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Abstract 
The research described in this thesis is concerned with analysis and design of "High-

Transconductance RF MOSFET Voltage-to-Current (V-I) Converters". Various V-I 

converter circuits published in the past have been reviewed by the author in order to 

understand the different techniques employed to improve transconductance (Gt), 

linear operating range and total harmonic distortion (THO). Throughout this research, 

the emphasis has been to improve the above mentioned parameters. All the V-I 

converter circuits reported have been simulated using PSPICE and the results 

compared with the values obtained by theoretical analysis. Some of the results of this 

work have been already reported by the author in the technical literature. (See 

Chapter 9, at the end of this thesis, where reference to two publications by the author 

is given.) 

It was essential to obtain accurate CMOS device parameters values, such as Early 

Voltage, transconductance parameter ratios!! (gm/gds), X (gmbl'gm) and inter-electrode 

capacitances, to facilitate the design the prQcess. This was achieved using an 

extensive set of simulations for the transistor operating under different bias 

conditions. Furthermore, a measurement technique, thought to be novel, for the direct 

determination of the transconductance ratios!! and X is proposed. 

In the next part of the work several types of current mirror are compared against the 

standard current mirrors, using analytical and simulation methods. Furthermore 

several MOSFET V-I converter designs were critically reviewed to understand the 

various existing techniques and their limitations. 

Two novel techniques, Drain-Source Feedback Circuits (DSFCs) and Drain-Gate 

Feedback Circuits (OGFCs) ere implemented with a new temperature-compensation 

scheme, designed to operate well in an industrial environment (-40°C - +8S°C). It is 

found that the best types of V -I converters were the DSFCs which, offer a more 

accurate value of Gt (3.386mS) and the THO less than -S7dB for a differential input 

operating range SOOm V at 1 GHz with a 3V total rail voltage. The OGFC circuits 

were also meet the initial design targets, the value of THO is less then -SOdB, and 

operating in the Giga hertz frequency range is possible. Preliminary investigation on 
future work shows promising results. 
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List of acronyms and principal MOSFET 
symbols 

Acronyms 

CMOS 

MOSFET 
THD 
V-I 

Complementary Metal Oxide Silicon 

Metal-Oxide-Semiconductor Field-Effect Transistor 

Total Harmonic Distortion 

Voltage-to-Current 

MOSFET symbols 

Av Voltage gain 
p Transconductance parameter 

Cdb Intrinsic Drain-Body capacitance 

Cgd Intrinsic Gate-Drain capacitance 

Cgs Intrinsic Gate-Source capacitance 

f Frequency 
f o 3dB Cut-offfrequency 

fr Transistor unity-gain frequency 

gm Transconductance 

gmb Body-effective transconductance 

GI.Gm Transconductance 
10 Drain current 

"- Channel modulation factor 
m Current mirror transfer ratio 

rds Small-signal drain-source resistance 
ro Small-signal output resistance 

VA Early Voltage 

Vos Drain-Source Voltage 

Vas Gate-Source Voltage 

VSB Sourece-Substarte Voltage. 

VT Threshold Volatge 
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1.1 Introducing the Voltage-to-Current Converter and its 

a pplica tions 
This thesis is concerned with Voltage-to-Current (V-I) converters, also referred to as 

Transconductors, usually referred to symbolically by either Ot or Om. They are 

commonly used as active elements in analogue signal processing circuits, such as: 

filters, amplifiers, mixers and oscillators [1.1-1.4]. An ideal V-I converter should 

provide either a single-ended or a differential output current linearly proportional to 

the differential input voltage [1.5]. Fig.1.1(a) shows the ideal transfer function of a 

V-I converter and Fig. 1.1 (b) a simplified block diagram ofa typical V-I converter. 

10 

(a) 

Figure 1.1 

10 

(b) 

(a) Ideal transfer function of a V-I converter 

(b) A block diagram of a V-I converter 
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I vol ffi.v =fc Vo 1 

Figure 1.2 Typical V-I applications 

(a) Gm-R variable gain amplifier (c) Gm-C integrator filter 

(b) Active mixer with Gm and switches (d) Gm-LC filter 

Fig.1.2 shows four typical applications using V-I converters, as shown in [1.3]. 

Fig.1.2(a) shows a V-I converter used as a voltage amplifier, where the gain of the 

amplifier is given by, 

Vo Av=-=O ·R V m o 

Clearly, varying either Om ofR gives linear gain control. 

(1.1) 

Fig.1.2(b) is another application, used extensively in mixers as a part of a Radio 

Frequency (RF) circuit [1-6]. The maximum conversion gain of a conventional mixer 

for two square wave inputs is given by 

Av= Vo =0 .2hc 
Vo m 

(1.2) 

Fig.1.2(c) shows a typical integrator used in filters. The gain can be expressed by the 

following: 

Av= Vo = 1 
Vo s(C/G m ) 

(1.3) 

and a parallel inductor has been added in Fig 1.2(d) creating a 2nd-order band-pass 

filter for which the gain can be described as: 

1-3 
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(1.4) 

where s is the complex frequency variables used in Laplace Transfer analysis. 

1.2 Voltage-to-Current converter design specifications 
The trends towards system-on-a-chip as well as mixed-mode (analogue and digital 

design) solutions mean that the majority of integrated circuit developments are 

undertaken in MOSFET. Also with the reducing feature size of modern high 

frequency CMOS transistors, these devices are now capable of matching and 

exceeding the it ofBJTs. With this in mind, the focus of this research work is on V-I 

converters designed for MOSFET implementation and the CMOS model for this 

research work is IBM 8RF_DM 0.13J!m technology. Table 1.1 gives the target 

parameters and values chosen to be used for all of the V-I converters designed and 

developed in this research work. In the interests of minimizing power dissipation and 

voltage rail supply levels, the maximum device-operating current was chosen to be 

lmA and the rail supplies not to exceed 5V total. 

This research work focuses on combining between high Gt and good linearity with a 

typical bias current of lmA. The classical V-I converter is a long-tailed pair amplifier 

with source degeneration. The value of the source degeneration resistor determines 

both the Gt value and the linear range of input voltages. This work will focus on 

discussion of determining the value of resistance we used. The most optimistic linear 

range of operation that could be achieved would be ±500m V and the 

transconductance value to be obtained for the ideal case would be 3.33mS with a 

source degeneration resistance of 6000 [1-7]. A THD should better than -SOdB and 

1-4 
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the temperature range has been set from -40°C to +85°C, this being the standard 

industrial range. The technology selected for all of the work in this thesis is 

enhancement CMOS. 

Table 1.1 Target specification 

Parameters Values 
1 Total supply voltage 3Vto 5V 
2 Linear range of operation -500mV to +500mV 
3 Typical transconductance 3.33mS 
4 THD < -50dB at 1 GHz 
5 Temperature range -40°C to +85°C 
6 Technology MOSFET(CMOS) 

1.3 Structure of the thesis 
The thesis is divided into 7 chapters and, to make the reading straightforward, only 

the results of longer mathematical derivations are included in the relevant text, with 

the full working given in an appendix linked directly to the end of each chapter. In 

addition, chapter references are laid out at the end of each chapter as well as in a 

complete list in alphabetical order at the end of the thesis. 

A detailed analysis of the transistor-models used throughout this research, is presented 

in Chapter 2. The process of developing a new circuit is supported by theoretical 

analysis. Unfortunately, analytical device model parameters are not easily obtained 

directly from simulation model parameters. A key part of this chapter is extraction of 

these model parameters from PSPICE device characteristics, at the particular 

operating conditions required for each design. It will be shown that a thorough 

analysis of these parameters is necessary for accurate design, based on 'hand-

calculations', and several novel circuits of measuring the parameters of a single 

transistor are presented and analyzed in this chapter. Without them, in some 

conditions, the simulation results do not match the theoretical analysis. 
1-5 



Analysis and design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

In Chapter 3, a review of biasing techniques is included together with an introduction 

to current-biasing circuitry that has been chosen because of its superior performance 

over other similar configurations [1.8] and [1.9]. A critical review of the source 

follower [1.10], including analysis of both DC and small-signal conditions is 

presented. The theoretical performance described in Chapter 3 is developed further in 

Chapter 5, where a novel V-I circuit described. 

A critical review of two existing MOSFET V-I converter techniques, [1.11-1.13], 

currently used to improve the linearity of differential V-I converters, is presented in 

Chapter 4. Both system level and transistor level V-I design implementations are 

included in this chapter. The operating principle of each of these techniques is 

reviewed, with examples of circuits, and a comparison made. 

In Chapters 5 and 6 detailed circuits exemplifying each novel technique, described in 

Chapter 4, are presented with analysis and discussion of the results of simulation with 

respect to transconductance, linear range of operation, total harmonic distortion and 

frequency response. 

Finally, the concluding chapter of the thesis, Chapter 7, contains an overview and 

reflection of the main body of work of the thesis, and outlines a circuit, thought to 

contain novel features, intended for future work. 

Appended to the end of the thesis are conference and journal papers produced by the 

author on the various voltage-to-current converters described here-in. 
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2.1 Introduction 

2.2 DC characteristics 

2.2.1 Background to the measurement 

2.2.2 p-factor and Vr (Threshold Voltage) measurements 

2.2.3 Output characteristics 

2.2.4 Jl(=gm/gds) and X(=gmt/gm) and their measurement 

2.2.4(a) Jl measurement 

2.2.4(b) X measurement 

2.2.4( c) Validation of parameter measurement techniques 

2.2.5 Inter-electrode capacitances 

2.2.5(a) Testl: Determination of(Cgs+Cgd) 

2.2.5(b) Test2: Determination of (Cgd+Cdb) 

2.2.5(c) Test3: Determination of(2Cgs+Cgd+Cdb) 

2.2.5(d) Calculation ofCgs, Cgd, Cdb from tests 

2.3 Summary 

2.4 References 

2.5 Appendix 2 

Appendix 2.1 MOSFET parameter relationships 

Appendix 2.2 Analysis of Jl measurement test circuit 

Appendix 2.3 Tabulated data for Jl 

Appendix 2.4 Tabulated data for X 

2-1 



Analysis and design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

2.1 Introduction 
This chapter deals with the measurement, by simulation, of some of the parameters of 

the N and P short-channel (O.13J.lm) IBM BSIM3 model MOSFETs used in the 

circuits described in this thesis. 

