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Abstract 
 

Exercise is beneficial for all individuals; it lowers blood pressure, keeps the heart 

healthy and increases insulin sensitivity. Recent studies have shown the power that 

regular exercise has to improve metabolic health, which in turn works to prevent 

and to reverse the onset of the widespread epidemics of type 2 diabetes (T2DM). 

However, diabetics taking insulin are required to meticulously plan exercise 

around meals and intake of insulin as they face an increased risk of hypoglycaemia 

from physical activity, which can discourage them from taking part. 

This thesis describes the use of systems of ordinary differential equations to model 

the effects of exercise on the glucose regulatory system, for both healthy and diabetic 

individuals. A particular focus is given to the role of glucagon, whose role is often 

neglected in glucoregulatory models, and its ability to enhance hepatic glucose 

production and so to prevent hypoglycaemia. Models of glucose-insulin-glucagon 

dynamics are first developed to describe an Intravenous glucose tolerance test 

(IVGTT), as the processes involved are simpler than in exercise and already widely 

modelled for glucose and insulin, thus is a good basis for validating the incorporation 

of glucagon. 

Mathematical models are used as tools within biological applications as they allow 

for an investigation into the dynamics that are involved in complex regulatory 

processes. The mathematical models in this thesis serve as accurate tools to predict 

blood glucose levels during exercise for both a non-diabetic and type 1 diabetic 

individual (T1DM) and emphasise exercise as a key element in the prevention of 

T2DM. By mathematically modelling the system and the mechanisms that occur to 

maintain glucose homeostasis an insight is gained into what the principal factors are 

for the greatest increase in insulin sensitivity and for the reduction in the likelihood 

of either hypoglycaemic or hyperglycaemic episodes. This may lead to 

recommendations for exercise plans which not only provide the greatest benefits for 

everyday health ant to assist with preventing the onset of diabetes but also to offer 

safer regimes for individuals with T1DM. 
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Definitions 

Asymptotic Stability - A point 𝑥 is an asymptotically stable equilibrium point of 𝑓 if: 

1. It is a Lyapunov stable equilibrium point of 𝑓. 

2. There exists some open neighbourhood O of x such that, for any 𝑥𝑖 ∈ 

 , 𝑥(t)  converges to 𝑥 as  approaches infinity. (LaValle, 

2006) 

Basal level - A basal level refers to a standard or reference state and that 

is considered as a convenient standard measurement. 

Buckingham π Theorem - Consider a system with variables 𝑥1, . . . . . , 𝑥𝑘 and 

parameters 𝑝1, . . . . . , 𝑝𝑙, in which m fundamental dimensions are involved. Then k+l-

m dimensionless quantities 𝑞𝑖 can be defined, which are products and quotients of 

the original variables and parameters. Each (scalar) model equation 

(𝑥1, . . . . . . , 𝑥𝑘, 𝑝1, . . . . . , 𝑝𝑙) = 0, (1) 

Between the 𝑥𝑖and 𝑝𝑖 of a mathematical model can be replaced with a corresponding 

relation between the 𝑞𝑖. 

𝑓 ∗ (𝑞1, . . . . , 𝑞𝑘+𝑙−𝑚 ) = 0, (2) 

Therefore, it can be determined that the system can be described with 16 

dimensionless quantities. 

𝑓(G, X, I, E, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝐺𝑏, 𝐼𝑏, 𝐸𝑏, 𝐺0, 𝐼0  ), (3) 

Between the variables and parameters of a mathematical model can be replaced 

with the corresponding relation between the dimensionless quantities 𝑞𝑖: 

𝑓∗(𝑞1, … . . , 𝑞16) = 0, (4) 

(Van Groesen and Molenaar, 2007) 

 

Catecholamines - Stimulate the release of glucagon, and sometimes release of them 

are induced by glucagon. Released from adrenal medulla. They are a class of 

aromatic amines including neurotransmitters such as adrenaline and dopamine. 
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Critical Point In a system of autonomous differential equations the critical points 

refer to a set of points where all equations are equal to 0, i.e. 
𝑑𝐺

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
= 0. In 

other words, they are the points where the function has a horizontal tangents and are 

considered as the roots of the system. Critical points are considered to determine the 

long term behaviour of a system. 

Endogenous – Originating within the body 

Exercise Intensity – Amount of expended energy during exercise. It 

determines sources of fuel used and other adaptations to be made by the body. 

Exogenous – Originating outside of the body 

Glucagon – The counter regulatory hormone for glucose. Glucagon is released when 

glucose levels are too low.  

Glucagon Sensitivity (𝑺𝑬) - Ability to produce glucagon when blood glucose are 

low, in order to raise glucose levels back into the desired range. 

Glucose Effectiveness (𝑺𝑮) – The ability to dispose of excess glucose 

during hyperglycaemic periods 

Gluconeogenesis - The formation of glucose in the liver and kidneys 

from compounds such as lactate, pyruvate, amino acids and glycerol. 

Glucose tolerance - The body’s ability to dispose of carbohydrate, effected 

by pancreatic responsiveness and insulin sensitivity. (Bergman et al, 1989) 

Glycaemia - The presence of glucose in the blood. 

Hepatic – Relating to the liver 

Hexameric – Referring to a molecule comprising of six subunits. 

Hyperglycaemia - Hyperglycaemia refers to an excess concentration of glucose in 

the plasma and is typically defined at a fasting blood glucose level of ≥ 126𝑚𝑔/ 

𝑑𝑙 (7𝑚𝑚𝑜𝑙/𝐿)  (Geuillermo et al,. 2009). 

Hypoglycaemia - Hypoglycaemia refers to a lack of glucose in the plasma and is 

typically defined as a blood glucose level of ≤ 60𝑚𝑔/𝑑𝑙 (3.3𝑚𝑚𝑜𝑙/𝐿) (Miller et al., 

2001). 

 

Insulin Sensitivity (𝑺𝑰) - Insulin sensitivity describes how sensitive the body is to 

the effects of insulin. The higher the sensitivity, the less insulin required to lower 

blood glucose (Insulin Sensitivity, 2016). 
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Interstitial space - Fluid filled areas surrounding space of a tissue. 

Intravenously – Entering through a vein 

Locally Lipschitz-continuous - The function f is locally Lipschitz-continuous, if for 

each 𝑧 ∈ 𝑅𝑛there exists an L>0 such that f is Lipschitz-continuous on the open ball of 

centre z and radius L 

𝐵𝐿(𝑧) ≔ {𝑦 ∈ 𝑅𝑚: ||𝑦 − 𝑧|| <  𝐿}. 

(Van Hassel, 2006) 

 

Lyapunov stable - Let 𝑥′ = (𝑥), (𝑥∗) = 0 where 𝑥∗ is in the interior of Ω ⊂ 𝑅𝑛 . 

Assume that 𝑉: Ω → 𝑅 is a  1  function. If: 

1.  (𝑥∗) = 0 

2. (𝑥) >  0, for all 𝑥  ∈  Ω,  𝑥 , =   𝑥∗ 

1. 𝑉′(𝑥) ≤ 0 along all trajectories of the system in Ω → 𝑥∗ is locally stable. 

Furthermore, if also 

2. 𝑉′(𝑥) < 0 for all 𝑥 ∈ Ω, 𝑥 ≠ 𝑥∗ → 𝑥∗ is locally asymptotically stable. 

(Lyapunov Stability, 2015) 

Negative Feedback System – Output of a system is fed back to reduce or increase 

the output. 

Non-dimensionalization - Non-dimensionalization refers to the process of 

transforming a series of equations to dimensionless (unitless) forms by rescaling 

the model variables. (Computational Ecology & Epidemiology Study Group, 2012) 

Routh-Hurwitz Criteria – Given an nth order linear constant coefficient equation 

of the form:  

𝑝(𝐷)𝑧 = 𝑧𝑛 + 𝑎1𝑧
𝑛−1 + 𝑎2𝑧

𝑛−2 +⋯+ 𝑎𝑛𝑧 = 0                                                              (5) 

with real coefficients {𝑎𝑛}𝑗
𝑛 = 1.  

𝐷1 = 𝛼1, 𝐷2 = det [
𝑎1 𝑎3
1 𝑎2

] , … . . , 𝐷𝑘 = det

[
 
 
 
 
 
𝑎1 𝑎3 𝑎5 ⋯ 𝑎2𝑘−1
1 𝑎2 𝑎4 … 𝑎2𝑘−2
0 𝑎1 𝑎3 … 𝑎2𝑘−3
0 1 𝑎2 … 𝑎2𝑘−4
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑎𝑘 ]

 
 
 
 
 

                      (6) 
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where aj = 0 if j > n.   

Then the roots of P(λ), the characteristic polynomial of (6) have negative real parts if and only id Dk

> 0 for all k = 1,… . . , n.  

Stability - Consider a differential equation 𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) where 𝑥(𝑡) ∈ 𝑅𝑛. We assume 

that 𝑓 is continuous and locally Lipschitz (see definition) with respect to the second 

variable. 

Let 𝑡 → (𝑡, 𝑡0, 𝑥0) denote the maximally defined solution of the equation satisfying 

the initial condition (𝑡0)  =  𝑥0. 

Let  : [𝑡0, ∞)  →  𝑅
𝑛  be a solution of the differential equation. 

 

1. The solution ϕ is stable on [𝑡0, ∞) if, for every 휀 > 0, there is a 𝛿 > 0 such that 

whenever |𝜙(𝑡0)  −  𝑥0|  <  𝛿, the solution 𝑥(𝑡, 𝑡0, 𝑥0) is defined for all 𝑡  ∈  [𝑡0, ∞) 

and|(𝑡)  −  𝑥(𝑡, 𝑡0, 𝑥0)|  <  휀, ∀ 𝑡  ≥  𝑡0. 

 

2. ϕ is asymptotically stable (see definitions and abbreviations) (on [𝑡0, ∞)) if it is    

stable and, given 휀 as above, there is a 𝛿1    <  𝛿 such that whenever |𝜙(𝑡0)  −  𝑥0|<  𝛿1  

lim𝑡→∞  𝜙(𝑡)  −  𝑥(𝑡, 𝑡0, 𝑥0)|  =  0.  If ϕ is not stable, it is said that the solution is 

unstable. This means that there is some ε > 0 such that for every δ > 0 there is some 

point 𝑥0  with |𝜙(𝑡0)  −  𝑥0|  <  𝛿 such that |𝜙(𝑡1)  −  𝑥(𝑡1, 𝑡0, 𝑥0)|  ≥  휀 for some  time 

𝑡1    ∈  [𝑡0, ∞). (Schovanac and Gilliam, 1999) 
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Abbreviations 

IVGTT – Intravenous glucose tolerance test 

OGTT – Oral glucose tolerance test 

T1DM – Type 1 Diabetes Mellitus 

T2DM – Type 2 Diabetes Mellitus 
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is defined as the highest attainable rate of aerobic metabolism during the performance of 

dynamic work that exhausts the subject within 5–10 min and it is internationally accepted 
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Chapter 1 Introduction 
 

1.1. Motivation for Study 
 

In 2014, it was reported that, in England alone, 3.2 million people (7.4% of the 

population) had either been diagnosed with or were unaware that they had diabetes 

(Gatineau et al., 2014). This number is predicted to escalate to 5 million by 2025 

(Diabetes.co.uk, 2016) primarily due to changes in lifestyle related to economic 

development (Amos et al., 1997). 

Complications frequently associated with diabetes include retinopathy, nephropathy, 

peripheral neuropathy and blindness (Derouich and Boutayeb, 2002), projecting the 

disease to be the 7th leading cause of global deaths by 2030 (World Health 

Organisation, 2016). 

Evidently, diabetes is a growing problem, and a great amount of research goes into 

understanding the development of the disease in addition to how we can prevent and 

treat diabetes. The use of mathematical models as an approach to aid our 

understanding of glucose regulation has grown rapidly over recent years, providing 

new insights into the underlying mechanisms involved and the dynamic behaviour of 

the complex biological system (Ajmera et al., 2013). Practical uses of these models 

include the assessment of insulin sensitivity and glucose effectiveness (Vicini et al. 

1997), as tools for automated insulin dosage adjustment based on glucose 

measurements (Lehmann and Deutsch, 1992) and as valuable elements for the 

progression of the development of an artificial pancreas (Herrero et al. 2013). 

Despite the vast number of mathematical models developed there is still a 

requirement for further modelling of the glucose regulatory system, in order to 

bridge the gap between the growing amounts of knowledge and data gained from 

experimental approaches (Ajmera et al. 2013). A lack of reliable, predictive and 

suitable models is also considered a hindrance to the development of diabetes 

treatments and artificial pancreases (Huang et al., 2012), (Herrero et al. 2014). 
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1.2. The Glucose Regulatory System 
 

Used and stored for energy, glucose is an important source of fuel and in order to 

maintain good health it is essential that plasma glucose levels are maintained within 

the homeostatic range, which typically lies between 70-110mg/dl (Makroglou et al., 

2006) or 3.8-6.1mmol/L in SI units. This thesis will use the conventional units for 

glucose, insulin and glucagon (mg/dl, µU/ml and pg/ml) for comparison purposes, as 

they are used in the majority of mathematical models. This will also simplify the 

analysis of parameter values obtained in the proposed models to the acceptable 

ranges available in existing literature. The regulation of blood glucose levels ensures 

that a sufficient amount of glucose is delivered to cells, where it is then broken down 

and used as an energy source to fuel cellular processes such as the functioning of the 

brain and the physical movement of muscles. This process of glucose regulation, the 

components involved and relationships they have with each other are referred to as 

the glucose regulatory system. 

Glucose appears in the system as a result of either internal production by the liver or 

from an external administration, such as a meal containing carbohydrates, which 

typically takes 15-30 minutes after consumption to increase blood sugar levels. 

Glucose is removed from the system by conversion into glycogen, used as a form of 

energy by the brain, red blood cells and the peripherals, and, when there is an 

excessive amount of glucose, it is cleared by the kidneys or stored as fat. 

 
Glucose homeostasis is primarily regulated by two hormones, insulin and glucagon, 

which are released in response to signals as they travel through the circulatory 

system. They regulate the system by ensuring the plasma glucose concentration stays 

in the desired range, thus not getting too high (hyperglycaemic state) or too low 

(hypoglycaemic state). Both hormones target the muscles, adipose tissues and liver 

(MacLaren and Morton, 2012), affecting various biochemical processes as a means of 

regulation. It is the ratio of glucagon to insulin that primarily controls fuel 

mobilization (Plowman and Smith, 2010). 
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Figure 1.1: The blood glucose-insulin-glucagon feedback system 

 

Insulin is released continuously by the beta cells in the pancreas into the blood 

stream, which, for healthy patients, means a basal insulin level of <25 µU/mL 

(Buppajarntham, 2014), and is cleared from plasma by the liver. An increase in 

insulin secretions occurs in response to a high concentration of blood glucose; for 

example: after consuming a meal, insulin is released to lower glucose levels, restoring 

the homeostatic state by stimulating anabolic reactions for the macronutrients 

consumed. The plasma glucose threshold for insulin secretion is given typically as 

81mg/dl (Goodwin, 2010) so that when glucose falls to this threshold value insulin 

secretion is suppressed. However this value will differ between individuals. 

Glucagon is produced by the alpha cells in the pancreas and is recognised as the 

primary counter regulatory hormone to counteract a fall in glucose levels. Typically 

the threshold value of glucose levels for glucagon release is defined as any 

concentration less than 67-80mg/dl (Goodwin, 2010) (Liu and Tang, 2008) . The role 

of Glucagon is to mobilize fuel (Plowman and Smith, 2010) and is realised during 

periods of starvation or prolonged physical activity, where the level of circulating 

plasma glucose is not sufficient to meet the individual’s demands for energy. 

Glucagon achieves an increase in plasma glucose through the means of promoting 

both glycogenolysis and gluconeogenesis (Teixeira and Malin, 2008). 
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Glucose is cleared from the plasma by a number of ways; hepatic uptake, in which 

glucose is stored by the liver (Moore et al., 2012), utilization by the brain and red 

blood cells, clearance by the kidneys when glucose levels are excessive and uptake by 

the peripherals (Sulston et al., 2006). Glucose uptake by the peripherals (muscle and 

tissue) is considered as insulin-dependent glucose uptake, as insulin activity is 

required to absorb glucose. The liver is also considered as insulin-dependent, despite 

its ability to respond independently to high glucose levels, as the majority of the 

liver’s functions for glucose regulation require insulin (Brandt, 1999). 
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1.3. Diabetes 

Insufficient secretion or a hypoactivity of insulin can result in diabetes mellitus, a 

metabolic disorder characterised by persistent hyperglycaemia. Diabetes is typically 

categorised as either type 1 or type 2. 

 

Type 1 diabetes, typically diagnosed earlier in life, is an autoimmune disease leading 

to the destruction of the pancreatic beta-cells (Magdelaine et al, 2015), whereby the 

functionality of the pancreases is severely impaired or it is unable to naturally secrete 

insulin in response to high glucose levels. In order to prevent fatality, the patient 

depends on regular exogenous doses of insulin to maintain homeostatic levels of 

blood glucose. 

Type 2 diabetes (T2DM) is most commonly diagnosed in the older generation, with 

the majority of adults diagnosed with the disease in 2012 aged between 45 and 64 

(Krucik, 2014). The most significant factors linked to the cause of T2DM are being 

overweight, abdominal obesity and physical inactivity (Stumvoll et al. 2005). The 

aetiology of T2DM includes β-cell dysfunction and, for the majority of diabetic 

individuals, insulin resistance (Bergman et al. 2002), i.e. resistance to insulin- 

stimulate glucose uptake (Reaven, 1988). 
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1.4. Glucose Tolerance Testing 
 

Diabetes is provisionally diagnosed and classified by a fasting glucose of ≥126mg/dl 

(American Diabetes Association, 2004). Often if an individual is thought to be at risk 

of developing or having diabetes they will undergo a glucose tolerance test (GTT), 

which tests their ability to breakdown glucose. The patient must arrive for the test in 

a fasting state, due to the fact that an impaired β-cell function manifests itself in a 

different manner in fasting and glucose-stimulated conditions (Del Prato et al. 2002). 

There are two different types of GTTs: the oral glucose tolerance test (OGTT) and the 

intravenous glucose tolerance test (IVGTT). 

 
During an OGTT a patient will receive an oral solution containing 75g of glucose at the 

beginning of the test. Blood glucose samples are then taken every 15 minutes for the 

first hour, and every 30 minutes for the following two hours. The diagnosis of 

diabetes is based on the ability of the system to clear the glucose from the plasma 

within a reasonable time frame, which is typically between 90-120 minutes in a 

healthy individual. 

The IVGTT follows a similar protocol as the OGTT the main difference being that the 

IVGTT consists of a bolus of glucose being administered intravenously. 
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1.5. Thesis Outline 
 

This thesis is structured as follows: 

 
Chapter 1 – Introduction and Background 

 
The first chapter will provide an introduction to the basic anatomy of the 

glucose regulation system, defining diabetes is along with the impacts it has on the 

system, and the problems involved with blood glucose regulation which motivate this 

study. 

Chapter 2 – Introduction to Glucose Regulation Models 

 
A description of the key models developed for glucose regulation will be presented 

and critically reviewed. 

Chapter 3 – Development of Mathematical Models with Glucagon Dynamics 

 
Chapter 3 will contain the implementation of the primary hormone Glucagon into a 

glucose regulatory model, since it is the key regulatory hormone in periods of low 

glucose concentrations. This will lead to the development of a model accounting for 

the physiological effects on the system during exercise. This chapter includes the 

implementation of the proposed models into MATLAB, and a discussion of the 

simulated results. 

Chapter 4 – Introduction to Exercise 

 
In this chapter a summary of the key exercise induced effects on the glucose 

regulatory system is given in addition to the motivation for developing a model for 

exercise. 

Chapter 5 – Glucagon Models for Exercise 

 
Chapter 5 presents two mathematical models designed to be capable of predicting 

blood glucose levels during exercise. The models are implemented in MATLAB 

followed by a discussion of the model proposed. 

Chapter 6 – Glucagon Minimal Model for Exercise with Exogenous Insulin 

Administration 
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Chapter 6 extends the models proposed previously in the thesis to consider 

exogenous insulin supply. 

Chapter 7 – Conclusion and Future Work 

 
This chapter concludes the work of the thesis, discussing the accuracy of the models 

proposed and further work for the study. 
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Chapter 2 Introduction to Glucose-Regulation 
 

2.1. Introduction to Modelling Glucose-Insulin Dynamics 
 

The use of mathematical models within biological applications has become 

increasingly frequent due to their ability to act as powerful tools in improving our 

understanding of complex biological systems. Mathematical models allow researchers 

to investigate how complex regulatory processes are connected and how disruptions 

of these processes may contribute to the development of disease (Fischer, 2008). 

Therefore, it is no surprise that mathematical models frequently appear in research 

addressing the issue of the growing prevalence of diabetes. 

During the past five decades, there has been an increase in the number of 

mathematical models available in literature, created to improve our understanding of 

the complex behaviour and relationships involved in glucose homeostasis. 

Mathematical models for blood glucose dynamics can allow for measurements of 

important aspects within the glucose regulatory system, such as the beta cell 

responsivity, insulin sensitivity and glucose effectiveness. Assigning numerical values 

to these aspects admits an insight into the metabolic portrait of an individual, and can 

be perceived as whether the individual is healthy, facing the onset of or has developed 

diabetes. As well as diagnostic purposes, mathematical models are also used as 

epidemiological tools within diabetes management, assessing means of controlling 

the disease and analysing other factors affecting the regulatory system. In more 

recent developments, predictions of blood glucose levels made by mathematical 

models have allowed for advances made in the artificial pancreases, which are 

capable of transforming the way diabetes is treated. 
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2.2. Linear Models and Early Modelling Approaches 
 

One of the earliest studies to have a significant impact on modelling the glucose 

regulatory system was that of Bolie (1961), who developed a linear model to capture 

the dynamics between glucose and its regulatory hormone insulin within a healthy 

subject. 

The model was designed to capture the average response of the glucose regulatory 

system to glucose and insulin. The model consisted of a system of two differential 

equations, one to represent plasma glucose, the other for plasma insulin: 

𝑑𝑥 
=  − 𝛼𝑥(𝑡) + 𝛽𝑦(𝑡); (2.1) 

𝑑𝑡 
𝑑𝑦 
=  − 𝛾𝑥(𝑡) −  𝛿𝑦(𝑡); (2.2) 

𝑑𝑡 
 
 

The system assumes a linear relationship between the terms in the model, where x(t) 

and y(t) represent the differences between the concentrations, at time t, and the 

resting values of both plasma insulin and glucose respectively. Table 2.1 lists the 

primary definitions of the variables and coefficients in the model, as specified by Bolie. 
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Table 2.1. Bolie’s Model Nomenclature 

 
Symbol Meaning Dimension 

𝑥 The difference between the extracellular insulin 

concentration and the mean physiological value of 

extracellular insulin 

Units/litre 

𝑦 The difference between the extracellular glucose 

concentration and the mean physiological value of 

extracellular glucose 

Grams/litre 

𝑝 Rate of insulin injection of the volume of the 

extracellular fluid 

Units/hour/litre 

𝑞 Rate of glucose injection of the volume of the 

extracellular fluid 

Grams/hour/litre 

𝛼 Rate of insulin destruction Units/hour 

𝛽 Rate of insulin production Units/hour 

𝛾 Rate of accumulation of glucose in the liver Grams/hour 

𝛿 Rate of tissue utilization of glucose Grams/hour 

 
 

Following the work of Bolie, Ackerman et al. (1965) continued developments in 

modelling the glucose regulatory system, introducing a new linearized model to 

capture the blood glucose response to orally administered glucose. However, linear 

equations are typically judged as unacceptable in glucose modelling due to the fact 

that they provide poor fits to experimental data (Li and Kuang, 2001) and cannot 

account for the diverse and complicated dynamics that constitute biological processes 

such as those involved in glucose-insulin kinetics. Sorensen (1985) criticised the 

work of the likes of Bolie and Ackerman for their oversimplification, particularly in 

regard to the assumption that the blood glucose response to insulin is proportional to 

the amount of insulin in the plasma. 

Despite its drawbacks, linear models have been commended for their simplistic 

approach to modelling and for providing the foundation on which many other 

acknowledged researchers in glucose regulation modelling would go on to base their 

work (Sulston et al, 2006). 
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2.3. The Minimal Model 
 

The most frequently modelled scenario is of a glucose tolerance test (GTT), as 

described in the previous chapter. Considered as a major breakthrough in diabetes 

modelling (Ajmera et al., 2013), the Minimal Model was developed to describe the 

glucose-insulin dynamics following an intravenous glucose tolerance test (IVGTT). 

Since its development, the model has become the most widely accepted and 

frequently used within physiological research on glucose metabolism (De Gaetano 

and Arino, 2000). 

Figure 2.2: Compartmental Diagram of the Minimal Model 
 

Developed by Bergman et al. (1979) the minimal model consists of three 

compartments, one for the plasma concentrations of both glucose (G) and insulin (I) 

and one for interstitial insulin activity (X), a compartment introduced to describe the 

insulin effect on net glucose disappearance (Pacini and Bergman, 1986) . 

The original Minimal Model (Bergman et al., 1979) is given as follows: 

 

               
𝑑𝐺

𝑑𝑡
=  −𝑝1(𝐺(𝑡) − 𝐺𝑏) − 𝑝4𝑋(𝑡)𝐺(𝑡) −

𝑢2(𝑡)

𝑉𝑜𝑙𝐺
,                          (2.3) 

               
𝑑𝑋

𝑑𝑡
= −𝑝2𝑋(𝑡) + 𝑝3(𝐼(𝑡) − 𝐼𝑏),                                                       (2.4) 

               
𝑑𝐼

𝑑𝑡
= −𝑛𝐼(𝑡) + 𝛾(𝐺(𝑡) − ℎ),                                                             (2.5) 

 

Subject to the initial conditions 

G(0) = 𝐺0, X(0) = 0, 𝐼(0) = 𝐼0 
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𝐺0 and 𝐼0 are treated as unknown parameters, since the model does not account for 

the glucose intravenously entering the blood stream, but simply assumes plasma 

glucose and insulin levels have peaked at the start of the test. The model consists of 

two subsystems; equations (2.3) and (2.4) to model glucose disappearance and 

equation (2.5) for insulin kinetics. 

A description of the variables and parameters is provided in table 2.2. 

Table 2.2. Minimal Model Nomenclature 
 
 

Symbol Meaning Dimension 

𝐺(𝑡) Plasma glucose concentration at time t 𝑚𝑔/𝑑𝑙 

𝑋(𝑡) Interstitial insulin at time t 𝑚𝑖𝑛−1 

𝐼(𝑡) Plasma insulin at time t µ𝑈𝑙/𝑚𝑙 

𝐺𝑏 Baseline plasma glucose 𝑚𝑔/𝑑𝑙 

𝐼𝑏 Baseline plasma µ𝑈𝑙/𝑚𝑙 

𝑝1 Insulin independent rate of glucose uptake in 

tissues, often referred to as ‘Glucose 

Effectiveness’ 

𝑚𝑖𝑛−1 

𝑝2 Decline in ability of glucose uptake in tissues 𝑚𝑖𝑛−1 

𝑝3 Increased insulin dependent ability of glucose 

uptake in tissues 

𝑚𝑖𝑛−2(µ𝑈𝑙/𝑚𝑙)−1 

ℎ Target glycaemia 𝑚𝑔/𝑑𝑙 

𝛾 Rate of release of insulin in response to excess 

plasma glucose 

(µ𝑈𝑙/𝑚𝑙) 

(𝑚𝑔/𝑑𝑙)−1𝑚𝑖𝑛−1 

𝑛 Decay rate for plasma insulin 𝑚𝑖𝑛−1 

𝑆𝐼   = 𝑝3⁄𝑝2 Insulin sensitivity, 𝑝3⁄𝑝2, the increase in the 

fractional clearance rate of glucose per unit 

change in the plasma insulin concentration 

(Bergman et al. 1981) 

𝑚𝑖𝑛−1/µ𝑈/𝑚𝑙 

𝑆𝐺   = 𝑝1 Glucose effectiveness,  𝑝1 𝑚𝑖𝑛−1/𝑚𝑔/𝑑𝑙 

 

Both the time-courses for plasma glucose and insulin concentrations treat each other 

as known forcing functions, which are separately estimated by available data (De 

Gaetano and Arino, 2000).  Following the predicted behaviour for plasma insulin (eq. 

5) the Minimal Model method provides characteristic parameters for the insulin 
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responsiveness to glucose (Bergman et al. 1981).The interstitial insulin compartment 

(eq. 4) conceptualizes the activity of insulin outside of the plasma compartment in the 

model, for example its role in promoting the uptake of glucose by both hepatic and 

extra hepatic tissues (Roy and Parker, 2007). 

 
The minimal model has made a positive impact to the study of diabetology and was 

first model of its kind to capture the parameter values for insulin sensitivity, 𝑆𝐼, and 

glucose effectiveness, 𝑆𝐺, both which whose numerical value offers an effective 

insight into the metabolic portrait for an individual. 

 
In spite of its popularity; the Minimal Model does have its drawbacks. It is often 

criticised for providing poor estimates of the values for the glucose effectiveness and 

insulin sensitivity (Quon et al., 1994), (Marmarelis and Mitsis, 2014), (McDonald et al., 

1999) as a result of its over simplification of glucose physiology (Muniyappa et al., 

2008). 

Other researchers and experimentalists have also questioned the reliability of some 

of the physiological assumptions and implications of the model, such as the ability of 

the pancreas to increase its rate of insulin secretion with time linearly (De Gaetano 

and Arino, 2000). 

 
An ongoing debate has also arisen on the issue of the model being too simplistic, as it 

was developed to interpret data, not to take full consideration of the underlying 

physiological processes involved (Tornøe et al., 2004). 

 
Despite the shortcomings of the model, its simplicity and popularity has meant it has 

been selected as the basis for many developments and extensions in modelling the 

glucose regulatory system, involved currently in over 500 studies in the literature 

and versions are often applied in the development for an artificial pancreas 

(Magdelaine et al., 2015). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Torn%C3%B8e%20CW%5BAuthor%5D&cauthor=true&cauthor_uid=15669774
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2.4. Recent Studies 
 

Since the pioneering work of Bergman et al. (1979) many models have been 

developed based on the original Minimal Model. 

In 1998 Cobelli and co-workers introduced a model that builds on the work of 

Bergman et al. (1979) in order to overcome the overestimate of glucose effectiveness 

and underestimate of insulin sensitivity. To do so the authors presented the ‘Two- 

Compartment Minimal Model’, a model that differed from the original Minimal Model 

by introducing an additional compartment for glucose. This added complexity to the 

model, as it required the use of Bayesian estimation techniques for some of the new 

unknown parameters. There is some debate as to whether an additional 

compartment for glucose is or is not beneficial. Muniyappa et al. (2008) reported an 

improvement in the results of the Minimal Model, whereas Natalucci et al. (2000) 

found no significant difference between the ability of the models to detect impaired 

glucose effectiveness and insulin resistance. 

Dalla Man et al. (2004) adapted the minimal model by adding a term to enable the 

model to consider the rate of appearance of glucose as it is absorbed following oral 

consumption, based on multiple tracer meal validation studies. The ‘Oral Minimal 

Model’ was validated and accepted for its ability to measure the rate of glucose 

absorption in addition to insulin sensitivity, such that the minimal model can be used 

to analyse results from an OGTT. However this model did not consider any 

abnormalities in the system, such as diabetes, which was later addressed by Dalla 

Man et al. (2006). 

Many other adaptions of the Minimal Model have appeared in the literature since its 

development, including models for exercise (Derouich and Boutayeb, 2002), (Roy and 

Parker, 2007), statistical adaptations (Andersen and Højbjerre, 2005) and 

considerations for type 1 diabetes (Fernandez et al. 2009). 
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2.5. Summary 
 

This section has discussed some of the most influential mathematical models to have 

been developed and the contributions they have made towards Diabetology. 

Undoubtedly, the Minimal Model has had the biggest impact on modelling of the 

glucose regulatory system, due to its simple yet accurate ability to simulate glucose 

levels and identify an impaired glucose response. Therefore the majority of models 

introduced in this thesis will be founded on the minimal model. 
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Chapter 3 Glucagon 
 

3.1. Introduction to the Glucagon-Glucose-Insulin Control 

Loop 

Currently the majority of existing mathematical models are restricted to considering 

insulin-glucose dynamics (Lehmann et al., 2007) neglecting to take into account the 

effects of the counter regulatory hormone glucagon. This may be due to the fact that, 

as discussed in chapter 2, the most frequently modelled scenario is the glucose 

tolerance test, where the counter-regulatory hormones have a minimal role. Despite 

the negligible role during a glucose regulatory test, the counter regulatory hormones, 

such as glucagon, are essential in the fasted state, acting to prevent hypoglycaemia 

which, if left untreated, can result in health problems, such as: unconsciousness, 

brain damage and death (Brandt, 1999). 

Since the aim of this thesis is to successfully develop a mathematical model that is 

capable of predicting blood glucose levels during exercise, it is essential that the 

model includes the effects of counter-regulatory hormones in order to avoid 

hypoglycaemia. To begin with developing a model capable of simulating scenarios 

where blood glucose levels are low, a model will be developed to take into account 

the effects of glucagon on blood glucose regulation. Glucagon has been chosen in 

favour of the other counter-regulatory hormones (such as epinephrine), as it is 

considered as a potent regulator of the glucose metabolism in addition to insulin 

(Aronoff et al., 2004). 

