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Investigating the role of microRNAs and Extracellular Vesicles 

in Cisplatin Resistance in Ovarian Cancer  

Abstract 

Ovarian cancer claims the lives of more than 150000 women worldwide annually. One 

of the contributors to this high mortality is resistance to cisplatin chemotherapy. 

Resistance to cisplatin is multifactorial involving various networks and tiers of 

regulation and is not completely understood yet. Among the regulatory molecules in 

the body, microRNAs have a prominent role in physiological and pathological 

conditions. Extracellular Vesicle (EV) communication between cells could also play a 

noteworthy role in cisplatin resistance.  

The main aim was to identify microRNAs involved in cisplatin resistance in ovarian 

cancers whose role in this aspect has not been documented yet and to ascertain and 

validate possible targets. MicroRNAs exhibiting differential levels of expression in 

sensitive and resistant ovarian cancer cell lines were identified. Gain or loss of function 

experiments in cell lines validated their involvement in cisplatin resistance; possible 

targets were confirmed by transient knockdown experiments in ovarian cancer cell 

lines. miR-21* and miR-31 functionally increased cisplatin resistance in ovarian cancer 

cells; NAV3 and KCNMA were validated as their respective targets and shown to 

modulate cisplatin resistance in ovarian cancer cell lines. 

A second aim was to explore the role of EVs in cisplatin resistance – to investigate if 

cisplatin resistance could be transferred between cell lines and to investigate the 

consequences of preventing EV uptake within a population of cisplatin treated cells. 

EVs extracted from a cisplatin resistant cell line were transferred onto a cisplatin 

sensitive cell line; results showed that these EVs could increase cisplatin resistance in 

the recipient cell line. The response of ovarian cancer cells to cisplatin was analysed 

following prevention of EV uptake by using heparin, amiloride or dynasore - known 

inhibitors of EV uptake; results indicate that inhibition of EV uptake increases cisplatin 

sensitivity significantly.  

These results open up future avenues for research regarding the role of microRNAs and 

EVs in cisplatin resistance with possible therapeutic potential. 
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Chapter 1 INTRODUCTION 

1. 1. OVARIAN CANCER 

Ovarian cancer is the fifth most common type of cancer in women in the UK 

(ons.gov.uk, 2012); more than 150,000 women die of ovarian cancer each year 

worldwide (Fitzmaurice et al., 2015). The overall 5-year survival rate is only about 

45% (Siegel et al., 2015).  Reasons for this high mortality rate include diagnosis at 

advanced stages and acquired resistance to chemotherapy.  

1.1.1  TYPES OF OVARIAN CANCER 

Ovarian cancers are classified based on their histology into several subtypes as 

reviewed in Jayson et al (Jayson et al., 2014). A newer classification divides them 

into Type I and Type II tumours (Shih Ie and Kurman, 2004, Kurman and Shih Ie, 

2016). These two classifications and molecular changes associated with each type 

are summarised below. 

Type II tumours are high grade tumours and are usually diagnosed in advanced 

stages progressing rapidly and are very aggressive. The most common of these is the 

High Grade Serous Carcinoma accounting for almost 70% of ovarian tumours. They 

show a serous morphology and stain positively for ER, WT1 and CA125. High grade 

serous cancer is characterised by high rate of proliferation as shown by Ki-67 

staining as well as frequent mutations in p53 and BRCA1/ BRCA2 with defective 

homologous recombination (Kurman and Shih Ie, 2016). Abnormalities in Notch 

signalling and FOXM1 have also been documented. Four transcriptional subtypes 

have been described in high grade serous cancers – proliferative, immunologic, 

mesenchymal and differentiated subtypes based on differential expression (Creighton 

et al., 2012). High grade serous cancers tend to present in advanced stages when the 

tumour has spread beyond the confines of the ovary and the pelvis. They are initially 

highly responsive to chemotherapy but often recur as a resistant tumour; the overall 

prognosis is poor (Jayson et al., 2014). Other rarer type II tumours include include 

carcinosarcoma and undifferentiated carcinoma (Kurman and Shih Ie, 2016). 

Type I tumours are frequently diagnosed in early stages and are indolent. They 

develop from atypical borderline precursors and have a better overall prognosis than 
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type II tumours. They include the following histological types:  Low grade serous: 

Serous ovarian cancers are subdivided into high grade and low grade based on the 

morphology of the nuclei (Hannibal et al., 2012). Low grade serous tumours are 

indolent and show mutations in PIK3CA, KRAS and BRAF. They present at an 

earlier stage; however, they are often resistant to conventional chemotherapy for 

ovarian cancers. MEK inhibitors have been shown to have a promising response in 

low grade serous cancers (Hunter et al., 2015). Mucinous: This subtype of ovarian 

cancers shows mucinous pathology and are thought to arise from germ cells or 

transitional cells in the ovary. They show frequent KRAS mutations and HER2 

amplification (Perren, 2016). Endometrioid: These tumours show squamous 

metaplasia and are thought to originate from endometriotic nodules. They tend to 

show MMR deficiency and  often show mutations in ARID1a, PI3KCA and PTEN. 

Clear cell: Histopathologically, these tumours show high grade nuclei with a clear 

cytoplasm; they are thought to originate from endometriotic nodules. They often 

show mutations in ARID1a and PIK3CA and have a kinase inducing hypoxic drive. 

They respond poorly to conventional chemotherapy. Other type I tumours include 

mixed mullerian or seromucinous tumours and Brenner tumours.  

There are suggestions that due to the significant differences in the molecular 

pathology, prognosis and response to chemotherapy, the different subtypes should be 

treated as different diseases and chemotherapy tailored to each subtype (Kobel et al., 

2008). However, the current treatment protocol suggests the same protocol for all the 

different subtypes (du Bois et al., 2005, Gourley et al., 2014). 

1.1.2 DIAGNOSIS AND TREATMENT  

Ovarian cancer often presents in advanced stages because the symptoms are non-

specific and include abdominal discomfort or pain, lower back pain, flatulence – 

these symptoms are often attributed to irritable bowel syndrome (Jayson et al., 

2014).  

By FIGO staging, stage I and II are limited to the pelvis while stage III and IV have 

spread outside the pelvis (Prat, 2014). In a study investigating stage at diagnosis and 

ovarian cancer survival in different countries Maringe et al (2012) show that while 

one year survival for patients diagnosed at stage I is nearly 98%, it drops to 40% in 

those patients diagnosed in stage IV. There is therefore the necessity to diagnose 
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ovarian cancer at early stages in order to improve prognosis. Serum CA125 is used 

as a biomarker for screening; it has been shown by the UK Collaborative Trial of 

Ovarian Cancer Screening (UKCTOCS) that transvaginal ultrasonography with or 

without serumCA125 is more sensitive and specific in the detection of ovarian 

tumours (Menon et al., 2009). 

The first line of treatment is surgery combined with chemotherapy with the drug of 

choice being platinum compounds like cisplatin and carboplatin (du Bois et al., 

2005). The initial tumour is very sensitive to chemotherapy (Bogliolo et al., 2015) 

but in a quarter of the patients there is a platinum resistant recurrence (Chekerov et 

al., 2013). On recurrence, treatment is further chemotherapy with platinum 

compounds in combination with other compounds such as taxanes (van der Burg et 

al., 2014), gemcitabine or pegylated liposomal doxorubicin (Safra et al., 2011); other 

promising compounds include bevacizumab (Aghajanian et al., 2012), PARP 

inhibitors (Kaye et al., 2012, Ledermann et al., 2012) and topotecan as reviewed by 

Bauman et al (Baumann et al., 2012). Drugs to inhibit molecular targets of ovarian 

cancers are now being developed and studied. These include drugs to inhibit RAS 

signalling, PI3K/AKT pathway, STAT/JAK/JAK2 pathway inhibitors (Kalachand et 

al., 2011). Pemetrexed, an antifolate antineoplastic agent which disrupts folate 

dependent metabolic processes has shown partial response (Miller et al., 2009, 

Vergote et al., 2009). Intraperitoneal administration of cisplatin has shown a slight 

improvement in survival (Markman et al., 2001). 

1. 2. CISPLATIN 

Cis-diaminedichloro platinum(II) or cisplatin is a commonly used anticancer drug. It 

was first synthesised in 1845 by Peyrone (Cepeda et al., 2007). Its growth reducing 

properties were discovered only in the 1960s when Rosenberg and co-workers 

observed decreased growth when they were studying the effect of electrical fields on 

the growth of Escherichia coli caused by platinum compounds released from the 

platinum electrodes (Rosenberg et al., 1965); this property was later exploited in its 

use as an anticancer drug. Testicular cancers are highly sensitive to cisplatin; 

cisplatin is also widely used to treat ovarian, bladder, cervical, head and neck, 

oesophageal and small cell lung cancer (Gomez-Ruiz et al., 2012). Side effects may 

be severe and include nephrotoxicity, neurotoxicity and ototoxicity. 
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1.2.1 MODE OF ACTION 
Cisplatin is a neutral inorganic square planar complex (Cepeda et al., 2007). It is 

taken into cells by both passive (diffusion) and active (copper transporters) uptake 

mechanisms. Cisplatin is neutral and has to be activated by aquation reactions in 

which the cis-chloro ligands are replaced with water molecules. This is influenced by 

the chloride concentration; cisplatin remains neutral when chloride concentration is 

high, i.e. extracellular fluids (~100 mM) but is activated inside the cell where the 

chloride concentration falls to a few mM (Siddik, 2003, Cepeda et al., 2007).  

Activated cisplatin is highly reactive and binds readily with DNA, glutathione, 

metallothionein and protein. Cisplatin causes cell death through various mechanisms. 

It is a potent inducer of apoptosis or programmed cell death (described in section 

1.2.1.1) (Ormerod et al., 1996, Henkels and Turchi, 1997) but has also been shown 

to cause necrosis through PARP-1 (poly(ADP Ribose) polymerase 1) (Gonzalez et 

al., 2001, Cepeda et al., 2007). 
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FIGURE 1.1: CISPLATIN MECHANISM OF ACTION 
Cisplatin and other platinum compounds, upon uptake by the cell, cause crosslinks in the DNA, 
bending the helix and damaging the DNA. This damage is recognised by damage recognition 
proteins which activate p53. This then, depending on other signals, activates Bax which 
translocates to mitochondrial outer membrane and causes outer membrane permeabilisation 
releasing cytochrome-C activating the caspase-9 – caspase-3 cascade resulting in apoptosis. p53 
may also activate p21 causing cell cycle arrest. Cisplatin can also activate p73 causing apoptosis. 
The Fas/FasL ‘extrinsic’ pathway may be triggered by cisplatin causing caspase-8 to come into 
play and activate apoptosis through caspase-3.  

1.2.1.1 Cisplatin induces Apoptosis 
- Cisplatin binds to DNA and causes DNA damage 

Cisplatin interacts with purine bases to form DNA-DNA inter- and intra-strand and 

DNA-protein adducts. Of these, the 1,2-d(GpG) intra-strand adduct is most common 

and considered the most important as it is one of the main initiators of cytotoxicity 

(Pinto and Lippard, 1985). These intra-strand adducts are shown to cause a physical 

distortion in the DNA helix (Bellon et al., 1991, Siddik, 2003).  

- Recognition of the damage by damage recognition proteins 

The damage to DNA is recognised by damage recognition proteins which activate 

other pathways including proteins involved in apoptosis (Donahue et al., 1990, 

Chaney and Vaisman, 1999). hMSH2 or hMutSα (MutS protein homolog 2) 

component of the DNA mismatch repair complex (MMR) tries to repair the damage; 
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however if the repair is futile, MMR signals for apoptosis (Fink et al., 1998, 

Gonzalez et al., 2001, Cepeda et al., 2007). Nonhistone chromosomal high mobility 

group 1 and 2 proteins (HMG1 and HMG2) may also be activated, which bind to the 

adduct and shield it from repair.  

- p53 

p53 is a tumour suppressor protein which is a critical coordinator of the apoptotic 

pathway; it coordinates the actions of the various repair pathways and can ultimately 

signal for apoptosis or cell cycle arrest (Meek, 2015). p53 is usually maintained at 

low levels by MDM2, a RING finger type E3 ligase. After DNA damage and single 

or double stranded breaks, ATM (ataxia telangiectasia mutated) and ATR (ataxia 

telangiectasia- and RAD3-related) protein kinases are activated; in addition to 

initiating DNA-repair mechanisms and activating checkpoints leading to G2 phase 

arrest, these kinases reduce activity of MDM2 leading to stabilisation of p53 (Damia 

et al., 2001, Zhao and Piwnica-Worms, 2001, Meek, 2015). 

Activated p53 transactivates various proteins including Cdk inhibitor p21waf1/cip1 

which is associated with cell cycle arrest and DNA repair. Other proteins activated 

by p53 include Gadd45a gene which causes growth arrest, enhances nuclear activity 

and protects cells from cisplatin cytotoxicity (Smith et al., 1994, Smith et al., 1997, 

Delmastro et al., 1997) and the Bax proapoptotic gene (Hershberger et al., 2002). p53 

is thought to initiate apoptosis based on the cellular context, upstream signals and 

extent of DNA damage (Meek, 2015). One of the determinants of the fate of the cell 

is thought to involve members of the Bcl family, which includes proapoptotic genes 

like Bax, Bad, Bak as well as antiapoptotic factors like Bcl2, Bcl-xl and Bcl-w. Bax-

Bcl-2 ratio – induction of Bax as well as cleavage of Bcl-2 by cisplatin increases the 

ratio (Henkels and Turchi, 1997) – is thought to be pivotal in the initiation of 

apoptosis (Del Bello et al., 2001, Gonzalez et al., 2001, Cepeda et al., 2007).  

- Initiation of Apoptosis 

p53 initiates activation of apoptosis by transactivating the Bax gene which is then 

translocated from the cytosol to the mitochondria, the ‘intrinsic pathway’ (Figure 

1.1). The Bax protein then causes mitochondrial membrane permeabilisation and 

releases cytochrome C, an apoptogenic factor in the intermembrane space of the 
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mitochondria, which then activates the caspase 9-caspase 3 pathway leading to 

release of endonucleases and apoptosis (Wang et al., 2000, Makin et al., 2001). 

 Cisplatin may also induce apoptosis by activating the ‘extrinsic’ pathway – the 

fas/fas ligand signalling induces the formation of DISC (death inducing signalling 

complex) with the fas-associated death domain and caspase-8, which then activates 

caspase-3 to release endonucleases (Eischen et al., 1997, Micheau et al., 1997, 

Ferreira et al., 2000).  

p73 may also activate the caspase pathway once it has been induced by c-Abl 

tyrosine kinase; which, in its turn is activated by cisplatin, (Gong et al., 1999). This 

requires the activity of p38 kinases from the MAPK pathway (Sanchez-Prieto et al., 

2002) and cellular proficiency of the mismatch repair pathway (MMR).  

Only 5-10% of cisplatin in the cell is bound to the gDNA while the rest is bound to 

other cellular components with nucleophilic sites such as cytoskeletal 

microfilaments, thiol containing peptides and proteins (Timerbaev et al., 2006, 

Cepeda et al., 2007). It has also been suggested that cisplatin may also cause 

cytotoxicity by binding to proteins in the cytoplasm by their methionine or histidine 

residues (Cepeda et al., 2007). It is thought that it may bind to ubiquitin and block 

the ubiquitin-proteasome response thus causing cell death. Cisplatin binds to Hsp90 

and specifically blocks its c-terminal ATP binding site which is shown to be a 

participant in the correct protein folding of proteins involved in signal transduction 

and cell cycle regulation. It has also been shown recently that by binding to 

cytoplasmic targets, cisplatin can cause oxidative stress which can trigger 

mitochondrial outer membrane permeabilisation which then releases caspases, 

causing apoptosis (Galluzzi et al., 2012). 

Resistance to cisplatin occurs when triggering of apoptosis requires a very high 

concentration of cisplatin; the causes for this are multifactorial and are discussed in 

Section 1. 4. The genes involved in cisplatin resistance are modulated by different 

networks of regulating molecules. One new class of regulatory molecule that has 

emerged in the last two decades is the microRNAs. MicroRNAs are described in the 

next section. 
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1. 3. MICRORNAS 

Non-coding RNAs have increasingly been recognised in the last two decades as 

playing an important role in the modulation of many physiological, developmental 

and pathological conditions. Among these, microRNAs have emerged as important 

regulators of cellular activity due to their capacity to modify the effect of more than 

one gene and therefore, whole pathways in physiological and pathological 

conditions. 

MicroRNAs are highly conserved, short single stranded RNAs of 20-22 nucleotides 

in length generated from endogenous hairpin shaped transcripts by the RNAse III 

type enzyme DICER (Ambros et al., 2003). The first microRNA was observed in 

1993 by Lee et al. in Caenorhabditis elegans (Lee et al., 1993b). Since then they 

have been extensively studied –  hundreds of microRNAs have been discovered in 

various species; a system has been devised for their nomenclature (Ambros et al., 

2003) and various physiological and pathological functions of microRNAs have been 

discovered as reviewed in Erson-Bensan (2014) and Hayes et al. (2014). 
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1.3.1  FORMATION OF MICRORNAS 
The classical mechanism of formation and action of microRNAs is illustrated in 

Figure 1.2. DNA is transcribed into primary microRNAs, which are hairpin shaped 

structures that are capped and polytailed, by RNA polymerase II in the nucleus ( Lee 

et al., 2002, Lee et al., 2004). This is then processed by an enzyme called DROSHA 

along with DGCR8 into a precursor microRNA which is a 60-100nt long stem loop 

structure with a 5’ phosphate and a ~2nt 3’ overhang ( Lee et al., 2003, Bartel, 2004, 

Han et al., 2004, Kim, 2005, Esquela-Kerscher and Slack, 2006). Precursor 

microRNAs are exported out of the nucleus by the transporter RAN GTPase/exportin 

5 (Yi et al., 2003, Bohnsack et al., 2004, Lund et al., 2004, Zeng and Cullen, 2004). 

In the cytoplasm, the precursor miRNA is recognised by its 5’ phosphate and the 

~2nt 3’ overhang and further processed by the enzyme DICER and TAR binding 

protein 2 into microRNA double stranded duplexes (Bartel, 2004). This duplex is 

then unwound and one of the strands – now a single stranded microRNA – is loaded 

into the RISC (RNA induced silencing complex) composed of various components 

including DICER, TARBP2 and argonaute endonucleases – Ago1 and Ago 2 

(Carmell et al., 2002). This forms the miRISC – miRNA including RNA induced 

silencing complex. Only one strand is loaded into the RISC; the strand not loaded 

into the RISC complex is known as the passenger strand or the star strand (Winter et 

al., 2009); this is further discussed in section 1.3.3. The formation of microRNAs 

may be modified at any of these stages leading to differential expression in different 

tissues and cells (Obernosterer et al., 2006, Davis et al., 2008, Winter et al., 2009). 

1.3.2 MICRORNAS – MECHANISM OF ACTION 
The microRNA then directs the complex to target mRNAs by binding to sites with 

imperfect complementarity; it is thought that the seed region – positions 2–8 – plays 

a very important role in target recognition (Pillai, 2005, Ebert et al., 2007). Once 

bound, the translation of the mRNA is repressed or the mRNA is degraded with the 

argonaute proteins acting as slicers to degrade the mRNA (Pillai, 2005). By this 

process, microRNAs are able to modulate the expression of target genes and proteins 

and regulate their transcriptional or post-transcriptional expression. Because of its 

imperfect complementarity, one microRNA can bind to several targets and one target 

can be modulated by several microRNAs ( Flynt and Lai, 2008, Aigner, 2011).  
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In addition to the above mechanism, which mainly occurs in the cytoplasm, it has 

been noticed that some mature miRNAs localise in the nucleus ( Meister et al., 2004, 

Politz et al., 2006, Liao et al., 2010, Jeffries et al., 2011). Argonaute proteins are also 

seen in the nucleus and found associated with the nuclear miRNAs (Hansen et al., 

2011, Zisoulis et al., 2012). They have been shown to regulate other miRNAs and 

their own transcription (Tang et al., 2012, Liang et al., 2013).  They have also been 

shown to regulate and be regulated by long ncRNAs (Hansen et al., 2011, Li and 

Yang, 2013) and pseudogenes (Li and Yang, 2013).  
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FIGURE 1.2: MICRORNA BIOGENESIS AND MECHANISM OF ACTION 
MicroRNAs (miRNAs) are transcribed from DNA into hairpin shaped transcripts called primary microRNA (pri-
miRNA), These are processed in the nucleus by the enzyme Drosha into precursor microRNA (pre-miRNA) 
which is then exported into the cytoplasm by RanGTPase – Exportin-5 complex. In the cytoplasm, it is 
processed by the enzyme DICER into a miRNA duplex. One strand of the duplex is loaded into the RISC (RNA 
induced silencing complex) to form the miRISC (miRNA including RISC) and directs it to the target mRNA with 
imperfectly complementary binding sites and causes mRNA degradation or translational repression.  
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1.3.3 MICRORNAS PASSENGER STRAND 
As described in section 1.3.2, only one strand is loaded into the RISC complex. The 

other strand (also called the passenger strand or the star strand) of the duplex was 

thought to be degraded but it has been shown that this strand may also be present and be 

involved in modulation of proteins (Biasiolo et al., 2011). The choice of the guide strand 

was thought to be determined by the thermodynamic stability of the base pairs at the 5’ 

end with the less stable pair being loaded into the RISC (Khvorova et al., 2003, Schwarz 

et al., 2003, Winter et al., 2009). Originally, it was proposed that the stability was 

determined by a helicase which started unwinding the duplex multiple times but released 

the end before productive unwinding was accomplished. However no single helicase has 

yet been identified (Hu et al., 2009). Moreover, it has been shown that in a given tissue, 

either or both strands of the microRNA may be expressed in varying proportions (, Ro et 

al., 2007, Packer et al., 2008, Hu et al., 2009, Biasiolo et al., 2011). The dominant strand 

may be different in different species or in different tissues in the same species. The 

proportion of the two strands may also change in certain conditions and diseases. As the 

two microRNA strands are complementary to each other they bind to and modulate 

different targets or a different sequence on the same target ( Ro et al., 2007, Jazdzewski 

et al., 2009); therefore, they can be synergistic or antagonistic to each other. 

1.3.4 PHYSIOLOGICAL FUNCTIONS OF MICRORNAS 
MicroRNAs have been shown to modulate numerous physiological cell functions like 

cell differentiation, cell proliferation, apoptosis, angiogenesis and the cell cycle 

(Ambros, 2004, Bartel, 2004, Kim, 2005, Aigner, 2011). MicroRNAs are also involved 

in the cellular response to various stresses; this is reviewed in Jacobs et al; a database is 

also available to identify previously published studies of microRNAs in stress responses 

(Jacobs et al., 2013). 

1.3.5  MICRORNAS IN CANCER 
In addition to their physiological role, microRNAs have been found to be aberrantly 

expressed in various pathological conditions including cancer (Aigner, 2011). 

Differential patterns of microRNA expression have been described in tumours as 

reviewed in (Aigner, 2011, Ress et al., 2015, Anwar and Lehmann, 2015, Huang and 
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Yu, 2015, Ling et al., 2016, Lim and Yang, 2016). Some microRNAs are well known 

tumour suppressors – for example, miR-34a let-7, miR146a/b – while others have been 

shown to be oncogenes, for example miR-21, miR-221/222, miR-582, miR-10b 

(Esquela-Kerscher and Slack, 2006, Trang et al., 2008, Aigner, 2011, Schraivogel et al., 

2011, Frixa et al., 2015). Some have been shown to be both tumour suppressing and 

promoting depending on the tumour and tissue for example, miR-31, miR-10b, miR-17-

92 (Calin and Croce, 2006, Aigner, 2011, Laurila and Kallioniemi, 2013). MicroRNAs 

have been variously shown to target cell proliferation, metastasis and invasion, 

apoptosis, angiogenesis, tumour microenvironment thus modifying tumour behaviour 

(Creighton et al., 2012, Hayes et al., 2014). MicroRNAs, because of their ability to 

target multiple genes can modify specific networks – miR-21 is associated with 

proliferation pathways (Pan et al., 2010); miR-31 affects metastasis and invasion 

(Schmittgen, 2010), miR-34 affects the p53 response (Yamakuchi and Lowenstein, 

2009) and miR-17-92 is involved in c-myc pathways (Gurtan and Sharp, 2013). 

MicroRNAs have also been shown to modulate the response of tumours to various 

chemotherapeutic drugs (Zheng et al., 2010, van Jaarsveld et al., 2010, Garofalo and 

Croce, 2013, Magee et al., 2015, Naidu and Garofalo, 2015, Wang et al., 2015a) or 

radiotherapy (Weidhaas et al., 2007, Marta et al., 2015). The next section discusses the 

involvement of microRNAs in cisplatin resistance. 
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1. 4. CISPLATIN RESISTANCE AND MICRORNAS  

Cisplatin resistance may be intrinsic or acquired after drug exposure. It has been shown 

that the resistance to cisplatin is at least two-fold if not higher (Hagopian et al., 1999) as 

shown in tumour cell lines. Mechanisms of resistance have been studied using cell 

culture studies; there is generally an agreement with mechanisms encountered clinically 

(Giaccone, 2000). Often resistance is multifactorial ( Teicher et al., 1987, Richon et al., 

1987, Kelland et al., 1992, Siddik et al., 1998).  Resistance mechanisms can be broadly 

classified as follows (Galluzzi et al., 2012); 

a. pre-target effects relating to 
i. lower intracellular accumulation of cisplatin due to decreased uptake, 

or increased efflux of the drug or 
ii. lower availability of the drug due to sequestration by GSH 

(glutathione), metallothionein or other cytoplasmic molecules; 
b. on-target effects  

i. involving decrease in DNA damage due to repair by the nucleotide 
excision repair (NER) system or homologous repair (HR) 

ii. tolerance to DNA damage allowing trans-lesional synthesis or 
replicative bypass;  

c. post-target effects  
i. due to failure to activate apoptosis or by an increase in genes that 

block apoptosis; 
d. off-target effects  

i. involving increase in antioxidant mechanisms or other stress 
responses. 

1.4.1 REDUCED INTRACELLULAR ACCUMULATION – “PRE-TARGET” EFFECTS 
Many resistant cell lines have less cisplatin accumulation in the cells (Andrews et al., 

1988, Safaei and Howell, 2005). This could be caused by inhibition of drug uptake, 

inactivation of cisplatin or increase in efflux of the drug (Figure 1.3 and Table 1-1). 

Cisplatin uptake 
Cisplatin uptake is thought to occur mainly by passive diffusion (Gately and Howell, 

1993). Transporters like the copper transporters CTR1 and CTR2 may play a more 

active role (Safaei and Howell, 2005, Kalayda et al., 2012, Kim et al., 2014) but the 
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extent of the involvement is still being investigated (Ivy and Kaplan, 2013). Until now, 

no microRNAs have been shown to be involved in the regulation of these genes. 

Cisplatin efflux 
One group of transporters involved with efflux from the cell are the ATP-binding 

cassette (ABC transporters) transporters. MicroRNA-130a (ABCB1) (Yang et al., 

2012b, Li et al., 2015a), microRNA-130b (ABCB1) (Zong et al., 2014), miR-199a 

(ABCG2) (Cheng et al., 2012) and miR-128 (ABCC5) (Li et al., 2014a) are validated 

miRNA-target pairs. Copper efflux transporters ATP7A and ATP7B may also be 

associated with cisplatin response (Inoue et al., 2010, Abada et al., 2012, Li et al., 

2012c). The resistance due to the ATP7B is thought to be due to binding and 

detoxification of cisplatin rather than efflux ( Dolgova et al., 2009, Leonhardt et al., 

2009,  Dmitriev, 2011).  

Reduced availability of cisplatin 
Cisplatin may be detoxified through binding with other cellular compounds such as 

glutathione and metallothionein. The thiol groups of glutathione (GSH)  bind to cisplatin 

and inactivate it (Paulusma et al., 1999). Deregulation of glutathione levels or that of the 

enzymes involved in the metabolism of glutathione and metallothionein can lead to 

modulation of the cisplatin response (Rocha et al., 2014, Sawers et al., 2014, Jamali et 

al., 2015, Tuzel et al., 2015, Lee et al., 2015).  
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FIGURE 1.3: PRE-TARGET MECHANISMS OF CISPLATIN RESISTANCE 
Cisplatin may be taken up by the cell passively or actively through the copper transporter CTR1. Once in 
the cell, cisplatin is converted to its highly reactive aquated form; this may be exported from the cell by 
efflux transporters of the ABC family - ABCB1, ABCG2, ABCC1, ABCC2 and ABCC5 or by the copper efflux 
transporters ATP7a and ATP7b; hence up-regulation of these transporters may be associated with 
cisplatin resistance.  MicroRNAs that modulate these transporters may also be associated with 
resistance. Cisplatin may also be inactivated by glutathione or metallothionein which can cause 
resistance.
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TABLE 1-1: GENES AND MICRORNAS INVOLVED IN CISPLATIN RESISTANCE THROUGH PRE-TARGET MECHANISMS OF ACTION 

Gene Gene function 

Gene 
deregula-
tion in 
resistance 

MicroRNA 

MiRNA 
Deregula-
tion in 
resistance 

Type of 
cancer Reference 

CISPLATIN UPTAKE 

CTR1 and 2 copper transporters; also uptake of 
cisplatin down    (Kim et al., 2014, Kalayda et al., 2012) 

SLC22A2 uptake of cisplatin down    (Burger et al., 2011) 
hMATE uptake of cisplatin down    (Burger et al., 2011) 
 
CISPLATIN EFFLUX 
ABCC2 cisplatin efflux up miR-379 down PBMC (Werk et al., 2014, Ma et al., 2009) 
ABCC5 cisplatin efflux up miR-128 down ovarian (Li et al., 2014a, Weaver et al., 2005) 
ABCB1/MDR1 cisplatin efflux up miR-130a up ovarian (Yang et al., 2012b, Patch et al., 2015) 
ABCB1/MDR1 cisplatin efflux up miR-130a up ovarian (Li et al., 2015a) 
ABCB1/MDR1 cisplatin efflux up miR-130b up ovarian (Zong et al., 2014) 
ABCC1/ MRP1 cisplatin efflux up    (Cai et al., 2011, Zhou and Ling, 2010) 
ABCG2 cisplatin efflux up miR-199a down ovarian (Cheng et al., 2012, Wu et al., 2015) 
ATP7a copper transporter - cisplatin efflux up miR-495 down  (Song et al., 2014, Li et al., 2012c) 
ATP7B copper transporter - cisplatin binding up    (Safaei et al., 2012, Inoue et al., 2010) 
 
CISPLATIN INACTIVATION 

GST-π inactivation of cisplatin up miR-130b up ovarian  (Zong et al., 2014, Jamali et al., 2015, 
Rocha et al., 2014, Sawers et al., 2014) 

SLC7A11 cysteine glutamate exchanger: 
inactivation of cisplatin down miR-27 up bladder (Drayton et al., 2014) 

KEAP1  down miR-141 up ovarian  (van Jaarsveld et al., 2013) 
metallothionein inactivation of cisplatin up miR-23a up gastric (An et al., 2013, Tuzel et al., 2015) 
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1.4.2 EXTENT OF DNA DAMAGE AND TOLERANCE– “ON-TARGET” MECHANISMS 
The extent of DNA damage is determined by the amount of drug bound to DNA (Fraval 

and Roberts, 1979). However the effects of this damage can be decreased by increased 

DNA repair or by tolerance to the DNA damage. The overall DNA repair capacity in 

peripheral lymphocytes was shown to correlate inversely with overall survival in non-

small-cell lung cancer treated with platinum chemotherapy (Wang et al., 2011a). The 

mechanisms of “on-target resistance” are described in section 1.4.2.1 and summarised in 

Figure 1.4 and Table 1.2. 

1.4.2.1. Increased DNA repair 

Intrastrand crosslinks make up 80% of the crosslinks caused by cisplatin while 

interstrand crosslinks (ICLs) make up less than 10% of cisplatin DNA adducts 

(Fichtinger-Schepman et al., 1987). Intrastrand crosslinks are removed by nucleotide 

excision repair (NER) or base excision repair (BER) while interstrand crosslinks are 

repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) 

(Ceccaldi et al., 2015). These DNA repair pathways influence DNA repair and 

consequently, cisplatin sensitivity. The genes and microRNAs involved in modulating 

these pathways are listed in Figure 1.4 and Table 1.2. 

Nucleotide excision repair (NER) pathway recognises and repairs DNA damage caused 

by cisplatin; enhanced activity of genes in this pathway can increase cisplatin resistance. 

Base Excision repair (BER) could play a role in the extent of DNA cisplatin crosslinks. 

By this mechanism, platinum is removed as soon as it binds to the DNA before 

crosslinks are formed (Caiola et al., 2015). MicroRNAs involved in modifying these 

pathways are shown in Figure 1.4 and Table 1.2. 

Homologous Repair (HR) results in highly accurate repair using the sister chromatid as 

a template strand. A study by Wang et al (2011b) suggests that blocking homologous 

repair results in far greater cisplatin sensitivity than blocking NER. Non Homologous 

End Joining (NHEJ) is a process by which the two ends are simply joined together 

repairing double stranded breaks in an error prone fashion. MiR-101 has been shown to 

downregulate NHEJ in lung cancer cells (Yan et al., 2010). DNA mismatch repair 

(MMR) system is involved in the recognition of DNA damage caused by cisplatin 
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(Stewart, 2007). However, upregulation of genes involved in this pathway are associated 

with increase in chemosensitivity; it is possible that the MMR system attempts to repair 

the DNA damage but failing to do so, activates apoptosis (Vaisman et al., 1998, Fink et 

al., 1998, Adachi et al., 2010, Zeller et al., 2012).  