Much information is, of course, given in the SPICE files for the devices, but not 

always presented in a manner, such as pictorially, that makes it easy to use by a circuit 

designer for initial hand calculations for a proposed design. 

In the interests of minimizing power dissipation and rail supply levels, the maximum 

device-operating current was chosen to be 1 rnA and the rail supplies not to exceed 

2.5V. 

To minimize device areas, a device width of 10J.lm is used, as some preliminary 

circuit investigations revealed its suitability. 

Wherever possible the information obtained from the measurements, whether DC or 

AC, is presented graphically. 

2.2 DC characteristics 

2.2.1 Background to the measurements 

In analogue circuit design, operation is normally in the saturated region of the drain 

characteristics. For both N and P channel devices this corresponds to IV osl ;::: IV GS-V T I 

where the symbols have their usual meanings. (See Appendix 2.1 for symbol 

definitions) 

For an N channel device, operating in strong inversion, a first-order model that is 

good enough for hand calculation is [2.1], 

(2.1) 
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It follows from this that there is a separate family of curves for 10 vs.Vos, for each 

value of Vos. 

However, for standardisation purposes, and because measurements are required for 

low values of Vos, these were made with IVool=O, corresponding to the circuit 

condition in which a MOSFET is used as a 'diode'. This gives Io, Vos curves that have 

a slightly larger Vas, for a given Io, than is the case for Vos > Vas and this gives data 

that errs on the safe side for circuit estimations of maximum likely gate-source 

voltage drops. 

Io 

(a) 

Figure 2.1 Test circuits for DC characteristics (a) NMOS (b) PMOS 

The curves for 10 vs.Vas for given values of VSB are useful for two reasons. They 

present, visually, useful information for design and they permit evaluation of the 

parameters p and V T in eqn. (2.1) 

This, from eqn. (2.1), the 'effective' value of P for V 00=0 is obtained from, 

(2.2) 

To the extent that eqn. (2.1) is applicable, a plot of VIo versus Vos should be a straight 

line with a slope Vp/2 and a projected back Vas intercept for the effective ofVT, at 

each value of V SB. 
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2.2.2 Results 

N channel results are presented in Figs2.2, 2.3 and Table 1.1 

NMOS L=O.13um W= IOum VGo=OY 
1.2 

NMOS L=O.13um W= IOum VGo=OV 

'" '" > 

0.6 V(JoLmA 
0.1li--------,4-!-;1-/-+-,4--f-

O.4f-----i-:;I---f--:f--'--;y '--f-----; O.AI--------r---, ... "--; o'-... "'"'i-. 

0.2 
/ ... .... ..... ...... .:.. . ... l 

.. +,""'/ "-.... ,.c. -/----

(a) 

n --"'o.""-s - -"0."'91 o 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 

VGS 
VGS 

(b) 

Figure 2.2 DC Characteristics of NMOS 

(a) 10 vs V GS 

(b) 10 vs VGS 

PMOS L=O.13um W= IOum VGo=OV PMOS L=O.13um W=10um VGO=OY 

-

0.81----- 0.8 f---------.4" i SM HH'------l 
I (Io)LrnA 

0.6 0.6 

0.4 

0.2 

o o 
0.6 0.7 08 0.9 

(a) 

1.1 1.2 1.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 13 

'--_______ VGS __ _ 

(b) 

Figure 2.3 DC Characteristics for PMOS 

(a) 1101 vs Ves 

(b) I 101 vs Ves 
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P (mA/V 2
) 

W(u) VSB(V) NMOS VSB(V) PMOS 
10 0 28.657 -0 5.308 

0.25 28.347 -0.25 5.103 
0.5 28.298 -0.5 4.861 

0.75 29.399 -0.75 4.715 
1 24.611 -1 4.453 

1.25 27.759 -1 .25 4.212 
1.5 28.297 -1 .5 3.981 
1.75 28.435 -1 .75 3.76 

2 28.532 -2 3.574 

Table 2.1 P as a function ofVsB (found from Fig. 2.2 and 2.3) 

The variation ofVr(V)with VsB(V) is shown in Fig.2.4 

0.7 

0.6 

0.5 

VT 0.4 
(V) 0.3 

0.2 

0.1 

o 

0.6 

0.37 

NMOS L=0.13um W=1 Oum VDD=1.5V 

0.51 0.54 

0.43 
0.4 

0.25 0.5 0.75 1.25 1.5 1.75 

VSB 

Figure 2.4 Variation ofVT with VSB: N channel 

PMOS L=0.13um W=1 Oum VDD=1.5V 

0.4 
0.48 0.4 

IVT6 0.36 ______________ _ 
(V) .3 

0.2-1------

0.1+--------------------

o 0.25 0.5 0.75 1.25 1.5 1.75 
IVSBI 

2 

2 

Figure 2.5 Variation of IVTI with IVSBI: P channel 
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It is evident from Fig.2.2b and Table2.1 that for the case of the NMOS there is a 

straight line relationship between ...JID and Vas over the simulated range and the lines 

are sensibly parallel indicating that P is, to a first order, independent ofVsB. 

In Fig.2.3(b), for the PMOS device, there is also a straight line relationship between 

...JID and IVasl but these lines are not parallel indicating a variation of p with V SB. 

Figs2.4, 2.5 show the variation of the threshold voltage V T with V sa. 

Theoretically [2.2], 

(2.3) 

However, in both cases there is an approximate linear relationship between VT and 

VsB• 

In the case of the NMOS this is, 

or, 

VT(V) = 0.37 + (0.6-0.37). VSB 2 

Vr(V) = 0.37+ (0.115) VSB 

For the PMOS the formula is, 

VT(V) = 0.36+ (0.103) VSB 

2-6 
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2.2.3 Output Characteristics 

Eqn.2.1 indicates that 10 depends on Vos, as well as Vas, but to proceed further and 

draw conclusions about the output incremental output resistance it is necessary to 

consider the nature on .. 

It is usually assumed that, in the saturated region of operation, A. is constant for a 

given Vas. 

This means that incremental output resistance is independent of Vos. 

_ (eNos) rd ---
s OlD V 

DQ 

(2.6) 

The assumption A. -:j:. !(Vos) is based on experimental observation of the output 

characteristics of MOSFETs, operating over a Vos range suitable for analogue 

applications, and a (limited) amount of theoretical reasoning based on device physical 

electronics. 

Fig.2.6 illustrates the approximation involved 

-1IA. 

Figure 2.6 

.-1( 

./7 / 

/ 
/ 

./' 

I 

I 
J 

I 

VDQ Vos 

Illustrating eqn (2.6) for I.. :f; f(Vns) in the saturated region of an 
NMOS 
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The saturation region lies to the right of the dotted curve A for which the equation is 

2 10 = - Vos . 
2 

(2 .7) 

The next step, one made in a number of older textbooks (e.g. , See [2.3]) is to assume 

not only that 'A is independent of Vos but also of V GS, with the result that the 

characteristics have been presented in the manner shown is Fig.2.7. 

10 

IOQ 

o VOQ Vos 

2.7 Output characteristics for A. * f (V DS, V G ) in the saturated region 

related Fig. 2.11 

The common intersection point Vos = -1 / 'A as been designated the Early Voltage, by 

analogy with the BJT parameter, and given the symbol VA. 

Simulation measurements were made at the output characteristics of an N channel 

MOSFET using the circuit ofFig.2.8 
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Figure 2.8 Circuit used to determine output characteristics of an NMOS 

The reason for choosing this type of circuit rather than a amplifier for the common-

source configuration is that it also supplies information on current - mirror operation 

described in the next chapter. A similar circuit, with reverse bias polarities, is 

applicable for P type MOSFETs. 

3.0 ,---,----,----,----,--- ,----,-- --,----,-----.---, 

N Ch nnel: L 

2.0 +---+---+----1-- :=--1-==---4---+----+----+----+----1 

ID (mA) 

Figure 2.9 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

VDS (V) = (VDQ) 

NMOS output characteristics for the circuit of Fig 2.8 with 

VSB=OV. The data for each curve is given above it. 
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2.0 I \ 

\ 

\ \ 
A 

II 'A; d u; R =LmA 
10=1.171 A-d 10 )= 468.8u; R= lmA 

\ 
10=0.651 fA; d 10 )= 345.9u; R=O.SmA 
10=0.361 A; d 10 )= 229.1 u; R=0.25m [\ 

'-... iL"L 
1/ 

1.5 

1.0 

0.5 

o 
0, 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Vos (V) 

Figure 2.10 Incremental output conductance curves obtained from Fig 2.9 

Figs2.9, 2.10 show the results of the simulation measurements and reveal unexpected 

features, which were confirmed by repetition, because they do not indicate a unique 

Early Voltage. 

The DC characteristics ofFig.2.9 appear to show a linear dependence OfID on VDS for 

each value ofVDs (> 0.8V). Fig.2.10, showing gds as a function ofVDs for specified 

value of V GS, confirms this because the resulting graphs are sensibly parallel to the 

VDS axis forVDs > 0.8V. 

The variable slope of the curves for VDS > O.8V (approx.) is characteristic of 

operation of the MOSFET on the voltage-saturation region. What the graph set of 

Fig.2.9 does not confirm is the existence of the common intersection point, for 

tangents at a given VDS when extrapolated back, on the negative VDS, such as that 

shown in Fig.2.7, i.e., it does not prove that A f. f(V GS)' 

For it to be so, it requires IDQ rds to be constant for all values of V GS. To investigate 

the matter further the following calculations were made. 
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V AI=[(1I229.1 uAN) XO.36mA]-IV=O.57V 

IR=O.5mA: 

V A2=[(l/34S.9 uAN) X O.65mA]-IV=O.87V 

IR= lmA: 

VA3=[(1I468.8 uAN) X 1.17mA]-lV= 1.SV 

IR=2mA: 

VA4=[(1 /563.1 uA/V) X2.llmA]-IV=2.75V 

These results indicate that A i- f(V DS) for a given V GS but A = feV GS), a fact that is not 

apparent from a cursory inspection ofFig.2.9 

-V A2 VDS --+ 

Figure 2.11 Showing the implications of NMOS measurements 

Fig.2.1l shows the implication of the measurements for just two values of V GS and 

Fig.2.l2 shows a plot of V A Vs.VG . 
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3 

2.5 

2 
VA (V) 

1.5 

0.5 

o 

I 

o 0.2 

N channell;=O. 13u and W=10u 
VA vs. VGS 

I 
VSB=OV I / 

/ 
/ 

/ 
0.4 0.6 0.8 

Vcs(V) 

Figure 2.12 Variation of Early Voltage, VA, with V GS for NMOS device 

For first-order design calculations it is reasonable to assume VA is linearly related to 

V GS. The reason for this behaviour was not investigated because it involves the 

physical electronics of MOSFETs with sub-micron channel lengths and that was 

considered to be outside the scope of this thesis. 