The first scenario modelled in this thesis will be the Intravenous Glucose Tolerance 

Test (IVGTT). An IVGTT has been chosen as the data sets consist of a large number of 

measurement samples taken at frequent intervals, in addition to the fact that it is 

already a widely modelled scenario, allowing for validation against other models 

available in the literature. A model will be chosen based on the model accuracy along 

with the insight and understanding it offers into the glucose regulatory system. 
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3.2. Critical Review of Glucagon Models 
 

This section will review the models that have been developed so far in the available 

literature that include the role of glucagon on glucose homeostasis. 

In 2006 Sulston and co-workers developed a model of glucose regulation including its 

hormonal regulation. The model consisted of three equations, one each for 

concentrations in the plasma of glucose, insulin and glucagon and was capable of 

highlighting the importance of the two hormones in maintaining glucose within the 

narrow desired range. The model was simulated for both healthy and diabetic 

patients, simulating individuals during short periods without food (60 minutes) and 

following a meal (based on the term from glucose absorption proposed by Yates and 

Fletcher (2000)). 

Herrero et al. (2013) extended the original minimal model of Bergman et al. (1979) 

by introducing a new term for glucagon action. The new compartment represents the 

pharmacodynamics of glucagon and its ability to stimulate glucose production. 

The model was developed to be used as a bi-hormonal simulator to be used in an 

artificial pancreas, which could consider the use of exogenous glucagon as a 

treatment for hypoglycaemia. An additional term was added to blood glucose to 

account for glucose absorption from a meal, offering a model more representative of 

day-day activity in comparison with the minimal model. The model was tested with a 

bi-hormonal controller and successfully validated against experimental data obtained 

from the study. 
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3.3. Model Formulations 
 

This section will detail the development of three mathematical models proposed to 

describe glucose-insulin-glucagon dynamics during an IVGTT. Each subsection will 

study the relationships between the compartments proposed and go on to form a set 

of mathematical equations. The following sections will include a mathematical 

analysis of the models and simulations against experimental data, in order to 

determine the accuracy and suitability of the models. 

3.3.1. Linear Model 
 

When formulating a mathematical model, the main aim is to develop a model such 

that the variables relate to the observations of the behaviour and relationships that 

exist within the physical system being modelled. From a simulation perspective it is 

desirable that the model is relatively simple allowing for a fast, yet accurate, 

execution. Therefore the first model proposed, derived in Fitches (2015), consists 

only of linear relationships between the compartments involved, one each for the 

concentration in the plasma of glucose, insulin and glucagon. The relationships are 

shown in figure 3.1., where the dashed lines represent the control signals and the 

solid lines are the fluxes in the amount of glucose or regulatory hormones in the 

plasma. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Linear bi-hormonal regulation of the glucose regulatory system 
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In this model glucose levels are considered to be directly affected by the 

concentrations of insulin and glucagon in the blood, based on the approach by Boilie 

(1961), and either decrease or increase in a linearly proportional manner to the 

increase in the concentration of the hormones in the plasma above the corresponding 

basal levels, 𝐼𝑏and 𝐸𝑏.  

A description for each rate constant, 𝑝1  − 𝑝7, is provided in the following table. 

 
Table 3.1: Linear Glucagon Model Parameter Nomenclature 

 
Parameter Physiological Description Unit 

𝑝1 Insulin independent glucose uptake (Glucose 

effectiveness) 

𝑚𝑖𝑛−1 

𝑝2 Glucagon stimulated glucose production (𝑚𝑔/𝑑𝑙) 𝑚𝑖𝑛−2 

𝑝3 Insulin dependent glucose uptake and insulin inhibiting 

effect on glucose production 

𝑚𝑖𝑛−1 

𝑝4 Glucose stimulated insulin secretion (𝜇𝑈/𝑚𝑙) 𝑚𝑖𝑛−2 

𝑝5 Insulin production/clearance 𝑚𝑖𝑛−1 

𝑝6 Glucose stimulated glucagon secretion (𝑝𝑔/𝑚𝑙) 𝑚𝑖𝑛−2 

𝑝7 Glucagon production/clearance 𝑚𝑖𝑛−1 

 
Consequently, the following system of equations for describing an IVGTT is derived: 

 

               
𝑑𝐺

𝑑𝑡
= −𝑝1(𝐺(𝑡) − 𝐺𝑏) + 𝑝2(𝐸(𝑡) − 𝐸𝑏) − 𝑝3(𝐼(𝑡) − 𝐼𝑏),              (3.1) 

               
𝑑𝐼

𝑑𝑡
= 𝑝4(𝐺(𝑡) − 𝐺𝑏)

+ − 𝑝5(𝐼(𝑡) − 𝐼𝑏),                                                 (3.2) 

              
𝑑𝐸

𝑑𝑡
= 𝑝6(𝐺𝑏 − 𝐺(𝑡))

+
− 𝑝7(𝐸(𝑡) − 𝐸𝑏),                                              (3.3) 

 

Subject to the initial conditions: 

(0) = 𝐺0, (0) = 𝐼0, 𝐸(0) = 𝐸𝑏. 

 
where G (mg/dl) is the glucose concentration, I (μU/ml) is the insulin concentration 

and E (pg/ml) is the glucagon concentration, all within the plasma. Both 𝐺0 and 𝐼0 are 

considered to be unknown parameters, since this model follows the simple approach 

of the minimal model and, rather than modelling the rate at which glucose enters the 

plasma from , the model assumes glucose levels to have reached their peak value at the 

beginning of the test. Since the individual is in the fed state at the start of the test 

glucagon activity will be supressed; therefore it is assumed that glucagon levels will start 
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at the basal level, 𝐸𝑏. The positive inflections in equations 3.2 and 3.3 indicate that the 

terms can only take a positive value; if the term is to become negative it will be set to 

zero. 

Note the system models an individual with a pancreas capable of producing insulin and 

does not assume T1DM. 

This model provides a simple overview of glucose-insulin-glucagon dynamics, which can 

be solved analytically. However linear models of blood glucose regulation have been 

criticised for their inability to describe the complex processes that occur, therefore may 

provide a poor fit to the data. Therefore, a model with non-linear dynamics may be 

preferable
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3.3.2. Glucagon Minimal Model 
 

The Minimal Model was originally designed by Bergman et al. (1979) to analyse the 

results from an Intravenous Glucose Tolerance Test (IVGTT) and to determine key 

parameters such as glucose effectiveness and insulin sensitivity. Given that the well- 

fed condition leads to the secretion of insulin the original minimal model did not 

include the effects of glucagon, since glucagon secretion is minimal until a couple of 

hours after the glucose. Since the minimal model is a well-documented model in 

Diabetology, successfully extending the model for glucagon will develop a model that 

can be adapted for scenarios of low blood glucose, such as exercise. 

A graphical representation of the interactions between compartments in the 

extended minimal model is given in figure 3.2. 

Figure 3.2: Compartment diagram of non-linear bi-hormonal regulation of the 

glucose regulatory system 

The solid lines represent the constant rates, the dark blue dotted lines show 

signalling of blood glucose levels to the pancreas and the light blue dashed lines show 
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the control actions on glucose levels. The mathematical description of the parameter 

rates are described in table 3.2. 

Table 3.2. Glucagon Minimal Model Nomenclature 

 
Variable Description Unit 

G Plasma glucose concentration 𝑚𝑔/𝑑𝑙 

X Interstitial insulin activity 𝑚𝑖𝑛−1 

I Plasma insulin concentration µ𝑈/𝑚𝑙 

Y Glucagon activity 𝑚𝑖𝑛−1 

E Plasma glucagon concentration 𝑝𝑔/𝑚𝑙 

𝑝1 Glucose Effectiveness 𝑚𝑖𝑛−1 

𝑝2 Decrease of glucose uptake ability in the 

peripherals 
𝑚𝑖𝑛−1 

𝑝3 Increase in peripheral glucose uptake ability, 

proportional to per unit of insulin above baseline 
𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 

𝑝4 Insulin clearance 𝑚𝑖𝑛−1 

𝑝5 Insulin secretion, proportional to per unit of 

glucose above baseline 
𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙) 

𝑝6 Decrease of glucose production ability in the liver 𝑚𝑖𝑛−1 

𝑝7 Increase in hepatic glucose production ability, 

proportional to per unit of glucagon above 

baseline 

𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙)−1 

𝑝8 Glucagon Clearance 𝑚𝑖𝑛−1 

𝑝9 Glucagon secretion, proportional to per unit of 

glucose below baseline 
𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙) 
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Thus a system of equations, adapted from Fitches (2015), for the model is 

introduced. 

𝑑𝐺

𝑑𝑡
= −𝑝1(𝐺(𝑡) − 𝐺𝑏) + 𝐺(𝑡)(𝑌(𝑡) − 𝑋(𝑡)),                              (3.4) 

𝑑𝑋

𝑑𝑡
= −𝑝2𝑋(𝑡) + 𝑝3(𝐼(𝑡) − 𝐼𝑏)

+,                                                    (3.5) 

𝑑𝐼

𝑑𝑡
= −𝑝4(𝐼(𝑡) − 𝐼𝑏) + 𝑝5(𝐺(𝑡) − 𝐺𝑏)

+𝑡,                                     (3.6) 

𝑑𝑌

𝑑𝑡
=  −𝑝6𝑌(𝑡) + 𝑝7(𝐸(𝑡) − 𝐸𝑏)

+,                                                 (3.7) 

𝑑𝐸

𝑑𝑡
= −𝑝8(𝐸(𝑡) − 𝐸𝑏) + 𝑝9(𝐺𝑏 − 𝐺(𝑡))

+
𝑡,                                 (3.8) 

 

 

Subject to the following initial conditions: 

(0) =  0, 𝑋(0) =  0, 𝐼(0) = 𝐼0 𝑌(0) = 0 𝐸(0) = 𝐸𝑏 

 
Where Y represents the glucagon activity on the liver, X represents the interstitial 

insulin activity and G, I and E are the quantities of glucose, insulin and glucagon in the 

plasma. Note 𝐸(0) = 𝐸𝑏 since both the initial insulin and glucose levels are high; 

therefore would inhibit excess glucagon production, so glucagon is assumed to be at 

the resting concentration at the beginning of the test. 

This model has increased complexity in comparison with the linear model, however is 

still relatively simple and minimalistic with respect to the terms used to describe the 

glucose regulatory processes.  The added complexity comes from the non-linear 

terms introduced into equation (3.4) to model the effects of the regulatory hormones 

on blood glucose through insulin in the interstitial space and glucagon action, rather 

than directly by the concentrations of the hormones themselves. Since the role of 

glucagon in an IVGTT is relatively small, the next model will investigate the effects on 

assuming the change in blood glucose levels to be linear proportional to the amount 

of glucagon in the blood, whilst maintaining non- linear glucose-insulin dynamics. 
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3.3.3. Linear Glucagon Minimal Model 
 

For the third system developed for modelling glucose-insulin-glucagon dynamics 

during an IVGTT, the term for cellular glucagon, (𝑡), will be removed, assuming that 

glucose production in response to an excess of glucagon is linearly proportional to the 

rise in plasma glucagon above the basal level. 

 

 

Figure 3.3: Compartment diagram of non-linear insulin and linear glucagon 

regulation of the glucose regulatory system 

The solid lines represent the constant rates, the dark blue dotted lines show 

signalling of blood glucose levels to the pancreas and the light blue dashed lines show 

the control actions on glucose levels. The mathematical description of the parameter 

rates are described in table 3.3. 
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Table 3.3. Linear Glucagon Minimal Model Nomenclature 

 
Variable Description Unit 

G Plasma glucose concentration 𝑚𝑔/𝑑𝑙 

X Interstitial insulin activity 𝑚𝑖𝑛−1 

I Plasma insulin concentration µ𝑈/𝑚𝑙 

Y Glucagon activity 𝑚𝑖𝑛−1 

E Plasma glucagon concentration 𝑝𝑔/𝑚𝑙 

𝑝1 Glucose Effectiveness 𝑚𝑖𝑛−1 

𝑝2 Decrease of glucose uptake ability in the 

peripherals 
𝑚𝑖𝑛−1 

𝑝3 Increase in peripheral glucose uptake ability, 

proportional to per unit of insulin above baseline 
𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 

𝑝4 Insulin clearance 𝑚𝑖𝑛−1 

𝑝5 Insulin secretion, proportional to per unit of 

glucose above baseline 
𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙) 

𝑝6 Glucagon Clearance 𝑚𝑖𝑛−1 

𝑝7 Glucagon secretion, proportional to per unit of 

glucose below baseline 
𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙) 

𝑝8 Glucagon stimulated glucose production (𝑚𝑔/𝑑𝑙) 𝑚𝑖𝑛−2 

 
 

The system of equations is given mathematically as: 
𝑑𝐺

𝑑𝑡
= −𝑝1(𝐺(𝑡) − 𝐺𝑏) − 𝐺(𝑡)𝑋(𝑡) + 𝑝8(𝐸(𝑡) − 𝐸𝑏),                    (3.9) 

𝑑𝑋

𝑑𝑡
= −𝑝2𝑋(𝑡) + 𝑝3(𝐼(𝑡) − 𝐼𝑏)

+,                                                        (3.10) 

𝑑𝐼

𝑑𝑡
= −𝑝4(𝐼(𝑡) − 𝐼𝑏) + 𝑝5(𝐺(𝑡) − 𝐺𝑏)

+𝑡,                                         (3.11) 

𝑑𝐸

𝑑𝑡
= −𝑝6(𝐸(𝑡) − 𝐸𝑏) + 𝑝7(𝐺𝑏 − 𝐺(𝑡))

+
𝑡,                                     (3.12) 

 

Subject to the following initial conditions: 

 
(0) = 𝐺0,   (0) = 0,   𝐼(0) = 𝐼0,   𝐸(0) =   𝐸𝑏. 
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3.4. Model Analyses 

 
This section will analyse the three models proposed mathematically, determining the 

critical points of the systems and reviewing the stability. 

3.4.1. Linear Model 

 
An autonomous differential equation is an equation in which the independent 

variable does not appear explicitly (Zill, 2013). Therefore, if it is the independent 

variable, a first-order differential equation may be written in normal form as 
𝑑𝑦

𝑑𝑡
= 𝑓(𝑦). 

 

To find the critical points of the linear model, equations (3.1-3.3) can be set to be 

equal to 0 and may be rewritten to give the following: 

𝐺∗ = 𝐺𝑏 +
𝑝2
𝑝1
∗ (𝐸∗ − 𝐸𝑏)

+ −
𝑝3
𝑝1
(𝐼∗ − 𝐼𝑏)

+,                              (3.13) 

𝐼∗ =
𝑝4
𝑝5
∗ (𝐺∗ − 𝐺𝑏)

+ + 𝐼𝑏,                                                                                         (3.14) 

𝐸∗ =
𝑝6
𝑝7
∗ (𝐺𝑏 − 𝐺

∗)+ + 𝐸𝑏 ,                                                             (3.15) 

Where G*, I* and E* represent the concentrations of glucose, insulin and glucagon at the 

equilibrium point respectively. 

Therefore it can be deduced that 

 

lim  (𝑡) = 𝐺𝑏,  lim  𝐼(𝑡) = 𝐼𝑏  𝑎𝑛𝑑   lim  𝐸(𝑡) = 𝐸𝑏. 
𝑡→ ∞ 𝑡→ ∞ 𝑡→ ∞ 

Resulting in an existing equilibrium point (𝐺𝑏, 𝐼𝑏, 𝐸𝑏). 

 

This means that after any perturbation to the system, for example a meal containing 

a large amount of carbohydrates, the system will always return back to its basal 

state. 

The linear model admits one equilibrium point, (𝐺𝑏,,𝐸𝑏), such that any solution to 

the system will converge towards it. Solutions and time derivatives of all three 

equations are all positive and bounded. 

The stability analysis of the linear glucagon model and all later linear or linearized 

versions of models proposed in the thesis will be determined by the Routh-

Hurwitz Critera (see definitions and abbreviations). 
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One form of stability analysis for linear systems is eigenvalue analysis (DeJesus and 

Kaufamn, 1987). In order to obtain the eigenvalues for the system, the 

characteristic equation must be determined, which can be found by the Jacobian 

matrix. The Jacobian matrix for the linear model is given by: 

J0  = 

(

 
 

d2G(t)

dtdG

d2G(t)

dtdI

d2G(t)

dtdE

d2I(t)

dtdG

d2I(t)

dtdI

d2I(t)

dtdE

d2E(t)

dtdG

d2E(t)

dtdI

d2E(t)

dtdE )

 
 
= (

−p1 −p3 p2
p4 −p5 0
−p6 0 −p7

)                           (3.16) 

Which can be written in the form of (3.17) as: 

(𝜆𝐼 − 𝐽0) = (

𝜆 + 𝑝1 −𝑝3 −𝑝2
−𝑝4 𝜆 + 𝑝5 0
−𝑝6 0 𝜆 + 𝑝7

)                                                     (3.17)     

  

Thus the characteristic polynomial is: 

𝑝(𝜆) = 𝜆3  + 𝜆2(𝑝7  + 𝑝5  + 𝑝1) + 𝜆(𝑝1𝑝5  + 𝑝1𝑝7  + 𝑝5𝑝7  − 𝑝3𝑝4  − 𝑝2𝑝6) − 𝑝2𝑝5𝑝6 

+ 𝑝1𝑝5𝑝7  − 𝑝3𝑝4𝑝7 = 0, (3.18) 

 

The roots were determined using the Roots function in Mathematica, an example of 

which can be found in Appendix C. The roots will not be written explicitly in this 

thesis due to the complexity and length of the values, however it is noted that these 

values are all negative, thus the stability criteria for the linear model holds. 
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3.4.2. Glucagon Minimal Model 
 

In mathematical analysis, non-dimensionalizing, or rescaling, is performed in order to 

simplify the equations by reducing the number of variables in the system, analyse the 

system behaviour with no regard to the units and to rescale the parameters and 

variables such that all quantities are of similar magnitudes (De Pillis, 2005). The 

simplified equations result in fewer parameters. This process reveals the dependence 

of the system on parameters or groups of parameters. 

In this section the glucagon Minimal Model will be non-dimensionalized in order to 

investigate the behaviour of the system. 

Table 3.4 consists of both the state variables and parameters in the system, defining 

their meanings, range of measurements in the specified units and their 

corresponding dimensions, given in the fundamental units; Mass (M), length (L) and 

time (T). 
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Table 3.4: Values, units and dimensions of variables and parameters in the Glucagon 

Minimal Model 

 

Symbol Description Unit Dimension 

M L T 

G(t) Plasma Glucose concentration at time 

t 

mg/dl (𝑚𝑔/𝐿−1) 1 -3 0 

I(t) Plasma Insulin concentration at time t µ𝑈/𝑚𝑙 1 -3 0 

X(t) Interstitial Insulin activity at time t 𝑚𝑖𝑛−1 0 0 -1 

Y(t) Glucagon activity at time t 𝑚𝑖𝑛−1 0 0 -1 

E(t) Plasma Glucagon concentration at 

time t 

pg/ml 1 -3 0 

𝑝1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑖𝑛−1 0 0 -1 

𝑝2 Rate of tissue glucose uptake ability 𝑚𝑖𝑛−1 0 0 -1 

𝑝3 Rate of excess plasma insulin 

stimulated insulin activity 

𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 -1 3 -2 

𝑝4 Insulin disappearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝5 Rate of second phase insulin secretion 

(glucose dependent) 

(µ𝑈/𝑚𝑙) 𝑚𝑖𝑛−2 1 3 -2 

𝑝6 Rate of cellular glucose production 

ability 

𝑚𝑖𝑛−1 0 0 -1 

𝑝7 Rate of excess plasma glucagon 

stimulated glucagon activity 

(𝑝𝑔/𝑚𝑙) 𝑚𝑖𝑛−2 1 3 -2 

𝑝8 Glucagon clearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝9 Glucose dependent Glucagon secretion (𝑚𝑔/𝑑𝐿) 𝑚𝑖𝑛−2 0 0 -2 

𝐺𝑏 Baseline plasma glucose concentration mg/dl 1 -3 0 

𝐼𝑏 Baseline plasma insulin concentration µ𝑈/𝑚𝑙 1 -3 0 

𝐸0  = 𝐸𝑏 Baseline plasma glucagon 

concentration 

ng/dl 1 -3 0 

𝐺0 Initial plasma glucose concentration mg/dl 1 -3 0 

𝐼0 Initial plasma insulin concentration µ𝑈/𝑚𝑙 1 -3 0 
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Therefore   in   total   there   are   5   variables   (G,   X,   I,   E,  Y)   and   14   parameters 

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝐺𝑏, 𝐼𝑏, 𝐸𝑏, 𝐺0, 𝑎𝑛𝑑 𝐼0 ), giving the system a total of 19 

quantities, in 3 fundamental dimension units, and a degree of freedom (DOF) of 11, as 

determined by the Buckingham π theorem taken from Van Groesen and Molenaar 

(2007). 

Since there are more than 4 variables and only 3 dimensional quantities, a unique 

relation between the variables cannot be found. Therefore we are required to refer to 

dimensionless groups of variables, in this case 2 dimensionless groups (number of 

variables – numbers of dimensions). 

There is no unique definition for the procedure of constructing a set of dimensionless 

quantities, however it is beneficial to formulate a set that is meaningful, that 

simplifies the equations (Nittala et al, 2006) and aims to reduce the number of 

parameters (Van Groesen and Molenaar, 2007). 

Therefore an optimal scaling for the plasma concentrations for glucose and the two 

hormones would be  �̃� =
𝐺

𝐺𝑏
, �̃� = 𝑋𝜏, 𝐼 =

𝐼

𝐼𝑏
, Ỹ = Yτ and �̃� =

𝐸

𝐸𝑏 
. 

The rescaling of variables is chosen to simplify the equations, therefore the 

baseline values were chosen for chose the three measurable quantities, whereas 

interstitial insulin and glucagon activity were rescaled by time, consistently 

with the work of Nittala et al. (2006). 

Since interstitial insulin and glucagon activity cannot be measured like the other 

three state variables, they need to be solved. Therefore, the equation can be 

rearranged and solved by the integrating factor method as follows. 

Rewriting the equations (3.17) and (3.19) for interstitial insulin into the form 

 
𝑑𝑦 

+ (𝑡) ∗ (𝑡) = 𝑓(𝑡), (3.19) 
𝑑𝑡 

 

Gives the following 
𝑑𝑋

𝑑𝑡
+ 𝑝2 ∗ 𝑋(𝑡) = 𝑝3 ∗ (𝐼(𝑡) − 𝐼𝑏),                                                (3.20) 

𝑑𝑌

𝑑𝑡
+ 𝑝6 ∗ 𝑌(𝑡) = 𝑝7 ∗ (𝐸(𝑡) − 𝐸𝑏),                                              (3.21) 
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Setting the integrating factors, 𝑚𝑋(𝑡) 𝑎𝑛𝑑 𝑚𝑦(𝑡), as 
 

𝑚𝑥(𝑡) = 𝑒(𝑝2 ∫ 𝑑𝑡)  = 𝑒𝑝2𝑡, (3.22) 

𝑚𝑦(𝑡) = 𝑒(𝑝6 ∫ 𝑑𝑡)  = 𝑒𝑝6𝑡,  (3.23) 

 
The integrating factors are then substituted into the formula (Munkhammar, no date).  

𝑦(𝑡) =
1

𝑚(𝑡)
∗ (∫𝑚(𝑡) ∗ 𝑓(𝑡)𝑑𝑡),                                                         (3.24) 

Resulting in the following solutions for insulin and glucagon activity 

𝑋(𝑡) =  𝑒−𝑝2𝑡 ∗ (𝑝3 ∗ ∫ 𝑒𝑝2𝜏 ∗ (𝐼(𝜏) − 𝐼𝑏)𝑑𝜏
𝑡

0

),                                (3.25) 

𝑌(𝑡) =  𝑒−𝑝6𝑡 ∗ (𝑝7 ∗ ∫ 𝑒𝑝6𝜏 ∗ (𝐸(𝜏) − 𝐸𝑏)𝑑𝜏
𝑡

0

),                                (3.26) 

Since this model has been developed to analyse the results of a frequently sampled 

intravenous tolerance test (FSIVGTT) it can be assumed that 𝑋(0) = 𝑌(0) =0, as it is 

assumed that the test is started when the individual is in the basal state. 

The dimensional variables are rescaled to give the following dimensionless variables: 

𝑡 = 𝜏 ∗ 𝑇, 𝐺 = �̃� ∗ 𝐺𝑏 , 𝐼 = 𝐼 ∗ 𝐼𝑏 , 𝐸 = �̃� ∗ 𝐸𝑏 𝑎𝑛𝑑 𝑋 =
�̃�

𝜏
   

Given that 
𝑑

𝑑𝑡
=

𝑑

𝑑𝑇
 →

𝑑𝑇

𝑑𝑡
=

1

𝜏
∗
𝑑

𝑑𝑇
, by replacing the variables in the original system (equations 

5.10 – 5.13) with the new variables, the system can now be rewritten in dimensionless form 

as: 

𝑑�̃�

𝑑𝑡
= −𝑝1 ∗ 𝜏 ∗ (�̃� − 1) − �̃� ∗ (𝐼 − �̃�),                                                   (3.27) 

𝑑�̃�

𝑑𝑡
= −𝑝2 ∗ 𝜏 ∗ �̃� + 𝑝3 ∗ 𝜏

2 ∗ 𝐼𝑏 ∗ (𝐼 − 1)
+,                                            (3.28) 

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ 𝜏 ∗ (𝐼 − 1) +

𝑝5 ∗ 𝐺𝑏 ∗ 𝜏
2 ∗ (�̃� − 1)

+

𝐼𝑏
,                                (3.29) 

𝑑�̃�

𝑑𝑡
= −𝑝6 ∗ 𝜏 ∗ �̃� + 𝑝7 ∗ 𝜏

2 ∗ 𝐸𝑏 ∗ (�̃� − 1)
+
,                                           (3.30) 

𝑑�̃�

𝑑𝑡
=  −𝑝8 ∗ 𝜏 ∗ (�̃� − 1) +

𝑝9 ∗ 𝐺𝑏 ∗ 𝜏
2 ∗ (1 − 𝐺 ̃)

+

𝐸𝑏
,                              (3.31) 

Nittala et al. (2006) identify the two natural time scales in the minimal model used for the 

FSIVGTT to be glucose disappearance, 
1

 𝑝1
 , and insulin disappearance, 

1

𝑝4
. This suggests that 

from the addition of glucagon into this model there is a third time scaled to be considered in 

this model as glucagon disappearance, 
1

𝑝8
 . 
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Therefore, by using glucagon disappearance to rescale the tie variable such that 𝜏 = 𝑝8𝑡, the 

system now becomes: 

𝑑�̃�

𝑑𝑡
= −𝑝1̃ ∗ (�̃� − 1) + (�̃� − �̃�) ∗ �̃�,                                      (3.32) 

𝑑�̃�

𝑑𝑡
= −𝑝2̃ ∗ �̃� + 𝑝3̃ ∗ (𝐼 − 1)

+,                                                (3.33) 

𝑑𝐼

𝑑𝑡
= −𝑝4̃ ∗ (𝐼 − 1) + 𝑝5̃ ∗ (�̃� − 1)

+
,                                      (3.34) 

𝑑�̃�

𝑑𝑡
= −𝑝6̃ ∗ �̃� + 𝑝7̃ ∗ (�̃� − 1)

+
,                                                 (3.35) 

𝑑�̃�

𝑑𝑡
=  −(�̃� − 1) + 𝑝9̃ ∗  (1 − �̃�)

+
,                                           (3.36)  

 

where  �̃� =
𝐺

𝐺𝑏
, 𝐼 =

𝐼

𝐼𝑏
, �̃� =

𝐸

𝐸𝑏
, 𝑝1̃ =

𝑝1

𝑝8
, 𝑝2̃ =

𝑝2

𝑝8
, 𝑝3̃ =

𝑝3∗𝐼𝑏

𝑝8
2 , 𝑝4̃ =

𝑝4

𝑝8
, 𝑝5̃ =

𝑝5∗𝐺𝑏

𝑝82∗𝐼𝑏
, 𝑝6̃ =

𝑝6

𝑝8
, 𝑝7̃ =

𝑝7∗𝐸𝑏

𝑝8
2  and 𝑝9̃ =

𝑝9∗𝐺𝑏

𝑝8
2∗𝐸𝑏

. The initial conditions become: �̃�(0) =
𝐺0

𝐺𝑏
, X̃(0) = 0, 𝐼(0) =

𝐼0

𝐼𝑏
. �̃� =

0 and �̃� =
𝐸𝑏

𝐸𝑏
= 1. 

Therefore the free, unitless parameters comprise of: 𝑝1̃, 𝑝2̃, 𝑝3̃, 𝑝4̃, 𝑝5̃, 𝑝6̃, 𝑝7̃, 𝑝9̃, 𝐺0̃ and 𝐼0̃. 

This indicates a DOF of 10, rather than 11 as given by the Buckingham-𝜋 theorem, however 
this quantity is one less due to the assumption that 𝐸0  = 𝐸𝑏. 

The key parameters now change to     𝑆�̃� = 𝑝1̃ =
𝑝1

𝑝8
, 𝑆�̃� =

𝑝3̃

𝑝2̃
=

𝑝3𝐼𝑏

𝑝2𝑝8
 𝑎𝑛𝑑 𝑆�̃� =

𝑝7̃

𝑝6̃
=

𝑝7𝐸𝑏

𝑝6𝑝8
.

Glucose effectiveness now becomes glucose disappearance over glucose independent 

glucagon production, insulin sensitivity now is dependent on insulin sensitivity, basal 

insulin secretion and glucagon clearance, and the glucagon sensitivity index is now 

influenced by basal glucagon and glucose independent production. 

In order to ensure that the system is autonomous, it can clearly be seen that the critical 

point must be (1,0,1,0,1). This refers to when the system is in a resting state, i.e. plasma 

glucose and hormone concentrations are at their basal levels. 

 
In order to determine the stability of the system, the linearized system, given by 

equations (3.32)-(3.36), is analysed. 
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The Jacobian Matrix evaluated at the critical point (1,0,1,0,1), is given by: 

 

𝐽1 = 

(

 
 
 

−𝑝 1̃ −1 0 1 0

0 −𝑝 ̃2 𝑝 ̃3 0 0

0 0 −𝑝 ̃4 0 0

0 0 0 −𝑝 ̃6 𝑝 ̃7

0 0 0 0 −𝑝 ̃8 )

 
 
 

                            (3.37) 

 

Since 𝐽1 is an upper triangular matrix, the eigenvalues are given by the entries on its 

main diagonal and are: 

𝜆1,1  = −𝑝1, 𝜆1,2  = −𝑝2, 𝜆1,3  = −𝑝4, 𝜆1,4  = −𝑝6, 𝜆1,5  = −𝑝8 

 
Note that all roots of the characteristic equation are negative, therefore the system is 

stable. 
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3.4.3. Linear Glucagon Minimal Model 
 

In this section the third model formulated to consider glucose-insulin-glucagon 

dynamics in an IVGTT is non-dimensionalized, in a similar manner to the Glucagon 

Minimal Model in section 3.4.2, in order to investigate the behaviour of the system. 

Non-dimensionalizing the system will enable the system to be described with fewer 

parameters by transforming the variables and parameters to simplify the equations. 

The process reveals the dependence of the system on parameters or groups of 

parameters. 

The following table consists of both the state variables and parameters in the system, 

defining their meanings, range of measurements in the specified units and their 

corresponding dimensions, given in the fundamental units; Mass (M), length (L) and 

time (T). 
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Table 3.5: Values, units and dimensions of variables and parameters in the Linear 

Glucagon Minimal Model. 

 

Symbol Description Unit Dimension 

M L T 

G(t) Plasma Glucose concentration at time t mg/dl 1 -3 0 

I(t) Plasma Insulin concentration at time t µ𝑈/𝑚𝑙 1 -3 0 

X(t) Interstitial Insulin activity at time t 𝑚𝑖𝑛−1 0 0 -1 

E(t) Plasma Glucagon concentration at time t pg/ml 1 -3 0 

𝑝1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑖𝑛−1 0 0 -1 

𝑝2 Decrease of tissue glucose uptake ability 𝑚𝑖𝑛−1 0 0 -1 

𝑝3 Insulin dependent tissue glucose uptake 

ability 

𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 - 

1 

3 -2 

𝑝4 Rate of (µ𝑈/𝑚𝑙) 𝑚𝑖𝑛−2 0 0 -2 

𝑝5 Insulin disappearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝6 Glucose dependent Glucagon secretion (𝑝𝑔/𝑚𝑙) 𝑚𝑖𝑛−2 0 0 -2 

𝑝7 Glucagon clearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝8 Glucagon dependent glucose secretion (𝑝𝑔/𝑚𝑙) 𝑚𝑖𝑛−2 0 0 -2 

𝐺𝑏 Baseline plasma glucose concentration mg/dl 1 -3 0 

𝐼𝑏 Baseline plasma insulin concentration µ𝑈/𝑚𝑙 1 -3 0 

𝐸0  = 𝐸𝑏 Baseline plasma glucagon concentration pg/ml 1 -3 0 

𝐺0 Initial plasma glucose concentration mg/dl 1 -3 0 

𝐼0 Initial plasma insulin concentration µ𝑈/𝑚𝑙 1 -3 0 
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In total there are 4 variables (G, X,  I, E)  and 13 parameters (𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 

𝑝8, 𝐺𝑏, 𝐼𝑏, 𝐸𝑏, 𝐺0, 𝑎𝑛𝑑 𝐼0 ), giving the system a total of 17 quantities, in 3 fundamental 

dimension units, and a DOF of 10. From the π-theorem of Buckingham (Van Groesen 

and Molenaar, 2007) it can be determined that the system can be described with 14 

dimensionless quantities: 

(G, X, I, E, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝐺𝑏, 𝐼𝑏, 𝐸𝑏, 𝐺0, 𝐼0  ) (3.38) 

 
Between the variables and parameters of a mathematical model can be replaced with 

the corresponding relation between the dimensionless quantities 𝑞𝑖: 

𝑓∗(𝑞1, … . . , 𝑞14) = 0 (3.39) 

 
In section 3.4.2. it was determined that since interstitial insulin and glucagon activity 

cannot be measured like the other three state variables, they needed to be solved. 

