analysis. However, even if all the 

conditions of OLS are met, OLS may not be BLUE if there is a considerable 

variability in the dependent variable analysed (Gujarati and Porter, 2009, p. 371). 

In a dataset with wide variability in the dependent variable, GLS (Generalised 

Least Squares) may be more suitable for the analysis. In this section, we have 

discussed the pooled OLS used in panel data and its properties. In the sections that 

follow, the static panel models are discussed.  

4.3.2 Static linear panel model 

The static linear panel models include estimators such as the fixed effects model 

and the random effects model, among others. Each of these models has a different 

specification, assumptions and suitability. In order to explain the differences 

between these models, the time series linear model and the cross sectional linear 

model are used to build a panel model employed for the illustration.  

First, let us examine a cross-sectional model of the form 

𝑧𝑖 = 𝛼 + 𝛽𝑦𝑖 + 𝑢𝑖 (4.2) 
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where 𝑧𝑖 represents the value of a cross-sectional unit, for example a country at a 

single point in time. 𝑦𝑖 is a vector of explanatory variables, while 𝑢𝑖 denotes the 

cross-sectional errors.  

Next, let us examine a time series model 

𝑧𝑡 = 𝛼 + 𝛽𝑦𝑡 + 𝑢𝑡 (4.3) 

In equation (4.3),  𝑧𝑡 stands for the value of z at time period t, 𝑦𝑡 is a vector of 

independent variables and ut   is the error assumed to be white noise.  

Both models presented in equations (4.2) and (4.3) above are based on the 

assumption that the fixed parameters 𝛼 𝑎𝑛𝑑 𝛽 accounts for the effect of z on y. 

However, in panel data which is a combination of both models is based on the 

assumption that the factors that account for the impact of z on y in each cross-

sectional unit of the model could be different (Al-Kuwari, 2007).  

Therefore, following the assumption that 𝛼 𝑎𝑛𝑑 𝛽  may vary over the cross-

sectional units over time, equations (4.2) and (4.3) become 

𝑧𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑖𝑡𝑦𝑖𝑡 + 𝑢𝑖𝑡 (4.4) 

with i ranging from 1 to N, and t from 1 to T. 

It should appear evident from equation (4.4) above that it might be difficult to 

estimate the model because the number of parameters (NT (K+1)) is greater than 

the degrees of freedom of the model (NT). This condition requires that we impose 

a structure on (4.4) so as to be able to estimate the model. Al-Kuwari (2007) 

pointed out that one of the ways to achieve a valid model for equation (4.4) is to 

assume that 𝛽 (known as the structural parameter) is identical across all cross-

sectional unit over time, and introduce a new variable known as the incidental 

parameter.  

In other words, the incidental parameter is the additional structure imposed on 

model (4.4) to be able to estimate the model. This suggests that the incidental 
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parameter accounts for the differences (heterogeneity represented here by 𝛿 ) 

across countries over the period of study, which could be omitted as an 

explanatory variable. These incidental parameter may include omitted variables 

that are stable over time, individual in-variant and varying variables. On one hand, 

individual invariant variables are variables that are similar for all i at a particular 

point in time but change through time. This includes variables such as prices and 

the rate of interest. On the other hand, time varying variables are variables that are 

different across both cross-section and time at a given period. Examples of such 

variables include sales volume and profits. In the empirical literature, the impact 

of the heterogeneity across the cross-sectional units is said to be either, random, 

fixed or mixed.  

 

Therefore, the main task of the researcher in empirical analysis is to obtain an 

unbiased estimate of the structural parameter by dealing with the unobserved 

differences correctly. Having discussed how the heterogeneity came about and 

how it can be modelled to be (either, random, fixed or mixed effects), in the 

sections that follow, the random effects model and the fixed model are discussed 

in turn. How the appropriate model is chosen is also discussed in the context of 

the Hausman test.  

 

4.3.3 The random effects (RE) model 

In regression analysis, the standard assumption is that all the factors that influence 

the dependent variable but are not included as explanatory variables, are captured 

by the error term. In the RE model the unobserved heterogeneity is assumed to be 

based on random factors that are independently and identically shared among the 

individual units of the panel (Verbeek, 2012). Therefore, we write the RE model 

as: 

 

𝑧𝑖𝑡 = 𝛼𝑖𝑡 + 𝛽𝑦𝑖𝑡 + 𝜇𝑖 + 𝑢𝑖𝑡                                                    (4.5) 

 

where 𝑢𝑖𝑡~𝐼𝐼𝐷(0, 𝜎𝑢
2);  𝜇𝑖~𝐼𝐼𝐷(0, 𝜎𝜇

2)   

 



95 

In equation (4.5), 𝜇𝑖 + 𝑢𝑖𝑡  is categorized as an error term which has two main 

divisions. The first division does not vary over time and it is known as the 

individual specific component, while the other part of the error term is assumed to 

have no correlation over time. The basic assumption in the model is that the 

unobserved differences across i are not correlated with y, and they are distributed 

randomly with a common mean (Baltagi, 2008, p14). In other words, 

𝑏𝑜𝑡ℎ 𝜇𝑖 𝑎𝑛𝑑 𝑢𝑖𝑡  are mutually independent and they have no relationship with 

either the time series or the cross-sectional components. That is explained using 

the equations below: 

E (𝜇𝑖  𝑢𝑖𝑡) = 0 for all i and t 

E (𝜇𝑖  𝜇𝐾) = 0     (i≠ 𝑘) 

E (𝑢𝑖𝑡  𝑢𝑖𝑗) = 𝐸(𝑢𝑖𝑡 𝑢𝑘𝑡) = 𝐸(𝑢𝑖𝑡 𝑢𝑘𝑗) = 0 (i≠ 𝑘; k ≠ 𝑗) 

The Breush and Pagan (1979) Test 

In order to test whether the presence of random effects is present in a panel, a 

Lagrange Multiplier (LM) test was developed by Breusch and Pagan (1979). The 

LM test statistic is 

LM = 𝑁𝑇

2(𝑇−1)
[

∑(∑ 𝑢𝑖𝑡)2

∑ ∑ 𝑢𝑖𝑡
2 − 1]

2

~𝑥2(1) 

𝑢𝑖𝑡 represents the pooled OLS error term. 

The null hypothesis of the test is that cross-sectional variance units are zero. 

Likewise, under H0, 𝑥2  has one degree of freedom and it is asymptotically

distributed. Therefore, the rejection of the null hypothesis means that random 

effects model is acceptable.  

The use of the random effects model is useful when the sample used is drawn 

randomly from a population and the chosen sample is representative of the 

population under study (Baltagi, 2008, p.14). The advantages of using a random 

effects model are: a) when the sample size increases, the number of parameters to 
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be estimated does not change; b) The derived estimator (known as the generalised 

least squares) is efficient because it applies both the within and between 

variations; and c) the effect of a variable that does not change over time across 

cross-sectional units can be estimated. However, despite the usefulness of the 

model its strong assumption of independence of the regressors from the 

unobserved heterogeneity seems to be too strong (Al-Kuwari, 2007).  

4.3.4 The fixed effects (FE) model 

In a fixed effect model, the intercept in the regression equation varies across the 

cross-sectional units. The fixed effect model is represented by: 

𝑧𝑖𝑡 = 𝛼 + 𝛽𝑦𝑖𝑡 + 𝜇𝑖 + 𝑢𝑖𝑡 (4.6) 

In the model above, the unobserved heterogeneity 𝛿 has two main parts: 𝛼 and 𝜇𝑖. 

The common fixed effects across the cross-sectional units i represented by 𝛼 is the 

first part. While the deviation from the common effect which is constant for each 

individual is represented by 𝜇𝑖, is the second part of the unobserved heterogeneity. 

The underlying assumptions of the fixed effects model are: 

𝑢𝑖𝑡~𝑁(0, 𝜎𝑢
2)

E (𝑢𝑖𝑡  𝑢𝑖𝑗) = 𝐸(𝑢𝑖𝑡 𝑢𝑘𝑡) = 𝐸(𝑢𝑖𝑡 𝑢𝑘𝑗) = 0 (i≠ 𝑘; k ≠ 𝑗) 

That is, 𝑦𝑖𝑡 are uncorrelated with all 𝑢𝑖𝑡. As stated earlier that the intercepts varies 

across individuals, we can use dummy variables to account for this in each 

individual units i represented by: 

𝑧𝑖𝑡 = ∑ 𝛼𝑗𝑑𝑖𝑗
𝑁
𝑗=1 + 𝛽𝑦𝑖𝑡+𝑢𝑖𝑡  (4.7) 

In (4.7) above, we have N dummy variables in the model if 𝑑𝑖𝑗=1 and i= j and 0 

elsewhere. Then, OLS could be used to estimate the model 

parameters 𝛼1,𝛼2,𝛼3,……..,𝛼𝑁 𝑎𝑛𝑑  𝛽.  However, it may not be appealing to estimate a 

model with many regressors. If so, the regression can be estimated using 
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deviations from individual means. The transformation from individual mean is 

presented by: 

𝑧𝑖𝑡 − 𝑧�̅� = (𝑦𝑖𝑡 − �̅�𝑖𝑡)𝐼𝛽+(𝑢𝑖𝑡 − �̅�𝑖)                                   (4.8)

The results of both models in (4.7) and (4.8) above will be identical (Verbeek, 

2012).  The results of the model in (4.8) for 𝛽 is called the fixed effects or ‘within 

estimator’.  

In essence, the fixed effects model accounts for the differences within individual 

units in a model. However, the model allows some degree of correlation between 

the explanatory variables and the units analysed. Despite its usefulness, there are 

some drawbacks with the use of the model. The main shortcoming associated with 

the model is that the number of unknown parameters increases if the number of 

observations increases.  

4.3.5 Random effects versus fixed effects models 

From the discussion above, it is evident that both fixed and random effects models 

can be used for panel data estimation. But then, we need to choose the appropriate 

one to use given the nature of our sample. The main idea is whether to assume 

that individual specific effect (𝜇𝑖) parameter is a variable randomly drawn from 

the population or to estimate it as a fixed variable. The choice of which of the two 

models to use has generated a considerable debate in both the statistical and 

biometrics literature, which has now extended into the panel data econometrics 

literature (Baltagi, 2008, p.19). Usually the RE model is preferred when dealing 

with census data rather than a sample drawn from a wider population. However, 

basic intuition might suggest that if the datasets represents countries or states, then 

𝜇𝑖 might be treated as a fixed parameter because the variable is not from a random 

selection from the distribution. Likewise, if the panel datasets represent variables 

such as individuals or firms then 𝜇𝑖  is likely to be estimated as a random 

component of the model. Based on the illustration, the main point is to ascertain if 

there is correlation between the observed variables (z) and individual specific 

effect 𝜇𝑖.   
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Therefore, the fixed effects model is employed if there is correlation between y 

and 𝜇𝑖  and it also follows that the random effects model is used if there is no 

correlation among them. This suggests that fixed effects model is only BLUE 

(best linear unbiased estimator) if y and 𝜇𝑖 are correlated. To know if there is any 

correlation between y and 𝜇𝑖, Hausman (1978) proposed a test. The test statistic is 

given by: 

H= (�̂�𝐹𝐸 − �̂�𝑅𝐸)
𝑙
[𝑐𝑜𝑣(�̂�𝐹𝐸) − 𝑐𝑜𝑣(�̂�𝑅𝐸)]

−1
(�̂�𝐹𝐸 − �̂�𝑅𝐸) (4.9) 

In (4.9) above, �̂�𝐹𝐸  𝑎𝑛𝑑 �̂�𝑅𝐸 are vectors of coefficients estimates from the fixed 

effects and the random effects model, respectively. It excludes the coefficients 

from time dummies and time-invariant variables. The statistic (H) is 

asymptotically distributed as  𝑥2 with degrees of freedom equal to the sum of the

coefficients in �̂�𝐹𝐸  𝑎𝑛𝑑 �̂�𝑅𝐸.  

The null hypothesis of the test is: 

H0: The fixed effects estimators and the random effects estimators do not differ 

substantially. In other words, z and 𝜇𝑖 are not correlated.  

The alternative hypothesis of the test is: 

H1: The fixed effects estimator and the random effects estimators differ 

substantially.  

After either of the models is selected for the estimation, it is important to ensure 

that the estimate is BLUE (Best Linear Unbiased Estimator). In the event that this 

condition is not met, as it was the case in some of the models analysed in this 

study, where evidence of heteroscedasticity was found (see Chapter 6), the Prais-

Winsten regression with panel-corrected standard errors can be employed (see for 

example Poumanyvong and Kaneko, 2010; Knight and Schor, 2014) to obtain 

unbiased estimates.  

Having discussed static panel models used in balanced panels in the sections 

above, the methods used to estimate non-stationary panels are discussed in the 

sections below. Issues that could be raised by the use of macro panel data, 
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solutions to the problems of nonstationarity and cross dependence are also 

explored.  

 

4.4 Nonstationary panel models 

In this section, the methods used to estimate non-stationary panel are discussed. 

However, because of the nature of the time series component element in a macro 

panel, it is critical to properly address the issues of unit roots, structural breaks, 

cointegration and cross dependence.  

 

4.4.1 Econometric concept of stationarity and unit roots 

Before detailing the panel unit root tests commonly used in the literature, this 

section begins by offering a clear explanation of two econometric concepts which 

are essential to provide adequate background to the discussion that will follow. 

That is the issue of stationarity and of unit roots. 

 

The issue of stationarity in times series data, is analogous to that in panel data. 

When a variable is non-stationary, it is said to have unit root problem (see Figure 

4.1). That is, the variable comes from a stochastic distribution, with either or both 

of its mean and variance changing over time. A variable could be said to be 

stationary, if both its mean and variance do not change over time (see Figure 4.2), 

and the covariance does not depend on the time, rather on the distance between 

the two time periods it was computed (Gujarati and Porter, 2009). 
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Figure 4.1: A non-stationary time series 

(Source: Coghlan, 2010)  

Figure 4.2: A stationary time series 

(Source: Coghlan, 2010) 
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Gujarati and Porter (2009, p.740) used the three equations below to explain the 

concept of stationarity in a time series model. 

E(𝑌𝑡) = 𝜇    (4.10) 

var(𝑌𝑡) = 𝐸(𝑌𝑡 − 𝜇)2 = 𝜎2 (4.11) 

𝛾𝑥 = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑥 − 𝜇)]  (4.12) 

where equations (4.10) and (4.11) represent the mean and variance of Y, 

respectively, and (4.12) is the covariance at lag x, that is between two values of Y 

(Yt and Yt+x), the covariance is 𝛾𝑥. Also, if the three equations are not true for a 

variable, then the series is non-stationary. However, there is a weak stationarity if 

the variance changes but the mean remains the same over time.   

To illustrate non-stationarity or the presence of a unit root in a series, let us 

consider the AR(1) model below: 

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑢𝑡                                                                              (4.13) 

In other words, if the changes in the value of y are drawn from a stochastic 

distribution, which would suggest that it is from 𝑢𝑡 , then the process is non-

stationary, and definitely contains a unit root (Asteriou and Hall, 2011, p.231).    

Two different values which could be taken by 𝛼  are used to explain the 

stationarity concept using backward substitution. That is: 

If 𝛼=1 in (4.13) above, then 

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡       (4.14) 

Using backward substitution, we have 

𝑦1 = 𝑦0 + 𝑢1  (4.15) 

𝑦2 = 𝑦1 + 𝑢2 = 𝑦0 + 𝑢1 + 𝑢2  (4.16)  

⋮           ⋮             ⋮ 

 𝑦𝑡 = 𝑦0 + ∑ 𝑢𝑖
𝑡
𝑖=1  (4.17)    
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𝑦𝑡 has an infinite memory in a random walk model, which could be seen from 

figure 1 above.  

Now, let us consider a case where 𝛼< 1 in (4.13) above, then 

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑢𝑡        (4.18)   

Using backward substitution, we have: 

𝑦1 = 𝛼𝑦0 + 𝑢1          (4.19) 

𝑦2 = 𝛼𝑦1 + 𝑢2 = 𝛼2𝑦0 + 𝛼𝑢1 + 𝑢2         (4.20) 

𝑦3 = 𝛼𝑦2 + 𝑢3 = 𝛼3𝑦0 + 𝛼2𝑢1 + 𝛼𝑢2 + 𝑢3         (4.21) 

⋮ ⋮           ⋮ 

𝑦𝑡 = 𝛼𝑡𝑦0 + ∑ 𝛼𝑖𝑢𝑡−𝑖
𝑡−1
𝑖=0         (4.22) 

𝑦𝑡 has a finite memory because as T tends towards infinity, 𝛼<1 and 𝑦0=0, also 

∑ 𝛼𝑖𝑢𝑡−𝑖
𝑡−1
𝑖=0  tends toward zero (0).

To enable the researcher to choose the appropriate technique for an economic 

model, the issue of nonstationarity must be considered. And the use of 

conventional regression analysis which was founded on the basis that both the 

means and covariances of most economic variables are independent of time, as 

seen in the case above when 𝛼<1, could, therefore, be misleading. In other words, 

most of regression analysis is modelled under the assumption that the variables 

come from a stationary process which, in fact, is rarely the case in practice (as a 

result of stochastic trends in economic data due to technology, structural breaks, 

etc.). 

Failure to account for the nonstationarity of economic variables in regression 

analysis gives rise to the spurious regression problem. The issue of spurious 

regressions was first noticed by Yule (1926), who observed that in models where 

Ordinary Least Squares (OLS) regressions are employed, the results could suggest 

a statistically significant relationship even when none exists among the variables. 

In his study, the author investigated the problem of ‘nonsense’ correlations 

between individual time series when they are in levels and integrated of order one. 
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Yule (1926) was the first to suggest that if the non-stationary properties of the 

model are not taken into account, the model could give biased results and hence 

wrong correlations. Bispham (2005) pointed out three main properties of spurious 

regressions: (a) inconsistency in the estimates; (b) divergence of both the OLS t 

and F-statistics; and (c) residuals may not tend towards zero. 

Further evidence on the spurious regression problem was provided in the study by 

Granger and Newbold (1974) who popularised the problem by showing that the 

problem could be identified (diagnosed) from results which simultaneously 

display an overly high R-square measure (the coefficient of determination which 

measures ‘goodness of fit’), statistically significant t- statistics, but with residuals 

recording a high serial correlation. These features could also explain why the 

logarithm of data is typically taken in econometric analyses, as most of the series 

are trended. For example, 

𝑦𝑡 = 1.1𝑦𝑡−1 (4.23) 

Taking the log of (4.23), we have: 

Log(𝑦𝑡)=log(1.1)+log(𝑦𝑡−1)  (4.24) 

To make the variable stationary, we need to take the first difference. Then (4.23) 

becomes integrated of order 1, that is I(1). On the other hand, a variable will be 

integrated of order 2, if it was differenced twice to become stationary. 

The problem of nonstationarity in the United States, was first modelled by Nelson 

and Plosser (1982) using four US macroeconomic time series. Their research led 

to other methodological and empirical studies, where the unit roots in time series 

data have been tested. In the section below (4.4.2), the unit root test which was 

implemented by Nelson and Plosser (1982) and by several other researchers in the 

econometric literature like Dickey and Fuller (1979, 1981), is discussed. 
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4.4.2 The Dickey-Fuller unit roots test for time series data 

The first unit root test strategy for time series data was developed by Fuller (1976) 

and Dickey and Fuller (1979, 1981). In order to develop the model, constants and 

trends are added to the regression in a step by step sequence and the existence of 

unit roots is used to ascertain non-stationarity.  

Consider the AR(1) model 

𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑢𝑡 (4.25) 

The null hypothesis is 𝐻𝑜 ∶ 𝛼 = 1, against the alternative 𝐻1 ∶ 𝛼 < 1. Where 𝑢𝑡 

~𝐼𝐼𝐷(0, 𝜎2).

Under the null hypothesis that the variable has a unit root, the data generating 

process (DGP) will be: 

𝑦𝑡 = 𝑦𝑡−1 + 𝑢𝑡                                                                                  (4.26) 

However, under the alternative hypothesis of the series being stationary, 𝛼 is from 

a normal distribution and is given by 

√𝑇 (�̂� − 𝛼)
𝑑
→ 𝑁(0, 1 − 𝛼2) (4.27) 

Where 
𝑑
→ in the equation, means that the series converges in distribution.  Also, in 

the case of the null hypothesis, the estimator denoted by �̂� which stands for super 

consistent, means that the distribution coverges (the rate of T as against√𝑇) in 

stationarity.  

The functional central limit theorem (FCLT) can be used to know the limiting 

distribution under the null hypothesis, as T→ ∞, in equation (4.25): 

T (�̂� − 1)  ⟹
(

1

2
)[𝑊(1)]2−1

∫ [𝑊(𝑟)]2𝑑𝑟
1

0

(4.28) 
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W(1) and W(r) stand for standard Brownian motions1, while the arrow sign (⟹

) means that the system converges weakly. Monte Carlo simulations are used to 

generate the critical values, which are available from the set of tables provided in 

Fuller (1976) p.371 case �̂�. 