Comparison figures for Figs2.9, 2.10, 2.12 for the case of the PMOS are shown in 

Figs2.13, 2.14, 2.15 respectively. 
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3.0 

P Ch nne!: L= .13,lL In nd W= IC ,lLm 

2.0 
mAat IV , IR- 2mA ; IVGS .27V 

I!DI(rnA) 

1.0 

/ --
/ IIDI= I.OO rnA at 1\ , IR= lmA ; IVGS I=C .98V 

V ..... 
IIDI=O.51 rnA at 1\ , IR=O.51 tnA; IVGS I=O.8V 

I lID!' nAat I'll ,IR 0.25 tnA; IVGS I 0.68V 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

IVDSI (V) 

Figure 2.13 PMOS output characteristics for VSB=OV 

500u.,----,,,----r-,---.----,----,,------,------,----r----,------,------r----, 

&1s (S) 

o 
0.6. 0.8 1.0 1.2 

IVDSI (V) 

i D = I.9 mA;d!I j= 143.1 ; IR=2rn 
ID = 1.0 rnA; d I =64.7u; IR=l rnA 
ID : O.5 d I[ : 37.9u; !R=-.9.5m 
ID - 0.2 rnA, d I - 24.61 ,IR- O.25 A 

1.4 1.6 1.8 2.0 

Figure 2.14 Incremental output characteristics curves obtained from Fig 2.13 
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18 

16 

14 

12 

10 
IVAI (V) 

8 

6 

4 

2 

o 
o 0.2 

P Channel Ir=O.13u and W=10u 
VA vs·IVGsl 

I VSB=OV I -+-, --/ .... 
/ 

/ -¥ 
/ 

I 

0.4 0.6 0.8 
IVcsl(v) 

-

1.2 

Figure 2.15 Variation of IVAI with IV Gsl for a PMOS device 

... 

1.4 

Comparing Fig.2.l5 with Fig.2.l 0 it is apparent that the PMOS device affects a lower 

output conductance than the NMOS, for a given IR, but this requires a much larger 

IV asl (1.27V compared to O.81V) 
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2.2.4 Transconductance ratios (gm/gds) and (gmw'gm) 

The transconductance ratios (gn/ gds), denoted by the symbol )l (but without a 

subscript in order to distinguish it from the symbol for carrier mobility), and (gmb/gm) , 

denoted by the X [2.4], appear in the analysis and design of V-Is via the dependence of 

the latter on feedback amplifiers and current generators. 

Parameter )l characterises the theoretical maximum voltage gain of a single-stage 

common-source amplifier. 

Parameter X sets a limit to the maximum theoretical voltage gain of a source-follower 

in which the substrate of the MOSFET used is not connected to its source terminal. 

Neither )l nor X are specified in SPICE data. 

A novel circuit method of determining their dependencies on DC bias conditions is 

presented in the next two sections. A third section validates the results obtained. 

2.2.4(a) J1 measurements 

A test set-up for the measurement of)l is shown in Fig.2.16: a similar set up, but with 

reversed DC biasing, applies to PMOS devices. 

I 

ID 
(Variable) 

-VSS 

VDD (=VDS) 

(Variable) 

Op Amp. A 

Figure 2.16 Test set-up for J1 of an N channel MOSFET 
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In Fig.2.16, A is an op. amp. with a gain Av (»1) and a MOSFET input stage. Its 

purpose is to maintain constant, at earth potential, the source voltage of the MOSFET 

for different settings of los and VDD (=Vos) and for any signal variations elsewhere in 

the circuit. Because the source is at earth the potential, Vsub applied to the substrate is 

a direct measure of the substrate-source voltage. Applying a small-signal (100mV 

peak) low-frequency (lKHz) sinusoidal signal, Vd, to the drain of the MOSFET does 

not causes a change in the source voltage or drain current because of the operation of 

A, which generates an opposing signal, vgs, at the gate terminal: Vd = Vds and Vgs = vg• 

. Vd 0 Thus, Id = gm Vg +-= 
rds 

(2.8) 

(2.9) 

and, (2.10) 

This analysis assumes Av= 00. However, a full analysis in Appendix 2.2 shows that J.l 

is in error by not more than 0.1 % if Av > 103 at the test frequency used. 

Before simulation measurements were made, the circuit was checked for frequency 

stability and was found to be stable and it was also established that the op amp. gain 

exceeded 60dB [2.5] at the operating frequency chosen for tests. 

In the tests it was noted that Vs was only a few J.lV for each reading, i.e., negligible in 

comparison with the observed vg, thus validating the assumption that Vg = Vgs. 

Tabulated data for J.l as a function of 10 for two values of Vos (1 V and 2V) and for 

two values ofVsub (OV and -2V) are given in Appendix2.3. 

These data are presented graphically in Figs2.17, 2.18 
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J.1(dB) 
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5 
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I Vsub=OV 

10 

-

VDs= IV 
......., 
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I 

100 1000 

1D (IlA) 

Figure 2.17 J.1 as a function oflo vs. Vos with Vsub=OV 

40 

35 

30 

25 
J.1(dB) 

20 

15 

10 

5 

o 

I-

-

J Vsub= -2V 

10 

VDS 2V 

VDs= 1 V -...., 

- -

I 
-

100 1000 

Figure 2.18 J1 as a function ofID vs. Vo with Vsub= -2V 
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It appears that the two curves for V DS in Fig.2.17 differ by a constant amount 

throughout the range of ID under test. To check to see of this was, in fact, the case 

one of the curves was displaced vertically to see if the two graphs could be made to 

coincide. 

The result is displayed in Fig.2 .1 9 for ease Vsub=OV. 

40 

35 

30 

25 

20 

15 

10 

5 

o 

I Vsub= OV 

10 

-

-

I 

100 1000 

ID 

Figure 2.] 9 Showing the apparent coincidence of the two curves in Fig 2.17 

when one of them is displaced vertically. 

A similar displacement procedure was carried out fo r the plots of Fig.2.18: the result 

is shown in Fig.2.20 

2-18 



Analysis and design of High-Transconductance RF MOSFET Voltage-to-Current Converters 

40 

35 

30 

25 
)l(dB) 

20 

15 

10 

5 

o 

I V slIb= -2V I 

10 100 1000 

Figure 2.20 Showing the near coincidence of the curves in Fig.2.18 

The general nature of the variation of)l with 10 and Vos in the strong inversion region 

of operation can be explored theoretically by replacing A by (1 / V A) in eqn (2.1) and 

proceeding as follows 

(2.11 ) 

By simple differentiation, and re-arrangement of terms, 

dVosl 
rds = d1

DS 
v 

GS 

(2.12) 

and, dlos I gill = - - = 21 D P -'---''-'---.:=-=-
dVDS V os 

(2.13) 

(2.14) 
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At low values of 10 the MOSFET enters the region of weak conversion where 10 is 

exponentially dependent on VG [2.6]. 

In that case takes on a constant maximum value. 

Considering, now, Fig 2.17 it is apparent that, for both values of V os, is inversely 

related to 10 and tends toward a constant value at low currents. At higher currents, in 

the strong inversion region, eqn 2.13 predicts that log ex: log 10 for a given Vos (i.e., 

in dB is linearly dependent on 10 plotted to a log scale) and this is not precisely true 

for the NMOS tested. 

However, eqn (2.13) does predict a constant separation of the two curves in Fig 2.17 

with variation in 10. In assessing this it must be borne in mind that, for a given 10, 

V GS decreases as Vos increases and for each V GS there is a different VA. 

Thus, (2.15a) 

and (2.15b) 

(2.16) 

The maximum observed values of for the NMOS is well over an order of magnitude 

lower than that of a BJT operating under the same DC bias conditions. For the BJT. 

ANt) where Vt = 'Thermal voltage' (KT/q) 25mV at room temp: for VA > 75V. 

and an operating current of lmA 3000 for a BJT compared with < 25 for the 

NMOS. 
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2.2.4(b) X measurements 

A variation of the set-up of Fig.2.16, shown in Fig.2.21 , facilitates the measurement 

of (gmb/gm)' A similar set-up with reversed bias polarities applies to PMOS devices. 

VDD (=VDS) I (Variable) 

Vsuh 
(Variable) 

Figure 2.21 Set-up for finding (gmJgm) for an NMOS 

In this case a small amplitude (SOm V) low frequency (1 KHz) sinusoidal signal, Vbs, is 

applied to the substrate in series with a variable (negative) substrate voltage Vsub. The 

amplifier A maintains the source of the MOSFET at earth potential and there is no 

change in drain current because the amplifier's output voltage Vgs nullifies any effect 

produced by Vbs 

(2.17) 

i
gmbi = Vgs 
gm vbs 

(2.18) 

Tabulated data for X as a function OfID for two values of V DS (l V and 2V) and two 

values ofVsub (OV and 2V) are given in Appendix2.4 

These data are presented graphically in Fig.2.22 
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0 ,02 

o 
10 

-- .... .. ... 
Vsub=-2V 
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1D 

Figure 2.22 Variation of (gmJ!gm) with 10 for an NMOS MOSFET for V os= 1 V 

and two values of V sub 

The variation of (gmb/gm) with V sub is to be expected since, theoretically [2.7], 

(
gmb) y 
gm = + VSB 

(2.19) 

where the symbol have the meanings defined in Appendix2.1. 
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2.2.4(c) Validation of parameter measurement techniques 

To check the validity of the measurement techniques described in 2.2.4(a) for Jl and 

2.2.4(b) for X(gmllgm) an independent test was made, the circuit for which in shown in 

Fig.2.23. 