This model does not include glucagon activity; however the same approach will be 

required for interstitial insulin, such that it becomes equation (3.20). 

The dimensional variables are rescaled to give the following dimensionless variables: 
 

𝑡 = 𝜏 ∗ 𝑇, 𝐺 = �̃� ∗ 𝐺𝑏 , 𝐼 = 𝐼 ∗ 𝐼𝑏 , 𝐸 = �̃� ∗ 𝐸𝑏 𝑎𝑛𝑑 𝑋 =
�̃�

𝜏
   

Given that 
𝑑

𝑑𝑡
=

𝑑

𝑑𝑇
 →

𝑑𝑇

𝑑𝑡
=

1

𝜏
∗
𝑑

𝑑𝑇
, by replacing the variables in the original system 

5.10 – 5.13) with the new variables, the system can now be rewritten in 

dimensionless form as: 

𝑑�̃�

𝑑𝑇
= −𝑝1 ∗ 𝜏 ∗ (�̃� − 1) − �̃� ∗ �̃� +

𝑝8 ∗ 𝐸𝑏 ∗ 𝜏

𝐺𝑏
∗ (�̃� − 1)

+
,                      (3.40) 

𝑑�̃�

𝑑𝑇
= −𝑝2 ∗ 𝜏 ∗ �̃� + 𝑝3 ∗ 𝜏

2 ∗ 𝐼𝑏 ∗ (𝐼 − 1)
+,                                                   (3.41) 

𝑑𝐼

𝑑𝑇
= −𝑝4 ∗ 𝜏 ∗ (𝐼 − 1) +

𝑝5 ∗ 𝐺𝑏 ∗ 𝜏
2 ∗ 𝑇

𝐼𝑏
∗ (�̃� − 1)

+
,                                (3.42) 

𝑑�̃�

𝑑𝑇
= −𝑝6 ∗ 𝜏 ∗  (�̃� − 1) +

𝑝7 ∗ 𝐺𝑏 ∗ 𝜏
2 ∗ 𝑇

𝐸𝑏
∗ (1 − �̃�)

+
,                               (3.43) 

�̃�(0) =
𝐺0
𝐺𝑏
= 𝐺0̃, 𝐼(0) =

𝐼0
𝐼𝑏
= 𝐼0̃, �̃�(0) =

𝐸𝑏
𝐸𝑏
= 1, 𝑋(0) = 0.  
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As discussed in section 3.4.2 there are three natural time scales for this system, each for 

glucose clearance, insulin clearance and glucagon clearance. By setting 𝜏 =
1

𝑝4
, the system is 

rescaled for insulin disappearance and can be rewritten as: 

𝑑�̃�

𝑑𝑇
= −𝑝1̃ ∗ (�̃� − 1) − �̃� ∗ �̃� + 𝑝8̃ ∗ (�̃� − 1)

+
,                               (3.44) 

𝑑�̃�

𝑑𝑇
= − 𝑝2̃ ∗ �̃� + 𝑝3̃ ∗ (𝐼 − 1)

+,                                                            (3.45) 

𝑑𝐼

𝑑𝑇
= −(𝐼 − 1) + 𝑝5̃ ∗ (�̃� − 1)

+
,                                                           (3.46) 

𝑑�̃�

𝑑𝑇
= −𝑝6̃ ∗  (�̃� − 1) + 𝑝7̃ ∗ (1 − �̃�)

+
,                                                (3.47) 

where the dimensionless parameters are defined as:   

𝑝1̃ =
𝑝1
𝑝4 ,

𝑝2̃ =
𝑝2
𝑝4
 , 𝑝3̃ =

𝑝3

𝑝4 
2 ∗ 𝐼𝑏 ,     𝑝5̃ =

𝑝5 ∗ 𝐺𝑏 ∗ 𝑇

𝐼𝑏 ∗ 𝑝4
2 , 𝑝6̃ =

𝑝6
𝑝4
,

𝑝7̃ =
𝑝7 ∗ 𝐺𝑏 ∗ 𝑇

𝐸𝑏 ∗ 𝑝4
2 ,   and    𝑝8̃ = 

𝑝8 ∗ 𝐸𝑏
𝐺𝑏 ∗ 𝑝4

. 

Therefore the free, unitless parameters comprise of  𝑝1̃,  𝑝2̃,  𝑝3̃,  𝑝5̃,  𝑝6̃,  𝑝7̃,  𝑝8̃, 𝐺0̃ 𝑎𝑛𝑑 𝐼0̃. 

This indicates a DOF of 9, rather than 10 as given by the Buckingham-𝜋 theorem, however 

this quantity is one less due to the assumption that 𝐸0  = 𝐸𝑏. 

The key parameters now change to  𝑆�̃� =  𝑝1̃ 𝑎𝑛𝑑   𝑆�̃� =
𝑝3̃

𝑝2̃
=

𝑝3𝐼𝑏

𝑝2𝑝4.
. Glucose effectiveness now 

becomes glucose disappearance and insulin clearance and insulin sensitivity now is 

dependent on insulin sensitivity, basal insulin secretion and glucose independent insulin 

production. 

It can easily be seen that �̃�(𝑇) = 1 must be at a critical point to ensure autonomy in the 

system. 

This reduces the remaining equations of the dimensionless system to: 
 

𝑑�̃�

𝑑𝑇
= −𝑝2̃ ∗ �̃� + 𝑝3̃ ∗ (𝐼 − 1)

+,                                          (3.48) 

𝑑𝐼

𝑑𝑇
=  −𝑝4̃ ∗ (𝐼 − 1),                                                              (3.49) 

𝑑�̃�

𝑑𝑇
=  −𝑝6̃ ∗ (�̃� − 1),                                                            (3.50)  
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Therefore it can be determined that the critical point for the dimensionless system must be: 

�̃�(𝑇) = 1, �̃�(𝑇) = 0, 𝐼(𝑇) = 1, �̃�(𝑇) = 1. In physical terms this point represents the 

individual at their basal metabolic rate, i.e. a post-absorptive state at rest and not under any 

form of physiological or mental stress. 

The Jacobian Matrix is evaluated at the critical point for the dimensional system, 

rescaled for insulin disappearance (3.44-3.47), and given as : 

= (

−𝑝1̃ −1 0 𝑝8̃ 
0 −𝑝2̃ 𝑝3̃ 0
𝑝5̃ 0 −𝑝4̃ 0
−𝑝7̃ 0 0 −𝑝6̃

)                                                     (3.51) 

 

det(𝐽2 − 𝐼𝜆) =  (

−𝑝1̃ − 𝜆 −1 0 𝑝8̃
0 −𝑝2̃ − 𝜆 𝑝3̃ 0
𝑝5̃ 0 −𝑝4̃ − 𝜆 0
−𝑝7̃ 0 0 −𝑝6̃ − 𝜆

) = 0                              (3.52) 

Using Mathematica, the characteristic equation was calculated as: 

𝑑𝑒𝑡(𝐽2 − 𝐼𝜆) =  𝑝7̃ (𝑝2̃
2𝑝4̃ + 𝑝2̃

2 𝜆 + 𝑝2̃𝑝4̃ 𝑥 + 𝑝2̃ 𝜆
2) 

+(𝑝6̃ − 𝑥)(−𝑝3̃ 𝑝5̃ + (−𝑝4̃ − 𝜆)(𝑝1̃ 𝑝2̃ + 𝑝1̃ 𝜆 + 𝑝2̃ 𝜆 + 𝜆
2)) = 0          (3.53)  

The roots of the equation (3.53) were solved in Mathematica to give the eigenvalues 

for the matrix (3.51). (See appendix C for an example code). The eigenvalues were all 

negative, confirming the stability of the system. 
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3.5. Model Simulations 
 

The models are solved using the inbuilt MATLAB solver ODE45, based on explicit 

Runge-Kutta methods. The value of the parameters are solved within MATLAB 

using the LSQNONLIN function. Initial parameter values were based on those 

available within literature (Cobelli et al. 1998), (Roy and Parker, 2007), (McDonald 

et al., 2000), Aguilera Gonzalez and Darouach, 2015), the LSQNONLIN solver then 

used these values to determine the optimal set of parameters to fit the data set 

(table 3.2 found in the appendix) of glucose and insulin measurements obtained 

during a frequently sampled intravenous glucose tolerance test (FSIVGTT) from a 

healthy individual (Pacini and Bergman, 1986). 

The initial concentrations for plasma glucose and insulin were estimated using 

starting values and bounds based on Pacini and Bergman’s (1986) MINMOD program. 

Since during a FSIVGTT an individual is considered to be in the fed state, minimal 

glucagon action is assumed, thus set 𝐸0  = 𝐸𝑏. Measurements for basal Insulin, 

Ib, Glucose, Gb, and Glucagon, Eb, were taken from Wolfe et al. (1986). (Ib  = 13.2  ± 

1.4 (µU⁄mL), Gb = 92.5 ± 6.09 (mg⁄dL) and Eb = 142 ± 36 (pg⁄mL).) The 

remaining parameters were constrained with lower and upper bounds based on 

findings in literature where available. The parameters for the models containing 

glucagon activity and/or plasma glucagon were calculated based on the starting 

values for the insulin counterparts; however constraints on the lower and upper 

bounds were decreased due to the limited information available in literature. 

Tables with the parameter values can be found in appendix B. 
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3.5.1. Plasma Glucose 

Figure 3.4 shows the ability of all three proposed models to produce an accurate fit to 

the dataset for plasma glucose measurements. Out of the three models , The Linear 

Model (a) is the poorest to fit the dataset, as it assumes glucose levels to fall slightly 

too quickly in the initial ten minutes and shows glucose levels to gradually decline 

until reaching the basal level. The other two models capture the initial decline and 

manage to account for plasma glucose undershooting the basal level, which are then 

restored by glucagon action. It can be seen that The Glucagon Minimal Model (b) 

provides the most accurate fit.

(a) (b) 

(c) 
Figure 3.4: Simulations of plasma glucose concentrations during an IVGTT: The 

Linear Model (a), The Glucagon Minimal Model (b) and The Linear Glucagon 

Minimal Model (c). 
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3.5.2. Interstitial Insulin 

The predictions for interstitial insulin of both of the models are of a similar 

magnitude to the Minimal Model and follow the behaviour of insulin. The Glucagon 

Minimal Model (a) is much faster to reach a peak of insulin activity and is cleared 

from the system faster than in the Linear Glucagon Minimal Model (b), suggesting a 

slightly greater sensitivity to insulin. 

 

Figure 3.5: Simulations of interstitial insulin activity during an IVGTT: The Glucagon 

Minimal Model (a) and The Linear Glucagon Minimal Model (b). 

(a) (b) 
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3.5.3. Plasma Insulin 

The Linear Glucagon Model does not capture the biphasic release of insulin, plotting a 

smooth curve as the insulin concentration returns to the basal level. This result is 

inadequate for modelling insulin dynamics as it has long been observed that high levels 

of glucose induce a biphasic release of insulin (Taguchi et al., 1995), (Henquin et al., 

2002). 

 

Linear Model (a), The Glucagon Minimal Model (b) and The Linear Glucagon Minimal 

Model (c) 

Both the Glucagon Minimal Model (a) and Linear Glucagon Minimal Model (b) fit the 

data for plasma insulin measurements well and demonstrate the biphasic behaviour 

as observed for insulin release. These results suggest that linear dynamics are not 

sufficient for modelling the glucose-insulin relationship. 

(a) (b) 

Figure 3.6: Simulations of plasma insulin conce 
(c)

ntrations during an IVGTT: The 
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3.5.4. Glucagon Activity 
 

Figure 3.7: Simulation of The Glucagon Minimal Model for glucagon activity during 

an IVGTT. 

The Glucagon Minimal Model is the only model that considers glucagon activity. If 

it is compared with the results for plasma glucagon for the Glucagon Minimal 

Model (figure 3.8.b) it is clearly seen that glucagon activity begins to increases after 

a slight delay of a couple of minutes following the rise in the plasma glucagon 

concentration. By comparing glucagon activity to interstitial insulin (figure 3.5.a) it 

is apparent that the level of glucagon activity following a fall in glucose levels is 

much smaller than the response of interstitial insulin activity to excessive glucose 

in the initial hour of the test.  This result is reasonable due to the magnitude in 

which glucose exceeded the basal level in comparison to the amount it fell below 

the basal level. 
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3.5.5. Plasma Glucagon 
 

Figure 3.8: Simulations for plasma glucagon concentrations during an IVGTT: The 

Linear Glucagon Model (a), The Glucagon Minimal Model (b) and The Linear Glucagon 

Minimal Model (c). 

Since the data set used to validate the model did not contain measurements for 

plasma glucagon, the results have been validated in a more qualitative manner, and 

compared to the results shown by Thomaseth el at. (2014), in which showed an hour 

following the IVGTT plasma glucagon concentrations rose by approximately 30% of 

the basal rate. Clearly the linear model is incapable of predicting such a result, 

showing plasma glucagon not to rise above the basal level at any point. Both the 

Glucagon Minimal Model (b) and the Linear Glucagon Model (c) show the expected 

increase in plasma glucagon concentrations an hour following the intravenous 

glucose administration. However, the magnitude in which the Glucagon Minimal 

(a) 
(b) 

(c) 
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Model demonstrates for the increase in glucagon is very minimal, and does not 

correspond with findings in literature. Therefore the Linear Glucagon Minimal Model 

is by far the most accurate model in its ability to predict plasma glucagon 

concentrations during an IVGTT. 
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3.5.6. Dimensionless Glucagon Minimal Model 
 

The dimensionless system was solved in Matlab using ODE45, with the parameters 

fitted to the dimensionless data set of Pacini and Bergman (1986). The system was 

rescaled three times, for each of the recognised time scales; glucose disappearance, 

insulin disappearance and glucagon disappearance. 

The plots in figure 3.9 show the solutions of the dimensionless model rescaled for 

glucagon clearance, given by equations (3.33-3.37). 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) (e) 
 

Figure 3.9: Simulations of dimensionless plasma glucose, G(t), against plasma 

glucose measurements (a), plasma insulin, I(t), against plasma insulin 

measurements (b), interstitial insulin, X(t), (c), plasma glucagon, E(t), (e) and 

glucagon activity, Y(t), (d) during an IVGTT. Both data and model have been 

rescaled for glucagon clearance. 

The dimensionless simulation shows similar behaviour to the dimensional model, 

with both insulin (b) and glucose (a) showing a good fit to the dimensionless data. 
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The non-dimensional simulation for plasma glucagon (c) highlights the minimal 

increase in concentrations. 

The dimensional parameter values were calculated from the non-dimensional 

simulation as shown in table 3.6. 

Table 3.6: Comparisons of parameter values for dimensionless Glucagon Minimal 

Model, rescaled for glucose clearance, insulin clearance and glucagon clearance. 

 

Parameter Dimensional 

Value 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟏 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟒 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟖 
𝑆𝐺   = 𝑝1 0.02058 0.01756659 0.0094137 0.00941386 

𝑝2 0.02218 0.11408124 0.0373353 0.037336576 

𝑝3 0.000014 0.00003604 0.0000201 0.000020156 

𝑝4 0.32 0.03563689 0.2783405 0.278343671 

𝑝5 0.0032 0.00630156 0.0033421 0.003342215 

𝑝6 0.142 1.1440989 0.7025258 0.702525919 

𝑝7 0.000217 0.06857451 0.0079650 0.007964075 

𝑝8 0.0494 0.04687327 0.499999 0.5 

𝑝9 0.000018 0.00153339 0.0000245 0.00001 

𝑆𝐼 0.000617 0.00031591 0.0005399 0.00053928 

𝑆𝐸 0.001528 0.0599379 0.0153990 0.0113 

𝐺0 293 292 279 279 

𝐼0 360 366 360 360 

 

 
Rescaling the dimensionless model for both insulin clearance and glucagon clearance 

return similar parameter values for both insulin sensitivity and glucose effectiveness, 

which are slightly less than the dimensional values, whereas the returned values for 

glucagon effectiveness are very close to the dimensional value. 

In comparison, scaling the model for either glucose clearance results in higher values 

for both glucose effectiveness and glucagon sensitivity, but lower values for insulin 

sensitivity than the other two scalings. 
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Table 3.??: Comparisons of parameter values for dimensionless Linear Glucagon 

Minimal Model, rescaled for glucose clearance, insulin clearance and glucagon 

 
 

 
 

3.5.7. Dimensionless Linear Glucagon Minimal Model 
 

The dimensionless system was solved in MATLAB using ODE45, with the parameters 

fitted to the dimensionless data set of Pacini and Bergman (1986). The system was 

rescaled three times, for each of the recognised time scales; glucose disappearance, 

insulin disappearance and glucagon disappearance. 

The plots in figure 3.9 show the solutions of the dimensionless model rescaled for 

insulin clearance, given by equations (3.44-3.47). 

 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 

(c) 
 

(d) 

 
 

Figure 3.10: Simulations of Linear Glucagon Minimal Model during an IVGTT. The 

simulations are plotted as follows: Plasma glucose, G(t), against plasma glucose 

measurements (a), plasma glucagon, E(t), (b).plasma insulin, I(t), against plasma insulin 

measurements (c), and interstitial insulin activity, X(t), (d). 
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The model shows a very good fit to the dimensionless data for glucose (a), but rather 

a poor fit for insulin (c). However the increase in glucagon is as closer to the increase 

expected based on the findings of Thomaseth et al. (2014), as it increases by almost 

20% from its basal value. 

Table 3.7: Comparisons of parameter values for dimensionless Linear Glucagon 

Minimal Model, rescaled for glucose clearance, insulin clearance and glucagon 

clearance. 

 

Parameter Dimensional 

Value 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟏 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟒 

Non-Dimensional 

value rescaled by 

𝝉 =  
𝟏 

𝒑𝟔 

𝑆𝐺   = 𝑝1 0.02808122 0.01997831 0.0153103 0.0150861 

𝑝2 0.00996122 0.0144932 0.0231139 0.02259839 

𝑝3 7.31888 
∗ 10−6 

0.0000108854 0.00001459 0.000014613 

𝑝4 0.27943170 0.20202604 0.22646731 0.212060508 

𝑝5 0.00290469 0.00197596 0.0023889 0.002129929 

𝑝6 0.19225742 0.485124233 0.1222461 0.221008791 

𝑝7 0.00364470 0.002605806 0.00124715 0.00152487 

𝑝8 0.01530144 0.037376378 0.0116759 0.01809859 

𝑆𝐼 7.34737 
∗ 10−4 

0.000751068 0.00063153 0.000646669 

𝐺0 293 282 279 282 

𝐼0 360 411 406 410 

 
 

Rescaling the dimensionless model for all three parameter values resulted in lower 

values for glucose effectiveness, whereas the values for insulin sensitivity did not 

vary much. Interestingly, the starting values were all considerably different to the 

dimensional model. 
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3.6. Results and Discussion 
 

This section compares the results obtained from the three proposed models for 

glucose-insulin-glucagon dynamics during an IVGTT. The models are assessed based 

on how well they fit the datasets, how the behaviour of glucose and the hormones 

compared to what is supposed from evidence obtained from previous studies and 

how the values for the key parameters compare to the acceptable ranges as specified 

within literature. 

The linear model is the simplest of the three, consisting of 4 less quantities than the 

Glucagon Minimal Model and 3 less than the Linear Glucagon Minimal Model. It is 

beneficial in that it can be solved analytically and also provided a very good fit to the 

plasma measurements for glucose. However, the fit to plasma insulin measurements 

was of a poor quality, and the simulation for plasma glucagon was deemed unrealistic. 

The Glucagon Minimal Model was the best model to fit the data for plasma glucose 

and provided an equally good fit as the Linear Glucagon Minimal Model. Its only 

downfall is the one extra quantity to be considered than the Linear Glucagon Minimal 

Model and the results for plasma glucagon; despite showing the correct behaviour the 

response was of an insufficient magnitude. 

The Linear Glucagon Minimal Model provided a good fit to both of the plasma 

measurements and was able to capture glucagon behaviour. The Glucagon Minimal 

Model did slightly outperform the model for plasma glucose as the Linear Glucagon 

Minimal Model did not capture the levels undershooting the basal value quite as well. 

The reasonable given range of glucose effectiveness is given as 0.8 − 3.8 x 10−2 

(McDonald et al., 2000), which all returned model parameter values are within. It can 

be seen that the more complex the model is and the more non-linear terms a model 

has, the lower the value of glucose effectiveness. This may be due to the effects of the 

terms of glucagon contributing towards hepatic glucose production. 

Insulin sensitivity for a healthy individual is typically around 5 x 10−4 (Pacini and 

Bergman, 1986). The Linear model is not capable of calculating a value for insulin 

sensitivity; however the other models are within reasonable magnitude of the 

stated value. 
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Since there is a limited number of mathematical models for the glucose regulatory 

system that consider glucagon dynamics at present it is not possible to compare the 

value returned by the Glucagon Minimal Model. Since it is within reasonable vicinity 

of insulin sensitivity it is deemed acceptable. 

Table 3.8: Comparisons of key parameter values from the three Glucagon Models. 

 
Parameter Linear Glucagon 

Model 

Glucagon Minimal 

Model 

Linear Glucagon 

Minimal Model 

𝑆𝐺   = 𝑝1 0.02717445 0.02059000 0.02808122 

𝑆𝐼 - 
1.78999 x 10−5 7.34737 x 10−4 

𝑆𝐸 - 
6.21902 x 10−4 - 

 
 

Comparing the dimensionless simulations of the model it is noticeable that the Linear 

Glucagon Minimal Model provides a much poorer fit to plasma insulin measurements 

than the Glucagon Minimal Model. Rescaling the Glucagon Minimal Model for 

different parameter values resulted in a larger variation of parameters than for the 

Linear Glucagon Minimal Model. This is likely to be due to the two additional 

quantities of the Glucagon Minimal Model. 
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3.7. Summary 
 

This chapter has covered the development of three mathematical models, capable of 

predicting plasma glucose, insulin and glucagon concentrations following an IVGTT. 

Each model ranged in its complexity, assuming either linear or non-linear 

relationships. The Linear Glucagon Minima Model is the most accurate model for 

predicting blood glucose levels during an IVGTT, and is more simplistic than the 

Glucagon Minimal Model, which required an additional variable and parameter in the 

system. Although the simplest, the Linear Glucagon Model is not acceptable as it 

provides a very poor fit to insulin and an unrealistic prediction for glucagon levels. It 

is possible that the non-linear terms, i.e. equations for hormone activity, are only 

required when there are large fluxes in the hormones. This will be further 

investigated by looking at the system during exercise. 
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Chapter 4 Exercise and the Glucose Regulatory 

System 

4.1. Introduction 
 

Including the effects of glucagon in a model for glucose regulation has allowed for a 

more accurate representation of glycaemic control, and admits a model capable of 

returning to homeostasis after perturbations to the system resulting in either a rise  or 

a fall in plasma glucose concentrations. 

Chapter 3 highlighted the role of glucagon after an IVGTT, i.e. after a period where 

glucose is in what is known as the fed state. The aim of this thesis will now be to model 

glucose-insulin-glucagon dynamics during periods of low glucose availability. 

This chapter examines the major effects had by exercise on the system and reviews the 

key literature that has attempted to model exercise and the glucose regulatory system. 

Understanding the major effects of exercise on glucose homeostasis will allow for the 

identification of both the variables and parameters that will be required in order to 

develop a mathematical model of the system, which will be covered in Chapter 5. 
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4.2. Exercise and the Glucose Regulatory System 
 

Individuals are encouraged to regularly take part in exercise for the numerous 

beneficial effects it has on health, including its ability to positively affect blood 

pressure(Colberg et al. 2010), improve cardio respiratory fitness, and many 

cardiovascular risk factors (Valletta et al., 2014). In addition to the cardiovascular 

system, exercise also promotes metabolic health, and is recognized as a natural, 

inexpensive tool for controlling diabetes and related complications (Derouich and 

Boutayeb, 2002), due to its ability to increase insulin sensitivity. For individuals at 

risk of developing type 2 diabetes, recent studies have shown that the effect of 

physical activity can lower the risk of the onset of the disease by up to 58% (Colberg 

et al., 2010) partly due to its ability to counteract insulin resistance (Costa-Junior et 

al., 2015). Therefore physical exercise is considered as an important factor in the 

treatment of both type 1 and type 2 diabetes (Goodyear and Kahn, 1998). 

4.2.1. Increased Glucose Uptake 
 

During physical activity our bodies expend a greater amount of energy; therefore 

there is an increase in the demand for glucose to be delivered to the working muscles 

as they contract. The increase in the rate of glucose uptake will be greater as exercise 

intensity is amplified (Wasserman and Cherrington, 1991), particularly in scenarios 

of very high intensity exercise, such as at >80% of 𝑉𝑂𝑚 , where glucose is the 

exclusive muscle fuel (Marliss and Vranic, 2002). Exercise is often said to have insulin 

like effect on blood glucose, due to its mechanisms that work to stimulate glucose 

transport independently from insulin (Sternlicht et al., 1989). Additionally, there is an 

increase in the rate of insulin-dependent glucose uptake due to an increase in insulin 

sensitivity (Dalla man et al., 2009) which causes the body to increase its ability to 

absorb glucose with insulin, despite the decreased concentration of the hormone 

within the plasma. 
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4.2.2. Increased Glucose Production 
 

In attempt to maintain homeostasis, the rate of glucose production in the liver 

increases simultaneously. The increase in hepatic glucose production is a 

combination of an increase in the rate of both gluconeogenesis and glycogenolysis, 

stimulated by the increase in plasma glucagon, increased breakdown of ATP, glycogen 

(Jeukendrop and Gleeson, 2010), and a decrease in plasma insulin (Wasserman and 

Cherrington, 1991). Glucose production increases proportionally to the intensity of 

exercise (Petersen et al, 2004), (Hargreaves and Spriet, 2006). Glycogenolysis 

typically contributes the most towards hepatic glucose production and is particularly 

noticed to dominate production early in exercise (Coggan, 1991); however during 

prolonged periods of activity, available glycogen stores are depleted. As the 

availability of glycogen declines so does the rate of hepatic glucose production. The 

amount of available gluconeogenic precursor supplies begins to increase with 

increasing exercise duration; thus the contribution to glucose production from 

gluconeogenesis increases, and soon dominates over glycogenolysis (Kjaer, 1998), 

however is not enough to counterbalance the reduction in glycogenolysis. 

 
 

4.2.3. Decline in Glycogenolysis 
 

Muscle glycogen is the primary fuel for most types of exercise and is able to provide 

immediate energy for the muscles. 

Glycogenolysis typically contributes the most towards hepatic glucose production 

and is particularly noticed to dominate production early in exercise (Coggan, 1991) as 

muscle glycogen is the chief source of energy for contraction (Wasserman and 

Cherrington, 1991). However during prolonged periods of activity, the availability of 

glycogen begins to diminish at a rate that is proportional to exercise intensity, thus 

the rate of glycogenolysis begins to decline (Juekendrup and Gleeson, 2010) until all 

glycogen stores have been used. 
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4.2.4. Decreased Plasma Insulin Concentration 
 

During exercise a decrease in the plasma insulin levels is essential to allow fat release 

for oxidation to occur to enable a sufficient amount of lipids available as a source of 

energy (MacLaren and Morton, 2012). Healthy patients will experience a decline in 

plasma insulin concentrations as a result of insulin secretion being inhibited by β-cell 

α-adrenergic receptor activation (Marliss and Vranic, 2002) and an increase rate of 

insulin-independent glucose uptake, both of which are part of a glucoregulatory 

response to avoid hypoglycaemia. A decrease in insulin removal also occurs, although 

the importance of which during exercise is still unclear, however a decrease in insulin 

clearance has been linked to overcoming insulin resistance, thus delaying type 2 

Diabetes (Costa-Junior et al., 2015). 

 

 
4.2.5. Increased Plasma Glucagon Concentration 

 
Elevated levels of glucagon during exercise allow for an increase in hepatic glucose 

production to avoid hypoglycaemia (Lavoie et al., 1997). Research shows that during 

exercise, signals are sent to the pancreas to increase glucagon secretion. The rate of 

glucagon secretion in exercise is also affected by plasma glucose concentrations, and 

decreases with plasma glucose availability (Luyckx et al., 1978). 

In longer periods of exercise plasma glucose levels begin to fall as glycogen stores are 

depleted (Jeukendrup and Gleeson, 2010), which acts as a potent stimulus for plasma 

glucagon secretion. Typically in prolonged exercise glucagon increases threefold 

(Galbo et al., 1975) (Vranic et al., 1976), however, studies such as that performed by 

Ahlborg et al. (1974) demonstrate glucagon to have risen by as much by as five times 

the resting value. 
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4.3. Critical Review of Existing Exercise Models 
 

4.3.1. Parameter Modification of The Bergman Minimal 

Model 

Derouich and Boutayeb (2002) adapted the minimal model by introducing 

parameters that consider the effects of exercise on glucose regulation. The new 

parameters 𝑞1, 𝑞2 and 𝑞3, mimic the ability of exercise to increase in utilization of 

both glucose and insulin in addition to the increased sensitivity of the muscles and 

liver to insulin, such that the equations for plasma glucose and interstitial insulin 

become: 

𝑑𝐺(𝑡)

𝑑𝑡
= −(1 + 𝑞2) ∗ 𝑋(𝑡) ∗ 𝐺(𝑡) + (𝑝1 + 𝑞1) ∗ (𝐺𝑏 − 𝐺(𝑡)),               (4.1) 

𝑑𝑋(𝑡)

𝑑𝑡
= (𝑝3 + 𝑞3) ∗ (𝐼(𝑡) − 𝐼𝑏) − 𝑝2 ∗ 𝑋(𝑡),                                             (4.2)  

 

The steady state analysis of the model shows that the value given for insulin 

sensitivity is higher with physical activity that the original minimal model which 

confirms the physiological findings that exercise increases insulin sensitivity 

(Borghouts and Keizer, 2000), (Holloszy, 2005). 

Derouich and Boutayeb (2002) ran simulations for healthy individuals and adjusted 

the model so that it was able to consider the diabetic state; both type 1 and type 2. 

Their steady state analysis showed that in the absence of administered insulin both 

profiles would reach a hyperglycaemic state, where as administration of insulin could 

easily be perceived as an excess, thus leading to hypoglycaemia. 
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4.3.2. Introduction of New Variables to The Bergman 

Minimal Model 

Following the work of the Derouich and Boutayeb (2002) was the development of the 

model by Roy and Parker (2007), whose work also used the minimal model as a 

foundation to develop their model. This work introduced new variables to the 

minimal model that account for the physiological changes to the system during 

exercise. 

To quantify the exercise intensity, a term was introduced representing the percentage 

of the maximum rate of oxygen consumption (𝑃𝑉𝑂𝑚𝑎𝑥), and is described

           mathematically as:  
 

𝑑𝑃𝑉𝑂2
𝑚𝑎𝑥

𝑑𝑡
=  −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) + 0.8 ∗ 𝑢3,                                (4.3) 

where 𝑢3 is the exercise intensity. 

 

The exercise induced changes of an increase in the rate of glucose production, 

glucose utilization and decrease in plasma insulin are given by: 

𝑑𝐺𝑝𝑟𝑜𝑑

𝑑𝑡
=  −𝑎1 ∗ 𝐺𝑝𝑟𝑜𝑑(𝑡) + 𝑎2 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡),                         (4.4) 

𝑑𝐺𝑢𝑝

𝑑𝑡
=  −𝑎3 ∗ 𝐺𝑝𝑟𝑜𝑑(𝑡) + 𝑎4 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡),                            (4.5) 

𝑑𝐼𝑒
𝑑𝑡

=  −𝑎5 ∗ 𝐼𝑒(𝑡) + 𝑎6 ∗ 𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡),                                     (4.6) 

 

The model is more sophisticated and physiologically accurate than the parameter 

extension by Derouich and Boutayeb (2002), as it considers the fact that glucose levels 

will decline as muscle glycogen is utilized. The decline in glycogenolysis is modelled by 

creating an energy expenditure threshold and an equation of the integrated exercise 

intensity, given by:  

𝐴𝑇𝐻 = −1.152 ∗ (𝑢3)
2 + 87.471 ∗ 𝑢3,                                      (4.7) 

𝑑𝐴

𝑑𝑡
= 𝑢3(𝑡),                                                                                        (4.8) 
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The rate of glycogenolysis is dependent on whether or not the value of integrated 

exercise intensity (4.8) exceeds the energy expenditure threshold (4.7), and is 

defined as follows: 

𝑑𝐺𝑔𝑙𝑦

𝑑𝑡
=

{
 

 
0,                𝐴(𝑡) < 𝐴𝑇𝐻
𝑘,               𝐴(𝑡) ≥ 𝐴𝑇𝐻

−
𝐺𝑔𝑙𝑦(𝑡)

𝑇1
   𝑢3(𝑡) = 0 

,                                                            (4.8) 

Roy and Parker’s model provides a good fit to the data available for low-moderate 

exercise; however the model is not able to predict higher levels of exercise. 