The role of BRCA1/ BRCA2 in the mechanisms of repair of DNA damage in relation to 

cisplatin resistance and ovarian cancer is worthy of special mention. BRCA1 is essential 

for HR but also is suggested to play a role in NHEJ while BRCA2 primarily facilitates 

and is essential for HR (Roy et al., 2012). The effect of a germline mutation of BRCA1/ 

BRCA2 on ovarian cancer is two-fold – on the one hand, it increases the risk of ovarian 

cancer (King et al., 2003); however, the same defect in homologous repair makes these 

tumours sensitive to cisplatin. It has been shown that in tumours with BRCA 1/2 

mutation which develop resistance to cisplatin, there is a second deletion mutation 

reverting to wild-type BRCA reading frame ( Edwards et al., 2008, Sakai et al., 2008, 

Swisher et al., 2008, Sakai et al., 2009). BRCA 1 or 2 mutation is associated with 

significantly improved progression free survival (Vencken et al., 2011, Vencken et al., 

2013, Rudaitis et al., 2014, Harter et al., 2016). While BRCA1/2 defects may arise 

through germline or somatic mutations as well as hypermethylation, Gu et al have 

shown a miRNA signature of miR-146a, miR-148a and miR-545 that target BRCA1 or 

2 is associated with overall survival and progression free survival in wild type BRCA1/2 

ovarian tumours (Gu et al., 2015, Moschetta et al., 2016). Similarly Sun et al have 

shown that miR-9 targets BRCA1 and is associated with progression free survival as 

well as platinum sensitivity in ovarian cancers (Sun et al., 2013). These studies suggest 

that miRNA modulation of BRCA may also play a role in chemosensitivity. 

1.4.2.2. Tolerance to DNA damage 

Translesion synthesis (TLS) allows the cell to bypass the lesion by “replicative bypass 

or trans-lesion synthesis”(Clauson et al., 2013). miR-93 - POLH (Srivastava et al., 2015) 

and miR-96 - REV-1 (Wang et al., 2012) are miRNA-target pairs shown to increase 

chemoresistance. POLH and REV-1 are genes involved in translesional synthesis. 
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FIGURE 1.4: 
ON-TARGET 
MECHANISMS 
OF CISPLATIN 
RESISTANCE 
The extent of 
DNA damage 
caused by 
cisplatin can be 
reduced by the 
action of repair 
pathways – 
nuclear excision 
repair pathway, 
homologous 
repair pathway, 
non-
homologous 
end joining. 
Trans-lesional 
synthesis allows 
tolerance of the 
damage. The 
genes involved 
and the 
microRNAs are 
shown.  
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TABLE 1-2: GENES AND MICRORNAS INVOLVED IN CISPLATIN RESISTANCE THROUGH ON-TARGET MECHANISMS OF ACTION 

Gene Gene function 
Gene 
deregulation 
in resistance 

MicroRNA 

MiRNA 
Deregula-
tion in 
resistance 

Type of 
cancer Reference 

ERCC1  NER up    (Lee et al., 1993a, Arora et al., 2010) 
XPA NER up    (Ferry et al., 2000, Lee et al., 1993a) 
ERCC3 NER up miR-192 down hepatoma (Xie et al., 2011, Arora et al., 2010) 
ERCC4 NER up miR-192 down hepatoma (Xie et al., 2011)Xie et al., 2011 

ENG upregulates SIRT1 (XPA 
deacetylation) NER up miR-370 down ovarian (Chen et al., 2014b, Ziebarth et al., 

2013) 

BRCA1 HR up miR-9 down ovarian (Sun et al., 2013, Rudaitis et al., 2014, 
Vencken et al., 2013) 

BRCA2 HR up    (Vencken et al., 2013, Rudaitis et al., 
2014) 

RAD51 HR up miR-506 down ovarian (Liu et al., 2015) 
RAD51 HR up miR-96 down ovarian (Wang et al., 2012) 
Ku 
complex NHEJ up      (Li et al., 2015b, Tian et al., 2007)  

DNA-PKcs NHEJ up miR-101 down lung cancer (Tian et al., 2007, Yan et al., 2010, Li et 
al., 2015b)  

POLH 
(Pol η) TLS up miR-93 down ovarian (Srivastava et al., 2015, Wang et al., 

2015b) 
REV1 TLS up miR-96 down ovarian (Wang et al., 2012) 

MLH1 MMR; signal for 
apoptosis down miR-155 up colorectal 

cancer (Valeri et al., 2010, Zeller et al., 2012)  

MSH2  MMR; signal for 
apoptosis down    (Zeller et al., 2012) 
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1.4.3 REDUCED APOPTOTIC RESPONSE – “POST-TARGET” MECHANISMS 
Cisplatin induces apoptosis through the caspase cascade via two different pathways- 

fas/fas ligand signalling (extrinsic pathway) or cytochrome–c release (intrinsic 

pathway). In cells with defective apoptosis systems, there is an increase in the levels 

of DNA damage required to initiate apoptosis (Gonzalez et al., 2001). The main 

components of the pathways are described below and summarised in Table 1-3 and 

Figure 1.5. 

1.4.3.1. p53 
p53 is a major coordinator in the initiation of the intrinsic apoptotic pathway and is 

thought to usually support apoptosis (Fan et al., 1994, Segal-Bendirdjian et al., 

1998); however some studies are contrary and show that disruption of p53 function 

sensitises to cisplatin (Fan et al., 1995, Hawkins et al., 1996).  miR-34, known to be 

a tumour suppressor, may be induced by p53 activity but can also, in turn, increase 

the activity of p53, forming a positive feedback loop (Yamakuchi and Lowenstein, 

2009).  

1.4.3.2. Cell cycle arrest 
ATM and ATR, in addition to activating p53 also cause a cell cycle arrest through 

mediating checkpoints (Meek, 2015). This disruption in cell cycle points is essential 

for DNA damage repair and may lead to resistance (Shah and Schwartz, 2001).   

1.4.3.3. Bcl2 family 
Modulation of the Bcl2 family of apoptotic regulators may also contribute to 

resistance. Down-regulation of the pro-apoptotic members (Bax, Bad, Bak) or up-

regulation of anti-apoptotic members (Bcl2, Bcl-xl, Bcl-w and Mcl-1) can be 

associated with resistance (Hata et al., 2015). MicroRNAs modulating this pathway 

are summarised in Table 1-3.  

1.4.3.4. PI3K-Akt pathway 
PI3K-Akt pathway is a major modulator of the apoptotic cascade as reviewed in 

(Steelman et al., 2011). Akt, induced by PI3K promotes MDM2; this decreases p53 

activation, inactivates pro-apoptotic Bad protein and inhibits procaspase-9 thus 

reducing intrinsic apoptosis (Mayo and Donner, 2001). Akt also affects the extrinsic 

apoptotic pathway by causing Foxo-3 protein to re-localise to the cytoplasm, which 

causes down regulation of fas ligand and therefore, decreased apoptosis (Steelman et 
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al., 2011). Other proteins are known to negatively regulate Akt such as PTEN, ALK7 

(Zhang et al., 2006) and PDCD4 (Wei et al., 2012). mTOR (mammalian target of 

rapamycin) is a downstream target of the PI3K/ Akt pathway and is shown to 

modulate resistance to cisplatin (Dobbin and Landen, 2013). Various microRNAs 

summarised in Table 1-3 are shown to target Akt and associated proteins. 

1.4.3.5. Inhibitors of apoptosis 
Apoptosis can also be decreased by Inhibitors of Apoptosis proteins (IAPs) such as 

XIAP (Asselin et al., 2001) and survivin (Karczmarek-Borowska et al., 2005, 

Ikeguchi et al., 2002) which may be regulated by microRNAs.  

 

FIGURE 1.5: POST-TARGET MECHANISMS OF RESISTANCE 
Once DNA damage is recognised, p53 is activated which in turn activates the apoptotic cascade. 
PI3K-Akt pathway can decrease p53 and cause resistance; Akt in turn may be downregulated by 
PTEN and PDCD4. The antiapoptotic Bcl2 and Mcl1 can decrease apoptosis while Bak-I can increase 
apoptosis. Inhibitors of apoptosis such as XIAP and survivin may also inhibit apoptosis. The miRNAs 
that affect these pathways are shown in the figure. PTEN – phosphatase and tensin homolog, PDCD4 
- Programmed Cell Death 4, XIAP – x-linked inhibitor of apoptosis, Cyt-c - Cytochrome C
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TABLE 1-3: GENES AND MICRORNAS INVOLVED IN CISPLATIN RESISTANCE THROUGH POST-TARGET MECHANISMS OF ACTION 

Gene Gene function 

Gene 
deregul
ation in 
resista
nce 

MicroRNA 

MiRNA 
Deregula-
tion in 
resistance 

Type of 
cancer Reference 

p53 coordinator of apoptosis usually 
down miR-34 down  (Yamakuchi and Lowenstein, 2009) 

CSF1 enhances effects of p53 up miR-130b down ovarian (Yang et al., 2012a) 

TP53INP1 limits activation of p53, 
p73 and NF-κB down miR-569 up ovarian (Chaluvally-Raghavan et al., 2014) 

CDC6 checkpoint mediated 
growth arrest up miR-29a down ovarian (Creighton et al., 2012, Kan et al., 2008) 

TIMELESS   up miR-29a down ovarian (Creighton et al., 2012, Yoshida et al., 2013)  

Bcl2 Antiapoptotic  up miR-34 down gastric and 
pancreatic (Ji et al., 2009, Ji et al., 2008) 

Mcl-1 Antiapoptotic  up miR-106a down ovarian (Rao et al., 2013) 
Bak1  Proapoptotic  down miR-125b up ovarian (Kong et al., 2011) 

CCND1 maintenance of anti-
apoptotic Bcl2 and Bcl-xl up let-7e down ovarian (Cai et al., 2013, Biliran et al., 2005) 

Akt3 decreases p53 activation up miR-489 down ovarian (Wu et al., 2014) 
PTEN downregulates Akt down miR-130a up ovarian (Li et al., 2015a) 
PTEN downregulates Akt down miR-214 up ovarian (Yang et al., 2008) 
PTEN downregulates Akt down miR-93 up ovarian (Fu et al., 2012) 
ALK7 downregulates Akt down miR-376c up ovarian (Ye et al., 2011) 
PDCD4 downregulates Akt down miR-106a up ovarian (Li et al., 2014c) 
PDCD4 downregulates Akt down miR-182 up ovarian (Wang et al., 2013a) 
PDCD4  downregulates Akt down miR-21 up ovarian (Chan et al., 2014) 
PDCD4 downregulates Akt down miR-21 up ovarian (Echevarria-Vargas et al., 2014) 
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Table 3.1 contd.. 

Gene Gene function 

Gene 
dereg-
ulation 
in 
resista
nce 

MicroRNA 

MiRNA 
Deregula-
tion in 
resistance 

Type of 
cancer Reference 

PDCD4  downregulates Akt down miR-21 up ovarian (Liu et al., 2013a) 
mTOR target of AkT ? mir-199a   ovarian (Wang et al., 2013b) 
mTOR target of AkT ? miR-497 ? ovarian (Xu et al., 2015a) 
XIAP Inhibitor of apoptosis up miR-130a down ovarian (Zhang et al., 2013) 
XIAP Inhibitor of apoptosis up miR-519d down ovarian (Pang et al., 2014) 
Survivin inhibitor of apoptosis up miR-335 down gastric  (Yang et al., 2015) 

Survivin inhibitor of apoptosis up miR-214-3p down oesophageal 
cancer (Phatak et al., 2015) 

COL1A1 ERK signalling resist 
apoptosis up miR-

29a/b/c down ovarian (Yu et al., 2013) 
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1.4.4 OTHER FACTORS LINKED TO PLATINUM RESISTANCE – “OFF-TARGET” 
MECHANISMS 

De-regulation of some cellular pathways which are not directly involved in 

processing of cisplatin or responses to cisplatin damage are shown to increase 

resistance to chemotherapy. These “off-target” mechanisms are of significant 

interest. The off-target mechanisms are described below and summarised in Table 

1-4. 

1.4.4.1. Autophagy  
Autophagy is one of the cellular responses to stress in which organelles are 

consumed within lysosomes recycling damaged components (Cecconi and Levine, 

2008). In cancer chemotherapy, however, autophagy is one of the mechanisms of 

programmed cell death and can modulate cisplatin cytotoxicity by increasing 

sensitivity to the drug (Garcia-Cano et al., 2015, Leisching et al., 2015).  In contrast, 

some studies have shown that enhanced autophagy can cause increased resistance to 

cisplatin (Ren et al., 2010). MicroRNAs modulating this response are shown in Table 

1-4. 

1.4.4.2. Epithelial-mesenchymal transition  
Epithelial–mesenchymal transition (EMT) is an important process in the invasion 

and metastasis of cancer cells and is characterised by a loss of epithelial properties of 

cancer cells such as cell-cell adhesion and a gain of mesenchymal markers and 

properties such as greater motility as reviewed by De Craene and Berx (2013). EMT, 

additionally has been shown to have an important role in chemoresistance (Fischer et 

al., 2015). A recent study has identified a group of eight microRNAs, including miR-

200a and miR-506, deregulation of which may be involved in the maintenance of a 

mesenchymal subtype (Yang et al., 2013a, Sun et al., 2015,). Other microRNAs 

involved are summarised in Table 1-4. 

1.4.4.3. Cancer Stem cells 
Cancer stem cells are resistant to chemotherapy and can influence response to 

cisplatin in spite of forming only a small proportion of cells in the tumour (Bapat et 

al., 2005, Yan et al., 2014). Table 1-4 shows microRNAs involved in this pathway.  

1.4.4.4. Tumour microenvironment 
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Most of the mechanisms discussed thus far modify the cell itself; other mechanisms 

may cause chemoresistance by modifying the tumour microenvironment. One case in 

point is miR-484 which induces cisplatin sensitivity (Vecchione et al., 2013) in vivo 

but not in vitro. It was discovered that this microRNA, secreted by the tumour cells, 

is taken up by the endothelial cells and causes a decrease in angiogenesis by 

suppressing VEGFB and VEGFR; this leads to hypoxia and necrosis of the tumour 

cells. 

1.4.4.5. Other mechanisms 
Other microRNAs have been shown to modify the response of ovarian cancer 

tumours to cisplatin through interaction with components of the chromatin 

modifying complexes or transcription factors. These are summarised in Table 1-4. 
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TABLE 1-4: GENES AND MICRORNAS INVOLVED IN CISPLATIN RESISTANCE THROUGH OFF-TARGET MECHANISMS OF ACTION 

Gene Gene function 

Gene 
deregulati
on in 
resistance 

MicroRNA 

MiRNA 
Deregulati
on in 
resistance 

Type of 
cancer Reference 

mTOR downregulates autophagy up miR-199a down ovarian (Wang et al., 2013b) 
mTOR downregulates autophagy up miR-497 down ovarian (Xu et al., 2015a) 
ATG14 upregulates autophagy up miR-152 down ovarian (He et al., 2015) 
Twist1 regulation of EMT up miR-186 down ovarian (Zhu et al., 2015) 
ZEB1 regulation of EMT up miR-200  down ovarian (Jabbari et al., 2014) 
CRIM1 affects control of EMT down miR-193b* up ovarian (Ziliak et al., 2012) 
Notch1 Modulation of ovarian cancer stem cells up miR-449a down ovarian (Zhou et al., 2014) 
JAG Modulation of ovarian cancer stem cells up miR-199b-5p down ovarian (Liu et al., 2014b) 
CD44 marker of cancer stem cells up miR-199a down ovarian (Cheng et al., 2012) 
VEGFB affects angiogenesis up miR-484 down ovarian (Vecchione et al., 2013) 
VEGFR2 affects angiogenesis up miR-484 down ovarian (Vecchione et al., 2013) 
HDAC4 chromatin modifying complexes down miR-302b up ovarian (De Cecco et al., 2013) 
EZH2 chromatin modifying complexes up let-7e down ovarian (Cai et al., 2013) 
EZH2 chromatin modifying complexes up miR-101 down ovarian (Liu et al., 2014a) 
DNMT1 chromatin modifying complexes up miR-152 down ovarian (Xiang et al., 2014) 
DNMT1 chromatin modifying complexes up miR-185 down ovarian (Xiang et al., 2014) 
DNMT3A chromatin modifying complexes up miR-29a down ovarian (Creighton et al., 2012) 
DNMT3B chromatin modifying complexes up miR-29a down ovarian (Creighton et al., 2012) 
CBX1 chromatin modifying complexes up miR-29a down ovarian (Creighton et al., 2012) 
MYBL2 transcription up miR-29a down ovarian (Creighton et al., 2012) 

Bmi-1  may be involved in EMT or maintenance 
of cancer stem cells up miR-128 down ovarian (Li et al., 2014a) 
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1.4.5 MICRORNAS AND CISPLATIN RESISTANCE IN OVARIAN TUMOURS 
In ovarian tumours, while various microRNAs have been shown to be associated 

with cisplatin resistance, there is no single specific miRNA signature to predict 

cisplatin resistance (Creighton et al., 2012). This reflects the complex nature of 

cisplatin resistance and therefore the many miRNAs involved in modulation of this 

resistance. Some of the microRNAs highlighted in chemo resistance have previously 

been shown to be deregulated in ovarian cancers such as the miR-200 family 

(Muralidhar and Barbolina, 2015), let-7 family (Wang et al., 2012), miR-214 (Penna 

et al., 2015) and miR-21 (Gao et al., 2016). The studies listed in this section for the 

various mechanisms of cisplatin resistance have used different models to establish 

the role of the microRNAs such as cell line studies, xenografts, quantification in 

ovarian tissues or in analysis of publically available datasets such as TCGA. While 

cell line studies are useful to identify potential microRNAs, clinical relevance is 

usually indicated by in vivo studies. miR-484 has been shown to affect cisplatin 

resistance in vivo by affecting angiogenesis in xenograft models (Vecchione et al., 

2013). miR-9 also appears to play an important  role in chemoresistance by 

downregulating BRCA1 in xenografts (Sun et al., 2013). Some microRNAs such as 

miR-199a have been shown by two different labs to show a similar deregulation 

increasing the degree of confidence in the biological relevance of these miRNAs 

(Cheng et al., 2012, Wang et al., 2013). Though there is no complete consensus on 

which microRNAs can be used as biomarkers to predict chemotherapy response, as 

more studies highlight the various mechanisms of pathways by which microRNAs 

affect cisplatin response, there is the possibility that a panel of microRNAs may 

distinguish the drug response characteristics of ovarian tumours, and thus enable 

effective choice of drugs. 

The above described summary provides a glimpse into the complexity of cisplatin 

resistance modulation and the possible variations in the types of tumours and 

resistance mechanisms; the tables indicate the possibility that many more 

microRNAs could potentially be involved in this regulation of cisplatin response. In 

order to successfully tackle the problem of cisplatin resistance, more research is 

needed to understand and exploit this tier of modulation. 
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Interestingly, microRNAs can be transferred between cells by means of membrane 

bound vesicles called extracellular vesicles (EVs) as described in section 1.5.3. This 

provides an exciting avenue of research regarding the interaction between cells in the 

acquisition of cisplatin resistance. The next section describes EVs and their functions 

with special reference to their involvement in drug resistance. 

1. 5. EXTRACELLULAR VESICLES 

Extracellular vesicles are membrane contained vesicles released by cells into the 

extracellular environment; they are shown to contain proteins, lipids, RNA and 

sugars and can thus transfer information between cells (Fevrier and Raposo, 2004, 

Yanez-Mo et al., 2015).  

EVs were first described in the process of transferrin receptor shedding from 

reticulocytes (Harding et al., 1984) as a means of eliminating obsolete proteins 

(Johnstone et al., 1991). Later it was discovered that a similar process of EV release 

in antigen presenting cells could functionally increase T- cell proliferation in in vitro 

studies (Raposo et al., 1996) as well as induce anti-tumour responses in vivo 

(Zitvogel et al., 1998). Since then it has been shown that EVs are released by most 

tested cell lines (Chaput and Thery, 2011, Samir EL-Andaloussi et al., 2013).  

1.5.1. EXTRACELLULAR VESICLES – TYPES AND BIOGENESIS 
EVs are identified based on morphological and biochemical criteria. 

Morphologically, they are membrane bound vesicles with a diameter of 50-90 nm 

(Fevrier and Raposo, 2004). They are thought to be of three types (Yanez-Mo et al., 

2015): 

a. Microvesicles/ microparticles/ ectosomes: these are caused by an 

outward budding and fission of the plasma membrane 

b. Exosomes: these are formed within the endosomal network and 

released by the fusion of multivesicular bodies with the plasma 

membrane (Johnstone et al., 1987) 

c. Apoptotic bodies: these are blebs from cells undergoing apoptosis. 
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Though these three types of vesicles have different characteristics, most EV isolation 

procedures yield a mixture of all three types; therefore there is a lack of consensus 

on specific markers for each type (Yanez-Mo et al., 2015).  

Microparticle biogenesis involves budding out from the plasma membrane and 

release as vesicles; they tend to be 0.1 μM – 1 μM in size (Gong et al., 2013). Their 

contents include plasma membrane, surface proteins and cytoplasmic material from 

the parent cell (Bebawy et al., 2009, Jaiswal et al., 2012).  Exosome biogenesis 

involves a series of steps: initiation, endocytosis, multi-vesicular body (MVB) 

formation and exosome secretion (Johnstone et al., 1987, Kharaziha et al., 2012,). 

These are shown in Figure 1.6. The MVB formation is dependent on Tsg101 while 

hepatocyte growth factor substrate (Hrs) is essential for accumulation of ILVs 

(intraluminal vesicles) in the MVBs (Razi and Futter, 2006).  The MVBs then may 

be degraded by fusion with a lysosome, fuse with the golgi network for recycling of 

cargo or fuse with the plasma membrane resulting in release of exosomes (Kharaziha 

et al., 2012). Apoptotic Bodies are formed by separation of the blebs formed by 

cells undergoing programmed cell death or apoptosis.  

FIGURE 1.6: MICROPARTICLE AND EXOSOME BIOGENESIS 
Microparticles are generated by budding of the plasma membrane. Exosome biogenesis involves 
invagination of the plasma membrane to form endosomes, invagination within the endosomes 
to form a multi vesicular body. The multivesicular body can fuse with the plasma membrane to 
release exosomes or fuse with a lysosome for degradation. 
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1.5.2. EXTRACELLULAR VESICLE ISOLATION: 
EVs have been identified in plasma, serum, amniotic fluid, saliva and urine as well 

as in supernatant from in vitro cell cultures as reviewed in Yanez-Mo et al (Yanez-

Mo et al., 2015). The most common method used for isolation of EVs is differential 

ultracentrifugation in which the supernatants of viable cell cultures are centrifuged at 

low speed to remove cells and cell debris; EVs are then pelleted at 100 000 g 

(Raposo et al., 1996, Fevrier and Raposo, 2004). Additionally, any protein can then 

be removed by flotation on a sucrose gradient – EVs float at a density of 1.13 g/ml to 

1.19 g/ml (Fevrier and Raposo, 2004, Kharaziha et al., 2012). Other methods 

described include size exclusion chromatography, filtration and polymer based 

precipitation (Taylor and Shah, 2015, Szatanek et al., 2015). 

1.5.3. CONTENTS OF EXTRACELLULAR VESICLES: 
EVs contain lipids, protein, nucleic acids and sugars as reviewed in Yanez-Mo et al 
(Yanez-Mo et al., 2015).  

1.5.3.1. Proteins: Various studies have characterised the protein content of 

EVs by proteomic analysis (Wubbolts et al., 2003, Mears et al., 2004, Staubach et 

al., 2009, Graner et al., 2009). EVs contain common proteins reflecting their 

biogenesis as well as specific proteins characteristic of cell / tissue type. These are 

summarised in Table 1-5. These proteins have been used as markers for extracellular 

vesicles. In addition EVs derived from different cell types contain other specific 

proteins. Sorting of proteins into MVBs and EVs based on the local membrane 

curvature determines the shape size and composition of EVs (Ramamurthi, 2010, 

Yanez-Mo et al., 2015). Tetraspannins are thought to influence the assimilation of 

receptors into EVs (Perez-Hernandez et al., 2013). ESCRT proteins are also thought 

to sort proteins into EVs based on ubiquitination of the protein (Katzmann et al., 

2001, Reggiori and Pelham, 2001).  
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TABLE 1-5: PROTEIN CARGO IN EVS 

Protein class proteins function reference 

Tetraspannins CD9, CD63, 
CD81, CD82 

indicate the origin of 
EVs from MVBs 

(van Niel et al., 2001) 

Intracellular 
membrane transport 
and signalling proteins 

heat shock 
proteins 
(hsc73), 
annexins, Gi2α 

 (Thery et al., 1999, 
Thery et al., 2001) 

Lipid raft associated 
proteins 

CD55 and 
CD59 

protect EVs from 
complement 
mediated lysis 

(Clayton et al., 2003, 
Rabesandratana et al., 
1998) 

 CD109  (Sakakura et al., 2015) 
 HSP70  (Staubach et al., 2009) 
Antigen presentation 
molecules 

MHC class II 
and class I 
molecules 

 (van Niel et al., 2001) 

ESCRT proteins Alix, TSG101 biogenesis, cargo 
sorting and release of 
EVs, indicate origin of 
EVs from MVBs 

(Thery et al., 2001) 

  

1.5.3.2. Nucleic acids: Most studies indicate the presence of RNA of different 

types in the extracellular vesicles - including intact mRNA, mRNA fragments, long 

non coding RNA and microRNAs.  

- mRNA: EVs have been shown to transfer functional mRNA between cells 

(Ratajczak et al., 2006, Valadi et al., 2007, Ridder et al., 2015). In a study 

using breast cancer cells, EVs were shown to transfer mRNA with metastatic 

and oncogenic potential (Rodriguez et al., 2015). EVs were also shown to 

contain inhibitors of apoptosis (Valenzuela et al., 2015). It has been 

suggested that there is an enrichment of 3’UTR mRNA fragments in EVs 

(Batagov and Kurochkin, 2013). A specific consensus sequence consisting of 

a 25 nucleotide sequence with a short CTGCC core domain with a miR-1289 

binding site is thought to target mRNAs into EVs (Bolukbasi et al., 2012). 

- microRNA: One study showed that there are, on average, 0.00825 

microRNAs in an EV; i.e. about 1 microRNA in a hundred EVs (Chevillet et 

al., 2014). Studies suggest that miRNAs sorting into EVs might involve 

EXOmotif GGAG and its binding to sumoylated hnRNPA2B1 (Villarroya-

Beltri et al., 2013). Studies have shown that the microRNAs transferred via 

EVs are functional once internalised into the recipient cell and can repress 
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target mRNAs (Montecalvo et al., 2012, Stoorvogel, 2012, Chen et al., 

2014a). Taylor and Gercel-Taylor showed that EVs derived from the blood of 

ovarian cancer patients had increased miRNA levels which mirrored the 

miRNA composition of the original tumour (Taylor and Gercel-Taylor, 

2008). miR-451 and miR-21 were shown to be transferred from glioblastoma 

by EVs which were avidly taken up by microglia (van der Vos et al., 2016). 

In a recent study, the cargo of microparticles was shown to include, in 

addition to miRNAs, transcripts encoding for enzymes in the miRNA 

biogenesis machinery – DROSHA, DICER and Ago2 (Jaiswal et al., 2012). 

Melo et al showed that, EVs derived from cancer cells also contained 

precursor miRNAs and DICER, Ago2 and TRBP and that the pre-miRNAs 

were processed into mature miRNAs in the EVs (Melo et al., 2014). It has 

been suggested that there is an enrichment of 3’UTR mRNA fragments in 

EVs; the potential implication is that this may cause microRNA modulation 

in the recipient cell as these fragments can compete with the recipient cellular 

RNA for miRNA binding (Batagov and Kurochkin, 2013). 

- lncRNA: Long non-coding RNAs with low expression levels in cells are 

found to be enriched in EVs (Gezer et al., 2014). 

1.5.3.3. Lipids: EVs are shown to contain sphingomyelin, ceramide, 

cholesterol and glycolipid GM3 (Wubbolts et al., 2003) which are associated with 

lipid rafts. 

1.5.3.4. Glycosylation: The glycosylation patterns of EVs were shown to 

differ from parent cell membrane (Krishnamoorthy et al., 2009, Batista et al., 2011); 

moreover, the pattern of glycosylation was shown to be altered in pathological 

conditions (Escrevente et al., 2011). It has been suggested that EV uptake by target 

cells may be influenced by glycosylation patterns (Batista et al., 2011, Escrevente et 

al., 2011, Yanez-Mo et al., 2015). 

1.5.4. EXTRACELLULAR VESICLE UPTAKE 
EVs affect other cells by surface interaction or by internalisation or uptake. There is 

a growing body of research suggesting that the contents of extracellular vesicles are 

transferred into the cell – functional mRNA is transferred to recipient cells (Valadi et 

al., 2007), siRNA delivered through EVs knockdown gene targets and luciferin 

substrate delivered via EVs induced bioluminescence in luciferase expressing mouse 
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dendritic cells (Montecalvo et al., 2012). The uptake of EVs is studied by using lipid 

membrane dyes such as PKH26 or chemical compounds such as CFSE to stain the 

EVs and quantify their presence in the recipient cells.  

EV uptake is thought to involve protein interactions with target cell membrane 

(Christianson et al., 2013, Svensson et al., 2013). Proteins that have been proposed to 

be involved in uptake include tetraspanins (Rana et al., 2012), integrins such as 

CD11a, CD51 and CD61 (Morelli et al., 2004) and proteoglycans such as heparan 

sulfate (Christianson et al., 2013). Various mechanisms have been proposed for the 

uptake of EVs by recipient cells as reviewed in (Mulcahy et al., 2014) and 

summarised below. Indeed, uptake is thought to occur through more than one 

mechanism (Escrevente et al., 2011); therefore internalisation cannot be entirely 

prevented by one inhibitor.  

1.5.4.1. Phagocytosis: This involves the uptake of opsonised particulate 

matter by phagocytic cells such as macrophages (Swanson, 2008); this has been 

thought to be a mechanism of EV uptake (Feng et al., 2010); this is further supported 

by the fact that dynamin inhibition decreases the uptake of EVs (Feng et al., 2010, 

Fitzner et al., 2011).  

1.5.4.2. Clathrin mediated endocytosis is one of the mechanisms thought to 

play a role in extracellular vesicle uptake. This involves invagination of the outer 

membrane by the sequential assembly of clathrin along with heterotetrameric 

clathrin adaptor AP2 and Eps15 (Cocucci et al., 2012) followed by cargo capture 

facilitated by interaction with receptors (Traub and Bonifacino, 2013); dynamin 

facilitates the pinching off of the vesicle into the cytoplasm (Morlot and Roux, 

2013); auxilin and hsc70 (a member of the hsp70 family) assist the uncoating of the 

clathrin coated vesicles within the cell (Kirchhausen et al., 2014). The involvement 

of clathrin mediated endocytosis in uptake of extracellular vesicles is indicated by 

various studies: chlorpromazine, which inhibits clathrin mediated endocytosis, 

decreases uptake of extracellular vesicles in ovarian cancer recipient cells 

(Escrevente et al., 2011); inhibition of dynamin2 in phagocytic cells inhibited EV 

internalisation (Feng et al., 2010, Fitzner et al., 2011), expression of a dominant 

negative mutant of Eps15 led to a reduction in EV uptake (Feng et al., 2010). 
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1.5.4.3. Caveolin dependent endocytosis (CDE) is shown to be a mechanism 

of uptake of particles. It involves cave-like invagination of the plasma membrane 

which can be internalised into the cell; the caveolae are shown to be enriched in 

cholesterol and sphingolipids and are sensitive to cholesterol depletion. The main 

proteins involved in caveolae formation are caveolin-1 and cavin-1; dynamin 

facilitates the assembly and internalisation of the caveolae (Lajoie and Nabi, 2007, 

Briand et al., 2011). Inhibition of dynamin2 decreases uptake of EVs (Feng et al., 

2010, Fitzner et al., 2011). Specific knockdown of caveolin-1 decreased the uptake 

of EVs in a nasopharyngeal cell line (Nanbo et al., 2013); but increased EV uptake in 

mouse embryonic fibroblast cells (Svensson et al., 2013), indicating CDE as a 

possible cell specific mechanism of EV uptake. 

1.5.4.4. Macropinocytosis is a type of endocytosis characterised by the 

formation of a cup shaped macropinosome by invaginated membrane ruffles which 

fuse with each other or the plasma membrane to enclose extracellular fluid along 

with its contents (Swanson, 2008); EVs have been shown to be taken up in the 

extracellular fluid (Fitzner et al., 2011). Macropinocytosis may occur spontaneously 

or be stimulated by Epidermal Growth Factor (EGF), K-ras and small GTPase Rac1 

(Swanson, 2008, Nakase et al., 2015); it requires the activity of Na+/H+ ion 

exchange (West et al., 1989). The Na+/H+ exchange can be blocked by amiloride 

thus blocking uptake of EVs (West et al., 1989, Fitzner et al., 2011). 

1.5.4.5. Heparan sulfate proteoglycans (HSPG) are cell surface 

proteoglycans that can bind to particulates such as viruses and facilitate their uptake 

into cells (Shukla et al., 1999, Schafer et al., 2015). This mechanism has been shown 

to be important for EV uptake as treatment of recipient cells with heparin, which 

competitively binds to HSPG, inhibits EV uptake (Christianson et al., 2013, Franzen 

et al., 2014). 