Voo 

Vsub 

Rs Cs 

-Vss 

Figure 2.23 Test circuit for output resistance measurement 

The procedure was as follows. With Voo=IV, Vss=2V and Rs=4KQ (arbitrary but 

convenient choices) Vo was adjusted at that, with Vsub=OV, Vs=OV: hence, Vos=Voo, 

and ID=O.SmA. The incremental output resistance vds(=Vd/id) was measured for the 

case of a decoupled source. This requires the use of a capacitor C (IF, totally 

impractical in a laboratory but acceptable in a simulation) having effectively zero 

reactance at the frequency of measurement. (1KHz). 

The output resistance Ro was then found when C was absent. 

The process was repeated for Vsub=-2V. 

For calculation proposes [2.8], 

(2.20) 
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Rearranging and substituting for gmrds gives, 

(2.21) 

For the case Vsub=OV. Appendix 2.3 gives at In=O.5mA, and Appendix2,4 

gives (gmWgm)=O.1446 

Substituting in eqn.2.21. 

Ro(Kn)=3.67(measured value) + 4 [1+ {(1.1446)X21.04}] 

or, Ro(Kn)=103.99 (calculated) 

This compares with 103.27Kn (simulation test). ' 

For the case Vsub=-2V. Appendix2.3 gives at In=O.5mA and Appendix2,4 

gives (gmWgm)=O.13097 

Substituting in eqn.2.21. 

Ro(K!l)=4.05(measured value) + 4 [1+ {(1.13097)X 23.2)] 

or, Ro(Kn)=l13 (calculated) 

This compares with 113.8Kn (simulation result) 

The excellent agreement between the two values of Ro in each case validates the 

accuracy of the measurement techniques described in sections 2.2,4(a) and 2.2,4(b) 
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2.2.5 Inter-electrode capacitor 

Fig.2.24 shows a small signal equivalent circuit of a NMOS transistor [2.8] 

presented in Appendix2.1 and repeated here for convenience in the present discussion. 

(G) 
Cd (D) 

Cgs gmbVbi rds 

Cdb 

(S) 

Cgb 
Csb 

Figure 2.24 Small signal equivalent circuit of an NMOS transistor 

Fig.2.25 shows a simplified version, which applies when the substrate (B) is 

connected to the source terminal (8). As Cgb can not be separated from Cgs in normal 

MOSFET operation it is taken to be lumped in with Cgs in Fig.2.25 and henceforth. 

Cd 
(G) 

C gmbvbs rd. Cdb gs 

(S)(B) 

Figure 2.25 Simplified version of Fig 2.24 when (8) and (B) are connected 

together. 
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The problem of measuring the three capacitances Cgs, Cgd and Cdb requires same 

ingenuity but can be solved by performing a sequence of tests that determines 

separately the following combinations: (Cgs+ Cgd); (Cgd+Cdb); (2Cgs+Cgd+Cdb)' 

2.2.5(a) Test 1: Determination of (Cgs+Cgd) 

1mA 

Figure 2.26 Test circuit for (Cgs+Cgd) 

In the test circuit of Fig.2.26 a small amplitude (20m V) swept frequency sinusoidal 

test signal Vg applied to the gate of the test MOSFET produces a gate current ig. The 

capacitor C (IF) is a source decupling capacitor. Cut frequencies for which its 

impedance is negligible we can write, 

Zi=Vg = 1 
ig jro{Cgs + Cgd ) 

(2.22) 

On a plot oflZI, to a dB scale with a reference value of In, against frequency on a log 

scale the point at which IZil = In corresponds to fo, say 

Thus, (Cgs+Cgd) = 1I2nfo (2.23) 
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400 
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dB --
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------t::::---
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---- HZ,50.774mdB 

:----....... ------o 

-100 
l.flHz 100Hz 10KHz l.OMHz 100MJlz 

Frequency 

Figure 2.27 IZil vs. f for the circuit of Fig. 2.26 

IOGHz 

From Fig.2.26, IZil 0 dB (actually, 50.77 x 10-3 ) at fo= 8.9376THz 

Hence, (Cgs+Cgd) 17.8£F 
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2.2.5(b) Test 2: Determination of (Cgd+Cdb) 

Fig.2.28 shows a test circuit for (Cgd+Cdb), for which the test procedure mirrors that of 

the precious section. 

vo 'n 
VDD 

,----------'1 
L 

C(lF) 

Figure 2.28 Test circuit for (Cgd+Cdb) 

By inspection the admittance at the drain of the MOSFET 

is, 

or, 

A plot of IZol vs. f is shown in Fig.2.29 

80 

60 

40 

1201 dB 

20 

o 

.... ).OHz, 68.23 1 B 

100Hz 10KHz 1.0MHz looMHz 
Frequency 

Figure 2.29 IZol vs. f for circuit of Fig 2.28 
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The 'constant' value of IZil at low frequencies gives gds = 6. 1677mS 

Above f;::: 10GHz the slope of the graph is -40dB / decade indicating a dominance of 

susuceptamce over conductance in the expression for admittance. 

For fo = 40.032THz 

so, (Cgd + Cdb )= 1 12 F = 3.97fF 
21tx 40.032x 10 
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2.2.5(c) Test 3: Determination of (2Cgs+Cgd+Cdb) 

The test circuit for this is a simple 1: 1 current mirror (Fig.2.30a) driven by a small 

swept frequency test current ij. 

Voo 

i; lmA 
i; rds 

(a) (b) 

Figure 2.30 (a) Test circuit (b) Small signal equivalent circuit 

In choosing this advantage was made of the fact that the gate-source capacitance, Cgs, 

is doubled but the Cdb of M2 is not 'seen' by the input current. By inspection of 

Fig.2.31b, 

Yj = Vgl(gdS + gm)+ jco(2Cgs + Cdb + Cgb)J (2.25) 

A plot of IZil vs. f, both on log values should give a -3dB point at, 

f = (gds +gm) 
o 2CgS + Cdb + Cgb (2.26) 

2-30 



Analysis and design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

80 

l00.0MHz,43.91 dB 
..... 32.369GHz).. 40.911 B - 1.0TIIz, 17.776dB 

10.OTIIz,-2.1232dB 

40 

IZildB 

o 

-4°100MHz l.ooHz 100Hz 1000Hz 
Frequency 

l.OTIIz 10TIIz lOOTIIz 

Od 

-2Od 

-4Od 
LZj 

(a) 

,f40:615dB 

-6Od 34.807TIIz,-89.829 B 

-8Od 

-l(XxlooMHz l.ooHz 100Hz 1000Hz 
Frequency 

(b) 

Figure 2.31 (a) IZil vs. f (b) LZj vs. f for Fig 2.30a 

/ 
t-- L 

J.OTIIz lOTIIz 

Fig.2.31a shows a plot of IZil vs. f and it appears that after an apparent -3dB at 

32.369GHz the role off is -20dB. (The fall between 1 THz and 10THz is actually 

19.89dB) 

However, the phase curve (Fig.2.31 b) shows an inexplicable kink so the value of fo 

must be regarded as approximate. 

Using the data on Fig.2.31a, 
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2.2.5(d) Calculations ofCgs, Cgd and Cdbfrom tests 

We now have three equations and three unknowns. 

Thus, =17.8tF 

Solving these eqns gives, 

Cgs=14.5tF; Cgd=3.33tF; Cdb=O.64tF. 

In the case of the P channel MOSFET, the values obtained by simulation are follows: 

=18.6tF 

Cgd+Cdb =4.095tF 

2Cgs+Cgd+Cdb =34.09tF 
Solving above eqns. gives, 

Cgs=15tF; Cgd=3.6tF; Cdb=0.495tF. 
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2.2 Summary 

In this chapter the DC and some small-signal parameters of both Nand P channel 

MOSFETs with channel length (L) of O.13Jlm and channel width (W) of lOum have 

been determined by simulation on test circuits and the results have been presented in 

tabular and/or graphical from. 

Some interesting results were obtained. In particular; the threshold voltage, Vr, was 

found to be approximately linearly related to the source-substrate voltage, V S8, rather 

than to the square root of V SB, as stated in standard test books [2.1 0] (dealing with 

devices for which L > 1 u); the DC output characteristics did not display a unique Early 

Voltage. A measurement technique thought to be novel for the direct determination 

of the dependence of the transconductance ratios (gm/gds) and (gmh"gm) was proposed. 

Finally, tests we made to find the values of the inter-electrode capacitances Cgs, Cgd, 

Cdb. The value of Cgd was not insignificant, and might be expected from the textbook 

discussion on 'long channel devices' (L» tum) 

*This conclusion was subsequently confirmed by a note in a book. (Fundamentals of 

High Frequency CMOS Analog Design, D. Leblibici and Y. Leblibici, Cambridge 

University Press, 2009, pp.24). However, no explanation is given for the 

phenomenon. 
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2.4 Appendix 2 
Appendix 2.1 MOSFET Symbol definition and parameter relationships. (Based on 
[2.11)) 

DC Relationship (Strong inversion region) 

s 

Saturated region (Current saturation) 

VGs> 0 and VGD < Vr(Voo> Vr) 

s 

'Triode region' (Voltage Saturation) 

VDS < (VGs-Vr) or VGD > Vr 

10 (= los) = W (Vas - Vr )2(1+A.Vos) 10(= los) = W r2(vas - Vr )Vos - VOS2] 
2 L 2 LE 

or, 10 - Vr )2(1 + AVOS) 
2 

where p=(J.1nCoxWIL) 

W= gate width; L= gate length 

Threshold voltage: 

Threshold voltage parameter: "( = N A 
Cox 

Oxide capacitance: 

Small-signal relationships 

Cox = Eox =3,45fF/um2 fortox= 100 A 
tox 
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c C II 

Small-Signal Operation (Active Region) Parameters 

Top-gate transconductance: 

D 

( aID )=gm W (VGS -VrXI + A.VDS ) = W 
L L 

Transconductance-to-current ratio: 

2 
10 Vas-vT 

Body-effect transconductance: 

'Y ( aID) gmb = 2 2 V gm = xgm = av 
CPr + SB BS VGs=constant 

Channel-length modulation parameter: 

).=_1_=_1_ dXd 
VA LefT dVos 

where Xd is the depletion-layer width. 