One explanation could be due to the fact that, the equation for modelling exercise 

intensity is based on the work of Astrand (1960), thus assuming that oxygen 

consumption is approximately linearly proportional to energy expenditure. In more 

recent studies by Barstow and Mole (1991), it was determined that oxygen uptake 

rose linearly only for lower working rates (38 and 54% of 𝑉𝑂𝑚𝑎𝑥), and that the 

increase was significantly greater for exercising at intensities, (85 and 100% of 

𝑉𝑂𝑚𝑎𝑥). Therefore this equation may be inadequate for modelling higher working 

rates. 

 
Another possible reasoning may be due to the fact that the new terms introduced into 

the model are all linear, which, despite the added benefit of simplicity, they may not 

be sufficient to accurately represent the complex behaviour that occurs during 

exercise. Cooper et al. (1989) state that glucose uptake data for exercise at work rates 

between 40 and 60% of 𝑉𝑂2
𝑚𝑎𝑥 suggests a non-linear increase between the two, 

contradicting other research (Katz et al. 1986), (Wahren et al. 1971)  that suggests 

glucose uptake increase in proportion to exercise intensity. 
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4.3.3. Modelling Exercise with Delay Differential Equations 
 

In 2010, Svitra et al. extended the delay differential equation (DDE) model for insulin 

and glucose dynamics proposed by Svitra (1989) to take into account the effects of 

diet and physical activity. Two linear external periodic functions, g(𝑡) and f(𝑡), were 

introduced and defined as: 

 

𝑔𝑖(𝑡) = 𝑔𝑖(𝑡 + 24) = 𝛼𝑖 sin [
𝜋

𝑇𝑖
(𝑡 − 𝑡𝑖1)] , 𝑡𝑖1 ≤ 𝑡 ≤ 𝑡𝑖2,                     (4.9)  

𝑓𝑗(𝑡) = 𝑓𝑗(𝑡 + 24) = 𝛾𝑗 sin [
𝜋

𝑇𝑗
(𝑡 − 𝑡𝑗1)] , 𝑡𝑗1 ≤ 𝑡 ≤ 𝑡𝑗2,                    (4.10)  

where 𝑔(𝑡) is the nutritional intake, 𝑖(𝑡) is the exercise performed, 𝑡𝑖1 and 𝑡𝑗1 are the 

times the effects begin, 𝑡𝑖2 and 𝑡𝑗2 are the times they finish and both 𝑇𝑖 and 𝑇𝑗 are the 

duration of the effects of glucose consumption and exercise. 

The model is easily implemented and allows for an efficient comparison of a number 

of different meals and exercise bouts in both healthy and diabetic individuals. 

Different parameter values are obtained, allowing for an insight into which routine 

may be the most effective in improving the diabetic state, i.e. increasing the ability to 

dispose of excess glucose and respond to insulin secretion. Svitra and co-workers 

performed a thorough mathematical analysis of the model and found a stable 

equilibrium that could be confirmed with physiological reasoning. 

However, there is no detail on how the effect of the meal was quantified; the amount 

of carbohydrates consumed or the glycaemic index of the meal was not discussed, 

making it difficult to apply the model in a physical situation. The same issue remains 

for exercise. It is known that the effects of aerobic exercise on glucose metabolism 

vary with duration and intensity (Adams, 2013), however there is no explicit term 

that quantifies the working rate of the exercise being performed. 
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4.4. Summary 
 

This chapter has given an overview of the fundamental physiological changes that 

affect the glucose regulatory system during exercise. Key literature was reviewed, 

identifying the existing approaches and considerations made to modelling exercise. 

The chapter then went on to examine the major effects of exercise on the system and 

to identify the key considerations for model formulations. 

With this information, the next chapters will introduce proposed models to simulate 

blood glucose regulation during exercise. Each model will be fitted to data and 

analysed mathematically. 
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Chapter 5 Modelling Exercise 
 

5.1. Introduction 
 

Chapter 4 reviewed the importance of exercise for health, its use in both managing 

and preventing diabetes and its effects on glucose homeostasis. New terms are added 

to the models developed in chapter 3 (equations 3.4 – 3.12) to simulate and predict 

the concentrations of glucose and its regulatory hormones in the plasma during 

physical activity. 

Although chapter 3 determined that a non-linear term was not necessary to produce a 

model for glucose -glucagon dynamics during an IVGTT, it is expected that this result 

was due to the fact that there was only a very small increase in plasma glucagon. In 

this chapter both the Glucagon Minimal Model and Linear Glucagon Minimal Model 

will be extended for exercise, and will conclude whether a linear term is sufficient for 

describing glucose-glucagon interactions. 

This chapter considers the glucose regulatory system for a healthy individual and 

does not assume an impaired glucose response. In the presence of T2DM, the effects 

of exercise on the system would expect to remain the same; however it is likely that 

the value for insulin sensitivity would still remain lower than for a healthy individual. 

More research would need to be done to collect datasets from participants with 

T2DM for the effects to become clear. T1DM is considered in the following chapter. 
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5.2. Model Formation 

Exercise is often described as having an insulin like effect on blood glucose due to its 

ability to increase the rate of glucose uptake (Goodyear and Kahn, 1998). Therefore 

the effects of exercise on the system will be modelled in a similar manner to insulin, 

by introducing a compartment to represent the level of exercise induced activity in 

the system. 

5.2.1. Exercise Variables 
 

5.2.1.1. Exercise Activity 
 

Both exercise intensity and the duration of activity have been identified as the primary 

factors determining the effects of exercise on blood glucose levels. To quantify exercise 

intensity, equation (4.3) proposed by Roy and Parker (2007) for the percentage of 𝑉𝑂2
𝑚𝑎𝑥  

(𝑃𝑉𝑂2
𝑚𝑎𝑥), will be incorporated into the model and is given by: 

𝑑𝑃𝑉𝑂2
𝑚𝑎𝑥

𝑑𝑡
= −0.8 ∗  𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) + 0.8 ∗ 𝑢3,                                (5.1) 

 

where 𝑢3 defines the exercise intensity (Percentage of 𝑉𝑂𝑚𝑎𝑥above the basal level) 

and is equal to zero when time, t, is outside of the interval 0 < 𝑡 < 𝑇𝑑𝑢𝑟, where 𝑇𝑑𝑢𝑟 is 

the duration of exercise. It is worth noting that the equation assumes that the basal 

level for 𝑉𝑂𝑚𝑎𝑥 is 8%, which is not entirely accurate, since the value differs based on 

the fitness of an individual (Dalleck and Dalleck, 2008). The equation by Roy and 

Parker is also based on the findings of Astrand (1960) who established that oxygen 

consumption is approximately linearly proportional to energy expenditure. However, 

in more recent studies by Barstow and Mole (1991) it was determined that oxygen 

uptake rose linearly only for lower working rates (38 and 54% of 𝑉𝑂𝑚𝑎𝑥), and that 

the increase was significantly greater for exercising at intensities, (85 and 100% of 

𝑉𝑂𝑚𝑎𝑥). Therefore this equation may be inadequate for modelling higher working 

rates. This will be reviewed at the end of the chapter. 

In this model a new compartment is added (described as cellular exercise activity) to 

account for the effects of exercise on the glucose regulatory system. The equation 

proposed is: 

𝑑𝐴

𝑑𝑡
= −𝑝11 ∗ 𝐴(𝑡) + 𝑝12 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡),                                    (5.2) 
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where α is the rate clearance of exercise induced activity on the glucose regulatory 

system and β is the increase of activity, proportional to the percentage of an 

individual’s 𝑉𝑂𝑚𝑎𝑥. This new variable will be used to account for the exercise induced 

changes; amplified glucose uptake, decline in plasma insulin and increase in plasma 

glucagon (Goodwin, 2010), as described by the following variables (5.3-5.8). 

5.2.1.2. Increase in Plasma Glucose Uptake 
 

The increased rate of insulin-independent glucose uptake will be modelled by a 

negative non-linear function of both the plasma glucose concentration and the new 

variable for exercise activity 𝐴(𝑡): 

−𝐺𝑢𝑝 = −𝐺(𝑡) ∗ 𝐴(𝑡),                                                                      (5.3) 

The rate will increase with higher plasma glucose concentrations and with higher 

levels of exercise intensity. 

5.2.1.3. Decrease in Plasma Insulin Concentration 
 

A new term is included into the equation for plasma insulin, (𝑡), to represent the 

decrease in plasma insulin concentrations during exercise. The term is similar to 

increased glucose uptake as it will be a negative non-linear function of exercise 

activity and plasma insulin: 

−𝐼𝑑𝑒𝑐 = −𝐴(𝑡) ∗ 𝐼(𝑡),                                                                         (5.4) 

 

5.2.1.4. Increase in Plasma Glucagon Concentration 
 

The term for the exercise induced change in the plasma glucagon concentration is 

similar to plasma insulin, however it will have a positive effect on glucagon 

production. Therefore, the term is given by: 

𝐸𝑖𝑛𝑐 = 𝐴(𝑡) ∗ 𝐸(𝑡),,                                                                             (5.5) 

 

5.2.1.5. Increase in Hepatic Glucose Production 
 

Hepatic glucose production (HGP), the sum of gluconeogenesis and glycogenolysis, 

increases during exercise in attempt to balance the increased glucose uptake by 

muscle to maintain glucose homeostasis (Adams, 2013). 
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Unlike the model of Roy and Parker, this model will not add a term for increased 

glucose production, since this model takes into account muscle glycogenolysis and the 

effects of glucagon to increase (HGP) on the system. In prolonged exercise, it is the 

rise in plasma glucagon and fall in plasma insulin that is essential to ensure an 

increase in hepatic glucose production and gluconeogenesis (Lavoie et al. 1997), 

therefore will not be modelled by an additional term in the model, but indirectly by 

an increase and decrease in both glucagon and insulin activity, caused by an exercise 

induced increase in plasma glucagon and decrease in plasma insulin respectively. 

Note that since skeletal muscle lacks glucose-6-phosphatase (g6p) and consequently 

cannot deliver free glucose to the blood via gluconeogenesis (Gluconeogenesis: 

Endogenous Glucose Synthesis, 2016). Therefore gluconeogenesis is only accounted 

for by the hepatic terms for glucose regulation. 

5.2.1.6. Muscle Glycogen Depletion 
 

Glycogen breakdown and synthesis are reciprocally regulated (Berg et al., 2002), i.e. 

activation of one simultaneously inhibits the other. This suggests that, as during 

exercise there is a significant amount of muscle glycogen utilisation (particularly 

during exercise intensity above 70% of 𝑉𝑜𝑚 ), (Jensen et al., 2011) muscle glycogen 

synthesis becomes obsolete . Since this model is only concerned with the system 

dynamics during exercise, the equation modelling muscle glycogen will focus only on 

the rate of glycogen degradation stimulated by exercise and not give a detailed 

consideration to glycogen synthesis. A term will be included such that the long term 

behaviour corresponds with the physical system, however a simple term will be 

proposed that is proportional to the amount of glycogen below the. This term will be 

omitted in the simulations for exercise. 

In previous work to model the glycogenolysis pathway (Meinke and Edstrom, 1990), 

(Todd, 2008), Michaelis-Menten dynamics are assumed for the rate of glycogen 

depletion. Michaelis-Menten provides a kinetic description of enzyme activity (Berg, 

2002) thus is a good basis for describing the reaction of glycogenolysis, which 

requires different enzymes for the degradation of glycogen (Todd, 2008). 

A Michaelis-Menten term for the velocity of a reaction is of the following structure: 
 

𝑉 =
𝑉𝑚𝑎𝑥 ∗ [𝑆]

𝐾𝑚 + [𝑆]
,                                                                           (5.6) 
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where the 𝑉𝑚𝑎𝑥 represent the maximum velocity and the Michaelis constant, 𝐾𝑚, 

indicates the amount of the substrate for the maximum velocity to be reached 

(Worthington Biochemical Corporation, 2016). 

A simple term for Michaelis-Menten kinetics is proposed, proportional to the amount 

of glycogen in the muscle (𝐺𝑙𝑦(𝑡)) and the exercise intensity (𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡)), therefore 

the rate will increase as exercise intensity increases and decrease as muscle glycogen 

availability diminishes.  
 

The equation is given by: 

𝑑𝐺𝑙𝑦

𝑑𝑡
=  
−𝛿 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) ∗ 𝐺𝑙𝑦(𝑡)

𝐺𝑙𝑦𝑏
2

+ 𝐺𝑙𝑦(𝑡)
− µ ∗ (𝐺𝑙𝑦(𝑡) − 𝐺𝑙𝑦𝑏),                             (5.7)  

where the maximum velocity is given by 𝛿 and the Michaelis constant is fixed to half 

of the amount of basal glycogen, i.e. the amount of glycogen the body will replenish to 

in the fed state, 
𝐺𝑙𝑦𝑏. 

2 
 

The rate of glycogenolysis in muscles is most rapid during the first 5 to 10 minutes of 

exercise (Goldman and Schafer, 2012) and declines as a result of reduced levels of 

muscle glycogen (Blomstrand and Saltin, 1999). Therefore since the 𝐾𝑚 is the 

substrate concentration that gives the enzyme one-half of its 𝑉𝑚𝑎𝑥 (Flynn, 2003), the 

model assumes that the rate the glycogenolysis will reach half of its initial rate when 

the amount of glycogen decreases to half of its initial value. 

5.2.1.7. Glucose Production via Muscle Glycogenolysis 
 

This model will not include an additional term for liver glycogen, since hepatic 

glucose production (HGP) glycogen stored in the muscle is considered as a major 

source of fuel during exercise (Richter et al. 1982), and is stimulated by both muscle 

contractions and epinephrine. Since this model does not account for the effects of 

epinephrine at this stage, the term will be proportional to the amount of available 

glycogen and the level of exercise intensity. The term will not be dependent on the 

concentration of glucagon since it exerts no direct action on muscle cells (Goodwin, 

2010). The increase in the rate of glucose production via muscle glycogenolysis is 

modelled by: 
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𝐺𝑝𝑟𝑜𝑑 =  𝜌 ∗
𝛽 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) ∗ 𝐺𝑙𝑦(𝑡)

250 + 𝐺𝑙𝑦(𝑡)
,                                                (5.7) 

where 𝐺𝑙𝑦(𝑡) is the amount of muscle glycogen available. The term is proportional to 

the amount of available muscle glycogen and the amount of energy being expended, 

therefore the rate will decrease over time as glycogen stores become depleted and 

increase with the working rate. 
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5.2.2. The Glucagon Exercise Minimal Model 
 

The relationships and interactions for the first model proposed are shown below in 

figure 5.1: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Compartment Diagram of Glucose-Insulin-Glucagon dynamics during 

exercise, assuming a non-linear relationship between glucose and glucagon 

Table 5.1: Glucagon Exercise Minimal Model Nomenclature of new parameters. 

 
Parameter Description Unit 

𝑝10 
Michaelis constant of maximum velocity, 𝑉𝑚𝑎𝑥, of 

exercise induced glycogen breakdown. 
𝑚𝑖𝑛−1 

𝑝11 
Clearance of exercise induced effects on the glucose 

regulatory system 
𝑚𝑖𝑛−1 

𝑝12 
Increase in exercise induced effects on the glucose 

regulatory system 
𝑚𝑖𝑛−1 

𝑝13 
Rate of glycogen degradation and conversion to 

glucose 
(𝑚𝑔/𝑑𝑙)𝑚𝑖𝑛−2 

𝑝14 Rate of glycogen synthesis 𝑚𝑖𝑛−1 
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Table 5.1 describes the new rates for exercise in the model. It can be seen that in this 

model, exercise increases HGP indirectly, and occurs through the exercise stimulated 

increase in glucagon activity. This is based on the findings of Lavoie et al. (1997) who 

concluded that the increase in glucagon during exercise was essential for the increase 

in HGP and in gluconeogenesis. 

The full system is therefore given by: 
𝑑𝐺

𝑑𝑡
= −𝑝1 ∗ (𝐺(𝑡) − 𝐺𝑏) + 𝐺(𝑡) ∗ (𝑌(𝑡) − 𝑋(𝑡)) + 𝐺𝑝𝑟𝑜𝑑 − 𝐺𝑢𝑝,                           

𝑑𝑋

𝑑𝑡
= −𝑝2 ∗ 𝑋(𝑡) + 𝑝3 ∗ 𝐼(𝑡),   

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ (𝐼(𝑡) − 𝐼𝑏) + 𝑝5 ∗ (𝐺(𝑡) − 𝐺𝑏)

+ − 𝐼𝑑𝑒𝑐 , 

𝑑𝑌

𝑑𝑡
= −𝑝6 ∗ 𝑌(𝑡) + 𝑝7 ∗ 𝐸(𝑡),                                                                                      

𝑑𝐸

𝑑𝑡
= −𝑝8 ∗ (𝐸(𝑡) − 𝐸𝑏) + 𝑝9 ∗ (𝐺𝑏 − 𝐺(𝑡))

+
+ 𝐸𝑖𝑛𝑐,                                            

𝑑𝐺𝑙𝑦

𝑑𝑡
= −

𝑝10 ∗ 𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡) ∗ 𝐺𝑙𝑦(𝑡)

250 + 𝐺𝑙𝑦(𝑡)
− 𝑝14 ∗ (𝐺𝑙𝑦(𝑡) − 𝐺𝑙𝑦𝑏),          

𝑑𝑃𝑉𝑂2
𝑚𝑎𝑥

𝑑𝑡
= −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) + 0.8 ∗ 𝑢3,                 

𝑑𝐴

𝑑𝑡
= −𝑝11 ∗ 𝐴(𝑡) + 𝑝12 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡),                                                  

Subject to the following initial conditions: 

𝐺(0) = 𝐺0, 𝑋(0) = 0, 𝐼(0) = 𝐼0, 𝑌(0) = 0, 𝐸(0) = 𝐸0,    

𝐺𝑙𝑦(0) = 500 (𝐽𝑒𝑛𝑠𝑒𝑛 𝑒𝑡 𝑎𝑙. , 2011), 𝑃𝑉𝑂2
𝑚𝑎𝑥(0) = 0, 𝐴(0) = 0 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 
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5.2.3. The Simplified Glucagon Exercise Minimal Model 
 

In chapter 3, it was proven that a reduced model for glucose-insulin-glucagon 

dynamics (Chapter 3, Section 3.3.3) was able to predict the behaviour of the system 

accurately, without an additional compartment for glucagon activity, resulting in two 

less quantities than the Glucagon Minimal Model. 

Therefore a similar approach will be taken for modelling the effects of exercise, 

removing the equation for glucagon activity, (𝑡), and assuming the effects of excess 

glucagon on hepatic glucose production to be a linear term. The rest of the model is as 

given for the Exercise Model 1 (Section 5.1). 

The relationship between variables is as shown in figure 5.2: 

 

Figure 5.2: Compartment Diagram of Glucose-Insulin-Glucagon dynamics during 

exercise, assuming a linear relationship between glucose and glucagon 

Table 5.2 summarises the new rates for exercise in the model. 
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Table 5.2: Linear Glucagon Exercise Minimal Model Nomenclature of new 

parameters. 

 

Parameter Description Unit 

𝑝9 Michaelis constant of maximum velocity, 

𝑉𝑚𝑎𝑥, of exercise induced glycogen 

breakdown. 

𝑚𝑖𝑛−1 

𝑝10 Decrease of exercise induced effects on the 

glucose regulatory system 

𝑚𝑖𝑛−1 

𝑝11 Increase in exercise induced effects on the 

glucose regulatory system 

𝑚𝑖𝑛−1 

𝑝12 Rate of glycogen degradation and 

conversion to glucose 

(𝑚𝑔/𝑑𝑙)𝑚𝑖𝑛−2 

𝑝13 Rate of glycogen synthesis 𝑚𝑖𝑛−1 

 
 

The full system is given by: 
 

𝑑𝐺

𝑑𝑡
= −𝑝1 ∗ (𝐺(𝑡) − 𝐺𝑏) − 𝐺(𝑡) ∗ 𝑋(𝑡) + 𝐺𝑝𝑟𝑜𝑑 − 𝐺𝑢𝑝 + 𝑃8 ∗ (𝐸(𝑡) − 𝐸𝑏)

+,   

𝑑𝑋

𝑑𝑡
= −𝑝2 ∗ 𝑋(𝑡) + 𝑝3 ∗ 𝐼(𝑡),                                                                                                 

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ (𝐼(𝑡) − 𝐼𝑏) + 𝑝5 ∗ (𝐺(𝑡) − 𝐺𝑏)

+ − 𝐼𝑑𝑒𝑐 ,                                                       

𝑑𝐸

𝑑𝑡
= −𝑝6 ∗ (𝐸(𝑡) − 𝐼𝑏) + 𝑝7 ∗ (𝐺𝑏 − 𝐺(𝑡))

+
+ 𝐸𝑖𝑛𝑐,                                                   

𝑑𝐺𝑙𝑦

𝑑𝑡
= −

𝑝9 ∗ 𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡) ∗ 𝐺𝑙𝑦(𝑡)

𝐺𝑙𝑦𝑏
2 + 𝐺𝑙𝑦(𝑡)

− 𝑝13 ∗ (𝐺𝑙𝑦(𝑡) − 𝐺𝑙𝑦𝑏), 

𝑑𝑃𝑉𝑂2
𝑚𝑎𝑥

𝑑𝑡
= −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡) + 0.8 ∗ 𝑢3,                                                                        

𝑑𝐴

𝑑𝑡
= −𝑝10 ∗ 𝐴(𝑡) + 𝑝11 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡),                                                                            

Subject to the following initial conditions:  

𝐺(0) = 𝐺0,   𝑋(0) = 0,   𝐼(0) = 𝐼0,   𝐸(0) = 𝐸0, 𝐺𝑙𝑦(0) = 500 (𝐽𝑒𝑛𝑠𝑒𝑛 𝑒𝑡 𝑎𝑙. , 2011),  

𝑃𝑉𝑂2
𝑚𝑎𝑥(0) = 0,   𝐴(0) = 0. 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

 (5.22) 

(5.23) 
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2 

2 

5.3. Model Analyses 
 

The system of equations (5.9-5.23) is subject to initials condition that are all greater 

than or equal to zero. The model considers concentrations within the plasma, energy 

stores of glycogen, the working rate of exercise, the activity of exercise to affect 

glucose homeostasis and the activity of the hormones to stimulate glucose production 

and disappearance. Since these are all biological reflections, all variables must be 

positive. Based on the approach of Magombedze et al. (2009) the following theorem is 

given, guaranteeing a well posed system 

Positive-Definitive Theorem 

 
The system of equations (5.9-5.16) is positively invariant, ensuring a positive solution 

existing for all time 0 < 𝑡 < ∞. This can be proved as follows: 

The components of the system 𝐺, 𝑋, 𝐼, 𝑌, 𝐸, 𝐺𝑙𝑦, 𝑃𝑉𝑂𝑚𝑎𝑥 and A under the initial 

conditions are positive for all t > 0. This is proved by assuming the logical negation, i.e. 

proof by contradiction, therefore we assume that there exists a time   such that: 

𝐺(𝑡𝑖) = 0, 𝐺′(𝑡𝑖) ≤ 0 and 𝐺(𝑡) > 0, 𝑋(𝑡) > 0, 𝐼(𝑡) > 0, 𝑌(𝑡) > 0, 𝐸(𝑡) > 0, 𝐺𝑙𝑦(𝑡) > 0, 

(𝑡) > 0 and 𝑃𝑉𝑂𝑚𝑎(𝑡) > 0, for 0 < 𝑡 <    𝑡𝑖, 

or there exists a time 𝑡𝑗   such that: 

𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡𝑗) = 0, 𝑃𝑉𝑂2

𝑚𝑎𝑥′(𝑡𝑗) ≤ 0 and 𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡) > 0, 𝐺(𝑡) > 0, 𝐼(𝑡) > 0, 𝑌(𝑡) >

0, 𝐸(𝑡) > 0, 𝐺𝑙𝑦(𝑡) > 0, 𝐴(𝑡) > 0 and 𝑋(𝑡) > 0, for 0 < 𝑡 < 𝑡𝑗 .  

By substituting in the terms for 𝐺𝑝𝑟𝑜𝑑 and – 𝐺𝑢𝑝 equation (5.9) becomes: 

𝑑𝐺(𝑡𝑖)

𝑑𝑡
= 𝑝1 ∗ 𝐺𝑏 − 𝐺(𝑡𝑖) ∗ (𝑋(𝑡𝑖) − 𝑌(𝑡𝑖) + 𝐴(𝑡𝑖) + 𝑝1) + 𝑝13                              

∗
(𝑝10 ∗ 𝐺𝑙𝑦(𝑡𝑖) ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡𝑖))

250 + 𝐺𝑙𝑦(𝑡𝑖)
,                                                                          (5.24)

which reduces to 

𝑝1 ∗ 𝐺𝑏 + 𝑝13 ∗
(𝑝10 ∗ 𝐺𝑙𝑦(𝑡𝑖) ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡𝑖))

250 + 𝐺𝑙𝑦(𝑡𝑖)
> 0,                                              (5.25) 

At time 𝑡𝑗   equation (5.1) states that 
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𝑑𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡𝑗)

𝑑𝑡
= −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎𝑥(𝑡𝑗) + 0.8 ∗ 𝑢3,                                (5.26) 

which reduces to 

0.8 ∗ 𝑢3 > 0,                                                                        (5.27) 

which are both contradictions. Similarly this holds for the remaining equations, 

which never reach less than zero. Thus it can be concluded that the system of 

equations (5.17-5.23) remains positive for all 𝑡 > 0.  

Note that this theorem holds for both models presented in this chapter. 
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5.3.1 The Glucagon Exercise Minimal Model 
 

This section will consist of a non-dimensional analysis of the equations (5.9-5.16). 

The theory and implications of rescaling and non-dimensionalizing a model is 

described in section 3. 4.3. The first step when non-dimensionalizing a model is to 

identify the dimensions of the variables and parameters in the model (table 5.3) 

Table 5.3: Dimensions of variables in Glucagon Exercise Minimal Model. 

 
Symbol Description Unit Dimension 

M L T 

G(t) Plasma Glucose concentration at time t mg/dl 1 -3 0 

I(t) Plasma Insulin concentration at time t µ𝑈/𝑚𝑙 1 -3 0 

X(t) Interstitial Insulin activity at time t 𝑚𝑖𝑛−1 0 0 -1 

Y(t) Glucagon activity at time t 𝑚𝑖𝑛−1 0 0 -1 

E(t) Plasma Glucagon concentration at time t pg/ml 1 -3 0 

Gly(t) Amount of muscle glycogen at time t G 1 0 0 

𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡) 

 

Percentage of 𝑉𝑂2
𝑚𝑎𝑥at the time % 0 0 0 

A(t) Exercise activity at time t 𝑚𝑖𝑛−1 0 0 -1 
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Table 5.4: Dimensions of parameters in The Glucagon Exercise Minimal Model. 

 

 
Symbol 

 
Description 

 
Unit 

Dimension 

M L T 

𝑝1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑖𝑛−1 0 0 -1 

𝑝2 Rate of tissue glucose uptake ability 𝑚𝑖𝑛−1 0 0 -1 

𝑝3 Rate of excess plasma insulin 

stimulated insulin activity 
(µ 𝑈⁄𝑚𝑙)−1𝑚𝑖𝑛−2 -1 3 -2 

𝑝4 Insulin disappearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝5 Rate of second phase insulin secretion 

(glucose dependent) 
(µ𝑈/𝑚𝑙)𝑚𝑖𝑛−1 0 0 -1 

𝑝6 Rate of cellular glucose production 

ability 
𝑚𝑖𝑛−1 0 0 -1 

𝑝7 Rate of excess plasma glucagon 

stimulated insulin activity 
(𝑝𝑔 𝑚𝑙)−1𝑚𝑖𝑛−2 -1 3 -2 

𝑝8 Glucagon clearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝9 Glucose dependent Glucagon 

secretion 
(𝑝𝑔 𝑚𝑙)𝑚𝑖𝑛−1 0 0 -1 

𝑝10 
Maximum velocity for glycogen 

degradation during exercise 
(g) 𝑚𝑖𝑛−1 1 0 -1 

𝑝11 
Rate of clearance of cellular exercise 

stimulated activity 
𝑚𝑖𝑛−1 0 0 -1 

𝑝12 
Rate of increase of 𝑃𝑉𝑂𝑚𝑎𝑥 above 

2 

basal level stimulated exercise 
𝑚𝑖𝑛−2 0 0 -2 

𝑝13 
Rate of glucose production as a result 

of muscle glycogenolysis 
(mg/dl) 𝑚𝑖𝑛−1 1 -3 -1 

𝑝14 Rate of glycogen synthesis 𝑚𝑖𝑛−1 0 0 -1 

𝐺𝑏 
Baseline plasma glucose 

concentration 
mg/dl 1 -3 0 

𝐼𝑏 
Baseline plasma insulin 

concentration 
µ𝑈/𝑚𝑙 1 -3 0 

𝐸𝑏 
Baseline plasma glucagon 

concentration 
pg/ml 1 -3 0 

𝐺𝑙𝑦𝑏 Amount of baseline muscle glycogen g 1 0 0 
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The next step is to convert the original variables to the dimensionless form. Note that all the barred 

variable and parameters are unitless. Let 

𝐺 = 𝐺𝑏 ∗ �̃�, 𝐼 = 𝐼𝑏 ∗ 𝐼, 𝐸 = 𝐸𝑏 ∗ �̃�, 𝑋 =
�̃�

𝜏
, 𝑌 =

�̃�

𝜏
,   

𝐺𝑙𝑦 = 𝐺𝑙𝑦𝑏 ∗ 𝐺𝑙�̃�,   𝑃𝑉𝑂2
𝑚𝑎𝑥 =

𝑃𝑉𝑂2
𝑚𝑎�̃�

𝜏
  𝐴 =

�̃�

𝜏
   and  𝑡 = 𝜏 ∗ 𝑇. 

Note that 

 
𝑑

𝑑𝑡
=

𝑑

𝑑𝑇
∗
𝑑𝑇

𝑑𝑡
=

1

𝜏
∗
𝑑

𝑑𝑇
 

The system can now be rewritten in dimensionless form as follows:  

𝑑�̃�

𝑑𝑇
= −𝑝1 ∗ 𝜏 ∗ (�̃� − 1) + �̃� ∗ (�̃� − �̃� − �̃�) +

𝑝13 ∗ 𝑝10 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑏 ∗ (
1
2 + 𝐺𝑙�̃�)

,      

𝑑�̃�

𝑑𝑇
=  −𝑝2 ∗ �̃� ∗ 𝜏 + 𝑝3 ∗ 𝐼𝑏 ∗ 𝜏

2 ∗ 𝐼,                                                                             

𝑑𝐼

𝑑𝑇
=  −𝑝4 ∗ 𝜏 ∗ (𝐼 − 1) +

𝑝5 ∗ 𝐺𝑏 ∗ 𝜏

𝐼𝑏
∗ (�̃� − 1)

+
− 𝐼 ∗ �̃�,                                        

𝑑�̃�

𝑑𝑇
=  −𝑝6 ∗ �̃� ∗ 𝜏 + 𝑝7 ∗ 𝐸𝑏 ∗ 𝜏

2 ∗ �̃�,                                                                           

𝑑�̃� 

𝑑𝑇
= −𝑝8 ∗ 𝜏 ∗ (�̃� − 1) +

𝑝9 ∗ 𝐺𝑏 ∗ 𝜏

𝐸𝑏
∗ (1 − �̃�)

+
+ �̃� ∗ �̃�,                                    

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝10 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑙𝑦𝑏 ∗ (
1
2 + 𝐺𝑙�̃�)

− 𝑝14 ∗ 𝜏 ∗ (𝐺𝑙�̃� − 1),                                             

𝑑𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑑𝑇
= −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ∗ 𝜏 + 0.8 ∗ 𝜏2 ∗ 𝑢3,                                                      

𝑑�̃�

𝑑𝑇
= −𝑝11 ∗ �̃� ∗ 𝜏 + 𝑝12 ∗ 𝜏 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ,                                                                     

 

 

 

 

 

 

 

 

 

 

 

 

(5.28) 

 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

(5.34) 

(5.35) 
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The natural time scales of the minimal were identified as 
1

𝑝1
, the time scale of insulin dependent 

glucose disappearance, and 1/𝑝4, the time scale of insulin disappearance (Nittala et al., 2006). 

The natural time scales of this model also include glucagon disappearance.  