1.5.4.6. Lipid raft mediated uptake:  Lipid rafts are areas in the plasma 

membrane in which altered phospholipid content results in tightly packed and 

ordered regions enriched in cholesterol (Simons and Ehehalt, 2002). They are known 

to contribute to viral particle uptake and have been shown, more recently, to take 

part in EV uptake (Svensson et al., 2013, Escrevente et al., 2011). 



47 

 

1.5.5. FUNCTIONS  
Functionally, EVs can alter pathways in the recipient cells by transfer of nucleic 

acids or proteins (Valadi et al., 2007, Montecalvo et al., 2012). Additionally, release 

of EVs can modulate pathways within the donor cell. For example, CD82 and CD9 

are shown to decrease Wnt-signalling by exporting β-catenin in EVs out of the cell, 

decreasing levels within cells (Chairoungdua et al., 2010). 

Physiologically, EVs can affect multiple physiological processes by virtue of their 

function in transferring mRNA, microRNA and proteins. They are thought to be 

involved in antigen presentation, cell survival, coagulation and repair of tissues as 

reviewed in (Yanez-Mo et al., 2015).  EVs are shown to play an important role in the 

immune response; this is suggested by their role in antigen presentation (Zitvogel et 

al., 1998, van Niel et al., 2001, Andre et al., 2002) and induction of T cell (Thery et 

al., 2002) and humoral immune responses (Van Niel et al., 2003). Recently they have 

also been shown to be involved in the release of Leukotriene B4, a secondary 

attractant from neutrophils (Majumdar et al., 2016). 

1.5.6. EVS IN CANCERS 
Studies suggest that patients with cancer have higher number of circulating EVs in 

the blood as compared to healthy patients and as well as a higher microRNA content 

(Taylor and Gercel-Taylor, 2008, Rabinowits et al., 2009). Studies have shown that 

lung cancer derived EVs exhibit a different proteomic profile with enrichment of 

some proteins including EGFR, GRB2 and SRC as compared to normal cell derived 

EVs (Clark et al., 2015). The protein profile and indeed the morphological 

appearance of EVs derived from multidrug resistant tumours was shown to be 

different from EVs derived from their sensitive counterparts in a study using lung 

and leukemia cell lines (Lopes-Rodrigues et al., 2015). EVs may affect 

tumorigenesis by modifying tumour inducing ability (Melo et al., 2014), 

proliferation (Clark et al., 2015), viability (Kogure et al., 2011) and metastatic 

capability (Gorczynski et al., 2016) of tumour cells. The tumour microenvironment 

may be modified by EV-mediated communication between the tumour and cancer 

associated fibroblasts (Maida et al., 2015, Sanchez et al., 2015) and mesenchymal 

stem cells (Wang et al., 2016). EVs are able to modulate angiogenesis, an important 

factor in cancer progression ( Hegmans et al., 2004, Al-Nedawi et al., 2008, Hood et 
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al., 2009, Taverna et al., 2012). EVs have been shown to modulate the anti-tumoral 

response by affecting the immune response, T-cell activation and natural killer cell 

induction ( Wolfers et al., 2001, Admyre et al., 2006, Graner et al., 2009, Hellwinkel 

et al., 2015).  

1.5.6.1. EVs and response to chemotherapeutic drugs 

EVs have also been shown to be involved in cancer chemotherapy resistance through 

various mechanisms, reviewed recently by Sousa et al (Sousa et al., 2015). These are 

discussed below. 

- Sequestration of drug and oncogenic material: EVs themselves 

could serve as vehicles to sequester quantities of drug thus making the 

donor cells more resistant to the drug (Sousa et al., 2015). 

Microparticles from breast cell lines and ALL (Acute Lymphoblastic 

Leukaemia) cell lines were shown to sequester daunorubicin; 

moreover, it was shown that these particles contained P-gp drug 

transporter in an inside out orientation thus enabling the particles to 

actively absorb the drug in the presence of ATP (Gong et al., 2013); 

adriamycin was also shown to accumulate in EVs in drug resistant 

breast cancer cells (Ma et al., 2014). Ifergan et al showed an ABCG2 

dependent increase in the concentration of riboflavin and 

mitoxantrone in EVs derived from mitoxantrone resistant MCF7 cells 

and C-1305 resistant non-small cell lung cancer cells (Ifergan et al., 

2005, Ifergan et al., 2009). Chapuy et al showed a mechanism of 

sequestration of cytotoxic drugs in multivesicular bodies associated 

with lysosomes (Chapuy et al., 2008). Along the same lines, Akao et 

al showed that colon cancer cells became more resistant to 5-

fluorouracil by exporting tumour suppressor microRNAs miR-34a 

and miR-145 within EVs (Akao et al., 2014). In another study, in 

prostate cancer cells treated with fludarabine;  decreased export of 

oncogenic miR-485 in EVs was found; this increased the levels of 

miR-485 within the donor cell and through repression of NF-YB 

(nuclear transcription factor Y beta) increased levels of MDR1 and 
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CCNB2 genes; miR-485 was shown to modulate resistance to 

fludarabine (Lucotti et al., 2013).  

- Drug efflux pumps: The presence of drug efflux pumps in EVs have 

been of interest as these can then be taken up by recipient cells and 

develop drug resistance (Sousa et al., 2015). ABCB1 (MDR1/P-

glycoprotein): P-glycoprotein mediated transfer of drug resistance 

between cells has been documented by co-cultures of neuroblastoma 

cells with their multidrug resistant counterparts; in fact P-

glycoprotein was also shown to be transferred to the stromal 

fibroblasts (Levchenko et al., 2005); a similar study in breast cancer 

cells also yielded similar results (Pasquier et al., 2011). This transfer 

was shown to be transfer of protein rather than transfer of the gene 

due to the short time taken for the expression of P-glycoprotein 

(Bebawy et al., 2009). Moreover EVs were also shown to mediate 

transfer of drug resistance from resistant cells to sensitive cells 

probably through transfer of P-glycoprotein (Lv et al., 2014). 

Corcoran et al showed a transfer of docetaxel resistance in prostate 

cancer cells through EVs; the EVs were shown to be enriched in P-

glycoprotein (Corcoran et al., 2012); this was confirmed by Kharaziha 

et al (Kharaziha et al., 2015). ABCG2: Studies have shown the 

sequestration of drugs such as mitoxantrone, topotecan, methotrexate 

and riboflavin in large ABCG2 rich extracellular vesicles (Ifergan et 

al., 2005, Ifergan et al., 2009, Goler-Baron and Assaraf, 2011, Goler-

Baron et al., 2012). ABCC1: Microparticles were shown to mediate 

transfer of MRP1 between drug sensitive and drug resistant leukaemia 

cell lines (Lu et al., 2013). 

- Other proteins: Annexin A3 has been shown to be associated with 

platinum resistance in ovarian cancer cells and to be enriched in EVs 

from cisplatin resistant ovarian cancer cells (Yin et al., 2012). 

Another protein, TrpC5, transferred by EVs, has been shown to 

increase drug resistance in breast cancer cells and been shown to 

cause sequestration of adriamycin and induce P-glycoprotien 

expression; this is also taken up by endothelial cells (Ma et al., 2014). 
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- microRNAs: EVs have been suggested as an important vehicle for 

transfer of microRNAs between cells as the microRNAs are protected 

from degradation by RNAses (Koga et al., 2011). It has been 

suggested that additional protection is provided by associated Ago2 

complexes (Li et al., 2012b). Various studies show that microRNAs 

in EVs provide potential biomarkers for drug resistance (Taylor and 

Gercel-Taylor, 2008, Skog et al., 2008, Rabinowits et al., 2009, 

Gercel-Taylor et al., 2012, Aushev et al., 2013). In a study in prostate 

cancer cells, four microRNAs (miR-598, miR-34a, miR-146a, miR-

148a) were shown to be enriched in derived EVs mirroring the parent 

cell; of these miR-34a was shown to knockdown Bcl-2 thus 

modulating response to docetaxel (Corcoran et al., 2014). A specific 

microRNA panel (miR-1228*, miR-1246, miR-1308, miR-

149*, miR-455-3p, miR-638 and miR-923) was shown to be enriched 

in EVs derived from multidrug resistant ALL (acute lymphoblastic 

leukaemia) and breast cancer cell lines (Jaiswal et al., 2012). In breast 

cancer cell lines, adriamycin and docetaxel resistant cell line derived 

EVs could increase chemotherapy resistance in the sensitive cell line 

and were found to be enriched in specific miRNAs (Chen et al., 

2014a); tamoxifen resistance was increased by miR-221/222 transfer 

through EVs (Wei et al., 2014).  

- Other mechanisms: Takahashi et al showed that EV mediated 

transfer of linc-ROR and linc-VLDLR could increase chemotherapy 

resistance (Takahashi et al., 2014b, Takahashi et al., 2014c). A novel 

mechanism of drug resistance was described in B-cell lymphomas 

where CD20 on EVs bound to rituximab, an anti CD20 chimeric 

antibody used for therapy, as well as to complement; thus shielding 

cells from the drug; approximately 50% of the drug was found to bind 

to EVs (Aung et al., 2011). 

1.5.6.2. EVs in therapy 

The presence of EVs in blood, plasma and other secreted fluids suggests a possible 

role for EVs as biomarkers. EVs from patients with cancer were shown to mirror the 

microRNA profile of the tumour itself indicating the possibility of their use as 
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biomarkers (Taylor and Gercel-Taylor, 2008, Rabinowits et al., 2009,). A recent 

paper has shown that microRNA profiling of EV content could predict the presence 

of metastatic sporadic melanoma (Pfeffer et al., 2015). EV microRNA was shown to 

reflect the removal of tumours in patients after resection in lung cancer (Aushev et 

al., 2013). In another study involving pancreatic cancers, exoDNA and exoRNA 

sequencing of EVs derived from a pleural effusion or from blood could identify 

mutations and copy number profiles (San Lucas et al., 2015). It has been suggested 

by one study that long non coding RNA, lnc-p21, in EVs may potentially 

differentiate prostate cancer from benign disease (Isin et al., 2015).  

It has recently been suggested that specific molecular signature of EVs derived from 

prostate cancer may predict response to docetaxel (Kharaziha et al., 2015). Similarly, 

evidence suggests that the protein profile of EVs derived from multidrug resistant 

cancers differs from that of their sensitive counterparts (Lopes-Rodrigues et al., 

2015). 

The participation of EVs in eliciting immune responses has sparked an interest in the 

use of EVs for anti-tumoral vaccines (Chaput et al., 2003, Chaput et al., 2004b, 

Chaput et al., 2004a).  

1.5.7. EXTRACELLULAR VESICLES IN OVARIAN CANCERS 
In ovarian cancers, EVs in the serum of patients with ovarian cancer were shown to 

be enriched in miR-21, miR-141, miR-200a/b/c, miR-203, miR-205 and miR-214 

(Taylor and Gercel-Taylor, 2008). Meng et al (2016) showed that exosomal miR-

200a/b/c and miR-373 was higher in ovarian cancer patients. It has also been shown 

that the microRNA profile of EVs from peritoneal or pleural effusions of patients 

with ovarian cancer could be associated with progression free survival (Vaksman et 

al., 2014). Cappelleso et al (Cappellesso et al., 2014) demonstrated that miR-21 and 

PDCD4 levels in EVs from peritoneal effusions mirrored the levels in cystadenoma 

and serous carcinoma tumours. Annexin A3 has been shown to be associated with 

platinum resistance in ovarian cancer cells and to be enriched in EVs from cisplatin 

resistant ovarian cancer cells (Yin et al., 2012). Yi et al (2015) have shown that EVs 

from high grade ovarian cancer have the potential to regulate angiogenesis. These 

studies indicate the functional relevance of EVs in ovarian cancer – from the 

transport of microRNAs and proteins affecting various signalling pathways to 
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phenotypic effects such as angiogenesis, EVs can modulate cells in neighbouring and 

distant sites; EVs are also potential biomarkers for the various phenotypic 

characteristics of cancers. 

It can be seen that cisplatin resistance in ovarian cancer cells is a multifactorial 

complex process, the nuances of which are still being investigated; microRNAs and 

cell-cell communication by extracellular vesicles represent newer variables in the 

modulation of the response to cisplatin chemotherapy. These two aspects require 

further research if the various facets of cisplatin resistance are to be understood and 

overcome.  

1. 6. AIMS OF THE PROJECT 

Based on the gap in the knowledge identified above, this project aims  

• To identify microRNAs with a novel role in cisplatin resistance in ovarian 
cancer cells  

• To elucidate possible target genes and mechanisms of action of these 
microRNAs 

• To analyse aspects of the transfer of drug resistance between cells by 
extracellular vesicles 
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Chapter 2 MATERIALS AND METHODS 
 

General materials and methods are described here. Methods specific to each chapter 

are described in the materials and methods section at the beginning of each chapter. 

2.1. CELL CULTURE  
The main cell lines used in this project are the cisplatin sensitive ovarian cancer cell 

line A2780 (Parker et al., 1991) and its cisplatin resistant derivatives MCP1 and CP70 

(Parker et al., 1991). Other cell lines used to validate experiments include ovarian 

cancer cell lines OVCAR-5, OVCAR-8 (Stinson et al., 1992), IGROV-1 (Benard et al., 

1985) and SKOV-3 (Fogh, 1975). Human Ovarian Cancer cell lines A2780, MCP-1, CP-70 

and OVCAR-8 were cultured in RPMI (Invitrogen Gibco) supplemented with 10% v/v 

heat inactivated foetal bovine serum (Invitrogen Gibco). Human Ovarian Cancer Cell 

lines OVCAR-5 and IGROV-1 were cultured in DMEM/F-12 (Invitrogen Gibco) 

supplemented with 10% v/v heat inactivated foetal bovine serum (Invitrogen Gibco). 

Cells were sub-cultured every 5-7 days using 0.05% v/v trypsin/EDTA (Fisher, 

15400054) and fresh media was added every 2-3 days. 

2.2. MTT ASSAY 
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution was 

made up as 2 mg/ml of MTT (Sigma) in phosphate buffered saline (pH: 7.2 ± 0.05, 

Gibco). 100 µl of this solution was added to the 100 µl of growth medium already 

present in each test well of the 96-well plate. The plate was then incubated for 2 hours 

at 37°C. During this time the MTT is taken up by the viable cells and transformed into 

formazan salts which are purple coloured. All the liquid was then pipetted out of the 

wells leaving the coloured salts at the bottom of the wells. These were then dissolved in 

100 µl MTT solvent (4 mM HCl and 0.1% v/v IGEPAL® CA-630 (Sigma) in Isopropanol) 

was added to each well to dissolve the salts to form a coloured solution. The strength of 

the solution was quantified by reading the absorbance of each well on a plate reader at 

570 nm wavelength with a reference filter at 630nm. 

2.3. SULFURHODAMINE B ASSAY 
The protein dye sulfurhodamine B can be used to quantify proliferation by measuring 

protein content in fixed cells; in a mildly acidic environment it binds to basic amino 

acids in a cell and in a mildly basic environment it can be extracted from the cells 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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(Voigt, 2005). All growth media was removed from the wells. Cells were washed once 

with 100 µl phosphate buffered saline (Fisher Bioreagents) and then fixed with 100 

µl/well of 25% v/v acetic acid in methanol for 2 hours at 4°C. The fixative was then 

removed and cells were washed with distilled water, stained with 100 µl 0.4% w/v 

sulfurhodamine B sodium salt (Sigma) in 1% v/v acetic acid for 30 minutes. The stain 

was then removed, Cells were washed with 1% v/v acetic acid and air-dried. The stain 

was then dissolved in 100 µl/ well 10mM TRIS base (Fisher - BPE152-1, 0.121 g in 100 

mls) solution and read on a plate reader at 570 nm. 

2.4. CISPLATIN TREATMENTS 
Optimal cisplatin concentrations were determined by treating cells seeded in 96-well 

plates with varying concentrations of cisplatin  for 3 hours 48 hours after seeding. MTT 

assay was done 48 hours after cisplatin treatment. The dose response curves for 

A2780, MCP1 and CP70 are shown in Figure 3.1 and the curves for OVCAR-5, OVCAR-8 

and IGROV-1 are shown in appendix A – Figure A-2. IC50 was estimated using 

GraphPad Prism. For OVCAR-5 though the IC50 was estimated at about 100µM, when 

this concentration was used in the cells, there was >60% cell death; hence the 

concentration was lowered to 50µM to give 50% cell death.  

Cells were seeded in 96 well plates (day 0) at optimal concentrations (Table 2-1). On 

day 1, any experimental intervention such as miRNA, siRNA or shRNA treatment was 

completed as described in Section 2.5. On each plate, in addition to the controls for the 

treatment, one group of cells was left untreated as an internal control. On day 2,  half of 

the wells in all groups including the internal controls were treated with cisplatin 

(Fisher; stock solution - 16.7 mM made up in PBS) for 3 hours diluted in media to 

optimal concentrations (Table 2-1) or at varying concentrations for dose response 

curves. After 3 hours, the media containing cisplatin was removed, cells were washed 

with PBS and fresh media was added. On day 4, viability assays such as MTT or 

sulfurhodamine B were performed. The internal controls were analysed; the 

percentage of absorbance of cisplatin treated cells to untreated cells in this group is 

expected to be within the range of 40% to 60%. If the readings were beyond this range, 

the plate was excluded from the analysis for the experiment. 
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TABLE 2-1: OPTIMAL CELL CONCENTRATIONS AND CISPLATIN CONCENTRATIONS 

USED FOR EACH CELL LINE 

Cell Line Cell 

concentrations 

(per well) in 96-

well plate 

IC50 Cisplatin 

concentration 

(µM) 

A2780 10 000 19.5 to 26.25 20 

MCP1 10 000 76.26 to 94.71 80 

CP70 6 000 123 to 141.5 150 

OVCAR-5 15 000 76.2 to 130.1 50 

OVCAR-8 10 000 88.8 to 126 80 

IGROV-1 15 000 35.07 to 49.15 50 

 

2.5. DRUG TREATMENTS 
16F16 (Sigma, SML0021) was used to inhibit PDIs at a final concentration of 2.5 µM in 

media. Paxilline (Sigma, P2928) was used to block BKCa channels at a final 

concentration of 10 µM in media. Heparin (Sigma, H3393), amiloride (Sigma, A3085) 

and dynasore (Sigma, D7693) – EV uptake inhibitors were diluted in media to final 

concentrations of 10 µg/ml, 50 µM and 50 µM respectively. Guggulsterone (Sigma, 

G5168) and Bexarotene (Sigma, SML0282) were used at final concentrations of 50µM 

and 5µM respectively. 

2.6. MIRNA, SIRNA AND SHRNA TRANSFECTION 
Cells were seeded in 96-well plates at optimal concentrations. After 24 hours, 

microRNA mimics, miR-21*mimic (Dharmacon, Thermo, UK, C-301023-01-0005), 

miR-31 mimic (Dharmacon, Thermo, UK, C-300507-05) or miRNA mimic 

negative control 2 (Dharmacon, Thermo, UK, CN-002000-01-20) were transfected 

at 5 nM using Dharmafect 3 transfection reagent (0.1 µl/ well). For microRNA 

inhibitor experiments, miRIDIAN hairpin inhibitors; miR-21* inhibitor 

(Dharmacon, Thermo, UK, IH-301023-02-0005), miR-31 inhibitor (Dharmacon, 

Thermo, UK, IH-300507-06-0005) or inhibitor negative control (Dharmacon, 

Thermo, UK, IN-001005-01-05) were transfected at 50nM using Dharmafect 3 

transfection reagent (GE Dharmacon, DZT-2003-02) (0.1 µl/ well). NAV3 
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knockdown siRNA (SASI_Hs01_00215078) – 

(CUCUAAUUUAAAUAGGAGA[dT][dT]) and siRNA negative control 

(MISSION® siRNA Universal Negative Control #2 SIC002) (both from Sigma), 

PDIA4 knockdown siRNAs (Thermo Fisher Scientific s225164 and s225165 - 

4392420) and siRNA negative control (Fisher 4390843) were transfected at 50 nM 

concentrations using Dharmafect 3 transfection reagent (0.1 µl/ well). Three shRNAs 

designed to target different areas of KCNMA1 mRNA were used to knockdown 

KCNMA1; the sequences are as follows KCNMA1 shRNA1- 

CCGGGCGTAGTATTCAAACCAGTATCTCGAGATACTGGTTTGAATACTAC

GCTTTTT - TRCN0000000209, KCNMA1 shRNA2 – 

CCGGCCCAATAGAATCCTGCCAGAACTCGAGTTCTGGCAGGATTCTATTG

GGTTTTT - TRCN0000000210 and KCNMA1 shRNA3– 

CCGGTGGCAGAAATACTACTTGGAACTCGAGTTCCAAGTAGTATTTCTGC

CATTTTT - TRCN0000000211. As a control, a scrambled negative shRNA (Sigma, 

UK, SHC002V) was used. They were transfected at concentrations of 50ng plasmid 

per well of 96-well plate using Fugene (0.25 µl/ well) (Roche, UK). Cells were 

harvested for RNA or protein extraction 24 hours after treatment with miRNA, 

siRNA or shRNA. For experiments involving drug resistance, cells were treated with 

cisplatin or doxorubicin 24 hours after transfection with miRNA mimics, inhibitors, 

siRNA or shRNAs. 

2.7. WESTERN BLOTTING 
Total protein was extracted from cells using RIPA buffer (50 mM Tris HCl pH 8 

(Fisher, T/P631/48), 150 mM NaCl, 1% v/v IGEPAL-CA630 (Sigma), 0.25% 

sodium deoxycholate, 0.01% SDS, 10 mM EDTA (Sigma - E4884) and 2 mM 

EGTA (VWR, 0732-50GP) and quantified by the BCA assay using standardised 

solutions of BSA (Thermo Fisher Scientific). Approximately 20 µg of protein was 

prepared in SDS-PAGE loading dye with DTT (Fisher FQ-R0861) and heated to 

100oC for 10 minutes. Samples were loaded onto a 12% denaturing polyacrylamide 

gel (BioRad, 12% Mini-PROTEAN® TGX Stain-Free™ Gel #456-8046), 

electrophoresed and transferred to a PVDF membrane (Bio-Rad, 170-4156). The blot 

was blocked with 5% BSA in TBS-0.05% tween (TBST) for 2 hours at room 

temperature (RT). Primary antibodies were diluted to 1:10,000 (anti-GAPDH 

antibody, Abcam, AB8245), 1:500 (anti-KCNMA1 antibody, Abcam, AB104711) or 
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1:1000 (Anti-NAV3 antibody, Sigma N4288-200UL) and incubated with the blot 

overnight at 4°C. Membranes were washed and incubated for 1 hour at RT in 

1:5,000 (NAV3) or 1:10,000 (KCNMA1) secondary-HRP labelled antibody (170-

6515, Bio-Rad) and washed. The blots were then immersed in ECL solution (Clarity 

Western ECL solution, BioRad, 170-5060) and digitally imaged Bio-Rad Chemi-

Doc MP system and analysed using ImageLab software.  

2.8. QRT-PCR 
24 hours following transfections the cells were washed with PBS and extracted 

straight from the well using TRI-reagent (Sigma) (1ml for 10 minutes). The RNA 

was extracted and analysed for quality and quantity using a Nanodrop and 

Bioanalyzer 2100. Taqman miRNA assays (Thermo Fisher) were used as per 

manufacturer’s instructions to quantify miR-31, miR-21* and a reference gene, 

RNU58a. Quantification was performed using the 2ΔΔCt method. For measuring 

NAV3, KCNMA1 and PDIA4 levels the RNA was DNAse I (Sigma) treated, cDNA 

was then synthesised (HiCap RNA-to-cDNA kit, Life technologies, UK). 30ng of 

cDNA was used per 20µl SYBR green PCR reaction along with 1µl each of forward 

and reverse primers (10µM) (Sigma) and 10µl of SYBR green mastermix (SensiMix 

SYBR, Bioline, UK); the reactions were subjected to 40 cycles of PCR with 10 

seconds of denaturation at 95°C, 10 seconds of annealing at 60°C and 20 seconds of 

elongation at 72°C in Bio-Rad CFX96 RT-PCR system. No-template and no-RT 

reactions gave no or negligible signal (Ct values of 36 or over). NAV3, PDIA4 and 

KCNMA1 were quantified using the 2^-ΔΔCt method with GAPDH as reference 

gene. Statistical significance was assessed using the Student’s t-test. RNA was 

extracted by me, the qPCRs for Mir-21*, Mir-31, NAV3 and KCNMA1 were 

performed by Dr. Pink; results are published in Pink et al. (2015) and Samuel et al. 

(2015) and are referred to and discussed in chapters 2 and 3. For PDIA4 qPCR, I 

performed the qPCR. PDIA4 primers used were – forward 5’ - 

TCCATGGCAACTTCTTCCC, reverse 5’ - CATTGCGGACGAAGAGGAC .  

2.9. MICRORNA MICROARRAY 
A2780, MCP1 and CP70 cells were washed with PBS and total RNA was extracted 

using Trireagent (Sigma). Three biological replicates for each cell line were obtained 

and 2 μg RNA aliquots were sent to Exiqon for miRCURY LNA microarray 



58 

 

analysis. RNA quality was assessed on the Agilent Bioanalyzer 2100 (only samples 

with RIN value >8 were used). and the samples were individually labelled with 

Hy3™, and a pool of all nine samples was Hy5™ fluorescent labelled (power 

labelling kit, Exiqon, Denmark). Samples were then hybridised to the miRCURY 

LNA array (5th generation). Image analysis was carried out using the ImaGene 8.0 

software (BioDiscovery Inc, USA). Quantified signals were background corrected 

and normalised using the global Lowess (LOcally WEighted Scatterplot Smoothing) 

regression algorithm to minimise the intensity-dependent differences between the 

dyes. To identify differentially expressed miRNAs a 2-tailed t-test was applied and 

Bonferroni correction was applied.  

2.10. NIMBLEGEN GENE MICROARRAY 
A2780 cells were seeded in 6-well plates and allowed to settle for 24 hours. They 

were then transfected with microRNA-21* mimics or control microRNA at 5nM 

using Dharmafect 3 transfection reagent (0.1 µl/well).  24 hours later, cells were 

washed with PBS and total RNA was extracted using TRIreagent (Sigma) and 

DNase treated using a Qiagen RNeasy miniprep kit. The RNA quality was verified 

with Agilent Bioanalyzer 2100; only samples with RIN value >8 were used. 100 ng 

of RNA was taken to generate cDNA using the Transplex complete whole 

transcriptome amplification kit (Sigma). Nimblegen Gene microarray was performed 

with these samples. In summary, the cDNA sample was RNase (Sigma) treated and 

cDNA was precipitated following the Nimblegen Expression Array protocol. 

Samples were labelled with Nimblegen dual-colour DNA labelling kit, hybridised to 

a Nimblegen 12plex x 135k gene Human transcriptome microarray and washed 

according to the supplier’s protocol. The array slide was scanned at 3 μm resolution 

on an InnoScan 700 microarray scanner and converted into TIFF images using 

MAPIX version 5.1 software. The TIFF images were then aligned to their 

Nimblegen design files and converted into probe intensity values using the 

Nimblegen DEVA software. This data was then Loess normalised using R statistical 

program and then quantile normalised for array variation using DNAstar (ArrayStar 

Inc.). Significant difference of gene expression between three biological replicates 

was assessed by fold change and t-test using the DNAstar software. RNA was 

extracted for this procedure by me, the microarray was performed by Dr. Pink. 
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2.11. RNA SEQUENCING 
RNA was extracted from two biological replicates of A2780 and CP70 cells, and one 

MCP1 sample using TRIreagent (Sigma), and 10 μg of each was sent to Source 

BioScience to be sequenced on an Illumina Genome Analyser IIx. The single-end 38 

base-pair reads were aligned using Illumina’s pipeline software. Transcript 

abundance was estimated using Cufflinks and results presented as reads per kilobase 

of transcript per million mapped reads. Relative levels of transcripts between 

samples were compared using DESeq. Genes that were significantly and 

concordantly altered in MCP1 and CP70 cells were analysed using the DAVID 

functional annotation tool (Version 6.7) to assess enriched KEGG pathways and 

gene ontology molecular function results.  

2.12. STATISTICAL ANALYSIS  
Student’s t-test was used to analyse statistical significance for point to point 

comparisons in the bar charts. GraphPad Prism was used to calculate IC50s for 

curves and to analyse significance in differences between IC50s of curves; this uses 

the extra sum-of-squares F test to determine if the IC50s are significantly different 

between curves. Pearsons correlation was used to identify correlations between IC50 

for cisplatin and gene expression levels in NCI 60 cell line panel dataset (GEO 

GDS1761 / 2618). Gene expression levels between resistant and sensitive tumours in 

the TCGA ovarian cancer dataset were compared using a student’s t-test; these 

analyses were done using Microsoft Excel software. For all experiments at least 

three biological replicates were performed to enable statistical comparisons. For 

experiments involving A2780 cells, experiments were repeated to ensure 

experimental repeatability; thereby giving a larger number of replicates. P-values in 

figures are depicted as follows: <0.05 - *, <0.01 - **, <0.001 - ***, <0.0001 - ****.  
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Chapter 3 MICRORNA-21* INCREASES CISPLATIN 

RESISTANCE IN OVARIAN CANCER CELLS 

3.1 INTRODUCTION 
As described in section 1. 1, ovarian cancer claims more than 150 000 lives 

worldwide every year (Fitzmaurice et al., 2015). One contributor to the high 

mortality rate is resistance to platinum drugs, the main drugs used for chemotherapy. 

The resistance to cisplatin is multifactorial and regulated by many networks of 

genes; one emerging ubiquitous group of modulators is the microRNAs which have 

been shown to be involved in many physiological and pathological cellular processes 

including cisplatin resistance. Though several microRNAs have been shown to 

regulate cisplatin resistance, there are indications that many more are involved. 

Hence one of the aims of the project (Section 1. 6) was to identify microRNAs that 

have a role in the cisplatin resistance of ovarian cancer cells for which such a role 

has not been described thus far. Paired ovarian cancer cell lines A2780 and cisplatin 

resistant derivative CP70 were used to identify microRNAs that could possibly be 

involved in the cisplatin resistance of this paired cell line.  

This chapter describes the identification of microRNAs potentially involved in 

cisplatin resistance and the validation of miR-21* as one of the microRNAs involved 

in cisplatin resistance and the validation of NAV3 as its target gene. MicroRNA-21* 

was of special interest as it is a passenger strand microRNA. Only one strand of the 

microRNA duplex (see section 1: Introduction), thought to be determined by the 

thermodynamic stability of the base pairs at the 5’ end, is loaded into the RISC 

(RNA induced silencing complex) (Kim, 2005, Han et al., 2006, Winter et al., 2009). 

The other strand is known as the passenger strand or the star strand and was 

originally thought to be degraded (Matranga et al., 2005, Winter et al., 2009). 

However, recent studies have shown that the proportion of the 5p and the 3p strands 

varies between tissues and species (Ro et al., 2007, Biasiolo et al., 2011); it may be 

altered by changes in temperature (Potla et al., 2015). Passenger strands have been 

shown to have a functional role in thyroid cancer and can target genes that are 

different from the guide strand (Jazdzewski et al., 2009).  Both the guide strand and 

the passenger strand of miR-17 and miR-582 were found to modulate tumour growth 
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in prostate cancer and bladder cancer, respectively (Uchino et al., 2013, Yang et al., 

2013c), while the passenger strand of miR-221 has been shown to promote colorectal 

cancer tumour growth (Yuan et al., 2013). The two strands of miR-28 were shown to 

act on different targets and have opposing effects on migration and invasion in 

colorectal cancers (Almeida et al., 2012). Similarly, miR-125-5p and miR-125-3p 

were shown to have opposing effects on cell migration and invasion in NSCLC (non-

small cell lung carcinoma) (Jiang et al., 2010). 

MicroRNA-21* was specifically shown to be induced by berberine treatment in the 

hepatocellular carcinoma cell line HepG2 and to inhibit the cell growth in hepatomas 

(Lo et al., 2013). There have been indications of its involvement in breast cancer; 

levels were increased in a group of breast cancer tissues; overexpression of miR-21* 

resulted in increased proliferation in breast cancer cell lines and enhanced activity of 

the Akt pathway (Aure et al., 2013). MiR-21* was also overexpressed in 

chemoresistant triple negative breast cancer (Ouyang et al., 2014). A study of 

laryngeal cancers has shown a 1.8 fold upregulation of miR-21* (Lu et al., 2014) 

while there was also significant upregulation in a group of 30 cervical cancers (Han 

et al., 2015). In cardiac tissue, miR-21* was found to be enriched in EVs derived 

from cardiac fibroblasts and was shown to mediate cardiac hypertrophy (Bang et al., 

2014). On the other hand, another study showed that miR-21* overexpression 

suppressed transverse aortic constriction induced cardiac hypertrophy (Yan et al., 

2015). MiR-21* was also found to be increased in kidneys of patients with acute 

kidney injury after kidney transplants (Wilflingseder et al., 2014). Moreover, a 

recent publication has shown an increase in miR-21* correlates with tumour 

progression in squamous cell carcinoma of the skin (Ge et al., 2015). These studies 

suggest that miR-21* may have a significant role in cancer.The aim of this aspect of 

the project was also to identify possible mechanisms and gene targets by which miR-

21* could cause resistance to cisplatin. In published literature, few targets have been 

validated for miR-21*. MiR-21* was shown to decrease proliferation in 

hepatocellular carcinoma by targeting human methionine adenosyltransferases 2A 

and 2B (Lo et al., 2013).  MiR-21* was found to increase expression of L1CAM (L1 

cell adhesion molecule), which is associated with poor prognosis in cancers, through 

knockdown of CALM1, a negative regulator in renal cancer cell lines; miR-21* was 
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also shown to increase migration of the cells (Doberstein et al., 2014). MiR-21* was 

shown to enhance the activity of the AKT pathway in breast cancer (Aure et al., 

2013) and in cardiac tissue by the down regulation of HDAC8 (histone deacetylase-

8) (Yan et al., 2015). In cardiac tissue, miR-21* was shown to knockdown SORB2 

(sorbin and SH3 domain containing protein 2) and PDLIM5 (PDZ and LIM domain 

5), which are deregulated in cardiac pathologies (Bang et al., 2014). However none 

of these are associated with cisplatin or drug resistance. This chapter also describes 

the identification of NAV3 as a target gene of miR-21* involved in cisplatin 

resistance.   