Output resistance: 

rds = (I + AVos) = LefT ( dXd )-1 
AIo 10 dVos 

Effective channel length: 

LefT = Ldrwn - 2Ld -Xd 

Maximum gain: 

1 2 2VA =, V V V V 
"" as - T GS - T 

Source-body depletion capacitance: 
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Csb = ( CSbO)o.s 
1+ VSB 

'1'0 

Drain-body depletion capacitance: 

Cdb = ( CdbO)o.s 
1+ VDB 

'1'0 

Gate-source capacitance: 

2 
Cgs ="3 WLCox 

Transition frequency: 

f gm 
T = 21t(Cgs +Cgd +CgbJ 
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Appendix 2.2 Analysis of the Jl measurement circuit 
Fig.A2.2 shows a small signal low-frequency equivalent circuit of Fig.2.21 in the text 

and the condition that exist when a signal, Vd, is applied to the drain of the MOSFET. 

The op-amp. voltage gain, Av, and incremental output resistance, Rs, of the current 

sink, IDS, are considered to be finite. 

AvVs 
Vs 

Rs 

Figure A2.2 Small signal equivalent circuit for Fig 2.21 of the text 

gmvgs =gm(vg -vs);::gm{-Avs -vs);::-(Av +l)gmvs 

KCL at the drain gives, 

id ;::gmVgs +gmbvbs +(Vd -vS)/rds 

Substituting for Vgs and Vbs. 

id ;::-{Av +l)gmvs -gmbvs +{Vd -Vs)/rds 

KCL at the source gives, 

:. Vs = -[{Av + l)gm + gmb]vs + V d - Vs 
Rs rds 

Transposing, 

Vs ;:: [_I_+(Av +1)gm + gmb +_1 J= 
Rs 

or, 
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. But, Vg = -Ayvs 

:. Vg = + I) +r,,[(Av + l)gm + gmb] 

For Rs» rds, the first bracketed term is the denominator is insignificant compared 

with the second bracketed term so this reduces to, 

-AVvd v - __ 
g - {Av + l)gmrds + gmbrds 

V d {Av + l)gmrds + gmbrds --= 
Vg Av 

or, 

But 

For Ay>2000, gives !l with an accuracy better than 0.1 % 
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Appendix 2.3 
Listed below in Table.2.1 are data for J.l as a function of 10 for two values of Vos (1 V 

and 2V), for Vsub=OV 

Table A2.1 Jl =/ (10' Vos) 

ID«(JA) VDS(V) (.J (J dB 

1 1 34.82 30.84 

2 61.34 35.75 

5 1 33.2 30.42 

2 58.88 35.4 

10 1 32.9 30.18 

2 57.35 35.17 

25 1 30.96 29.81 

2 54.84 34.78 

50 1 29.81 29.49 

2 52.54 34.41 

100 1 28.83 29.04 
2 49.58 33.91 

250 1 25 27.96 

2 43.35 32.74 

500 1 21.04 26.46 

2 35.6 31 

750 1 18 25.11 

2 29.64 29.44 

1000 1 15.5 23.8 

2 24.86 27.91 
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Appendix 2.4 Tabular data on (gm!lgm) 

TableA2.2 

(gmb/gm) (gmb/gm) 

ID(IlA) Vsub=OV Vsub= -2V 

1 0.178 0.137 

5 0.169 0.135 

10 0.165 0.134 

25 0.159 0.133 

50 0.155 0.132 

100 0.151 0.131 

250 0.147 0.131 

500 0.145 0.131 

1000 0.147 0.133 
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DESIGN CONSIDERATIONS FOR BASIC 
SUB-CIRCUITS 

3.1 Introduction 

3.1 (a) The simple current mirror (CM) 

3.1 (b) The Widlar CM 

3.2 Multi-transistor CMs 

3.2.1 DC Characteristics 

3.2.2 Incremental performance 

3.3 The Source-Follower 

3.3.1 DC Characteristics 

3.3.2 Incremental performance 

3.4 Slllllnlary and Conclusions 

3.5 References 

3.6 Appendix 3 

Appendix 3.1 Output impedance ofa 1:1 CM 

Appendix 3.2 Source-Follower analysis 

Appendix 3.3 Additional Source-Follower characteristics 
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3.1 Introduction 

The current mirror, in its basic form or in a variant of it, together with the source-

follower are basic sub-circuits in CMOS analogue design. A glance at the literature 

shows that they certainly feature widely in existing V-I designs. 

Conventional textbook treatments deal with the analysis of both types of circuit using 

MOSFETs with channel lengths greater than about 1 

This chapter includes simulated measurements made to assess, for future use and 

reference, the performance of a number of types of current mirror and the 

performance of the source-follower incorporating MOSFETs with a channel length of 

0.13 

3.1(a) The simple current mirror (CM) 

The simple of 1:1 current mirror, comprising two MOSFETs with 

10 1 
1 :1 

Figure 3.1 Simple (1:1) Current Mirror 

identical characteristics, driven by an input reference current IR (See Fig.3.1) has been 

touched-on in Chapter 2 in the discussion on MOSFET output characteristics (See 

Section2.2.3) where it was established that incremental output resistance in the 
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'current saturation' region, for the devices .under test, was small, 2Kn (approx.) for 

1R=lmA. This makes the CM of extremely limited use if the output circuit ofM2 is to 

approximate a good, predicable current sink. The poor performance of the circuit of 

Fig.3.! is clearly evident from Fig.3.2 which shows the DC current transfer ratio 

M(=1oI1R) as a function OfIR for two values ofVos. 

3.5 LS:mA.m- 140 

m =2.7 VDS=3V 
'-...... 

3.0 

'"""'-r---- 1.OmA. m =2.11 2.5 
M 

2.0 --- 2.0rnA. m =1.61 
... 

1.5 

1.°0.f25mA O.50mA O.75mA 1.00mA 1.25mA 1.50mA 1.75mA 2.00mA 
IR 

(a) 
3.5 

3.0 

2.5 VDS=1.5V 

M 0.25mA. m =1.91 

"'--- -D.5mA. m =1.65 
LOrnA. m =1.40 

2.0 

1.5 
2.OmA,m 

1.° 0.f25mA 

Figure 3.2 

0.50mA O.75mA 1.00mA 1.25mA 1.50mA 1.75mA 
IR 

(b) 

DC current transfer ratio M for Fig 3.1, as a function of IR and Vos 

(a) for Vos=3V; (b) Vos=1.5V 

For a 1: x (>1) CM, in which L is the same for MI and M2 but W for M2 is a factor x 

greater than that of MJ, additional measurements (not included here) for x = 2 show, 

as expected, that for a given 1R and Vos, 10 and gds are both double the Figure for x=1. 
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The DC perfonnance the PMOS 1:1 CM using MOSFETs with L=O.13J!m and 

W=lOllm is better because of the higher output resistance obtainable with these 

devices. 

It has been assumed above that the characteristics of Ml and M2 are identical. 

Simulations of current mirrors automatically assume this unless provisions are made 

for them to be different. 

In practice, of course, doping and lithographic variations mean that even with the 

same Vos [3.1]. 

± 2AVT 

IR (Vas-VT ) 
(3.1) 

where is the fractional variation in and !:l V T is the Threshold Voltage 

difference. Eqn.3.1 suggests closer matching for higher Vas, i.e. higher 10 • 

By simple inspection the input impedance of a 1: 1 CM is, 

1 
Zj = (gds +gm)+(2Cgs +Cds +CgdP 

(3.2) 

Fig.2.2.S(c) in the previous Chapter shows IZjl vs. ffor 10 =lmA and Vos = IV 

A straightforward small signal analysis shows that the current gain m Oro) = (iJir) has 

a pole at, 

ro - (gm+ gdS) 
p - (2CgS+Cdb+Cgd) 

There is also a zero at, 

ro - gm z- Cgd 

This zero is not mentioned in [3.1], presumably because roz»rop 

A plot ofmOro) for the circuit of Fig.3.1 is given in Fig.3.3 

(3.3) 

(3.4) 

Surprisingly, the output impedance (as compared with the output resistance) is not 

treated in generally available textbooks. A full treatment is given in Appendix3.1 
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where it is shown that the expression for Zo contains a zero in addition to two poles. 

Representing the output by the parallel combination of a resistor and a capacitor is, 

thus, not generally valid. 

6 

./ IR=O 2SmA, (ioii l=3.78dB, 3dB freque cy= 23.63 GHz 

./ IR=O SmA. riO/ir - 2 ISdB - klB freauen 30.094 Hz i"l. 
2 V IR=I 0mA, (io/ir =O.SSdB, - dB frequen y= 39.290< Hz , \ 

o 1/ IJ<=LIUmA, (IO/If fjOtl Ireque j).LI fJt1Z \ \ 

Iml dB 1\ \\ 
2 

10Hz . 100Hz I.QKHz 10KHz 100KHz 1.0MHz 10MHz looMHz I.OGHz IOGHz 1000Hz 

20 

-0 

2l 

4 4l 

Lm 
.0\. 

Iv 

If.6Hz 

Figure 3.3 

Frequency 

(a) 

IR=I pmA, -3dB !Frequency 38.29OG, P ase=-2.40 "-
IR=2 .PmA, -3dB 35.2 12G, P j6degrec ..... 

IR=O. mA, -3 dE frequency 30.955GH Phase=-5 402degree J\ --
IR=O. 5mA,-3df frequency 23.637Gll Phase=-5i S04degree 

10Hz . 100Hz I.DKHz 10KH7. 100KHz 1.0MHz 10MHz looMHz I.OGHz IOGHz lOOGI 
Frequency 

(b) 

Current transfer ratio 'm' as a function of frequency for Fig 3.l. 

Vos=1.5V. (a) Magnitude (b) Phase 
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80 
...... IOO.OMHz,66.5S dB 8.4094GHz,63.581 B - ---- I.OTHz, 34.879dB 

60 

.......... 
IO.OTHz,14.934dB 

40 

20 .......... 

o .......... 

l.ooHz 100Hz I 1000Hz 1.0THz 10THz lOOI1Iz 
Frequency 

Figure 3.4 IZol for Fig 3.1. Reference resistance = In, here and elsewhere 
-Cd' --
-2Od 

/ 8.4094GHz, -37.4 4degree 

-4Od "'-LZo ......... , 
-6Od 

13.9' 11Hz, -89.63 degree 
-SOd ........... I'--- / 

-!()()qOOMHz l.ooHz 100Hz 1000Hz 1.0THz IOTHz lOOTHz 
Frequency 

Figure 3.5 LZo for Fig 3.1 

Figs3.4, 3.5 respectively show IZol vs. f and LZo vs. f. 