Choosing to rescale the system by 𝜏 =
1

𝑝1
 gives 

𝑑�̃�

𝑑𝑇
= 1 + 𝐺 ̃ ∗ (�̃� − �̃� − �̃� − 1) +

𝑝13̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(1/2 + 𝐺𝑙�̃�)
                          (5.36) 

𝑑�̃�

𝑑𝑇
=  −𝑝2̃ ∗ �̃� + 𝑝3̃ ∗ 𝐼,                                                                                     (5.37) 

𝑑𝐼

𝑑𝑇
=  −𝑝4̃ ∗ (𝐼 − 1) + 𝑝5̃ ∗ (�̃� − 1)

+
− 𝐼 ∗ �̃�,                                                (5.38) 

𝑑�̃�

𝑑𝑇
=  −𝑝6̃ ∗ �̃� + 𝑝7̃ ∗  �̃�,                                                                                    (5.39) 

𝑑�̃� 

𝑑𝑇
= −𝑝8̃ ∗ (�̃� − 1) + 𝑝9̃ ∗ (1 − �̃�)

+
+ �̃� ∗ �̃�,                                              (5.40) 

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝10̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(
1
2 + 𝐺𝑙�̃�)

− 𝑝14̃ ∗ (𝐺𝑙�̃� − 1),                                      (5.41) 

𝑑𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑑𝑇
=  −

0.8 ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑝1
+
0.8 ∗ 𝑢3

𝑝1
2 ,                                                       (5.42) 

𝑑�̃�

𝑑𝑇
= −𝑝11̃ ∗ �̃� + 𝑝12̃ ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃�,                                                                     (5.43) 

Where 

 𝑝2̃ =
𝑝2

𝑝1
, 𝑝3̃ =, 𝑝4̃ =

𝑝4

𝑝1
𝑝5̃ =

𝑝5∗𝐺𝑏

𝑝1∗𝐼𝑏
,  𝑝6̃ =

𝑝6

𝑝1
, 𝑝7̃ =

𝑝7∗𝐸𝑏

𝑝1
2 , 𝑝8̃ =

𝑝8

𝑝1
, 𝑝9̃ =

𝑝9∗𝐺𝑏

𝑝1∗𝐸𝑏
,  

𝑝10̃ =
𝑝10
𝐺𝑙𝑦𝑏

, 𝑝11̃ =
𝑝11
𝑝1
, 𝑝12̃ =

𝑝12
𝑝1
, 𝑝13̃ =

𝑝13.
𝐺𝑏

∗
𝑝10
𝐺𝑙𝑦𝑏

 𝑎𝑛𝑑 𝑝14̃ =
𝑝14
𝑝1
. 

The initial conditions then become  

�̃�(0) =
𝐺𝑏
𝐺𝑏

= 1, �̃�(0) = 0, 𝐼(0) =
𝐼𝑏
𝐼𝑏
= 1, �̃�(0) = 0, �̃�(0) =

𝐸𝑏
𝐸𝑏
= 1, 

𝐺𝑙�̃�(0) =
𝐺𝑙𝑦𝑏
𝐺𝑙𝑦𝑏

= 1, 𝑃𝑉𝑂2
𝑚𝑎𝑥̃ (0) = 0 and �̃�(0) = 0. 
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The critical points of a system refer to the long term behaviour of the system, in which it is 

assumed that the individual will have stopped exercising, either by choice or exhaustion, i.e. 

𝑢3 = 0. 

By setting the equations (5.27-5.34) equal to zero the system can be rewritten to give the 

following:  

�̃� =
1

�̃� − �̃�
, 

�̃� =
𝑝3̃
𝑝2̃
∗ 𝐼, 

𝐼 =
𝑝4̃ + 𝑝5̃ ∗ (�̃� − 1)

+

𝑝4̃
, 

�̃� =
𝑝7̃
𝑝6̃
∗ �̃�, 

�̃� =
𝑝8̃ + 𝑝9̃ ∗ (1 − �̃�)

+

𝑝8̃
, 

𝐺𝑙�̃� =  1, 

𝑃𝑉𝑂2
𝑚𝑎�̃� = 0, 

�̃� = 0, 

The system reduces to give the critical point of the non-dimensionalized system as  

(
1

𝑝2̃
𝑝2̃

̃
−
𝑝7̃
𝑝6̃

̃
,
𝑝2̃
𝑝2̃
, 1,
𝑝7̃
𝑝6̃
, 1,1,0,0) 

 

The point is the only existing critical point of the system, and refers to the basal state, 

which is the post-absorptive state the individual was in prior to the exercise protocol. 

The critical point of the dimensional system is 

(
𝐺𝑏

𝑝2̃
𝑝2̃

̃
−
𝑝7̃
𝑝6̃

̃
,
𝑝3̃
𝑝2̃
𝐼𝑏 , 𝐼𝑏 ,

𝑝6̃
𝑝7̃
𝐸𝑏 , 𝐸𝑏 , 𝐺𝑙𝑦𝑏 , 0,0) 

 

 

 

 

 

 

 

 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

(5.50) 

(5.51) 
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The Jacobian matrix evaluated at the critical point is given as: 

𝐽3 = 

[
 
 
 
 
 
 
 
 
 
 −1 −

𝑝2̃

𝑝2̃
+
𝑝7̃

𝑝6̃
−1 0 1 0 0 2 ∗

𝑝13̃

3
−1

0 −𝑝2̃ 𝑝3̃ 0 0 0 0 0
𝑝5̃ 0 −𝑝4̃ 0 0 0 0 −1
0 0 0 −𝑝6̃ 𝑝7̃ 0 0 0
−𝑝9̃ 0 0 0 −𝑝8̃ 0 0 1

0 0 0 0 0 −𝑝14̃ −2 ∗
𝑝10̃

3
0

0 0 0 0 0 0 −
0.8

𝑝1
0

0 0 0 0 0 0 𝑝12̃ −𝑝11̃]
 
 
 
 
 
 
 
 
 
 

            (5.52)                 

 
 

The characteristic polynomial was determined in Mathematica (See appendix) as: 
 

 (𝑑𝑒𝑡 − 𝐽3  𝜆) =  (
0.8

𝑝1
+  𝜆) (−𝑝11̃ − 𝜆)(𝑝14̃ +  𝜆) (−𝑝9̃  ( 𝑝2̃ 𝑝4̃ 𝑝7̃ + (𝑝2̃  +  𝑝4̃ )𝑝7̃ 𝜆 − 𝑝7̃ 𝜆

2 )

+ (𝑝6̃ +  𝜆)(𝑝8̃ +  𝜆)(−𝑝2̃ 𝑝4̃ − 𝑝3̃ 𝑝5̃ − 𝑝2̃  𝜆 − 𝑝4̃  𝜆 − 𝑝2̃ 𝑝4̃  𝜆 − 𝜆
2 − 𝑝2̃  𝜆

2

− 𝑝4̃  𝜆
2 − 𝜆3)) = 0                                                                                        (5.53)  

 

The roots of the system were determined using the Roots function in Mathematica 

and will not be written explicitly in this thesis due to the complexity and length of the 

values, however it is noted that these values are all negative, thus the stability criteria 

for a linearized model holds. 
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5.3.2 The Simplified Glucagon Exercise Minimal Model 
 

This section will involve a mathematical analysis of the second model proposed for 

exercise. It will follow a similar structure to the analysis of the Glucagon Exercise 

Minimal Model in section 5.3.1. 

The variables in the model are listed in table 5.4 along with their units and 

dimensions in terms of mass, length and time. 

Table 5.5: Dimensions of variables in the Simplified Glucagon Exercise Minimal 

Model. 

 

 
Symbol 

 
Description 

 
Unit 

Dimension 

M L T 

G(t) Plasma Glucose concentration at time t mg/dl 1 -3 0 

I(t) Plasma Insulin concentration at time t µ𝑈/𝑚𝑙 1 -3 0 

X(t) Interstitial Insulin activity at time t 𝑚𝑖𝑛−1 0 0 -1 

Y(t) Glucagon activity at time t 𝑚𝑖𝑛−1 0 0 -1 

E(t) 
Plasma Glucagon concentration at 

time t 
pg/ml 1 -3 0 

Gly(t) Amount of muscle glycogen at time t g 1 0 0 

𝑃𝑉𝑂2
𝑚𝑎𝑥  Percentage of 𝑉𝑂2

𝑚𝑎𝑥at time ti % 0 0 0 

A(t) Exercise activity at time t 𝑚𝑖𝑛−1 0 0 -1 
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Table 5.6: Dimensions of parameters in Simplified Glucagon Exercise Minimal Model 

 

Symbol Description Unit 
Dimension 

M L T 

𝑝1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑚𝑖𝑛−1 0 0 -1 

𝑝2 Rate of tissue glucose uptake ability 𝑚𝑖𝑛−1 0 0 -1 

𝑝3 
Rate of excess plasma insulin 

stimulated insulin activity 

(µ 𝑈⁄𝑚𝑙)−1𝑚𝑖𝑛−2 -1 3 -2 

𝑝4 Insulin disappearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝5 
Rate of second phase insulin 

secretion (glucose dependent) 

(µ𝑈/𝑚𝑙)𝑚𝑖𝑛−1 0 0 -1 

𝑝6 Glucagon clearance 𝑚𝑖𝑛−1 0 0 -1 

𝑝7 
Glucose dependent glucagon 

secretion 
(𝑝𝑔 𝑚𝑙)𝑚𝑖𝑛−1 0 0 -1 

𝑃8 
Glucagon stimulated glucose 

production 
(𝑚𝑔/𝑑𝑙)𝑚𝑖𝑛−1 0 0 -1 

 
𝑝9 

Michaelis constant of maximum 

velocity, 𝑉𝑚𝑎𝑥, of exercise induced 

glycogen breakdown. 

 
(g) 𝑚𝑖𝑛−1 

 
1 

 
0 

 
-1 

𝑝10 
Decrease of exercise induced effects 

on the glucose regulatory system 

𝑚𝑖𝑛−1 0 0 -1 

𝑝11 
Increase in exercise induced effects 

on the glucose regulatory system 

𝑚𝑖𝑛−2 0 0 -2 

𝑝12 
Rate of glycogen degradation and 

conversion to glucose 

(mg/dl) 𝑚𝑖𝑛−1 1 -3 -1 

𝑝13 Rate of glycogen synthesis 𝑚𝑖𝑛−1 0 0 -1 

𝐺𝑏 
Baseline plasma glucose 

concentration 
mg/dl 1 -3 0 

𝐼𝑏 
Baseline plasma insulin 

concentration 
µ𝑈/𝑚𝑙 1 -3 0 

𝐸𝑏 
Baseline plasma glucagon 

concentration 
pg/ml 1 -3 0 

𝐺𝑙𝑦𝑏 Amount of baseline muscle glycogen G 1 0 0 
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As shown for the Glucagon Exercise Minimal Model, the original variables are 

converted to give the dimensionless form. Note that all the barred variables and 

parameters are unitless. 

Let 

𝐺 = 𝐺𝑏 ∗ �̃�, 𝐼 = 𝐼𝑏 ∗ 𝐼, 𝐸 = 𝐸𝑏 ∗ �̃�, 𝑋 =
�̃�

𝜏
,   

𝐺𝑙𝑦 = 𝐺𝑙𝑦𝑏 ∗ 𝐺𝑙�̃�,   𝑃𝑉𝑂2
𝑚𝑎𝑥 =

𝑃𝑉𝑂2
𝑚𝑎�̃�

𝜏
  𝐴 =

�̃�

𝜏
   and  𝑡 = 𝜏 ∗ 𝑇. 

Note that 

𝑑

𝑑𝑡
=
𝑑

𝑑𝑇
∗
𝑑𝑇

𝑑𝑡
=
1

𝜏
∗
𝑑

𝑑𝑇
 

The system can now be rewritten in the dimensionless form as follows: 

𝑑�̃�

𝑑𝑇
= −𝑝1 ∗ 𝜏 ∗ (�̃� − 1) − �̃� ∗ (�̃� + �̃�) +

𝑝12 ∗ 𝑝9 ∗ 𝜏 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑏 ∗ (
1
2 + 𝐺𝑙�̃�)

                                  

+
𝑝8 ∗ 𝐸𝑏 ∗ 𝜏

𝐺𝑏
∗ (�̃� − 1),                       , 

𝑑�̃�

𝑑𝑇
=  −𝑝2 ∗ �̃� ∗ 𝜏 + 𝑝3 ∗ 𝐼𝑏 ∗ 𝜏

2 ∗ 𝐼,   

𝑑𝐼

𝑑𝑇
=  −𝑝4 ∗ 𝜏 ∗ (𝐼 − 1) +

𝑝5 ∗ 𝐺𝑏 ∗ 𝜏

𝐼𝑏
∗ (�̃� − 1) − 𝐼 ∗ �̃�,  

𝑑�̃� 

𝑑𝑇
= −𝑝6 ∗ 𝜏 ∗ (�̃� − 1) +

𝑝7 ∗ 𝐺𝑏 ∗ 𝜏

𝐸𝑏
∗ (1 − �̃�) + �̃� ∗ �̃�,         

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝9 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑙𝑦𝑏 ∗ (
1
2 + 𝐺𝑙�̃�)

− 𝑝13 ∗ 𝜏 ∗ (𝐺𝑙�̃� − 1) ∗ (1 −
𝑢3
𝑢3
),                    

𝑑𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑑𝑇
=  −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ∗ 𝜏 + 0.8 ∗ 𝜏2 ∗ 𝑢3,                                              

 
𝑑�̃�

𝑑𝑇
= −𝑝10 ∗ �̃� ∗ 𝜏 + 𝑝11 ∗ 𝜏 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ,                                                        

 

 

 

 

 

 

(5.54) 

 

(5.54) 

 

(5.55) 

 

(5.56) 

 

(5.57) 

 

(5.58) 

 

(5.59) 
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As discussed in section 5.3.1, there are three natural timescales in the system. 

Choosing to rescale for glucagon clearance, let 𝜏 =
1

𝑝6
: 

𝑑�̃�

𝑑𝑇
= −𝑝1̃ ∗ (�̃� − 1) − �̃� ∗ (�̃� + �̃�) +

𝑝12̃ ∗ 𝑝10̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(
1
2 + 𝐺𝑙�̃�)

+ 𝑃8̃ ∗ (�̃� − 1), 

𝑑�̃�

𝑑𝑇
=  −𝑝2̃ ∗ �̃� + 𝑝3̃ ∗ 𝐼,                                                                                                            

𝑑𝐼

𝑑𝑇
=  −𝑝4̃ ∗ (𝐼 − 1) + 𝑝5̃ ∗ (�̃� − 1) − 𝐼 ∗ �̃�,                                                                       

𝑑�̃� 

𝑑𝑇
= −(�̃� − 1) + 𝑝7̃ ∗ (1 − �̃�) + �̃� ∗ �̃�,                                                                           

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝9̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(
1
2 + 𝐺𝑙�̃�)

− 𝑝13̃ ∗ (𝐺𝑙�̃� − 1),                                    

   
𝑑𝑃𝑉𝑂2

𝑚𝑎�̃�

𝑑𝑇
=  −0.8 ∗

𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑝6
+
0.8

𝑝6
2 ∗ 𝑢3,                                                                           

𝑑�̃�

𝑑𝑇
= −𝑝10̃ ∗ �̃� + 𝑝11̃ ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ,                                                                                             

Where  

𝑝1̃ =
𝑝1
𝑝6
, 𝑝2̃ =

𝑝2
𝑝6
, 𝑝3̃ = 𝑝3 ∗

𝐼𝑏

𝑝6
2 , 𝑝4̃ =

𝑝4
𝑝6
, 𝑝5̃ =

𝑝5 ∗ 𝐺𝑏
𝐼𝑏 ∗ 𝑝6

, 𝑝7̃ =
𝑝7 ∗ 𝐺𝑏
𝐸𝑏 ∗ 𝑝6

, 𝑝8̃ =
𝑝8 ∗ 𝐸𝑏
𝐺𝑏 ∗ 𝑝6

̃
, 

𝑝9̃ =
𝑝9
𝐺𝑙𝑦𝑏

, 𝑝10̃ =
𝑝10
𝑝6
, 𝑝11̃ =

𝑝11
𝑝6
, 𝑝12̃ =

𝑝12
𝐺𝑏

 and 𝑝13̃ =
𝑝13
𝑝6
. 

where 

𝑝1̃ =
𝑝1
𝑝6
, 𝑝2̃ =

𝑝2
𝑝6
, 𝑝3̃ = 𝑝3 ∗

𝐼𝑏

𝑝6
2 , 𝑝4̃ =

𝑝4
𝑝6
, 𝑝5̃ =

𝑝5 ∗ 𝐺𝑏
𝐼𝑏 ∗ 𝑝6

, 𝑝7̃ =
𝑝7 ∗ 𝐺𝑏
𝐸𝑏 ∗ 𝑝6

, 𝑝8̃ =
𝑝8 ∗ 𝐸𝑏
𝐺𝑏 ∗ 𝑝6

̃
,

𝑝9̃ =
𝑝9
𝐺𝑙𝑦𝑏

, 𝑝10̃ =
𝑝10
𝑝6
, 𝑝11̃ =

𝑝11
𝑝6
, 𝑝12̃ =

𝑝12
𝐺𝑏

 and 𝑝13̃ =
𝑝13
𝑝6

 

The initial conditions then become 

�̃�(0) = 1, �̃�(0) = 0, 𝐼(0) = 1, �̃�(0) = 1, 𝐺𝑙�̃�(0) = 1, 𝑃𝑉𝑂2
𝑚𝑎𝑥̃ (0) = 0 and �̃�(0) = 0. 

 

 

 

 

 

 

 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 
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The critical points of a system refer to the long term behaviour of the system, in 

which it is assumed that the individual will have stopped exercising. 

By setting the system of equations (5.61-5.67) equal to zero and 

rearranging gives the non-dimensional system as follows: 

�̃� =
 𝑝1̃ ∗ 𝑝2̃
𝑝3  ̃

, 

�̃� =
𝑝3̃
𝑝2̃
, 

𝐼 = 𝑝4̃ + 𝑝5̃ ∗
(�̃� − 1)

+

𝑝4̃
, 

�̃� = 1 + 𝑝7̃ ∗ (1 − �̃�)
+
,  

𝐺𝑙�̃� =  1, 

𝑃𝑉𝑂2
𝑚𝑎𝑥̃ = 0, 

�̃� = 0,   

Therefore it can be seen that, over time, both insulin and glucagon ensure glucose 

returns to the basal state, resulting  in the critical point of the system to be at 

 

(1, 
𝑝3̃

𝑝2̃
,1,1,1,0,0). The point is the only existing critical point of the system, and refers 

to the same state of the system at the beginning of the exercise protocol. 

The Jacobian matrix evaluated at the critical point is given as: 

𝐽4

= 

[
 
 
 
 
 
 
 
 
 
 −𝑝1̃ −

𝑝3̃
𝑝2̃
 −1 0 𝑃8̃ 0 2 ∗ 𝑝10̃ ∗

𝑝12̃
3

−1

0 −𝑝2̃ 𝑝3̃ 0 0 0 0
𝑝5̃ 0 𝑝4̃ 0 0 0 −1
−𝑝7̃ 0 0 −1 0 0 1

0 0 0 0 −𝑝13̃ −2 ∗
𝑝10̃
3

0

0 0 0 0 0 −
0.8

𝑝6
0

0 0 0 0 0 𝑝11 ̃ −𝑝10̃]
 
 
 
 
 
 
 
 
 
 

 

 
 

Therefore the characteristic equation is given 
by: 

 

The characteristic equation and roots were calculated in Mathematica,. The roots are 

all negative, thus the system is stable. 

(5.75) 
 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 
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5.4. Model Simulations 
 

Both models are implemented in MATLAB to simulate the components within the 

glucose regulatory system for various exercise intensities and durations. The model 

parameters 𝑢3 and 𝑇𝑑𝑢𝑟 are fixed to adjust the simulations for various exercise 

intensities and durations respectively, replicating the protocols to the data obtained 

from the various studies used to validate the models. 

The datasets used to validate the models are obtained from Ahlborg et al. (1974), 

Wolfe et al. (1984), Ahlborg and Felig (1982) and Campbell et al. (2014). Each dataset 

consists of plasma measurements of glucose, insulin and glucagon, all taken at regular 

intervals. There are approximately 5 measurements of each concentration for each 

data set. Although this is a sufficient amount of data to be able to understand the 

behaviour of glucose and the hormones during exercise, given the scale of the models 

it is an insufficient number of points to return an individual set of parameters, and 

results in large confidence intervals for the individual parameters (see appendix). 

It is expected that the amount of physiological exercise induced effects ought to 

increase with increasing energy expenditure, which is reflected by the level of 

exercise activity, (𝑡). The total amount of energy expenditure is a function of the 

duration of exercise, the intensity, the weight of the individual and the activity 

(Moore, 2011). This presents some difficulty in determining the value of energy 

expenditure for each of the simulations, given that the data used has not been 

obtained from the same individual, and not all of the studies consisted of the same 

activity. It can be seen from Moore (2011) that running and cycling have very similar 

energy expenditure values, therefore it will be assumed that the activities of the 

datasets consist of the same energy expenditure value. All participants in the four 

studies were male, and of a healthy weight, therefore for simplicity body weight will 

not be considered at this stage. 

The models are solved using the inbuilt MATLAB solver ODE45, based on explicit 

Runge-Kutta methods. The parameters are solved within MATLAB using the 

LSQNONLIN function. Initial parameter guesses are inputted into the function based 

on parameter values obtained in chapter 3, existing literature (Roy and Parker, 2007), 

(Cobelli et al., 1998), (Cobelli et al., 1982) and adjusted to allow for exercise induced 

effects. 
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5.4.1. Exercise at 30% of 𝑽𝑶𝒎𝒂𝒙 

 
In this section the models are implemented in MATLAB, setting 𝑢3  = 30 and 

𝑇𝑑  = 240 to represent the individual working at 30% of their 𝑉𝑂𝑚𝑎𝑥for 240 minutes. 

The models are fitted to the data set obtained by Ahlborg et al. (1974), where 

individuals performed exercise following an overnight fast in a post-absorptive state. 

The data set includes measurements for plasma glucose, insulin and glucagon, taken 

at 5 different time points, including the resting values, giving a total of 15 data points. 

Since the system consists of 13 unknown parameters a much greater number of data 

points would be required in order to give an accurate set of parameters for the model. 

This result is discussed later in the chapter. 

Since the initial measurements from the study performed by Ahlborg et al. (1974) are 

taken after an overnight fast, the initial measurements from the data will be used for 

the model’s initial and basal values for glucose, insulin and glucagon, i.e. 𝐺0  = 𝐺𝑏, 

𝐸0  = 𝐸𝑏  and 𝐼0   = 𝐼𝑏. 
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(a) 

2 

2 

 

Figure 5.3: Exercise at 30% of PVOmax : G(t) against plasma glucose measurements, 

(a), Gly(t), (b),  PVOmax(t), (c) and A(t), (d). 

Figure 5.3 shows both models providing a good fit to the data set for plasma glucose 

(a), however the models show very different behaviour in the first 50 minutes of 

activity. The simulation for glucose in the Glucagon Exercise Minimal Model shows an 

initial fall in glucose levels, as the rate of glucose uptake increase to meet the 

increased demand for energy by the muscles, which is then met by an increase in HGP 

and glycogenolysis. Plasma glucose concentrations then gradually decrease with 

glycogen stores. In contrast, the Simplified Glucagon Exercise Minimal Model assumes 

an immediate increase in the concentration of glucose in the plasma, suggesting the 

onset of exercise is instantly met by an increase in glucose production, which then 

returns to basal and begins to decline as energy stores are depleted. 

(a) (b) 

(c) (d) 



91  

Both models predict a similar decrease in the amount of glycogen available 

throughout the duration of exercise. The models predict glycogen stores to decline to 

20% of their starting values, which is very close to the physical actuality, as glycogen 

stores were depleted by approximately 75%, according to Ahlborg et al. (1974). 

Both models show exercise activity increasing linearly as a function of exercise 

intensity and time (d). The Simplified Glucagon Exercise Minimal Model shows almost 

twice the amount of activity than the Glucagon Exercise Minimal Model, predicting 

the individual to be more sensitive to the effects of exercise. 
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Figure 5.4: Exercise at 30% of PVOmax: I(t) against plasma insulin concentrations, 

(a), X(t), (b), E(t) against plasma glucagon concentrations, (c) and Y(t), (d). 

Both models are capable of capturing the magnitude of the decline of plasma insulin 

concentrations (b); however, visually, the Simplified Glucagon Exercise Minimal 

Model provides a slightly better fit to the dataset. The Simplified Glucagon Exercise 

Minimal Model shows a greater amount of interstitial insulin activity than the 

Glucagon Exercise Minimal Model (b), suggesting a greater responsivity of the liver to 

insulin. Figure 5.4 (c) displays the accuracy of both models to fit the dataset of 

glucagon. 

(a) (b) 

(c) (d) 
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Table 5.7: Parameter results from simulations ran for both the Glucagon Exercise 

Minimal Model and the Linear Glucagon Exercise Minimal Model for 240 minutes of 

exercise at 30% of 𝑉𝑂𝑚𝑎𝑥 

 

Parameter GEMM GEMM Parameter SGEMM SGEMM 

𝑆𝐺   = 𝑝1 0.017553609 𝑝1 0.00150000 

𝑝2 2.239076769 𝑝2 0.30089987 

𝑝3 0.003716462 𝑝3 0.00142961 

𝑝4 0.018928669 𝑝4 0.03692484 

𝑝5 7.17288309 ∗ 10−5 𝑝5 4.1464406 ∗ 10−4 

𝑝6 0.98138568 - - 

𝑝7 3.31033229 ∗ 10−5 - - 

𝑝8 0.01758642 𝑝6 0.04036082 

𝑝9 2.56707631 ∗ 10−6 𝑝7 2.811859 ∗ 10−12 

- - 𝑃8 0.10928015 

𝑝10 0.10927865 𝑝9 4.360198 ∗ 10−14 

𝑝11 6.66091373 ∗ 10−4 𝑝10 6.4258065 ∗ 10−6 

𝑝12 4.13286068 ∗ 10−6 𝑝11 2.65330416 

𝑝13 0.93794325 𝑝12 0.00503468 

𝑆𝐼 =
𝑝3
𝑝2

 0.00165982 𝑆   = 
𝑝3 

𝐼 𝑝2
 

0.00475113 

𝑆𝐸 =
𝑝7
𝑝6

 
3.37312064 ∗ 10−5 - - 

𝑆𝐴 =
𝑝12
𝑝11

 0.006204645 𝑆   =  
𝑝10 

𝐴 𝑝9
 

1.49667911∗ 108 

 

In the both Glucagon Exercise Minimal Model and the Simplified Glucagon Exercise 

Minimal Model, the parameter values for glucose effectiveness, 𝑆𝐺, are lower than for 

the values obtained for the IVGTT models (tables 3.7 and 3.8). Exercise is typically 

reported to increase glucose effectiveness (Nishida et al., 2001) however there are a 

number of factors that may have influenced this result which will be further 
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discussed in section 5.5. 
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Table 5.7 shows higher values for both models in comparison to their values for 

insulin sensitivity, 𝑆𝐼, when simulated for an IVGTT (tables 3.7 and 3.8), which is 

confirmed by studies that have established that exercise increases insulin sensitivity 

(Richter et al., 1985), (Ross, 2003). 

According to research, during exercise, there is an increase in sensitivity of the liver 

to glucagon during exercise (Bonjorn et al. 2002), (Adams, 2003). In comparison with 

the result from the IVGTT (table 3.7) the result from glucagon sensitivity, 𝑆𝐸, has in 

fact decreased. Despite this, comparing figures 5.4 and 3.7 it can be seen that the 

exercise model shows a much greater amount of glucagon activity acting on the 

system than in the IVGTT model. Therefore the likely cause for the exercise 

parameter value being lower than that of the IVGTT is that the term in Y(t) 

representing the increase in hepatic glucose production ability (𝑝7) is proportional to 

per unit of glucagon above baseline within the IVGTT Glucagon Minimal Model, 

whereas the exercise model is proportional to the total concentration of glucagon. 

The new parameter exercise sensitivity, 𝑆𝐴, is introduced and is defined as the ability 

of the system to respond accordingly to the onset of exercise. The glucose regulatory 

system response in this model consists of the system’s ability to decrease the 

concentration of insulin in the plasma, increase the concentration of plasma glucagon, 

increased muscle glucose uptake and glucose production (Goodwin, 2010). This value 

is expected to increase with exercise intensity and duration. 

The Glucagon Exercise Minimal Model returns a value within a reasonable magnitude 

of the other key parameters listed, whereas the Glucagon Exercise Linear Minimal 

Model returns a significantly higher value, which appears mismatched in comparison 

with the other parameters. 
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5.4.2. Exercise at 40% of 𝐕𝐎𝐦𝐚𝐱 

 
The second dataset used to validate the models is from the experiment by Wolfe et al. 

(1984) where a group of healthy men took part in exercise at 40% of their 𝑉𝑂𝑚𝑎𝑥 for 

60 minutes, following an overnight fast. Therefore the basal values will be fixed as the 

initial measurements, given the fact that the individuals were in the post absorptive 

state, and the exercise parameters will be fixed as 𝑢3  = 40 and 𝑇𝑑𝑢𝑟  = 60. 

As when fitting the models to the dataset in section 5.4.1, there are only 5 

measurements taken for each of the physical quantities in the plasma to fit the models 

to, posing an issue with obtaining a good quality fit for the models and a unique set of 

parameter values. 

Although the exercise intensity is slightly higher than the previous simulation in 

section 5.4.1, the exercise duration is significantly less. By estimating the total energy 

expenditure of both activities by calculating the products of the exercise activity and 

duration, it is presumed that the effects of exercise on the system will be significantly 

less than in the previous simulation. 
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(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
Figure 5.5: Exercise at 40% of 𝑉𝑂𝑚 : G(t) against plasma glucose measurements,  

G(t) (a), Gly(t), (b),  𝑃𝑉𝑂2
𝑚𝑎𝑥(t), (c) and A(t), (d). 

Despite both models providing a fairly good fit to the dataset for plasma glucose 

levels, both anticipate a rapid fall in glucose levels within the first ten minutes of 

exercise. 

Although quite often blood glucose concentrations fall as a result of a delay in the 

response of the glucose regulatory system to the onset of exercise, it is unlikely for 

levels to fall by such a significant amount. This is particularly true for the Simplified 

Glucagon Exercise Minimal Model, with predicts the individual to become severely 

hypoglycaemic and unlikely to be able to sustain exercise, thus making the Glucagon 

Exercise Minimal Model the preferred choice for glucose levels. 

Both models predict the same amount of decline for muscle glycogen, show stores to 

only deplete by a quarter of the starting amount. Since the total energy expenditure is 

low it would be unlikely that a great amount would be utilised. 
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Both models demonstrate a greater amount of exercise activity than in comparison to 

the simulation for exercise at a lower intensity (see figure 5.3). For the simulation at 

30% of 𝑉𝑂𝑚𝑎𝑥 exercise activity appeared to increase linearly with exercise intensity 

at time, where as in this simulation the level appears to reach a peak level 

corresponding to the activity of  𝑃𝑉𝑂𝑚𝑎𝑥(𝑡). 
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Figure 5.6: Exercise at 40% of 𝑉𝑂𝑚 : I(t) against plasma insulin concentrations, (a), 

X(t), (b), E(t) against plasma glucagon concentrations, (c) and Y(t), (d). 

Both of the models predict plasma insulin levels (figure 5.6.a) to fall a little too 

quickly until it stabilises at what appears to be the minimum value. This 

behaviour correlates with exercise action, A(t), which ceases to increase as it 

reaches its ultimate level. 

Neither of the models serve a good fit to the data set for plasma insulin, predicting the 

concentration falls much quicker in the initial 15 minutes and then assuming levels 

level out around 9.5 µU/ml rather than continuing to fall. In comparison with the 

model simulations for individuals exercising at 30% of their 𝑉𝑂𝑚𝑎𝑥 , both models 

show an increase in the amount of insulin activity, which is to be expected given the 

combination of the slightly higher intensity of the exercise being and performed and 

greater availability of insulin in the plasma. 

(a) (b) 

(c) (d) 



10
0 

 

The Glucagon Exercise Minimal Model provides an excellent fit to the data for 

glucagon, whereas the Simplified Glucagon Exercise Minimal Model still fits the data 

well, it misses the third and fourth points. Although the Simplified Glucagon Exercise 

Minimal Model fits the data well, it shows a very large spike in the first ten minutes, 

which is in response to the exaggerated fall in glucose seen in figure 5.5.a. The 

glucagon activity matches the behaviour of glucagon and is of a greater magnitude 

than at exercising at a lower intensity (figure 5.6.d), since the sensitivity of the liver to 

glucagon is magnified with increasing intensity. 
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Table 5.8: Parameter results from the simulations for both the Glucagon Exercise 

Minimal Model and the Simplified Glucagon Exercise Minimal Model for 60 minutes of 

exercise at 40% of 𝑉𝑂𝑚 . 

 

Parameter 

GEMM 
Value 

Parameter 

SGEMM 
Value 

𝑝1 9.82210456 ∗ 10−7 𝑝1 1.294901545 ∗ 10−4 

𝑝2 2.174472150 𝑝2 3.046685906 

𝑝3 0.030060071 𝑝3 0.026127559 

𝑝4 0.427363226 𝑝4 0.155124835 

𝑝5 3.10209295 ∗ 10−7 𝑝5 2.03958405 ∗ 10−7 

𝑝6 0.351946257 - - 

𝑝7 5.50234639 ∗ 10−4 - - 

𝑝8 0.710810527 𝑝6 0.238400979 

𝑝9 1.374827718 𝑝7 1.374827718 

- - 𝑃8 0.223552393 

𝑝10 0.061870951 𝑝9 0.061870951 

𝑝11 0.183857888 𝑝10 0.814572420 

𝑝12 8.78558488 ∗ 10−4 𝑝11 0.001336112 

𝑝13 0.314711184 𝑝12 0.362639165 

𝑆𝐼 =
𝑝3
𝑝2

 0.013824077 𝑆   = 
𝑝3 

𝐼 𝑝2
 

0.008575731 

𝑆𝐸 =
𝑝7
𝑝6

 0.001563405 - - 

𝑆𝐴 =
𝑝12
𝑝11

 0.004778465 𝑆   =  
𝑝10 

𝐴 𝑝9
 13.16566828 

 

Both models return very low values for glucose effectiveness in comparison to the 

IVGTT models and the exercise simulations where 𝑢3 = 30 (see tables 3.7, 3.10 and 

5.6). This result was unexpected, given the extent of research that has found glucose 

effectiveness to increase with exercise (Nishida et al., 2001). For the Glucagon 

Exercise Minimal Model it is possible that the low value of glucose is due to the 

marked increase in both glucagon and insulin sensitivity.  These outcomes are 

discussed fully with the other parameter results in section 5.5. 
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The increase in insulin sensitivity for both models in comparison to the previous 

results for the 𝑃𝑉𝑂𝑚𝑎𝑥 = 30 indicate a higher level of insulin dependent glucose 

uptake and generally better health (Insulin Sensitivity, no date), which, in view of the 

measurements being taken from multiple people, could be down to individual 

variation. 