3.2 MATERIALS AND METHODS 
Materials and methods specific to this chapter are described here. Other general 

methods are described in Chapter 2. 

3.2.1 LUCIFERASE ASSAY 

A luciferase assay was done in order to validate NAV3 as a direct target of miR-21*. 

A2780 cells were stably transfected with Lentiviral vector pLSGNAV3 3′UTR-

RenSP (Mission® 3′UTR Lenti GoClone NAV3 from Sigma) and selected with 

puromycin (0.5 μg/ml). Stable cells were seeded at 20 000 cells/well in 96-well 

plates and transfected with miR-21* mimics or negative control mimic (Dharmacon, 

Thermo, UK) at 5 nM with 0.1 μl/ well of Dharmafect 3 transfection reagent. After 

24 hrs, cells were lysed (using the lysis solution from Dual-Glo luciferase assay 

system from Promega), 75 μl of Renilla substrate (Dual-Glo Luciferase assay system 

from Promega) was added and luminescence quantified on a luminometer. 

3.2.2 PDI INHIBITOR TREATMENT 

In order to assess the effect of knockdown of PDIA4 on cisplatin resistance, cells 

were treated with PDI inhibitor 16F16 (Sigma, SML0021) diluted in media at 2.5 

µM for 1 hour prior to cisplatin treatment. 

3.2.3 APOLIVE-GLO MULTIPLEX ASSAY 

In order to quantify viability and apoptosis, the ApoLive-Glo Multiplex assay 

(Promega) was performed as per manufacturer’s protocol. Briefly, 20 µl of viability 
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reagent (fluorogenic live cell protease marker) was added to each well. After 30 

minutes of incubation, fluorescence was quantified at UVEx/530Em using a Bio-Rad 

imager and intensity quantified with ImageLab 5.1. Then 100µl of Caspase-Glo® 

3/7 reagent (luminogenic caspase 3/7 substrate) was added to each well. 

Luminescence was quantified after 30 minutes of incubation.  

3.3 RESULTS 

3.3.1. CISPLATIN RESPONSE CURVES OF CELL LINES 

The cell lines used in this project are the A2780, an ovarian serous adenocarcinoma 

cell line and MCP-1 and CP-70s, cisplatin resistant derivatives of the A2780. The 

cell growth characteristics of these cell lines were monitored by MTT assay and 

optimal cell numbers to be seeded for week long experiments in 96-well plates were 

determined to be 10000 cells/well for A2780s and MCP1 and 6000 cells/well for 

CP70s. Cisplatin dose response curves (Figure 3.1) were plotted for the three cell 

lines by treating cells in 96-well plates with varying concentrations (0 - 400µM) of 

cisplatin; cell viability was assessed by the MTT assay. A2780 is seen to be the most 

cisplatin sensitive cell line with 50% cell death occurring around 20 μM cisplatin 

treatment; CP70s are the most cisplatin resistant with 130 μM cisplatin required for 

similar percentage of cell death. The cisplatin resistance exhibited by MCP1 appears 

to be higher than that of the A2780s but lower than that of the CP70s with 50% cell 

death occurring around 80μM cisplatin. Other cell lines used in the project are 

ovarian cancer cell lines, OVCAR-5, OVCAR-8 and IGROV-1. Cisplatin 

concentration curves were also plotted for these cell lines (shown in appendix A, 

Figure A-2) and optimal concentration for cisplatin treatment was determined to be 

50 μM, 80 μM and 50 μM respectively as described in section 2.4.  
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FIGURE 3.1: CISPLATIN DOSE RESPONSE CURVES FOR A2780, MCP1 AND CP70 
A2780, MCP1 and CP70 cells seeded in 96-well plates were treated with increasing 
concentrations of cisplatin for 3 hours. Cell viability was assessed after 48 hours by the MTT 
assay. Absorbance was normalised to untreated cells in each group; error bars show SEM from 
at least 6 biological replicates for each point of the graph.   IC50 calculated by GraphPad PRISM 
is as follows: A2780 – 22.64±1.721 µM, MCP1 – 84.83±4.751 µM and CP70 – 131.9±4.673 µM 
indicating that CP70s are the most resistant to cisplatin while A2780s are the most cisplatin 
sensitive cell line of the three cell lines. 

3.3.2. MIRNA MICROARRAY INDICATES MICRORNAS POSSIBLY INVOLVED IN 

RESISTANCE 

In order to identify microRNAs that are up- or down-regulated in the resistant cell 

lines, total RNA extracted (TRI-reagent) from A2780, MCP1 and CP70 was sent to 

Exiqon for miRCURY LNA miRNA microarray analysis. Only microRNAs with at 

least a 2-fold change between sensitive and resistant cell lines and a significant p-

value < 3.91*E-05 were classified as showing differential expression. Results are 

shown in Table 3-1, and Figures 3.2 – 3.4. In total, 46 microRNAs showed 

differential expression between one of the resistant cell lines and the sensitive cell 

line.  25 microRNAs were upregulated in the CP70 cell line (Table 3-1) when 

compared with the A2780 cell line while 18 microRNAs were downregulated (Table 

3-1). Expression levels of 13 microRNAs were higher (Table 3-1) and 9 microRNAs 

were lower (Table 3-1) in the MCP1 cells as compared to the A2780 cells. 8 

microRNAs were concordantly upregulated and 7 microRNAs were downregulated 
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in both resistant cell lines while 4 microRNAs showed discordant regulation between 

the resistant cell lines. MicroRNA-31 shows the highest fold change with expression 

50-fold higher in the CP70 cells than the A2780 cells. The heat map from the 

microarray showing all the microRNAs with significant changes in expression in all 

the replicates is shown in Figure 3.2. Blue indicates levels lower than the average 

levels in all samples while red indicates levels higher than the average. Figure 3.3 

shows a volcano plot of the fold changes in CP70 vs A2780 against the p-values 

from two tailed T-test while Figure 3.4 shows the volcano plot of fold changes in 

MCP1 over A2780 against p-values (Two tailed T-test). MiR-21* and miR-31 

datapoints are highlighted. In Figure 3.3, miR-31 clearly shows the highest fold 

change and a significant p-value; miR-21* is among the microRNAs with 

significantly different expression between the two cell lines. 

TABLE 3-1:  MICRORNAS SIGNIFICANTLY DEREGULATED IN THE RESISTANT CELL LINES 
miRNA microarray was performed on total RNA extracted from the A2780, MCP1 and CP70; 
results were normalised, Lowess corrected and Bonferroni correction applied. Table shows all 
microRNAs that were significantly deregulated in the resistant cell lines – CP70 and MCP-1 – as 
compared to the resistant cell line. Three replicates were used for each sample. Only microRNAs 
with at least 2-fold change and p-value < 3.91*E-05 were chosen. 

microRNA 

fold change 
CP70 vs 
A2780 

p-value CP70 
vs A2780 

fold change 
MCP1 v 
A2780 

p-value MCP1 
v A2780 

hsa-miR-31 50.36275 1.28E-07   
hsa-miR-10a 21.81537 2E-06   
hsa-miR-31* 15.33747 6.85E-07   
hsa-miR-222 9.921415 1.26E-06 3.477058 2.16E-05 
hsa-let-7i 6.938651 3.63E-06   
hsa-miR-221 6.513637 5.04E-06 2.924624 3.55E-05 
hsa-let-7g 5.740532 2.31E-06   
hsa-let-7c 5.211375 2.53E-05 2.470035 0.000138 
hsa-miR-29b 4.023443 2.77E-05 2.496424 0.000272 
hsa-miR-9 4.020124 2E-05   
hsa-miR-21 3.908365 6.74E-06 2.006828 0.000191 
hsa-miR-9* 3.823692 4.24E-06   
hsa-miRPlus-
E1186 3.409833 1.46E-05 2.367232 7.49E-05 
hsa-miR-182 3.166715 7.6E-05   
hsa-miR-21* 2.994392 4.65E-06 2.012074 0.000508 
hsa-miR-96 2.941224 1.41E-05   
hsa-let-7b 2.883473 9.58E-06   
hsa-miR-27b* 2.463407 8.96E-06 2.505888 0.00016 
hsa-miR-132 2.40558 1.3E-05   
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Table 3-1 contd.. 

hsa-miR-29c 2.387018 2.71E-05   
hsa-miR-27b 2.25834 1.77E-05   
hsa-let-7a 2.22355 0.000621 0.49531 0.001118 
hsa-miR-218 2.222012 0.000134 0.314613 0.000156 
hsa-miR-29a 2.135448 3.54E-07   
hsa-miR-212 2.028627 8.4E-05   
hsa-miR-18a*   2.002815 5.6E-06 
hsa-miR-19a   2.46716 0.000177 
hsa-miR-18a   2.399199 7.85E-05 
hsa-miR-18b 0.498287 2.16E-05   
hsa-miRPlus-
E1238 0.48176 2.28E-05   
hsa-miR-602 0.459987 1.03E-05   
hsa-miR-17 0.42707 3.23E-05   
hsa-miR-210 0.417759 1.21E-05 0.253264 5.53E-06 
hsa-miR-92a 0.409684 9E-05   
hsa-miR-106a 0.394816 2.98E-05   
hsa-miRPlus-
F1181 0.372698 3.1E-05   
hsa-miR-19b 0.335621 5.65E-06   
hsa-miR-100 0.327802 3.07E-05 0.30231 3.49E-05 
hsa-miR-135a 0.266752 0.000257 2.953007 0.000578 
hsa-miR-106a* 0.219328 5.24E-06 0.230747 1.05E-05 
hsa-miR-34a 0.143713 1.12E-06 0.133853 1.56E-06 
hsa-miR-143 0.111691 1.12E-06   
hsa-miR-20b 0.089706 3.71E-08 0.119124 2.95E-06 
hsa-miR-363 0.055433 6.75E-07 0.036125 2.27E-06 
hsa-miR-199b-5p 0.053188 6.55E-06 0.336708 0.00032 
hsa-miR-335 0.049947 6.13E-06 2.290361 0.000423 
 

  
significantly upregulated compared to the 
A2780 cell line 

 

  
significantly downregulated compared to 
the    A2780 cell line 
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FIGURE 3.2: MICROARRAY HEAT MAP 
MicroRNA microarray was performed on total RNA extracted from the A2780, MCP1 and CP70; 
results were normalised, Lowess corrected and Bonferroni correction applied. Only microRNAs 
with a fold change of at 2-fold and significant p-value < 3.91*E-05 were further assessed. Blue 
indicates levels lower than the average of all the samples while red indicates levels higher than 
the average. 
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FIGURE 3.3: VOLCANO PLOT SHOWING DIFFERENTIALLY EXPRESSED 
MICRORNAS IN CP70 VS A2780 
The microRNA microarray results of differentially regulated microRNAs in CP70 vs A2780 are 
depicted here as a volcano plot. The log2 of the fold change values are plotted against –log10 p-
values (Two tailed t-test) on the Y-axis. MiR-31 and miR-21* datapoints are highlighted. 

FIGURE 3.4: VOLCANO PLOT SHOWING DIFFERENTIALLY EXPRESSED 
MICRORNAS IN MCP1 VS A2780 
The microRNA microarray results of differentially regulated microRNAs in MCP1 vs A2780 are 
depicted here as a volcano plot. The log2 of the fold change values are plotted against -log10 p-
values (Two tailed t-test) on the Y-axis. MiR-31 and miR-21* datapoints are highlighted. 
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These results indicate the these microRNAs are differentially regulated in the 

resistant phenotype and merit further investigation regarding their role in the 

regulation of a resistant phenotype. Of these microRNAs, miR-21* was of special 

interest as it is a passenger strand and miR-31 showed the highest fold change 

between the sensitive and resistant cell lines. This chapter discusses the investigation 

of miR-21* and cisplatin resistance; microRNA-31 and its association with cisplatin 

resistance is presented in Chapter 4.  

3.3.3. MICRORNA-21* AND CISPLATIN RESISTANCE 
3.3.3.1. MICRORNA-21* LEVELS ARE HIGHER IN CISPLATIN RESISTANT 

CELL LINES 

In order to confirm the results of the microarray, miR-21* levels were estimated by 

Taqman miRNA qPCR assay in total RNA extracted from the A2780 and CP70 

cells; the procedure was performed by Dr. Ryan Pink. The results are presented in 

Pink et al (2015). Expression of miR-21* was nearly 20-fold higher in the cisplatin 

resistant CP70 cell line as compared to A2780 cell line.  

3.3.3.2. MICRORNA-21* AND CISPLATIN RESISTANCE IN OVARIAN CANCER 

CELL LINES 

Gain or loss of function experiments were carried to establish if microRNA-21* 
modulated cisplatin resistance. 

Raising levels of miR-21* increases resistance  
To investigate if increasing the levels of miR-21* within cells changes resistance, 

A2780 cells in half of the wells on a 96-well plate of were transfected with miR-21* 

mimics alongside control cells transfected with a neutral microRNA (Section 2.5) 

and then treated with cisplatin (Section 2.4) at 20 µM. The response was quantified 

as cell viability by the MTT assay (Section 2.2). The results indicate that A2780 cells 

treated with miR-21* mimic have a 20% higher percentage of survival than those 

treated with controls (Students t-test, p-value < 0.0001) (Figure 3.5).  
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FIGURE 3.5: MICRORNA-21* INCREASES 
RESISTANCE TO CISPLATIN IN A2780 CELLS 
A2780 cells in 96 well plates were treated with 
5nM miR-21* mimics or negative control 
miRNA and then subjected to 20 µM cisplatin 
treatment for 3 hours. The percentage of cell 
viability (measured by the MTT assay 48 hours 
after cisplatin treatment) after cisplatin 
treatment as compared to that of untreated 
cells in each group was then normalised to 
control and compared by the student’s t-test; 
error bars show SEM of 64 biological replicates. 
The results show an increase in resistance after 
treatment with microRNA-21* mimics by about 
20% (p-value<0.0001). 
 

FIGURE 3.6: MICRORNA-21* INCREASES 
CISPLATIN RESISTANCE IN A2780 
(SULFURHODAMINE B ASSAY)  
A2780 cells in 96 well plates were treated 
with 5nM microRNA-21* mimics or negative 
control miRNA and then subjected to 20 µM 
cisplatin treatment for 3 hours. The 
percentage of cell viability (as measured by 
the Sulfurhodamine B assay 48 hours after 
cisplatin treatment) after cisplatin treatment 
as compared to that of untreated cells in each 
group was then normalised to control and 
compared by the student’s t-test; error bars 
show SEM of 12 biological replicates. The 
results show an increase in resistance after 
treatment with microRNA-21* mimics by 
about 15% (p-value<0.001). 
 

Similar results were obtained when the cisplatin response of miR-21* mimic treated 
and control treated A2780 was quantified by the sulfurhodamine assay (Section 2.3) 
(Figure 3.6). MiR-21* mimic treated group showed a 15% increase in cell viability 
as compared to the control treated cells (students t-test, p-value < 0.001). This shows 
that miR-21* mimics increase cisplatin resistance. 

Cisplatin concentration curves were experimentally plotted using MTT assay after 

miR-21* mimic treated A2780 cells and negative control treated A2780 cells were 

treated with varying concentrations of cisplatin (Figure 3.7). The IC50s were then 

calculated using GraphPad PRISM; miR-21* mimic treatment was shown to raise 

the IC50 from 9.056µM to 13.15µM; this shift in the curve was shown to be 

significant using the extra sum-of-squares F test in GraphPad PRISM (p-value = 

0.0051). 
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FIGURE 3.7: MIR-21* MIMIC TREATED CELLS SHOW INCREASED CISPLATIN RESISTANCE 
A2780 cells seeded in 96-well plates were treated with 5nM miR-21* mimics or 5nM  negative 
control miRNA 24 hours after seeding. 24 hours later, they were subjected to different 
concentrations of cisplatin for 3 hours. Cell viability (as measured by the MTT assay) after a 
further 48 hours has been normalised to untreated cells in each group. Error bars show SEM of 
at least 5 biological replicates for each point.  IC50 of the control cells was calculated (GraphPad 
PRISM) as 9.056; treatment with miR-21* mimic raised it to 13.15; this difference was shown to 
be significant (p-value 0.0051) by the extra sum-of-squares F test in GraphPad PRISM. 

In order to validate the results, the experiments were repeated in three other ovarian 

cancer cell lines – MCP1, OVCAR-5 and IGROV-1. Treatment with miR-21* 

mimics increased cisplatin resistance in these cell lines (Figure 3.8). MCP1, the 

cisplatin resistant derivative of the A2780 cell line showed a significant increase in 

cell viability of about 20% after cisplatin treatment in the miR-21* mimic treated 

wells as compared to the control (p-value < 0.001). OVCAR-5 and IGROV-1 

showed an increase in cisplatin resistance by about 20% while it was more 

pronounced in OVCAR-8 with cell viability increasing by about 30% in the miR-21* 

mimic treated group. This confirms that miR-21* mimics transfection increases 

cisplatin resistance in a range of ovarian cancer cell lines. 
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FIGURE 3.8: MIR-21* MIMIC TRANSFECTION INCREASES RESISTANCE IN A PANEL OF 
OVARIAN CANCER CELL LINES 
Cells seeded in 96 well plates were treated with 5nM miR-21* mimics or control; after 24 hours 
they weresubjected to cisplatin treatment for 3 hours. MTT assay was performed 48 hours later; 
the percentage of cell viability (measured by the MTT assay) after cisplatin treatment as 
compared to that of untreated cells in each group was then normalised to control and compared 
by the student’s t-test; error bars show SEM from at least 9 biological samples. The results show 
an increase in cisplatin resistance after treatment with miR-21* mimics in all the cell lines. 

Inhibiting miR-21* decreases resistance  

In order to investigate the effect of inhibiting miR-21*, specific hairpin inhibitor of 
miR-21* were transfected into cells alongside a negative control siRNA and 
response quantified by MTT assay 48 hours after cisplatin treatment. In A2780 cells, 
cell viability decreased after cisplatin treatment by about 10% in the miR-21* 
inhibitor treated group as compared to the control (Figure 3.9, p-value = 4.37E-06). 
In the CP-70s, the resistant cell line, the decrease was marginally more marked with 
a 15% decrease in survival in the miR-21* inhibitor treated group (Figure 3.10; p-
value = 0.003477). This indicates that inhibiting miR-21* decreases cisplatin 
resistance in A2780s and cisplatin resistant CP70s. 
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FIGURE 3.9: MIR-21* INHIBITORS 
DECREASE RESISTANCE IN A2780 
CELLS 
A2780 cells were treated with 5nM miR-
21* inhibitors alongside negative controls; 
24 hours later treated with 20 μM cisplatin 
for 3 hours; cell viability was assessed by 
MTT assay 48 hours later. Results were 
assessed as percentage of cell survival after 
cisplatin treatment as compared to 
untreated cells and then normalised to 
control and compared using the students t-
test; error bars show SEM of 20 biological 
replicates. Results show a decrease in 
survival after miR-21* inhibitor 
treatment.(p-value < 0.0001) 
 

FIGURE 3.10: MIR-21* INHIBITORS 
DECREASE RESISTANCE IN CP-70 CELLS 
CP70 cells were treated with 5 nM miR-21* 
inhibitors alongside negative controls; 24 hours 
later treated with 150 μM cisplatin for 3 hours; 
cell viability was assessed by MTT assay 48 hours 
later. Results were assessed as percentage of cell 
survival after cisplatin treatment as compared to 
untreated cells and then normalised to control 
and compared using the students t-test; error 
bars show SEM of 20 biological replicates. 
Results show a substantial decrease in survival in 
the miR-21* inhibitor treated group as compared 
to the control.(p-value = 0.003477) 
 

The effects of miR-21* inhibitor treatment were also tested in the other ovarian 

cancer cell lines (Figure 3.11). In the OVCAR-5 cells there was a small (5%) 

decrease in survival in the wells treated with miR-21* inhibitors prior to cisplatin 

treatment (p-value < 0.05) while in the IGROV-1 cell line there was a substantial 

(30%) decrease in cell viability in the miR-21* inhibitor treated group as compared 

to the control (p-value < 0.001). The very marginal decrease in the OVCAR-8 cell 

cisplatin resistance upon inhibitor treatment was not significant. These results show 
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that, pre-treatment with miR-21* inhibitor decreases cell survival on cisplatin 

treatment. 

 

FIGURE 3.11: MIR-21* INHIBITORS DECREASE RESISTANCE IN OVARIAN CANCER CELL 
LINES 
OVCAR-5, OVCAR-8 and IGROV-1 cells were treated with 50 nM miR-21* inhibitors alongside 
negative controls; 24 hours later treated with appropriate cisplatin concentration for 3 hours; 
cell viability was assessed by MTT assay 48 hours later. Results were assessed as percentage of 
cell survival after cisplatin treatment as compared to untreated cells and then normalised to 
control and compared using the students t-test; error bars show SEM of at least 6 replicates. 
Results show a decrease in survival after miR-21* inhibitor treatment in OVCAR-5 and IGROV-1 
cell lines (Student’s t-test p-values <0.05 and <0.001 respectively); however there is no 
significant change in resistance in the OVCAR-8 cell line. 

3.3.4. IDENTIFICATION OF GENE TARGET OF MIR-21* 

In order to identify possible gene targets through which miR-21* modulates cisplatin 

resistance three approaches were used: 

1. Microarray was used to quantify gene expression levels in microRNA-21* 

mimic treated A2780 and control treated A2780 cells to identify genes with 

differential expression. The results of the microarray are described in Section 

3.3.4.1. 

2. RNA sequencing of total RNA from A2780, MCP1 and CP70s to identify 

genes with lower expression in CP70s than in A2780s. The results of the 

RNA sequencing are described in Section 4.2.3.1. 



75 

 

3. Predicted targets of miR-21* were identified through online prediction 

program miR-walk which also shows predictions by miRANDA, PICTAR, 

PITA and Targetscan (Dweep et al., 2011). Results are discussed in section 

3.3.4.3. 

3.3.4.1. GENE EXPRESSION MICROARRAY 

Gene expression microarray (method described in section 2.10; this microarray was 

performed by Dr Pink) was used to identify genes with a lower expression level in 

miR-21* mimic treated A2780s. 5nM microRNA-21* mimics were transfected in 

A2780 cells alongside control; total RNA extracted from both sets of cells was 

converted to cDNA, labelled using the dual-labelling Nimblegen Expression Array 

protocol, hybridised to a Nimblegen human transcriptome microarray, processed and 

scanned, converted to probe intensity, Loess- and quartile-normalised. 774 genes 

showed significant down-regulation with p-value < 0.05. Table 3-2  shows 30 down-

regulated genes with the highest fold change in the microRNA-21* mimic treated 

cells. The results are also shown as a volcano plot (Figure 3.12) with log2 fold 

change (miR-21* treated A2780 vs control A2780) plotted against –log10 p-value 

(two tailed T-test). NAV3 datapoint is highlighted. 

TABLE 3-2: TOP 30 DOWNREGULATED GENES IN MIR-21* MIMIC TREATED A2780 
CELLS 
 

Number gene Fold change P value 
1 DSPP 0.30447 0.00057 
2 OR4Q3 0.361882 0.00628 
3 OR5J2 0.368845 0.0307 
4 LOC647315 0.404726 0.00673 
5 CHRM2 0.410338 0.0113 
6 KRTAP26-1 0.412532 0.000397 
7 OR2F1 0.415295 0.00977 
8 OR51F2 0.417786 0.0127 
9 DSG4 0.422472 0.00613 

10 OR2T8 0.432284 0.0431 
11 OR2T33 0.432441 0.0368 
12 KRTAP21-1 0.433447 0.0236 
13 KRTAP19-1 0.439084 0.0284 
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Table 3-2 contd.. 

Number gene Fold change P value 
14 DSG4 0.443013 0.00968 
15 KRTAP13-1 0.445072 0.0191 
16 KRTAP19-1 0.452724 0.0298 
17 LOC646036 0.462944 0.0146 
18 OR52N5 0.475751 0.0198 
19 OR52E2 0.478061 0.00204 
20 KRTAP21-2 0.480694 0.0318 
21 NAV3 0.491796 0.00106 
22 OR10K1 0.493486 0.0235 
23 OR10G4 0.495873 0.0413 
24 RASSF6 0.502593 0.00777 
25 OR2T4 0.503748 0.0381 
26 OR1C1 0.506809 0.000438 
27 LOC642974 0.507505 0.0136 
28 LOC646738 0.511915 0.0132 
29 LOC642691 0.517265 0.025 
30 OR4K1 0.51914 0.0364 

 

FIGURE 3.12: VOLCANO PLOT MIR-21* VS CONTROL A2780 
Volcano plot showing microarray results -  log 2 fold change of miR-21* mimic treated A2780 vs 
control A2780 against –log10 p-value (Two tailed T-test). NAV3 datapoint is highlighted.  
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3.3.4.2. RNA SEQUENCING OF A2780, MCP1 AND CP70 CELL LINES:  

RNA sequencing (data presented in Section 2.11) was used to identify genes with 

decreased level of expression in CP70 as compared to A2780. These results are 

discussed in section 4.2.3.1. 21 genes that were significantly and concordantly down 

regulated in the CP70 and MCP1 cell lines and miR-21* mimic treated A2780s are 

shown in Table 3-3.  

3.3.4.3. MIRWALK PREDICTION OF TARGETS FOR MIR-21* 

The online target prediction site miRWalk which also uses predictions from 

miRANDA, PICTAR, PITA and Targetscan was used to identify the presence of 

predicted target sites for miR-21* on the 21 genes of interest. The number of 

programs that predicted direct target sites for miR-21* on each gene are shown in 

Table 3-3. Only ten of these genes were predicted to be possible direct targets for 

microRNA-21*.  
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TABLE 3-3: TABLE SHOWING GENES WITH SIGNIFICANT DOWNREGULATION IN BOTH 
MIR-21* MIMIC TREATED A2780S AND IN CP70S 
gene Fold change MiR-

21* v control A2780 
P value  fold change 

CP70 v A2780 
No of programs 

predicting target 
sites for miR-21* 

NAV3 0.491796 0.00106 0.043308 2 
MAMDC1 0.578199 0.0133 0.025884 2 
DUSP15 0.6347 0.0117 0.294859 0 
MMP12 0.688634 0.00947 0.155521 1 
MCF2L 0.747838 0.0493 0.322626 0 
GUCY1B3 0.769102 0.0327 0.009633 0 
FGFR1 0.774261 0.0411 0.319566 0 
LRRC54 0.815706 0.0215 0.42271 2 
PRTG 0.82748 0.0188 0.293472 2 
PRAME 0.83008 0.00444 0.205112 0 
CRISPLD1 0.837649 0.0337 0.054499 0 
HRC 0.852772 0.038 0.024003 0 
RAD51L1 0.876691 0.0337 0.093278 1 
CASP1 0.886228 0.0394 0.025706 0 
CFH 0.889898 0.000916 0.26174 0 
RTTN 0.89005 0.00836 0.062524 0 
TRPM3 0.89691 0.0123 0.013509 2 
DREV1 0.897284 0.0389 0.234848 1 
SLC7A2 0.898151 0.0315 0.266712 1 
GPC6 0.900474 0.0311 0.035161 0 
PDIA4 0.902532 0.0474 0.4086 2 

3.3.4.4. CORRELATION WITH CISPLATIN RESISTANCE IN NCI60 PANEL OF 

CELL LINES 

In order to further whittle down possible gene targets of miR-21*, gene expression 

levels from RNA sequencing data of ovarian cancer tumours was obtained from The 

Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/). The tumours were 

divided into resistant and sensitive; the change in expression levels of the genes of 

interest between the resistant and sensitive tumours were analysed; the fold change 

and T-test values are given in Table 3-4. Of the genes of interest, only PDIA4 and 

RTTN showed a slight but significant change in expression levels with down 

regulation in resistant tumours. 

Analysing the correlation of the genes with the cisplatin IC50 of established NCI60 

panel cell lines would provide further indication that the gene could be involved in 
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cisplatin resistance. Target genes of miR-21* that are involved in cisplatin resistance 

would be negatively correlated with the IC50 in the cell lines.  Therefore GEO 

dataset (GEO GDS1761 / 2618) with gene expression data of all the NCI60 panel of 

cell lines acquired by microarray was obtained from the GEO website along with the 

cisplatin IC50 of these cell lines. The two datasets were analysed to identify 

correlations between expression of gene of interest and IC50. The ovarian cancer 

tumours from the TCGA dataset were divided into resistant and sensitive; the change 

in expression levels of the genes of interest between the resistant and sensitive 

tumours were analysed using Student’s t-test. PDIA4 showed a significant decrease 

in resistant tumours in the TCGA dataset (Figure 3.13). In the dataset with the 

NCI60 panel cell lines, while analysis of all the cell lines did not show any 

significant correlation (Pearson’s correlation and p-values are shown in Table 3-4), 

analysis of the ovarian cancer cell lines on the panel appeared to show a significant 

negative correlation between cisplatin resistance and PDIA4. Figure 3.14 shows the 

correlation between PDIA4 and cisplatin IC50 of all the cell lines from the NCI60 

panel – no significant correlation or trend is seen; however, on analysis of the 

ovarian cancer cell line subset (Figure 3.15), a very strong negative correlation 

appears to exist (Pearsons -0.917; p-value < 0.05). As PDIA4 appears to correlate 

with both cisplatin resistance in the NCI60 panel and chemotherapy resistance in the 

TCGA dataset, it was further investigated. 
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TABLE 3-4: GENES OF INTEREST CORRELATION WITH TCGA OVARIAN CANCER GENE 
EXPRESSION DATA AND NCI60 PANEL GENE EXPRESSION –CISPLATIN IC50 DATA 

gene Fold 
change 
MiR-21* 
vs 
control 
A2780 

fold 
change 
CP70 v 
A2780 

No of 
programs 
predictin
g target 
sites for 
miR-21* 

TCGA 
data 

correl
ation 

t-test 
value 

Pearso
ns 

correl
ation 
NCI60 
panel 

p-
value 

Pearso
ns 

correl
ation 
NCI60 
panel 

– 
ovaria

n  

p-
value 

NAV3 0.492 0.043 2 0.821 0.148 -0.038 0.775 -0.038 0.942 
MAMDC1 0.578 0.026 2 0.890 0.686 NA  NA  
MMP12 0.689 0.156 1 0.578 0.146 -0.199 0.127 -0.649 0.163 
LRRC54 0.816 0.423 2 1.013 0.936 NA  NA  
PRTG 0.827 0.293 2 1.105 0.607 NA  NA  
RAD51L1 0.877 0.093 1 1.047 0.502 NA  NA  
TRPM3 0.897 0.014 2 0.794 0.262 NA  NA  
DREV1 0.897 0.235 1 0.990 0.851 -0.159 0.224 0.037 0.944 
SLC7A2 0.898 0.267 1 1.175 0.560 NA  NA  
PDIA4 0.903 0.409 2 0.789 0.002 0.045 0.733 -0.917 0.01 
          
 NA - Not available      
  - Significant change/correlation 
   

 
FIGURE 3.13: PDIA4 EXPRESSION IN SENSITIVE AND RESISTANT OVARIAN CANCERS IN 
TCGA DATA 
RNA sequencing data was downloaded for the ovarian cancer dataset from The Cancer Genome 
Atlas along with clinical data indicating resistance or sensitivity to chemotherapy. The 
expression levels (RPKM) of PDIA4 were compared between the sensitive set and the resistant 
set of ovarian tumours; fold changes are presented in Table 3-4. The expression of PDIA4 was 
significantly different between the sensitive and the resistant set (student’s t-test p-value = 
0.002). 
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FIGURE 3.14: PDIA4 EXPRESSION LEVELS AND CISPLATIN IC50 IN NCI60 PANEL 
Data set GEO GDS1761 / 2618 was obtained from the GEP website. PDIA4 expression levels from this 
dataset for the cell lines in the NCI60 panel were plotted with cisplatin IC50 for the cell lines. No 
significant correlation is seen. 

 
FIGURE 3.15: PDIA4 EXPRESSION LEVELS AND CISPLATIN IC50 IN OVARIAN CANCER 
SUBSET OF NCI60 PANEL 
Expression level of PDIA4 in the ovarian cancer subset of NCI60 panel of cell lines and corresponding 
cisplatin IC50 were plotted. Data from GEO website: GEO GDS1761 / 2618. A strong negative 
correlation can be clearly seen (Pearsons -0.917, p-value < 0.05).  