The t-statistic under the null hypothesis, 𝐻𝑜 ∶ 𝛼 = 1 , and the limiting distribution 

for the AR (1) process as T→ ∞, is given by: 

𝑡𝛼 ⟹
(

1

2
){[𝑊(1)]2−1}

1
2⁄

∫ [𝑊(𝑟)]2𝑑𝑟
1

0

(4.29) 

Likewise, to obtain the critical values for the distribution, Monte Carlo 

simulations are used (see Fuller, 1976, p.373), for the case �̂�. 

(4.25) can be rewritten as: 

△ 𝑦𝑡 = 𝜌𝑦𝑡−1 + 𝑢𝑡 (4.30) 

𝜌= 1- 𝛼. Hence, under the null hypothesis, since 𝛼 = 1, 𝜌=0. Therefore, a t-test of 

𝜌= 0 can be used to test for a unit root in 𝑦𝑡. Asteriou and Hall (2011, pp. 342-

343) provide - by way of illustration - a summary of how the simple Dickey-

Fuller test for unit roots is performed. 

The unit root test discussed so far, assumes that the error term is white noise (that 

is 𝑢𝑡  is 𝐼𝐼𝐷(0, 𝜎2) ), which might not always be the case. So, to cater for

autocorrelation in the error term, one can add an extra lagged variable of the 

dependent variable. Dickey and Fuller used two approaches to solve the 

autocorrelation issue in the error term. Both methods used are explained in turn. 

The first approach involves the addition of the lagged differences of the dependent 

variable in the form of parametric corrections in the regression model to eliminate 

the serial correlation of  𝑢𝑡 .  Fuller (1976, p.374) used the equations below to 

explain the process as cited in Bispham (2005, p.8). 

1 Brownian motion or a Wiener process is defined as a real valued stochastic process 
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𝑦𝑡 = 𝜇 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−2 + ⋯ + 𝛽𝜓𝑦𝑡−𝜓 + 𝑢𝑡 (4.31) 

The ‘augumented’ Dickey-Fuller (ADF) test equivalent of (4.31) will be: 

Δ𝑦𝑡 = 𝜇 + 𝜓𝑦𝑡−1 + ∑ 𝛼𝑗Δ𝑌𝑡−𝑗 + 𝑢𝑡
𝜓−1
𝑗=1 (4.32) 

Where, 𝜓= (𝛽1 + 𝛽2 + 𝛽3 + ⋯ … . . +𝛽𝜓−1 − 1). 

Therefore, the ADF regressions are employed when the error terms are serially 

correlated. 

The second approach was developed by both Phillips and his colleague in Phillips 

and Perron (1988), in which a nonparametric technique was used to correct for the 

autocorrelation of the error term. In this test, the t-statistic of the 𝜓 cofficient is 

corrected so as to ‘whiten’ the residuals in the series. The asymptotic distributions 

of the two approaches are the same (Asteriou and Hall, 2011, p.297).  

Using the case of a model with a unit root, the Phillips and Perron (1988) test 

shows that: 

𝑍𝛼 = 𝑇(�̂� − 1) −
1

2
(𝑇2�̂�𝜓

2 ÷ 𝑠2)(⋋̂2− Υ̂0) ⇒
(

1

2
){(𝑊(1))2−1}

∫ (𝑊(𝑟))21
0 𝑑𝑟

(4.33) 

Υ̂𝑗 = 1

𝑇
∑ �̂�𝑡

𝑇
𝑡=𝑗+1 �̂�𝑡−𝑗,�̂�𝑡  represents the OLS sample residual derived from the 

regression that is being estimated, ⋋̂2 = Υ̂0 + 2 ∑ (1 −
𝑗

(𝑞+1

𝑎
𝑗=1 ) Υ̂𝑗, 

𝑠2 = 1

(𝑇−𝐾)
∑ �̂�𝑡

2𝑇
𝑡=1 , k stands for the number of parameters estimated in the 

regression, �̂�𝜓  is 𝜓 standard error for the OLS. The critical values used in the 

Dickey-Fuller test without serial correlation is applicable for the test.  

Next, for the ADF case in a model with a unit root, the distribution is given by: 

𝑇(�̂�−1)

1−�̂�1−�̂�2−⋯..−�̂�𝜓−1
⟹

(
1

2
)[[𝑊(1)]2−1]

∫ [𝑊(𝑟)]2𝑑𝑟
1

0

(4.34) 
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 𝛼1, 𝛼2, 𝛼3,………𝛼,𝜓−1
 are identical to those of the (4.32) above, and the same 

critical values are employed.  

 

In the sub-section above (4.4.2), the Dickey-Fuller test for unit root testing in time 

series data was explored, and it should be noted that the choice of technique 

chosen by the researcher will depend on the Data Generation Process (DGP) of 

the series in a model.  Bispham (2005) concludes that depending on the number of 

differences taken in a series, when testing for unit roots, the steps to be taken 

when testing for unit roots are as follows: Plot the data in both levels and 

differences in a graph, and then the autocorrelations of the data in differences 

should also be graphed. These steps should be taken for all differences of the data 

taken. In this research study, the graphs of the series used in the analysis will be 

presented. 

 

4.4.3 Panel data units root tests 

In the literature, various tests have been proposed for testing the presence of unit 

roots in panel data series. The testing procedure is more complex than that 

employed in testing for nonstationarity in the context of time series data only. 

However, most of the tests used are an extension of the ADF tests (Asteriou and 

Hall, 2011, p.297). Some of the tests used include: Levin and Lin’s test, Lin and 

Chu’s test, Pasaran and Shin’s test, Maddala and Wu’s test, Hadri’s test and 

Breitung’s test. Some of these tests are discussed below. 

 

4.4.4 The Levin, Lin and Chu (2002) panel unit root test 

Levin and Lin (1992) developed one of the first unit root tests for panel data, 

which was presented as a working paper in 1992. The full paper was later 

published by Levin et al. (2002) who proposed the use of a panel unit root test 

against doing the test for each of the cross-sectional units. Based on three main 

assumptions for a panel comprising a cross section of individuals (i) and time 

series observations (t) in the stochastic process (𝑦𝑖𝑡):  
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Assumption (a): The stochastic process (𝑦𝑖𝑡) is generated from one of the three

models 

Model 1   ∆𝑦𝑖𝑡= 𝜓𝑦𝑖𝑡−1 + 𝜚𝑖𝑡  

Model 2    ∆𝑦𝑖𝑡= 𝛼0𝑖 + 𝜓𝑦𝑖𝑡−1 + 𝜚𝑖𝑡 

Model 3    ∆𝑦𝑖𝑡= 𝛼0𝑖 + 𝛼1𝑖𝑡 + 𝜓𝑦𝑖𝑡−1 + 𝜚𝑖𝑡 

In all the models, -2< 𝜓 ≤ 0, in all i= 1,…,N. 

Assumption (b): The white noise process is independently distributed across 

individuals and it follows as an invertible stationary ARMA process for all cross-

sections.  

𝜚𝑖𝑡 = ∑ 𝜃𝑖𝑘𝜚𝑖𝑡−𝑘 + 𝑢𝑖𝑡

∞

𝑘=1

 

Assumption (c): For all cases where i=1, 2,3,…,N and where t=1,2,3,…T 

E( 𝜚𝑖𝑡
4 ) < ∞; 𝐸(𝑢𝑖𝑡

2 ) ≥ 𝐵𝑢 > 0; 𝑎𝑛𝑑 𝐸(𝜚𝑖𝑡
2 ) + 2 ∑ 𝐸(𝜚𝑖𝑡𝜚𝑖𝑡−𝑘) < 𝐵𝜚 < ∞∞

𝑘=1

In model 1, 𝑦𝑖𝑡  possess an individual-specific mean and we have the null 

hypothesis H0: 𝜓=0, against the alternative hypothesis H1: 𝜓<0. For model 2, 

because the series has no time trend, we have H0:  𝜓=0 and 𝛼0𝑖 =0 across all 

individual i, against H1: 𝜓<0 and 𝛼0𝑖 ∈ 𝑅. However, in model 3 with both an 

individual specific mean and time trend, H0: 𝜓=0 and 𝛼1𝑖=0 and the alternative 

hypothesis H1: 𝜓<0 and 𝛼1𝑖 ∈ 𝑅. 

Using the general form hypothesis in (4.35), the authors proposed a three step 

procedure for testing for unit roots in panels if the lag order in a series is 

unknown. Firstly, for each of the cross sections a different augmented Dickey-

Fuller (ADF) regression is carried out. Secondly, the ratios of the short and long 

run standard deviations are computed. Finally, the panel test statistics is 

computed.  

∆𝑦𝑖𝑡 = 휁𝑦𝑖𝑡−1 + ∑ 𝜃𝑖𝐿Δ𝑦𝑖𝑡−𝐿 + 𝛼𝑚𝑖𝑑𝑚𝑡 + 𝑢𝑖𝑡
𝑃𝑖
𝐿=1 , m=1,2,3 (4.35) 

𝑑𝑚𝑡 represents the deterministic variables vector, 𝛼𝑚𝑖 is the model’s (m=1.2 ,3) 

vector coefficients, the null hypothesis is that the time series is non-stationary 
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against the alternative hypothesis of stationarity. A summary of the steps for 

performing the Levin, Lin and Chu test is given in Baltagi (2008, p 276). Levin et 

al. (2002) recommend the test for a panel with time series (T) between 25 and 

250, and a cross-sectional size (N) between 10 and 250.  

 

Despite the merits of the test proposed by Levin et al. (2002), it would have been 

more robust if it could be used for a panel where there is cross-sectional 

correlation. Also, the assumption of unit root across all cross-sections reduces its 

applicability.  

 

4.4.5 The Im, Pesaran and Shin (2003) panel unit root test 

Im et al. (2003) (henceforth, IPS) addressed the drawbacks of the test proposed by 

Levin et al. (2002) by allowing for heterogeneity across the individuals in the 

series. 

Using a first order autoregressive (AR1) process 

∆𝑦𝑖𝑡 =  𝛼𝑖 + 𝛿𝑖𝑦𝑖𝑡 + 𝑢𝑖𝑡                                                                      (4.36) 

 

where i=1,2,3,….,N and t=1,2,3,….,T, 𝑢𝑖𝑡  represents the error term and it has 

different serial correlations across the series. The null and alternative hypotheses 

are as follows: 

 

H0: 𝛿𝑖 = 𝛿2 = ⋯ … = 𝛿𝑛 = 𝛿 = 0                                                     (4.37) 

H1: 𝛿𝑖<0 for at least one individual (i) in the series                            (4.38) 

 

For the test to be accurate, the panel does not have to be balanced. In other words, 

the time series component of the panel does not need to be the same for all the 

cross-sectional units. The t-statistic in the test is computed by using the average 

value from the individual ADF t-statistics. That is, testing for 𝛿𝑖=0 in all i 

 

𝑡 =
1

𝑁
∑ 𝑡𝛿𝑖

𝑁
𝑖=1                                                                                    (4.39) 
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𝑡𝛿𝑖
 represents each individual ADF t-statistic using the null hypothesis. Im et al.

(2003) assumed that 𝑡𝛿𝑖
 has a finite mean and variance if it is independent and

identically distributed (IDD), then as T→ ∞ we have 

√𝑁(
1

𝑁
∑ 𝑡𝑖𝑇

𝑁
𝑖=1 −

1

𝑁
∑ 𝐸𝑁

𝑖=1 [𝑡𝑖𝑇 𝛿𝑖⁄ =0])

√
1

𝑁
∑ 𝑣𝑎𝑟[𝑡𝑖𝑇 𝛿𝑖⁄ =0 ]𝑁

𝑖=1   

 ⟹ 𝑁(0,1) (4.40) 

 Likewise as N→ ∞, using the Lindeberg-Levy central limit theorem, 

𝑡𝑙𝑝𝑠 =
√𝑁(𝑡−𝑁−1 ∑ 𝐸𝑁

𝑖=1 [𝑡𝑖𝑇 𝛿𝑖⁄ =0])

√
1

𝑁
∑ 𝑣𝑎𝑟[𝑡𝑖𝑇 𝛿𝑖⁄ =0 ]𝑁

𝑖=1   

 ⟹ 𝑁(0,1)        (4.41) 

Both the values of  𝐸[𝑡𝑖𝑇 𝛿𝑖⁄ = 0] and 𝑣𝑎𝑟[𝑡𝑖𝑇  𝛿𝑖⁄ = 0 ] were computed using

stochastic simulation and tabulated in their paper by the authors.  

4.4.6 Other panel unit root tests 

Maddala and Wu (1999) and Choi (2001) proposed a Fisher-type test which uses 

p-values based on the Dickey Fuller’s approach, to validate the null of a unit root.

The test is defined as: 

P= -2∑ 𝑙𝑛𝛿𝑖

𝑁
𝑖=1 (4.42) 

-2𝑙𝑛𝛿𝑖
 has two degrees of freedom and it comes from a x2 distribution. For finite

N, as Ti→ ∞, P has 2N degrees of freedom and it is distributed as x2. Maddala and

Wu (1999) pointed out that the test proposed by Im et al. (2003) and their Fisher

type eliminates the assumption made by Levin et al. (2002) that 𝛿𝑖  is identical

across the cross-sectional units.

The test has many advantages over both LLC and IPS because of its ability to 

work well even when the panel is unbalanced, easy computation and it can deal 

better with cross-sectional dependence across the series. For more units root tests 

for panels, see for example Breitung (2000), and Karlsson and Lothgren (2000). 
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Breitung (2000) used the Monte Carlo experiment to obtain a test statistic, that 

excludes a bias adjustment and is better than both the LLC and IPS in terms of its 

ability to work well even when either N is small or large in comparism with T.  

Karlsson and Lothgren (2000) evaluated the power of both LLC and IPS tests 

using different panel sizes. They found that there is a risk of concluding wrongly 

that the whole panel is stationary when the times series is long, and likewise when 

the time series is short, there is a risk of concluding the panel has unit roots even 

when most of the series are stationary. The authors proposed that in order to know 

if the panel is stationary or not, the researcher should carry out both the individual 

and panel unit roots test.  

Structural breaks were considered, for example, in the unit root tests developed by 

Culver and Papell (1997), and Murray and Papell (2000). Also, Pesaran (2004) 

explored how to deal with cross-sectional dependence when testing for unit roots 

in a panel data context. It is evident from the discussion in sections (4.4.5) and 

(4.4.6) that econometric analysis requires that when using macroeconomic data 

that span over a long period of time, the variables must be tested for unit roots. In 

other words, as mentioned earlier, to avoid the possibility of spurious results in 

the series, the series must be tested to ensure that they are stationary in levels 

and/or after differencing them. Or at least, the order of integration of the variables 

should be known by the researcher. Hence, assessing the unit root properties of 

the variables in a time series data is an important requirement in pure time series 

analysis as well in panel data analysis.  

The use of panel data improves the efficiency of the unit root test, including the 

Augmented Dickey Fuller’s approach, as argued by Levin, Lin and Chu (2002) 

because of the large sample size in a panel unit. Therefore, since evidence has 

shown that time series data possess memory of the past and panel data is a 

combination of both cross sectional data and time series data, it is important to 

establish if the series are stationary or not. It follows that when testing for 

cointegration in panel data, undertaking unit root tests is mandatory. The concept 

of cointegration is explored in the section that follows. 
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4.4.7 Cointegration tests in panel data 

The idea of testing for cointegration in panel series is analogous to the context of 

time-series data, as can be gauged from the discussion of unit root tests above. In 

essence, cointegration tests aim at establishing whether the variables in a model 

move together in the long run. As discussed in section (4.4.1) above, a regression 

is said to be spurious when we conclude wrongly from the results that a 

relationship exists between a dependent variable (Y) and one or more independent 

variables. 

For studies on spurious regression in panel data see, for example, Entorf (1997), 

Phillips and Moon (1999) and Sun (2004). In the next sub-sections, some of the 

panel cointegration tests in the literature are explained, and the chosen method for 

the aggregated estimation in this PhD study is also highlighted in the discussion. 

Another difference between the two types of regressions is the possibility of a 

linear combination of the dependent and first difference of the independent 

variables being stationary. As explained by Harris (1995, p. 22):  

‘‘the economic interpretation of cointegration is that if two or more variables are 

linked to establish an equilibrium relationship spanning the long run, then even 

though the variables have a unit root, they will eventually move together over time 

due to the mean reverting behaviour in time series data, and the difference 

between them will be stable’’. 

This applies in the context of panel data employed in this research study, because 

it has time series (T=34) element which suggest that if the variables are 

cointegrated, there is evidence of a long run equilibrum in which the variables 

converge to over time. Baltagi and Kao (2000) also assert that, panel cointegration 

frameworks are used to answer questions about the long run economic 

relationships found in macroeconomic and financial data. The authors stated 

further that economic theory is used to predict if such relationship exist in the 

series, by interpreting the regression coefficients.  
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4.4.8 Residual based tests for panel cointegration 

The residual based tests proposed by Kao (1999) based on Dickey-Fuller (DF) and 

ADF for homogeneous panels are discussed below. Other authors proposing a 

residual based tests include: McCoskey and Kao (1999), Phillips and Moon 

(1999) and Pedroni (2004).  

From the panel regression model 

𝑦𝑖𝑡 =  𝑥𝑖𝑡
𝚤 + 𝑣𝑖𝑡

𝚤 + 𝑢𝑖𝑡 (4.43) 

In (4.43), 𝑥𝑖𝑡 and 𝑦𝑖𝑡 are stationary in first difference (I(1)) and not cointegrated, 

𝑣𝑖𝑡 = {℧𝑖}. Kao (1999) argued that the DF and ADF approaches should be used to

estimate the residuals, using a null hypothesis of no cointegration, H0: 𝜓 = 1. The 

estimated residuals from the DF test of equation (4.43) can be computed from 

�̂�𝑖𝑡 = 𝜓�̂�𝑖𝑡−1 + 𝜋𝑖𝑡 (4.44) 

�̂�𝑖𝑡 stands for the estimated residuals and 𝜋𝑖𝑡 is the white noise disturbance term. 

The OLS estimate of 𝜓, and the t statistic can be expressed as: 

ψ̂ =
∑ ∑ ûitûit−1

T
t=2

N
i=1

∑ ∑ ûit
2T

t=2
N
i=1

(4.45) 

𝑡𝜓 =
(ψ̂−1)√∑ ∑ ûit−1

2T
t=2

N
i=1

su
(4.46) 

where 𝑠𝑢
2 =

1

𝑁𝑇
∑ ∑ (�̂�𝑖𝑡 − �̂��̂�𝑖𝑡−1)2𝑇

𝑡=2
𝑁
𝑖=1 . Kao (1999) introduced the five DF 

type tests shown below 

I. 𝐷𝐹𝜓 =
𝑇√𝑁(�̂�−1)+3 √𝑁

√10.2

II. 𝐷𝐹𝑡 =  √1.25𝑡𝜓 + √1.875𝑁
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III. 𝐷𝐹𝜓
∗ =

√𝑁𝑇(�̂�−1)+
3√𝑁�̂�𝑣

2

�̂�0𝑣
2

√3+
7.2�̂�𝑣

4

�̂�0𝑣
4

IV. 𝐷𝐹𝑡
∗ =

𝑡𝜓+
√6𝑁�̂�𝑣

2�̂�0𝑣

√
�̂�0𝑣

2

2�̂�𝑣
2+

3�̂�𝑣
2

10�̂�0𝑣
2

V. 𝐴𝐷𝐹 =
𝑡𝐴𝐷𝐹+

√6𝑁�̂�𝑣
2�̂�0𝑣

√
�̂�0𝑣

2

2�̂�𝑣
2+

3�̂�𝑣
2

10�̂�0𝑣
2

𝑡𝐴𝐷𝐹 stands for the t-statistic of 𝜓 in the ADF regression 

�̂�𝑖𝑡 = 𝜓�̂�𝑖𝑡−1 + ∑ 𝜙𝑗Δ�̂�𝑖𝑡−𝑗 +𝑝
𝑗=1 𝜋𝑖𝑡  (4.47) 

The asymptotic distribution of 𝐷𝐹𝜓,  𝐷𝐹𝑡,   𝐷𝐹𝜓,
∗  𝐷𝐹𝑡

∗,  𝑎𝑛𝑑 𝐴𝐷𝐹  converge by

sequence limit theory to a standard normal distribution N (0,1).  