The result for insulin sensitivity, 𝑆𝐼, also deviates from expectations. It has been 

established that the greater the amount of glycogen depleted in a bout of exercise, the 

greater the increase in insulin sensitivity (Colberg, 2007). Therefore since more 

glycogen was depleted for the simulation where an individual was exercising at 30% 

of their 𝑉𝑂𝑚𝑎𝑥, the result would suggest that insulin sensitivity ought to be lower in 

this simulation. Due to the fact that the two datasets were from different individuals, 

it is likely that the participants in the study by Wolfe et al. (1984) had a higher 

sensitivity to insulin than those of the study performed by Ahlborg et al. (1974). 

Exercise sensitivity has slightly decreased in value for the Glucagon Exercise Minimal 

Model, which, despite an increased exercise intensity, seems reasonable given that 

the duration of exercise for this dataset was a quarter of that for the measurements 

taken during exercise where 𝑃𝑉𝑂𝑚𝑎𝑥 = 30. The value for the Linear Glucagon 

Exercise Minimal Model has also decreased, and is of a significantly lower magnitude 

than of the previous simulation. 
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5.4.3. Exercise at 58% of 𝑽𝑶𝒎𝒂𝒙 

 
The third data set the models are validated against is taken from the results from 

Ahlborg and Felig (1982). In this experiment a group of healthy, non-diabetic men 

took part in 210 minutes of exercise at 58% of their 𝑉𝑂𝑚𝑎𝑥 following a 12-14 hour 

overnight fast. Thus the initial measurements for glucose, insulin and glucagon were 

fixed as the basal values, with the exercise parameters set as 𝑢3  = 58 and 𝑇𝑑𝑢𝑟  = 210. 

This dataset consists of 6 data points available for each concentration within the 

plasma, which, although is three more points than offered by the previous datasets, is 

still an insufficient number to obtain a parameter set with narrow confidence 

intervals. 

Since this simulation is of a higher intensity than both of the previous simulations and 

is for a considerable duration, the effects of exercise on the system are expected to be 

considerably greater than previously seen. 
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Figure 5.7: Exercise at 58% of VOmax: G(t) against plasma glucose measurements, 

G(t) (a), Gly(t) (b), 𝑃𝑉𝑂2
𝑚𝑎𝑥 (c), and A(t) (d).  

The two models show different behaviour for plasma glucose levels. The Simplified 

Glucagon Exercise Minimal Model shows more continuous behaviour, predicting 

levels to increase rapidly as a result of the model’s overestimation of glucagon levels, 

then decline too quickly, overestimating the glucose concentration for a large part of 

the exercise duration. The Glucagon Exercise Minimal Model shows unstable as the 

hormones adjust to the onset of exercise, before settling into a gradual decline as 

glycogen stores become depleted. 

Both models predict a fast decline in glycogen stores, which become entirely depleted 

by the end of the duration of activity. This suggests that, out of the three exercise 

protocols so far, this is the most effective for improving the diabetic state. This verdict 

is based on the results of the research by Colberg (2007) and Kang et al. (1996) who 

(a) 

(c) 

(b) 

(d) 
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found a longer improvement in insulin sensitivity was related to the greater the 

amount of glycogen burned during a bout of activity. 

The Glucagon Exercise Minimal Model shows significantly greater levels of exercise 

activity out of the two. It displays a greater amount of activity than the protocol for 

30% as expected but less than 40% which appears quite unconventional, given the 

increase in intensity and exercise duration. The Simplified Glucagon Exercise 

Minimal Model shows less exercise activity than both of the previous simulations, a 

result that deviates from the predicted outcome based on research, thus giving some 

doubt to the reliability of the model. 
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Figure 5.8: Exercise at 58% of VOmax: I(t) against plasma insulin concentrations, (a), 

X(t), (b), E(t) against plasma glucagon concentrations, (c) and Y(t), (d). 

The results for plasma insulin clearly show the Simplified Glucagon Exercise Minimal 

Model to provide the better fit to the data of the two, since the Glucagon Exercise 

Minimal Model underestimates the rate of decline in plasma insulin levels. 

However the Simplified Glucagon Exercise Minimal Model has a very low level of 

insulin activity in comparison with the simulations for exercise of 30% and 40% 

of 𝑉𝑂2
𝑚𝑎𝑥  than at 58% of  𝑉𝑂2

𝑚𝑎𝑥 , which is not expected, since, as previously 

  

mentioned, insulin sensitivity has been observed to increase with decreasing 

glycogen levels and increased energy expenditure (Verkerke et al., 2015). This 

simulation has shown glycogen levels to deplete at a faster rate than previous 

simulations; therefore insulin activity should follow insulin sensitivity be the greatest 

(a) 

(c) 

(b) 

(d) 
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for this simulation. The Glucagon Exercise Minimal Model however does meet this 
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expectation, as there is a slightly higher amount of activity than demonstrated at 

30% of  and significantly more than at 40%. 

The Glucagon Exercise Minimal Model provides a notably better fit to the plasma 

glucagon measurements than the Simplifed Glucagon Exercise Minimal Model, which 

rises too quickly and is responsible for the initial increment in plasma glucose. 
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Table 5.9: Parameter results from simulations for both the Glucagon Exercise 

Minimal Model and the Simplified Glucagon Exercise Minimal Model for 210 minutes 

of exercise at 58% of 𝑉𝑂𝑚𝑎𝑥. 

 

Parameter 

GEMM 
Value 

Parameter 

SGEMM 
Value 

𝑆𝐺   = 𝑝1 0.20550317 𝑝1 0.016411558 

𝑝2 1.13046419 𝑝2 0.963873328 

𝑝3 0.02299561 𝑝3 0.000679837 

𝑝4 0.09800001 𝑝4 0.010277818 

𝑝5 0.05600000 𝑝5 7.87208 ∗ 10−14 

𝑝6 5.37961561 - - 

𝑝7 0.00015838 - - 

𝑝8 1.59847556 𝑝6 0.161251435 

𝑝9 9.20837923 𝑝7 0.016193108 

𝑝10 0.09947311 𝑝8 0.001037968 

𝑝11 0.00000188 𝑝9 0.099488025 

𝑝12 0.00001003 𝑝10 0.010979608 

𝑝13 6.40031140 𝑝11 0.000003678 

- 0.02034174 𝑝12 2.681901231 

𝑆𝐼 =
𝑝3
𝑝2

 0.00002944 𝑆𝐼 =
𝑝3
𝑝2

 0.000705317 

𝑆𝐸 =
𝑝7
𝑝6

 5.32583804 - - 

𝑆𝐴 =
𝑝12
𝑝11

 0.20550317 𝑆𝐴 =
𝑝12
𝑝11

 0.110361102 

 
The values for glucose effectiveness for both the Glucagon Exercise Minimal Model 

and the Simplified Glucagon Exercise Minimal Model have increased significantly in 

comparison to the values returned for the models by any of the other simulations for 

exercise or the IVGTT. This result suggests long durations of exercise at a moderate 

exercise intensity significantly increase glucose effectiveness. 

The value of insulin sensitivity for both of the models has decreased in comparison to 

the values for the models from the previous simulations of exercise at lower 
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intensities. This is an unexpected result, given the greater amount of energy 

expenditure in this simulation. This result suggests that the data obtained from this 

study was from an individual with a higher insulin resistance than the previous two. 

Glucagon sensitivity has increased a considerable amount from the previous 

simulations, a result which is expected given the high intensity and prolonged 

duration of the exercise. This result is likely to be an adaptation of the liver to 

prolonged exercise in order to avoid hypoglycaemia. If this value did not decrease 

post workout, combined with the low value for insulin sensitivity the individual 

would be at a risk of experiencing hyperglycaemia. 

For the Glucagon Exercise Minimal Model, exercise sensitivity is at its highest value, 

and shows a trend of increasing with total energy expenditure. This is a positive 

result, as it is what would have been expected for if all of the data had been obtained 

from the same individual. The Simplified Glucagon Exercise Minimal Model shows a 

lower value for exercise activity, particularly in comparison to the previous 

simulation (see table 5.8). At present there appears to be no relationship between 

exercise sensitivity and energy expenditure, intensity or duration. 
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5.4.4. Exercise at 70% of 𝐕𝐎𝐦𝐚𝐱 

 
The final dataset used to validate the model is from Campbell et al. (2014) and consist 

of the glucose and hormone concentrations within the plasma being measured four 

times over 45 minutes whilst the patients are exercising at approximately 70% of 

their VOmax. The individuals all had type 1 diabetes, however they had received 

insulin treatments, and therefore the model will not be changed and it will be 

assumed that the insulin present in the blood was the result of pancreatic secretion. 

Patients took part in the evening, and were not in the fasted state; therefore the initial 

conditions will not be starting at the basal levels. 

Since the dataset was obtained from individuals with type 1 diabetes, it is unlikely 

that the two models in this chapter will present a good fit to the plasma insulin 

measurements, as the equations for insulin (5.11 and 5.19) assumes insulin 

production and normal beta cell functionality. A model is introduced in chapter 6 that 

assumes type 1 diabetes and requires an input function for exogenous insulin, thus is 

expected to give a better fit to the data. 

The patients who took part in the study by Campbell at el. (2014) were considered to 

be healthy and not known to have any diabetes related complications normal gluco- 

regulatory responses will be assumed and no changes will be made to the models. 

Despite the exercise duration being shorter than the previous simulations, since the 

exercise intensity is fairly high it is expected that this exercise protocol ought to have 

a significant impact on the glucose regulatory system. 
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Figure 5.9: Exercise at 70% of  VOmax: G(t) against plasma insulin concentrations,  (a), 

PVOmax(t), (b), E(t) against plasma glucagon concentrations, (c) and A(t), (d). 

 
The Glucagon Exercise Minimal Model provides the better fit of the two models to the 

dataset. It predicts an initial fall in glucose concentrations as the onset of exercise 

increases the demand for glucose as fuel by the working muscles. Research shows 

that, during the first fifteen minutes of exercise, fuel for the working muscles mostly 

comes from glucose within either the blood stream or stored as muscle glycogen 

(Giles, 2016). Glucose levels then rise as the glucagon concentration increases and 

subsequently cause an increase in the rate HGP. The Simplified Glucagon Exercise 

Minimal Model predicts that glucose production will rise immediately, which is likely 

to be a result of the exaggerated rise it anticipates for plasma glucagon levels, as 

shown in figure 5.10.a. 

(a) (b) 
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Both models show a similar rate for the depletions of glycogen stores, with the 

Simplified Glucagon Exercise Minimal Model falling slightly lower. 

The Simplified Glucagon Exercise Minimal shows a much greater level of exercise 

activity than the Glucagon Exercise Minimal Model. Although it is not unlikely that 

this simulation would result in the highest levels of exercise activity, the result given 

by the Simplified Glucagon Exercise Minimal is of a far greater magnitude than any of 

the previous simulations, making its physiological accuracy questionable. 
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Figure 5.10: Exercise at 70% of VOmax: E(t) against plasma glucagon concentrations, 

(a), Y(t), (b), I(t) against plasma insulin concentrations, (c) and X(t), (d). 

The Glucagon Exercise Minimal Model provides a much better fit to the dataset for 

plasma glucagon measurements than the Simplified Glucagon Exercise Minimal Model. 

It shows levels rise quickly accordingly with the onset of exercise and fall in glucose 

levels (figure 5.9.a) and then remain at a consistent elevated level for the remaining 

duration of exercise. The Simplified Glucagon Exercise Minimal Model predicts 

unusual behaviour, show a sharp rise then fall in levels before continually rising, 

overshooting all data points. From figure 5.9.d it is clear to see that the elevated level 

of exercise activity for the Simplified Glucagon Exercise Minimal Model is responsible 

for the excess of glucagon in the plasma. 

Although neither of the models provides a good fit to the insulin data, clearly the 

Glucagon Exercise Minimal Model is the better of the two. The models were not 

(a) (b) 

(c) (d) 
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expected to fit the data well, since they both simulate a healthy patient, whereas this 

data was collect from type 1 diabetic individuals, administering exogenous insulin. It 

is known that exogenously delivered insulin is not subject to normal physiological 

feedback regulation (McCrimmon and Sherwin, 2010) as is assumed by equation 

(5.11) in the model, which is likely to be the cause of the poor data fit. 
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Table 5.10: Parameter results from simulations for both the Glucagon Exercise 

Minimal Model and the Simplified Glucagon Exercise Minimal Model for 45 minutes of 

exercise at 70% of 𝑉𝑂𝑚 . 

 

Parameter 

GEMM 
Value 

Parameter 

SGEMM 
Value 

𝑆𝐺   = 𝑝1 0.21299553 𝑝1 0.346341523 

𝑝2 1.29778516 𝑝2 9.633789789 

𝑝3 0.03443631 𝑝3 1.173031 ∗ 10−4 

𝑝4 0.24788057 𝑝4 14.231816526 

𝑝5 0.01799555 𝑝5 8.603068353 

𝑝6 0.09630926 - - 

𝑝7 0.00004806 - - 

𝑝8 1.43637670 𝑝6 0.001000000 

𝑝9 0.22328702 𝑝7 23.707465199 

- - 𝑃8 3.124506262 

𝑝10 0.30186851 𝑝9 0.953347919 

𝑝11 0.07182015 𝑝10 4.189026 ∗ 10−6 

𝑝12 0.00009171 𝑝11 8.169374 ∗ 10−4 

𝑝13 1.73064711 𝑝12 4.454932251 

𝑆𝐼 =
𝑝3
𝑝2

 0.02653468 𝑆𝐼 =
𝑝3
𝑝2

 1.217621 ∗ 10−5 

𝑆𝐸 =
𝑝7
𝑝6

 4.989975 ∗ 10−4 - - 

𝑆𝐴 =
𝑝12
𝑝11

 0.00127690 𝑆𝐴 =
𝑝12
𝑝11

 4.394016 ∗ 10−6 

 

Both models return a high value for glucose effectiveness, which is to be expected 

given the high intensity and duration of exercise, resulting in an overall reasonably 

high level of energy expenditure. 

The Glucagon Exercise Minimal Model returns a higher value for insulin sensitivity 

than all other simulations. Some evidence suggests that exercising at higher 

intensities achieve greater improvements in insulin sensitivity (Seals et al., 1984), 

(DiPietro et al., 2006). The result from the Glucagon Exercise Minimal Model confirms 

this finding; however more datasets will need to be collected for the model to be 
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fitted to in order to validate this conjecture with certainty. On the other hand the 

Simplified Glucagon Exercise Minimal Model returns a very low value for insulin 

sensitivity. 

The Glucagon Exercise Minimal Model returns a lower value for glucagon sensitivity  

in comparison to the results from the IVGTT model and the simulations for exercise at 

both 40% and 58% of 𝑃𝑉𝑂𝑚𝑎𝑥. One aspect that may have influenced this result is that, 

research has shown that within a few years of diagnosis individuals with T1DM tend 

to fail to generate an adequate glucagon response (McCrimmon and Sherwin, 2010), 

which, since this dataset was obtained from participants with T1DM, may explain this 

result. Additionally, and most likely to be the case, is that this model assumes the 

increase of glucagon activity to be proportional to the total concentration of plasma 

glucagon, as opposed to the increase above the basal level as is assumed in the IVGTT 

model. The plasma measurements for glucagon in this data set are also markedly 

higher than in the previous data sets. Therefore with a greater amount of glucagon, a 

lower value of sensitivity will still have the same, if not larger, effects to the glucose 

regulatory system. 

The Glucagon Exercise Minimal Model returns a moderately high value for exercise 

sensitivity in comparison to the other simulations whereas the Simplified Glucagon 

Exercise Minimal Model does not, returning an unexpectedly low value. 
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5.5. Discussion 
 

In section 5.4 both of the models proposed in section 5.2 were simulated and fitted to 

the datasets obtained from four different studies on exercise, consisting of varying 

exercise intensities and durations. The parameter expectations and actual parameter 

results were briefly discussed and compared with the results for the IVGTT models in 

section 5.4. In this section an analysis of the parameters is given, comparing the 

values obtained from the simulations with each other, what the physiological 

implications of the values are in addition to possible factors that may have influenced 

the results. A comparison of the results for the key parameters is shown in table 5.12. 

Before comparing the parameter values and discussing the implications it is to be 

noted that, since the datasets are not measurements all from the same individual, 

there is likely to be intra-individual variation in glucose regulation. This may have 

been the cause of some results differing from what was hypothesised. 
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Table 5.11: Comparison of the key parameters from the two exercise models for the 

four different exercise protocols. 

 

Parameter GEMM SGEMM 

30% of 𝑽𝑶𝒎𝒂𝒙 

𝟐 
𝑆𝐺 0.017553 0.001500 

𝑆𝐼 0.001659 0.004751 

𝑆𝐸 3.3*10−5 - 

𝑆𝐴 0.017553 0.001500 

40% of 𝑽𝑶𝒎𝒂𝒙 

𝟐 
𝑆𝐺 9.82*10−7 1.2949010−4 

𝑆𝐼 0.01382407 0.0085757 

𝑆𝐸 0.00156340 - 

𝑆𝐴 0.00477846 13.165668 

58% of 𝑽𝑶𝒎𝒂𝒙 

𝟐 
𝑆𝐺 0.205503 0.0164115 

𝑆𝐼 2.944∗ 10−5 0.0007053 

𝑆𝐸 5.325838 - 

𝑆𝐴 0.205503 0.1103611 

70% of 𝑽𝑶𝒎𝒂𝒙 

𝟐 
𝑆𝐺 0.2129955 0.346341 

𝑆𝐼 0.0265346 1.2176 ∗ 10−5 

𝑆𝐸 0.0004990 - 

𝑆𝐴 0.0012769 4.39 ∗ 10−6 
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5.5.1. Glucose Effectiveness 
 

In chapter 3 the acceptable range for glucose effectivenes, 𝑆𝐺   = 𝑝1, from an IVGTT 

was identified as [0.8 − 3.8 ∗ 10−2], as defined by McDonald and co-workers (2000). 

All model simulations with the exception of where 𝑃𝑉𝑂𝑚  = 40 lie within 

reasonable vicinity to this range, and typically increase with energy expenditure. 

 
Exercise has been reported to increase glucose effectiveness (Nishida et al., 2001), 

(Sakamoto et al., 1999), as studies have found that, following a bout of exercise, 

glucose effectiveness would increase during an IVGTT in comparison to if individuals 

had been sedentary. However there are few studies that consider or attempt to 

measure glucose effectiveness during exercise. 

Epinephrine is one of the main hormones whose concentrations markedly increase 

during exercise (Zouhal et al., 2008), and has been found to decreased glucose 

effectiveness significantly (Avagaro et al., 1996), It is possible that this may be an 

underlying cause of some values for glucose effectiveness being lower than expected. 

It is difficult to assess the effect of epinephrine without further study. This will be 

further discussed in chapter 7. 

Glucose effectiveness is defined as the ability of hyperglycemia to promote glucose 

disposal at basal insulin (Nishida et al., 2001). Throughout the entire duration of 

exercise for all simulations, with the exception of where 𝑃𝑉𝑂𝑚𝑎𝑥 = 70, the patients’ 

plasma glucose concentrations remain fairly close to the basal levels and therefore 

disposal of excess glucose is not required. Given that the individual is not in a fed 

state it is difficult to evaluate of the ability of glucose to stimulate glucose uptake 

(Tonelli et al., 2005). Thus it is unlikely that the values of 𝑆𝐺 during exercise give a 

true insight into the ability to dispose of glucose without the presence of insulin. 
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Figure 5.11: Comparison of Glucose Effectiveness for both exercise models for 

different durations and exercise intensities. 

Figure 5.11 shows the relationship between glucose effectiveness and the four 

exercise protocols for both of the models. The Glucagon Exercise Minimal Model 

shows the value for the parameter to increase with intensity except for where 

𝑃𝑉𝑂𝑚  = 40, which is to be expected given the duration is much shorter than the 

simulations where 𝑃𝑉𝑂𝑚𝑎𝑥  = 30, thus resulting in the lowest energy expenditure.  

The Simplified Glucagon Exercise Minimal Model does not predict this behaviour, and 

shows the value to continually rise with increasing intensity despite the differences in 

exercise duration. 
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5.5.2. Insulin Sensitivity 
 

Referring to the ability of insulin stimulated glucose uptake (Lakshmi Kiran et al. 

2010), insulin sensitivity, 𝑆𝐼, is a key parameter for analysing the diabetic state. The 

acceptable value for insulin sensitivity for a healthy person undertaking an IVGTT is 

given as approximately 5 ∗ 10−4  (Pacini and Bergman, 1986). 

One of the many benefits of exercise includes the fact that it increases insulin 

sensitivity (Richter et al., 1985), (Ross, 2003), (Borghouts and Keizer, 2000), 

(Holloszy, 2005). However, since the exercise models assume insulin activity to 

increase proportionally to the total amount of insulin in the plasma rather than the 

excess above the basal level, as is assumed in the IVGTT model, it is quite reasonable 

that the exercise models should return values that are lower than would have been 

expected. This change was made to the model as, if it had remained the same as in the 

IVGTT model, since there are low levels of insulin the model would assume that there 

was no insulin activity, which physiological is not true. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: Comparison of Insulin Sensitivity for both exercise models for different 

durations and exercise intensities. 

In figure 5.12 it can be seen that for Simplified Glucagon Exercise Minimal Model 

there is no trend for insulin sensitivity, giving the lowest values for the two protocols 

with the highest intensities and the highest value for the protocol with the lowest 

amount of energy expenditure, which is very unlikely. The Glucagon Exercise Minimal 

Model shows a much clearer trend, showing insulin sensitivity to increase with 
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2 intensity, as would be expected. The only anomaly is for 𝑃𝑉𝑂𝑚  = 58, where for  both 

models the value for insulin sensitivity is extremely low. It would suggest that the 

individual exercising was significantly more insulin resistant in comparison to the 

individuals of whom the other measurements were obtained from. 
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5.5.3. Glucagon Sensitivity 
 

In 1985 Bonjorn et al. suggested that exercise was responsible for an increased 

sensitivity of the liver to glucagon. This has later been confirmed by Lavoie (2005), 

who found that an increase in glucagon receptor density occurred during both 

endurance exercise and periods of fasting, which appears to be an adaptation of the 

liver to enhance HGP responsiveness to glucagon, i.e. to increase glucagon sensitivity. 

In chapter 3 the Glucagon Minimal Model gave a value for glucagon sensitivity during 

the IVGTT to be 𝑆𝐸 = 0.001528. Despite the fact that fasting increases glucagon 

sensitivity, it would be expected that, since at the beginning of the protocol the 

patient receives a large glucose bolus, thus inducing a fed state, glucagon sensitivity 

would be significantly lower than it would be for any of the exercise protocols. 

However since in the exercise models glucagon activity increases proportionally to 

the plasma glucagon concentration rather than the excess above the basal level, it is 

expected that the values may be slightly lower. 

Often the effect of diabetes on glucagon regulation is overlooked, with treatment 

namely focusing on the insulin secretion abnormalities (Godoy-Matos, 2014). 

Individuals with T2DM may experience hyper secretion in the postprandial state and 

dysfunctional secretion in the fasting state (Khardori, 2013), therefore an abnormally 

low value for glucagon sensitivity during exercise may be seen as an indication of an 

impairment within the glucose regulatory system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13: Comparison of Glucagon Sensitivity for the Glucagon Exercise Minimal 

Model for different durations and exercise intensities. 
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The Glucagon Exercise Minimal Model shows all values to be of a similar magnitude, 

with the exception of where 𝑃𝑉𝑂𝑚𝑎𝑥 = 58, which returns a much higher value than 

the other three simulations. It is expected that glucagon sensitivity increases with 

increasing exercise duration and intensity, therefore since 𝑃𝑉𝑂𝑚𝑎𝑥 = 58 resulted in 

the largest energy expenditure (produce of exercise intensity and duration), the 

parameter results are in keeping with the findings in literature. 
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5.5.4. Exercise Sensitivity 
 

In this chapter a new parameter has been introduced referred to as exercise 

sensitivity, 

𝑆𝐴. This parameter is defined as the ability of the glucose regulatory system to 

respond and to act accordingly to the onset of exercise, i.e. to maintain homeostasis 

whilst meeting the increased demand for energy. 

Since this is the first mathematical model to represent the effects of exercise in this 

manner, there are no existing values to compare the parameters to, however they 

should be within reasonable magnitude of the values for the other key parameters 

as listed in table 5.12. 

It is not anticipated that a diabetic state ought to affect the individual’s ability to 

respond directly to exercise. Since exercise stimulated glucose uptake acts through a 

separate signalling pathway to insulin dependent glucose uptake (Hayashi et al., 

1997), it is considered to be normal even in those who suffer from insulin resistance 

and diabetes (Merry and McConell, 2009). Therefore, although some abnormalities 

are expected to occur during exercise, e.g. hyper- or hypoglycaemia, the value for 

exercise sensitivity is not expected to change significantly given the presence of the 

disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14: Comparison of the values for Exercise Sensitivity from both models for 

different durations and exercise intensities. 
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Figure 5.14 does not consider two of the parameter results for the Simplified 

Glucagon Exercise Minimal Model since the values are of a much larger magnitude 

than any of the other parameter values in these models, thus deemed unrealistic and 

inaccurate. 

The Glucagon Exercise Minimal Model returns the highest value for where 

𝑃𝑉𝑂𝑚𝑎𝑥 = 58, which corresponds with expectations given that the individual was 

exercising for a long duration at a moderately high intensity, thus was most likely to 

have resulted in the highest amount of energy expenditure, confirming the models 

accuracy. 
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5.6. Summary 
 

In this chapter two mathematical models have been proposed that are capable of 

accounting for the key processes responsible for blood glucose regulation during 

exercise. 

The first model proposed, the Glucagon Exercise Minimal Model, modelled the effects 

of glucagon on glucose levels indirectly by introducing a non-linear variable that 

accounts of the level of glucagon induced activity within the system. The key 

parameter values, as shown in table 5.12 are all within physiological reasoning, with 

the values for both glucose effectiveness and insulin sensitivity lying within justifiable 

magnitude to the parameter values deemed acceptable for the IVGTT minimal model. 

Typically, the key parameters increased with increasing energy expenditure, which is 

estimated based on the work of Moore (2011) as a product of exercise duration and 

intensity. 

The second model proposed, the Simplified Glucagon Exercise Minimal Model, 

assumed a linear relationship between the amount of glucagon in the plasma above 

baseline value and glucose. Although the model is advantageous in the sense it has a 

parameter and variable less than the Glucagon Exercise Minimal Model, the returned 

values for the key parameters do not correlate with each other, the hypotheses from 

literature nor are deemed as physiologically realistic. 

Overall, the Glucagon Exercise Minimal Model provided the best fit to the data and the 

most physiologically accurate behaviour for concentrations of glucose and the two 

hormones in the plasma. Although it consistently provide a good fit, this is to be 

expected given the limited amount of data points available for the studies. 

Research shows that the greater the amount of glycogen burned during a single 

exercise session, the greater the improvement for insulin sensitivity (Colberg, 2008), 

(Kang et al. 1996). The models show that the exercise protocol where 𝑃𝑉𝑂𝑚𝑎𝑥 = 70 

and 𝑃𝑉𝑂𝑚𝑎𝑥 = 58 to be the best options for improving insulin sensitivity as they 

utilised the most glycogen. This is confirmed by the results of the Glucagon Exercise 

Minimal Model, which returned the highest value for insulin sensitivity of all of the 

simulations when 𝑃𝑉𝑂𝑚  = 70. The model returns an unusually low value for 

𝑉𝑂𝑚𝑎𝑥 = 58, however without further data to validate it is impossible to identify the 

cause of this result, and could simply due to individual variability. 
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Therefore the Glucagon Exercise Minimal Model was the best performing of the two 

models and will be extended in chapter 6 to consider an individual with T1DM 

diabetes. 
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Chapter 6 Insulin Infusion and Exercise 
 

6.1. Introduction to Insulin Treatments for T1DM 
 

As discussed in chapter 1, T1DM occurs when the pancreas is unable to produce any 

insulin; therefore patients are dependent on an exogenous supply to maintain glucose 

homeostasis. The aim of this chapter is to introduce a term into the models proposed 

to replicate insulin treatments. The response of plasma insulin concentrations to an 

exogenous supply varies, depending on the type of insulin treatment used. Figure 6.1 

summarises the effect of varying treatments on insulin. 

 

 
Figure 6.1: Different durations and onsets of various insulin treatments taken from 

Latif (2007). 

Typically insulin treatments are classified as short, medium or long according on 

their action in time (Basov et al., 1999), as shown in table 6.1, adapted from Donner 

(2015), describing the pharmacokinetics of available insulins. 
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Table 6.1. Pharmacokinetics of insulins (Donner, 2015) 

 
Insulin Onset Peak Duration 

Lispro 5-15 minutes 30-90 minutes 3-5 hours 

Aspart 10-20 minutes 1-3 hours 3-5 hours 

Regular Insulin 30-60 minutes 1-5 hours 6-10 hours 

Buffered Regular 

Insulin 

30-60 minutes 1-3 hours 8 hours 

Lente 1-3 hours 6-14 hours 16-24 hours 

NPH 1-2 hours 6-14 hours 16-24+ hours 

Glargine 1.1 hours None 24 hours 

Ultralente 4-6 hours 8-20 hours >24 hours 

 
 

Therefore in order to develop a model capable of considering exogenous insulin, the 

mathematical term needs to be adaptable to allow for the different characteristics 

belonging to the various types of insulins, including different durations of the 

treatment, the size of the insulin dosage and the frequency of the administration. 

Knowledge of the time action of insulins can help clinicians and patients to determine 

a suitable treatment plan and predict the effect of the treatment on the plasma over 

time. However, as for most aspects within the glucose regulatory system, insulin 

administration varies between patients and can be affected by a number of factors. 

McCulloch et al. (2016) list the external affecting factors to be the dose of insulin, the 

injection technique, the injection site and the time passed since opening the bottle, 

since the potency of insulin is noted to decrease over the following 30 days. In 

addition to the external factors relating to the administration of insulin, each 

individual will react differently to the treatments, due to variations in subcutaneous 

blood flow and levels of physical activity, which affect the diffusion conditions in the 

subcutaneous tissue (Hildebrandt, 1991).Developing a model that can account for and 

analyse the effects of such factors can assist the understanding and implementation of 

an effective treatment plan for individuals with  T1DM. 
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6.2. Critical Review of Insulin Infusion Models 
 

Basov et al. (1999) proposed a model that considers the effect of self-administered 

insulin, in order to help determine the required dosage and corresponding effects on 

glycaemia. 

The term for insulin infusion is given mathematically as the following: 

 

𝐼𝑒𝑥𝑔 = {
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝐵 ∗ sin (𝜋 ∗
𝑡

𝑇
), 𝑡0 ≤ 𝑡 ≤ 𝑡0 +  𝑇,

                                        (6.1) 

 

Where the constants have been defined by Sulston et al. (2007) as can be seen in table 

6.2. 

Table 6.2. Nomenclature for Basov’s insulin infusion term 

 
 
 
 

 

 

 

 

 

 

 

 

 

Although the model is simple to use and allows for the parameters to be adjusted for various 

insulin treatments there are drawbacks to the model proposed by Basov et al. (1999). The 

sine function is a continuous function that does not reach a natural end; therefore the 

function is forced to discontinue, which does not provide an accurate physiological 

representation and encounters issues when determining the long term behaviour of the 

system, since sine functions have no limit but simply oscillate between their minimum and 

maximum values. 

Additionally, the model does not allow for different onset and clearance times, assuming that 

the insulin leaves the blood at the same rate at which it enters. This is demonstrated by a 

simulation of the minimal model, where the equation for insulin has been adapted to consider 

the sine term for exogenous insulin and the parameter values are set to those provided by 

Roy and Parker (2007) for a type 1 diabetic individual. 

 

Parameter Description 

𝐼𝑇𝑜𝑡𝑎𝑙 Size of insulin dosage. 

𝑇 Duration of effectiveness of treatment, 

i.e. time taken for insulin treatment to 

reach its peak 𝑡0 Time of administration 

            𝐵 
𝜋 ∗

𝐼𝑇𝑜𝑡𝑎𝑙
2 ∗ 𝑇

 

 sin (𝜋 ∗
𝑡

𝑇
) 

Representation of the behaviour of the 

infused insulin entering the plasma. 
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Figure 6.2. Simulation of the minimal model with the term proposed by Basov and 

co-workers for rapid (a) and long (b) acting exogenous insulin. 