3.3.5. PDIA4 AND CISPLATIN RESISTANCE 

Loss of function experiments were done to ascertain if PDIA4 had a role in cisplatin 

resistance. PDI inhibitor 16F16 was used to decrease PDI function. In published 
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literature, PDI inhibitor 16F16 has been used at various concentrations from 2µM 

(Liu et al., 2015) to 50µM (Zhang et al., 2014).  Hoffstrom et al. (2010) and Kaplan 

et al., (2015) showed that the EC50 was 1.5µM while Liu et al (2015) showed effects 

on cancer cells from about 2µM. Hence, the A2780 cells were treated with 2 µM 

16F16. A2780 cells were treated with 2 µM 16F16, a general PDI inhibitor 1 hour 

prior to treatment with cisplatin at 20 μM for 3 hours. Viability was assayed after 48 

hours by MTT assay (Section 2.2). Results (Figure 3.16) showed a significant 

increase in resistance by about 20% (students t-test p-value <0.0001). These results 

indicate that PDI inhibitors increase cisplatin resistance in A2780 cells. 

 

FIGURE 3.16: PDI INHIBITOR 16F16 INCREASES RESISTANCE TO CISPLATIN 
IN A2780 CELLS 
A2780 cells seeded in 96-well plates were treated with 2 μM 16F16 for 1 hour prior to treatment 
with cisplatin for 3 hours. Cell viability was assessed by the MTT assay 48 hours later; resistance 
values were quantified as a percentage of cisplatin untreated cells in each group and normalised to 
control; error bars show SEM of 15 biological replicates. Results showed a significant increase in 
resistance in 16F16 treated group (students p-value < 0.0001). 

Two specific siRNAs designed to knockdown PDIA4 at two different regions were 

obtained from Fisher Scientific (see section 2.5). Knockdown of PDIA4 was 

confirmed by RT-qPCR with SYBR Green (method and primers described in section 

2.7). Data was analysed by the 2ΔΔCt method with GAPDH as the reference gene. Results 
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are shown in Figure 3.17; PDIA4 siRNA1 showed >60% knockdown (p-value < 

0.001) and PDIA4 siRNA2 showed 25% knockdown (student’s t-test p-value < 

0.01).  

 

FIGURE 3.17: PDIA4 SIRNA KNOCKDOWN VALIDATED 
30ng of cDNA was used per 20µl SYBR green PCR reaction along with 1µl each of forward and 
reverse primers (10µM) (Sigma) and 10µl of SYBR green mastermix (SensiMix SYBR, Bioline, UK); the 
reactions were subjected to 40 cycles of PCR with 10 seconds of denaturation at 95°C, 10 seconds of 
annealing at 60°C and 20 seconds of elongation at 72°C in Bio-Rad CFX96 RT-PCR system.Data was 

analysed by the 2^ΔΔCt method normalised to GAPDH; the result is shown normalised to the 

control transfected cells. 

A2780 cells were then treated with 50nM PDIA4 knockdown siRNA1 or siRNA2 

alongside control siRNA prior to treatment with cisplatin. Cell viability was assessed 

by MTT assay (section 2.2). Unexpectedly, specific knockdown of PDIA4 had no 

significant effect on cisplatin resistance in A2780 cells (Figure 3.18). Therefore 

genes of interest were re-evaluated using the approaches described before. 
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FIGURE 3.18: PDIA4 KNOCKDOWN DOES NOT AFFECT CISPLATIN RESISTANCE IN 
A2780 CELLS 
A2780 cells seeded in 96-well plates were treated with 50nM PDIA4 knockdown siRNA1 or siRNA2 or 
control siRNA for 24 hour prior to treatment with cisplatin for 3 hours. Cell viability was assessed by 
the MTT assay 48 hours later; resistance values were quantified as a percentage of cisplatin 
untreated cells in each group and normalised to control; error bars show SEM of 25 biological 
replicates. Results showed no significant change in resistance PDIA4 knockdown groups.. 

3.3.6. NAV3 AND CISPLATIN RESISTANCE 

Neurone navigator 3 (NAV3) with a significant fold change of 0.492 in the miR-21* 

treated cells (Section 3.3.4.1), a significant fold change of 0.0433 in the CP70 cells 

(Section 3.3.4.2) and predicted by both miRWalk and MiRanda to have a target site 

for miR-21* (Section 3.3.4.3) was further investigated. The TCGA dataset, however 

did not show a significant difference between the resistant and sensitive tumours for 

expression of NAV3 (Figure 3.19). 



85 

 

 

FIGURE 3.19: NAV3 DOES NOT SHOW SIGNIFICANT DIFFERENCE BETWEEN SENSITIVE 
AND RESISTANT TUMOURS IN TCGA DATASET 
RNA sequencing data was downloaded for the ovarian cancer dataset from The Cancer Genome 
Atlas along with clinical data indicating resistance or sensitivity to chemotherapy. The 
expression levels (RPKM) of NAV3 were compared between the sensitive set and the resistant 
set of ovarian tumours; fold changes are presented in Table 3-4. The difference between the 
sensitive and resistant sets were not significant. 

3.3.6.1. NAV3 AND RESISTANCE IN OVARIAN CANCER CELL LINES 

NAV3 was transiently knocked down using 50 nM specific NAV3 knockdown 

siRNA (Section 2.5) in A2780 cells in a 96-well plate alongside cells treated with 

negative control siRNA (MISSION® siRNA Universal Negative Control #2 SIC002 

from Sigma). Knockdown was validated in A2780 by western blot (Pink et al., 

2015). Half of the wells in each group were then treated with 20 µM cisplatin and 

proliferation assessed by MTT assay (Section 2.2). Results show about 10% higher 

survival after cisplatin treatment in NAV3 silenced cells as compared to the control 

cells (Student’s t-test p-value <0.001) (Figure 3.20).  
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FIGURE 3.20: TRANSIENT NAV3 KNOCKDOWN RAISES CISPLATIN RESISTANCE LEVELS 
IN A2780  
A2780 cells in 96-well plates were subjected to transient knockdown of NAV3 by treatment 
with 50nM siRNA alongside appropriate controls for 24 hours. They were then treated with 
20µM cisplatin for 3 hours. After 48 hours, cell viability as measured by MTT was quantified as a 
percentage of untreated cells in each group and then normalised to control. Error bars show 
SEM of 20 biological replicates. The results show an increase in resistance by about 10% 
(students t-test, p-value < 0.001) 

 

Similar results were obtained from the other cell lines (Figure 3.21). NAV3 

knockdown in OVCAR-5 and IGROV-1 showed a marginal but significant (5-10%) 

increase in resistance (p-value < 0.01 and <0.05 respectively) while in the OVCAR-8 

cell line, there was a substantial (almost 40%) increase in resistance in the cells in 

which NAV3 was knocked down as compared to the control (p-value < 0.01). 

Therefore NAV3 knockdown increases cisplatin resistance in ovarian cancer cell 

lines. 
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FIGURE 3.21: NAV3 KNOCKDOWN INCREASES CISPLATIN RESISTANCE IN OVARIAN 
CANCER CELL LINES 
NAV3 was transiently knocked down in OVCAR-5, OVCAR-8 and IGROV-1 cells and response to 
cisplatin quantified by MTT assay. Cells were seeded in 96-well plates and transfected with 50nM 
NAV3 knockdown siRNA. 24 hours later, half the wells in each group were treated with cisplatin 
(50µM for OVCAR-5 and IGROV1 and 80µM for OVCAR-8) for 3 hours. Cell viability was assessed by 
MTT assay after 48 hours. Error bars show SEM of at least 12 biological replicates. All three cell lines 
showed an increase in resistance. (* - p-value <0.05; ** - p-value<0.01) 

3.3.6.2. NAV3 LEVELS LOWER IN CP70 

NAV3 protein expression levels were compared in A2780 and CP70 by western 

blotting (Section 2.7). The results, shown in FIGURE 3.22, confirm decreased levels 

of NAV3 in the resistant CP70 cell line.  

FIGURE 3.22: WESTERN BLOT SHOWS NAV3 LEVELS LOWER IN CP70 CELL LINE.  
Protein was extracted from A2780 and CP70 cells and run on a 7.5% denaturing polyacrylamide gel, 
electrophoresed and transferred to a PVDF membrane. The membrane was blocked with 5% w/v 
Marvel in TBS-Tween, incubated with the primary antibody (1:10000 overnight at 4°C for NAV3 or 
1:15000 for 1 hour at room temperature); then incubated with the HRP-labelled secondary antibody 
(1:5000 for 1 hour at room temperature) and washed. They were then immersed in ECL solution and 
digitally imaged. Results show lower levels of NAV3 in the resistant cell line. The original blots are 
shown in Appendix D: Figure D:4. 



88 

 

3.3.7. NAV3 IS A DIRECT TARGET OF MIR-21* 

Further experiments were carried out in order to validate that NAV3 is a direct target 

of miR-21*. 

3.3.7.1. NAV3 PROTEIN LEVELS ARE LOWER IN MIR-21*MIMIC TREATED 

CELLS 

 NAV3 protein levels were quantified by western blotting (Section 2.7). Total protein 

was extracted from miR-21* mimic treated and negative control treated A2780 cells. 

Western blotting results for NAV3 performed on this protein are shown in FIGURE 

3.23. NAV3 protein levels are markedly decreased in cells transfected with miR-21* 

mimics suggesting that NAV3 is indeed a target of miR-21*. 

 

FIGURE 3.23: WESTERN BLOTTING SHOWS A DECREASE IN NAV3 LEVELS ON 
TREATMENT WITH MIR-21* MIMICS 
Total protein was extracted from A2780 cells, 24 hours after transfection with 5 nM miR-21* 
mimics or negative control miRNA. Protein was extracted and run on a 7.5% denaturing polyacrylamide 
gel, electrophoresed and transferred to a PVDF membrane. The membrane was blocked with 5% Marvel in TBS-
Tween, incubated with the primary antibody (1:10000 overnight at 4°C for NAV3 or 1:15000 for 1 hour at room 
temperature); then incubated with the HRP-labelled secondary antibody (1:5000 for 1 hour at room 
temperature) and washed. They were then immersed in ECL solution and digitally imaged. Results show lower 
levels of NAV3 in the resistant cell line. Levels are markedly lower in miR-21* mimic treated cells as 
compared to the control.  The original blots are shown in Appendix D: Figure D.3.  

3.3.7.2. LUCIFERASE ASSAY SHOWS NAV3 IS A DIRECT TARGET OF 

MICRORNA-21* 

In order to show that NAV3 is a direct target of microRNA-21*, luciferase assay 

(Section 3.2.1) was performed. A2780 cells stably expressing NAV3-3’ UTR 

luciferase construct (Lentiviral vector pLSGNAV3 3′UTR-RenSP) were selected 

with puromycin. These cells were then treated with miR-21* mimic or negative 
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control and luciferase expression levels determined by the luciferase assay. Results 

(Figure 3.24) indicated that levels of luciferase expression decreased by 15% when 

treated with miR-21* mimics as compared to control miRNA transfection (p-

value<0.001).  

 
 
FIGURE 3.24: LUCIFERASE ASSAY INDICATES THAT NAV3 IS A DIRECT TARGET OF MIR-
21* 
A2780 cells stably expressing NAV3-3’ UTR luciferase construct were transfected with 5nM miR-
21* mimics or negative control microRNA. 24 hours later luciferase expression was determined by 
the luciferase assay. Results are presented normalised to the control; error bars show SEM of 6 
biological replicates; there is decrease in luciferase expression by 15% on treatment with miR-21* 
mimics as compared to the control (p-value < 0.001). 

 

3.3.8. MIR-21* AND PROLIFERATION/ APOPTOSIS 

To assess the effect of miR-21* on proliferation and apoptosis, Apo-Live Glo assay 

was performed. A2780 cells were treated with 5nM miR-21* mimics or control for 

24 hours prior to treatment with cisplatin. 48 hours later, both proliferation and 

apoptosis were quantified by the Apo-Live Glo assay. Apoptosis was quantified as 

percentage of cisplatin untreated cells and normalised to the control. As seen in 

Figure 3.25, there is no significant change in apoptosis on miR-21* mimic treatment. 
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FIGURE 3.25: MIR-21* MIMIC TREATMENT DOES NOT CHANGE APOPTOSIS IN A2780 
CELLS 
A2780 cells seeded in 96-well plates were treated with 5nM miR-21* mimic or negative control; 
24 hours later, half the wells in each group were treated with 20μM cisplatin. Proliferation and 
apoptosis were assessed 48 hours later by the Apo-Live Glo assay from Promega. Apoptosis was 
quantified as percentage of untreated cells normalised to control. There appears to be no 
significant change in apoptosis in miR-21* mimic treated cells. 

When proliferation was compared between miR-21* mimic treated cells and control 

treated cells, there appears to be no significant change; however when the 

proliferation is compared between cisplatin treated cells, those treated with miR-21* 

mimics show a significant increase in proliferation as compared to control treated 

cells (student’s t-test p-value =0.0092) (Figure 3.26).  
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FIGURE 3.26: MIR-21* MIMIC INCREASE PROLIFERATION ON CISPLATIN TREATMENT 
A2780 cells seeded in 96-well plates were treated with 5nM miR-21* mimic or negative control; 
24 hours later, half the wells in each group were treated with 20μM cisplatin. Proliferation and 
apoptosis were assessed 48 hours later by the Apo-Live Glo assay from Promega. Proliferation 
was normalised to control; error bars show SEM of 6 biological replicates. There appears to be 
no significant change in proliferation in miR-21* mimic treated cells as compared to controls; 
however on cisplatin treatment, there is a significant increase in proliferation (students t-test p-
value =0.0092) in the miR-21* mimic pretreated cells. 

The same trend is seen from the MTT assay (combined data shown in Fig 3.4) in 

A2780 cells treated with miR-21* mimic or control with or without cisplatin 

treatment. In fact, there appears to be a slight decrease in cell viability on treatment 

with miR-21* mimic (student’s t-test p-value <0.01) with no cisplatin treatment 

(Figure 3.27). However, on cisplatin treatment, cell viability is markedly increased 

(student’s t-test p-value < 0.001) in the cells pre-treated with miR-21* mimics as 

compared to control. 

** 
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FIGURE 3.27: MIR-21* MIMICS INCREASE RESISTANCE ON CISPLATIN TREATMENT 
A2780 cells were treated with 5 nM miR-21* mimics or negative control; 24 hours later, half the 
wells in each group were treated with 20μM cisplatin. Cell viability was assessed by the MTT 
assay 48 hours later. Viability was normalised to control; error bars show SEM of 64 biological 
replicates. There is a slight decrease in viability (student’s t-test p-value < 0.01) in miR-21* 
mimic treated cells as compared to controls; however on cisplatin treatment, there is a 
significant increase in viability (student’s t-test p-value < 0.001) in the miR-21* mimic 
pretreated cells. 

This effect was verified in NAV3 knockdown in A2780 cells. Transient NAV3 

knockdown was achieved using 50nM siRNA-NAV3 in A2780 cells alongside 

negative control treatment with or without further cisplatin treatment. There is no 

significant change in viable cells on NAV3 knockdown by siRNA (Figure 3.28); 

however on cisplatin treatment, NAV3 knockdown in A2780 cells appears to 

increase viability by about 20% (student’s t-test p-value < 0.001).  
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FIGURE 3.28: NAV3 KNOCKDOWN INCREASES RESISTANCE ON CISPLATIN TREATMENT 
IN A2780 CELLS 
A2780 cells were treated with 50nM NAV3-siRNA or negative control; 24 hours later, half the 
wells in each group were treated with 20μM cisplatin. Cell viability was assessed by the MTT 
assay 48 hours later. Viability was normalised to control; error bars show SEM of 20 biological 
replicates. There is no significant change in viability in the cells with NAV3 knockdown as 
compared to controls; however on cisplatin treatment, there is a significant increase in viability 
(student’s t-test p-value < 0.001) in the cells with transient NAV3 knockdown. 

3.4 DISCUSSION 
MicroRNAs are shown to regulate various aspects of cancer including metastasis, 

growth and drug resistance. This study used A2780, an ovarian adenocarcinoma cell 

line and its cisplatin resistant derivatives, MCP1 and CP70 to study the effect of 

microRNAs on drug resistance and to identify microRNAs that have thus far not 

been shown to have an effect on drug resistance. Initially, in order to identify 

microRNAs that might possibly be involved in cisplatin resistance, microRNAs 

differentially expressed between the sensitive and resistant cell lines were identified 

by miRNA microarray. 46 microRNAs were significantly deregulated; of these 8 

microRNAs were significantly up regulated in both the resistant cell lines while 7 

microRNAs were concordantly down regulated. Some of these microRNAs such as 

miR-17, miR-19a and miR-222 have also previously been shown to be similarly 

deregulated in published studies profiling microRNA expression in cisplatin resistant 

ovarian cancer cells (van Jaarsveld et al., 2013) increasing the confidence in the 

validity of the microarray. Other microRNAs showing differential expression include 

some microRNAs that are often shown to be deregulated in ovarian cancers such as 
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the miR-200 family (Muralidhar and Barbolina, 2015), let-7 family (Wang et al., 

2012) and miR-214 (Penna et al., 2015).   

One of the microRNAs which showed an increased expression in CP70 cells was 

miR-21*. MiR-21* was of special interest as it is a passenger strand microRNA. As 

discussed in section 3.1, studies have shown miR-21* to be deregulated in breast 

cancer, cervical cancers and squamous cell carcinoma of skin; however no studies 

have linked miR-21* with an active role in ovarian cancer thus far. 

MicroRNA-21* was further investigated. The functional significance of miR-21* in 

cisplatin resistance was established by gain of function experiments with increasing 

levels of miR-21* shown to increase cisplatin resistance in ovarian cancer cell lines; 

this was further corroborated by loss of function experiments with inhibiting levels 

of miR-21* decreasing cisplatin resistance in four of the five tested cell lines. 

Though OVCAR-8 showed an increase in cisplatin resistance on treatment with 

miR-21* mimic, the converse supposition that a decrease in functional miR-21* 

would increase cisplatin sensitivity could not be shown. This could possibly be due 

to a number of factors including inefficiency of transfection in this particular cell 

line, cell line variation, the possibility of irreversibly altered genes or epigenetic 

modifications being involved in the resistance pathway, or the dominance or positive 

bias of a different pathway all of which points to the multifactorial and complex 

nature of cisplatin resistance. 

MicroRNAs achieve their phenotypic effects by posttranscriptional modifications of 

target genes leading to a decrease in their protein levels and a possible decrease in 

mRNA levels. To this end, it is expected that an increase in levels of the microRNA, 

either endogenously or through artificial means would decrease the protein, and 

possibly mRNA levels of the target genes providing a method to identify genes of 

interest. A multipronged approach was taken to elucidate the pathways involved in 

miR-21*’s modulation of cisplatin resistance and to ascertain possible targets of 

miR-21* involved in cisplatin resistance: 

• Genes down regulated by miR-21* were identified by microarray analysis 

• Genes down regulated in CP70 and MCP1 cell lines which have a higher 

levels of miR-21* were determined by RNA sequencing 
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• Genes with predicted target sites for miR-21* were pinpointed using 

miRWalk, the online target prediction site 

• Correlations between gene levels and cisplatin IC50 in the NCI panel of cell 

lines using data obtained from GEO dataset (GEO GDS1761 / 2618)  were 

identified 

• Analysis of gene expression levels in sensitive and resistant ovarian cancers 

from the TCGA database was used to corroborate possible involvement of 

the gene in cisplatin resistance 

 The results of the microarray analysis of gene expression in A2780s treated with 

miR-21* mimcs compared to those treated with control microRNAs have been 

presented in this chapter. Of the top 30 genes identified by microarray to be 

downregulated in miR-21* treated A2780s, RASSF6 has previously been identified 

as a tumour suppressor belonging to the RASSF family (Allen et al., 2007) affecting 

apoptosis and the cell cycle by modulating MDM2 and p53 (Iwasa et al., 2013); low 

expression of RASSF6 been shown previously to be associated with poor survival in 

pancreatic cancer (Ye et al., 2015) and treatment resistance in nasopharyngeal 

carcinoma (Liang et al., 2014) and to be frequently epigenetically inactivated in 

childhood leukaemias (Hesson et al., 2009). It has been shown that DSPP (one of the 

small integrin family of binding proteins) has previously been linked to breast and 

lung cancer but not with ovarian cancer (Fisher et al., 2004).  There are a number of 

olfactory receptors and keratin associated protein family members on the list of 

deregulated genes; however none of these have been associated with ovarian cancers. 

This shows that a number of the genes pinpointed by the microarray have previously 

been associated with cancers and the list includes validated and novel targets of miR-

21*. 

In published literature, miR-21* has been shown to target human methionine 

adenosyltransferases 2A and 2B (Lo et al., 2013), CALM1 (Doberstein et al., 2014), 

HDAC8 (histone deacetylase-8) (Yan et al., 2015), knockdown SORB2 (sorbin and 

SH3 domain containing protein 2) and PDLIM5 (PDZ and LIM domain 5) (Bang et 

al., 2014). Of these genes, only PDLIM5 showed a marginal decrease (fold change 

0.81, p-value = 0.02) in miR-21* treated A2780s according to the microarray. 
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However there was no significant difference between the expression of PDLIM5  in 

A2780s and CP70s. 

As the main interest of the project was cisplatin resistance, the focus was to find 

genes that were concordantly changed in the cisplatin resistant derivatives of the 

A2780 cell line, the CP70 and MCP1. Hence genes were narrowed down based on 

the consistency of deregulation in these cell lines and in miR-21* treated A2780s. In 

a bid to check clinical relevance and widen the scope of the study, the expression of 

the genes in the TCGA RNA sequencing data in sensitive and resistant ovarian 

cancer cell lines as well as expression level correlations with IC50 of cell lines in the 

NCI60 panel were also taken into account.  

Initially, PDIA4 was identified as a possible target for miR-21*’s effect on cisplatin 

resistance. PDIA4 belongs to the family of protein disulphide isomerases associated 

with the endoplasmic reticulum protein processing pathway forming native 

disulphide bonds and is an ER chaperone protein (Jessop et al., 2007, Satoh et al., 

2005, Meunier et al., 2002). PDIA4 was induced by ER stress inducers tunicamycin 

and thrapsigargin exhibiting temporal changes (Mintz et al., 2008). In inflammatory 

bowel mucosa, levels of PDIA4 was found to be increased (Bogaert et al., 2011). 

PDIA4 was found to be downregulated in pseudopapillary tumour of the pancreas, a 

low grade malignant tumour (Zhu et al., 2014); on the other hand, PDIA4 was 

overexpressed in oesophageal squamous cell carcinoma (Pawar et al., 2011). 

Interestingly, PDIA4 was found to be over-expressed in cisplatin resistant lung 

adenocarcinoma; PDIA4 inactivation was found to restore the apoptotic pathway 

(Tufo et al., 2014).  However, on investigation in the A2780 cell line, though there is 

possible evidence for the involvement of PDIs in cisplatin resistance, specific 

knockdown of PDIA4 failed to elicit a cisplatin resistant phenotype. Hence, it could 

not be established that PDIA4 had any functional relevance in cisplatin resistance in 

the A2780 cell lines. However, given the robust negative correlation between PDIA4 

and cisplatin IC50 in the NCI60 ovarian cancer panel and survival and PDIA4 

expression levels in the TCGA ovarian cancer data, PDIA4 is worth exploring in the 

context of other cell lines.  Nevertheless, PDIA4 was not of further interest in the 

context of this study. 
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Therefore genes of interest were re-evaluated based on the multiple criteria described 

above and NAV3, which was down regulated in both the resistant cell lines and in 

A2780 cells with increased miR-21* levels and had two predicted target sites for 

miR-21*, was identified as a potential target for miR-21* in causing a cisplatin 

resistant phenotype.  

NAV3 is one of the mammalian microtubule plus end tracking proteins, +TIPS, 

which are involved in many cellular processes including mitosis, cell migration and 

neurite extension (van Haren et al., 2009, Stringham and Schmidt, 2009). NAV3 has 

been shown to stabilise and enhance the growth of microtubules and is necessary for 

properly oriented chemotaxis (Cohen-Dvashi et al., 2015). It also has an actin-

binding domain indicating a possibility that it might have effects on the cytoskeleton 

and is thought to be a component of the neuron specific nuclear pore complex (Coy 

et al., 2002). NAV3 is involved in axon guidance and is expressed in the adult brain 

as well as activated T cells, placenta, colon and some cancers (Coy et al., 2002, Maes 

et al., 2002). NAV3 was found to be increased in brain tissue of patients with 

Alzheimer’s disease; it has been suggested that this is due to a decrease in miR-29a 

(Satoh, 2010, Shioya et al., 2010). NAV3 was also shown to be a target of miR-29c 

in a mouse model of Alzheimer’s disease (Zong et al., 2015). It often shows 

expression changes in neural tumours (Coy et al., 2002), NAV3 amplification is 

associated with a favourable prognosis while loss of NAV3 leads to an unfavourable 

prognosis. Possible targets for NAV3 include IL23R (interleukin 23 receptor) and 

GnRHR (gonadotropin releasing hormone receptor) (Carlsson et al., 2013). 

Overexpression of MECP2_e1 (methyl CpG-binding protein 2 gene) associated with 

Rett syndrome, a progressive neurodevelopmental disorder, is associated with 

overexpression of various genes including NAV3 (Orlic-Milacic et al., 2014).  

Recent studies have shown that other tumours may be associated with NAV3 

expression changes; it is a “hill” gene in the Wood study on the topography of breast 

and colorectal cancer (Wood et al., 2007). Colorectal cancer and adenomas are often 

associated with NAV3 copy number changes; NAV3 silencing induces up-regulation 

of IL23R which correlates strongly with lymph node metastases and Duke’s staging 

in colorectal cancer (Carlsson et al., 2012).  NAV3 copy number changes were 

detected in 20-25% of basal cell and squamous cell carcinomas; loss of NAV3 was 
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shown to be associated with decrease in CECR1 (a protein active in sites of 

inflammation during hypoxia and tumour growth) and an increase in IRF8 which is 

involved in immune regulation (Maliniemi et al., 2011). NAV3 deletion was also 

found in at least 50% of patients with cutaneous T cell lymphoma (Karenko et al., 

2005, Hahtola et al., 2008, Ranki et al., 2011); NAV3 silencing was shown to 

enhance the expression of interleukin 2 (Karenko et al., 2005). The expression of 

NAV3 was decreased in adrenocortical carcinomas as compared to adrenocortical 

adenomas (Soon et al., 2009). Loss of NAV3 has been shown to increase 

invasiveness, and possibly inhibit apoptosis, in breast cancer cells; this also 

correlates with shorter survival of breast cancer patients (Cohen-Dvashi et al., 2015). 

Duale et al. have also shown its possible induction by p53 after cisplatin treatment in 

testicular germ cell tumours (Duale et al., 2007). The literature therefore indicates 

that NAV3 is a tumour suppressor in some cancers, notably colorectal cancer and 

neural tumours; however, thus far, there is no proven role for NAV3 in ovarian 

cancer. NAV3 has previously been shown to be regulated by miR-29a and miR-29c 

in Alzheimer’s disease (Shioya et al., 2010, Zong et al., 2015). MiR-21 has also been 

shown to target NAV3 in hepatocellular carcinoma (Wang et al., 2015). NAV3 has 

not been validated as a target of miR-21* previously. 

The association between NAV3 and cisplatin resistance was explored by specific 

knockdown using NAV3-siRNA; this elicited cisplatin resistance in a panel of 

ovarian cancer cell lines. Moreover analysis of levels of NAV3 by western blot 

confirmed a decrease in the resistant cell lines. Corroboration that it was a target of 

miR-21* was obtained by a decrease in NAV3 levels on treatment with miR-21* and 

luciferase assays. Hence, the link has been established that miR-21* could decrease 

NAV3 levels and increase cisplatin resistance, knockdown of NAV3 levels could 

also produce a cisplatin resistant phenotype. 

To further explore the mechanism of action of miR-21*, proliferation and apoptosis 

levels were quantified. There appears to be no change in apoptosis on treatment with 

miR-21* mimics. MiR-21* mimic treatment of cells by itself does not appear to 

induce an increase in proliferation; in fact there appears to be slight reduction in cell 

viability in miR-21* mimic treated A2780s. However, on cisplatin treatment, there is 

a significant increase in proliferation in miR-21* pre-treated cells. This indicates that 
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miR-21* acts as a driver of proliferation on induction by cisplatin. The effect was 

phenocopied by NAV3 knockdown; NAV3 knockdown by itself did not induce any 

changes in proliferation; however on cisplatin treatment, there is a significant 

increase in proliferation. These indicate that miR-21* drives proliferation on 

cisplatin treatment. One of the limitations of the project is that the actual mechanism 

of action of miR-21* and NAV3 has not been identified. Another limitation is that 

most of the experiments have been carried out in vitro. Other considerations include 

the fact that the effect of knockdown of gene function by the siRNAs was not 

confirmed in all the cell lines; also the efficacy of the drug 16F16 on PDIA4 was not 

quantified. There is much scope for future research into the actual mechanism by 

which miR-21* and NAV3 modify response to cisplatin and if this is the same in all 

the cell lines and tumours. More of the genes identified as being of interest could be 

followed up; pathway analysis could also be used to identify the actual mechanism. 

It would be interesting to study if this effect on cisplatin resistance is also present to 

other drugs such as paclitaxel as well as in other types of cancers. Another avenue to 

explore would include studying the levels in blood of patients with ovarian cancer to 

identify if this could distinguish some patients who are resistant, thereby predicting 

chemotherapy response.  

Despite the limitations, the results indicate that miR-21* increases cisplatin 

resistance in ovarian cancer cell lines possibly by knockdown of NAV3 gene and 

protein levels. These novel findings contribute to the research in the field of the role 

of microRNAs in cisplatin resistance in ovarian cancer.  
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Chapter 4 MICRORNA-31 INCREASES CISPLATIN 

RESISTANCE IN OVARIAN CANCER CELLS 

4.1 INTRODUCTION 

MiRNA microarray of total RNA from A2780 (cisplatin sensitive ovarian cancer cell 

line) and CP70 (cisplatin resistant derivative of the A2780) cell lines indicated 

deregulation in the expression of about 50 microRNAs between the two cell lines 

(described in Section 3.3.2). MicroRNA-31 showed the highest difference in 

expression levels between A2780s and CP70s on the miRNA microarray with 50-

fold change between the two lines. This result was verified by qRT-PCR by Dr. 

Ryan Pink; the CP70s showed a significant increase in miR-31 expression while the 

MCP1 showed a small increase (Pink et al., 2015).  

MiR-31 is a pleiotropic microRNA, often deregulated in cancers; however the 

associations are very complex and not clearly understood. High levels of miR-31 are 

present in some cancers such as lung (Edmonds et al., 2015, Meng et al., 2015), 

oesophageal (Zhang et al., 2011, Liu et al., 2013b, Saad et al., 2013) and colorectal 

(Schee et al., 2012, Yang et al., 2013b, Nosho et al., 2014) implicating miR-31 as an 

oncomiR; in fact, in lung (Meng et al., 2013, Edmonds et al., 2015), oesophageal 

(Zhang et al., 2011, Wu et al., 2013) and colorectal cancers (Schee et al., 2012, 

Wang et al., 2014a), high levels of miR-31 are associated with poor prognosis. 

However, in other cancers such as prostate (Bhatnagar et al., 2010, Lin et al., 2013), 

glioblastoma ( Hua et al., 2012, Visani et al., 2014), breast (Korner et al., 2013, 

Ouyang et al., 2014) and leukemia (Yamagishi et al., 2012, Rokah et al., 2012) 

decreased levels of miR-31 are found; this suggests a tumour suppressing function 

with correlation of low miR-31 levels with poor prognosis in pancreatic cancer (Ma 

et al., 2013) and bladder (Segersten et al., 2014). Moreover, a study by Creighton et 

al suggests that miR-31 acts as a tumour suppressor in ovarian cancer cells with 

dysfunctional p53 signalling but not in cells with normal p53 (Creighton et al., 

2010). Further to this, research into oesophageal cell lines with inactive p53 

indicated that the tumour suppressive effect of miR-31 was only present if p21 was 

inactivated as well (Ning et al., 2014). These studies demonstrate that miR-31 can 

act through various targets and achieve different phenotypic effects in a tissue 
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specific manner; moreover, this effect can be modulated by mutations in other genes. 

The levels of miR-31 itself has been shown to be affected by various factors – the 

host gene MIR31 is located at chromosome 9p21.3, a frequently deleted location in 

cancers. Epigenetic modification also appears to play a role with EZH2 – subunit of 

the polycomb repressive complex 2 (Asangani et al., 2012, Yamagishi et al., 2012), 

androgen receptor (Lin et al., 2013) and EMSY (Vire et al., 2014) thought to affect 

methylation (Vrba et al., 2013) in the promoter region.  

MiR-31 appears to modulate invasiveness and migration of cancer cells increasing 

the motility in lung (Meng et al., 2013), colorectal cancer (Cottonham et al., 2010, 

Nosho et al., 2014), oesophageal (Zhang et al., 2011) and cutaneous squamous cell 

carcinomas (Xu et al., 2012) while decreasing the invasion and motility in 

mesothelioma (Ivanov et al., 2010), glioblastoma (Hua et al., 2012), ovarian (Li et 

al., 2012a) and melanoma (Greenberg et al., 2011, Asangani et al., 2012). There also 

appears to be a variable effect on growth; proliferation being increased by higher 

levels of miR-31 in lung (Xi et al., 2010, Meng et al., 2013, Edmonds et al., 2015), 

colorectal cancers (Nosho et al., 2014, Xu et al., 2013) and oesophageal (Zhang et 

al., 2011) with a decrease in proliferation being observed in mesothelioma (Ivanov et 

al., 2010), medulloblastoma (Jin et al., 2014), leukemias (Yamagishi et al., 2012) 

and melanoma (Greenberg et al., 2011). 