The null hypothesis of cointegration was employed in the residual based test 

proposed by McCoskey and Kao (1998). Rooted in the time series literature, the 

authors used the Langrange Multiplier (LM) test and the Locally Based Invariant 

(LBI) test to derive the model for a panel unit. The model proposed, which allows 

for variation in the slopes and intercepts, can be written as: 

𝑦𝑖𝑡 = 𝛿𝑖 + 𝑥𝑖𝑡
𝜄 𝛽𝑖 + 𝑢𝑖𝑡 (4.48) 

𝑥𝑖𝑡 = 𝑥𝑖𝑡−1 + 𝜖𝑖𝑡 (4.49) 

𝑢𝑖𝑡 = 𝜉𝑖𝑡 + 𝑣𝑖𝑡 (4.50) 

𝜉𝑖𝑡 = 𝜉𝑖𝑡−1 + θ𝑣𝑖𝑡 (4.51) 

where 𝑣𝑖𝑡  are independently and identically distributed (IID) (0, 𝜎𝑝
2), H0: θ = 0,

that is cointegration. The t-statistic proposed by McCoskey and Kao (1998) is: 

LM = 
1

𝑁
∑

1

𝑇2 ∑ 𝑧𝑖𝑡
2𝑇

𝑡=1
𝑁
𝑖=1

�̂�𝑒
2     (4.52) 

where 𝑧𝑖𝑡  is the partial sum process of the error terms and is defined as, 𝑧𝑖𝑡 =

∑ �̂�𝑖𝑗
𝑡
𝑗=1 , and �̂�𝑒

2 is defined by the authors. The test asymptotic result is
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√𝑁 (𝐿𝑀 − 𝜇𝑞) ⟹ 𝑁  (0, 𝜎𝑞
2)  (4.53) 

Monte Carlo simulations can be used to find the value of  𝜇𝑞 𝑎𝑛𝑑 𝜎𝑞
2. One of the

merits of using the LM approach lies in its ability to eliminate heteroscedasticity 

in the estimated parameters. Baltagi (2008) argues that the test would have been 

more robust if it were capable of accounting for cross-sectional dependence. The 

author also pointed out that the asymptotic theory which underpins the method, 

does not give a good approximation when employed in empirical research. 

4.4.9 Westerlund (2007) error correction panel cointegration test  

To determine the existence or otherwise of a long run (cointegrating) relationship 

in a model, the Westerlund (2007) panel cointegration test can be used. The test 

was proposed by Persyn and Westerlund (2008), the DGP used by the error 

correction model is  

∆𝑦𝑖𝑡 = 𝜆1
1𝑑𝑡 + 𝛼𝑖(𝑦𝑖,𝑡−1 − 𝛽𝑖

1𝑍𝑖,𝑡−1 ) + ∑ 𝛼𝑖𝑗
𝑝1
𝑗=1 ∆𝑦𝑖,𝑡−𝑗 + ∑ 𝛾𝑖𝑗

𝑝𝑖
𝑗=−𝑞𝑖

∆𝑍𝑖,𝑡−𝑗 +

 𝑢𝑖𝑡 

 (4.54) 

  where t=1,………..,T, for the time series 

i=1,………...,N, for the cross sectional units 

𝑑𝑡  contains the deterministic components, it has three cases 

  in case 1, 𝑑𝑡 =0 and it has a deterministic term 

  in case 2, 𝑑𝑡 =1, ∆𝑦𝑖𝑡 is generated with a constant and 

case 3, 𝑑𝑡 = (I, t)1 so that ∆𝑦𝑖𝑡 is generated with a constant and a trend.

Also, ∆𝑍𝑖𝑡 is independent of the error term 𝑢𝑖𝑡, and t and I are also independent of 

the error term. 
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Persyn and Westerlund (2008) assert that any dependence across the cross-

sectional unit (i) can be analysed using the bootstrap technique to improve the 

performance of the test.  

Persyn and Westerlund (2008) present the model used as: 

∆𝑦𝑖𝑡 = 𝜓1
1𝑑𝑡 + 𝛼𝑖𝑦𝑖,𝑡−1 + 𝜆𝑡

𝑖 𝑍𝑖,𝑡−1 + ∑ 𝛼𝑖𝑗
𝑝1
𝑗=1 ∆𝑖𝑗,𝑡−𝑗 +  ∑ 𝛾𝑖𝑗

𝑝𝑖
𝑗=−𝑞𝑖

∆𝑍𝑖,𝑡−𝑗 +  𝑢𝑖𝑡     

(4.55) 

where 𝜆𝑡
𝑖 =- 𝛼𝑖 𝛽𝑖

1, and the rate at which the equilibrium position 𝑦𝑖,𝑡−1 − 𝛽𝑖,𝑡−1 is

adjusted back to its equilibrium level after a shock is determined by 𝛼𝑖 . 

Therefore, the panel error correction cointegration test by Westerlund (2007) is 

used to test the null hypothesis of no cointegration, which is investigated by 

testing if any member of the panel is ‘error correcting’ or not. That is: H0: 𝛼𝑖 =0.  

The decision criterion is based on whether the error correction term is equal to 

zero. The test is robust enough to allow for a high level of heterogeneity in the 

short run as well as in the long run cointegrating relationship, even in an 

unbalanced panel.  

The Westerlund (2007) error correction panel cointegration test provides four test 

statistics that is Gt, Ga, Pt and Pa. The Gt and Ga test the null hypothesis that H0: 

𝑎𝑖= 0 for all i against the alternative hypothesis that H1: 𝑎𝑖 < 0 for at least one of 

the variables in i, which is a weighted average of each of the variables in i and 

their corresponding t-ratios. On the other hand, Pt and Pa test statistics analyse the 

panel cross sectional units using the pooled information to test the null hypothesis 

that H0: 𝑎𝑖 = 0 against the alternative hypothesis that H1: 𝑎𝑖  <0 for all the cross 

sectional units. Therefore, the rejection of the null hypotheses (H0) would mean 

that there is cointegration in the panel. The rejection of the null hypothesis could 

stem from a rejection from any of the cross sectional unit of the panel, and it is not 

possible to know from the test which of the cross section unit led to the rejection 

of the null hypothesis.  
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4.5 Pooled mean group (PMG) estimator error correction test 

Pesaran, Shin and Smith (1999) proposed a maximum likelihood (ML) pooled 

mean group (PMG) estimator, for heterogeneous dynamic panels. The method 

facilitates economic interpretation by specifying an error correction equation 

which fits an Autoregressive Distributed Lag (ARDL) model into the data 

(Alagidede et al., 2014). The error correction model of ARDL (p,q,q,……q) 

proposed by Alagidede et al. (2014), can be written as: 

 

𝑦𝑖𝑡 = Φ𝑖𝑦𝑖,𝑡−1 + 𝛽1𝑍𝑖𝑡−1 + ∑ 𝜆𝑖𝑗Δ𝑦𝑖,𝑡−𝑗
𝑝−1
𝑗=1 + ∑ 𝜆𝑖𝑗Δ𝑍𝑖,𝑡−𝑗 + 𝜇𝑖

𝑞−1
𝑗=0 + 휀𝑖𝑡     (4.56)       

                                                                                                                 

where Z- vector of explanatory variables 

          𝛽𝑖- consists of the information about the long run impacts 

         𝜙𝑖- error correction term 

         𝜆𝑖𝑗- Includes the short run properties or information. 

 

The Pooled Mean Group (PMG) estimator is an intermediate between the Mean 

Group (MG) estimator and the fixed and random effects estimator. The Mean 

Group estimator takes the average of the variables, while assuming homogeneity 

across countries. On the other hand, the fixed and random effects estimator only 

allows the intercept to vary, other coefficients are assumed to be the same across 

the group (Pesaran, Shin and Smith, 1999). However, PMG uses pooling, which 

involves long run homogeneity across the countries and averaging across the 

group, and is used to analyse the short run parameters in the model as well as the 

error correction coefficient (Pesaran, Shin and Smith, 1999). It also allows the 

intercept, short run coefficients and error variances to be different across the 

groups. But the long run coefficient is assumed to be the same for all the groups, 

that is 𝛽 = 𝛽𝑖  for all I (Pesaran, Shin and Smith 1999). Pesaran et al. (1999) 

argued further that since there are similarities like technology, arbitrage 

conditions and solvency constraints across the countries, the variables in each 

country will have identical long run equilibrium. This is true for the sub Saharan 

African countries, as they all have a wide energy demand to supply deficit and use 

similar technology.  
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Hence, this present study will analyse the short run and long run impact of 

income, price of energy and other identified variables from the literature on the 

aggregate demand for energy in the Sub-Saharan African countries using the 

pooled mean group estimator (PMG) error correction method.  

4.6 Other panel cointegration tests 

Pedroni (2000, 2004) developed a test that allows for heterogeneity in the cross-

sectional units using the null hypothesis of cointegration. The test which is in 

twofold, namely, one that tests for cointegration by taking the average across 

cross-sectional units, and one that takes the average of both the numerator and the 

denominator. The former, takes the form of: 

�̂�𝜓 = ∑
∑ (𝑢𝑖𝑡−1Δ�̂�𝑖𝑡−�̂�𝑖

𝑇
𝑡=1

(∑ 𝑢𝑖𝑡−1
2𝑇

𝑡=1 )

𝑁
𝑖=1 (4.57) 

where �̂�𝑖𝑡  is computed from equation (4.34), �̂�𝑖 = 2−1(�̂�𝑖
2 − �̂�𝑖

2) , and the

individual long-run and contemporaneous variances of the error term are 

represented by �̂�𝑖
2 and �̂�𝑖

2 respectively.

For the 2004 paper, the author uses four panel variance ratio statistics, which are 

presented in his paper.  

Larsson et al. (2001) used average individual rank trace statistics to develop a 

likelihood based panel cointegration test for heterogeneous panel units. The 

likelihood-based approach was also used by Groen and Kleibergen (2003) to 

present a method for testing for cointegration in a fixed number vector error 

correction model (VECM). The method by Groen and Kleibergen (2003) allows 

for cross-sectional correlation and can be used for both homogeneous and 

heterogeneous cointegrating vectors.  

4.7 Chapter summary 

This chapter detailed the main methodological framework adopted in this PhD 

study. The specification and advantages of using the panel data framework were 
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discussed, before moving on to discuss the main classifications of panel data 

models. In the first category that explored static linear models, fixed effects and 

random effects models were explained in turn, and what could be done to select 

the appropriate model for analysis. After examining this, it was pointed out that if 

one of the properties of a good regression model is violated then the Prais-

Winsten regression can be used to obtain more reliable estimates. This is in line 

with the econometrics literature cited earlier (see Section 4.3.5). These models 

will be used to analyse the disaggregated energy demand in SSA because the 

dataset is fairly balanced. 

The other model category discussed was non-stationary panel models. The basic 

concepts of stationarity and unit roots were explained based on the time series 

analysis, as a background to appreciate the greater complexities that pertain to the 

application of these concepts in the context of panel data models. The pros and 

cons of the various approaches used in the empirical literature were highlighted. 

The issues related to the use of a heterogeneous panel and cross-sectional 

dependence were also examined. Based on the merits and suitability of IPS, ADF- 

Fisher and PP- Fisher unit root tests, Westerlund (2007) cointegration tests, and 

the Pesaran et al. (1999) PMG estimator will be used for the econometric analysis 

of the aggregate demand for energy in SSA presented in the next chapter, as they 

are particularly appropriate in the case of an unbalanced panel such as the one 

used in the present study.  

The data employed for the study and the measurement issues are examined in the 

next chapter. 
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Chapter 5 : Data Description and Sources 

5.1 Chapter overview 

This chapter discusses the dataset employed for the econometric analysis 

presented in chapter 6. In order to construct reliable econometric energy models 

and obtain valid results from which relevant inferences about energy policies can 

be drawn, it is important to have consistent long time series data on energy 

demand and the factors that influence it (Pesaran et al.,1998). Therefore, in this 

part of the thesis each of the variables used are described for both the aggregate 

and the disaggregated energy demand in Sub-Saharan Africa (SSA). The sources 

of each of the variables used in the dataset are also given, and the measurement 

problems associated with them is discussed.  

The chapter also elaborates on some of the benefits and drawbacks of the use of 

secondary data in econometric analysis. The chapter concludes by justifying the 

use of the secondary data employed in this study through the data cleaning 

procedure employed. 

5.2 Content of the panel dataset 

The panel dataset used for the regression analysis contains annual observations for 

the period 1980 to 2014, the most up-to-date data that were available during the 

data collection phase of this study. Due to some data constraints and limited data 

availability in most of the countries in the region, the dataset constructed includes 

data for 16 countries with few missing observations in Sub-Saharan Africa. 

However, Cote D’Ivoire, Ghana, Mozambique and Zimbabwe are not analysed in 

the disaggregated analysis by fuel type due to a high number of missing values for 

most energy types. The ones included are the countries in the region with most 

complete available data from the International Energy Agency (IEA) database for 

non-OECD countries energy summary, for the period between 1980 and 2013 (see 

Table 5.1 below for a full description of the list of countries and the associated 

sub-region). 
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Table 5.1: Table showing the countries included in SSA panel dataset 

Sub-region Country 

Southern Africa Botswana (BWA) 

Mozambique (MOZ) 

South Africa (ZAF) 

Zambia (ZMB) 

Zimbabwe (ZWE)     

Central Africa Cameroon (CMR) 

Congo (COG)  

Democratic Republic of Congo (COD) 

West Africa Benin (BEN) 

Cote D’Ivoire (CIG) 

Ghana(GHA) 

Nigeria (NGA)  

Senegal (SEN)     

Togo (TGO)     

East Africa Ethiopia (ETH)  

Sudan (SUD) 

Source: Researcher’s compilation (2015) 

5.3 Data organisation 

The data are collected for each of the following variable categories: 

 Energy consumption

 Other economic data

 Energy prices

Each of the categories listed above is discussed one after the other in the sections 

below, and where applicable the number of missing observations for any of the 

data series is also highlighted. 

5.3.1 Energy consumption 

The energy consumption data is disaggregated by six relevant liquid fuel types 

(electricity, gasoline, diesel, LPG, solid biomass and kerosene), using measures 
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that are typically employed in relevant literature. The liquid fuels are measured in 

thousand Tons of oil Equivalent (TOE). Electricity is measured in gigawatt hours 

while biomass is measured in Tera joules. Consumption data for electricity is also 

included alongside the consumption data for biomass which is used traditionally 

by the majority of the consumers in the region. Motor gasoline refers to the liquid 

fuel used in internal combustion engines like vehicles, construction equipment, 

trucks and alternative power generating sets measured in kilotonne (IEA, 2015). 

The final consumption data contains the total of the energy used by all the sectors 

in the economy. For instance, the total motor gasoline used by the Industry, 

Residential, Transport, Industrial, Agriculture and the public sector of the 

economy. Liquefied Petroleum Gas (LPG) is defined by the IEA (IEA, 2015) as 

the light hydrocarbon component of the paraffin family which contains either 

propane or butane, or the combination of both gases. Gas/diesel oil is heavy gas 

oils used in different sectors of the economy.  

Solid biomass included in the dataset represents plants used directly or indirectly 

as fuel before burning. It includes different types of woody products from the 

forest, agricultural or industrial processes obtained from firewood, sawdust, and 

wood shavings. It is measured in Tera joules based on a net calorific basis (IEA, 

2015). 

Energy consumption data for Botswana starts from 1981. Before this period it was 

classified under ‘other Africa’ in the International Energy Agency (IEA) database. 

The data for Eritrea was included under Ethiopia before 1992, which accounts for 

the missing observations between 1980 and 1991 according to IEA.  

Aggregate energy use includes the primary form of energy before it is transformed 

to other end-use fuel which is the sum of local production plus imports and stock 

changes. It excludes the amount exported or used by ships and aircraft employed 

in international transport (IEA statistics as citied in WDI, 2016).  
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5.3.2 Other economic data 

The category ‘other economic data’ includes other economic factors that impact 

on the demand for energy. The definition of each variable used in the study is 

provided in this section of the chapter.  

Gross Domestic Product (GDP) at international price (constant, 2005, in US$) is 

used for all the countries. According to the definition provided in the World Bank 

database, GDP per capita is gross domestic product divided by midyear 

population. GDP is the total addition of the value added by all resident producers 

in a country plus the inclusion of all taxes on products and the deduction of all 

subsidies not included in product’s value (WDI, 2015). For each of the countries, 

the World Bank uses the 2005 official US dollar exchange rate to convert the 

GDP from domestic currencies to the international figures, as at when the data for 

this research was obtained. For both the aggregate and disaggregated energy 

demand models, GDP per capita figures are used.  

The ‘total population’ data category is used as a measure for the population 

variable. The total population for a country includes all the people who are 

resident of the country with no consideration given to their citizenship status. 

However, it excludes the number of refugees who are dwelling temporarily in the 

country of asylum (WDI, 2015). All the time series data for population are 

consistent and complete for all countries in the study, as there are no missing 

observations. 

Industry value added is the figure of the value added by the mining, 

manufacturing, construction, electricity, water and gas sectors in an economy. On 

the other hand, services value added is the value added by both the wholesale and 

retail categories of hotels, restaurants, transport, government, financial, 

educational, healthcare and the real estate sectors. Value added is defined as the 

net output of a sector after adding up all outputs and subtracting the figures for 

intermediate inputs (WDI, 2015). The data for these variables have some missing 

observations. 
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The economic structure of a country can be obtained by dividing the real value 

added in industry by that of the real value added in service sectors (see, for 

example, Mensah et al., 2016). This will be used as a proxy for the economic 

structure of each of the countries in the study. 

The ‘annual percentage growth rate of urban population’ from WDI is used as a 

measure of the degree of urbanisation. The people living in the urban areas of a 

country are known as the urban population. All the time series data for the urban 

population growth rate are consistent and complete for all countries in the study, 

as there are no missing observations. The variable is measured in percentage 

change.  

Due to limited data availability for the region, energy prices are not available for 

most of the countries in Sub-Saharan Africa. Even when energy prices series are 

available, they are very limited and incomplete. The average annual price for 

crude oil is measured in US dollars per barrel, and the data are complete for the 

period of the study, that is from 1980 to 2014.  

5.4 Sources of data 

The disaggregated data for energy consumption were obtained from the 

International Energy Agency (IEA) database via the UK Data service website.  

The data were extracted and imported into an excel file, which was then used as 

part of the Sub-Saharan Africa dataset compiled for the study. The aggregate 

energy data was obtained from the World Bank Development Indicator database.  

The economic data (industry value added, services value added, GDP, total 

population and urban population growth) were obtained from the World Bank 

database, known as the World Development Indicators (WDI). The data were 

downloaded into excel, before combining them with other data in the SSA dataset. 

Crude oil prices are taken from the International Monetary Fund (IMF) database 

under the International Financial Statistics category. It was accessed via the UK 

data service, from which it was downloaded into Microsoft excel. It is in US 

Dollars.   
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5.5 Measurement problems 

Secondary data refers to data that has already been collected (Byrne, 2002). 

Before discussing the measurement issues which may arise as a result of the use 

of secondary data, cross-country analysis or the variables used, some of the 

advantages of using secondary data are first given below:  

 As most of the data used in energy and economic modelling are of interest

to both international and national stakeholders, funded studies and

international agencies have collected and continue to collect large and

quality data over several years. These data can be accessed and used to

answer new questions, which can provide new insights to several energy

issues.

 As with any statistical study, the larger the sample size the more reliable

the inferences that can be drawn about the population. With the use of

secondary data, large data is available which can be used to provide more

robust findings due to a higher degree of freedom (Smith, 2008 as cited in

Johnson, 2014). With the long time series data over the 33 years period

used in this study, the cross-country model results will certainly be more

robust.

 The use of secondary data enables the use of several methods, models, and

a new interpretation of previously used data through the application of

new ideas and models to give new perspectives. In this study, existing data

are used to construct the Sub-Saharan Africa model which will provide

new knowledge on the energy demand debate for the region.

Despite the merits of the use of secondary data, it has a few drawbacks which 

were carefully considered in this study during the data collection process. One of 

the drawbacks relates to the problem that the original data had been collected for a 

different objective. For instance, the data could have been collected at a different 

region or country (Johnson, 2014).  
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This study does not suffer from this drawback because the secondary data used 

were collected in the country of interest and can be purposefully used for our aim. 

Data source was verified by reading and studying each data source database 

documentation where all the definitions, measurement units and each country 

profile that details the data collection methods are discussed (for example, see the 

World Energy Statistics 2015 revised edition by the IEA on how each country 

energy data was collected by the agency). 

 

From the discussion above it seems evident that the use of secondary data is the 

best approach to answer the quantitative research questions in this PhD study, 

especially considering the geographical location and the number of countries 

covered in the present study. Despite the advantages of the use of secondary data, 

there are still some measurement issues peculiar to the dataset. Some of these 

issues are discussed in the sub-sections below. 

  

5.5.1 Energy use measures 

The measure of energy consumption considered in this PhD study includes energy 

derived from traditional biomass. This is because the countries studied produce a 

substantial amount of energy from this source. In other words, the total final 

consumption of both modern energy (gasoline, diesel, kerosene, LPG and 

electricity) and traditional sources (biomass) are analysed.  

 

This seems to be the best approach as it will address some of the shortcomings of 

previous studies where biomass is not included in the model (for literature on this, 

see Chapter 3). From the data, it is evident that solid biomass source like firewood 

is used vastly in the residential sector. Biomass consumption in the residential 

sector made up more than 70% of the total biomass consumed in most of the 

countries analysed in this study (see appendix 2). This is in line with the existing 

literature and publications about the SSA energy mix (e.g. Lambe et al., 2015). 