Other models to describe exogenous insulin administration include the model 

proposed by Li and Kuang (2009). Li and Kuang developed a system of differential 

equations to mimic the effects of rapid acting insulin, administered in hexameric form, 

which is then broken down into dimers, which are then broken down into monomers 

and absorbed into the bloodstream (Wuang et al. 2013). Their proposed system is as 

follows:  

𝑑𝐻

𝑑𝑡
=  −𝑝 ∗ (𝐻(𝑡) − 𝑞 ∗ 𝐷3(𝑡)),                                                       (6.2) 

𝑑𝐷

𝑑𝑡
= 𝑝 ∗ (𝐻(𝑡) − 𝑞 ∗ 𝐷3(𝑡)) − 𝑏 ∗

𝐷(𝑡)

1 + 𝐼(𝑡)
,                               (6.3) 

𝑑𝐼

𝑑𝑡
=  𝑟 ∗ 𝑏 ∗

𝐷(𝑡)

1 + 𝐼(𝑡)
− 𝑑𝑖 ∗ 𝐼(𝑡),                                                     (6.4) 

where H is insulin analogue in hexameric form, D is insulin analogue in dimeric form 

and I is the plasma insulin concentration. 

The model provided a good fit to experimental data and it possesses a unique globally 

asymptotically stable equilibrium. However, the system is significantly more complex 

in comparison to the term proposed by Basov et al. (1999), introducing 6 new 

quantities to model the effects in the system. 

 

 

 

 

(a) (b) 
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6.3. Model Formulation for Insulin Infusion 
 

Since the aim of this thesis is to develop a mathematical model to predict blood 

glucose levels during exercise, the term for insulin administration will not go into the 

level of detail and complexity as Li and Kuang (2009) but will take a more simplified 

approach. 

A term is proposed is designed to mimic the effects of administering insulin 

treatments: 

𝐼𝑒𝑥𝑔 = 𝛼 ∗ (−e
−π∗

t
ton + 𝑒

−𝜋∗
𝑡

𝑡𝑑𝑒𝑔),                                                          (6.5) 

where 𝑡𝑜𝑛 is the duration of the onset of the insulin treatment, tdegis the duration of 

the clearance from the plasma and α is the parameter that controls how the amount 

by which the treatment will increase the plasma insulin concentration. 

6.3.1. Minimal Model and Insulin Infusion 
 

The Minimal Model, equations (2.3-2.5), was adapted to simulate a type 1 diabetic 

patient. The first and second phase insulin secretion terms were removed and replaced 

with the term for insulin administration, 𝐼𝑒𝑥𝑔, changing equation (2.5) to be the 

following: 

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ 𝐼(𝑡) + 𝐼𝑒𝑥𝑔,                                                           (6.6) 

Notice that this new equation assumes no insulin secretion, implying a severe state of 

diabetes where the individual is entirely dependent on insulin treatments. 
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6.3.2. Exercise and Insulin Infusion 
 

In chapter 5 two models were proposed to model the effects of exercise on the 

glucose regulatory system. Since the Exercise Glucagon Minimal Model provide the 

most accurate fit to the datasets it will be chosen to simulate exercise for type 1 

diabetic patients. 

Three of the datasets for exercise used to validate the models in this thesis (Ahlborg 

et al., 1974), (Ahlborg and Felig, 1984), (Wolfe et al., 1982) consider subjects 

exercising in the post absorptive state, following an overnight fast, therefore it is 

assumed that no rapid acting insulin is administered, as it is typically administered to 

accompany meals. Since a popular choice is to take long acting insulin (known as 

basal insulin) before a patient’s bedtime (Diabetes.co.uk, 2012), it will be assumed for 

these three cases that the injection will have been administered tdel minutes before 

the individual started exercising. Therefore equation (6.5) will now become: 

𝐼𝑒𝑥𝑔 = 𝛼 ∗ (−e
−π∗

t+tdel 
ton + 𝑒

−𝜋∗
𝑡+tdel
𝑡𝑑𝑒𝑔 ),                                                          (6.7) 

Adjusting equation (5.9) (see section 5.2) to mimic a type 1 diabetic patient 

exercising, the equation now becomes: 

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ 𝐼(𝑡) + 𝐼𝑒𝑥𝑔𝐿 − 𝐼(𝑡) ∗ 𝐴(𝑡),                                                           (6.8) 

Note that this equation also assumes an extreme form of diabetes where the pancreas 

secretes no insulin. This equation will be used for plasma insulin in the exercise 

model. For the dataset obtained by Campbell et al. (2014), the patients took part in 

exercise in the evening, in which they started 60 minutes after consuming a meal with 

a dose of rapid acting insulin. Therefore in order to replicate this protocol two insulin 

administrations will need to be considered; the long acting insulin that would have 

been administered the previous night, and the reduced rapid acting insulin that 

would have been administered 60 minutes prior to the exercise. Therefore the new 

equation for insulin becomes: 

𝑑𝐼

𝑑𝑡
= −𝑝4 ∗ 𝐼(𝑡) + 𝐼𝑒𝑥𝑔𝐿 + 𝐼𝑒𝑥𝑔𝑅 − 𝐼(𝑡) ∗ 𝐴(𝑡),                                                     (6.9) 

 

where 𝐼𝑒𝑥𝑔 represents that long acting insulin and 𝐼𝑒𝑥  is the rapid acting insulin. 
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6.4. Model Analysis 

The system is non-dimensionalized, as in section 5.3.1, however the variable for plasma 

insulin is now rescaled to give a variable with no units as  𝐼 =
𝐼

𝜏
.  Therefore the unitless 

exercise system for a type 1 diabetic patient is now given by: 

𝑑�̃�

𝑑𝑇
= −𝑝1 ∗ 𝜏 ∗ (�̃� − 1) + �̃� ∗ (�̃� − �̃� − �̃�) +

𝑝13 ∗ 𝑝10 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑏 ∗ (
1
2 + 𝐺𝑙�̃�)

,          (6.10) 

𝑑�̃�

𝑑𝑇
=  −𝑝2 ∗ �̃� ∗ 𝜏 + 𝑝3 ∗ 𝐼𝑏 ∗ 𝜏

2 ∗ 𝐼,                                                                                (6.11) 

𝑑𝐼

𝑑𝑇
=  −𝑝4 ∗ 𝜏 ∗ 𝐼 + 𝑝5 ∗ 𝜏

2 ∗ ( −e
−π∗T∗τ+tdel 

ton + 𝑒
−π∗T∗τ−t𝑑𝑒𝑙

𝑡𝑑𝑒𝑔 ) − �̃� ∗ 𝐼,                  (6.12) 

𝑑�̃�

𝑑𝑇
=  −𝑝𝑏 ∗ �̃� ∗ 𝜏 + 𝑝7 ∗ 𝐸𝑏 ∗ 𝜏

2 ∗ �̃�,                                                                               (6.13) 

𝑑�̃� 

𝑑𝑇
= −𝑝8 ∗ 𝜏 ∗ (�̃� − 1) +

𝑝9 ∗ 𝐺𝑏 ∗ 𝜏

𝐸𝑏
∗ (1 − �̃�) + �̃� ∗ �̃�,                                          (6.14) 

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝10 ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

𝐺𝑙𝑦𝑏 ∗ (
1
2
+ 𝐺𝑙�̃�)

− 𝑝14 ∗ 𝜏 ∗ (𝐺𝑙�̃� − 1),                                                 (6.15) 

𝑑𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑑𝑇
= −0.8 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ∗ 𝜏 + 0.8 ∗ 𝜏2 ∗ 𝑢3,                                                          (6.16) 

𝑑�̃�

𝑑𝑇
= −𝑝11 ∗ �̃� ∗ 𝜏 + 𝑝12 ∗ 𝜏 ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃�,                                                                          (6.17) 
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By setting 𝜏 =
1

𝑝4
 the system is rescaled for insulin disappearance and is rewritten as:  

𝑑�̃�

𝑑𝑇
= −𝑝1̃ ∗ (�̃� − 1) + �̃� ∗ (�̃� − �̃� − �̃�) +

𝑝13̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(
1
2 + 𝐺𝑙�̃�)

,               (6.18) 

      
𝑑�̃�

𝑑𝑇
=  −𝑝2̃ ∗ �̃� + 𝑝3 ∗ 𝐼𝑏 ∗ 𝜏

2 ∗ 𝐼,                                                                          (6.19) 

𝑑𝐼

𝑑𝑇
=  −(𝐼 − 1) + 𝑝5̃ ∗ ( −e

−π∗T∗τ+tdel 
ton + 𝑒

−π∗T∗τ−t𝑑𝑒𝑙
𝑡𝑑𝑒𝑔 ) − 𝐼 ∗ �̃�,                 (6.20) 

𝑑�̃�

𝑑𝑇
=  −𝑝6̃ ∗ �̃� + 𝑝7̃ ∗ �̃�,                                                                                           (6.21) 

𝑑�̃� 

𝑑𝑇
= −𝑝8̃ ∗ (�̃� − 1) + 𝑝9̃ ∗ (1 − �̃�) + �̃� ∗ �̃�,                                                    (6.22) 

𝑑𝐺𝑙�̃�

𝑑𝑇
=  −

𝑝10̃ ∗ 𝐺𝑙�̃� ∗ 𝑃𝑉𝑂2
𝑚𝑎�̃�

(
1
2 + 𝐺𝑙�̃�)

− 𝑝14̃ ∗ (𝐺𝑙�̃� − 1),                                              (6.23) 

𝑑𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑑𝑇
=  −0.8 ∗

𝑃𝑉𝑂2
𝑚𝑎�̃�

𝑝4
+
0.8 ∗ 𝑢3

𝑝4
2 ,                                                                        (6.24) 

𝑑�̃�

𝑑𝑇
= −𝑝11̃ ∗ �̃� + 𝑝12̃ ∗ 𝑃𝑉𝑂2

𝑚𝑎�̃� ,                                                                           (6.25) 

 

where the unitless parameters are defined as: 

𝑝1̃ =
𝑝1
𝑝4
, 𝑝2̃ =

𝑝2
𝑝4
, 𝑝3̃ =

𝑝3 ∗ 𝐼𝑏

𝑝4
2 , 𝑝5̃ =

𝑝5

𝑝4
2 , 𝑝6̃ =

𝑝6
𝑝4
, 𝑝7̃ =

𝑝7∗𝐸𝑏
𝑝4
2  

, 𝑝8̃ =
𝑝2
𝑝4
, 

𝑝9̃ =
𝑝9 ∗ 𝐺𝑏
𝑝4 ∗ 𝐸𝑏

 , 𝑝10̃ =
𝑝10
𝐺𝑙𝑦𝑏

, 𝑝11̃ =
𝑝11
𝑝4
, 𝑝12̃ =

𝑝12
𝑝4
, 𝑝13̃ = 𝑝13 ∗

𝑝10
𝐺𝑏

 and 𝑝14̃ =
𝑝14
𝑝4
.   

The initial conditions then become 

�̃�(0) =
𝐺𝑏
𝐺𝑏

= 1, �̃�(0) = 0, 𝐼(0) =
𝐼0
𝑝4
, �̃�(0) = 0, �̃�(0) =

𝐸𝑏
𝐸𝑏
= 1, 

𝐺𝑙�̃�(0) =
𝐺𝑙𝑦𝑏
𝐺𝑙𝑦𝑏

= 1, 𝑃𝑉𝑂2
𝑚𝑎𝑥̃ (0) = 0 and �̃�(0) = 0. 

Examining the long term behaviour of the system it becomes clear that the new 

stationary point for the dimensional exercise model becomes 

lim 𝑡 →  ∞𝑓(𝐺(𝑡), 𝑋(𝑡), 𝐼(𝑡), 𝑌(𝑡), 𝐸(𝑡), 𝐺𝑙𝑦(𝑡), 𝑃𝑉𝑂2
𝑚𝑎𝑥(𝑡), 𝐴(𝑡) 

= (𝐺𝑏 , 0,0,
𝑝7
𝑝6
𝐸𝑏 , 𝐸𝑏 , 𝐺𝑙𝑦𝑏 , 0,0) 

therefore in non-dimensional terms this becomes (1,0,0, 
𝑝8  , 1,1,0,0). 
𝑝6 
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The Jacobian matrix evaluated at the critical point is given as: 
 
 
 

𝐽3 = 

[
 
 
 
 
 
 
 
 
 −𝑝1 ̃ −

𝑝2̃

𝑝2̃
+
𝑝7̃

𝑝6̃
−1 0 1 0 0 2 ∗

𝑝13̃

3
−1

0 −𝑝2̃ 𝑝3̃ 0 0 0 0 0
0 0 −1 0 0 0 0 −1
0 0 0 −𝑝6̃ 𝑝7̃ 0 0 0
−𝑝9̃ 0 0 0 −𝑝8̃ 0 0 1

0 0 0 0 0 −𝑝14̃ −2 ∗
𝑝10̃

3
0

0 0 0 0 0 0 −
0.8

𝑝1
0

0 0 0 0 0 0 𝑝12̃ −𝑝11̃]
 
 
 
 
 
 
 
 
 

                                  (6.18)                 

 

The characteristic polynomial was determined in Mathematica (See appendix) as: 
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6.4. Model Simulations 
 

This section will simulate the effects of the proposed term for insulin infusion on the 

minimal model as introduced in chapter 2 and the Glucagon Exercise Minimal Model 

proposed in chapter 5. The models are simulated in MATLAB, solved by ODE45 and 

the parameters are determined by LSQNONLIN. 

6.4.1. Minimal Model and Insulin Infusion 
 

By setting 𝑡𝑜𝑛 = 480 (mins) and 𝑡𝑑𝑒𝑔= 1200 (mins), a long acting insulin treatment is 

simulated, lasting for 24 hours. 

The minimal model was simulated, using the parameter values for the first four 

parameters as obtained by the glucagon minimal model, equations (3.4)-(3.7) in 

section 3.5.2, in figure 6.3, where α=10  and 𝑡𝑑𝑒𝑙  = 0. 

(a) (b) 
 

Figure 6.3: I(t) for 180 minutes following a long acting insulin treatment (a) and I(t) for 24 
hours following a long acting insulin treatment (b). 
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This can be adapted to simulated rapid acting insulin by changing the parameter 

values to give 𝑡𝑜𝑛 = 60(mins) and 𝑡𝑑𝑒𝑔= 300 (mins), e.g. Lispro or Aspart. Including 

this term into the minimal model gives the following responses from insulin in figure 

6.4: 

 

 

 

 

 

 

 

 
 

Figure 6.4: I(t) for 180 minutes following a rapid acting insulin treatment (a) and I(t) for 24 
hours following a long acting insulin treatment (b). 

 

Note that the amount of units the simulated treatment increases the plasma insulin by 

is dependent on both the parameters 𝛼, in equation (6.5), and 𝑝4, in equation (6.6). In 

physiological terms these will represent the strength of the insulin injection and the 

diffusion conditions in the subcutaneous tissue, discussed in section 6.1. 

(a) (b) 
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6.4.2. Exercise Glucagon Minimal Model and Insulin 

Infusion 

As in chapter 5, the parameters 𝑢3 and 𝑇𝑑𝑢𝑟 are fixed to adjust the model for various 

exercise intensities and durations respectively, replicating the protocols to the data 

obtained from various studies used to validate the models. 

The datasets used to validate the models are obtained from Ahlborg et al. (1974), 

Wolfe et al. (1984), Ahlborg and Felig (1982) and Campbell et al. (2014). Despite 

three of the datasets having been obtained by healthy individuals, they will still be 

used to validate the model as insulin production from the beta cells will be replaced 

by exogenous insulin. 

The parameter values will be presented at the end of this chapter in section 6.6 and 

can be found in appendix B. 
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6.5.2.1. Exercise at 30% of 𝐕𝐎𝐦𝐚𝐱 

 
The first simulation will be fitted to the dataset obtained by Ahlborg et al. (1974), 

whose method involved individuals exercising at 30% of their for 4 hours after a 12- 

14 hour fast. To represent individuals taking their basal insulin treatments before 

they went to bed the parameter controlling the time the treatment was taken will be 

set to  tdel=780 minutes (13 hours). The results are shown in figures 6.4 and 6.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.5: Exercise at 30% of 𝑉𝑂2
𝑚𝑎𝑥: G(t) against plasma glucose measurements, (a), Gly(t), 

(b), 𝑃𝑉𝑂2
𝑚𝑎𝑥  (t), (c) and A(t) (d). 

(a) (b) 

(d) (c) 
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The model equation for plasma glucose (a) provides an exact fit to the data set, 

predicting a slightly lower amount of muscle glycogen to be broken down than for the 

healthy patients, in addition to a slightly smaller amount of exercise activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6: Exercise at 30% of 𝑉𝑂2
𝑚𝑎𝑥: I(t) against plasma insulin measurements, (a), X(t),  

(b), E(t) against plasma glucagon measurements,(c) and Y(t) (d). 

 

The equation for plasma insulin (a) provides a very close fit, which visually appears to 

have a better accuracy than for the healthy individual (figure 5.4.a). The model shows 

an excellent fit for plasma glucagon (c) to the data set, increasing fourfold accordingly. 

Both glucagon and interstitial insulin activity are of a lower magnitude than the 

simulation for healthy individuals as shown in figures 5.4.b and 5.4.d. 

(a) (b) 

(c) (d) 
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6.5.2.2. Exercise at 40% of 𝐕𝐎𝐦𝐚𝐱 

 
For the second simulation the model will be fitted to the dataset obtained by Wolfe et 

al. (1982), whose method involved individuals exercising at 40% of their 𝑉𝑂𝑚𝑎𝑥 for 1 

hour following an overnight fast. To represent individuals taking their basal insulin 

treatments before they went to bed the parameter controlling the time the treatment 

was taken will be set to  tdel=780 minutes (13 hours). The results are shown in 

figures 6.6 and 6.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(c) (d) 

Figure 6.7: Exercise at 40% of 𝑉𝑂2
𝑚𝑎𝑥: G(t) against plasma glucose measurements, (a), Gly(t), 

(b), P𝑉𝑂2
𝑚𝑎𝑥 (t), (c) and A(t), (d). 
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Figure 6.7.a shows a good fit to the measurements for plasma glucose, however the 

fall predicted by G(t) appears exaggerated, as it is unlikely that such a dramatic fall in 

glucose levels would occur over such a short time period, especially given that the 

individuals is exercising at a fairly low intensity. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.8: Exercise at 40% of 𝑉𝑂2
𝑚𝑎𝑥: I(t) against plasma insulin measurements, (a), 

X(t), (b), E(t) against plasma glucagon measurements, (c) and Y(t), (d). 

Figure 6.8 shows the capability of the model to accurately fit the data measurements 

for plasma glucagon; however it does a poor job at fitting the plasma insulin 

measurements. All simulations for this exercise protocol are almost identical as seen 

in figures 5.5 and 5.6 for the healthy individual, which validates the ability of the term 

for the exogenous insulin. 

(c) (d) 

(a) (b) 
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6.5.2.3. Exercise at 58% of 𝑽𝑶𝒎𝒂𝒙 

 
This simulation sets 𝑢3 = 58 and 𝑇𝑑𝑢𝑟 = 210 to simulate the exercise protocol carried 

out in the studies by Ahlborg and Felig (1984). The participants began exercise 

following an overnight fast, therefore the initial measurements will be assumed to be 

the basal levels. It will also be assumed that individuals did not administer any rapid 

acting insulin, but did take their long acting insulin before they went to bed the 

previous evening. To represent individuals taking their basal insulin treatments 

before they went to bed the parameter controlling the time the treatment was taken 

will be set to tdel=780 minutes (13 hours). The results are shown in figures 6.6 and 

6.7. 
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Figure 6.9: Exercise at 58% of 𝑉𝑂2
𝑚𝑎𝑥: G(t) against plasma glucose measurements, 

(a), Gly(t), (b), 𝑃𝑉𝑂2
𝑚𝑎𝑥 (t), (c) and A(t), (d). 

The model provides an exact fit to the dataset for glucose (a) and shows complete 

depletion of glycogen levels. The model shows less exercise activity than in the 

previous simulation where 𝑃𝑉𝑂2
𝑚𝑎𝑥 = 40, which is highly unlikely to be the case 

given that this protocol is at a higher exercise intensity and for a longer duration, i.e. 

the energy expenditure is significantly greater. 

(b) 

(d) 

(a) 

(c) 
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Figure 6.10: Exercise at 58% of 𝑉𝑂2
𝑚𝑎𝑥: I(t) against plasma insulin measurements, 

(a), X(t), (b), E(t) against plasma glucagon measurements, (c) and Y(t), (d). 

The model provides a fairly good fit to both plasma insulin (a) and plasma glucagon 

(c) measurements. The simulation for a type 1 diabetic patient predicts higher levels 

of glucagon activity and lower levels of interstitial insulin activity than is predicted 

for a healthy individual (figure 5.8). 

(b) (a) 

(c) (d) 



147  

6.5.2.4. Exercise at 70% of 𝑽𝑶𝒎𝒂𝒙 

 
The last simulation is fitted to a dataset obtained by Campbell et al. (2014) which 

consisted of type 1 diabetic individuals taking part in exercise at 70% of their 𝑉𝑂𝑚𝑎𝑥 

for 45 minutes. Unlike the previous studies, these participants did not exercise 

following an overnight fast. Therefore this simulation will require both a long and 

rapid acting insulin treatment in order to accurately emulate the study carried out by 

Campbell and colleagues, as participants consumed a meal 1 hour beforehand. The 

long acting insulin was simulated by setting the parameters as tdel1=780 (mins) to 

represent the insulin administration taken 13 hours before starting exercise, the 

duration set to 𝑡𝑑𝑒𝑔1 = 1200 (mins) and the onset of the treatment as 𝑡𝑜𝑛1 = 480 

(mins). The rapid acting insulin was simulated by setting the time before the 

treatment was taken as tdel2=60 (mins), the duration of the treatment to be set as 

𝑡𝑑𝑒𝑔2  = 300 (mins) and the onset as 𝑡𝑜𝑛1  = 60 (mins). The parameters controlling the 

onset and clearance of the insulins are based on the characteristics as seen in table 

6.1. 
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Figure 6.11: Exercise at 70% of 𝑉𝑂2
𝑚𝑎𝑥: G(t) against plasma glucose measurements, 

(a), Gly(t), (b), 𝑃𝑉𝑂2
𝑚𝑎𝑥 (t), (c) and A(t), (d). 

Figure 6.11.a shows an exact fit to the plasma glucose measurements by G(t), show an 

initial drop in levels followed by a rapid rise as the concentration of the counter- 

regulatory hormones in the plasma are increased in response to the increased 

utilisation of glucose. Figure 6.11.b show glycogen levels close to becoming entirely 

utilised towards the end of the exercise duration. 

(a) (b) 

(c) (d) 
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Figure 6.12: Exercise at 70% of 𝑉𝑂2
𝑚𝑎𝑥: I(t) against plasma insulin measurements, 

(a), X(t), (b), E(t) against plasma glucagon measurements, (c) and Y(t), (d). 

The fit of the model to the plasma insulin measurements (6.12.a) is still not ideal, 

however it is a much closer fit than the Glucagon Exercise Minimal Model was capable 

for a healthy patient as seen in figure 5.10.a. 

Figure 6.12.d shows a fairly good fit for E(t) to the glucagon data, however the rapid 

increase in glucagon concentrations in the initial 5 minutes of exercise is rather 

excessive and, although it is quite likely that glucagon levels may overshoot the 

required level before smoothing out, the extent in which this model predicts is 

considered as unrealistic, although it is impossible to determine with sufficient data. 

(a) (b) 

(c) (d) 
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6.6. Discussion 
 

The Glucagon Exercise Minimal Model adapted for a type 1 diabetic individual has 

been successfully fitted to all four data sets, with the simulations principally 

providing better fits to the datasets than the model for healthy individuals as 

implemented in chapter 5. 

Table 6.3 is given below and shows the parameter values obtained by LSQNONLIN 

from the four simulations. 

Table 6.3: Parameter values from the Glucagon Exercise Minimal Model adapted for 

type 1 diabetes. 

 

 
Parameter 

𝐏𝐕𝐎𝐦𝐚𝐱 
𝟐 

30% 40% 58% 70% 

𝑆𝐺   = 𝑝1 0.01027182 5.016009 ∗ 10−7 0.018207975 0.13696906 

𝑝2 4.78573664 2.175737907 4.84584071 4.31249661 

𝑝3 0.00346643 0.029688922 0.01947456 0.05050953 

𝑝4 0.06522939 0.424544428 0.00736092 2.78760207 

𝑝5 6.73082717 4.549747∗ 10−9 1.331945 ∗ 10−12 82.16969825 

𝑝6 0.10781389 0.349566126 0.04045856 0.08585775 

𝑝7 2.320701 ∗ 10−6 5.43164∗ 10−4 2.550857 ∗ 10−6 0.00002443 

𝑝8 0.00351130 0.710479808 0.00785531 0.13772318 

𝑝9 2.175208 ∗ 10−9 1.38473137 4.840995 ∗ 10−8 9.13487573 

𝑝10 0.10927957 0.05874696 0.12256887 0.39720033 

𝑝11 0.00104748 0.18290123 0.01581215 3.340849 ∗ 10−14 

𝑝12 2.551955∗ 10−6 8.73518∗ 10−4 3.773498 ∗ 10−6 9.456928 ∗ 10−6 

𝑝13 0.39720317 0.3254266 0.93952685 1.01646595 

𝑆𝐼 =
𝑝3
𝑝2

 7.243263 ∗ 10−4 0.01364545 0.00401882 106.53106953 

𝑆𝐸 =
𝑝7
𝑝6

 2.152606 ∗ 10−5 0.001553823 6.304863 ∗ 10−5 0.01171236 

𝑆𝐴 =
𝑝12
𝑝2

 0.00243627 0.0047759 2.386455 ∗ 10−4 2.83069598 
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There has been no difference noted between type 1 diabetic and healthy individuals 

in their abilities to respond to insulin, such that values for glucose effectiveness and 

insulin sensitivity are not expected to differ (Greenbaum et al., 2002). This conjecture 

is confirmed by the values for glucose effectiveness for all simulations in table 6.3 

which are all within a close vicinity to the values returned by the model for healthy 

individuals (table 5.12). 

The results for both insulin and glucagon sensitivity are surprising, in the sense that 

they are expected to increase with increasing energy expenditure and with the 

greatest amount of glycogen depletion (Colberg, 2008), (Kang et al. 1996). This would 

suggest that the simulations for 𝑃𝑉𝑂𝑚  = 58 and 𝑃𝑉𝑂𝑚𝑎𝑥  = 70 ought to return   the 2 2 

highest values for the parameters, which is true for the case where 𝑃𝑉𝑂𝑚𝑎𝑥 = 70 but 

not for where 𝑃𝑉𝑂𝑚𝑎𝑥 = 58, which returns significantly lower values than the 

simulation where 𝑃𝑉𝑂𝑚𝑎𝑥 = 40. This may be due to varying individual factors, as it is 

known that insulin sensitivity is likely to be increased in both trained and younger 

individuals than for those who are sedentary and middle-aged or older (Henriksson, 

1995). 

Exercise sensitivity is also expected to increase with increased energy expenditure. 

For this to be the case, it would be anticipated that the simulation where 𝑃𝑉𝑂𝑚  = 58 

would return the highest value and where 𝑃𝑉𝑂𝑚𝑎𝑥 = 40 to return the lowest. The 

results are slightly different from what was expected, however are still within the 

same magnitude of the foreseen results, suggesting the likelihood that this result was 

down to individual variability. This reinforces the need for an additional study 

consisting of the same individuals carrying out exercise at different intensities. 
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6.7. Summary 
 

In this chapter the Glucagon Exercise Minimal Model was adapted to consider an 

individual with T1DM administering exogenous insulin. 

The model provides an excellent fit to the plasma measurements obtained by Ahlborg 

et al. (1974) where 𝑃𝑉𝑂𝑚ax  = 30 and shows reasonable levels of insulin and 

glucagon activity in comparison to the IVGTT model. Exercise activity increases 

linearly with exercise intensity as a function of time, which is expected during low 

intensity exercise. 

The fit against the data from Wolfe et al. (1984), where 𝑃𝑉𝑂𝑚𝑎𝑥 = 40, is reasonable 

with the exception of plasma insulin. This is also the case for the model in chapter 5, 

where no diabetes was assumed; likely to be the result of insufficient data for the 

model to capture insulin dynamics. 

This is also the case for the model in chapter 5 where no diabetes was assumed, 

therefore is likely to be caused by insufficient data for the model to capture insulin 

dynamics. 

The simulations, where  𝑃𝑉𝑂2
𝑚𝑎𝑥 = 58 𝑎𝑛𝑑 𝑃𝑉𝑂2

𝑚𝑎𝑥   = 70, although slightly under   or 

overestimating the concentration of the hormones at certain points, overall provided 

better fits than the Glucagon Exercise Minimal Model for healthy individuals. 

The majority of the key parameters are within reasonable magnitude of the 

acceptable ranges specified within the literature, with any marked differences likely 

to be the result of changes induced by physiological exercise. 

As for the models in chapter 5, typically the ability of the model to fit the data 

improves as exercise intensity decreases, suggesting that either a bi-hormonal model 

is not sufficiently representative of higher intensity exercise or that there are still 

some mechanisms of glucose-insulin-glucagon dynamics that are not fully understood. 

Overall, the term proposed for insulin administration has performed well in replacing 

β-cell secretion, and can be adapted accordingly to mimic the characteristics of 

various insulin treatments. 
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Chapter 7 Conclusions and Future Work 
 

Incorporating regular exercise into the daily lives of individuals has been proven to 

have numerous health benefits, such as decreasing blood pressure, reducing the risk 

of heart disease as well as preventing obesity and the onset of many other health 

conditions. Whilst this is true for patients with diabetes; there is however, an 

additional factor to be considered when controlling glucose levels based on the 

evidence on the wide range of health benefits from regular exercise is growing for 

both type 1 (T1DM) and type 2 diabetics (T2DM). These include an increase in insulin 

sensitivity and glucose uptake; thus resulting in a decreased dependency on insulin 

treatments for patients with T1DM or severe T2DM, and the potential to reverse the 

onset of T2DM. The implications of these effects will not only lead to a reduction of 

the strain on health services but will allow for diabetic patients to have more freedom 

in leading a healthy and normal lifestyle. 

Mathematical models for blood glucose regulation are considered as beneficial tools 

due to their ability to aid our understanding of system behaviours (Lakshmi Kiran et 

al., 2010), contribute towards the progression of artificial pancreas development 

(Herrero et al., 2013), have applications for automated insulin dosage adjustments 

(Lehnmann and Deutsch, 1992) and allow for the assessment of insulin sensitivity, 

glucose effectiveness (Vicini et al., 1997) and now glucagon sensitivity. 

The primary goal of this thesis has been to develop a mathematical model showing 

the effects of exercise on blood glucose and its regulatory hormones. At present the 

majority of mathematical models for the glucose regulatory system consider glucose- 

insulin dynamics, in order to determine whether an individual has or is at risk of 

diabetes by measuring their ability to respond to or produce insulin. However, the 

counter-regulatory hormones become increasingly important during periods of low 

blood glucose, for example during prolonged physical activity. 

The importance of glucagon in particular is increasingly becoming recognised. 

Understanding the contribution of glucagon to hepatic hyperglycaemia can help 

clinicians to identify the presence of diabetes, and which can then be treated by 

manipulating glucagon levels which has been proven to be beneficial to the diabetic 

state (Edgerton and Cherrington, 2011), (Siafarikas et al., 2012). 
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In chapter 3, three mathematical models were presented, each demonstrating 

glucose-insulin-glucagon dynamics during an Intravenous Glucose Tolerance Test 

(IVGTT). An IVGTT was chosen as the first scenario to model the effects of glucagon as 

there are many existing models that the model can be validated against and for the 

key parameter values such as insulin sensitivity, 𝑆𝐼, and glucose effectiveness, 𝑆𝐺, to 

be compared to. Despite glucagon’s minor role, the models highlighted the 

importance of the action of glucagon to stimulate hepatic glucose production in order 

to counter the fall of glucose concentrations below the basal level, as often occurs as a 

result of the hypersecretion of insulin in response to an IVGTT. The results obtained 

from the three glucagon IVGTT models were compared and it was found that the 

linear model was by far inferior to the other two models. This result indicated that a 

model assuming a linear relationship between plasma glucose and insulin was 

insufficient during large fluctuations of the hormone, however there was not a 

significant difference between a nonlinear or a linear relationship between plasma 

glucose and glucagon, which is hypothesized to be due to the minimal role of glucagon 

during an IVGTT. Therefore, it is expected that the Linear Glucagon Minimal Model 

will to be inferior when modelling scenarios faced with low blood glucose, e.g. during 

exercise. 

In chapter 5, the two models identified to be superior in chapter 3 were adapted to 

consider the physiologically mechanisms within the system that regulate glucose 

levels during exercise for a nondiabetic, healthy individual. Both models supported 

the hypothesis that glucose levels decline as glycogen stores are depleted and 

highlight the importance of the increase in the secretion of glucagon in order to 

prevent hypoglycaemia. The Glucagon Exercise Minimal Model was chosen as the 

optimal model for simulating the glucose regulatory system during exercise; it is 

capable of fitting physiological datasets, the performance of the simulations are in 

accordance with behaviour anticipated from literature and the physical implications 

of the key parameters are consistent. In addition, the parameters typically increased 

with increased energy expenditure, whereas the parameters of the Simplified 

Glucagon Exercise Minimal Model did not show any relationship between their values 

and exercise, and were often unreasonably high. Despite its drawbacks, the Simplified 

Glucagon Exercise Minimal Model did provide the better fit to the data for a number 

of simulations, as well as being advantageous in that it consisted of two quantities 

less than the Glucagon Exercise Minimal Model. This result suggests that linear 



155  

dynamics for glucagon are only suitable when glucagon activity is minimal. In 

addition, the Glucagon Exercise Minimal Model was able to return a parameter value 

for glucagon sensitivity. It is important to determine whether or not an individual, 

particularly a diabetic individual, has poor glucagon sensitivity as they will face an 

increased risk of hypoglycaemia, which, if left untreated, can result in severe health 

problems. 