The effect of miR-31 on response to chemotherapy is also complex. Increased levels 

of miR-31 increased resistance to chemotherapeutic agents such as 5 fluorouracil 

(Wang et al., 2010) in lung cancer. In contrast, studies show increased levels of miR-

31 associated with increased sensitivity to doxorubicin (Korner et al., 2013) in breast 

cancer; docetaxel (Bhatnagar et al., 2010, Zhang et al., 2014) in prostate cancer and 

paclitaxel (Mitamura et al., 2013) in ovarian cancers. The response to cisplatin is 

also modulated differentially as miR-31 increases sensitivity to cisplatin in prostate 

cancer (Bhatnagar et al., 2010) but induces cisplatin resistance in lung cancer (Dong 

et al., 2014); Chan et al found that only one isoform of miR-31 increased sensitivity 

to cisplatin in breast cancer cells (Chan et al., 2013). This suggests that the effects of 

miR-31 depend on numerous variables including tissue type, cell type and genetic 

profile.  
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In ovarian cancers, a study by Creighton et al (2010) suggests that miR-31 acts as a 

tumour suppressor in ovarian cancer cells with dysfunctional p53 signalling but not 

in cells with normal p53 (Creighton et al., 2010). Overexpression of miR-31 

decreases colony formation in ovarian cancer cells (Mitra et al., 2012, Ibrahim et al., 

2015); this might help to reprogram it ovarian fibroblast as as cancer associated 

fibroblasts (Mitra et al., 2012). MiR-31 also decreases the invasion and motility in 

ovarian cancers Ibrahim (Li et al., 2012). Studies show increased levels of miR-31 

associated with increased sensitivity to paclitaxel (Mitamura et al., 2013) in ovarian 

cancers; it has been suggested that one of the gene targets involved in this 

modulation is Stathmin1 (Hassan et al., 2015).  

Hence, miR-31 was further investigated and its potential involvement with cisplatin 

resistance and possible gene targets studied. 

4.2 RESULTS 

4.2.1. MICRORNA-31 MIMICS INCREASE RESISTANCE IN OVARIAN CANCER CELL 

LINES 

Gain of function experiments were performed in ovarian cancer cell lines to confirm 

if microRNA-31 has a functional role in the modulation of cisplatin resistance in 

ovarian cancer cell lines. miR-31 mimic was confirmed by qPCR to increase levels 

of miR-31 in A2780 cells (Pink et al., 2015). A2780 cells were transfected with 

microRNA-31 mimic alongside a negative control and then treated with 20 µM 

cisplatin. Cell viability was quantified 48 hours after treatment by MTT assay; 

results (Figure 4.1) showed a 25% increase in survival of cells treated with 

microRNA-31 mimic than the control (student’s t-test, p-value < 0.001). Cisplatin 

dose response curves (Figure 4.1b) show that the IC50 (GraphPad Prism) shifted 

significantly from 48.71 µM to 122.4 µM (p-value 0.0007). These results indicate 

that miR-31 transfection increases cisplatin resistance in A2780 cells. 



103 

 

  

FIGURE 4.1: MICRORNA-31 RAISES RESISTANCE TO CISPLATIN IN A2780 CELLS 
(a) A2780 cells seeded in 96-well plates were treated with 5 nM microRNA-31 mimics or 
control and then subjected to cisplatin treatment at 20 µM for 3 hours. The percentage of cell 
viability (as measured by the MTT assay) 48 hours after cisplatin treatment as compared to that 
of untreated cells in each group was then normalised to control and compared by the student’s 
t-test. The results show an increase in resistance after treatment with microRNA-31 mimics by 
about 25% (student’s t-test, p-value < 0.001). Each group has at least 20 biological replicates; 
error bars show standard error of mean. (b) A2780 cells transfected with miR-31 mimic or 
control miRNA were subjected to cisplatin treatment at various concentrations and cell viability 
quantified by MTT assay was normalised to untreated cells in each group. Each point is plotted 
from at least 3 biological replicates; error bars show standard error of mean. The IC50 
(GraphPad Prism) shifted significantly from 48.71 µM to 122.4 µM (p-value 0.0007). 

MiR-31 mimic treatment prior to cisplatin treatment also cisplatin resistance in 

MCP1 cell line (Figure 4.2) by 50% (student’s t-test, p-value <0.001). Similarly in 

OVCAR-5 and IGROV-1 cell lines, miR-31 mimic treated cells were about 15% 

more resistant to cisplatin treatment at 20µM than control treated cells (student’s t-

test, p-value < 0.01 for OVCAR-5 and p-value <0.05 for IGROV1). However, the 

OVCAR-8 cell line showed no significant change in cisplatin resistance after 

treatment with miR-31 mimics.  
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FIGURE 4.2: MICRORNA-31 RAISES RESISTANCE TO CISPLATIN IN OVARIAN CANCER 
CELLS 
Cells seeded in 96-well plates were treated with 5nM microRNA-31 mimics or control and 
subjected to cisplatin treatment after 24 hours at the optimal concentration for each cell line. 
The percentage of cell viability (as measured by the MTT assay) after cisplatin treatment was 
then normalised to control and compared by the student’s t-test. Error bars show SEM from at 
least 9 biological replicates. The results show significant increase in cisplatin resistance after 
treatment with microRNA-31 mimics in MCP1, OVCAR-5 and IGROV-1 (student’s t-test p-value - 
< 0.01, < 0.01 and < 0.05 respectively) 

4.2.2. IDENTIFICATION OF TARGET GENES 

4.2.3.1. Gene Expression levels in A2780, MCP1 and CP70 by RNA Sequencing 

Total RNA was extracted from A2780, MCP1 and CP70 and sent to Source 

BioScience to be sequenced using an Illumina Genome Analyser IIx. The single-end 

38 base-pair reads were aligned using Illumina’s pipeline software. Transcript 

abundance was estimated using Cufflinks and results presented as reads per kilobase 

of transcript per million mapped reads. Relative levels of transcripts between 

samples were compared using DESeq. 142 genes were upregulated more than 

twofold in both the resistant cell lines while 304 genes were significantly 

downregulated with a fold change of more than 2 in the two resistant cell lines. The 

top 50 upregulated or downregulated genes in the CP70s and their fold change and p-

value is given in Appendix C, Tables C-1 and C-2.  
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4.2.3.2. DAVID analysis of the genes 

The concordantly deregulated genes were further analysed using the online 

functional annotation tool in DAVID (Huang da et al., 2009a, Huang da et al., 

2009b). Enriched molecular functions in this list of genes were identified using this 

tool. The top 15 GO (gene ontology) terms are shown in Table 4-1 with their 

corresponding p-values.  

TABLE 4-1: ENRICHED GO TERMS IN SIGNIFICANTLY AND CONCORDANTLY 

DEREGULATED GENES 
GO Term Molecular Function Gene 

Count 
P-Value 

GO:0043167~ion binding 132 0.0005 
GO:0022836~gated channel activity 19 0.0006 
GO:0005509~calcium ion binding 39 0.0009 
GO:0019838~growth factor binding 10 0.0010 
GO:0004714~transmembrane receptor protein tyrosine kinase activity 8 0.0012 
GO:0046872~metal ion binding 126 0.0019 
GO:0043169~cation binding 126 0.0027 
GO:0005216~ion channel activity 20 0.0028 
GO:0015171~amino acid transmembrane transporter activity 7 0.0030 
GO:0008289~lipid binding 22 0.0032 
GO:0031420~alkali metal ion binding 14 0.0038 
GO:0022838~substrate specific channel activity 20 0.0039 
GO:0015267~channel activity 20 0.0057 
GO:0022803~passive transmembrane transporter activity 20 0.0058 
GO:0046873~metal ion transmembrane transporter activity 17 0.0064 
 

The top 3 enriched molecular functions GO terms were “ion binding”, “gated 

channel activity” and “calcium ion binding” with significant p-values <0.001. The 

gene KCNMA1 was represented in all three of these groups. Moreover, KCNMA1 

was present in 11 out of the top 15 GO categories. The product of KCNMA1 forms 

the alpha subunit of the large calcium-activated potassium conductance channel. 

KCNMA1 is in the top 50 of significantly and concordantly downregulated genes. 

When the genes were analysed based on KEGG pathways, 11 pathways were 

highlighted with significant p-values (Table 4-2).  
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TABLE 4-2: KEGG PATHWAYS ENRICHED IN THE CONCORDANTLY DEREGULATED 

GENES 

KEGG pathway Count P-Value 
hsa04360:Axon guidance 14 2.18E-04 
hsa04510:Focal adhesion 17 6.33E-04 
hsa04540:Gap junction 9 0.0073 
hsa04270:Vascular smooth muscle contraction 10 0.0093 
hsa04512:ECM-receptor interaction 8 0.0174 
hsa04020:Calcium signaling pathway 12 0.02500 
hsa04666:Fc gamma R-mediated phagocytosis 8 0.0319 
hsa04370:VEGF signaling pathway 7 0.0322 
hsa04080:Neuroactive ligand-receptor interaction 15 0.0341 
hsa04664:Fc epsilon RI signaling pathway 7 0.0381 
hsa04960:Aldosterone-regulated sodium reabsorption 5 0.0411 
 

It is worth noting that the calcium signalling pathway is one of the pathways in 

which the list of genes was significantly enriched (p-value 0.025). The calcium 

signalling pathway is shown in Figure 4.3. Though KCNMA1 is not present on the 

list of genes in the pathway, the channel may be activated by calcium signalling and 

would be involved in the subsequent outcomes of calcium signalling. Hence the 

KCNMA1 gene was further investigated. 
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FIGURE 4.3: CALCIUM SIGNALLING PATHWAY  
The Calcium signalling pathway as highlighted by the DAVID functional tool is shown here. The 
pathway shows the interaction of various genes in calcium signalling and levels of calcium 
affecting various pathways including MAPK signalling pathway and apoptosis. Red stars 
indicate genes that were present in the list of genes with differential expression in CP70 as 
compared to A2780. 

4.2.3. KCNMA1 KNOCKDOWN INCREASES CISPLATIN RESISTANCE 

In order to assess if KCNMA1 modulates resistance, loss of function experiments 

were performed. Three shRNAs (sequences shown in Section 2.5) were designed 

with sequences targeting different areas of the KCNMA1 mRNA. KCNMA 

knockdown in A2780s was validated by qPCR by Dr. Ryan Pink. A2780s were 

transfected with each of these shRNAs to transiently knockdown KCNMA1 

alongside a scrambled control shRNA.  Cells were then cisplatin treated and viability 

quantified by the MTT assay. Results presented are a percentage of viability after 

cisplatin treatment normalised to control. Figure 4.4 shows an increase in cisplatin 

resistance of between 20% and 30% in sets transfected with each of the three 

KCNMA1 knockdown shRNA as compared to the control. The most potent of the 

three shRNAs is the KCNMA1 shRNA 2 with the group showing an increase of 

about 30% as compared to the control (student’s t-test, p-value = 0.00036).  
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FIGURE 4.4: KCNMA1 KNOCKDOWN IN A2780 INCREASES CISPLATIN RESISTANCE 
(a) Transient KCNMA knockdown was achieved using 3 shRNAs designed to target different 
regions on the KCNMA1 gene. A2780 cells were split into 4 groups; each group was transfected 
with 50 ng of one of the shRNAs and one group was treated with the scrambled control 24 
hours before treatment with 20 µM cisplatin.  Viability was assessed by the MTT assay 48 hours 
later and is presented as percentage of survival after cisplatin resistance normalised to control. 
Error bars show SEM from 5 biological replicates. All three shRNAs increase resistance to 
cisplatin as compared to control (student’s t-test, pvalues = 0.049, 0.00036 and 0.014 for 
KCNMA kd 1, 2 and 3 respectively). (b) A2780 cells were treated with 150 ng/well of all shRNAs 
pooled together and 24 hours later treated with varying concentrations of cisplatin. MTT assay 
was used to assess viability after 48 hours and cisplatin dose response curve plotted with the 
absorbance data normalised to cisplatin untreated cells in each group. Error bars show SEM of 5 
biological replicates. The IC50 (GraphPad PRISM) changes significantly from 10.54 µM in the 
control treated cells  to 24.25 µM in the KCNMA knockdown group (p-value <0.0001) 

In subsequent experiments, the three shRNAs were pooled and then transfected into 

the cells to give maximum probability of knocking down KCNMA1. The cisplatin 

dose response curve plotted by treating A2780 cells with 150ng of pooled KCNMA1 

knockdown shRNA alongside control and then with varying concentrations of 

cisplatin between 0 and 50 µM is shown in Figure 4.4b. There is a clear increase in 

resistance of A2780 cells on knockdown of KCNMA1 at most of the concentrations 

of cisplatin tested.  KCNMA1 was also transiently knocked down in a panel of 

ovarian cancer cell lines which were then treated with cisplatin at optimum 

concentrations. The MTT assay (Section 2.2) was used to quantify viability; results 

are presented as a percentage of viability after cisplatin resistance normalised to 

control. While A2780 and OVCAR-5 show a modest but significant increase 

(student’s t-test, p-value < 0.05 and < 0.001 respectively) in cell viability after 

b. 



109 

 

cisplatin treatment of about 20%, MCP1 show a more pronounced increase of nearly 

50% in cisplatin resistance. On the other hand, the IGROV1 shows no significant 

difference in cisplatin resistance after KCNMA knockdown. KCNMA1 knockdown 

has thus been shown to increase cisplatin resistance in a panel of ovarian cancer cell 

lines. 

 

FIGURE 4.5: KCNMA KNOCKDOWN INCREASES CISPLATIN RESISTANCE IN OVARIAN 
CANCER CELL LINES 
KCNMA1 was transiently knocked down in A2780, MCP1, OVCAR-5 and IGROV1 cell 
lines seeded in 96-well plates using 150ng pooled shRNAs per well alongside 
scrambled control; 24 hours later cells were treated with optimum concentrations of 
cisplatin (A2780 - 20µM, OVCAR5 and IGROV1 - 50µM and MCP1 - 80µM). MTT assay 
was used to quantify viability 48 hours later. Results are presented as percentage of 
viability after cisplatin treatment normalised to control. Error bars represent SEM of at 
least 6 biological replicates. There is a significant increase in survival of cells on 
cisplatin treatment after KCNMA1 knockdown in A2780, MCP1 and OVCAR-5 cell lines 
(student’s t-test, p-value <0.05, <0.05 and <0.001 respectively). IGROV1 cells showed 
no change in cisplatin resistance. 

4.2.4. KCNMA1 LEVELS LOWER IN CISPLATIN RESISTANT CELL LINES 

KCNMA protein levels in the different cell lines were assessed by western blot. 

Approximately 20 µg of protein from each cell line was denatured, electrophoresed 

and transferred onto PVDF membrane. This was incubated with primary antibody 

(Section 2.7) (anti-KCNMA1 or anti-GAPDH) and secondary antibody, stained, 

knockdown 
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imaged and analysed. Images are shown in Figure 4.6. The levels of KCNMA1 in 

CP70 and OVCAR-5 are very low compared to the A2780 cell line. There is a more 

modest but clear difference in levels in the MCP1 cell line as compared to the A2780 

cell line.  

 

 

FIGURE 4.6: KCNMA PROTEIN LEVELS IN OVARIAN CANCER CELL LINES 
KCNMA protein levels were assessed by Western Blotting. Approximately 20 µg of protein from each cell 
line was denatured, electrophoresed on a polyacrylamide gel and transferred onto PVDF membrane. The 
membrane was blocked with 5% w/v BSA in TBS with Tween, incubated with primary antibody (1in 500 
KCNMA1) at 4°C overnight and then with secondary antibody for 1 hour at room temperature. The 
membranes were immersed in ECL solution and digitally imaged. The procedure was repeated with 
GAPDH primary antibody (1in 15000). The KCNMA1 band was identified at 130 kDa and the GAPDH at 
37kDa. Three biological replicates were done (the originals of all the blots are shown in Appendix D; 
Figure D.1) . KCNMA1 protein levels are lower in CP70, MCP1 and OVCAR-5 than in the A2780 cell line.  

 

4.2.5. MICRORNA-31 MIMICS DECREASE KCNMA1 PROTEIN LEVELS 

The interaction between MiR-31 and KCNMA1 was then analysed. Using miRWalk, 

the online miRNA target prediction tool, which also provides predictions from 7 

other prediction sites, predicted target sites for miR-31 on KCNMA1 were analysed. 
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Only one program predicts that KCNMA1 is a direct target of miR-31. Hence, 

KCNMA1 is probably an indirect target of miR-31. The interaction was examined by 

estimating KCNMA1 protein levels on transfection with miR-31 mimics.  MiR-31 

was transfected into A2780 cells along with negative control. Total protein was 

extracted from the cells 24 hours after transfection and protein levels assessed by 

Western Blotting using GAPDH as control. Results show a marked decrease in 

KCNMA1 protein levels on transfection with microRNA-31 as compared to control. 

 
FIGURE 4.7: MICRORNA-31 TRANSFECTION DECREASES KCNMA1 PROTEIN LEVELS 
A2780 cells were transfected with 5nM miR-31 or negative control. Total protein was then extracted from 
the two groups. Approximately 20 µg of protein was denatured, electrophoresed on a polyacrylamide gel 
and transferred onto PVDF membrane. The membrane was blocked with 5% w/v  BSA in TBS with Tween, 
incubated with primary antibody (1in 500 KCNMA1) at 4°C overnight and then with secondary antibody 
for 1 hour at room temperature. The blots were immersed in ECL solution and digitally imaged. The 
procedure was repeated with GAPDH primary antibody (1in 15000). The KCNMA1 band was identified at 
130 kDa and the GAPDH at 37kDa. Three biological replicates were done (Original blots are shown in 
Appendix D: Figure D.2). KCNMA1 protein levels are lower in A2780 cells treated with microRNA-31 
mimic.  

4.2.6. BLOCKING OF THE BK CHANNEL INCREASES RESISTANCE IN OVARIAN CANCER 

CELL LINES 

The product of the KCNMA1 gene is the alpha subunit of the large calcium activated 

potassium channel. In order to evaluate if these channels are involved in cisplatin 
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resistance, paxilline, a pharmacological inhibitor of these potassium channels 

(Sanchez and McManus, 1996) was utilised. Paxilline has been used in cell culture to 

block BKCa channels at concentrations upto 20µM (Oeggerli et al., 2012, Bednarczyk et 

al., 2013a, Bednarczyk et al., 2013b, Li et al., 2014d). For these experiments, the 

concentration of 10µM employed by Bednarczyck et al (2013a) was used as Cheng et al  

(2016) have shown that concentrations of 25µM or above inhibit proliferation. A2780 

cells were pre-treated with 10 µM paxilline for 30 minutes before cisplatin treatment 

at 20 µM. An MTT assay was used to quantify cell viability after 28 hours. Results 

(Figure 4.8) show a significant increase in cisplatin resistance (student’s t-test, p-

value <0.001). The test was repeated with the MCP1 and the OVCAR-5 cell lines. 

While the MCP1 cell line showed a significant increase in survival after cisplatin 

treatment in the paxilline pre-treated group as compared to the control (student’s t-

test, p-value <0.001), the OVCAR-5 showed no significant increase in resistance. 

These results appear to indicate that paxilline increases resistance to cisplatin. 
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FIGURE 4.8: PAXILLINE INCREASES RESISTANCE TO CISPLATIN IN A2780 AND MCP1 
A2780,  MCP1 and OVCAR-5 cells were pre-treated with paxilline at 10 µM for 30 
minutes prior to cisplatin treatment (A2780 – 20 µM, MCP1-80 µM, OVCAR-5 – 50 µM) 
for 3 hours. Viability was assessed by MTT assay 48 hours later; results are presented 
as percentage of viability after cisplatin treatment normalised to control. Error bars 
represent SEM from at least 5 biological replicates. Results show a substantial increase 
in resistance to cisplatin in the A2780 and MCP1 cells treated with paxilline (student’s 
t-test, p-value < 0.001). However OVCAR-5 cells show no significant change in cisplatin 
resistance after paxilline treatment. 

4.3 DISCUSSION 

MicroRNA-31 was identified by microarray to be higher in the cisplatin resistant 

CP70 cells than in the cisplatin sensitive parent A2780 cells. Moreover, microRNA-

31, with a 50-fold increased expression in CP70s, exhibited the highest differential 

expression between the cell lines, indicating the possibility of its involvement in 

modulating cisplatin resistance. There was also a modest increase in its expression in 

MCP1, the other cisplatin resistant derivative of A2780 cells.  

Microarray results indicating an increase in miR-31 levels in CP70 were confirmed 

by qPCR Figure1A in Samuel et al. (2015); levels of miR-31 were almost 

undetectable in the A2780 cell line while there was a much higher level in the CP70 

cell line. Gain of function experiments indicated an increase in cisplatin resistance in 

A2780, MCP1, OVCAR-5 and IGROV-1 cell lines, but the OVCAR-8 cell line did 
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not show any change in cisplatin resistance. As discussed in section 4.1, this could 

be due to inhibition or modulation of the downstream pathways within these cells 

which might override modulation by miR-31.  

The increase in levels of miR-31 in the resistant phenotype CP70 as compared to the 

parent line A2780 taken together with the gain of function experiments showing an 

increase in cisplatin resistance indicate a strong probability of the involvement of 

miR-31 in cisplatin resistance. In the published literature, miR-31 increases 

sensitivity to cisplatin in prostate cancer (Bhatnagar et al., 2010) and breast cancer 

(Chan et al., 2013) but induces cisplatin resistance in lung cancer (Dong et al., 2014). 

The above presented results agree with that of Dong et al (2014). However, the 

results are contrary to the study by Mitamura et al (2013) who showed that miR-31 

overexpression increased the sensitivity of ovarian cancer cells to paclitaxel  

suggesting that the mechanisms involved in the resistance to the two drugs are 

different and involve different pathways. The next step was to identify a possible 

mechanism or target through which miR-31 modulates the cisplatin resistant 

phenotype.   

Numerous targets have been proposed for miR-31; one bioinformatics study 

predicted 1000 cancer-related targets for miR-31 affecting 163 pathways (Gao et al., 

2014). Pathways shown to be affected by miR-31 include the oncogenic NF-κB 

pathway through induction by NIK (Yamagishi et al., 2015, Yamagishi et al., 2012, 

Asangani et al., 2012) or PKCϵ (Korner et al., 2013); RAS pathway by inhibition of 

RASA1 (Edmonds et al., 2015), Wnt signalling pathways through DKK-1 and DACT-

3 (Xi et al., 2010), p53 signalling through STK40 (Creighton et al., 2010) and the 

MAPK pathway by inhibition of SPRED1 and SPRED2 (Edmonds et al., 2015) or 

KSR2 (Zhang et al., 2011). Other validated targets of miR-31 include oncogenes 

such as SRC and MET (Asangani et al., 2012, Mitamura et al., 2013) as well as 

tumour suppressors such as LATS2 and PPP2R2A (Liu et al., 2010), EMP1 (Zhang et 

al., 2011), ARID1A (Wang et al., 2014b) and RhoBTB1 (Xu et al., 2013); cell cycle 

regulators such as E2F1, E2F2 (Creighton et al., 2010), MCM2 (Lin et al., 2013, Jin 

et al., 2014) and E2F6 (Bhatnagar et al., 2010) and genes involved in EMT or 

motility such as TIAM1 (Cottonham et al., 2010), SATB2 (Aprelikova et al., 2010), 

radixin (Hua et al., 2012) and RGS4 (Zhang et al., 2011). DICER, the enzyme 
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involved in miRNA processing, was shown to be targeted by one isoform of miR-31 

(Chan et al., 2013).  

In order to research the possible mechanism of action of miR-31 along with its 

possible gene targets, gene expression levels determined by RNA sequencing of total 

RNA samples from A2780 and the resistant cell lines CP70 and MCP1 were 

analysed.  142 genes were upregulated while 304 genes were downregulated 

significantly in both the resistant cell lines. The genes shown by RNA Sequencing to 

be downregulated in CP70s as compared to the A2780s include genes which often 

show mutations or epigenetic silencing in ovarian cancer such as BEX4 (Chien et al., 

2005), GSTM3 (Lim et al., 2011) and HTRF1 (Cody et al., 2009) in addition to 

genes showing deregulation in other cancers such as CASP5 (Quaye et al., 2009, 

Notaridou et al., 2011), CRABP1(Miyake et al., 2011) and GRM8 (Kan et al., 2010). 

The genes downregulated in cisplatin resistant cells also included MLH1, a 

mismatch repair gene, deregulation of which has been associated with drug 

resistance (Plumb et al., 2000). Moreover a number of genes involved in the 

apoptotic pathway such as CRADD, CYB5A and CYP7B1 as well as CASP5 are 

downregulated in CP70s as compared to A2780s. This increases the confidence in 

the genes of interest identified as they overlap with genes identified previously as 

being deregulated in various cancers. Of the genes shown to be significantly 

different, RhoBTB1, a tumour suppressor has previously been validated as a target of 

miR-31 in colon cancer (Xu et al., 2013).   

While most of these genes may not be related to cisplatin resistance, there is an 

increased likelihood that genes involved in cisplatin resistance are present among 

these. Concordant deregulation in both cell lines indicates an increased probability of 

the genes’ involvement in pathways producing the different phenotype – in this case 

– cisplatin resistance.  

To narrow down this list of genes, they were analysed using the DAVID online 

functional annotation tool which uses previously published literature and pathways 

to ascertain if the given list of genes is enriched in a particular pathway or molecular 

process. Pathways over-represented in the list included pathways with significant 

effects on cancer progression such as focal adhesion, ECM-receptor interaction and 
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VEGF signalling while the gene ontology terms that were enriched included ‘ion 

binding’ and ‘gated channel’ as well as ‘transmembrane transporter activity’. While 

the gene ontology (GO) terms indicated a significant enrichment of genes involved 

in ‘calcium ion binding’ and ‘gated channel activity’; KEGG pathway analysis 

indicated the calcium signalling pathway as one of the significantly enriched 

pathways. Deregulation of calcium homeostasis has been associated with drug 

resistance (Padar et al., 2004, Solar and Sytkowski, 2011) and has been linked to a 

possible role in apoptosis (Al-Bahlani et al., 2011). Consequently, genes linked with 

calcium ion binding and calcium signalling were further examined. 

Of the genes involved in calcium ion signalling, KCNMA1 was represented in 11 of 

the top 15 GO term categories showing a significant enrichment. Moreover, it was 

one of the genes with the highest fold change between CP70 and A2780 and the 

second highest in the calcium ion binding category. The KCNMA1 gene is located at 

chr 10q22; the protein product of the KCNMA1 gene forms the alpha pore forming 

subunit of the large calcium activated potassium channel, the BKCa channel. Higher 

levels of KCNMA1 expression was noted in some cancers such as breast (Oeggerli 

et al., 2012), prostate (Bloch et al., 2007), melanoma (Mazar et al., 2010) and 

glioblastoma (Weaver et al., 2006); in contrast, KCNMA1 levels were shown to be 

lower in prostate cancer (Altintas et al., 2013). KCNMA1 has been shown to be 

higher in breast cancer metastasis to the brain than to the other organs or in the 

primary tumour (Khaitan et al., 2009) and to be associated with higher proliferation 

and poor prognosis in breast cancer (Oeggerli et al., 2012). KCNMA1 has been 

shown to be associated with selenium resistance (Savas et al., 2010) and platinum 

resistance (Ziliak et al., 2012); expression levels were lower in a group of ovarian 

cancers resistant to chemotherapy (Bell D, 2011). There is evidence that epigenetic 

changes are associated with KCNMA1 in cisplatin resistant CP70 cells (Zeller et al., 

2012). This suggests that the KCNMA1 gene may possibly be involved in cisplatin 

resistance. Hence KCNMA was selected for further scrutiny. 

Of online miRNA target prediction programs in miRWalk, only one predicts 

KCNMA1 as a target of miRNA-31. Hence, it is probable that KCNMA1 is an 

indirect target. As the initial step, its functional activity in resistance was ascertained 

by transient knockdown using shRNAs; this was shown to increase resistance to 
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cisplatin treatment in A2780, MCP1 and OVCAR-5 suggesting a role in modulation 

of cisplatin resistance. These results are in agreement with published literature 

showing a decrease in expression of KCNMA1 is associated with cisplatin resistance 

(Bell D, 2011, Ziliak et al., 2012). However, in the IGROV-1, there was no change 

in cisplatin resistance – this could indicate a different mechanism of action of miR-

31 in this particular cell line. There is the possibility that as KCNMA1 is postulated 

to be an indirect target, there could be inhibition or irreversible modulation of an 

intermediary mechanism leading to a different pathway coming into play. Moreover, 

the efficiency of the knockdown was not validated in the IGROV1 cell line – 

inefficient knockdown could possibly be a reason for this apparent lack of response. 

As IGROV-1 did not show an increase in cisplatin resistance on KCNMA1 

knockdown, it was excluded from further analysis.  

Further corroboration of the RNA sequencing data was subsequently obtained by 

western blot quantification of KCNMA1 protein; a higher level of KCNMA1 was 

found in A2780 than in the other three cell lines. These results, together with loss of 

function experiments by knockdown of KCNMA1 leading to cisplatin resistance, 

point to an involvement of KCNMA1 in cisplatin resistance. 

As the protein expression levels of KCNMA1 are lower in the MCP1 and CP70 

correlating with the higher levels of miR-31 in these cell lines, there is an indication 

that KCNMA1 could possibly be a target of miR-31. That the MCP1 KCNMA1 

band appears to be stronger than that of CP70 further lends credence to the theory 

that miR-31 targets KCNMA1 as CP70 has many fold higher expression levels of 

miR-31 than A2780 and shows a larger decrease in levels of KCNMA1 while MCP1 

shows only a modest increase in levels of miR-31 as compared to A2780 and shows 

a corresponding decrease in KCNMA1 levels.  

Further confirmation is obtained from the results of the western blot showing a 

significant decrease in the levels of KCNMA1 in A2780 cells treated with miR-31 

mimic as compared to control treated cells. Taken together, the higher levels of 

KCNMA1 in A2780 and the decrease in levels on transfection with miR-31 mimic 

indicates that KCNMA1 is a target – direct or indirect – of miR-31. 
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KCNMA1 gene forms the α-subunit of the large calcium activated potassium 

conductance (BKCa) channel; four α-subunits are integrated together to form the 

gated channel. The BKCa channel is expressed on the plasma membrane of most 

cells; it is also expressed on the membranes of mitochondria, endoplasmic reticulum, 

nucleus and Golgi apparatus (Singh et al., 2012). These channels are activated by 

either membrane depolarisation or intracellular calcium levels. Studies have 

varyingly shown that blocking BKCa channels can inhibit cell proliferation (Bloch et 

al., 2007, Oeggerli et al., 2012, Bury et al., 2013, Gackiere et al., 2013) or increase 

the rate of proliferation (Cambien et al., 2008). It has been suggested that BKCa 

channel activity may be involved in apoptosis in response to various stimuli 

including cisplatin (Liang et al., 2005, Ma et al., 2012). In ovarian cancer cells, 

stimulation of the BKCa channel activity leads to increased apoptosis and decreased 

proliferation (Han et al., 2008). BKCa channel activity has also been linked to 

paroptosis (Bury et al., 2013), another form of programmed cell death, and to the 

immune response to tumours due to its ability to regulate cytokine production from 

tumour cells (Cambien et al., 2008, Mound et al., 2013).  

It was then investigated if the large calcium activated potassium channel itself is 

involved in cisplatin resistance. Blocking of this channel was achieved by using 

paxilline (Singh et al., 2012), a pharmacological inhibitor of this channel; this 

increased cisplatin resistance in A2780 and MCP1 cells. This seems to indicate an 

involvement of the actual channel in cisplatin resistance at least in some cell lines. 

Hence, it could be argued that knockdown of KCNMA causes an increase in 

cisplatin resistance probably by knockdown of the large calcium activated potassium 

channel possibly leading to modulation of apoptosis.  

As a part of the project Dr. Carter analysed the correlation between levels of miR-31 

and KCNMA1 with the IC50 for cisplatin in the cell lines in the NCI60 panel using 

publically available datasets. The results (Pink et al., 2015) show a positive 

correlation between levels of miR-31 and IC50 with an inverse correlation for 

KCNMA1 indicating that increased miR-31 and decreased KCNMA1 are associated 

with increased resistance to cisplatin. 
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The actual mechanism by which miR-31, KCNMA1 and the BKCa channel increases 

cisplatin resistance has not been identified. Moreover most of the experiments were 

carried out on ovarian cancer cell lines in vitro. The knockdown of genes using 

siRNA has not been quantified in all the cell lines; similarly, the efficiency of 

paxilline in blocking the BKCa channel has not been validated. Moreover most of 

the cisplatin resistance data relies on the MTT assay for quantification though the 

initial experiments were counterchecked with the sulfurhodamine assay. Based on 

these, there are many interesting questions that could be followed up such as the 

actual effect of the BKCa channel on cisplatin as well as investigating the effect on 

response to other chemotherapeutic drugs. In vivo experiments might also be done to 

confirm the effect of miR-31 and knockdown of KCNMA1 on cisplatin resistance. 