From the analysis, a predicted value for -3dB frequency is 7.60Hz. 

In Fig.3.4 the -3dB point for IZol is at the higher value of 8.4 OHz. The difference can 

be accounted for by a zero at a lower frequency. 

This shows itself more clearly in the flattened phase characteristic (FigJ.S) between 

100Hz and 1000Hz. This causes a fall-off in IZol by less than 20dB/decade and 

results in a higher -3dB point for IZol. The final fall-off rate of 20dB/decade is as 

predicted. 
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3.1(b) The Widlar CM 
The purpose of the Widlar eM, shown in Fig.3.6, in which MI and M2 are assumed to 

have identical characteristics, is to produce an output current 10 that is a fraction, 

usually small, of the input current IR• This is set by choice of the source degeneration 

resistor Rs. 

10 

Figure 3.6 The Widlar CM 

Assuming a simple square-law relationship between 10 and Vas, and ignoring 

differences in Vos between M. and M2 and threshold voltage differences. 

(3.5) 

and, VOS2 = fiK + Vr vI;; (3.6) 

Hence, Rs = (VOSI - VOS2 ) = ..fiP[_1 ___ 1_] 
10 Io.JI; Fa (3.7) 

Given 10, Rs can be chosen for a given IR and known 

The V S8 of M2 can be allowed for, in an iterative design process, as can the non-

identical Vos ofM. and M2. 
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However, the graphical approach proposed here and shown in Fig.3.7 is simpler in 

practice. 

10 

Figure 3.7 Graphical construction to find Rs for a specified 10 

Curve 'A' represents the 10 vs. Vas characteristic for both Ml and M2. Vasl and Vas2 

correspond, respectively, to 10 = IR and 10 = 10 (at the point Q). Line B, passing 

through Q, has a slope -llRs: hence, Rs can be determined. 

Using this approach Rs was found to be 4KO for a specified value of 10 of 50J,tA 

(approx.) with IR =lmA and Vos = 1.0 V. The simulated value of 51.34J.lA is slightly 

higher than the specified value because of the Vos ofM2 exceeds that ofMl. (i.e., Vo 

> Vas). 
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110 

100 

90 
IZoldB 

80 

70 

253.792M 100.165 

........... ""--

\ 

\ 

B 

60 U1Hz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz lOMHz looMHz l.ooHz 100Hz 
Frequency 

(a) 
-Od -1'\ 
·2Od 

[l 
253 1792MHz,-44 882degree U 

"--

.6Qd 

·8Od 

.1<Xl<l.QHz 10Hz 100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz l00MHz l.ooHz 100Hz 
Frequency 

(b) 

Figure 3.8 Output characteristics of the Widlar eM: (a) IZol (b) LZo 

Fig 3.8 shows variation of output impedance. Zoo with frequency. Over its 'constant' 

region IZol = Ro = 103.l65dB (for a dB reference value of Hl), corresponding to an 

incremental output resistance of 144Kn. 

As in the case ofa simple eM. a general expression for Zo, in terms of the frequency 

variable s, in complex. 

However, because of the large Ohmic value of Ro, there is a dominant pole at the 

output, for it is an apparent that the roll-off occurs at a rate of -20dB/decade (approx.) 

up to 100Hz. 
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The -3dB cut off frequency (1I2nR,Co) is 273.5 MHz, indicating an output 

capacitance of 4fF that corresponds precisely with the already detennined 4fF output 

capacitance of M2. 

The current fed back via Cgd from the drain of M2 to its gate is not mirrored by M2 

because of the presence ofRs in its source lead. 

3.2 Multiple transistor eMs 

The observed limitations of the simple CM, using MOSFETs with channel lengths of 

O.13llm, with respect to source/sink/repeater operation make it necessary to employ 

multiple transistor CMs for predictability in DC current transfer ratio, M, and 

increased incremental output resistance. 

Those popular choices are: the Cascode CM (CCM), Fig.3.9; the Modified Wilson 

CM (MWCM), Fig.3.10; and the so-called High Output Compliance CM (HCCM), 

Fig.3.11. 

. 3.2.1 DC Characteristics 
The DC and incremental perfonnance of these are compared in this section, with a 

view to their application in V -I design, starting with the DC characteristics in 

Figs3.12, 3.13, 3.14. 

For the CCM and MWCM the gate ofMJ is held at (VT4+VT3+2Von), 

where Von = (Vas and is the minimum VDS for operation in the 

current saturation region. Hence Vo(min}=VT4+VT3+2Von-VT3=VT+2Von. The 

interesting conclusion is that Vo(min) is the same as it would be if the substrate ofMJ, 

MJ were connected to their respective sources. In the case of the WCM, 10=0 for VI < 

(VT3+VT). 
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The HCCM uses six MOSFETs to obtain the theoretical value Vo(min}:::2Von. 

Working back from the gate ofM3, the nodal voltage labelling shows that that this is 

achievable if all the MOSFETs expect M, have identical characteristic with a 

common beta parameter 'Wand common threshold voltage, Vr. 

b.-o. ZSmA, O.Sal., 1.0mA. and ZmA Io 

1 
MJ T 

Vo (min) = Vr+2Von 

Figure 3.9 The Cascode CM (CCM): Von is defined on p 3.10 

IJI"'O.ZSmA, o.SmA, lmA and ZmA 

10 

r 
Ml 

r 
VI =2Vr+2Von Vo (min) =Vr+2Von 

M2 

Figure 3.10 The Modified Wilson CM (MWCM) 
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and ZmA 

I.SV 

1 
L=O.l3 
W=Z.Su 

Vr+2Von 

L'"O.l3u -r 1 W-lOu 

Von t- V.(min)=2V. 

L-O.13u 
W .. 1OU Von 

I 

Figure 3.11 'High Output Compliance' CM (HCCM): Theoretical Design 

MJ must have the same Vr as all the other MOSFETs but a beta parameter P4: P4=#P 

because we require the Von ofMJ to be twice the common value of the other devices. 

(3.8) 

Hence, P4 = W4. This happens if, for a common channel length, the gate width ifMJ 

is one-quarter of the other transistors, i.e., 2.5!! in the present design. 

The theoretical performance of the HCCM is not borne out in practice. The higher 

than expected Vo(min) can be attributed to the fact that the drain current of M6 

exceeds IR, because its drain voltage is greater than that of M2 by Von, and thus the 

gate-source voltage ofMs exceeds the theoretical value (Vr + 

In the current saturation region, the design figure of unity for the DC current transfer 

ratio is closely met by the CCM and MWCM but not so well with HCCM. This is 

attributed to the unequal drain voltages of M2 and 
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3.0mA 

IR' 2mA 

/ IR= lmA 

2.0mA 

10 (mA) 

I.OrnA 

IR=O·5mA 

1.3l.25mA 

OA OV 05V l.OV 2.0V 

Figure 3.12 DC output characteristics of the CCM 

3.0mA 

IR=2.0mA 

I I, OmA 

2.0mA 

10 (mA) 

1.0mA £ k =0.51IlA 

/' 
."I 

OA OV 05V l.OV l.5V 2.0V 

Vo(V) 

Figure 3.13 DC output characteristics of the MWCM 

3.0mA 

IR=2mA 

/ -----
lR= lmA 

2.0mA 

10 (rnA) 

l.OrnA 

IR=O.5 mA 

lR-O.25mA 

OA ov 0.5l/ 1.0V 1.5V 
Vo(V) 

2.0V 

Figure 3.14 DC output characteristics of the HCCM 
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3.2.2 Incremental performance 
The incremental output resistances of the these circuits should all be similar and given 

by, 

(3.9) 

Substituting simulated data, this gives Ro::::: 37.6K!l for the CCM compared with a 

value of38Kn (91.597dB with respect to a reference value of Hl) in Fig.3.15(a) 

The values for the MWCM and HCCM are, respectively, 35.76K!l and 41.02K!l. 

In all of these circuits the input drive current was supplied by an ideal current source 

for test proposes. The use, in practice, of a non-ideal current source does not affect 

the output resistance of the CCM and HCCM but it does have a major effect on the 

MWCM because the drive current is in the feedback loop. Thus, suppose the 

resistance of the current drive circuit is rds, i.e., the same as the output resistance of a 

simple CM. Then the loop-gain magnitude, ILGI, in the MWCM is reduced by 50% 

and, with it, the output resistance because it is given by (Output resistance without 

feedback x ILGI). The drive current output resistance could be increased by making it 

that of a p-channel Wilson configuration but that is at the expense of greater circuit 

complexity. 

The input impedances for the CCM, MWCM and HCCM shown for comparison, 

respectively, in Figs3.14, 3.15, 3.16 all display a fall-off in IZol of approximately 

20dB/decade between 100MHz and 10GHz, indicating that, to a first approximation, 

they can be modelled by a resistance in parallel with a capacitance. However, 

because of the different values of IZol at low frequencies, they exhibit differing cut-off 

frequencies. The effective output capacitances calculated from them are 9.84fF, 10fF, 

5.17fF for, respectively, the CCM, MWCM and HCCM. Those for the CCM and 

MWCM are comparable with a figure of 8.16fF obtained by substituting parameter 

data into the expression for output capacitance derived in Appendix3.1 
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2Cgs 
Co +Cdb (3.10) 

The output capacitance for the HCCM is somewhat higher than the 4fF expected of a 

common-gate-output stage. 

In this case the current in the Cgs of the output MOSFET is not magnified by current-

mirror action as it is for the CCM and MWCM. 

The frequency response of the small-signal current gain magnitude, Iml, is shown in 

Figs3.18, 3.19, 3.20 for the three types ofCM under review. 

A simplified equivalent circuit for the calculation the incremental short-circuit value 

of Iml for the CCM is shown in Fig.3 .21 

100 
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50 
Od 

(b)LZo 

-5Od 

/' flU 

-....... 

Iz. 