Chapter 6 adapted the equation for plasma insulin in the Glucagon Exercise Minimal 

Model to be representative of an individual with type 1 diabetes, i.e. the pancreas is 

incapable of producing insulin. From comparing the results of the two models (figures 

5.4.a, 5.6.a, 5.8.a and 5.10.a to 6.6.a, 6.8.a, 6.10.a and 6.12.a) it was concluded that the 

model achieves a much better fit to the dataset for plasma insulin concentrations 

when it is simulated for a type 1 diabetic individual than when it is simulated for a 

nondiabetic, healthy individual. This result suggests that the terms proposed for 

insulin production are too simple for modelling the 𝛽-cell response to exercise. 

From the observations within literature it was expected that insulin sensitivity would 

increase simultaneously with the amount of glycogen utilised for fuel during the 

activity (Colberg, 2008). Results from chapter 5 do not agree with this expectation, 

rather suggesting that insulin sensitivity increases with the rate of glycogen 

degradation, 𝑝10  (see tables 5.7-5.11); however without actual muscle glycogen data 

it is difficult to validate this conclusion. 

The results of chapter 5 show that insulin sensitivity, glycogen mobilisation and 

glucose effectiveness increase with exercise intensity, which are all in agreement with 

the findings of Robergs et al. (1985), Adams (2013) and Hayashi et al. (2005). In 

comparison both glucagon and exercise sensitivity were at their highest when energy 

expenditure was at its greatest. This is to be expected for glucagon, given that the liver 

becomes more sensitised to the activity of glucagon with endurance exercise (Lavoie, 

2005) and studies show that the glucagon response is typically greater the longer the 

exercise duration (Garrett and Kirkendall, 1999). 

In chapter 6, the results for a type 1 diabetic individual slightly deviated from those 

for the healthy person in chapter 5. The model in chapter 6 showed the parameters 

for insulin sensitivity, glycogen mobilisation, glucose effectiveness, glucagon 

sensitivity and exercise sensitivity to all to be the highest the greatest exercise 

intensity. The parameter results in this chapter do not appear to show any particular 
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correlation between their values and exercise intensity or energy expenditure, 

however this is likely to be due to individual variations in fitness levels and diabetic 

states, again a consequence of insufficient data availability. 

From the work of this thesis it can be determined that a combination of both 

endurance and high intensity exercise are beneficial for glucoregulatory health, 

whereas the results suggest that higher intensity exercise appears to be more 

beneficial for individuals with T1DM. This information is obtained from the results 

of the key parameters which offer an insight into glucoregulation, insulin sensitivity 

and glucose effectiveness. Before exercise recommendations can be adjusted these 

models require further validation to ensure the safety of participants and to gain a 

further insight into the duration and intensity of exercise most beneficial for 

improving the diabetic state. 

In order to thoroughly validate the model, more data points are required. Validating a 

model with real life data is essential, as if it provides a bad fit it is unlikely that the 

model can provide good answers to the underlying questions under investigation 

(Guthrie et al., 2002). Due to the timescale and limitations of funding within this 

project, collecting data samples was not possible. It is strongly recommended that for 

a future project on this topic data ought to be obtained. Further, it is recommended 

that a study involving a number of participants with varying bodyweights and fitness 

levels who are required to take part in a number of exercise protocols of varying 

levels of intensity and durations is undertaken. It is suggested that a greater number 

of blood samples are taken than in the datasets presently available in order to 

improve the confidence intervals for the parameter fits. 

The focus of this model is on exercise, therefore, since it is known that during exercise 

catecholamines are the main hormones whose concentrations markedly increase 

(Zouhal et al., 2008), future work ought to introduce the effects of these hormones on 

the glucose regulation system. Catecholamines are potent inhibitors of insulin release 

(Wilcox, 2005) therefore it is anticipated that introducing new variables to model the 

effects of the hormones may improve the accuracy of the model to capture the decline 

in plasma insulin. 

An additional variable worth consideration would be the role of cortisol, which 

becomes particularly amplified in moderate-high intensity exercise (Hill et al., 2008). 

It is notable that the model typically provides better fits to the data from the lower 
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intensity exercise and therefore it may be that for higher intensities a bi-hormonal 

regulation model of glucose is insufficient and needs to take into account the effect of 

other counter-regulatory hormones. 

The variable used to quantify exercise intensity in the models in this thesis was the 

percentage of  𝑉𝑂2
𝑚𝑎𝑥  taken from Roy and Parker (2007) (see chapter 5).   

Using the percentage of 𝑉𝑂2
𝑚𝑎𝑥  to quantify exercise intensity assumes that oxygen 

consumption is linearly proportional to energy expenditure, which may not be true 

for all exercise, as was the case for the studies by Barstow and Mole (1991). It was 

hypothesised from these results that it would be possible that using 𝑃𝑉𝑂2
𝑚𝑎𝑥 may not 

be a suitable for quantifying exercise intensity for individuals exercising at higher 

working rates. In the simulations from both chapters 5 and 6 the models provide 

much better fits to the datasets for the lower intensities. Therefore it is advised that 

further research on the relationship between energy expenditure and oxygen 

consumption should be completed in order to develop a more accurate equation. 

Physiological concepts have been synthesised and implemented within a 

mathematical model that is capable of predicting blood glucose using a bi-hormonal 

approach during exercise, for both healthy and diabetic individuals. The results show 

that high intensity exercise is ideal for improving insulin sensitivity and glucose 

effectiveness, whereas exercise duration is the principal factor for improving the 

liver’s sensitivity to glucagon. Evidence indicates that over a few years, following the 

diagnosis of type 1 diabetes the liver typically becomes desensitised to the action of 

glucagon, whereas type 2 diabetes is typically associated with poor insulin sensitivity. 

Therefore this project and studies of a similar nature could lead to new 

recommendations for managing both T1DM and T2DM. 
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Appendix A 
 

Datasets 
 

Blood measurents from Pacini and Bergman (1984) from a healthy, non-diabetic 

individual during and IVGTT. 

 

Time Glucose (mg/dl) Insulin (µU/ml) 

0 92 11 

2 350 26 

4 287 130 

6 251 85 

8 240 51 

10 216 49 

12 211 45 

14 205 41 

16 196 35 

19 192 30 

22 172 30 

27 163 27 

32 142 30 

42 124 22 

52 105 15 

62 92 15 

72 84 11 

82 77 10 

92 82 8 

102 81 11 

122 82 7 

142 82 8 

162 85 8 

182 90 7 
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Blood measurements taken by Ahlborg et al. ( 1974) from healthy, non-diabetic 

individuals exercising at 30% of their   in the post-absorptive state for 240 minutes. 

 

Time Glucose (mg/dl) Insulin (µU/ml) Glucagon (pg/ml) 

0 81.2 13.9 75 

40 84.6 12.3 76 

90 77.4 10 99 

180 63 7.2 201 

240 56.2 6.2 408 

 
 

Blood measurements taken by Wolfe et al. (1984) from healthy, non-diabetic 

individuals exercising at 40% of their in the post-absorptive state for 60 minutes 

 

Time Glucose (mg/dl) Insulin (µU/ml) Glucagon (pg/ml) 

0 88 13.2 142 

15 86 10.3 207 

30 88 9.4 194 

45 87 8.6 201 

52 86 8.7 194 

60 84 8.4 199 

 
 

Blood measurements taken by Ahlborg and Felig (1982) from healthy, non-diabetic 

individuals exercising at 58% of their in the post-absorptive state for 210 minutes 

 

Time Glucose (mg/dl) Insulin (µU/ml) Glucagon (pg/ml) 

0 4.39 14.5 77 

40 4.09 11.8 66 

90 3.86 9.2 111 

120 3.55 8 158 

180 2.78 6 257 

210 2.56  
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Appendix B Parameter Values 
 

B.1. Linear Glucagon Model 
 
 

Parameter Value Unit 

𝑆𝐺   = 𝑝1 0.02717445 𝑚𝑖𝑛−1 

𝑝2 
0.11739499 𝑚𝑖𝑛−1(𝑚𝑔/𝑑𝑙) 

𝑝3 
0.02085256 𝑚𝑖𝑛−1(𝑚𝑔/𝑑𝑙) 

𝑝4 
0.07243666 𝑚𝑖𝑛−1 

𝑝5 
0.37843489 𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙) 

𝑝6 0.00237924 𝑚𝑖𝑛−1 

𝑝7 
0.00800919 𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙) 

𝐺0 289.00705341 𝑚𝑔/𝑑𝑙 

𝐼0 393.16692531 µ𝑈/𝑚𝑙 

 
B.2. Glucagon Minimal Model 

 
B.2.1. Dimensional Model 

 
 

Parameter Value Unit 

𝑆𝐺   = 𝑝1 0.02059000 𝑚𝑖𝑛−1 

𝑝2 0.02219000 𝑚𝑖𝑛−1 

𝑝3 
1.37999 ∗ 10−5 𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 

𝑝4 
0.32000001 𝑚𝑖𝑛−1 

𝑝5 
0.00367636 𝑚𝑖𝑛−2 (µ𝑈/𝑚𝐿) 

𝑝6 
0.14200001 𝑚𝑖𝑛−1 

𝑝7 2.17999 ∗ 10−4 𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙)−1 

𝑝8 
0.04940002 𝑚𝑖𝑛−1 

𝑝9 1.78999 ∗ 10−5 𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙) 

𝑆𝐼 6.21902 ∗ 10−4 𝑚𝑖𝑛−1(µ𝑈/𝑚𝑙)−1 

𝑆𝐸 0.00153521 𝑚𝑖𝑛−1(𝑝𝑔/𝑚𝑙)−1 

𝐺0 293 𝑚𝑔/𝑑𝑙 

𝐼0 360 µ𝑈/𝑚𝑙 
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B.2.2. Dimensionless Model 
 
 

 

 
Parameter 

 

Dimensional 

Value 

Non- 

Dimensional 

value rescaled 

by 𝝉 =
𝟏

𝒑𝟏
 

 

Non- 

Dimensional 

value rescaled 

by 𝝉 =
𝟏

𝒑𝟒
 

 
 

Non-

Dimensional 

value rescaled 

by 𝝉 =
𝟏

𝒑𝟖
 

 

 
 

𝑆𝐺   = 𝑝1 0.02058 0.01756659 0.00941376 0.00941386 

𝑝2 0.02218 0.11408124 0.03733535 0.037336576 

𝑝3 0.0000137 0.0000360401 0.0000201577 0.0000201556 

𝑝4 0.32 0.03563689 0.2783405 0.278343671 

𝑝5 0.0032 0.00630156 0.00334216 0.003342215 

𝑝6 0.142 1.1440989 0.7025258 0.702525919 

𝑝7 0.000217 0.06857451 0.00796508 0.007964075 

𝑝8 0.0494 0.04687327 0.499999 0.5 

𝑝9 0.0000178 0.001533393 0.000024545 0.00001 

𝑆𝐼 0.000617 0.000315916 0.000539908 0.00053928 

𝑆𝐸 0.001528 0.0599379 0.01539908 0.0113 

𝐺0 293 292 279 279 

𝐼0 360 366 360 360 
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B.3. Linear Glucagon Minimal Model 
 

B.3.1. Dimensional Model 
 
 

Parameter Value Unit 

𝑆𝐺   = 𝑝1 
0.02808122 𝑚𝑖𝑛−1 

𝑝2 
0.00996122 𝑚𝑖𝑛−1 

𝑝3 
7.31888 ∗ 10−6 𝑚𝑖𝑛−2 (µ𝑈/𝑚𝑙)−1 

𝑝4 0.27943170 𝑚𝑖𝑛−1 

𝑝5 
0.00290469 𝑚𝑖𝑛−2 (µ𝑈/𝑚𝐿) 

𝑝6 0.19225742 𝑚𝑖𝑛−1 

𝑝7 0.00364470 𝑚𝑖𝑛−2 (𝑝𝑔/𝑚𝑙) 

𝑝8 0.01530144 (𝑚𝑔/𝑑𝑙)𝑚𝑖𝑛−1 

𝑆𝐼 7.34737 ∗ 10−4 𝑚𝑖𝑛−1(µ𝑈/𝑚𝑙)−1 

𝐺0 293 𝑚𝑔/𝑑𝑙 

𝐼0 360 µ𝑈/𝑚𝑙 

B.3.2. Dimensionless Model 
 
 

Parameter Dimensional 

Value 

Non- 

Dimensional 

value rescaled 

by 𝝉 =  
𝟏 

𝒑𝟏 

Non- 

Dimensional 

value rescaled 

by 𝝉 =  
𝟏 

𝒑𝟒 

Non- 

Dimensional 

value rescaled 

by 𝝉 =  
𝟏 

𝒑𝟔 

𝑆𝐺   = 𝑝1 0.010682729 0.01997831 0.0153103 0.0150861 

𝑝2 0.039225779 0.0144932 0.0231139 0.02259839 

𝑝3 0.000020016 0.0000108854 0.00001459 0.000014613 

𝑝4 0.296424834 0.20202604 0.22646731 0.212060508 

𝑝5 0.003663205 0.00197596 0.0023889 0.002129929 

𝑝6 0.097285237 0.485124233 0.1222461 0.221008791 

𝑝7 0.000724184 0.002605806 0.00124715 0.00152487 

𝑝8 0.000724178 0.037376378 0.0116759 0.01809859 

𝑆𝐼 0.000510277 0.000751068 0.00063153 0.000646669 

𝐺0 293 282 279 282 

𝐼0 360 411 406 410 
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B.4. Glucagon Exercise Minimal Model and Simplified 

Glucagon Exercise Minimal Model 

B.4.1. 30% of 𝑽𝑶𝒎𝒂𝒙 

 
 

Parameter GEMM GEMM Parameter SGEMM 

𝑆𝐺   = 𝑝1 0.017553609 𝑝1 0.00150000 

𝑝2 2.239076769 𝑝2 0.30089987 

𝑝3 0.003716462 𝑝3 0.00142961 

𝑝4 0.018928669 𝑝4 0.03692484 

𝑝5 7.17288309 ∗ 10−5 𝑝5 4.1464406 ∗ 10−4 

𝑝6 0.98138568 - - 

𝑝7 3.31033229 ∗ 10−5 - - 

𝑝8 0.01758642 𝑝6 0.04036082 

𝑝9 2.56707631 ∗ 10−6 𝑝7 2.8118593 ∗ 10−12 

- - 𝑃8 0.10928015 
𝑝10 0.10927865 𝑝9 4.3601980 ∗ 10−14 
𝑝11 6.66091373 ∗ 10−4 𝑝10 6.42580655 ∗ 10−6 
𝑝12 4.13286068 ∗ 10−6 𝑝11 2.65330416 
𝑝13 0.93794325 𝑝12 0.00503468 

𝑆𝐼 =
𝑝3
𝑝2

 0.00165982 𝑆𝐼 =
𝑝3
𝑝2

 0.00475113 

𝑆𝐸 =
𝑝7
𝑝6

 3.37312064 ∗ 10−5 
- - 

𝑆𝐴 =
𝑝12
𝑝11

 

 

0.006204645 𝑆𝐴 =
𝑝10
𝑝9

 

 

1.49667911∗ 108 
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B.4.2. 40% of 𝑽𝑶𝒎𝒂𝒙 

 
 

Parameter GEMM Value 
Parameter 

SGEMM 
Value 

𝑝1 9.82210456 ∗ 10−7 𝑝1 
1.294901545 

∗ 10−4 

𝑝2 2.174472150 𝑝2 3.046685906 

𝑝3 0.030060071 𝑝3 0.026127559 

𝑝4 0.427363226 𝑝4 0.155124835 

𝑝5 3.10209295 ∗ 10−7 𝑝5 2.03958405 ∗ 10−7 

𝑝6 0.351946257 - - 

𝑝7 5.50234639 ∗ 10−4 - - 

𝑝8 0.710810527 𝑝6 0.238400979 

𝑝9 1.374827718 𝑝7 1.374827718 

- - 𝑃8 0.223552393 

𝑝10 0.061870951 𝑝9 0.061870951 

𝑝11 0.183857888 𝑝10 0.814572420 

𝑝12 8.78558488 ∗ 10−4 𝑝11 0.001336112 

𝑝13 0.314711184 𝑝12 0.362639165 

𝑆𝐼 =
𝑝3
𝑝2

 0.013824077 𝑆𝐼 =
𝑝3
𝑝2

 0.008575731 

𝑆𝐸 =
𝑝7
𝑝6

 0.001563405 - - 

𝑆𝐴 =
𝑝12
𝑝11

 

 

0.004778465 𝑆𝐴 =
𝑝10
𝑝9

 

 

13.16566828 
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B.4.3. 58% of 𝑽𝑶𝒎𝒂𝒙 

 
 

Parameter GEMM Value 
Parameter 

SGEMM 
Value 

𝑆𝐺   = 𝑝1 0.20550317 𝑝1 0.016411558 

𝑝2 1.13046419 𝑝2 0.963873328 

𝑝3 0.02299561 𝑝3 0.000679837 

𝑝4 0.09800001 𝑝4 0.010277818 

𝑝5 0.05600000 𝑝5 7.87208 ∗ 10−14 

𝑝6 5.37961561 - - 

𝑝7 0.00015838 - - 

𝑝8 1.59847556 𝑝6 0.161251435 

𝑝9 9.20837923 𝑝7 0.016193108 

𝑝10 0.09947311 𝑝8 0.001037968 

𝑝11 0.00000188 𝑝9 0.099488025 

𝑝12 0.00001003 𝑝10 0.010979608 

𝑝13 6.40031140 𝑝11 0.000003678 

- 
 
 

0.02034174 𝑝12 

 

 

2.681901231 

𝑆𝐼 =
𝑝3
𝑝2

 0.00002944 𝑆𝐼 =
𝑝3
𝑝2

 0.000705317 

𝑆𝐸 =
𝑝7
𝑝6

 5.32583804 - - 

𝑆𝐴 =
𝑝12
𝑝11

 

 

0.20550317 𝑆𝐴 =
𝑝10
𝑝9

 

 

0.110361102 
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B.4.4. 70% of 𝑽𝑶𝒎𝒂𝒙 

 
 

Parameter GEMM Value 
Parameter 

SGEMM 
Value 

𝑆𝐺   = 𝑝1 0.21299553 𝑝1 0.346341523 

𝑝2 1.29778516 𝑝2 9.633789789 

𝑝3 0.03443631 𝑝3 1.173031 ∗ 10−4 

𝑝4 0.24788057 𝑝4 14.231816526 

𝑝5 0.01799555 𝑝5 8.603068353 

𝑝6 0.09630926 - - 

𝑝7 0.00004806 - - 

𝑝8 1.43637670 𝑝6 0.001000000 

𝑝9 0.22328702 𝑝7 23.707465199 

- - 𝑃8 3.124506262 

𝑝10 0.30186851 𝑝9 0.953347919 

𝑝11 0.07182015 𝑝10 4.189026 ∗ 10−6 

𝑝12 0.00009171 𝑝11 8.169374 ∗ 10−4 

𝑝13 1.73064711 𝑝12 4.454932251 

𝑆𝐼 =
𝑝3
𝑝2

 0.02653468 𝑆𝐼 =
𝑝3
𝑝2

 1.217621 ∗ 10−5 

𝑆𝐸 =
𝑝7
𝑝6

 4.989975 ∗ 10−4 - - 

𝑆𝐴 =
𝑝12
𝑝11

 

 

0.00127690 𝑆𝐴 =
𝑝10
𝑝9

 

 

4.394016 ∗ 10−6 
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B.6. T1DM Glucagon Exercise Minimal Model 
 
 

Parameter 
𝐏𝐕𝐎𝐦𝐚𝐱 

𝟐 
30% 40% 58% 70% 

𝑆𝐺   = 𝑝1 0.01027182 5.016009 ∗ 10−7 0.018207975 0.13696906 

𝑝2 4.78573664 2.175737907 4.84584071 4.31249661 

𝑝3 0.00346643 0.029688922 0.01947456 0.05050953 
𝑝4 0.06522939 0.424544428 0.00736092 2.78760207 

𝑝5 6.73082717 4.549747∗ 10−9 1.33194 ∗ 10−12 82.16969825 

𝑝6 0.10781389 0.349566126 0.04045856 0.08585775 

𝑝7 2.32071 ∗ 10−6 5.43164∗ 10−4 2.550857 ∗ 10−6 0.00002443 

𝑝8 0.00351130 0.710479808 0.00785531 0.13772318 

𝑝9 2.17520 ∗ 10−9 1.38473137 4.840995 ∗ 10−8 9.13487573 

𝑝10 0.10927957 0.05874696 0.12256887 0.39720033 

𝑝11 0.00104748 0.18290123 0.01581215 3.340849 ∗ 10−14 

𝑝12 2.55196∗ 10−6 8.73518∗ 10−4 3.773498 ∗ 10−6 9.456928 ∗ 10−6 

𝑝13 0.39720317 0.3254266 0.93952685 1.01646595 

𝑆𝐼 =
𝑝3
𝑝2

 7.24326 ∗ 10−4 0.01364545 0.00401882 106.53106953 

𝑆𝐸 =
𝑝7
𝑝6

 2.15261 ∗ 10−5 0.001553823 6.304863 ∗ 10−5 0.01171236 

𝑆𝐴 =
𝑝12
𝑝11

 

 

0.00243627 0.0047759 2.386455 ∗ 10−4 2.83069598 
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Appendix C Code Examples 
 

C.1. MATLAB 
 

C.1.1. IVGTT Linear Glucagon Minimal Model 
 

Main 

function [] = Molly_Glucagon_Model 

format compact 

format long 

 

data = [0 92 11 
  2 350 26 
  4 287 130 
  6 251 85 
  8 240 51 
  10 216 49 
  12 211 45 
  14 205 41 
  16 196 35 
  19 192 30 
  22 172 30 
  27 163 27 
  32 142 30 
  42 124 22 
  52 105 15 
  62 92 15 
  72 84 11 
  82 77 10 
  92 82 8 
  102 81 11 
  122 82 7 
  142 82 8 
  162 85 8 
  182 90 7]; 

 

t_data = data(2:length(data),1); 

glucose_data = data(2:length(data),2); 

insulin_data = data(2:length(data),3); 

 

G_b = 92.5; 

I_b = 13.2; 

E_b = 142; 

 

options = optimset('MaxFunEvals',10000,'MaxIter',5000,'TolX',1e- 

4000,'TolFun',1e-4000); 

guess = [ 0.02 

0.05 

1.28e-005 

0.142 

0.002 

0.05 

2.9e-005 

0.02 

293 

3.6e+002]; 
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lb = [0.008 0.05 0.000001 0.05 0.0005 0.01 0.000001 0.00001 279 360]; 

ub = [0.03 0.5 0.0001 0.5 0.05 0.0495 0.2 0.5 293 403]; 

 
model_param = 

lsqnonlin(@Glucagon_Error_Func,guess,lb,ub,options,t_data,glucose_data,in 

sulin_data,G_b,I_b,E_b); 

 

 
tspan = 0:.5:max(t_data); 

 

IC = [model_param(9),0,model_param(10),E_b]; 

 
sol = ode45(@Glucagon_system,tspan,IC,[],model_param,G_b,I_b,E_b); 

disp('parameter values') 

for i = 1:10 

disp(model_param(i)) 

end 

disp('S_I'),disp(model_param(3)/model_param(2)) 

 
final_soln = deval(sol,tspan); 

G = final_soln(1,:); 

X = final_soln(2,:); 

I = final_soln(3,:); 

E = final_soln(4,:); 

 
disp('Do you wish to view G, X, I or E') 

disp('1=Blood Glucose Level') 

disp('2=Interstitial Insulin Level') 

disp('3=Plasma Insulin Level') 

disp('4=Plasma Glucagon Level') 

plot_choice = input(''); 

 
if plot_choice == 1 

plot(t_data,glucose_data,'o') 

hold on 

plot(tspan,G,'g') 

ylabel('Plasma Glucose (mg/dL)') 

xlabel('Time (mins)') 

legend('Plasma Glucose Data IVGTT','Model for Plasma Glucose 

Concentration IVGTT') 

elseif plot_choice == 2 

plot(tspan,X,'--g') 

ylabel('Interstitial Insulin (1/min)') 

xlabel('Time (mins)') 

legend('Interstitial Insulin Activity IVGTT') 

elseif plot_choice == 3 

plot(t_data,insulin_data,'o') 

hold on 

plot(tspan,I,'g') 

ylabel('Plasma Insulin (uU/mL)') 

xlabel('Time (mins)') 

legend('Plasma Insulin Data IVGTT','Model for Plasma Insulin 

Concentration IVGTT') 

elseif plot_choice == 4 

plot(tspan,E,'g') 

ylabel('Plasma Glucagon (pg/mL)') 

xlabel('Time (mins)') 

legend('Model for Plasma Glucagon Concentration IVGTT') 

end 
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System of ODEs 

function dydt = Glucagon_system(t,y,param,G_b,I_b,E_b) 

if y(1)-G_b<=0 

F1 = 0; 

F2 = G_b-y(1); 

else 

F1 = y(1)-G_b; 

F2 = 0; 

end 

 
if y(3)-I_b<0 

F3=0; 

else 

F3=y(3)-I_b; 

end 

dydt = [-param(1)*(y(1)-G_b)-y(2)*y(1)+param(8)*(y(4)-E_b) 

-param(2)*y(2)+param(3)*F3 

-param(4)*(y(3)-I_b)+param(5)*F1*t 

-param(6)*(y(4)-E_b)+param(7)*F2*t]; 

 

Error Function 

 
function error = 

Glucagon_Error_Func(guess,t_data,glucose_data,insulin_data,glucagon_data, 

G_b,I_b,E_b) 

 
IC = [guess(9),0,guess(10),E_b]; 

tspan = 0:0.01:max(t_data); 

 
sol = ode45(@Glucagon_system,tspan,IC,[],guess,G_b,I_b,E_b); 

approx_soln = deval(sol,t_data); 

glucose_approx = approx_soln(1,:); 

insulin_approx = approx_soln(3,:); 

 

N = length(glucose_data); 

error = [glucose_data(3:N).'-glucose_approx(3:N) insulin_data(3:N).'- 

insulin_approx(3:N)]; 

 

C.1.2. Glucagon Exercise Minimal Model for T1DM at 30% of 

𝐕𝐎𝐦𝐚𝐱 

 
Main 

function [] = Molly_Glucagon_Model 

format compact 

format long 

data = [0 4.51*18 13.9 75 

40 4.57*18 12.3 76 

90 4.3*18 10 99 

180 3.5*18 7.2 201 

240 3.12*18 6.2 408]; 

 
t_data = data(1:length(data),1); 
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glucose_data = data(1:length(data),2); 

insulin_data = data(1:length(data),3); 

glucagon_data = data(1:length(data),4); 

 
options = optimset('MaxFunEvals',1000,'MaxIter',5000,'TolX',1e- 

400,'TolFun',1e-400); 

 
guess = [ 0.01 

4.79 

0.0035 

0.065 

6.7 

0.11 

2.32e-006 

0.0035 

2.175e-009 

0.11 

0.00105 

2.55e-006 

0.397 

]; 

 
lb 

0]; 
= [0.008 0.5 0.00001 0.008 0 0.0002 0 0.00028 0 0.05 0 0 

ub = [1 5 1 0.5 100 3 0.00008 0.4 1 1 1 1 3]; 
 

G_b = 81.2; 

I_b = 13.9; 

E_b = 75; 

 
model_param = 

lsqnonlin(@Glucagon_Error_Func,guess,lb,ub,options,t_data,glucose_data,in 

sulin_data,glucagon_data,G_b,I_b,E_b); 

 

% CONFIDENCE INTERVAL OF PARAM FITTING 

[x,resnorm,residual,exitflag,output,lambda,jacobian] = 

lsqnonlin(@Glucagon_Error_Func,guess,lb,ub,options,t_data,glucose_data,in 

sulin_data,glucagon_data,G_b,I_b,E_b); 

ci = nlparci(x,residual,jacobian,0.05); 

disp('Parameter confidence intervals') 

disp(ci) 

t = tinv(0.95/2,length(data)-length(x)); 

se = (ci(:,2)-ci(:,1)) ./ (2*t); 

disp('standard error'),disp(se) 

 

 
tspan = 0:0.01:max(t_data); 

IC = [G_b,0,I_b,0,E_b,500,0,0]; 

sol = ode45(@Glucagon_system,tspan,IC,[],model_param,G_b,I_b,E_b); 

disp('parameter values') 

for i=1:13 

disp(model_param(i)); 

end 

disp('Insulin Sensitivity'),disp(model_param(3)/model_param(2)) 

disp('Glucagon Sensitivity'),disp(model_param(7)/model_param(6)) 

disp('Exercise Sensitivity'),disp(model_param(12)/model_param(11)) 

 
final_soln = deval(sol,tspan); 

G = final_soln(1,:); 

X = final_soln(2,:); 
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I = final_soln(3,:); 

Y = final_soln(4,:); 

E = final_soln(5,:); 

gly = final_soln(6,:); 

pvo2max = final_soln(7,:); 

exac = final_soln(8,:); 

 

disp('Do you wish to view G, X, I, Y or E') 

disp('1=Blood Glucose Level') 

disp('2=Interstitial Insulin Level') 

disp('3=Plasma Insulin Level') 

disp('4=Glucagon Activity') 

disp('5=Plasma Glucagon Level') 

disp('6=Glycogen') 

disp('7=pvo2max') 

disp('8=Exercise Activity') 

plot_choice = input(''); 

if plot_choice == 1 

plot(t_data,glucose_data,'o') 

hold on 

plot(tspan,G,'b') 

ylabel('Plasma Glucose (mg/dl)') 

xlabel('Time (minutes)') 

legend('Plasma Glucose Samples','Plasma Glucose Concentration') 

elseif plot_choice == 2 

plot(tspan,X,'--b') 

xlabel('Time (minutes)') 

ylabel('Interstitial Insulin 1/min') 

elseif plot_choice == 3 

plot(t_data,insulin_data,'o') 

hold on 

plot(tspan,I,'b') 

xlabel('Time (minutes)') 

ylabel('Plasma Insulin (uU/ml)') 

legend('Plasma Inslulin Samples','Plasma Insulin Concentration') 

elseif plot_choice == 4 

plot(tspan,Y,'--b') 

ylabel('Glucagon Action 1/min') 

xlabel('Time (minutes)') 

elseif plot_choice == 5 

plot(tspan,E,'b') 

hold on 

plot(t_data,glucagon_data,'o') 

ylabel('Glucagon (pg/ml)') 

xlabel('Time (minutes)') 

legend('Plasma Glucagon Samples','Plasma Glucagon Concentrations') 

elseif plot_choice == 6 

plot(tspan,gly,'b') 

ylabel('Muscle Glycogen (g)') 

xlabel('Time (minutes)') 

legend('Amount of Glycogen Available in Skeletal Muscle (g)') 

elseif plot_choice == 7 

plot(tspan,pvo2max,'b') 

ylabel('PVO2max (%)') 

xlabel('Time (minutes)') 

legend('Percentage of VO2max') 

elseif plot_choice == 8 

plot(tspan,exac,'--b') 

ylabel('Exercise Action 1/min') 

xlabel('Time (minutes)') 

end 
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System of ODEs 

 
unction dydt = 

Glucagon_system(t,y,param,G_b,I_b,E_b) Exdur = 240; 

if t > 0 && t < 

Exdur u3 = 30; 

else 

u3 = 0; 

end 

 

if y(1)>=G_b  

F1 = y(1)-G_b; 

else 

F1 = 0; 

end 

 

if y(1)<=G_b 

F2 = G_b-y(1); 

else 

F2 = 0; 

end 

ton = 240; 

tdeg = 1200; 

IexgL = param(5)*(-exp(-pi*(t+780)/ton)+exp(-pi*(t+780)/tdeg)); 

 

 

dydt = [-param(1)*(y(1)-G_b)-y(1)*(y(2)- 

y(4)+y(8))+param(13)*(y(7)*y(6)*param(10))/(250+y(6)) 

-param(2)*y(2)+param(3)*y(3) 

-param(4)*(y(3))-(y(8)*y(3))+IexgL 

-param(6)*y(4)+param(7)*y(5) 

-param(8)*(y(5)-E_b)+param(9)*F2+y(5)*y(8) 

-(y(7)*y(6)*param(10))/(250+y(6)) 

-0.8*y(7)+0.8*u3 

-param(11)*y(8)+param(12)*y(7)]; 

 

Error Function 

 
function error = 

Glucagon_Error_Func(guess,t_data,glucose_data,insulin_data,glucagon_data, 

G_b,I_b,E_b) 

 

IC = [G_b,0,I_b,0,E_b,500,0,0]; 

tspan = 0:0.01:max(t_data); 

 
sol = 

ode45(@Glucagon_system,tspan,IC,[],guess,G_b,I_b,E_b); 

approx_soln = deval(sol,t_data); 

glucose_approx = approx_soln(1,:); 

insulin_approx = approx_soln(3,:); 

glucagon_approx = 

approx_soln(5,:); 

 

N = length(glucose_data); 

error = [glucose_data(1:N).'-glucose_approx(1:N) 

insulin_data(1:N).'- insulin_approx(1:N) glucagon_data(1:N).'-

glucagon_approx(1:N)]; 

 



190  

 

 

C.2. Mathematica Characteristic Equations and Eigen 
Values 

C.2.1. Linear Glucagon Exercise Minimal Model 

 