Another avenue to explore would be to check if there is a possibility that these levels 

are reflected in the serum of patients or in biopsies from ovarian cancer patients and 

if these could then be used to predict response to chemotherapy and may even be 

used to tailor the use of drugs to each patient’s profile.  

Thus, in this chapter, miR-31 is shown to increase resistance in ovarian cancer cells, 

KCNMA1 is shown to be a possible indirect target of miR-31, KCNMA1 and the 

large calcium activated potassium channel are shown to be involved in modulating 

cisplatin resistance. This effect of miR-31 on cisplatin resistance in ovarian cancer 

cells is a novel finding as well as the possibility that KCNMA1 could be an indirect 

target of miR-31.  
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Chapter 5 THE ROLE OF EVS IN CISPLATIN SENSITIVITY 

5.1 INTRODUCTION 

Thus far, the role of microRNAs in cisplatin resistance has been investigated. 

Interestingly, it was demonstrated that microRNAs and mRNAs can be transferred 

between cells by means of EVs (Valadi et al., 2007). EVs are membrane bound 

vesicles which have been shown to act as a means of intercellular communication as 

reviewed by (Fevrier and Raposo, 2004). In a study using mouse dendritic cells, it 

has been shown that the microRNAs transferred via EVs are functional once 

internalised into the recipient cell and can repress target mRNAs (Montecalvo et al., 

2012, Stoorvogel, 2012). EVs were also shown to mediate transfer of drug resistance 

from resistant cells to sensitive cells probably through transfer of p-glycoprotein (Lv 

et al., 2014).  

Another interesting aspect of EVs is their possible role in bystander effect. Bystander 

effect has been described in irradiated cells where cells that have not been directly 

irradiated show signs of radiation damage (Al-Mayah et al., 2012, Jella et al., 2014,  

Marin et al., 2015, Xu et al., 2015b). The bystander effect has been shown to lead on 

to the adaptive response where cells undergoing bystander effect may become 

resistant to irradiation (Buonanno et al., 2015, Marin et al., 2015). A similar 

bystander-effect-induced increase in DNA damage and a pro-survival effect has been 

described in mouse fibroblasts treated with bleomycin (Savu et al., 2015). It is, 

therefore, possible, that there is a similar bystander and adaptive response in cells 

upon cisplatin treatment. It can be hypothesised that, when treated with cisplatin, 

cells that are ‘stressed’ can then transmit the ‘stress’ through ‘stress induced EVs’ to 

neighbouring cells causing bystander effect and a consequent adaptive response 

making the cells more resistant to cisplatin. Therefore it is possible that, if EV uptake 

could be inhibited, the cells may be more sensitive to cisplatin. This possibility was 

investigated further in a series of experiments.    

In this chapter, results are presented regarding investigations into  
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a. transfer of cisplatin resistance between cells through EVs and  

b. effects of inhibition of EV uptake on cisplatin resistance  in cell lines 

in vitro, and 

c. effects of an EV inhibitor – heparin – on response to cisplatin in a 

mouse model of ovarian cancer. 

5.2 MATERIALS AND METHODS 

5.2.1. EV EXTRACTION 
CP70 cells were grown in T175 flasks till 80% confluent. They were then 

conditioned in EV cleared media for 24 hours. This media was then centrifuged at 

300 g for 5 minutes and then at 16,500 g for 20 minutes to remove cells and debris. 

The media was then filtered through a 0.22 µm filter before being ultracentrifuged at 

120,000 g for 90 minutes at 4°C. The supernatant was discarded; pellets resuspended 

in fresh media and transferred onto A2780 cells that had been seeded 24 hours 

previously in 96 well plates at an equivalence factor of 20:1.  

5.2.2. DRUG TREATMENTS:  
Heparin (Sigma), an EV uptake inhibitor, was diluted to a concentration of 10 mg/ml 

in deionised distilled water, filtered through 0.22 µm filters and stored at -20°C; it 

was diluted in media and added to cells at a final concentration of 10 μg/ml. 

Amiloride (5-(N-ethyl-N-isopropyl) amiloride or EIPA) inhibits uptake of EVs by 

blocking macropinocytosis; it was stored in DMSO at a concentration of 108 mM 

and added to cells at 50 µM concentration. Dynasore, a dynamin-2 inhibitor shown 

to inhibit clathrin and caveolin dependent endocytosis, was diluted in DMSO to a 

concentration of 31 mM, stored at -20°C and added to cells at a concentration of 50 

µM. All three drugs were added to cells 30 minutes before treatment with cisplatin 

for three hours. An MTT assay was carried out 48 hours after cisplatin treatment. 

Guggulsterone, an inducer of EV release, was stored in DMSO at a concentration of 

32mM at -20°C and diluted in media and added to cells at a final concentration of 50 

µM. Stock solution of bexarotene, another inducer of EV release, in DMSO was 

stored at - 20°C; cells were treated at 5 µM final concentration.  
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5.2.3. XENOGRAFT  
Xenograft experiments were carried out at the animal testing facility at Queen’s 

University, Belfast by Dr. Helen McCarthy; A2780s for this experiment were kindly 

provided by Dr Fiona Furlong, Queen’s University, Belfast. 5X106 A2780 cells in 

matrigel were implanted subcutaneously into the flanks of BALB-C SCID mice. 

Animals were monitored regularly and body weights were measured three times a 

week. Tumour volume was calculated as {[∛(L*B*D)]/2}^3 where L, B and D are the 

dimensions of the tumour. Treatment was started when the tumour measured 100 

mm3. Twenty four mice were then divided into four treatment groups (1) cisplatin 

5mg/kg once weekly i.p. (2) heparin only – 10 mg/kg every day i.p. (3) combination 

group – cisplatin 5mg/kg once weekly i.p. and heparin 10 mg/kg once daily i.p. and 

(4) control group. Tumour volume was monitored three times a week; when the 

tumour quadrupled in size, the animal was sacrificed. Any mice that lost 20% of 

body weight during the experiment were removed from the experiment as the 

treatment is deemed too toxic. 

 

5.3 RESULTS 

5.3.1. TRANSFER OF RESISTANCE BETWEEN CELL LINES 

In order to investigate if the property of resistance can be transferred between cell 

lines by transferring EVs released from one cell line onto another cell line, EVs 

released by CP70 (cisplatin resistant cell line) were transferred onto A2780 (cisplatin 

sensitive cell line) and the response to cisplatin analysed. CP70s were grown in T75 

flasks till 80% confluent and then grown for 24 hours in media that had been pre-

cleared of EVs by ultracentrifugation at 120 000 g for 16 hours. EVs were extracted 

by ultracentrifugation (Section 5.2.1) from this media. The method of EV extraction 

has been used in various papers to isolate EVs (Raposo et al., 1996, Fevrier and 

Raposo, 2004, Christianson et al., 2013). The EVs have also been validated by 

visualisation through Transmission electron microscopy, western blotting for 

HSP70, GAPDH as well as the absence of cytochrome C and GM130 as well as 

particle counting and sizing using a Nanosight (Malvern instruments) (Mulcahy 

L.A., 2016). The EV pellet was resuspended in fresh media and added to A2780 cells 
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in 96-well plates alongside PBS treated controls. After 24 hours, half the wells in 

each group were treated with cisplatin at 20 µM for 3 hours. The survival was 

quantified by MTT assay 48 hours later. The results (Figure 5.1) show an increase in 

cell survival after cisplatin treatment of CP70 EV treated A2780s by 15% as 

compared to the control (p-value <0.05).  The results show that addition of EVs from 

the cisplatin resistant cell line CP70 makes A2780 cells more resistant to cisplatin.  

 
FIGURE 5.1: EVS FROM CP70S INCREASE CISPLATIN RESISTANCE IN A2780 
A2780 cells in 96 well plates were treated with CP70 EVs or PBS (control) and then subjected to 
cisplatin treatment at 20µM. The percentage of cell viability (as measured by the MTT assay) 48 
hours after cisplatin treatment as compared to that of untreated cells in each group was then 
normalised to control and compared by the Student’s t-test. Results show that EVs from CP70 
appear to raise the resistance of A2780 cells to cisplatin with an increase in survival of about 
15% (p-value < 0.05) 

5.3.2. EV UPTAKE INHIBITION BY HEPARIN AND CISPLATIN RESISTANCE 

Addition of EVs from the cisplatin resistant cell line CP70 has been shown to 

increase cisplatin resistance in A2780 cells. As described in section 5.1, it is possible 

that cells stressed by cisplatin can release EVs which cause a bystander effect and a 

subsequent adaptive response in the other cells that take up the EVs. Consequently, 

inhibition of the uptake of these EVs may possibly make cancer cells more sensitive 

to cisplatin. In order to test this possibility, heparin, an inhibitor of EV uptake was 

utilised. Christianson et al. (2013) showed that treatment with 10µg/ml of heparin 
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decreased uptake of EVs by 50%; hence this concentration was used for the 

experiments. A2780 cells were treated with heparin at 10 µg/ml for 10 minutes 

before and during cisplatin treatment for 3 hours at various concentrations alongside 

control cells; cells were maintained in media containing heparin for 48 hours after 

cisplatin treatment to prevent uptake of any stress EVs. Results (Figure 5.2 and 

Table 5-1) show a significant decrease in cell viability in the heparin treated cells at 

concentrations between 5 and 100 µM cisplatin.  

Table 5-1 also shows p-values comparing the normalised absorbance values of 

control cells and heparin treated cells at each concentration of cisplatin. IC50 

(GraphPad PRISM) was shown to change significantly from 31.31µM to 21.24µM 

(p-value < 0.0001). Treatment with heparin alone, however appears to increase cell 

viability (Appendix B, Figure B-6). This indicates that the heparin treatment 

decreases resistance to cisplatin.  

 

FIGURE 5.2: HEPARIN PRE-TREATMENT DECREASES CISPLATIN RESISTANCE IN A2780 
CELLS 
A2780 cells in 96-well plates were pre-treated with heparin at 10µg/ml for 10 minutes before 
addition of cisplatin at varying concentrations for 3 hours; cells in heparin treated group were 
also treated with heparin for 48 hours after cisplatin treatment. Viability was assessed by MTT 
assay and normalised to untreated cells in each group. Error bars show SEM of at least 9 
biological repeats. IC50 (GraphPad PRISM) was shown to change significantly from 31.31µM to 
21.24µM (p-value < 0.0001). 
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Table 5-1: Cisplatin concentration curves of heparin treated cells vs 
control and p-values 

Cisplatin 
concentration 
(µM) 

Control (%) 
of 
untreated 

Heparin 
(%) of 
untreated 

Student’s 
t-test 
p-value 

400 7.76 7.01 ns 
200 11.08 10.12 ns 
100 15.59 11.79 0.00052 
50 35.25 28.07 0.033862 
20 67.12 56.95 0.002967 
5 85.20 76.20 0.021385 
2 97.70 95.81 ns 
1 100.50 98.32 ns 
0.5 103.02 103.88 ns 
0.2 96.80 90.52 0.013962 
0.1 93.25 91.55 ns 
0.05 97.63 91.42 0.043288 
0.025 99.17 95.74 ns 
0.01 94.80 94.54 ns 
0 100.00 100.00 na 
 

This experiment was repeated in two other ovarian cancer cell lines – CP70 and 

IGROV-1. The results shown in Figure 5.3 and Figure 5.4  respectively and Table 

5-2  indicate a decrease in viability in the heparin treated cells in both CP70 and 

IGROV-1 as compared to the control cells. The viability as a percentage of untreated 

cells is shown in the table for each group and concentration. Student’s t-test was 

used to compare the heparin treated cells to control at each cisplatin concentration 

tested. The p-values are shown in Table 5-2. IC50 (GraphPad PRISM) in CP70 cells 

was shown to change significantly from 146.8 µM to 118.9 µM (p-value = 0.0006). 

In IGROV1 cell line, IC50 changed significantly from 60.42 µM to 52.62 µM (p-

value <0.0001). These clearly demonstrate a decrease in viability in the heparin 

treated cells when compared with the control cells. 
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FIGURE 5.3: HEPARIN TREATMENT DECREASES CISPLATIN RESISTANCE IN CP70 CELLS 
CP70 cells in 96 well plates were treated with 10µg/ml heparin prior to cisplatin treatment for 
3 hours at varying concentrations; cells in heparin treatment group were also treated with 
heparin for 48 hours after cisplatin treatment. Viability was assessed by MTT assay 48 hours 
after cisplatin treatment. Absorbance levels were normalised to cisplatin untreated cells in each 
group. Error bars show SEM of 9 biological replicates. IC50 (GraphPad PRISM) was shown to 
change significantly from 146.8 µM to 118.9 µM (p-value = 0.0006). 
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FIGURE 5.4: HEPARIN TREATMENT DECREASES RESISTANCE TO CISPLATIN IN IGROV-1 
CELLS 
IGROV-1 cells were treated with 10µg/ml heparin prior to cisplatin treatment for 3 hours at 
varying concentrations; cells in heparin treatment group were also treated with heparin for 48 
hours after cisplatin treatment. Viability was assessed by the MTT assay 48 hours after cisplatin 
treatment; results are presented as absorbance values normalised to cisplatin untreated cells in 
each group. Error bars show SEM of 9 biological replicates.  IC50 changed significantly from 
60.42 µM to 52.62 µM (p-value <0.0001).  

TABLE 5-2: HEPARIN TREATMENT DECREASES CISPLATIN RESISTANCE IN CP70 

AND IGROV-1 OVARIAN CANCER CELL LINES 
 CP70 IGROV-1 
Cisplatin 
concentration 
(µM) 

Control 
(%) of 
untreated 

Heparin 
(%) of 
untreated 

Student’s 
t-test p-
value 

Control 
(%) of 
untreated 

Heparin 
(%) of 
untreated 

Student’s 
t-test p-
value 

400 23.64 16.97 7.22E-05 - - - 
200 28.04 23.61 ns - - - 
100 66.29 62.65 ns 20.26 21.98 ns 
50 97.20 77.74 0.000376 63.81 59.10 ns 
20 102.30 93.47 0.0067 90.08 79.51 0.006207 
5 97.29 91.61 0.037116 103.71 87.16 0.000258 
1 97.43 88.16 0.042851 104.19 98.40 0.027748 
0.5 97.64 94.59 ns 108.57 86.98 1.68E-06 
0.1 101.71 91.87 0.060381 106.37 99.35 0.036079 
0.05 103.36 101.64 ns 101.70 96.04 0.040101 
0.01 100.60 96.31 ns 103.86 96.58 0.01169 
0.000 100.00 100.00 na 100 100 na 
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5.3.3. OTHER INHIBITORS OF EV UPTAKE AND CISPLATIN RESISTANCE 

In order to assess the effect of extracellular vesicle uptake inhibition by other 

methods, dynasore and amiloride were used. Dynasore is a dynamin-2 inhibitor 

shown to inhibit clathrin and caveolin dependent endocytosis. Amiloride (5-(N-

Ethyl-N-isopropyl) amiloride or EIPA) on the other hand inhibits uptake of EVs by 

blocking macropinocytosis. In published literature amiloride and dynasore have been 

used at 50µM to inhibit EV uptake (Escrevente et al., 2011, Gong et al., 2015). The 

same concentrations were used in these experiments.   

A2780 cells were treated with 50µM dynasore or 50µM amiloride for 30 minutes 

prior to cisplatin treatment at various concentrations for 3 hours and after cisplatin 

treatment. 48 hours later, viability was assessed by MTT assay. Results are shown in 

Figure 5.5, error bars show SEM of 9 biological replicates. It can be clearly seen that 

dynasore and amiloride decrease survival significantly at concentrations of cisplatin 

5, 10 and 20 µM. The absorbance values were normalised to untreated cells in each 

group. IC50 (GraphPad PRISM) was shown to change significantly from 22.17µM 

in the control to 12.73µM in amiloride (p value <0.0001) and 12.48µM in dynasore 

(p-value <0.0001).  They were also compared at each concentration with control by 

the student’s t-test. The student’s t-test p-values are shown in Table 5-3. However 

there is no significant difference between dynasore treated cells and amiloride 

treated cells. These results show that dynasore and amiloride, inhibitors of EV 

uptake, can sensitise A2780 cells to cisplatin. 
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FIGURE 5.5: DYNASORE AND AMILORIDE SENSITISE A2780 CELLS TO CISPLATIN 
A2780 cells were treated with 50µM dynasore or 50µM amiloride alongside control for 30 minutes 
prior to cisplatin treatment for 3hours at varying concentrations. MTT assay was used to assess 
viability 48 hours later. Error bars show SEM of 9 replicates. IC50 (GraphPad PRISM) was shown to 
change significantly from 22.17µM in the control to 12.73µM in amiloride (p value <0.0001) and 
12.48µM in dynasore (p-value <0.0001) 

TABLE 5-3: EFFECT OF DYNASORE AND AMILORIDE TREATMENT ON CISPLATIN 

RESISTANCE - NORMALISED ABSORBANCE VALUES AND STUDENT'S T-TEST P-
VALUES 

cisplatin 
concentration 
(µM) 

control dynasore student's t-
test p-value 
dynasore v 
control 

amiloride student's t-
test p-value 
amiloride v 
control 

50 10.89 10.45 ns 11.04 ns 
20 59.04 32.37 5.03E-06 26.48 8.09E-07 
10 83.60 63.57 1.19E-07 67.55 0.000117 
5 90.01 73.36 4.91E-06 77.18 3.23E-05 
0 100.00 100.00 na 100.00 na 
 

5.3.4. THE EFFECT OF GUGGULSTERONE AND BEXAROTENE ON CISPLATIN 
SENSITIVITY 

It has been reported by Kong et al that guggulsterone and bexarotene increase 

sensitivity to cisplatin by causing release of EVs containing ABCG2 drug 

transporter; thus rendering the cell less efficient at exporting the drug (Kong et al., 
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2015). We hypothesised that if guggulsterone and bexarotene could sensitise cells to 

doxorubicin by secretion of ABCG2 within the EVs, then inhibiting the reuptake of 

EVs with heparin would act synergistically. Two possible scenarios exist with regard 

to synthesis and release of stress induced EVs – one is that the cell has a store of 

“pre-made” and ready to use “stress EVs”, the release of which is triggered by the 

stress; the other is that upon induction by the stress; the payload of the EVs changes 

and “stress EVs” are newly synthesised. If the stress EVs are pre-stored and the 

release is induced by guggulsterone and bexarotene, there would be no “stress EVs” 

left to be released; therefore the cells would be more sensitive, but adding heparin 

after cisplatin treatment would make no difference as all the “stress EVs” would 

have been released. However if the “stress EVs” are synthesised and released as and 

when the stress occurs, though guggulsterone and bexarotene would induce release 

of the EVs before cisplatin treatment, more “stress EVs” would be synthesised and 

released during and after cisplatin treatment containing information to cause a 

bystander effect and an adaptive response. The addition of heparin during and after 

the stress will increase the sensitivity of the cells by inhibiting the uptake of the EVs 

released during and after cisplatin treatment. 

Based on this, an experiment was set up with the following aims: 1. To check if 

guggulsterone and bexarotene did indeed induce sensitivity to cisplatin, 2. If heparin 

acts synergistically with guggulsterone and bexarotene and 3. to investigate if 

heparin is most effective if added before or after cisplatin treatment. Guggulsterone 

and bexarotene were used at the concentrations of 50 µM and 5 µM respectively as 

used by Kong et al. A2780 cells seeded in 96 well plates were divided into 6 groups 

for treatment as shown in Table 5-4; in each group, wells were treated with 0, 5, 10, 

20 or 50 μM cisplatin. Viability was quantified 48 hours later by MTT assay.  

 

 

 



131 

 

 

TABLE 5-4: THE EFFECT OF GUGGULSTERONE, BEXAROTENE AND HEPARIN ON 
CISPLATIN SENSITIVITY - TREATMENT GROUPS 

Group Guggulster
one 50µM 
24 hours 
before 
cisplatin 
treatment 

Bexarotene 
5 µM 24 
hours 
before 
cisplatin 
treatment 

Heparin 
10µg/ml, 
24 hours 
before 
cisplatin 
treatment 

Cisplatin 
treatment, 
0, 5, 10, 20 
and 50 µM 
for three 
hours 

Heparin 
10µg/ml 
during 
cisplatin 
treatment 

Heparin 
10µg/ml 
for 48 
hours 
after 
cisplatin 
treatment 

ctrl – – – + – – 
G+b+pre
-
hep+pos
t-hep 

+ + + + + + 

G+b+pre
-hep 

+ + + + – – 

G+b+po
st-hep 

+ + – + + + 

G+b + + – + – – 
hep – – – + + + 
 

Results are presented in figures 5.6 to 5.8. Guggulsterone and bexarotene (Figure 5.6 

and Table 5-4) sensitise cells to cisplatin by about 10% compared to control at a 

concentration of 20 μM (student’s t-test, p-value <0.05); however the shift of the 

IC50 from 47.42 to 75.76 (GraphPad PRISM) is not significant. Heparin 

significantly changes the IC50 from 47.42 to 28.67 (p-value <0.0001). The 

difference in IC50 between the heparin group and the guggulsterone/ bexarotene 

treated group is also significant (p-value = 0.004). 
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FIGURE 5.6: GUGGULSTERONE AND BEXAROTENE SENSITISE A2780 TO CISPLATIN 
A2780 cells were treated with control/ guggulsterone/ bexarotene for 24 hours or heparin during 
and after cisplatin treatment groups. Guggulsterone was used at a final concentration of 50 μM and 
bexarotene at a final concentration of 5 μM; heparin at 10 μg/ml and cisplatin at 4 different 
concentrations for 3 hours. Viablility was assessed by MTT assay 48 hours after cisplatin treatment. 
Error bars show SEM of 9 biological replicates. Results show that guggulsterone and bexarotene 
appear to sensitise cells to cisplatin only at concentrations less than 20 μM as compared by students 
t-test (see Table 5-5); however the IC50 appears to have increased from 47.42 to 75.76 and the 
difference is not significant. The group treated with heparin is more sensitive to cisplatin; the IC50 
(GraphPad PRISM) changes significantly from 47.42 to 28.67 (p-value <0.001). The difference in IC50 
between heparin group and guggulsterone and bexarotene group is also significant (p-value = 
0.004). 

 
In order to determine if heparin acts synergistically with guggulsterone/ bexarotene, 

the response to cisplatin of compared between the group treated with heparin and 

guggulsterone/ bexarotene with that of either heparin or guggulsterone/ bexarotene 

(Figure 5.7). As compared to control the IC50 shifted significantly from 47.42 to 

27.78 (p-value = 0.004); the IC50 is also significantly different from the 

guggulsterone/ bexarotene alone group (p-value = 0.01)but almost similar to the 

heparin alone group (28.67 and 27.78). This suggests that though the treatment of all 

three drugs significantly sensitises the cells to cisplatin, the effect is comparable to 

the heparin only group indicating a lack of synergistic effect.  
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FIGURE 5.7: NO SYNERGY EXISTS BETWEEN HEPARIN AND GUGGULSTERONE/ 
BEXAROTENE ON RESPONSE TO CISPLATIN IN A2780 CELLS 
A2780 cells were treated with control/ guggulsterone/ bexarotene for 24 hours/ heparin during and 
after cisplatin treatment/ aombination of all the three drugs. Guggulsterone was used at a final 
concentration of 50 μM and bexarotene at a final concentration of 5 μM; heparin at 10 μg/ml and 
cisplatin at 4 different concentrations for 3 hours. Viablility was assessed by MTT assay 48 hours 
after cisplatin treatment. Error bars show SEM of 9 biological replicates. The group treated with all 
the three drugs is more sensitive to cisplatin (IC50 shift to 27.78 from 47.42 in control (p-value = 
0.004) or 75.76 in the guggulsterone/ bexarotene only group (p-value = 0.01); however the effect is 
comparable to heparin (IC50 28.67).  

Comparing the groups treated with guggulsterone/ bexarotene/ heparin prior to 

treatment with cisplatin and guggulsterone/ bexarotene/ heparin during and after 

treatment with cisplatin shows a difference in IC50 with the heparin before group 

showing an IC50 of 86.18 and the heparin post treatment group recording an IC50 of 

34.49; this difference is significant (p-value = 0.016).  

These results indicate that 1. heparin has no synergistic effect with guggulsterone/ 

bexarotene and 2. Heparin is effective if given during and after cisplatin treatment.  
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FIGURE 5.8: TREATMENT WITH HEPARIN AFTER CISPLATIN TREATMENT IS MORE 
EFFECTIVE THAN PRE-TREATMENT 
A2780 cells were treated with guggulsterone/ bexarotene/heparin for 24 hours prior to cisplatin 
treatment or guggulsterone/ bexarotene for 24 hours prior to cisplatin treatment and heparin 
during and after cisplatin treatment. Guggulsterone was used at a final concentration of 50 μM and 
bexarotene at a final concentration of 5 μM; heparin at 10 μg/ml and cisplatin at 4 different 
concentrations for 3 hours. Viablility was assessed by MTT assay 48 hours after cisplatin treatment. 
Error bars show SEM of 9 biological replicates. The IC50 of the pre hep group is 86.18 while that of 
the post hep group is significantly different (p-value = 0.016) at 34.49 

TABLE 5-5: A2780 CELLS TREATED WITH GUGGULSTERONE AND BEXAROTENE 
WITH/WITHOUT HEPARIN AND VARYING CONCENTRATIONS OF CISPLATIN PAIRWISE 
COMPARISON OF POINTS BY STUDENTS T-TEST P-VALUES 
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50 42.0 51.2 0.05 41.4 0.91 54.9 0.02 44.0 0.69 41.4 0.89 

20 78.6 68.3 0.05 60.0 0.00 67.0 0.08 58.3 0.00 56.1 0.00 

10 79.3 69.4 0.12 57.7 0.00 73.3 0.32 62.3 0.01 63.6 0.01 

5 74.8 72.3 0.76 61.0 0.16 76.1 0.88 62.2 0.25 63.0 0.18 

0 100 100  100  100  100  100  

            

  - Significantly Increased cisplatin sensitivity compared to control 

  - Decreased cisplatin sensitivity compared to control 
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5.3.5. CISPLATIN AND HEPARIN EFFECTS ON A2780 XENOGRAFT IN MICE 

Heparin appears to significantly increase sensitivity of cells to cisplatin in vitro. In 

order to assess the effect of heparin on cisplatin response in vivo, A2780s were 

injected subcutaneously into the flanks of nude BALB-C SCID mice; when the 

tumours were 100mm3 in volume these were then divided into four treatment groups 

- control (no treatment), heparin only, cisplatin only or heparin and cisplatin.  

Tumour volume was assessed regularly; the animal was sacrificed when the tumour 

quadrupled in size. All animal studies were conducted by Dr Helen McCarthy at 

Queens University, Belfast; A2780s for this experiment were kindly provided by Dr 

Fiona Furlong, Queens University, Belfast. The survival is shown in Figure 5.9 and 

Table 5-6 shows median survival for each group. This shows that as expected, the 

cisplatin treated mice (11 days) appear to survive longer than control mice (7 days) 

(log-rank test p-value 0.0059). However, unexpectedly, the group with the 

combination treatment appear to have shorter median survival (8 days) than the 

cisplatin alone group (11 days) (log-rank test p-value – 0.076); moreover the heparin 

only treatment group (5 days) also has a shorter median survival than the control 

group (7 days) (log rank test p-value – 0.015).  Tumour volumes (Figure 5.10) and 

tumour doubling time calculated by non-linear regression analysis (shown in Table 

5-6 and Figure 5.11) show similar trends with cisplatin treated group doubling time 

being almost twice as long as that of the control group or the heparin treated group. 

Again, the group treated with the combination appears to have a shorter doubling 

time (3.81 ± 0.98) than the cisplatin treated group (4.94 ± 1.51) while the difference 

in doubling time between the heparin treated group and the control is minimal. 

However, only the difference in tumour doubling time between the cisplatin 

treatment group and control group was significant (student’s t-test p-value 0.018). 

Hence the in vivo experiment appears to show that heparin does not increase the 

sensitivity of A2780 tumours in mice to cisplatin, there was no decrease in tumour 

growth or increase in survival. 
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TABLE 5-6: MEDIAN SURVIVAL AND DOUBLING TIMES 
Treatment 

group 
median 
survival 

Log-rank (Mantel –Cox 
test) 

Tumour doubling 
time (days) 

Students t-test 

 (days) 

P-value vs 
control 

P-value vs 
Cisplatin 

mean ± standard 
deviation 

p-
value 

vs 
control 

p-value 
vs 

cisplatin 

control 7   2.87 ± 0.65   
cisplatin 11 0.00586  4.94 ± 1.51 0.018  
heparin 5 0.0152  2.54 ± 0.53 0.345  

Cisplatin + 
heparin 8 0.076 0.14 3.81 ±  0.98 0.108 0.170 

 

 

 

FIGURE 5.9: SURVIVAL CURVES OF THE FOUR TREATMENT GROUPS OF MICE 
A2780s were injected subcutaneously into the flanks of nude BALB-C SCID mice; when the 
tumours were 100mm3 in volume 24 mice were divided into four treatment groups - control (no 
treatment), heparin only, cisplatin only or heparin and cisplatin.  Tumour volume was assessed 
regularly; the animal was sacrificed when the tumour quadrupled in size. Survival times have 
been plotted and appear to show a decrease in survival with combination treatment. 
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FIGURE 5.10: TUMOUR VOLUMES - MICE IN THE FOUR TREATMENT GROUPS 
A2780s were injected subcutaneously into the flanks of nude BALB-C SCID mice; when the 
tumours were >100mm3 in volume, the mice were treated with one of the following  - control 
(no treatment), heparin only (10mg/kg od ip), cisplatin only (5mg/kg once weekly ip) or 
heparin (10mg/kg od ip) and cisplatin (5mg/kg once weekly ip).  Tumour volume was assessed 
regularly; the animal was sacrificed when the tumour quadrupled in size. Tumour volumes have 
been normalised and plotted against time. The graph indicated no increase in time taken for the 
tumour to quadruple in the combination treatment group as compared to the cisplatin treated 
group. 
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FIGURE 5.11: TUMOUR DOUBLING TIME 
A2780s were injected subcutaneously into the flanks of nude BALB-C SCID mice; when the 
tumours were >100mm3 in volume, the mice were treated with one of the following  - control 
(no treatment), heparin only (10mg/kg od ip), cisplatin only (5mg/kg once weekly ip) or 
heparin (10mg/kg od ip) and cisplatin (5mg/kg once weekly ip). Tumour doubling times were 
calculated by using nonlinear regression analysis. Error bars show standard deviation of at least 
6 biological samples in each group. Tumour doubling time was increased in cisplatin treated 
group as compared to control group (students t-test p-value 0.018); combination treatment 
group appears to show a decrease in tumour doubling time as compared to cisplatin though this 
is not significant. 

5.4 DISCUSSION  

Extracellular vesicles have generated great attention over the last decade as a means 

of cell – cell  communication  including transfer of RNA and proteins to distant cells 

by virtue of their being transferred through body fluids including blood. They are 

involved in numerous physiological and pathological processes. As discussed in 

Section 1.5.6, in cancers, they have been shown to affect tumorigenesis including 

proliferation and metastasis, angiogenesis, tumour microenvironment, anti-tumoral 

immune response and chemotherapy resistance. 

Evidence suggests that EVs may affect drug resistance through transfer of proteins 

such as drug transporters (Corcoran et al., 2012, Goler-Baron and Assaraf, 2012, Lv 

et al., 2014,), microRNAs (Jaiswal et al., 2012, Corcoran et al., 2014, Wei et al., 
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2014), lncRNA (Takahashi et al., 2014c, Takahashi et al., 2014a). Moreover they 

have been shown to sequester drugs (Ifergan et al., 2009, Gong et al., 2013, Ma et 

al., 2014) or oncogenic microRNAs (Akao et al., 2014) away from the cells. The 

payload of EVs has not been fully characterised nor are the complex mechanisms 

through which EVs may affect drug resistance.  

Initially, the aim of the project was to investigate if resistance could be transferred 

from the resistant CP70 to the sensitive A2780 ovarian cancer cell lines. It was 

demonstrated that transfer of EVs from CP70 to A2780 could increase the survival 

of cells after cisplatin treatment as compared to control. This raised the possibility 

that on cisplatin treatment, cells that are damaged could then transmit this ‘stress 

signal’ to other cells in the same population or flask via EVs causing a bystander 

effect and adaptive response as described in section 5.1. This could result in a higher 

proportion of cisplatin resistance. Blocking the uptake of these EVs should then 

make the cells more sensitive to cisplatin.  

EVs can be taken up in many different ways including phagocytosis, clathrin or 

caveolin mediated endocytosis, heparan sulphate proteoglycan associated uptake, 

micropinocytosis or lipid raft mediated uptake as described in section 1.5.4.  

Different chemicals have been employed to decrease the uptake of EVs; in fact EV 

uptake cannot be inhibited completely by one method (Escrevente et al., 2011). 

Heparin competes for binding with heparan sulfate proteoglycans and thereby 

decreases the uptake of EVs; heparin treatment was shown in one study to inhibit the 

uptake of EVs by 50% (Christianson and Belting, 2014, Franzen et al., 2014). Other 

well-known inhibitors of EV uptake include dynasore, a dynamin inhibitor that 

blocks uptake of EVs by endocytosis and amiloride which inhibits uptake of EVs by 

macropinocytosis.  