"" 
I\; 2degree 

'\ 

10Hz 100Hz 1.0 KHz 10 KHz 100 KHz 1.0MHz IOMHz looMHz 1.ooHz 100Hz 1000Hz 
Frequency 

Figure 3.15 Zo in (a) dB and (b) phase of the CCM: Vo=1.5V; IR=1mA 
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Figure 3.17 Zo in (a) dB and (b) phase of the HCCM: Vo=1.5V; IR=lmA 
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2Cgs 2Cgd 

Figure 3.21 Circuit for finding Iml = iJii for the CCM 

This resembles the circuit for the simple 1: 1 CM but, in this case, the capacitance in 

parallel with 2Cgs, in the input, is 2Cgd instead of Cgd because of 'Miller 

magnification' of the Cgd ofM. in Fig.3.9 

The -3dB cut-off frequency is given by, 

(gm +gdS) 
- 21t(2Cgs + 3Cgd + Cdb ) 

(3.11) 

Substituting measured capacitance values, (2Cgs+ 3Cgd+Cdb) =39fF and for operation 

Hence, f::::: 25.6GHz (3.12) 

This value offis in fair agreement with the observed value of23.87GHz. 

In the case ofthe HCCM the -3dB cut-off frequency is somewhat lower, at 22.4GHz, 

because the gate terminals of three MOSFETs are connected together rather than two. 

For the MWCM there is peaking in the frequency response of Iml, for some values of 

ID: this would be attributed to complex poles in the expression for loop-gain. This 

was not investigated further, for reasons given in the concluding section of this 

chapter. 
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3.3 Source-Follower 
In this section the simulated performance of the source-follower under anticipated 

operating conditions is examined to see what simplifications, if any, can be made in 

modelling it for use in calculations for an initial paper design of V-I circuits 

incorporating it. 

3.3.1 DC characteristic 

In the generalised N channel source-follower circuit of Fig.3.22(a), the load resistor 

RL is connected to a chosen reference voltage, V R (>-V ss) 

Voor 

-Vss J 
(a) 

Vo ------

(VDD + VT) Vet 

i - (VIl-r.,-RL) - - -

(VIl- 10 RL + VT) CUT-OfP' 

(b) 

Figure 3.22 (a) A generalised source-follower configuration 

(b) DC voltage transfer characteristic of (a) 
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Assuming a square-law mutual characteristic for MI, i.e., operation in the saturation 

region, we can write, 

10 - Vr)2[1+A(Voo - Vo )] 
2 

But, Vos = (Vo - Vo ) and, from [3.2], 

and, Vr = Vro + + (Vss + yo) J 
Substitution in eqn.3.13 and the subsequent re-arrangement of terms gives, 

{IO + (VO;LVR )] 

[1 + A.(Voo - Vo)].P 

(3.13) 

(3.14) 

(3.15) 

This equation determines points on the DC transfer characteristic shown in 

Fig.3.22(a). 

In particular, the point V 00 at which the characteristic crosses the horizontal axis is 

found by substituting Vo=O in eqn 3.15. This equation shows, also, that the slope 

(dV oIdV 0) is not constant but dependent on Yo. 

DC simulations were made on the circuit of Fig.3.23(a) for VDO = Vss = 1.5V and two 

conditions of source loading. 

In the first condition tests RL = 00 and 10 was set, successively, at O.5mA, ImA and 

I.SmA, obtained from an ideal current sink. This was to find the 'best' transfer 

characteristic. Of course, ideal current sinks do not exist in practice but can be 

approximated using current generators with case oded output stages. 

In the second set of simulations 10=0, VR=-VSS and RL was set, successively, at tKO, 

2K!l, 4Kn, values likely to be used in a practical design. 

Results of the first set of simulation tests are shown in Fig 3.23. Included on the plot, 

for reference purposes, is the ideal curve for any type offollower circuit 
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Figure 3.23 DC transfer characteristics for circuit of Fig 3.22(a) with RL =00, 

V oo=V ss=1.5V 

viz_, a straight line through the origin with a slope of unity. 

The point VG =VGO for Io=lmA appears to be mid-way between that for O_SmA and 

that for I.SmA, and that could be a useful approximation, but it does not quite agree 

with what is predicted from eqn.3.I6, the last term of which controls the variation of 

VGO with 10-

This term can be written in the form x = s.Ji where S /j 1/ (1 + A V 

Using subscripts I, 2, 3 to represent conditions for O_SmA, ImA, I.SmA, respectively, 

then, 

(3_16a) 

and, (3.16b) 

(3 _17) 
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A straight-edge, applied to each of the curves in Fig.3.23 indicates that, to a good 

approximation, they may be considered linear, though with a slope noticeably 

different from unity. The apparent linearity could be regarded as surprising in view of 

the dependence of the slope on Vo. However, it is understable if we consider a small 

signal representation of low-frequency voltage gain and the variation of the model 

parameters with DC conditions. 

In saturation, with 10 = constant = 10, it is shown in Appendix3.2 that, for RL =00, 

gm (3.18) 
Vg gm+ gmb+ gds 

In terms of the symbols Jl, X defined in Chapter 2, we can re-cast this equation in the 

form, 

(3.19) 

We can now estimate the variability of A with the input voltage Vo by calculating it 

for (say) two well-separated output voltages. 

A convenient pair of points is Vo=-O.5V and Vo=+O.5V, because we already have 

data for Jl and X that is applicable to these. 

3-22 



Analysis and Design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

+1.5V 

VDs=2V VDs"'lV 

Vo=-O.5V .---+--tl1 Vo=+O.5V 

J.I.=24.86 

X =0.14 

A =0.847 

(a) 

J.I.=15.5 

X =0.133 

A =0.835 

(b) 

Figure 3.24 Determination of A for two circuit conditions 

(a) Vo=-O.SV (b) Vo=+O.SV 

Fig.3.24 shows values of J.I., X (from Appendices2.3, 2.4) obtaining for (a) Vo=-O.5V 

and (b) Vo=+0.5V and the respective values of A calculated from eqn.3.19. 

These results show that there is a little variation in A over the input voltage range 

considered. Some of this is due to the opposite effects on Vo of V SB and Vos. 

The temperature dependence ofVr [3.3], normally in the range -O.5mV/oe and 

-4mV/oe, together with the decrease in P (due to mobility decrease) with temperature 

causes a change in Vo for a given Vo. Fig.3.25 indicates that IdVoIdTI < 

100mV1125°e i.e., < ImV/oe. 

Before leaving the case of an ideal current sink as a load, a test was made with V SB=O. 

The transfer characteristic (Fig.3.26) now has a slope close to unity because gmb=O. 

Hence, X = 0 and eqn.3 .19 becomes, 

(3.20) 
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Fig.3.25 shows simulation results for a second series of tests in which the source load 

is a resistor, RL, see Fig 3.22 (a). 

1.5 ./ 1.4 ./ 1.3 ./ 1.2 ./ 1.1 i==(L=O.13um and W=10um) ./ I ./ 0.9 r--- ./ 0.8 / 0.7 --
0.6 . ./ .............. 
0.5 ./ v y 

Vo °.4 ./ ¥ / . ........ 0.3 ./ (V) 0.2 ./ - ,-- -
0.1 V v7': K -+-- R= I K ohm 0 
-0.1 :/ ----- R=2K ohm ./ -0.2 ./ """-.K' ---.- R=4K ohm -0.3 -
-0.4 ./ -* Ideal case ./ -0.5 ./ tn/ -0.6 ./ -0.7 ./ A"? -0.8 ./ -0.9 ./ od¥ -1 ./ -1. 1 ./ 

-
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VG (V) 

Figure 3.25 Source-Follower transfer characteristic for varying resistive loads 

The equation for a particular value ofRL is, from eqn.3.15, 

(3.21) 

Thus, for a fixed V G, VO decreases as RL decreases. 

Figs.3.23 and 3.25 arc combined on the same graph-sheet in Appendix3.3 to enable a 

direct comparison. This Appendix also shows the effect of temperature in the 

particular case of a 2K.Q load. 
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Figure 3.26 Temperature variation of Source-Follower transfer characteristic 
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The poor gain-magnitude and linearity in the case of a resistive load can be 

appreciated by modifying eqn.3.18. 

Now, A= gm 
(gm + gmb)+ gds + gL 

(3.22) 

where gL=IIRL 

Equation 3.22 can be written in the form, 

A= J.l 

1+ J.l(l + x)+ 
(3.23) 

With change in input voltage 10 and Vo change and so does rds. 

The worst case (RL =IKn) occurs for RL comparable with rds. 

3.3.2 Incremental performance 
This section deals with the simulated incremental or small-signal performance of the 

circuit of Fig.3.22(a) and the way it relates to the theoretical analysis given in 

Appendix3.2. 

In the simulations, the DC level of the gate voltage of the MOSFET under test was set 

at earth potential in all cases. For the measurement of voltage gain a small amplitude 

signal voltage of varying frequency was superimposed on this. In the case of the gain 

the resulting source voltage was measured and for the input impedance the gate 

current monitored. To measure the input impedance a small amplitude a.c current of 

varying frequency was applied to the source and the resulting source voltage 

measured. 

Fig.3.28(a) shows the gain magnitude, IAI, and the phase, LA, as a function of 

frequency for the special case Ro=O and two conditions of source load. The first 

source load is a IKn resistor connected to -Vss (-1.SV): the second source load is 
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1 Kn resistor with a capacitor (e L =50fF) connected from source to earth. The purpose 

of this second test is to assess the extent to which capacitive loading affects the 

frequency response. The choice of 50fF was made because it was thought to represent 

the maximum capacitive loading in a potential V -I design. 

In the case of a resistive load, 

(3.24) 

This has a low frequency gain A(o) given by, 

(3.25) 

There is a zero at, (3.26) 

and a pole at, (3.27) 

Since (gm+gmb+gds+gL» gm, the zero is at a lower frequency than the pole. 

For s ---+ 00 (i .e. co ---+ 00 ) , A ---+ 1 

These predictions are borne out by in the green curve in Fig.3.28 
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Figure 3.28 (a) Source-Follower gain magnitude IAI; (b) phase 

The low value ofRL produces a poor value for IA(o)l. 

In fact, IA(o)ldB = -2.0832dB, i.e.IA(o)1 = 0.787. 