Therefore, the energy consumed from biomass cannot be ignored in any rigorous 

econometric study of the energy demand in SSA. 
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The IEA database provides all the disaggregated energy consumption data using 

the same measurement for all countries. This is used in this study to aid data 

analysis, comparability and interpretation.  

5.5.2 Output measures 

For GDP data, the pricing system is not the same in all the countries and the 

amount contributed by primary commodities also differs. The best approach, 

therefore, is to use data in international prices in US dollars. Even though some of 

the individual countries have a database with their economic statistics, there was 

no point in getting data from each individual country database as the World Bank 

database contains compiled data by national statistical offices and provides them 

in a user friendly and accessible platform to the public. Moreover, for  consistency 

of measurement of the series, it is also risky to mix measures of the same variable 

for different countries from separate databases.  

However, the GDP data reported in US dollars at 2005 constant prices in some 

countries were verified. For instance, by checking the Nigerian statistical bulletin 

(NSB, 2014), the study was able to compare the GDP data in WDI with the data 

reported in the bulletin. In both sources, data figures were very close with only 

minor differences, probably due to rounding up.  

The World Bank also states in the Database Handbook that they employ the use of 

General Data Dissemination Service (GDDS) developed by The World Bank and 

the IMF. This is used to ensure that the data reported by each country statistical 

offices are reliable, consistent and follow international guidelines. Through the 

system the bank is also able to provide frameworks and guidelines, which the 

national statistical offices of participating countries can adopt to improve their 

knowledge of how to collect, and distribute comprehensive and timely data. On 

this basis, I have used the GDP data in international prices as provided by the 

World Bank due to their quality, reliability and comparability.  
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5.5.3 Other economic data measures 

According to the WDI manual, population data were taken from the United 

Nations World population prospects. Such data were verified in the study by 

making sure the reported trend corresponds to the expected growth pattern, and in 

some cases other databases were checked to ensure consistency. 

 

The economic structure of most countries has shifted from manufacturing to more 

service oriented sectors (Mensah et al., 2016); the research will shed more light as 

to how this has impacted on the demand for energy in SSA. International prices 

are used to enable cross-country analysis.  

 

Urban population growth rate data seem to have the most measurement concern 

due to the lack of a uniform definition of urban area globally (WDI, 2015). 

According to the WDI manual as there is no universal way of differentiating 

between rural and urban centre, it may be difficult to measure this adequately 

across countries. However, the figures are computed using the World Bank 

population estimates and the United Nations World Urbanisation prospects ratio, 

and extracted from the same database for all the countries under study, the data is 

expected to be reliable as the same models were used to arrive at the values. 

 

5.6 Data cleaning 

Data cleaning which involves how missing observations, outliers and 

inconsistencies in variable flows, among others, are considered in a study, have 

been the subject of much academic debate in the applied literature. Some authors 

have argued that data cleaning carried out by the researcher should be properly 

documented and reports should be provided in empirical studies (Broeck et al., 

2005; Dong and Peng, 2013; Young and Johnson, 2015). Failure to do so may 

result in biased coefficients of parameters (Dong and Peng, 2013). Therefore, in 

this section the issue of data cleaning is discussed alongside the assumptions made 

with regard to some of the potential concerns. The mechamism of missing data is 

first discussed and how it relates to the SSA dataset, the implications of the 

proportion of missing data and how the dataset was cleaned is provided below.  
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Rubin (1976) argues that there are three main mechanisms of missing data: 

missing completely at random (MCAR); missing at random (MAR); and missing 

not at random (MNAR). To illustrate each category of missing data, we divide a 

complete dataset represented by X into two parts: Xobs and Xmis. Where Xobs is the 

observed part in X, while Xmis is X missing part. For the MAR case according to 

Rubin (1976), the probablility of missingness only depends on the observed and 

not the missing data. Whereas in MCAR case which is a special case of MAR 

(Schafer and Graham, 2002), the probablilty of misssingness does not depend on 

any part of X (that is, neither the observed nor missing part). In the last category 

MNAR, the probablity of missingness depends on the missing data. From the 

illustration, it could be inferred that missing data that follow under the MAR 

category may be ignored but those under MNAR should not be ignored (Schafer 

and Graham, 2002).  

There seem to be a consensus among the studies who explored the impact of 

missing values in empirical research that if ‘missingness’ is not under the 

researcher’s influence and the distribution of the missing data is unknown, MAR 

is the best assumption (Schafer and Graham, 2002; Dong and Peng, 2013). This is 

corroborated by Collins et al. (2001) who argue that parameter estimates and 

standard errors are only slightly biased even when the assumption of MAR is 

violated.   

Based on the above, assuming that the missing observations in the SSA dataset is 

MAR seems both plausible and reasonable considering that the missing data 

appear not to depend on the observed data distribution. Besides, in the case of the 

disaggregated energy consumption data, IEA stated why some of the data for the 

countries were missing. The reasons given had no link to the observed data 

because some were due to the period in which the countries were still colonised, 

which is clearly out of researcher’s control. Moreover, since the proportion of 

missing observations in the SSA dataset is about 5% of the total, the estimates are 

not likely to be biased. This is supported by Schafer (1999), who found that the 

missing rate of 5% in a dataset may not have any significant impact on the 

estimates. As one would expect, the mechanism behind the missing data will have 
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more impact on the empirical results than the proportion of the missing 

observations (Tabachnick and Fidell, 2012). Therefore, if a large number of 

observations is used in a study the percentage of missing variables should not lead 

to bias in the estimates.  

 

The approaches used in the literature to handle missing data include: the pairwise 

deletion method; listwise deletion method; multiple-imputation; full information 

maximum likelihood; and the expectation-maximisation method. The last three 

which are more recent are referred to as principled methods by researchers (see, 

for example, Dong and Peng, 2013). Of all the above-mentioned methods, listwise 

deletion appears to be the most commonly and widely used approach in the 

literature (Breitwieser and Wick, 2015). An example given in the study by 

Breitwieser and Wick (2015) reports that in a panel data context, using the 

listwise deletion approach would mean that all countries with missing data in 

some years will be automatically excluded in the analysis by the statistical 

software used. This was exemplified by Young and Johnson (2015) who asserted 

that the xt and st commands used in STATA (the statistical software used in this 

study to perform the regression analysis) will still work well even if there are 

missing observations under some variable series in a panel. The xt procedure will 

be used in the data analysis of the SSA dataset presented in the next chapter. 

  

Having addressed the issue of missing observations, other data cleaning 

procedures carried out on the SSA dataset are discussed. Firstly, all data were 

correctly entered into the excel workbook to eliminate entry error. During the 

dataset entries, the pattern for each variable in individual countries, was checked 

for any irregular trend and if spotted, two different databases were checked for the 

same data to make sure that they were similar to the data from the database used. 

For instance, the population and GDP data, were checked in the WDI, IMF and 

OECD databases to ensure consistency and accuracy of data. All of them had the 

same pattern with very little differences in the figures which could be due to 

rounding up. 

 

Secondly, all data were checked for outliers or inconsistencies. To do this, 

individual country data for some variables were graphed so as to get a good feel 
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for the data and thus ensure that there is no strange or anomalous pattern. During 

this process, missing observations were revisited again to check if there are 

specific reasons for the omission. However, for cases such as energy prices, there 

was no explanation other than the fact that there are limited and inconsistent 

energy price data for Sub-Saharan African countries. This is one of the limitations 

of the dataset of the present study.  

Thirdly, the summary statistics of the SSA dataset were presented in a tabulated 

form to check properties of the data (see Chapter 6). Lastly, the natural logarithms 

of the variables are taken so as to use a log-linear model for the analysis. This will 

ensure that estimated coefficients can be interpreted as elasticities, and help in 

interpreting results. 

Furthermore, the use of a panel data technique which works well under missing 

observations is important when working with an unbalanced panel dataset like the 

SSA dataset used in this study. Therefore, the use of a panel data technique with 

the mentioned strength seems to be the best approach for achieving a good match 

between the research question and the data available. The pooled mean group 

(PMG) estimator (see Chapter 4 on panel data estimators) can handle missing 

observations and will be used for the aggregate analysis reported in Chapter 6.  

There is no issue of missing values in the disaggregate dataset, therefore panel 

linear models are employed for the analysis also presented in the next chapter. 

5.7 Chapter summary 

The purpose of this chapter was to give a detailed description of the SSA panel 

dataset used for the analysis of energy demand in Sub-Saharan Africa presented in 

the next chapter. This was done by explaining the definitions of the variables 

used, sources of the data, measurements used and the data cleaning carried out on 

the dataset. A critical discussion of how data measurement issues were handled, 

for example, in relation to missing observations, was also provided. From the 

discussion offered in this chapter, it is evident that the research was able to collect 

and make use of reliable, high quality data for the analysis by using international 

and reputable energy and economic databases.  
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In Chapter 6, the econometric analysis is presented, and the results of the 

estimations properly interpreted.  
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Chapter 6 : Econometric Analysis and Estimation Results 

6.1 Chapter overview    

This chapter presents the results of the estimations (obtained using the 

econometric software STATA 13), following the econometric strategy developed 

to analyse the determinants of energy demand in Sub-Saharan Africa (SSA) as 

discussed in the methodology chapter (Chapter 4). The econometric procedure 

essentially can be divided into three stages. First, the descriptive statistics of the 

dataset used will be examined alongside the analysis of the properties of each 

variable included in the regression through visual inspection of the plots of the 

relevant series and formal unit root tests. The a priori expectations of the 

relationship between the dependent variable and each of the independent variables 

will also be stated. Second, the cointegration tests will be presented and the 

significance of the long-run estimated coefficients discussed. Third, the results of 

the corresponding error correction model (ECM) will be shown and discussed. 

This sequence of analysis will be undertaken for the aggregate demand 

relationship, and the linear panel models in the context of fixed effects, random 

effects and PW models used in balanced panel models presented for the 

disaggregated analysis. The results of the econometric analysis disaggregated by 

energy types is based on the determinants of demand for kerosene, petrol 

(gasoline), liquefied petroleum gas (LPG), biomass, diesel and electricity in SSA. 

The last section of the chapter concludes.   

6.2 APriori expectations of the estimated aggregate relationship 

Prior to the presentation of the aggregate and disaggregated results, it bears 

reminding what - according to theory - are the a priori expectations in terms of 

the sign of the estimated parameters and hence the expected relationship between 

the variables analysed in the present study.  

H1: Positive income elasticity is expected because as the income level of 

consumers’ increases, they increase the amount of commodities in their 
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consumption bundle, which includes energy. This assumption is rooted in the 

demand theory discussed in Chapter Two.   

 

H2: Also in line with demand theory, a negative price elasticity is expected 

because theory suggests that as the price to be paid for commodities increases, 

consumers will reduce their consumption level. Thus, an increase in energy price 

is expected to reduce the amount of energy consumed.  

 

H3: Growth in urban population known as ‘urbanisation’ is expected to have a 

positive impact on the aggregate demand for energy. This is because as people 

move from rural to urban areas, it is assumed that they change from the traditional 

forms of energy like solid biomass to modern energy types like electricity and 

LPG.  

 

H4: A positive relationship is expected between energy demand and economic 

structure.  The economic structure variable is derived by dividing the share of 

industrial value added to the services value added, which is then used to measure 

the impact of structural changes in the countries. Therefore, as a country increases 

its industrial output, more energy is used, which increases the total energy 

consumed in the country. 

 

H5: An increase in population will increase the amount of energy used in SSA by 

consumers. Therefore, a positive relationship between energy demand and 

population is expected. 

 

6.2.1 Descriptive statistics of the variables 

Table 6.1 presents the basic characteristics of the data used to analyse the driving 

forces of energy demand in SSA. In other words, it gives a simple summary of the 

dataset used for the analysis in this chapter. For instance, from the table we can 

see that the total number of observations is 2678 from the sixteen countries 

analysed in the 33 years making up the sample period.  



135 

From the table, it is evident that we have an unbalanced panel which also 

informed the selection of the model used for the analysis as discussed in Chapter 

4.  

Table 6.1: Summary statistics of the SSA panel dataset 

Variable  Mean Std Dev Min Max Obs 

lnDemand Overall 

Between 

Within 

  6.08  0.66 

 0.64 

 0.22 

5.25 

5.25 

5.53 

8.00 

7.88 

6.78 

526 

lnIncome Overall 

Between 

Within 

  6.55 0.95 

0.94 

0.27 

4.74 

5.07 

5.64 

8.95 

8.57 

7.27 

559 

lnOilprice Overall 

Between 

Within 

3.43 0.66 

0 

0.66 

2.57 

3.43 

2.57 

4.65 

3.43 

4.65 

560 

lnUrban Overall 

Between 

Within 

1.35 0.40 

0.18 

0.36 

-1.30

0.94 

-1.14

2.66 

1.57 

2.62 

554 

Economy Overall 

Between 

Within 

-0.49 0.73 

0.64 

0.34 

-1.99

-1.48

-1.62

1.49 

0.87 

0.46 

479 

Note: Demand stands for energy demand (consumption), Oilprice represents crude oil price, urban 

is the degree of urbanisation whereas economy is the economic structure variable, ln denotes the 

natural log transformation of the variables 

6.2.2 Correlation matrix and visual inspection of the variables 

The term ‘multicollinearity’ is used to measure the degree of correlation among 

the independent variables in a model. Hence, the linear association between the 

variables used in the aggregate demand model is investigated by analysing the 

correlation among the variables. According to Gujarati (1988, p. 298, as citied in 

Tekaya, 2008), regarding multicollinearity  

“it is a question of degree and not of kind. The meaningful distinction is therefore 

not the presence or the absence of multicollinearity, but between its various 

degrees”.  
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Hence, the degree of strength of the relationship among the independent variables 

is used to determine the degree of multicollinerity in the model analysed.  The 

correlation coefficients for the pairs of each variable series used in the aggregate 

demand model are provided in Table 6.2. From Table 6.2, it is evident from the 

results of the correlation coefficients that there is no problematic issue of 

multicollinearity among the variables analysed. In other words, since none of the 

coefficient value is higher than 0.75 using Tabachnich and Fidell’s (2007) cut-off 

line, we do not have a multicollinearity problem in the model. The highest 

correlation found was between log of income and log of energy demand, with a 

correlation value of 0.60.  

 

Table 6.2: Correlation matrix of the variables 

 lnDemand lnEconomy lnUrban lnIncome lnOilprice 

lnDemand 

lnEconomy 

lnUrban 

lnIncome 

lnOilprice 

 1.00 

 0.13 

-0.20 

 0.60 

-0 

 

 1.00 

 0.07 

 0.37 

-0.05 

 

 

 1.00 

-0.26 

-0.20 

 

 

 

1.00 

0.07 

 

 

 

 

1.00 

       

After establishing that there is no multicollinearity problem in the model, we 

proceed to present the graphical plots (Figure 6.1 - 6.5) of each series of the 

variables used to analyse the driving forces of aggregate energy demand in Sub-

Saharan Africa. This allows us to inspect the series visually, a practice that also 

allows us to detect any structural breaks in the series plotted. All the series for log 

of oil price for all countries appear to grow over time suggesting the presence of a 

unit root. However, for the series pertaining to the log of economic structure, 

urbanisation, income and energy demand, the evolution of the series suggests 

mean reversion and hence stationarity. It is also evident from the visual inspection 

of the plots that there are no obvious structural breaks. The numbers 1,2,3,…,16 in 

the plotted graphs represent series of the variable for each of the sixteen countries 

analysed in the panel model. 
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Figure 6.1: Graphical plots showing log of energy demand series 
1,2,3,4,5,6….,16 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Mozambique, Nigeria, Senegal, South 

Africa, Sudan, Togo, Zambia  and Zimbabwe  log  of  aggregate energy consumption data series, respectively.
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Figure 6.2: Graphical plots showing log of economic structure series 
1,2,3,4,5,6….,16 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Mozambique, Nigeria, Senegal, South 

Africa, Sudan, Togo, Zambia  and Zimbabwe  log  of  economic structure data series, respectively.
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Figure 6.3: Graphical plots showing log of urbanisation series 
1,2,3,4,5,6….,16 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Mozambique, Nigeria, Senegal, South 

Africa, Sudan, Togo, Zambia  and Zimbabwe natural log of degree of urbanisation data series, respectively.
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Figure 6.4: Graphical plots showing log of income series 
1,2,3,4,5,6….,16 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Mozambique, Nigeria, Senegal, South 

Africa, Sudan, Togo, Zambia  and Zimbabwe natural log transformation of income data series, respectively.
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Figure 6.5: Graphical plots showing log of oil prices series 
1,2,3,4,5,6….,16 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Mozambique, Nigeria, Senegal, South 

Africa, Sudan, Togo, Zambia  and Zimbabwe natural log transformation of oil price data series, respectively.
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The scatter plot of the relationship between energy demand and income is 

presented in Figure 6.6. The chart shows a clear positive relationship between the 

plotted variables. This suggests the existence of a positive long run relationship 

between the variables in question, a pattern that should find confirmation in our 

cointegration results to be presented below.   

Figure 6.6: Scatter plot of energy demand and income 

6.3 Panel unit root tests 

Three panel unit root tests are employed to determine the stationarity properties of 

the variables in the model. That is, the Im-Pesaran-Shin unit root test and the two 

Fisher type (based on Augmented Dickey Fuller and the Phillips-Perron) panel 

unit root tests. The results of the panel unit root tests carried out to know the unit 

root properties of the variables are shown in Table 6.3. The tests chosen are those 

that give unbiased estimates even in an unbalanced panel (see Chapter 4). 
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Table 6.3: Panel unit root tests results for the variables in levels and first differences 

Variable IPS Statistics ADF- Fisher PP- Fisher Inference 

lnD 

lnY 

Eco 

Urb 

lnP 

-3.069** 

2.979 

-2.771** 

-2.443* 

5.557 

7.731*** 

-1.347

4.516*** 

6.085*** 

-3.775

13.391*** 

-0.867

6.479*** 

-1.046

-3.274

Stationary 

Non-stationary 

Stationary 

Mixed 

Non-stationary 

ΔlnD 

ΔlnY 

ΔEco 

ΔUrb 

ΔlnP 

-16.597*** 

-11.454*** 

-12.712*** 

-8.667*** 

-13.910*** 

49.290*** 

27.082*** 

34.301*** 

16.540*** 

0.999*** 

86.474*** 

64.513*** 

71.345*** 

31.852*** 

83.806*** 

Stationary 

Stationary 

Stationary 

Stationary 

Stationary 

Notes: Δ is the first difference operator. *, ** and *** indicates rejection of the null of a unit root 

at the significance levels of 10%, 5% and 1%, respectively. lnD represents the natural log of 

energy demand, lnY stands for the natural log of income, Eco is the economic structure while Urb 

stands for the degree of urbanisation. Lastly, lnP is the natural log of crude oil price. The natural 

log of the degree of urbanisation and economic structure data series are not taken because they are 

in percentages.   

As stated in the notes above, all three tests have the same null hypothesis of the 

series containing a unit root. The energy demand and economic structure variable 

series based on the three tests performed gave strong evidence that the variables 

are stationary both in levels and, obviously, in first difference. The log of income 

and oil price are non-stationary in levels, that is, they contain a unit root in levels 

but after their first difference is taken, the series become stationary. Lastly, the 

urbanisation variable gave evidence of stationarity for the series under the IPS and 

ADF- Fisher tests in levels but the results are in contrast with that of PP- Fisher 

panel unit root test which showed that the urbanisation series (variable) is non-

stationary in levels. However, the mixed result was clarified when the first 

difference of the series was taken and all three tests gave strong evidence of 

stationarity. It is apparent from Table 6.3 that there is a mixed order of integration 

among the variables in levels. 
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Having established that there is a mixed order of integration among the variables, 

we can now proceed to investigate the long-run relationship between the 

variables, and whether there is in fact a statistically significant cointegrating 

relationship using the Westerlund-based panel cointegration test. Nonetheless, the 

works of Pesaran and Pesaran (1997), Pesaran et al. (2001) have shown that there 

exists a possibility of a long run cointegration relation among series of differing 

order of integration (that is I(0) and I(1)).  

Base on this and following the approach of Frimpong and Adu (2014), Martins 

(2006), and Morshed (2010), we proceed to examine the cointegration relationship 

among the variables in this study. For instance, Frimpong and Adu (2014) 

examined the long run cointegration relationship between real GDP per capita, 

human capital, physical capital formation, openness and a set of human health 

indicators on a panel data set of 30 SSA countries between 1970-2010, using the 

Westerlund cointegration approach, and the PMG error correction technique to 

estimate the long and short run determinants of growth, in the presence of a mixed 

order of integration.  