Experiments showed that heparin treated cells were significantly more sensitive to 

cisplatin than the control cells in A2780, CP70, and IGROV-1 cell lines. This 

appeared to confirm the hypothesis that cells transfer resistance within the 

population and blocking of EV uptake would decrease resistance by preventing this 

transfer. A recent study appeared to confirm this by showing that low molecular 

weight heparin tinzaparin antagonises cisplatin resistance of A2780 ovarian cancer 
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cells and that cell surface haparan sulfate proteoglycans were involved in the 

cisplatin resistance (Pfankuchen et al., 2015). Heparin was also shown to decrease 

invasion and migration in breast cancer cell lines MDA-MB-231 and MDA-MB-435 

(Li et al., 2013) and in lung cancer cells (Zhong et al., 2015, Liao et al., 2015); the 

latter studies suggest that this is mediated through heparin cofactor II (HCII) and 

consequent disruption of the AkT – PI3K-mTOR pathway. Heparin was also shown 

to increase cytotoxicity caused by chemotherapeutic drugs in breast cancer cells; an 

effect on drug efflux transporters ABCG2 and ABCC1 was noted increasing levels 

of cytotoxic drugs within cells (Chen et al., 2014c). A xenograft trial which appears 

to confirm these results indicating that heparin decreases cisplatin resistance of lung 

cancer side population cells by decreasing ABCG2 expression (Niu et al., 2012).  In 

another xenograft trial, both tinzaparin (a low molecular weight heparin) and a non-

anticoagulant heparin – S-NACH decreased tumour growth and increased apoptosis 

in pancreatic cancer cells (Sudha et al., 2014); S-NACH also increased 

chemotherapy sensitivity in breast cancer xenograft (Phillips et al., 2011). Xenograft 

studies appear to suggest that heparin decreased tumour growth in lung cancer (Kim 

et al., 2015) and to confer sensitivity to gefitinib, a chemotherapeutic agent (Pan et 

al., 2015). Heparin is widely used as a treatment for deep vein thromboembolism in 

patients with cancers. In one retrospective clinical trial, addition of a low molecular 

weight heparin, dalteparin to combination chemotherapy improved progression free 

survival and overall survival in a cohort of 67 patients with small cell lung cancer 

(Altinbas et al., 2004). Another study in pancreatic cancer patients has suggested that 

the time to progression of cancer increased from 4 months in control group (cisplatin 

and gemcitabine- another chemotherapy drug) to 7 months in patients treated with 

heparin in addition to cisplatin and gemcitabine (Icli et al., 2007). Heparin use was 

associated with improved survival in docetaxel chemotherapy for prostate cancer 

(Park et al., 2015). In a study of 385 patients with advanced malignancy, there 

appeared to be improved survival associated with dalteparin treatment as compared 

to a placebo; this was more obvious in patients with a better prognosis (Kakkar et al., 

2004).  A metaanalysis by Lazo-Langner et al shows an association of heparin 

treatment with improved survival rates in cancer patients (Lazo-Langner et al., 

2007). However other studies appear to suggest no benefit of adding heparin to 
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conventional chemotherapy (Sanford et al., 2014, Macbeth et al., 2015, Sideras et al., 

2006). 

Amiloride, another EV uptake inhibitor, has also been associated with modulatory 

effects on cancers. It has been shown to increase sensitivity to chemotherapeutic 

drug, erlotinib in pancreatic cancer (Zheng et al., 2015) while a combination of 

amiloride and guggulsterone suppressed growth in oesophageal cancer cells and 

xenografts (Guan et al., 2014). Dynasore appeared to inhibit metastasis and invasion 

by reducing dynamin2 (Gong et al., 2015); another study showed a decrease in the 

invasive capacity of U2OS cells induced by dynasore by disrupting the actin 

cytoskeleton (Yamada et al., 2009).  

Pre-treatment of A2780 cells with amiloride or dynasore before treatment with 

cisplatin appears to mirror the effect of heparin by significantly sensitising them to 

cisplatin. This corroborates the evidence presented that blocking the uptake of EVs 

sensitises the cell to cisplatin.  

A study by Kong et al (Kong et al., 2015) appeared to show that treatment of breast 

cancer cells with a combination of guggulsterone and bexarotene sensitised the cells 

to doxorubicin; this appeared to correlate with an increase in ceramide which 

stimulates the release of EVs and a depletion of BRCP2/ ABCG2 drug transporters; 

this appears to indicate a secretion of ABCG2 transporters within the EVs. There is 

previous evidence regarding the sequestration of drug transporters in EVs (Ifergan et 

al., 2005, Ifergan et al., 2009, Goler-Baron and Assaraf, 2011, Goler-Baron et al., 

2012).  Moreover, guggulsterone has been shown to reduce viability in oesophageal 

cancer cells (Yamada et al., 2014), while a combination of amiloride and 

guggulsterone reduced tumour growth in an oesophageal adenocarcinoma xenograft 

study (Guan et al., 2014). 

We hypothesised that if guggulsterone and bexarotene could sensitise cells to 

doxorubicin by secretion of ABCG2 within the EVs, then inhibiting the reuptake of 

EVs with heparin would act synergistically. Two possible scenarios exist with regard 

to synthesis and release of stress induced EVs – one is that the cell has a store of 

“pre-made” and ready to use “stress EVs”, the release of which is triggered by the 

stress; the other is that upon induction by the stress; the payload of the EVs changes 
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and stress EVs are newly synthesised. If the stress EVs are pre-stored and the release 

is induced by guggulsterone and bexarotene, there would be no stress EVs left to be 

released; therefore the cells would be more sensitive, but adding heparin after 

cisplatin treatment would make no difference as all the stress EVs would have been 

released. However if the stress EVs are synthesised and released as and when the 

stress occurs, though guggulsterone and bexarotene would induce release of the EVs 

before cisplatin treatment, more “stress EVs” would be synthesised and released 

during and after cisplatin treatment containing information to cause a bystander 

effect and an adaptive response. The addition of heparin during and after the stress 

will further increase the sensitivity of the cells by inhibiting the uptake of the EVs 

released during and after cisplatin treatment. Hence, A2780 cells were subjected to 

treatment with combinations of guggulsterone, bexarotene, heparin and cisplatin.  

The results showed that guggulsterone and bexarotene did indeed sensitise cells to 

cisplatin suggesting that induce the release of EVs prior to cisplatin treatment did 

sensitise cells to cisplatin. Heparin, if added during and after cisplatin treatment, 

increased this sensitivity suggesting that EVs released during and after cisplatin 

treatment have the potential to induce resistance. This suggests that the evidence is 

weighted towards stress EVs being made as and when the stress occurs. However, 

heparin treatment alone during and after cisplatin with no additional treatment with 

guggulsterone or bexarotene had a sensitising effect equivalent to combined 

treatment.  A possible reason is that preventing the reuptake of EVs released during 

and after cisplatin treatment is sufficient to induce cisplatin sensitivity.   

All the experiments thus far suggested that in vitro, modifying the uptake of EVs 

during and after cisplatin treatment decreases cancer cell viability; to determine the 

efficacy in vivo, a xenograft study was performed to establish if combining heparin 

treatment with conventional cisplatin based chemotherapy could induce an increase 

in sensitivity to cisplatin treatment. Mice grafted with A2780 tumours were divided 

into four treatment groups (1) control to establish a baseline for tumour growth with 

no treatment (2) cisplatin only treatment to provide the baseline for  tumour growth 

with conventional therapy (3) heparin only to indicate any changes to tumour growth 

induced solely by heparin and (4) combined treatment to establish any synergistic 

effects upon treatment with heparin and cisplatin i.e. to show if heparin induced an 
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increased sensitivity to cisplatin. The results however, were unexpected. Cisplatin, as 

expected, did reduce tumour growth and increase survival as compared to control. 

However, surprisingly, adding heparin to cisplatin did not potentiate the effects of 

cisplatin. Instead it resulted in a decrease in the effect of cisplatin showing increased 

tumour growth and decreased survival than the cisplatin only treatment group, 

though this was not significant. Moreover, the heparin only treatment group also 

appeared to have a decreased survival as compared to the control group, although 

this was also not significant. These results suggest that in vivo, other effects of 

heparin appear to play a predominant role and can confound the effects of inhibiting 

EV uptake. One recent study studying microvesicles from pregnant women noted 

that microvesicles from patients who had been treated with low molecular weight 

heparin had a higher content of proteins such as Ang-2, VEGFR-3, angiostatin, 

TIMP-1 and TNF-α which are known to be involved in angiogenesis (Shomer et al., 

2016).  If angiogenesis were increased by heparin; tumour growth would be 

influenced by this, leading to increased tumour growth and consequent decrease in 

survival. This appears to be given credibility by the fact that heparin alone treatment 

shows a trend towards decreased survival and increased tumour growth as compared 

to control. Moreover, published literature appears to suggest that the survival benefit 

of using heparin along with conventional chemotherapy is not universal and that in 

some groups of patients with cancer, there is no significant increase in survival on 

treatment with heparin along with conventional chemotherapy (Sideras et al., 2006, 

Sanford et al., 2014, Macbeth et al., 2015). Therefore, the other in vivo effects of 

heparin and their influences on heparin’s cisplatin-sensitising property would have to 

be further studied. There could be variations based on type of tumour, type of 

animal, routes of administration, dosage of drugs etc. Hence more experiments 

would have to be done before firm conclusions can be drawn.  

This part of the project has started to explore the role of EVs on cisplatin resistance. 

However most of the experiments have been based on the MTT assay to quantify 

viability. Other methods of quantifying proliferation/ apoptosis or response to 

chemotherapy would help to validate this data. Moreover, the change has not been 

shown to be because of the direct effect of heparin, amiloride or dynasore on EVs. 

These experiments would need to be done to confirm that this is not the result of 

some other action of heparin or the other drugs on cells. Moreover, the actual effect 
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of the other drugs have not been tested in vitro.  The pathways by which EVs might 

be able to induce the ‘bystander effect’ or the ‘adaptation effect’ have not been 

elucidated. These could be profitably explored in future studies. Moreover, EV 

uptake studies and assessment of the RNA/ protein content of the EVs would help us 

determine the possible mechanisms by which heparin, amiloride and dynasore cause 

their effects on cisplatin resistance. In vitro studies need to be done with other cell 

lines and amiloride to assess its effect on cisplatin response in the other cell lines. 

Possible future avenues to explore include xenograft studies with different doses of 

cisplatin possibly with a different cell line – IGROV-1 or SKOV-3. The other 

possibility is to use amiloride to avoid the angiogenic effects of heparin.  

The main contributions from this chapter is evidence that transfer of EVs from the 

cisplatin resistant cell line CP70 to the cisplatin sensitive cell line A2780 increases 

cisplatin resistance in A2780s. EV uptake inhibitors heparin, amiloride and dynasore 

increase cisplatin sensitivity in A2780 ovarian cancer cells in vitro. Heparin has also 

been shown to increase cisplatin sensitivity in CP70, IGROV-1 and SKOV-3 cell 

lines. Heparin’s effect has been mainly during and after cisplatin treatment, 

indicating the possibility that “stress induced EVs” are synthesised as and when the 

stress occurs. Xenograft studies however have indicated a decrease in cisplatin 

sensitivity on addition of heparin to the treatment regimen. 
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Chapter 6 DISCUSSION 
 

Ovarian cancers have a very low 5-year survival rate of only 45%; one of the 

contributors to this low survival is resistance to platinum drugs which are the 

treatment of choice for chemotherapy. The causes of cisplatin resistance are complex 

and multifactorial and are the subject of investigations described in this thesis. Two 

aspects of the modulation of cisplatin resistance have been investigated in this 

project.  

MicroRNAs have emerged as new modulators of various cellular processes in 

physiological and pathological conditions including cancer. As  microRNA-target 

site interactions are imperfectly complementary, one microRNA can target many 

genes and one gene can be targeted by many microRNAs. This introduces a whole 

new layer of modulation opening up exciting possibilities where one microRNA can 

modify whole pathways.  

The mechanisms of platinum resistance and microRNAs have not yet been 

exhaustively studied. Gaps in the knowledge exist that could be exploited in the 

quest for the improved survival of patients. Therefore, this project investigated 

cisplatin resistance in ovarian cancers to identify microRNAs involved in modulating 

the cisplatin resistant phenotype but have, thus far not shown to be involved in 

cisplatin resistance. The results from the first two chapters provide some insight into 

microRNAs thus far not described in cisplatin resistance in ovarian cancer cells. 

Differences in microRNA expression between cisplatin sensitive ovarian 

adenocarcinoma cell line – A2780s, and its cisplatin resistant derivatives - MCP-1 

and CP70 - were used to identify potential candidates for further investigation. 

MicroRNA-21* and microRNA-31 were identified as potentially of interest in the 

modulation of cisplatin resistance and further investigated. MicroRNA-21* was 

shown to increase resistance in a panel of ovarian cancer cells; NAV3 was validated 

as one of the targets of miR-21*. Knockdown of NAV3 was shown to increase 

resistance to cisplatin. MiR-21* was shown to be a driver of proliferation upon 

induction by cisplatin. Though general PDI inhibitors increased cisplatin resistance 
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in A2780 cells, specific knockdown of PDIA4 did not modulate cisplatin resistance 

in A2780 cell line.  

These results provide evidence that miR-21* increases cisplatin resistance in ovarian 

cancer cells, possibly through targeting of NAV3. Firstly, the significance of miR-

21*, the passenger strand of a well-known oncomiR, has largely been overshadowed 

by its more predominant guide strand. Therefore, this work adds to an ever growing 

body of work that indicates that passenger strands have significant effects which may 

be synergistic or antagonistic with the guide strand. The identification of NAV3 as a 

novel target of miR-21* is of significant importance as there is some evidence that 

loss of NAV3 may be associated with poor prognosis and increased invasiveness in 

various cancers. Deletions in the NAV3 gene do not account for all the copy number 

changes (Marty et al., 2008, Maliniemi et al., 2011). NAV3 has previously been 

shown to be a target of miR-29a (Satoh, 2010, Shioya et al., 2010) and miR-29c 

(Zong et al., 2015). This study has shown that NAV3 expression may also be 

modulated by miR-21*. Moreover, knockdown of NAV3 has been shown for the 

first time to be associated with cisplatin resistance in ovarian cancer cells.  

MiR-31’s role in cisplatin resistance has been described here. MiR-31 was shown to 

increase resistance; KCNMA1 was validated as a possible indirect target of miR-31; 

knockdown of KCNMA1 was shown to increase cisplatin resistance. MiR-31 is a 

pleiotropic miRNA, shown to have contradictory effects in different types of 

tumours. Even within the same type of tumour, the effects have been different 

depending on p53 expression and p21 expression. Hence, any description of the 

involvement of this miRNA adds to available knowledge which will help to clarify 

the ways by which this miRNA’s effects are regulated. KCNMA1 has been shown to 

be involved in platinum resistance (Ziliak et al., 2012) in addition to its diverse 

effects in various cancers. This study adds to the knowledge about the regulation of 

this gene. Moreover, this project indicates the possibility of involvement of the 

BKCa channel in cisplatin resistance; this is corroborated by other studies linking the 

BKCa channel to apoptosis in response to stimuli including cisplatin (Ma et al., 

2012).  
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These findings add to the understanding of the miRNA networks and regulation in 

cisplatin resistance. As discussed, a full understanding of miRNA regulation could 

lead to improved, and possibly personalised, therapy for ovarian cancers and 

improved survival of patients. 

There is much scope for further research. In all probability, there are many more 

targets of miR-21* and miR-31. Identifying these may enable elucidation of the 

exact mechanisms involved in miR-21*’s and miR-31’s modulation of cisplatin 

resistance and facilitate the categorisation into pre-, on-, post- or off-target 

mechanisms of action. The role of these miRNAs, especially miR-21*, in other 

tissue types are yet to be completely understood. Hence they could profitably be 

studied in other types of cancers as well as in specific characteristics of cancer 

behaviour such as invasion and metastasis. Previous evidence suggests that other 

microRNAs, for example miR-433 have been involved in chemoresistance to 

paclitaxel (Weiner-Gorzel et al., 2015); hence these microRNAs could also be 

investigated for involvement in chemoresistance to paclitaxel. Experimental 

evidence has been derived from cell line studies, there is, therefore, the scope for 

other models of study, possibly xenograft trials, to investigate the in vivo behaviour 

of these miRNAs in cisplatin resistance. Other microRNAs which were identified by 

the miRNA microarray could also be followed up. 

The other aspect of cisplatin resistance investigated in this project has been the role 

of EVs in development of cisplatin resistance. EVs have emerged as an important 

mode of cell-to-cell communication, including communication with remote cells, 

especially as it has been described that functional RNA and protein can be conveyed 

between cells. The presence of bystander effect and adaptive response described with 

irradiation and bleomycin treatment raises the possibility of a similar response in 

cisplatin treatment. If this adaptive response occurred within a population of cells, it 

would result in the population having a higher resistance to cisplatin. As the adaptive 

and bystander effects can be mediated by EVs, the inference would be that reducing 

this communication would make the cells more sensitive to cisplatin.  

Investigating this possibility, experimental results show that treatment with heparin/ 

amiloride/ dynasore, all of which reduce the uptake of EVs could increase the 
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sensitivity of A2780 cells to cisplatin. With heparin, this was confirmed in three 

other ovarian cancer cell lines too. This corroborates previous studies where ovarian 

cancer cells were rendered cisplatin sensitive by treatment with heparin (Pfankuchen 

et al., 2015). A study by Kong et al has shown that treatment with guggulsterone and 

bexarotene causes release of EVs associated with ABCG2 drug transporter; the 

authors postulate that this leads to increased intracellular concentration of cytotoxic 

drug making cells more sensitive (Kong et al., 2015). In the project described here, it 

was shown that, guggulsterone and bexarotene did indeed sensitise cells to cisplatin. 

However this did not further potentiate the sensitivity induced by heparin. As 

discussed before, this appears to endorse the view that “stress induced EVs” are 

synthesised de novo.  

Once in vitro studies established a clear role for heparin in the modulation of 

cisplatin resistance, a xenograft study was performed to study the effect of a 

combination of cisplatin and heparin on tumour growth. Unexpectedly, this study 

indicated a decrease in survival and increase in tumour growth with the combined 

treatment compared with cisplatin alone. This increase in tumour growth, though not 

significant, was also mirrored in the heparin only treatment group as compared to the 

control group. There could be several reasons for this apparent contradiction of the in 

vitro findings – one of them being that the other effects of heparin, such as induction 

of angiogenesis, may increase the proliferation of the tumour in vivo.  Moreover, 

most of the results obtained have relied on the MTT assay to assess the response to 

cisplatin. Despite this, there is scope for further investigation. Various possibilities 

include using a different cell line to induce tumours, possible changes in the dosage 

and route of administration of cisplatin and heparin, as well as investigating the 

effect of amiloride or dynasore on cisplatin sensitivity. More experiments could also 

be performed in vitro investigating the bystander effect and adaptive response and 

studying the RNA and protein content of these EVs, their uptake by recipient cells, 

and the induced responses in the recipient cells. 

6.1. CONTRIBUTIONS: 

The following have been the novel contributions from this work to the knowledge in 

the field of cisplatin resistance in ovarian cancers (Figure 6.1): 
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In this project, miR-21* has been shown to increase cisplatin resistance in ovarian 

cancer cells. NAV3 has been validated as a direct target of miR-21* while 

knockdown of NAV3 has been shown to increase cisplatin resistance. miR-21* and 

NAV3 knockdown were shown to increase resistance in ovarian cancer cells upon 

cisplatin treatment. PDI inhibitors were shown to increase cisplatin resistance but 

specific knockdown of PDIA4 had no effect.  

MiR-31 increases cisplatin resistance in ovarian cancer cells; KCNMA is a possible 

indirect target of miR-31. KCNMA1 knockdown and blocking of the BK channels 

by paxilline increase cisplatin resistance in ovarian cancer cells. 

Transfer of EVs from the cisplatin resistant cell line CP70 to the cisplatin sensitive 

cell line A2780 increases cisplatin resistance in A2780s. Heparin treatment is shown 

to sensitise cells to cisplatin in three ovarian cancer cell lines, while dynasore and 

amiloride, other EV uptake inhibitors also increase sensitivity to cisplatin in A2780 

cells. Xenograft studies indicate a decrease in survival and increase in tumour 

growth when heparin is added to the conventional chemotherapy with cisplatin. 
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FIGURE 6.1: NOVEL CONTRIBUTIONS 
Novel Contributions from this project include: 1. Increase in miR-21* decreases NAV3 expression 
causing increase in cisplatin resistance 2. Increase in miR-31 indirectly decreases KCNMA1 causing 
increase in cisplatin resistance 3. EVs isolated from cisplatin resistant cells if transferred on to 
cisplatin sensitive cells increases cisplatin resistance 4. Inhibition of uptake of EVs that have been 
released on stress by cisplatin increases cisplatin sensitivity. 
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Appendix A: Cell Growth Characteristics and 
Cisplatin response curves 

 

FIGURE A.1: CELL GROWTH CURVES 
Cells were seeded in T25 flasks at a starting concentration of 500 000/ flask. Cells were counted 
at 24 hours, 48 hours, 72 hours, 96 hours and 120 hours using a hemocytometer. Each point 
represents the mean of 3 replicates; error bars indicate SEM. A2780 and CP70 appear to have 
similar characteristics and a faster doubling time than the other cell lines.  

 

FIGURE A.2: CISPLATIN RESPONSE CURVES FOR OVCAR-5, OVCAR-8 AND IGROV-1 
OVCAR-5, OVCAR-8 and IGROV-1 cells seeded at optimal concentrations were treated with increasing 
concentrations of cisplatin for 3 hours. Cell viability was assessed after 48 hours by the MTT assay. 
Absorbance was normalised to untreated cells in each group; error bars show SEM from at least 6 
biological replicates for each point of the graph.   
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APPENDIX B: Effects of Different treatments on cell 
viability 

 

FIGURE B.1: EFFECT OF MIR-21* ON CELL VIABLILITY 
A2780 cells in 96 well plates were treated with miR-21* mimics or control. The percentage of 
cell viability (measured by the MTT assay) was normalised to control and compared by the 
student’s t-test; error bars show SEM of 50 biological replicates. The results show slight 
decrease in cell viability (p-value<0.01) 

 

FIGURE B.2: EFFECT OF NAV3 KNOCKDOWN ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with NAV3 siRNA or control. The percentage of cell 
viability (measured by the MTT assay) was normalised to control and compared by the 
student’s t-test; error bars show SEM of 16 biological replicates. The results show slight 
increase in cell viability (not significant) 
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FIGURE B.3: EFFECT OF KCNMA1 KNOCKDOWN ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with KCNMA1 knockdown shRNAs or control. The 
percentage of cell viability (measured by the MTT assay) was normalised to control and 
compared by the student’s t-test; error bars show SEM of 10 biological replicates. The results 
show slight decrease in cell viability in KCNMA1 shRNA2 (p-value < 0.05) 

 

FIGURE B.4: EFFECT OF PDI INHIBITOR 16F16 ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with 16F16 at 2 µM for 24 hours; media was changed 
and MTT assay was done 48 hours later. The percentage of cell viability was normalised to 
control and compared by the student’s t-test; error bars show SEM of 15 biological replicates. 
No significant change in cell viability is detected 
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FIGURE B.5: EFFECT OF MIR-31 MIMICS ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with miR-31 mimics or control for 24 hours; media 
was changed and MTT assay was done 48 hours later. The percentage of cell viability was 
normalised to control and compared by the student’s t-test; error bars show SEM of 20 
biological replicates. There was a slight decrease in cell viability as compared to control 
(student’s t-test p-value < 0.05) 

 

FIGURE B.6: EFFECT OF HEPARIN ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with heparin at 10µg/ml for 72hours. The percentage 
of cell viability (Assessed by MTT assay) was normalised to control and compared by the 
student’s t-test; error bars show SEM of 20 biological replicates. There was a slight increase in 
cell viability as compared to control (student’s t-test p-value < 0.05) 
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FIGURE B.7: EFFECT OF DYNASORE AND AMILORIDE ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with dynasore or amiloride for 72 hours. The 
percentage of cell viability was normalised to control and compared by the student’s t-test; 
error bars show SEM of 9 biological replicates. There was a slight decrease in cell viability in 
both groups as compared to control (student’s t-test p-value < 0.05) 

 

FIGURE B.8: EFFECT OF GUGGULSTERONE AND BEXAROTENE ON CELL VIABILITY 
A2780 cells in 96 well plates were treated with Guggulsterone at 50 μM and bexarotene at 5 μM 
or control for 24 hours; media was changed and MTT assay was done 48 hours later. The 
percentage of cell viability was normalised to control and compared by the student’s t-test; 
error bars show SEM of 9 biological replicates. There is no change in cell viability as compared 
to control (student’s t-test p-value < 0.05) 
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Appendix C: Top De-regulated genes in CP70s as 
compared to A2780s 
TABLE C-1: TOP 50 DOWN-REGULATED GENES IN CP70 BY RNA SEQUENCING AS 
COMPARED TO A2780 WITH FOLD CHANGE AND P-VALUE 
Gene Fold change 

CP70 v 
A2780 

p-value 

BEX4 ** 5.36E-52 
BTBD6 ** 1.02E-09 
C3orf67 ** 5.58E-20 
CASP5 ** 2.08E-18 
CHST9 ** 1.44E-14 
CRABP1 ** 1.41E-85 
CRADD ** 2.42E-14 
CYB5A ** 3.24E-15 
CYP7B1 ** 3.52E-11 
DENND2A ** 1E-10 
EMILIN3 ** 3.24E-47 
EPM2AIP1 ** 2.34E-63 
ESRRG ** 3.55E-22 
FAM107A ** 1.01E-17 
FCER1A ** 1.1E-40 
GRM8 ** 5.38E-11 
GSTM3 ** 1.26E-16 
HTATIP2 ** 2.76E-19 
HTR1F ** 5.19E-55 
KCTD16 ** 7.11E-15 
KLF8 ** 3.6E-30 
MAPKAP1 ** 4.97E-23 
MBL2 ** 3.28E-12 
MDFI ** 8.7E-32 
MEGF10 ** 2.21E-13 
MLH1 ** 1.7E-92 
NSUN7 ** 1.81E-12 
PPP2R2B ** 6.35E-44 
RIN3 ** 7.51E-31 
RNF212 ** 7.26E-53 
ROCK2 ** 1.49E-29 
SCFD2 ** 1.16E-14 
SERTAD4 ** 6.93E-10 
SETBP1 ** 3.92E-21 
SLC7A3 ** 8.29E-55 
SNRPD1 ** 1.73E-11 
SORCS1 ** 2.07E-19 
TDRD1 ** 1.11E-33 
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Table C-1 contd.. 

Gene Fold change 
CP70 v 
A2780 

p-value 

UNC13C ** 2.12E-53 
USP44 ** 4.52E-19 
FABP4 0.000144 2.3E-06 
POU3F2 0.0002 7.29E-94 
PDGFD 0.000375 1.36E-95 
SV2A 0.000433 3.1E-115 
NRK 0.000465 3.7E-113 
KCNMA1 0.000589 1.2E-83 
FREM1 0.001067 1.88E-78 
PTH1R 0.00116 2.55E-46 
ARMCX2 0.001233 1.64E-74 
OLFML1 0.001258 1.73E-62 
** - indicates genes where no transcripts were detected in CP70s while transcripts 
were quantified in A2780s 

TABLE C-2: TOP 50 UP-REGULATED GENES IN CP70 AS COMPARED TO A2780 

Gene Fold change CP70 v 
A2780 

p-value 

LAYN 10000000 4.43E-16 
PDLIM1 10000000 3.35E-26 
ANXA1 1554.572 1E-196 
LMX1B 782.7477 3.75E-44 
MUSK 575.4211 4.23E-28 
PRSS12 185.0256 3.02E-27 
MTMR3 151.7484 0.00046 
MYO6 137.4301 9.58E-83 
AP1M2 101.5283 7.27E-05 
SP100 90.21407 4.09E-58 
LPAR1 86.62011 2.38E-98 
FOXE1 77.90603 4.77E-59 
ALX4 54.28959 2.09E-59 
MARCKS 54.04807 3.84E-51 
SOX8 52.58902 7.41E-33 
MYEOV 49.0835 1.27E-20 
SCNN1A 45.50787 2.52E-39 
SLC27A6 45.09913 6.84E-13 
CEACAM1 39.80012 0.000275 
ADRA2C 37.08017 3.71E-19 
LAMA4 33.77614 7.37E-07 
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Table C-2 contd.. 

Gene Fold change CP70 v 
A2780 

p-value 

TLR6 29.39821 3.35E-52 
DDAH1 29.00061 2.24E-08 
PDGFA 26.28241 6.76E-48 
PPP3CA 25.9321 1.86E-52 
METRNL 23.79754 4.31E-22 
VAMP8 22.47622 1.16E-76 
PHLDA1 21.91634 7.25E-80 
FBXL16 21.36917 6.07E-61 
KIF5C 21.15128 1.1E-11 
GSG1 20.89257 6.41E-14 
CXADR 19.55366 5.48E-48 
BMP7 16.89743 6.15E-57 
ERRFI1 16.87938 6.82E-74 
CACNA1H 15.30267 1.5E-99 
SLC39A8 14.27447 1.75E-45 
GATA5 14.08363 2.67E-08 
C9orf150 13.94771 0.000205 
MYOF 13.10654 6.7E-118 
SLC45A1 11.89503 2.27E-33 
TFEC 11.42253 4.19E-30 
MT1X 11.12725 1.46E-16 
ADAMTS20 9.88019 0.000319 
RPS6KL1 9.801027 3.42E-47 
OSBPL10 9.493201 3.3E-20 
ART3 9.458352 1.27E-07 
TNS3 8.628452 1.36E-80 
TMEM130 8.565589 5.34E-10 
GPR56 7.509891 1.24E-30 
TRIM56 7.340083 8.77E-50 
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Appendix D 

Original western Blots from the thesis 
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FIGURE D.1: ORIGINAL WESTERN BLOT SHOWING PROTEIN FROM A2780S, CP70S, 
MCP1 AND OVCAR-5 cell lines labelled for KCNMA1 (130 kD) and GAPDH (35 kD). Approximately 
20µg of protein from each sample was denatured by heating to 70°C, electrophoresed on a polyacrylamide 
gel (Bio-Rad), transferred onto a PVDF membrane (Bio-Rad). The membrane was blocked with 5% BSA in 
TBS with Tween, incubated with primary antibody (1 in 500 KCNMA1) at 4°C overnight and then with 
secondary antibody (1:10000) for 1 hour at room temperature. The Blots were immersed in ECL solution 
and digitally imaged on a Bio-Rad Chemidoc system and analysed using ImageLab software. The procedure 
was repeated with GAPDH primary antibody (1in 15000). Panel A shows the higher exposure used for 
KCNMA1 bands and panel B shows a lower exposure for GAPDH. KCNMA bands are not visible at this low 
exposure level. 
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FIGURE D.2: ORIGINAL WESTERN BLOT SHOWING PROTEIN FROM A2780S TREATED 
WITH MIR-31 MIMIC OR CONTROL MICRORNA labelled for KCNMA1 (130 kD) and GAPDH (35 
kD). Approximately 20µg of protein from each sample was denatured by heating to 70°C, electrophoresed 
on a polyacrylamide gel (Bio-Rad), transferred onto a PVDF membrane (Bio-Rad) using the Bio-Rad. The 
membrane was blocked with 5% BSA in TBS with Tween, incubated with primary antibody (1 in 500 
KCNMA1) at 4°C overnight and then with secondary antibody (1:10000) for 1 hour at room temperature. 
The Blots were immersed in ECL solution and digitally imaged on a Bio-Rad Chemidoc system and 
analysed using ImageLab software.. The procedure was repeated with GAPDH primary antibody (1in 
15000). Panel A shows the higher exposure used for KCNMA1 bands and panel B shows a lower exposure 
for GAPDH. KCNMA bands are not visible at this low exposure level. 
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FIGURE D.3: ORIGINAL WESTERN BLOT SHOWING PROTEIN FROM A2780S TREATED 
WITH MIR-21* MIMIC OR CONTROL MICRORNA LABELLED FOR NAV3 AND GAPDH. 
Approximately 20µg of protein from each sample was denatured by heating to 100°C, 
electrophoresed on a polyacrylamide gel (Bio-Rad), transferred onto a PVDF 
membrane (Bio-Rad) using the Bio-Rad. The membrane was blocked with 5% BSA in 
TBS with Tween, incubated with NAV3 primary antibody (1in 1000) at 4°C overnight. 
The blot was then incubated with GAPDH primary antibody (1in 15000) overnight. The 
blot was incubated with secondary antibody (goat anti-rabbit HRP conjugate from 
Sigma, A9169) at 1:5000 concentration.  The blot was imaged on a Bio-Rad Chemidoc 
system and analysed by ImageLab software from Bio-Rad. 
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FIGURE D.4. ORIGINAL WESTERN BLOT SHOWING PROTEIN FROM A2780S AND CP70S 
LABELLED FOR NAV3 AND GAPDH. Approximately 20µg of protein from each sample 
was denatured by heating to 100°C, electrophoresed on a polyacrylamide gel (Bio-
Rad), transferred onto a PVDF membrane (Bio-Rad) using the Bio-Rad. The membrane 
was blocked with 5% BSA in TBS with Tween, incubated with NAV3 primary antibody 
(1in 1000) at 4°C overnight. The blot was then incubated with GAPDH primary 
antibody (1in 15000) overnight. The blot was incubated with secondary antibody (goat 
anti-rabbit HRP conjugate from Sigma, A9169) at 1:5000 concentration.  The blot was 
imaged on a Bio-Rad Chemidoc system and analysed by ImageLab software from Bio-
Rad. 
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