An advantage of using the PMG error correction approach especially in the 

context of this study is that the PMG technique is a panel extension of the 

Autoregressive Distributed Lag (ARDL) model popularly used in time series 

analysis due to its ability to estimate a cointegration relationship among variables 

even when they have different order of integration. The evidence above gives 

enough bases for this study, to proceed with the long run analysis even when the 

variables have different order of integration. The test was also chosen because it is 

robust enough to allow for high level of heterogeneity in the short run as well as 

in the long run cointegrating relationship, even in an unbalanced panel.  
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6.4 Panel cointegration test result 

The Westerlund-based panel cointegration test is used to know whether the 

variables move together in the long run. In other words, the cointegration test is 

used to know whether energy demand, income, degree of urbanisation, oil price 

and economic structure are cointegrated. We specify a single lead and lag based 

on a constant and a trend using 150 replications through a bootstrapping 

procedure. Bootstrapping of the test statistics is used to correct for correlation 

among the cross-sectional units in the panel, thus giving robust critical values. 

The results obtained from the tests are presented in Table 6.4 below. 

Table 6.4: Results of the Westerlund-based panel cointegration tests 

Statistic Value Z-value Robust P-value 

 Gt -2.585 1.230 0.260 

 Ga -8.611 4.050 0.070 

 Pt -11.141 -0.632 0.010 

 Pa -10.981 1.351 0.000 

Notes: Gt and Ga represent the cross sectional statistics while Pt and Pa stands for the panel 

statistics. Since the bootstrap option is used, we use the robust p-value to make our decision. The 

null of the test is no cointegration among all the variables.  The rejection of the null hypotheses 

(H0) would mean that there is cointegration in the panel. 

As Table 6.4 shows, a robust p-value, under one of the cross sectional statistics 

(Ga) and the two panel statistics (Pt and Pa) give evidence that the null hypothesis 

of ‘no cointegration’ can be rejected. Rejection of one of the cross sectional 

statistics (Gt or Ga) is sufficient evidence against the null. Interestingly, both Pt 

and Pa robust p-values give strong evidence against the null hypothesis at the 1% 

significance level. Therefore, we have strong evidence of cointegration among the 

variables in our aggregate demand model. Since we have ascertained that there is 

cointegration among the variables, we can now safely proceed to estimate the 

long-run relationships among the variables.  
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6.5 Estimation and interpretation of the long run aggregate energy 

demand relationships 

Having established cointegration, i.e., that the variables in the model do move 

together in the long-run forming an economically meaningful and statistically 

significant relationship, the analysis now proceeds to assess the long-run 

behaviour of the model in question. This section presents the results of the long 

run determinants of energy demand in Sub-Saharan Africa, based on the results of 

the Pooled Mean Group (PMG) estimator error correction model. 

Table 6.5: Results of the long run estimates 

Regressor Elasticity result 

lnIncome 0.099*** 

(0.000) 

lnOilprice -0.456** 

(0.022) 

Urban 0.013*** 

(0.007) 

Ecostruc -0.001*

(0.095) 

Notes: The dependent variable is the log of energy demand, p values are in parentheses, *** 

p<0.01, ** p<0.05, * p<0.1.  

From Table 6.5, it is apparent that all the variables have the apriori expected sign 

except for the economic structure variable. The changes in price and income have 

the expected theoretical sign as discussed in section 6.2 above. Specifically, a 1% 

increase in consumers’ income will lead to a 0.10% increase in energy 

consumption in SSA. The coefficient is strongly significant, at the 1% level, 

which implies that in the long run consumers will adjust and increase the amount 

of goods in their consumption bundles. This includes both energy and non-energy 

goods but it should be noted that the elasticity is relatively inelastic in the long 

run. Also, in the long run the appliance stock adjusted over time due to an 

increase in income level would be reflected by an increase in aggregate energy 

demand. 
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It is evident from this that the demand for energy is inelastic because the changes 

in income lead to a smaller increase in the amount of energy consumed. In fact, 

the change in the consumption level is very small when compared to the increase 

in the consumers income from the result reported.  

 

The estimated coefficient of the energy price variable also gives evidence of a 

negative elasticity and it is significant at the 5% level. The estimated coefficient 

indicates that a 1% increase in energy price leads, on average, to a 0.46% 

reduction in the amount of energy consumed; a plausible result which is 

economically meaningful. It also confirms that energy demand is inelastic in the 

long-run in SSA as stated earlier, perhaps because energy is an essential good to 

most consumers.  

 

Also, the estimated coefficient of the degree of urbanisation is statistically 

significant and the coefficient sign is as expected a priori. Energy demand 

appears to increase by 0.01% for every 1% increase in the population of urban 

areas in SSA. The small elasticity figure is likely to be the result of unavailability 

of key energy dependent infrastructure, like railways, in most SSA cities, which 

increase in urban population would have put pressure on. However, the small 

increase found may be due to the fact that when consumers move to urban areas, 

they move towards the use of more modern energy types, appliances and gadgets 

which may be linked to the increase in income level.  

 

The estimated elasticity of the economic structure variable does not have the 

expected sign but it is statistically significant at the 10% level. A negative 

elasticity is found, which is likely to be due to the shift from industrial sector to 

service sectors in SSA in the last few decades. However, the result should be 

interpreted with caution as the elasticity found is very small (0.001%). The 

discussion of the results is presented in Section 7.2.  
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6.6 Estimation and interpretation of the short run aggregate energy 

demand relationships 

The results of the estimated short run determinants of energy demand in SSA are 

presented and discussed in this section.   

Table 6.6: Results of the ECM estimates in the short run 

Regressor Elasticity result 

lnIncome -0.059

(0.682) 

lnOilprice 0.238*** 

(0.00) 

Urban 0.137** 

(0.055) 

Ecostruc 0.031 

(0.795) 

Notes: The error correction term which measures the speed of convergence to long run equilibrium 

from the model analysis is -0.538***, the dependent variable is the log of energy demand, p-values 

are in parentheses, *** p<0.01, ** p<0.05, * p<0.1.  

An important component of the error correction model (ECM) is the error 

correction term (henceforth, ‘ec’), which is expected to be negative and 

statistically significant. The result of this study confirms this because the ec is 

negative (-0.538) and statistically significant at the 1% level (p-value of 0.000). 

The ec shows that every year, 53.8% deviation of the variables from long run 

equilibrium is corrected, hence it takes just short of two years for short-run 

deviations or shocks to the variables to return to their ‘equilibrium’, i.e., long-run 

values. 

All the variables except the income and price variables have the signs expected a 

priori. The results confirmed that for every 1% rise in urban population, there will 

be a significant increase of 0.14% in energy demand in SSA. Likewise, for every 

1% increase in industrial output there will be an increase of 0.03% in energy 

consumption.  

However, the result of the income elasticity is in contrast of the a priori 

expectation. This might be due to the low income levels in most of the analysed 
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countries, and going by short run economic analysis, even when there is an 

increase in income it will take some time for consumers to adjust their 

consumption bundle to reflect this change in the short run. The same goes for the 

price variable which shows a positive price elasticity. This might also be because 

the demand for energy is inelastic and there are no close substitutes for most 

liquid fuels like kerosene and LPG, or consumers are less responsive to changes in 

price in the short run. But, considering that the income coefficient is not 

statistically significant, the result should be interpreted with caution. Besides, we 

are more concerned with the long run analysis which is the aim of most economic 

modelling like the present study.  

Both the short-run and long-run results presented are supported by several studies 

in the literature, most of which were reviewed and discussed critically in Chapter 

3. A thorough comparison of the results obtained in the present study with those

available from prior literature will be undertaken in the discussion chapter that 

follows. 

So far in the sections above, we have focused on the discussion of the estimated 

results of the determinants of aggregate energy demand in SSA. In the sections 

and subsections that follow the results of the analysed individual fuel types are 

presented and discussed.  

6.7 Disaggregate energy demand analysis in Sub-Saharan Africa 

The sections and sub-sections that follow reports the results of the disaggregated 

econometric analysis by energy types, by considering the demand for kerosene, 

petrol (gasoline), liquefied petroleum gas (LPG), biomass, diesel and electricity 

demand in SSA.  

6.7.1 A priori expectations accounting for idiosyncracies of individual fuel 

types 

Based on economic theory, the a priori expectations accounting for idiosyncracies 

of individual fuel types, are as follows: 
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H1: Positive income elasticity is expected because as the income level of 

consumers goes up, they increase the amount of commodities in their 

consumption bundle which includes the various energy types. This assumption is 

rooted in the demand theory discussed in Chapter Two. However, a negative 

income elasticity of solid biomass demand is expected. This is because people are 

expected to use modern energy as their income increases.  

H2: Growth in urban population (urbanisation) is expected to have a positive 

impact on the aggregate demand for energy. This is because as people move from 

rural to urban areas, it is assumed that they change from the traditional forms of 

energy like solid biomass to modern energy types like electricity and LPG.  

H3: A positive relationship is expected between energy demand and economic 

structure. Considering that a country economic structure is derived by using the 

share of industrial value added to the service value added, which is used to 

measure the impact of structural changes in the countries. An increase in 

industrial share or output will increase the amount of energy consumed. However, 

for the biomass demand model, a negative relationship is expected because more 

industrial output can lead to the production of affordable modern energy cooking 

stoves. 

H4: An increase in population will increase the amount of energy used in SSA by 

the consumers for all fuel types. Therefore, a positive relationship between energy 

demand and population is expected.  

6.7.2 Descriptive statistics of the variables used in the disaggregated 

analysis 

The table below (Table 6.7) presents the basic characteristics of the data used to 

analyse the main determinants of different energy types in SSA. In other words, as 

presented earlier for the aggregate analysis, the table below gives a brief but 

informative summary of the dataset used. For instance, from the table we see that 
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the total number of observations under urban area growth is 408 from the 12 

countries analysed in the 33 years period.  

Table 6.7: Summary statistics of the disaggregate energy demand in SSA dataset 

Variable  Mean Std Dev Min Max Obs 

lnIncome Overall 

Between 

Within 

  6.65  1.00 

 0.12 

 0.10 

4.74 

6.45 

4.85 

8.92 

6.95 

8.66 

407 

lnUrban Overall 

Between 

Within 

  1.34 0.40 

0.17 

0.36 

0.09 

1.15 

0.07 

2.66 

1.62 

2.42 

408 

lnEconomy Overall 

Between 

Within 

-0.44 0.76 

0.10 

0.75 

-1.70

-0.67

-1.96

1.49 

-0.26

1.45 

406 

lnPop Overall 

Between 

Within 

16.42 1.28 

0.27 

1.25 

13.81 

15.96 

14.09 

18.97 

16.85 

18.58 

408 

lnKero Overall 

Between 

Within 

3.80 1.73 

0.20 

1.72 

0.00 

3.46 

-0.13

7.82 

4.16 

7.90 

404 

lnBiomass Overall 

Between 

Within 

11.67 1.62 

0.22 

1.61 

8.93 

11.31 

8.92 

15.23 

12.07 

14.91 

406 

lnDiesel Overall 

Between 

Within 

5.85 1.30 

0.36 

1.25 

1.95 

5.38 

2.42 

9.15 

6.56 

8.83 

406 

lnLPG Overall 

Between 

Within 

2.78 1.64 

0.46 

1.58 

0.00 

2.14 

-0.59

6.14 

3.57 

6.16 

351 

lnPetrol Overall 

Between 

Within 

5.49 1.56 

0.37 

1.52 

2.30 

5.04 

2.61 

9.05 

6.16 

9.31 

406 

lnElect Overall 

Between 

Within 

7.71 1.73 

0.44 

1.68 

4.23 

7.02 

4.84 

12.25 

8.57 

12.18 

406 

Note: ln stands for the natural log transformation of the variables, lnUrban is the natural log 

transformation of urbanisation, lnEconomy is the natural log transformation of economic structure, 

lnPop is the natural log transformation of Population, lnKero is the natural log transformation of 

kerosene consumption, lnBiomass is the natural log transformation of biomass consumption, 
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lnDiesel is the natural log transformation of diesel consumption, lnLPG is the natural log 

transformation of LPG consumption, lnPetrol is the natural log transformation of petrol 

consumption and lnElect is the natural log transformation of electricity consumption. The number 

of observations under LPG reduced from 406 to 351 after taking the log transformation because 

some of the values in the variables series of some countries had value of 0’s.  

As illustrated in Table 6.7, it is evident that we have an almost balanced panel 

which informed the selection of the model used for the analysis. That is, only four 

values are missing for most series in the dataset used. This can be accommodated 

by the software (STATA 13) used for the analysis, an adjustment that ensures that 

the estimates are not biased.  

Having presented the summary statistics of the dataset used, what follows is the 

visual inspection of the plots of each variable to detect any structural break in the 

series. The number on each plot in the charts represents each series of the plotted 

variables for the countries analysed.  
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Figure 6.7: Graphical plots showing log of electricity demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia log of electricity consumption data series, respectively.
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Figure 6.8: Graphical plots showing log of biomass demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia biomass consumption data series, respectively.
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Figure 6.9: Graphical plots showing log of petrol demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia petrol consumption data series, respectively.
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Figure 6.10: Graphical plots showing log of kerosene demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia kerosene consumption data series, respectively.
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Figure 6.11: Graphical plots showing log of diesel demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia diesel consumption data series, respectively.
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Figure 6.12: Graphical plots showing log of LPG demand series 
1,2,3,4,5,6….,12 on the plots represent: Benin, Botswana, Cameroon, Congo, Democratic Republic of Congo, Ethiopia, Nigeria, Senegal, South Africa, Sudan, 

Togo and Zambia LPG consumption data series, respectively. 
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From the visual inspection of Figures 6.7 to 6.12, we cannot detect any 

pronounced structural breaks in the series analysed. In other words, the visual 

inspection of the plots suggests no major or persistent structural breaks. We, 

therefore, proceed to present the results of each of the analysed energy types.  

6.8 Panel unit root tests 

Three panel unit root tests are employed to determine the stationarity properties of 

the variables in the model. That is, the Im-Pesaran-Shin unit root test and the two 

Fisher type (based on Augmented Dickey Fuller and the Phillips-Perron) panel 

unit root tests. The results of the panel unit root tests carried out to know the unit 

root properties of the variables employed in the disaggregated analysis by fuel 

type are shown in Table 6.8 below.  

Table 6.8: Panel unit root tests results for the variables in levels and first differences 

Variable IPS Statistics ADF- Fisher PP- Fisher Inference 

Lnkero 

lnPet 

lnLPG 

lnBio 

lnElec 

lnDie 

0.187

1.497 

-0.418

2.073 

5.712 

3.851 

-0.0310

 1.117 

-1.342

 1.651

 3.401 

 3.832 

-0.031

 1.117 

-1.342

 1.651 

 3.401 

 3.832 

Non-stationary 

Non-stationary 

Non-stationary 

Non-stationary 

Non-stationary 

Non-stationary 

ΔlnKero 

ΔlnPet 

ΔlnLPG 

ΔBio 

ΔlnElec 

ΔlnDie 

-9.564*** 

-8.899*** 

-9.176*** 

-8.453*** 

-13.910*** 

-9.950*** 

-17.128*** 

-15.909*** 

-15.909*** 

-15.385*** 

-18.881*** 

-17.183

-17.128*** 

-15.357*** 

-15.909*** 

-15.385*** 

-18.881*** 

-17.183*** 

Stationary 

Stationary 

Stationary 

Stationary 

Stationary 

Stationary 

Notes: Δ is the first difference operator. *, ** and *** indicate rejection of the null of a unit root at 

the significance levels of 10%, 5% and 1%, respectively. lnkero represents the natural log of 

kerosene demand, lnPet stands for the natural log of petrol demand. lnLPG is the log of LPG 

demand. lnBio is the log of solid biomass demand, lnElec is the log of electricity demand, lnDie is 

the log of diesel demand.  

As stated in the table notes above, all three tests have the same null hypothesis of 

a unit root. All variables are non-stationary or contain a unit root in levels whereas 
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at first difference they are all stationary (i.e., integrated of order zero, or I(0)). In 

other words, when the unit root properties of the series were taken in levels, no 

evidence was found against the null hypothesis. This led to the conclusion that the 

series contain unit roots.  

However, after taking the first difference of the variables and the unit root tests 

were performed, strong evidence was found at the 1% significance level against 

null hypothesis. We can, therefore, conclude that the series do not contain unit 

root after first differencing.  Further, since all variables are stationary at first 

difference this would help reduce any serial correlation that may be present in the 

series.  

6.9 Electricity demand model 

The results of the linear panel models used to analyse the determinants of 

electricity demand in SSA are presented in this part of the thesis. The correlation 

matrix of the model is also presented to rule out any serious issue of 

multicollinearity. Also, the chart of two selected variables from the model is also 

highlighted. 

Table 6.9: Correlation matrix of the variables 

lnIncome lnUrban lnEconomy lnPopulation lnElectricity 

lnIncome 

lnUrban 

lnEconomy 

lnPopulation 

lnElectricity 

  1.00 

-0.30

0.33

-0.32

0.40

 1.00 

 0.11 

 0.02 

-0.33

 1.00 

-0.01

0.09

1.00 

0.62 1.00 

The results, as shown in Table 6.9, indicate that there is no problem of 

multicollinearity among the variables analysed. Since none of the coefficient 

value is higher than 0.75 using the Tabachnich and Fidell’s (2007) cut-off line, we 

do not have a multicollinearity issue. The highest correlation was between log of 

electricity and log of population (equal to 0.62).  
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Figure 6.13: Scatter plot of electricity demand and income 

As illustrated in Figure 6.13, there is a positive relationship between the two 

variables plotted. The plot suggests that a positive relationship exists between 

electricity and income. The observed pattern from the chart should be 

corroborated and explained by our regression results below.  
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Table 6.10: Estimation results for electricity demand 

Dependent variable: log of 
electricity 

Panel A: Fixed Effects Panel B: Random 
Effects 

Panel C: PW Model 

Explanatory variables Coeff p-value Coeff p-value Coeff p-value

lnIncome 0.545*** 0.000 0.585*** 0.000 0.595*** 0.000 

inUrbanisation -0.113*** 0.002 -0.121*** 0.009 -0.242*** 0.009 

lnEconomic  structure 0.089*** 0.010 0.085** 0.016 -0.009 0.811 

lnPopulation 1.537*** 0.000 1.487*** 0.000 1.015*** 0.000 

Constant -20.951*** 0.000 -20.39*** 0.000 -12.583*** 0.000 

F test for model 
significant 
F-statistic for fixed effects
and Wald statistic for 
random effects and PW 

447.24 1714.35 343.60 

P-value>F 0.000 0.000 0.000 

Observations 404 404 404 

Groups 12 12 12 

Model goodness-of-fit 

R-squared 0.8239 

Within 0.822 0.821 
Between 0.595 0.618 

Overall 0.610 0.631 

Autocorrelation test 
(Wooldridge test) 

1.492 

Heteroscedasticity test 
(Wald test) 

869.52*** 

Hausman Test Fixed vs Random effects 

Test statistic 54.02 

p-value> Test statistic 0.000 

Decision Fixed effects model 

 Note: *** P < 0.01, ** P < 0.05, * P < 0.1, PW represents Prais-Winsten estimation with 

heteroscedastic panel-corrected standard errors, ln stands for natural logarithm. 

The fixed effects model is appropriate for the analysis of electricity demand 

according to the Hausman selection test carried out, as shown in Table 6.10 

above. In the Hausman test, the chi-squared critical value is lower than the test 

statistic for the individual effect model, therefore, the fixed effects model is 

preferable. This is, going with the test statistic of using fixed effects model if the 

p-value is < 0.05, and in the analysis the result we had recorded a p-value of
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0.000. Since, the p-value of 0.000 is less than 0.05, we can safely accept the 

hypothesis that the fixed effects model is appropriate.  

However, despite the selection of the fixed effects model, its regression estimates 

may not be the best linear unbiased estimator (BLUE) because of the evidence of 

the presence of heteroscedasticity. The modified Wald test for groupwise 

heteroscedasticity in fixed effects model carried out has a null of constant 

variance (homoscedasticity). We had a p-value of 0.000, which led to the rejection 

of the null hypothesis and conclusion of heteroscedasticity in the model.  

Interestingly, from the result of the Wooldridge’s test for autocorrelation, we 

accepted the null and rejected the alternative hypothesis of autocorrelation in the 

model. In other words, from the test results, we had a p-value of 0.248, which 

supported the null hypothesis of no serial correlation. This would suggest that the 

random effects model estimates may be efficient if chosen by the Hausman test. 

However, since the fixed effect model was chosen we need to use an estimator 

that can correct for heteroscedasticity found in the model. To correct for this, we 

use the PW model so as to obtain more efficient estimates.  

According to the PW model (see the last two columns of Table 6.10 for the 

results), the income elasticity of electricity demand is positive, inelastic and 

strongly significant. That is, a 1% increase in income increases electricity 

consumption by approximately 0.60%.  But the urbanisation elasticity is against 

our a priori assumptions. There was no increase in electricity consumption 

associated with urbanisation. Instead, we find that a unit increase in urbanisation 

reduces electricity consumption by 0.24%, and the estimated coefficient is 

significant at the 1% statistical level.  

The results also show that population is a key and significant factor behind 

electricity consumption in SSA. Specifically, a 1% increase in population size is 

expected to lead to a 1.02% increase in energy demand. On the other hand, 

economic structure is not found to be a statistically significant factor driving 

electricity consumption in SSA.  
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These results suggest that the demand for electricity is relatively inelastic to 

changes in income and urbanisation, while it is has unit elasticity to changes in the 

size of the population.  

6.10 Diesel demand model 

The results of the correlation matrix of the variables and scatter plot of two key 

variables are first presented below, before moving on to present the table showing 

the estimates from the fixed effects model, random effects model and the PW 

model employed to investigate the driving forces of diesel demand in SSA. 

Table 6.11: Correlation matrix of the variables 

lnIncome lnUrban lnEconomy lnPopulation lnDiesel 

lnIncome 

lnUrban 

lnEconomy 

lnPopulation 

lnDiesel 

  1.00 

-0.30

0.33

-0.32

0.32

 1.00 

 0.11 

 0.02 

-0.25

 1.00 

-0.01

0.09

1.00 

0.70 1.00 

As can be seen from the table above, there is no issue of multicollinearity among 

the variables analysed, according to the Tabachnich and Fidell’s (2007) cut-off 

line of 0.75. The highest correlation was between log of diesel demand and log of 

population (with a recorded correlation coefficient of 0.70). 
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Figure 6.14: Scatter plot of diesel demand and income 

As can be seen from Figure 6.14, the slope suggests an upward trend. Hence, the 

plot suggests that a positive relationship exists between diesel demand and income 

in SSA. Table 6.12 shows the results of the linear panel models used to analyse 

diesel demand in SSA. The results confirm the observed pattern illustrated by 

Figure 6.14. 
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Table 6.12: Estimation results for diesel demand models 

Dependent variable: log of 
diesel 

Panel A: Fixed Effects Panel B: Random 
Effects 

Panel C: PW Model 

Explanatory variables Coeff p-value Coeff p-value Coeff p-value

lnIncome 0.470*** 0.000 0.567*** 0.000 0.290*** 0.001 

lnUrbanisation -0.214** 0.002 -0.235*** 0.001 -0.350*** 0.000 

lnEconomic  structure 0.029*** 0.000 0.174** 0.004 0.043 0.384 

lnPopulation 1.156*** 0.000 1.002*** 0.000 0.762*** 0.000 

Constant -15.880*** 0.000 -13.998*** 0.000 -8.049*** 0.000 

F test for model significant 
F-statistic for fixed effects
and Wald statistic for 
random effects and PW 

82.54 402.70 137.81 

P-value>F 0.000 0.000 0.000 

Observations 404 404 404 

Groups 12 12 12 

Model goodness-of-fit 

R-squared 0.6687 

Within 0.4597 0.4532 
Between 0.7813 0.8447 

Overall 0.7171 0.7707 

Autocorrelation test 
(Wooldridge test) 

41.805*** 

Heteroscedasticity test (Wald 
test) 

9475.62*** 

Hausman Test Fixed vs Random effects 

Test statistic 19.59 

p-value> Test statistic 0.000 

Decision Fixed effects model 

 Note: *** P < 0.01, ** P < 0.05, * P < 0.1, PW represents Prais-Winsten estimation with 

heteroscedastic panel-corrected standard errors, ln stands for natural logarithm 

As shown in Table 6.12, the fixed effects model is the best model for analysing 

the determinants of diesel demand in SSA. This is supported by the result of the 

Hausman test with the chi-squared critical value being lower than the test statistics 

for the individual effect model; therefore the fixed effects model is preferable. 

Further, the p-value of 0.000 gives strong evidence in favour of the use of the 

fixed effects model.  
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The diesel fixed effects demand model suffers from heteroscedasticity and 

autocorrelation. To be specific, we strongly rejected the null of no serial 

correlation at the 1% significance level in the Wooldridge test for autocorrelation. 

While in the Wald test, the null of homoscedasticity was also strongly rejected 

due to a p-value of 0.000. To correct for these issues we used the PW model.  

 

The PW model suggests that income, urbanisation and population are the key 

determinants of diesel demand in SSA. Their elasticities are 0.29%, -0.35% and 

0.76%, respectively. To be specific, the income elasticity was found to be 

positive, inelastic and statistically significant at the 1% level. For every 1% 

increase in the size of urban population, diesel demand reduces by 0.35%. All the 

variables have the expected sign except for ‘urbanisation’ which has a negative 

sign.  

 

6.11 Liquefied petroleum gas (LPG) demand model 

The correlation matrix of the variables, scatter plot showing the relationship 

between the log of LPG and the log of income, results of the fixed effects model, 

random model and the Prais-Winsten model for LPG demand in SSA, are 

presented below.  

 

Table 6.13: Correlation matrix of the variables 

 lnIncome lnUrban lnEconomy lnPopulation lnLPG 

lnIncome 

lnUrban 

lnEconomy 

lnPopulation 

lnLPG 

  1.00 

 -0.30 

  0.31 

 -0.31 

  0.48 

 

 1.00 

 0.19 

 0.05 

-0.25 

 

 

 1.00 

-0.09 

 0.02 

 

 

 

1.00 

0.44 

 

 

 

 

1.00 

 

From Table 6.13 above, we do not have a problem of multicollinearity among the 

variables analysed. According to the Tabachnich and Fidell’s (2007) cut-off line 

of 0.75, we do not have a multicollinearity issue in the model because the highest 

correlation coefficient is 0.48, which is below 0.75. This is the coefficient of the 

relationship between the log of LPG demand and log of income.  
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What follows is the scatter plot (Figure 6.15) which shows that a positive 

relationship exists between income and LPG demand in SSA. 

Figure 6.15: Scatter plot of LPG demand and income 

Figure 6.15 suggests that when income increases, the demand for LPG also 

increases. This should be confirmed by the linear panel models used to analyse 

diesel demand in SSA presented and discussed below.  
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Table 6.14: Estimation results for LPG demand models 

Dependent variable: log of 
LPG 

Panel A: Fixed Effects Panel B: Random 
Effects 

Panel C: PW Model 

Explanatory variables Coeff p-value Coeff p-value Coeff p-value 

lnIncome 0.884*** 0.000 1.029*** 0.000 1.097*** 0.000 

lnUrbanisation -0.364*** 0.000 -0.391*** 0.000 -0.057 0.631 

lnEconomic  structure 0.755*** 0.000 0.662*** 0.000 -0.158 0.403 

lnPopulation 1.623*** 0.000 1.400*** 0.000 0.948*** 0.000 

Constant -28.942*** 0.000 -26.332*** 0.000 -20.264*** 0.000 

F test for model significant       
F-statistic for fixed effects 
and Wald statistic for 
random effects and PW 

102.58  385.65  103.65  

P-value>F 0.000  0.000  0.000  

Observations 385  385  385  

Groups 12  12  12  

Model goodness-of-fit       

R-squared     0.1106  

Within 0.527  0.523    
Between 0.195  0.222    

Overall 0.241  0.274    

Autocorrelation test 
(Wooldridge test) 

 34.314***   

Heteroscedasticity test (Wald 
test) 

4560.03***    

Breusch- Pagan selection test 1307.74***    
Breusch- Pagan  test decision Random effects model over OLS   
Hausman Test Fixed vs Random effects   

Test statistic 15.18    

p-value> Test statistic 0.0043    

Decision Fixed effects model   

Note: *** P < 0.01, ** P < 0.05, * P < 0.1, PW represents Prais-Winsten estimation with 

heteroscedastic panel-corrected standard errors, ln stands for natural logarithm, OLS represents 

Ordinary Least Square Model 

 

From Table 6.14, we can see that the fixed effects model is chosen over the 

random effects model by the Hausman test. This is supported by the test statistic 

of 0.43% which is lower than 5% used in favour of using random effects model 

when deciding between using the random effects model or the fixed effects 

model. In other words, the fixed effects model is preferable because the chi-



170 

squared critical value is lower than the test statistics for the individual effect 

model.  

The autocorrelation and heteroscedasticity tests carried out show that there is both 

autocorrelation and heteroscedasticity in the model. To be specific, we accepted 

the null hypothesis that there is autocorrelation in the model at the 1% 

significance level. Also, the null hypothesis of homoscedasticity was rejected due 

to strong evidence at the significance level of 1%. We therefore use the results of 

the PW model in the analysis and discussion that follows.  

In the PW model, the main factors that drive LPG demand are income and 

population. Both have the expected positive sign, are moderately elastic and 

statistically significant. Urbanisation is also negative in this model like the one 

reported in the fixed effects model but it is not significant. Likewise, a negative 

relationship is found between LPG demand and economic structure which is 

against a priori expectations.  

The high income elasticity found in the LPG model might be because, as 

consumers have more income, they tend to move toward modern energy like LPG, 

away from traditional sources like solid biomass. According to the model, a 1% 

increase in income induces an increase of 1.10% in LPG demand in SSA.  

6.12 Petrol demand model 

This section presents the results of the linear panel models used to analyse the 

petrol demand model in SSA. The correlation matrix of the model to rule out any 

serious issue of multicollinearity among the variables employed for the analysis is 

reported in Table 6.15. 
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Table 6.15: Correlation matrix of the variables 

lnIncome lnUrban lnEconomy lnPopulation lnPetrol 

lnIncome 

lnUrban 

lnEconomy 

lnPopulation 

lnPetrol 

  1.00 

-0.30

0.33

-0.32

0.40

 1.00 

 0.11 

 0.02 

-0.18

 1.00 

-0.01

0.18

1.00 

0.64 1.00 

From Table 6.15, it is evident that there is no issue of multicollinearity among the 

variables analysed. Since none of the coefficient values is higher than 0.75 using 

the Tabachnich and Fidell’s (2007) cut-off line, we do not have a multicollinearity 

problem. 

Figure 6.16: Scatter plot of petrol demand and income 

As shown in Figure 6.16, there appears to be a positive relationship between the 

demand for petrol and consumers’ income. This would suggest that as the income 

of consumers’ increases, they demand more petrol as part of their consumption 

bundle.  
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Table 6.16: Estimation results for petrol demand models 

Dependent variable: log of 
petrol 

Panel A: Fixed Effects Panel B: Random 
Effects 

Explanatory variables Coeff p-value Coeff p-value

lnIncome 0.548*** 0.000 0.630*** 0.000 

lnUrbanisation -0.229*** 0.001 -0.227*** 0.001 

lnEconomic structure 0.164** 0.012 0.159*** 0.012 

lnPopulation 1.176*** 0.000 1.115*** 0.000 

Constant -17.088*** 0.000 -16.638*** 0.000 

F test for model significant 

F-statistic for fixed effects
and Wald statistic for
random effects and PW

90.820 405.050 

P-value>F 0.000 0.000 

Observations 404 404 

Groups 12 12 

Model goodness-of-fit 

R-squared

Within 0.484 0.482 

Between 0.729 0.774 

Overall 0.695 0.734 

Autocorrelation test 
(Wooldridge test) 

31.087*** 

Heteroscedasticity test (Wald 
test) 

4081*** 

Breusch- Pagan selection test 2134.18*** 

Breusch- Pagan test decision Random effects model over OLS 

Hausman Test Fixed vs Random effects 

Test statistic 8.27 

p-value> Test statistic 0.082 

Decision Random effects model 

    Note: *** P < 0.01, ** P < 0.05, * P < 0.1 

According to the Breusch-Pagan and the Hausman selection tests reported in 

Table 6.16, the random effects model is best for analysing the determinants of 

petrol demand in SSA. For the Breusch-Pagan test, we had strong evidence 

against the null hypothesis stating that pooled regression model is appropriate, 

hence we accept the alternative hypothesis that random effects model is 
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appropriate. Likewise in the Hausman test, the chi-squared critical value is higher 

than the test statistics for the individual effect model; therefore the random effects 

model is preferable.  

 

We do not need to analyse nor discuss the fixed effects model since it was not 

selected by the diagnostic tests. Moreover, the Wald test gave strong evidence of 

heteroscedasticity in the model which suggests that the estimates from the fixed 

effects model may be biased. 

 

We had evidence of serial correlation in the random effects model going by the 

Wooldridge’s test reported in Table 6.16. The null hypothesis of the test is that 

there is autocorrelation in the panel model. We had a strong test statistic from the 

analysis at the 1% significance level (p-value of 0.000), which implies that we had 

no reason to reject the null hypothesis. This does not pose any serious problem 

because since all variables are stationary at first difference, this would help reduce 

the serial correlation (Keneko, 2010). Therefore, we proceed to analyse and 

discuss the results of the random effects model.  

 

As shown in the last two columns of Table 6.16, all the variables have the 

expected sign except for the urbanisation variable. Specifically, a 1% increase in 

consumers’ income increases petrol demand by 0.63% in SSA, this is in line with 

the a priori expectation. This estimated coefficient is statistically significant at the 

1% significance level. Also, a 1% increase in urbanisation reduces energy demand 

by 0.23%, and it is also statistically significant. A 1% increase in industrial output 

is expected to increase petrol demand by 0.16%. Lastly, energy demand is 

expected to increase by 1.12% for every percentage increase in population size in 

SSA. The constant has no economic interpretation as its result in this model only 

suggests that the constant term is different from zero (0).  

 

Overall, these results indicate that the demand for petrol is relatively inelastic in 

SSA especially in response to changes in income, price and economic structure. 

However, petrol demand has a unit elasticity to changes in population size. All 

results are supported by several studies in the literature (see Chapter 3 and 7).  
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6.13 Kerosene demand model 

As can be seen from Table 6.17 below, we do not have a problem of 

multicollinearity because the highest correlation coefficient from the results is 

0.59. This is from the relationship between log of kerosene and log of population. 

Table 6.17: Correlation matrix of the variables 

lnIncome lnPopulation lnUrban lnEconomy lnKerosene 

lnIncome 

lnPopulation 

lnUrban 

lnEconomy 

lnKerosene 

  1.00 

-0.32

-0.30

0.33

0.13

 1.00 

 0.02 

-0.01

 0.59 

 1.00 

 0.11 

 0.02 

1.00 

0.13 1.00 

Figure 6.17: Scatter plot of kerosene demand and income 

Figure 6.17 shows a positive relationship between the plotted variables, a pattern 

that should find confirmation in our regression results reported below. 
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Table 6.18: Estimation results for kerosene demand models 

Dependent variable: log of 
kerosene 

Panel A: Fixed 
Effects 

Panel B: Random 
Effects 

Explanatory variables Coeff p-value Coeff p-value

lnIncome 0.735*** 0.000 0.691*** 0.000 

lnUrbanisation 0.688*** 0.001 0.585*** 0.001 

lnEconomic  structure -0.049 0.607 -0.021 0.823 

lnPopulation 0.976*** 0.000 0.960*** 0.000 

Constant -18.066*** 0.000 -17.356*** 0.000 

F test for model significant 

F-statistic for fixed effects and
Wald statistic for random
effects and PW

83.81 351.35 

P-value>F 0.000 0.000 

Observations 402 402 

Groups 12 12 

Model goodness-of-fit 

R-squared

Within 0.479 0.479 

Between 0.167 0.209 

Overall 0.469 0.470 

Autocorrelation test 
(Wooldridge test) 

6.872*** 

Heteroscedasticity test (Wald 
test) 

419.28*** 

Breusch- Pagan selection test 2426.64*** 

Breusch- Pagan  test decision Random effects model over OLS 

Hausman Test Fixed vs Random effects 

Test statistic 4.14 

p-value> Test statistic 0.3873 

Decision Random effects model 

Note: *** P < 0.01, ** P < 0.05, * P < 0.1 

In deciding the appropriate model between fixed effects model and random effects 

model, the Hausman test gave evidence that the random effects model works well 

in analysing the determinants of kerosene demand in SSA.  
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The selection of random effects model might be influenced by the type of energy 

type that is analysed here. Considering that kerosene is used by low income 

earners and most of them are in the rural areas, it might suggest that it includes 

informal sectors which will be difficult to record by the national statistical offices 

during the data collection process. Therefore, the data reported might be a random 

selection from the population or estimation. This does not lead to any bias in our 

analysis, as it only confirms what is expected with an energy product like 

kerosene.  

Therefore, we use the random effects model for our analysis because it is efficient 

for analysing the data even in the presence of autocorrelation. As discussed earlier 

since we have ascertained that the variables are stationary in first difference, any 

autocorrelation present in the model will not make the reported estimates less 

efficient.  

According to the estimated model (see Table 6.18), income, urbanisation and 

population are the main factors that influence the demand for kerosene in SSA. To 

be specific, a 1% increase in income increases kerosene demand by 0.69% 

(significant at the 1% statistical level). Likewise, an increase of 1% in overall 

population size and urban population increases kerosene demand by 0.96% and 

0.59%, respectively.  

6.14 Biomass demand 

The biomass analysed in this study is solid biomass like wood fuel, charcoal, etc., 

used by the majority of consumers in SSA, most are traded in the informal sector 

of the economies under study. Firstly, we present the correlation matrix of the 

variables. Secondly, the charts of the income and biomass demand variables are 

plotted. Lastly, the results of the fixed effects and random effects models for 

biomass demand in SSA are presented in Table 6.19. 
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Table 6.19:  Correlation matrix of the variables 

lnIncome lnPopulation lnUrban lnEconomy lnBiomass 

lnIncome 

lnPopulation 

lnUrban 

lnEconomy 

lnBiomass 

  1.000 

-0.320

-0.147

0.259

-0.279

 1.000 

-0.121

-0.053

0.936 

   1.000 

   0.183 

-0.007

1.000 

0.029 1.000 

As can be seen from Table 6.19 above, we do not have a multicollinearity 

problem among the variables analysed. Although evidence of high collinearity is 

found between population and biomass (0.936), nothing is done because the 

model has a high R-squared of 0.880, which indicates good fit.   

Figure 6.18: Scatter plot of biomass demand and income 

Interesting from Figure 6.18 above, we can see that a negative relationship exists 

between biomass demand and income. This is reasonable because the higher the 

income of the consumer, the lower the amount of solid biomass consumed as it is 

an inefficient traditional form of energy.  
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Table 6.20: Estimation results for biomass demand models 

Dependent variable: log of 
biomass 

Panel A: Fixed Effects Panel B: Random 
Effects 

Explanatory variables Coeff t-stat Coeff t-stat

lnIncome -0.036 -1.30 -0.036 -1.32

lnUrbanisation 0.087*** 3.91 0.089*** 4.03

lnEconomic  structure -0.028 -1.10 -0.021 -0.99

lnPopulation 0.886*** 32.27 0.896*** 33.10 

Constant -2.773*** -5.52 -2.931*** -5.49

F test for model significant 

F-statistic for fixed effects
and Wald statistic for
random effects and PW

287.49 34.00 

P-value>F 0.000 0.000 

Observations 402 402 

Groups 12 12 

Model goodness-of-fit 

R-squared

Within 0.748 0.748 

Between 0.880 0.880 

Overall 0.873 0.874 

Autocorrelation test 
(Wooldridge test) 

115.372*** 

Heteroscedasticity test (Wald 
test) 

68311.36*** 

Breusch- Pagan selection test 5438.85*** 

Breusch- Pagan  test decision Random effects model over OLS 

Hausman Test Fixed vs Random effects 

Test statistic 6.25 

p-value> Test statistic 0.1811 

Decision Random effects model 

Note: *** P < 0.01, ** P < 0.05, * P < 0.1 

From Table 6.20, we will be using the random effects model chosen by the 

Hausman test. The selection of the model is likely to be due to the reason given 

above (see Section 6.10 above) linked to the prevalence of informal markets in the 

biomass industry.  
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The random effects model shows that urbanisation and population are the key 

variables influencing biomass demand in SSA. The negative income elasticity is 

in line with our a priori expectations that as consumers’ income increases they 

will use modern energy sources. From this model, a 1% increase in consumer 

income reduces biomass demand by 0.04%. It is evident from the results that the 

wide prevalence of biomass use in the SSA energy mix is due to the widespread 

poverty and low income level that are prevalent in these countries. However, a 

note of caution is due here because the elasticity is not statistically significant.  

High population growth is also another reason responsible for the high use of 

solid biomass in the region. Specifically, the obtained elasticity indicates that a 

1% increase in population leads to a 0.90% increase in biomass consumption. 

Also, many of the urban areas in the region have slums where most of the 

residents use biomass for cooking, in form of charcoal. This could explain the 

positive elasticity found for the urbanisation variable. 

However, the negative relationship between biomass consumption and economic 

structure may be due to the fact that an increase in the service oriented sector will 

reduce the amount of biomass used in the economy, if those used by industries 

have reduced over the years. This should reduce the overall biomass consumption 

in the countries in the region.  

6.15 Chapter summary 

This chapter presented and discussed the main driving forces of aggregate energy 

demand in Sub-Saharan Africa, and then the disaggregated analysis by type of 

fuel. The latter is based on the factors that impact on the demand for petrol, LPG, 

diesel, electricity, biomass and kerosene in SSA, which are reported and explored 

in turn.  Overall, the estimation results indicated that income, energy price, 

economic structure and degree of urbanisation are the main determinants of 

energy demand in Sub-Saharan Africa. All the identified factors have different 

impacts which support or contrast some of the existing findings in the literature. 

In general, also in the case of the disaggregated model for individual energy types, 
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the results corroborate that income, urbanisation, economic structure and 

population are the key factors that drive the demand for the energy types analysed. 
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Chapter 7 : Further Discussion of the Significance and 

Contribution of the Results 

7.1 Chapter overview 

Using the results from the analysis presented in the previous chapter, this chapter 

discusses the findings further. The discussion of the significance and contribution 

of the findings connects to the results of previous empirical studies in areas 

related to the objectives of this study. The chapter is divided into different 

sections according to each of the energy type analysed. Nevertheless, it is worth 

noting that since no other published research has analysed both the driving forces 

of aggregate energy demand and disaggregated energy demand by fuel types in 

Sub-Saharan Africa in a single study, a direct comparison of the results with 

previous empirical work is not straightforward.  

7.2 Discussion of the aggregate demand model 

The main question in this study seeks to identify and analyse the factors that drive 

energy demand in the long run in SSA. Our results found support for the positive 

relationship between energy demand and income postulated theoretically. 

Similarly, the theoretically expected negative relationship between energy price 

and energy demand was also confirmed by the results. Hence, energy is a normal 

good. Both findings are consistent with the results presented in existing literature. 

For example, Al-Azzam and Hawdon (1999) had an income and price elasticity of 

0.95 and -0.22 respectively in Jordan, Iwayemi et al. (2010) had an income 

elasticity of 0.66 and a price elasticity of -0.11 in Nigeria.  

However, despite the fact that the cited studies also found a relatively inelastic 

price and income elasticity in their analysis, the value for the reported coefficients 

(elasticity) differ from our results (income elasticity of 0.10 and price elasticity of 

-0.46) probably due to the differences in the countries analysed and the use of the

panel cointegration approach in the analysis, which is more reliable. Although, 

Iwayemi et al. (2010) employed cointegration in the analysis, it was in the time 

series context as only Nigeria was considered in the empirical work. The result is 
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further corroborated by the findings reported by Amusa et al. (2009) in relation to 

South Africa, Kuma (2008) for Fiji, and De Vita et al. (2006) for Namibia.  

All the studies highlighted so far, however, suffer from the fact that the impact of 

growth in urban population known as the degree of urbanisation and economic 

structure were not included in the models. This is one significant contribution of 

the present study since it has been accepted by many scholars that urbanisation is 

a key driver of energy demand (and hence energy consumption) in developing 

countries (Adom et al., 2012; Mensah et al., 2016).  

However, the failure to identify urbanisation as one of the driving forces may be 

due to institutional differences in the countries analysed or the time period 

covered in the study. As it will be seen in the sub-sections that follow under 

specific energy type demand models, most of the factors included in our model 

were used in energy modelling by authors who studied energy demand in SSA, 

especially in the last five years (Adom et al., 2012; Adom and Bekoe, 2013; 

Adom, 2013; Mensah, 2014). 

Although there is hardly any empirical study that has investigated the relationship 

between aggregate energy demand and urbanisation, some studies have analysed 

the impact of urbanisation on energy use. For instance, Poumanyvong and Kaneko 

(2010) investigated whether urbanisation leads to lower energy use and lower C02 

emissions using a cross-country analysis. In contrast to our result, where a 

significant positive relationship was found between aggregate energy demand and 

urbanisation, they found that in low income countries urbanisation decreases 

energy use. The difference in findings may be due to three possible reasons. 

Firstly, the researchers have used a different data set, as the countries analysed in 

this study fall under lower income, lower middle and upper middle categories. 

Hence, considering that we have not separated them into these income categories 

we may not be able to compare the findings of the two studies directly. Secondly, 

the time period analysed in the two studies differs because we have considered the 

more recent period from 1980 to 2014 whereas Poumanyvong and Kaneko (2010) 

used an older dataset based on the sample period 1975-2005. Lastly, the 
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econometric models employed are different (here in this part of the study, a panel 

cointegration approach was used). 

The positive relationship found between urbanisation and aggregate energy 

demand is interesting. According to a report by the African Development Bank, 

the annual rate of urbanisation is about 3.5% with 32.8% of people in SSA living 

in cities (AfDB, 2012). Besides, most of the stock of vehicles, modern energy 

equipment and gadgets are in urban areas. Moreover, most houses in the urban 

areas are connected to the national grid which leads to an increase in energy use 

by the consumers who can now acquire more electrical gadgets as they move from 

rural to urban areas with increased access to electricity. It is, therefore, expected 

that an increase in urban population size will increase the overall amount of 

energy consumed, as found in our analysis.   

Likewise, most empirical studies in the literature do not include the analysis of the 

relationship between aggregate energy demand and economic structure, but some 

studies have analysed the impact of structural changes on specific energy types 

consumption in individual SSA countries. The negative relationship reported 

between economic structure and aggregate energy demand is in contrast with the 

findings of Mensah et al. (2016). The authors found a positive relationship 

between economic structure and electricity consumption in Ghana. The difference 

in findings could be due to differences in countries analysed and the 

methodological approach.  

7.3 Discussion of the electricity demand model 

This study set out with the aim of estimating the coefficients of the identified 

driving forces of electricity demand in SSA. We found that the most significant 

determinants of electricity demand in the long run for the analysed countries in 

SSA are income, the degree of urbanisation and population. The positive 

relationship found between income and electricity demand is supported by 

findings of several empirical studies in the literature. These results are consistent 

with those obtained by Adom et al. (2012) who estimated the long run income 

elasticity of Ghana to be 1.59, Expo et al. (2011), who reported an income 
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elasticity of electricity of 0.58 in Ghana, and De Vita et al. (2006) who reported 

0.59 as the income elasticity of electricity in Namibia. Clearly, the income 

elasticity of electricity demand is inelastic and positive in the long run in SSA. 

The explanation given for the results by most of the studies mentioned above is 

that as the income of consumers’ increases, they are able to buy more gadgets and 

appliances which need electric power to function and eventually lead to an 

increase in the demand for electricity. This view is supported by the findings in 

this study and it further shows that as the standard of living improves, people will 

consume more electricity.  

Surprisingly, the degree of urbanisation was found to have a negative relationship 

with electricity demand in SSA in our analysis. Although, this result differs from 

that reported by some previous published studies (see, e.g., Holtedahl and Joutz, 

2004; Adom et al., 2012), it is consistent with that of Adom and Bekoe (2013). 

Considering that most of the countries analysed are in the low income group, it 

has been suggested that the negative sign of the urbanisation coefficient may be 

due to ‘urban compaction’ (Poumanyvong and Keneko, 2010). According to the 

authors, the negative sign is likely to be due to the fact that most of the countries 

lack access to public infrastructure which may need more energy if the number of 

access areas increases. This explanation is in line with our findings, as most 

public services like rail lines, well equipped hospitals, uninterrupted power 

supply, to name but a few, which are obtainable in most big cities in the world, 

are not available in most of the urban cities in SSA.  

The negative relationship between electricity demand and urbanisation found in 

this study may also be partly explained by the fact that most of the urban dwellers 

in SSA live in slums. World Bank data show that about 1 billion people in the 

world live in slums due to the high rate of urbanisation (World Bank, 2009). 

Considering that most of the slum dwellers may not be able to afford a legal 

electricity connection, some do so by connecting illegally through neighbours 

who are connected legally, while the rest simply rely on traditional means of 

energy like solid biomass. This situation may explain why 127 million - out of a 

total of 220 million urban population in the world - without access to electricity 
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are in SSA, making the region the highest with urban population without 

electricity access globally (World Bank, 2010).  

Therefore, an increase in urban population may put more pressure on the available 

electricity because of the prevalence of theft through illegal connection, which 

leads to more rationing and even a decline in the total amount of electricity 

available or consumed in urban areas.  

The result of the positive relationship between electricity consumption and 

population size confirms the association between energy use and population 

growth. The elasticity shows a relatively elastic relationship. Every percentage 

increase in population, there will be 1.02% increase in the demand for electricity. 

This finding has many important implications for SSA countries because of the 

projected figure of 2.4 billion people in SSA by 2050 (PRB, 2013), and the low 

electrification rate of 32% according to the International Energy Agency (IEA, 

2015).  

The availability of electricity for the whole region will be a huge task because of 

the high amount of capital investment required, and the pace of providing 

electricity may not be able to meet up the high rate of population growth. 

According to the IEA, an extra $450 billion investment in the power sector is 

required to achieve a 100% access to electricity in the urban areas and to reduce 

power outages to 50% in the region (IEA, 2014). Another report by the World 

Bank asserts that the amount of power available per person in SSA has reduced in 

the last few decades because population growth has been higher than investments 

in generation capacity (World Bank, 2010).  

This is a considerable challenge and the governments in SSA will need to 

encourage good family planning practices, otherwise, it may be impossible to 

provide the much needed power for the whole population in the region. Moreover, 

considering the important role played by the availability of regular power supply 

in the socioeconomic development of a country, the governments and policy 

makers must find a way to have a good balance between the rate of population 

growth and investments in important public infrastructure like electricity. The 



 
 
 

186 
 

result of the electricity model presented is similar to Kebede et al. (2010) who 

also found a positive relationship between electricity demand and population in 

SSA.  

 

7.4 Discussion of the diesel demand model 

This study found that income, the degree of urbanisation and population size, are 

the main driving forces of diesel demand in SSA. The results show that as 

consumer income increases, there will be an increase in the amount of diesel 

consumed, ceteris paribus. This result is in line with demand theory. This finding 

is also in agreement with the results obtained by De Vita et al. (2006) for 

Namibia, and Abdullahi (2014) for Nigeria. Abdullahi (2014) suggested that the 

upward trend in diesel demand in Nigeria could be linked to manufacturing, 

telecommunication and high income household segments of the economy. This is 

the case for most of the countries in SSA, even in South Africa due to the failure 

of the government to upgrade or replace the installed power plants since the 

1960s. The inadequate power supply has led to the wide use of diesel powered 

generating sets by most firms and households in the sectors mentioned earlier.  

 

Contrary to a priori expectations, this study did not find a positive relationship 

between diesel demand and the degree of urbanisation. The observed negative 

relationship may be partly due to the deindustrialisation occurring in most SSA 

cities, due to poor infrastructure. If the number of manufacturing firms reduces, 

then the amount of diesel consumed in the urban areas will also be affected 

because most of the diesel consumed is used by firms’ diesel generators, 

machineries, equipment and trucks.   

 

In a special report on business in Africa by The Economist, it is stated that ‘Africa 

lacks most of the things a successful manufacturing sector requires’ (The 

Economist, 2016, p.7). The special report featured a new tomato processing 

company developed by the Dangote Group in Nigeria as a case study. They 

reported that 400 litres of diesel are used per hour in the plant to generate power. 

The high cost of power generation in the featured case perhaps sheds some light to 

the cause behind the high rate of deindustrialisation in the region. In other words, 
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high overheads associated with providing power using diesel generators to operate 

machineries may explain the decline in diesel demand due to the inability of 

companies to sustain operations, especially those companies situated in urban 

areas. This is also evident from the statistics of the biggest economy in the region 

that show that 36% of production costs relates to generation of power privately by 

firms (Okafor, 2008).  

It is interesting to note that a positive relationship was found between diesel 

demand and population. This result may be explained by the fact that as 

consumers’ income increases and new firms enter the market, they will acquire 

diesel generators, machineries and trucks for transport. Despite the high cost 

associated with private generation of power (using generators), the high 

population has provided viable investment opportunities because of the large 

market size. Furthermore, the emergence of a new middle class in most countries 

has also enabled more people to acquire more appliances and gadgets which use 

electricity mostly provided by generators. This is partly due to the fact that the 

power generation capacity has not been able to meet up with the rate of population 

growth in SSA, as stated in the previous section. Moreover, diesel is an important 

fuel used in the transport sector of the economies, and an increase in population 

leads to an increase in the number of people needing transportation services.   

7.5 Discussion of the LPG demand model 

The results of this study show that income and population are the main 

determinants of LPG demand in SSA. The result of a positive income elasticity is 

consistent with that reported in earlier studies. Earlier empirical studies with 

similar findings include Abdullahi (2014), Mensah (2014), Ackah (2014), 

Akinboade et al. (2008), Alves and Bueno (2003), with reported income 

elasticities of 0.64, 0.45, 1.95, 0.36 and 0.12, respectively.  

A possible explanation for the positive income elasticity may be that as income 

increases, consumers move away from traditional energy types like solid biomass 

and kerosene to a more modern energy type. Another possible explanation for the 

relatively elastic income elasticity of 1.10 obtained in our analysis may be due to 
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the fact that any increase in LPG price will lead to a switch to alternative, cheaper 

options like traditional solid biomass and kerosene. The result is consistent with 

the ‘energy ladder’ hypothesis, which predicts that as the income of households 

increases, they move up the energy ladder by stepping up from the use of 

traditional energy to the use of modern energy sources like LPG (Mensah et al., 

2016). 

Likewise, the positive relationship found between LPG demand and population 

size seems plausible because with the emergence of a new middle income class in 

SSA, most consumers are able to afford the use LPG in homes for cooking. Also, 

an increase in population would mean an increase in market size for firms that use 

LPG in their production activities like those in the hospitality sector.  

7.6 Discussion of the petrol demand model 

One of the most significant contributions of the present study is the disaggregation 

of the analysis by energy type so as to identify the specific response (elasticity) of 

each fuel type to changes in the associated explanatory variables. The estimation 

of the petrol model is quite revealing as discussed in Chapter 6, as more informed 

and focused policy recommendations can be made with regard to petrol demand 

management in SSA. The results of the elasticities as discussed in the previous 

chapter - were all significant and in line with our a priori expectations, except for 

the urbanisation variable, which recorded a negative sign.  

It was found that the income price elasticity is positive, inelastic and statistically 

significant. This gives the government the opportunity to generate income from 

this market by either increasing the tax on petrol or removing the subsidy on the 

product so the money can be used for other capital projects, in countries where 

this policy is adopted. It is more prevalent in West Africa (Kojima and Matthews, 

2010). This recommendation is proposed because the inelastic nature of the 

demand for petrol suggests that it is considered an essential product by consumers 

and an increase in price will result in only a modest reduction in demand.  



189 

Likewise, when consumers have a higher income they will not consume more 

than the needed amount but even if they need to pay more to meet the current 

consumption level, they are likely to do so because petrol is an essential good to 

them. Considering that most vehicles use petrol and even those without one, need 

it to power their power generating set due to the erratic power supply in the 

region.  

However, the case for removal of the fossil fuel subsidy is not as straightforward 

because it will depend more on the individual country-context. This is in line with 

Bazilian and Onyeji (2013), who assert that the existing structure of reform and 

policy is important in determining how and if fuel subsidy or reform will be the 

way forward for a country. They argued further that despite the fact that this 

might be a country/context-specific question there are some similarities which are 

universal.  

The consideration of the cost and benefits of a policy on fuel subsidy removal is 

important so as to prevent or reduce the negative impacts that could result from 

the removal (for example, see Wesseh and Lin, 2017, for discussion on Ghana). 

Some of the possible adverse effects include the reduction in modern energy use 

(if fuel becomes more unaffordable to the poor) and a higher cost of production to 

firms in energy-constrained countries, which would impede the establishment of 

small and medium-sized enterprises.  

Despite the mentioned negative impacts, the benefits of removing the fuel subsidy 

are greater because such removal frees up capital which can be used for providing 

the much needed infrastructure, encourage energy efficiency due to the higher 

price charged, more private sector participation in the sector especially with 

building of refineries as higher prices in the market will make the investment 

viable to both local and foreign investors. Nevertheless, subsidy is well 

intentioned because its primary purpose by the government is mainly for wealth 

redistribution, to foster the development of energy-intensive industries, poverty 

alleviation through the promotion of industrialisation, amongst others.  
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However, the mentioned benefits are not really benefiting the poor who are the 

main target of such policy, but rather consumers on higher income (Bazilian and 

Onyeji, 2013; IEA, 2010; Victor 2009). Based on the ongoing discussion, it is 

apparent that before the fuel subsidy removal is implemented, there must be good 

reforms that will promote the availability of power in the country and other 

necessary energy infrastructure.  

Our positive income elasticity for petrol demand is consistent with the findings of 

previous energy demand studies in the literature. These include Mensah et al. 

(2016) with an income elasticity of 1.32 for petrol demand in Ghana, Abdullahi 

(2014), who reported an income elasticity of 0.11 for Nigeria, Iwayemi et al. 

(2010) who reported an income elasticity of 0.75 for Nigeria, Akinboade et al. 

(2008) who reported an income elasticity of 0.36 for South Africa, and De Vita et 

al. (2006) who also found an elasticity of 1.27 for petrol demand in Namibia.  

The negative link between petrol demand and urbanisation may be due to the fact 

that rural migrants slowly move from the use of solid biomass to modern energy. 

The switch is slow as rural migrants are low skilled workers, initially live in 

slums, unable to afford to buy a vehicle or even a small power generating set until 

after some time. This slow transition may explain the negative elasticity because 

some of the rural migrants may even become worse off in the city, and their 

standard of living will reduce due to the reduced disposable income. Most of the 

rural-urban migrants are likely to be farmers or unemployed youths in the rural 

areas; with the hope of a decent job and reasonable income immediately they get 

to the city.  

However, their income may improve over time but the modernisation towards 

green and efficient energy sources will take time, before they are able to acquire 

petrol-using equipment will take even a longer time. This is supported by the 

statistics showing that SSA has the highest proportion of slum dwellers in Africa 

at 65% (AfDB, 2012). The result of the negative impact of urbanisation on petrol 

demand is in contrast with that of Mensah et al. (2016) who reported a positive 

link between petrol demand and urbanisation in Ghana. It seems possible that the 

differences in the results may be due to the fact that the present study is a cross-
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country analysis while that of Mensah et al. (2016) is solely a time series analysis 

of only one country.  

We also found that the higher the industrial output in SSA, the higher the demand 

for petrol. This is as one would expect. Since there is inadequate power supply in 

the region, most commercial and residential consumers rely on the use of power 

generating sets to alleviate the inadequacy in supply. The two main fuels used in 

fueling the generating sets are petrol and diesel. This is evident, for example, by 

the high cost of 36% attributed to cost of private power generation by industries in 

Nigeria (Okafor, 2008, as cited in Bazilian and Onyeji, 2013).  

Another logical explanation for this result is that an increase in industrial output 

will result in more transportation services. Since most of the countries in our 

sample do not have an efficient mass transit system in operation, they rely mostly 

on vehicles, vans, cars and trucks for transport and haulage. Therefore, an increase 

in industrial output will lead to an increase in petrol demand in SSA.  

Lastly, our result supports the hypothesis that population growth increases energy 

use (consumption). The positive relationship found between population and petrol 

demand in this study is supported by one of the findings of Kebede et al. (2010). 

To be specific, the authors found a positive relationship between population and 

energy demand. The energy types included in their study are traditional energy, 

electricity and petroleum.  

The analysis of petrol demand undertaken here, has extended our knowledge of 

how the driving forces of petrol demand impact on its consumption in the 

countries included in our sample. 

7.7 Discussion of the kerosene demand model 

The most obvious finding to emerge from the kerosene model analysis presented 

in Chapter 6 is that, income, degree of urbanisation and population, are the key 

drivers of kerosene demand in SSA. All the elasticities have the signs expected, 

and the results are supported by prior empirical studies in the literature. The 
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positive income elasticity could be explained by the move towards more efficient 

energy sources like kerosene from traditional biomass like charcoal and firewood, 

as people’s income increases. The relatively inelastic coefficient also suggests that 

as kerosene is the cheapest form of modern cooking fuel, consumers are less 

responsive to changes in price because it is an essential good to them. Studies 

reporting a similar result include Iwayemi et al. (2010) and Abdullahi (2014).  

The analysed positive relationship between kerosene demand and the degree of 

urbanisation is likely to be due to the fact that when consumers move from rural 

areas to urban centres, they switch from traditional sources like firewood to 

kerosene cooking stoves. Even for slum dwellers the use of solid fuel like 

firewood may not be appealing because of the compacted style of living, and 

consumers may be able to afford small cooking stoves that use kerosene in the 

available living space. Moreover, with more awareness of the adverse health 

implications associated with the use of biomass sources for cooking in main cities, 

most households prefer to use kerosene stoves which are relatively more 

affordable in most SSA cities.  

7.8 Discussion of the biomass demand model 

As mentioned in the literature review, very few studies in the literature analysed 

the factors that determine biomass demand in SSA. Owen et al. (2013) is a 

notable exception. In an investigation into energy policies in SSA, Owen et al. 

(2013) found that biomass is seen by the policy makers as an inferior form of 

energy that promotes poverty and pollutes the environment. This may explain why 

most of the reviewed studies did not include biomass in their analysis of energy 

demand. 

However, the present study includes solid biomass as one of the main energy 

types analysed, because it accounts for over 80% of the total energy consumed in 

the region. According to the IEA, four out of five people rely on fuelwood for 

cooking in SSA (IEA, 2014). Hence, it is an important energy type that should be 

included in the analysis of the driving forces of energy demand in the region. The 
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results of this study indicate that urbanisation and population are the significant 

factors that drive biomass demand.  

As discussed earlier, the rapid rate of urbanisation and population growth has not 

been matched by increased availability of energy in SSA. Coupled with the 

widespread poverty especially in rural areas, most of the low income earners rely 

on the use of solid biomass for cooking. A low income level is prevalent in most 

SSA cities as well as rural areas. Hence, a rapid population growth rate leads to an 

increase in the number of people using solid biomass for cooking. The study by 

Rahut et al. (2017) also found that poorer households tend to use solid biomass, 

kerosene and batteries for lighting. 

Considering that both elasticities are relatively inelastic, it is reasonable to 

acknowledge that people on low income consuming biomass are less responsive 

to changes in prices because it is the cheapest form of energy available. Moreover, 

most of the people in rural areas collect wood fuel directly from the forest or 

farms. This finding is corroborated by Kebede et al. (2010) who also reported a 

positive relationship between energy consumption (traditional fuelwood) and 

population in SSA. These results are also in agreement with Mensah et al. (2016) 

who showed that income and urbanisation are the main drivers of biomass 

demand in Ghana. Mensah et al. (2016) showed that income is a significant 

determinant of biomass demand in Ghana. This differs from the findings 

presented in this study. Income was found to have a negative albeit insignificant 

relationship with biomass demand in SSA. The negative sign is as expected. 

Consumers with more income would demand less biomass and move towards the 

use of modern energy like kerosene and LPG. However, a possible explanation for 

the statistically insignificant coefficient may be linked to this being a cross-

country study and our analysis shows what is happening across the countries 

analysed, while the study by Mensah et al. (2016) is a single country study.   

In general, therefore, it seems that the high proportion of urban poor, a high level 

of unemployment and the shortage in modern energy types like LPG and 

electricity, may have led to the use of different forms of biomass among the low 
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income earners who are unable to afford the use of generators or modern cooking 

stoves.   

 

7.9 Chapter summary 

This is the first study to investigate and analyse the determinants of both 

aggregate and disaggregated energy demand in SSA. The findings from this study 

make several contributions to the current literature. Firstly, the reported 

elasticities for income, price, economic structure, degree of urbanisation and 

population, for the different energy types analysed, extend our knowledge of the 

determinants energy demand in SSA. Secondly, the analysed elasticities can be 

used to guide informed energy demand management policies in the region. 

Thirdly, both public and private investors in the energy sector can use the findings 

of the study to determine if investment in this sector in SSA would be viable. 

Lastly, the driving forces identified will assist our understanding of the role they 

play in energy demand. Also, the energy model employed can be used to analyse 

the determinants of energy demand elsewhere in the developing world.  

 

The results of the analysed energy demand models were highlighted and discussed 

one after the other in light of the findings of existing literature. Some similarities 

and a few differences were found in comparison to the results of existing studies 

and logical explanations to explain such differences presented.  

 

Clearly, there is need for the governments and policy makers to harness the 

abundant energy resources (see Chapter 2) in providing the much needed energy 

in the region so as to foster economic and social development.  
 

 

 

 

 

 



195 

Chapter 8 : Conclusions 

8.1 Chapter overview 

An efficient demand management is needed to boost the socio-economic 

development of a nation. All countries in Sub-Saharan Africa (SSA) have been 

unable to provide the energy needed by consumers to achieve economic 

prosperity and improve the standard of living. Considering that this requires huge 

capital investments and careful planning, sound evidence-based policies are 

required to make well informed decisions. In the next section of this chapter, the 

summary of the research findings linked to the specific objectives of the PhD 

study are presented. Some policy implications are drawn from the findings and 

presented in the next section, followed by a statement of the study’s main 

contribution to knowledge. The chapter ends by acknowledging some limitations 

of the research and by highlighting areas for future research. 

8.2 Summary of research findings 

Although a number of mostly single-country studies have investigated the 

determinants of energy demand in some African countries, no single study has 

examined the elasticities of energy demand at aggregate level and by energy type 

using the latest panel data model techniques for a large proportion of 

representative SSA countries. The primary aim of this thesis is to fill this gap in 

the literature by identifying and analysing empirically the main factors that drive 

energy demand in Sub-Saharan Africa. The impact of income, price, urbanisation, 

economic structure and population on aggregate and disaggregated (fuel type) 

energy demand in the SSA region is explored in the thesis. The specific objectives 

of the research were: 

(i) To provide a full and comprehensive analysis of the energy sources in the

region;

(ii) To critically review both the theoretical and empirical literature on

energy demand (energy consumption) in developing regions including

SSA;
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(iii) To provide a review of the aggregate and disaggregated pattern of energy

demand literature in the region;

(iv) To provide preliminary conclusions on the main energy issues and

prospects affecting the region;

(v) To develop a comprehensive econometric model for the analysis of a

cross-country aggregate and disaggregated (energy type) energy demand

function for SSA to estimate elasticities of energy demand to changes in

the explanatory variables;

(vi) To make an original contribution to the existing body of knowledge on

energy demand in SSA and draw out relevant policy implications in light

of the research findings.

As presented in the previous chapters of the thesis, all the stated objectives have 

been met. The sections below explain how each objective was met.  

8.2.1 (Objective i) Analysing the Sub-Saharan Africa energy sources 

An account of the energy sources in SSA is provided in chapter 2. 

Chapter 2 is inevitably descriptive yet most informative in nature. It provides a 

detailed account of the different energy sources available in Sub-Saharan Africa. 

Both the renewable and the non-renewable energy sources available in the region 

were discussed in detail using relevant statistics, to provide greater insights about 

the vast energy sources in the region. The chapter also explored the specific 

characteristics of the energy consumption pattern in the SSA region, to guide the 

selection of a suitable model for the analysis.  SSA has abundant fossil fuels and 

uranium resources located in different countries across the region. There is a huge 

hydro potential in the Central African region, large oil and gas reserves in the 

West, a high renewable potential (coastal area vast wind energy and the eastern 

part huge geothermal sources) and the large coal deposits in the southern parts. 

Angola and Nigeria are the largest oil producers in the region, and are also home 

to vast natural gas resources. Namibia, South Africa and the Republic of Niger are 

among the top ten uranium reserve holders globally.  
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From the analysis presented in Chapter 2, it is evident that interregional co-

operation of trade and supply of energy is the way forward for the region 

considering the uneven distribution of the energy resources, capital constraints 

and the low income level in the region. However, good transmission and 

connection infrastructure would have to be built to facilitate interregional trade 

and supply mechanisms.  

8.2.2 (Objectives ii and iii) Review of the energy demand literature 

Chapter 3 is devoted to a critical review of the literature on energy consumption at 

the aggregate and disaggregated level, energy efficiency and carbon emission - 

mostly in developing countries. This macro level study is underpinned by the 

microeconomics-based neo-classical theory of consumers’ utility optimising 

behavior. Existing evidence shows that sufficient energy is needed to unlock the 

economic and development potential of SSA. From the literature review, it could 

be gauged that none of the prior studies have analysed the determinants of both 

aggregate and disaggregated energy demand in the region. Such analysis requires 

both the identification of the key determinants of energy demand and the use of 

reliable long macroeconomic data.  

Chapter 4 provides an overview of the panel data methods employed in this study. 

The chapter explored the definitions, derivations and interpretations of the panel 

methods used in the research. The SSA compiled dataset is presented in Chapter 

5, alongside the sources of the data and their measurement. Considering that the 

secondary data are sourced from publicly available and widely used reliable 

energy and economic databases, valid results are obtained from the analysis done 

using STATA 13.  

8.2.3 (Objectives iv and v) Energy demand model and estimation results 

Chapter 6 presents the analysis and results of the econometric models employed 

for the analysis of the aggregate and disaggregated (energy types) energy demand 

in SSA. The main variables used to analyse the demand for energy were chosen 

based on the literature review, that is, price, income, urbanisation, economic 

structure and population. The analysis of the aggregate energy demand revealed 
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that income (of the consumer), price and urbanisation are the main factors that 

drive the demand for energy in the region. When consumers earn more, they 

acquire energy using gadgets and appliances which use energy. This increases the 

total amount of energy consumed. Similarly, if the price of energy increases, the 

amount of energy consumed reduces. Our findings are in line with demand theory 

and the estimated elasticities are found to be relatively inelastic. Furthermore, 

with an increase in urban population, more people have access to modern energy 

and acquire more energy appliances and gadgets, which lead to an increase in the 

total amount of energy demanded (consumed).  

Energy types including electricity, diesel, liquefied petroleum gas (LPG), petrol, 

kerosene and solid biomass are also analysed. The results are presented in Chapter 

6. In all the analysed models, population is the predominant factor behind the

increase in demand because it has the largest elasticity. As population increases, 

there is more demand for energy (by the increasing population). Electricity and 

petrol have the highest population elasticity coefficient, recording a unit elasticity. 

For every percentage increase in population, the demand for electricity and petrol 

increases by 1.02% and 1.12%, respectively, ceteris paribus. It was also found 

that for all energy types, except solid biomass (as to be expected), income is one 

of the main determinants in the long run in SSA. As the income of consumers 

increases, they move away from traditional sources of energy which dominate the 

region energy mix, toward more modern energy types. This tendency also reduces 

the time wasted on collecting solid biomass (firewood), health-related issues and 

economic drawbacks associated with the use of solid biomass for cooking in the 

residential sector.  

Significantly, the study also found that urbanisation too is a significant factor 

behind the demand of the analysed energy types, except LPG. With the increased 

trend in the number of people living in urban areas in SSA, they can access more 

modern energy equipment in cities, which has a positive impact on the total 

amount of energy consumed. Also, considering that most of the appliances are not 

energy efficient, due to the importation of used goods from developed countries 

and other developing countries, more energy is consumed as the stock of 

appliances increases. There is a need for good energy efficiency regulations with 
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regard to imported goods, to ensure that the available energy is used in an 

efficient way. This would also reduce the large energy supply-demand deficit in 

the region.  All in all, energy demand in SSA will continue to increase in the long 

run alongside an increase in supply. However, increased availability of (access to) 

energy is needed to foster socio-economic development in SSA. All the results are 

consistent with some of the existing findings in the literature pertaining to the 

experience of specific developing countries. Further detailed discussion of the 

importance of the empirical findings is provided in Chapter 7. 

8.3 Policy recommendations 

This section relates to objectives iv and vi. Policy implications are drawn from 

the reported energy demand elasticities estimated and discussed in Chapters 6 and 

7.  

The study has identified and investigated the long run effects of the driving forces 

of aggregate and disaggregated (energy types) energy demand in SSA. The 

findings of the study are not only of interest to academics but also policymakers 

and other stakeholders in the region.  With the increasing trend in population 

growth, income and urbanisation in the region, there is a need for the relevant 

governments and policymakers to provide an efficient mechanism of how the 

growing demand of energy will be met with adequate supply. The following 

recommendations are made based on the research findings: 

1. A key finding was the positive impact of urbanisation on the aggregate

energy demand, hence, a critical policy implication that follows is to

reduce or curb large rural-urban migration. In particular, the following

steps are recommended:

▪ Economic growth should be spread out across all regions in the

countries by creating employment opportunities in small towns, so

that young people do not have to migrate and live in slums in urban

areas due to economic reasons.

▪ Small scale renewable projects like small roof top solar panels

should be introduced and promoted in off-grid areas to cater for
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small businesses energy need, and to improve the overall standard 

of living.  

▪ Policies that will promote the affordability of small scale off-grid

energy sources should be promoted by the governments in the

region. This can be achieved, for example, by providing low

interest soft loans for businesses in the rural area that need power to

function or operate well.

▪ Energy access should also be scaled up by connecting rural areas to

the national grid in order to attract more manufacturing firms and

industries to provide the needed employment in these areas.

▪ Governments should subsidise the cost of charcoal cooking stoves

and make them more available in rural communities so as to reduce

further the time used in collecting solid fuel from the forest by girls

and women.

2. Another key result shows that an increase in income will lead to an

increase in energy use. The implication of the result is that there will be an

increase in energy use across the region. Therefore, the policy

recommendation from the result is to use the available energy efficiently.

In order to achieve this, the following steps are recommended:

▪ Energy efficiency guidelines and awareness should be made

available with regard to the acceptable specification of appliances

and gadgets to be imported, sold in markets and made available to

consumers.

▪ Government agencies in charge of the inspection of both used and

new imported goods should ensure that they are energy efficient

appliances and gadgets, when brought into SSA countries.

3. Considering GHG emissions associated with energy generation from fossil

fuels, use of renewable energy sources to produce green (or cleaner)

energy should be promoted. Where fossil fuel is still used, carbon pricing

should be introduced to make energy firms more accountable.
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4. Reliable and sustainable energy systems can be ascertained through proper 

electricity metering systems, which take into account differences in 

income across regions in the country. The billing strategy would ensure 

that enough revenue is generated and will also provide funds for future 

investments. Such a strategy is also likely to attract more private sector 

participation, as it would make investment in the sector more appealing 

and viable. 

 

5. Another important finding (from the review of the literature) is that 

regional integration and cooperation of trade and energy generation should 

be promoted. To achieve this, the following steps are recommended: 

▪ More interregional pipelines should be built so as to provide more 

gas and other fuels for households, power plants and industries in 

SSA countries.  

▪ Effective energy power pools should be created so as to encourage 

investments in countries where abundant resources are available. 

This will encourage more private sector participation. For instance, 

the hydropower potential in the Democratic Republic of Congo is 

only attractive if the generated power can be sold to other countries 

in the region because the generated electricity will exceed domestic 

demand.  

▪ Build more interconnecting and transmission infrastructure to 

reduce the capital constraints and pressure on individual countries, 

to achieve the common goal of providing energy for consumers.  

 

8.4 Contribution to knowledge  

This research makes several, significant contributions to knowledge (objective vi). 

 

First, a thorough critical reading and synthesis of the existing studies on energy 

demand in developing countries was conducted and used to identify the main 

factors that drive energy demand in the region. The identified factors are 

employed in the models used for the analysis. This research clearly shows the 
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current dynamics of the energy situation in Sub-Saharan Africa (SSA), which 

future studies examining the determinants of energy demand in the region could 

also employ in their analysis.  

Second, the study analysed and provided the first up-to-date empirical evidence of 

the main determinants of both aggregate and disaggregated (fuel type) energy 

demand in Sub-Saharan Africa using state-of-the-art panel data econometric 

techniques. This enabled the author to analyse the impact of the determinants of 

energy demand on aggregated energy demand and each of the analysed energy 

type. Accordingly, the thesis made a significant contribution to our existing 

knowledge by showing that the identified determinants have different impacts on 

the energy types analysed, through the estimated coefficients.  

Third, the coefficients of the analysed factors have been used to suggest evidence-

based implications and policy recommendations for ways to better manage and 

plan energy demand, in order to meet both the present and future energy need of 

the consumers across the SSA region. Knowledge of the signs of the estimated 

coefficients will also be beneficial to investors in SSA, shedding further light on 

the present and likely future trend of energy consumption across the region.  

To sum up, the overall, original contribution of this thesis, can be highlighted by 

answering the question, ‘what do we know now that we did not know before as a 

result of this thesis?’  Theoretically, the estimations have confirmed that the law 

of demand is a suitable theoretical framework for energy demand. Energy 

consumption responds to price, income and other economic determinants. In 

contrast to some voices in the literature suggesting that energy is a luxury good, 

the study found that in the context of SSA countries energy behaves as a normal 

good, therefore responding positively to increases in income (with an aggregate 

elasticity of 0.10) and negatively to decreases in price (with an aggregate price 

elasticity of -0.46).  This study also examined two variables that have rarely been 

examined in the energy economics literature, namely: the degree of urbanisation 

and economic structure. Thus, the findings from the study increase our knowledge 

on the impact of other economic factors on energy consumption in Sub-Saharan 

African.  
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8.5 Limitations of the study 

This section explicitly acknowledges some of the limitations of the research. First,   

the study is limited by the lack of available data for all the countries in SSA, and 

also the lack of a price variable for the energy types analysed. Only 16 countries 

out of 47 SSA countries could be analysed in the aggregate energy demand 

analysis, while the sample for the disaggregated energy demand analysis by 

energy types, is based on 12 countries only. Nevertheless, the analysis provides a 

starting point by shedding light on what drives energy demand in the region, but 

of course the results may not be taken to be fully representative of all the 

individual countries making up the region. However, considering that most of the 

SSA countries have a similar energy situation and share a similar institutional 

structure, our findings certainly provide a true reflection of all the SSA countries 

analysed and possibly a rough snapshot of the key drivers of energy demand in 

SSA.  

Another limitation pertains to the analysis of the existence of structural breaks 

which in this study was only undertaken through visual inspection of the plots of 

the evolution of the series. However, a more sophisticated analysis may be called 

for thorough appropriate panel unit root tests that account for one or more 

structural breaks in the series, in order to ascertain with greater certainty whether 

or not there are such breaks in the variables.  

Similarly, the author also assumed a linear relationship among the variables 

analysed in the models. Although this assumption is not uncommon in the 

empirical literature, it may not be warranted. This potential extension to the 

analysis provides another profitable avenue for future research to model and test 

for non-linearities in both the time properties of the individual series and in the 

cointegrating relationship itself. That said, modelling and estimation techniques of 

nonlinearities in a context where the variables exhibit a mixed order of integration 

are still in their infancy. Moreover, the reliability of such techniques is still 

subject to debate, as recently shown in the replication study conducted by De Vita 

and Trachanas (2016).  
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In this PhD study, no test was conducted for reverse causality. That is, no 

(Granger) causality test was carried out to verify whether energy consumption 

causes growth, though the analysis demonstrated that economic growth causes 

energy consumption. It must be noted, however, that the testing of bidirectional 

causality was beyond the scope of the study, as the aim was solely to analyse the 

determinants of energy demand.  

Finally, primary data could have been collected through interviews with various 

stakeholders, to gauge their perspective. This was excluded in the initial planning 

of the study due to time, cost and the risky travelling arrangements that attempting 

to obtain primary data across countries in SSA would have entailed. Moreover, 

this is an econometric study and the use of long macroeconomic data is preferable. 

8.6 Avenues for future research 

This research has made a significant contribution to knowledge by unveiling the 

key factors that impact on energy demand in SSA. The elasticities of the identified 

factors on energy demand have also been estimated. Yet, despite the inherent 

merits of this contribution, a number of open ends remain. This means that this 

research provides, additionally, a good starting point for further research on this 

important topic. Other researchers might wish to pick up from here to answer any 

questions that remain lingering on the sideline since they were beyond the scope 

of the study. Preferably, an effort should be made to explore how much energy 

could be made available from energy efficiency implementation in the region. 

This will give information about how much of the needed supply can be achieved 

from good energy efficiency programs in the region.  

Another area for future study could be on the long run economic impact of the 

fuel subsidy removal in the face of falling commodity prices. Effort should be 

made to collect price data for the energy types in the region, to formulate effective 

energy price policies in SSA. Considering the ongoing debate about the removal 

of the fuel subsidy in some of the countries, analysing the demand with the 

inclusion of price data will provide more robust evidence about what might be the 

best policy in this area for such countries. This is very important especially with 
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the plunge in commodity prices, as the fund used to subsidise fuel can be 

channelled to providing the needed infrastructure in the region. Otherwise, 

governments may continue the fuel subsidy regime if it will be economically 

beneficial in the long run for the masses. Further research has the potential to 

provide good evidence as to what might be the best option.  

More broadly, research is also needed to forecast the future aggregate and 

disaggregated energy demand in the region. These forecasts would aid 

policymakers and inform investors as to what exactly to work towards, in terms of 

the exact amount of energy to be provided, and the level of investment that would 

be required to meet the expected demand, in addition to the information provided 

by existing research (such as in this current study) on what drives demand. Some 

existing studies have also made an attempt to forecast the energy required at 

individual country level, but having a more reliable cross-country forecast will 

take the analysis and associated debate a step forward. 

The mentioned areas for future research do not reduce the significance of the 

contribution to knowledge made by the present study. This is because for the first 

time, a single study has analysed the driving forces behind both aggregate and 

disaggregated energy demand in SSA. Exploring the recommended areas for 

future research will nevertheless shed more light to ways of reducing the energy 

poverty in SSA.  
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Appendix 1 

 

Figure a: Angola GDP between 1980-2013 

(Source: created by author using SSA dataset) 

 

 
Figure b: Nigeria GDP between 1980-2013 

(Source: created by author using SSA dataset) 
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Figure c: Ethiopia GDP between 1980-2013 

(Source: created by author using SSA dataset) 

Figure d: Kenya GDP between 1980-2013 

(Source: created by author using SSA dataset) 
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Figure e: Sudan GDP between 1980-2013 

(Source: created by author using SSA dataset) 
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Appendix 2 

Figure a: Angola biomass consumption 

(Source: created by author using SSA dataset) 

Figure b: Nigeria biomass consumption  

(Source: created by author using SSA dataset) 

Note: biomass represents the total biomass consumption; biomass resi stands for the total biomass 

consumption in the residential sector by consumers.  
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