For the case of capacitance loading, 

(3.28) 

(3.29) 

and, (3.30) 

or, (3.31) 

For (3.32) 

(3.33) 

CL J Cgs +CL 
For (3.34) 

These results are applicable to the red curve in Fig.3.28(a). 

It is apparent that the source-follower in useable up to a frequency of about 10GHz 

with a combined lKfl and SOfF load in parallel. 

The input impedance shown in Fig.3.29 for the same two loading conditions as 
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---:--

I.OTHz IOTHz 

Figure 3.29 Input impedance of source follower for two loading conditions and 

Rc=O 

discussed above. 

From f = lGHz to f =10GHz the plot for IZil falls from l07.185dB to 87.185dB. This 

20dB/decade fall shows that the input can be modelled by a single capacitor, for both 

values of loading, up to about 10GHz. 

This bears out a prediction in Appendix3.2 where the bootstrapping effect on Cgs is 

mentioned. 

Finally, the output impedance, Zo, is shown in Fig.3.30, again for the special case 

RG=O, considered. 
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Figure 3.30 Source-follower output impedance: RG=O (a) IZol :(b) L Zo 

Zo follows the prediction ofthe simple fonnula 

(3.35) 

3.4 Summary and conclusions 

Tests showed that the simple cunent mirror (CM) was very limited in its application 

potentialities because of its poor incremental output resistance. This could be 

improved by the use of more MOSFETs. Three schemes were investigated, the 

cascode (CCM) and the Modified Wilson CM (MWCM), both comprising four 

MOSFETs, and the so-called 'High Compliance CM' (HCCM) comprising six 

MOSFETs. It was decided to adopt the CCM in preference to the other two for a 

number of reasons. First it gave comparable small signal perfOlmance to that of the 

MWCM but had a major advantage over it, namely, that the output impedance was 

independent of the resistance of the circuit driving it. The HCCM had the best 
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frequency response but was not regarded as acceptable for two reasons. First, for a 

reason not discovered, its DC output characteristic was no better than that of the CCM 

or MWCM. Second, it requires six MOSFETs. 

It does have one major advantage over the other two circuits in its bandwidth. 

This suggests the use of the configuration shown in Fig.3.31 for best overall CM 

performance. 

I: I 

Figure 3.31 eM scheme for best overall output performance 

In this, the gate bias voltage, V R, for the cascode transistor M3 in such that the drain 

voltage ofM2 is the same as that ofM •. As in the case of the HCCM the Cgs ofM3 

does not feed current back to the input circuit. 

Work on the source-follower showed the general desirability of using a constant 

current generator, for biasing purposes, to achieve the maximum low-frequency 

voltage gain, IA(o)l. 

The best value for this is obtainable with the substrate of the MOSFET connected to 

its source. However, this is not a preferred option in practice because it means extra 

complication in an N-well diffusion process. 

Despite variations in V DS and V SB with V 0, the linearity of the DC transfer 

characteristic was good. The temperature variation of this characteristic was very 
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small for both current and resistive loads amounting to parallel shift to the right with 

temperature increase by no more than about ImV/OC over the range -40°C to +85°C. 

There was little change in small signal behaviour up to about lOGHz, even with non-

negligible capacitive loading by the circuits likely to be driven. 
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3.6 Appendix 3 ' 

Appendix 3.1 Output impedance of a 1: 1 eM 

Vo 

Fig A 3.1.1 Al:ICM Fig A 3.1.2 Small-signal equivalent of Fig 3.1.1 

In the small-signal equivalent circuit ofFig.A3.1.2, C1= (2 Cgs+ Cdb), C2= Cgd and C3= Cdb• 

We require to find Zo = (vJ io) in terms of the complex frequency variables s. 

KCL at the output node gives, 

(A 3.1.1) 

KCL at the gate node gives, 

(A 3.1.2) 

or, (A 3.1.3) 

and, (A 3.1.4) 

Substituting vg. in eqn.A 3.1.4, into eqn.A 3.1.1 gives, 

(A 3.1.5) 
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z - (gm + gds )+s(CI + C2) 
0- gds(gm +gds)+s[(gm +gdsXC2 +C3)+gds(C I +C2XC2 +c3)-cl] 

This has the form 

where, PI and P2 are the poles, assumed real, of Zo 

For P2 » Ph there is dominant pole PI 

and, 

1 
PI a:-

al 

Comparing eqns(A 3.1.9) and (A 3.1.10) 

There is a zero in the numerator at, 
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(A 3.1.16) 

Consider the denominator of (A 3.1.15) 

(A 3.1.17) 

(A 3.1.18) 

where P.=gmrds (»1) 

The output circuit defining the dominant pole can than be shown as in Fig A 3.3 

rds 

Figure A 3.1.3 First-order approximation for equivalent output circuit 

Of interest is the fact that C2, which is the Cgd of M2, is effectively doubled. This results from 

current mirror action. 

Substituting measured parameters data for p., C), C2, C3 in (A 3.1.19) 

gives, 

(A 3.1.19) 
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Appendix 3.2 Source-Follower analysis 

-Vss J 
(a) (b) 

Figure A 3.2.1 (a) General circuit configuration for a source-follower 

(b) Small-signal equivalent of (a) 

The small-signal equivalent circuit of Fig.A 3.2.1 permits the determination of small-signal 

voltage gain, A, input impedance Zj and output impedance Zo, of the source-follower 

configuration shown in (a): g.= (g" + gds + gmb), where g,,= IIR" 

Thus, A=21 
Vi io=O 

(A 3.2.1) 

,- . 
Ii io=O 

(A 3.2.2) 

and, (A 3.2.3) 
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(a) Detennination of A 

KCL at the input gives, 

or, 

KCL at output gives, 

or, 

Substituting for Vg from eqn. (A 3.2.7) into eqn. (A 3.2.5) 

199 +s(CI +c2)I(gs +gm)+s(C2 +C3)]vs 
ggVi = () sC2vs gm +sC2 

or, 

(A 3.2.4) 

(A 3.2.5) 

(A 3.2.6) 

(A 3.2.7) 

(A 3.2.8) 

(A 3.2.9) 

gg(gm +SC2) 
Vi gg(gs +gm)+S[(gs +gm)cl +(gs +gm)c2 +gg(C2 +C3)-gmC2]+S2[C1C2 +C1C3 +c2c 31 

(A 3.2.10) 

A(s) = gg(gm + sC2) 
gg(gs + gm)+ s[(gs + gm)cl + gsC2 + gg(C2 + C3)]+s2[C1C2 + CI C3 + C2C3] 

(A 3.2.11) 

This expression indicates a zero at Sz = -gm/Cgs and a dominant pole (assuming there is one) 

at, (A 3.2.12) 
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or, (A 3.1.13) 

or (A 3.1.14) 

The l.fvalue of A(s), gives by putting s = 0 in eqn.3.2.11, is, 

(A 3.2.15) 

(b) Determination of Zi 

Consider the section of Fig.A3.2.1 (b) Vs to the right of the junction with CL, 

From eqn.(A 3.2.7), 

(gm +sC2 ) (A 3.2.16) 

(A 3.2.17) 

The current in C2 is (A 3.2.18) 

Thus, provided 0)« gm and 0)« + gm , whichever is the smaller, the input can be 
C2 C2 +C3 

modelled as shown in Fig.A 3.2.2, which illustrates the section of bootstrapping. 

__ C_g_d ___ T...J [l-A(o)] 

Figure A 3.2.2 Simplified representation of the input circuit 
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(c) Detennination ofZo 

Referring to Fig A3.2.1 (b), for the case Vi =0, we can write 

-ggVg =SCIVg +sc2lvg -v,) 

or, 

Furthennore, 

io(s)+ gmlvg - vs)+sc2lvg - vs )= vs(gs + SC3) 

or, io(s)= vsms+ gm+ S(C2+ C3)]- vg'mm+ SC2] 

From this equation Zo(s) is calculated for a givens(= jro). 

(A 3.2.19) 

(A 3.2.20) 

(A 3.2.21) 

(A 3.2.22) 

However, the general expression in complex: for the special case Rs=O the equivalent output 

circuit is shown in Fig.A 3.2.3 

V. 

Figure A 3.2.3 Small signal output circuit for He = 0 
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Appendix 3.3 Additional Source-Follower characteristics. 

1.5 / 
1.4 
1.3 .L' 1.2 (L=O.13u and W=10u) .L' 1. 1 / 1 / 0.9 / 0.8 L 0.7 / ........ 0.6 
0.5 L 0.4 / 0.3 ./ 

Vo ./ ....... -+- ID=O.5mA 
V --- 1D=1.0mA 0 / (V) -Ol / -*- 1D=l.SmA -0.2 / --R=IK ohm -0.3 / -0.4 / ""*-- R=2K ohm -0.5 / --R=4Kohm -0.6 / ...- ;,...--0.7 / -+- Ideal case -0.8 

-0.9 ../ -I / -1. 1 / -1.2 ./ ...-...------1.3 /' 
-1.4 V V -1.5 
-1.6 

-1.5-1.4-1.3-1.2-1.1 -I -0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0. 1 0 0.1 0.2 0.3 0.4 0.5 0.60.7 0.8 0.9 I 1.1 1.2 1.3 1.4 1.5 

VG (V) 

Figure A 3.3.1 Combined source-follower transfer characteristic: Vss=VDD=1.5V 
-

1.5 /' 1.4 /' 1.3 .L 1.2 (L=O.13u and W=10u} / 1.1 / 1 / 0.9 .L 0.8 L 
- . --

0.7 / 0.6 / .,. 
0.5 /' I" 0.4 / .-0.3 ./ VO o.2 ./ J:P' -- -+- Te mp.=-40' C 0.1 V .d'" 

/" --- Te mp.=27' C 
/' .". -*- Temp.=85' C -0.2 / -0.3 / ,.- __ Ideal case 

-0.4 / .Jtr --
-0.5 / J...P' - - -
-0.6 / ..,P 
-0.7 ./ .Y .-
-0.8 ./ " -0.9 ./ ..,;r 

-I ../ ---1.1 ../ 
-1.2 ./ ,.,r 
-1.3 ./ .,. 
-1.4 / .-. 
-1.5 

-1.5-1.4-1 .3- 1.2-1.1 -I -0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.10.20.3 0.4 0.5 0.6 0.7 0.8 0.9 I 1.1 1.2 1.3 1.4 I.S 

VG (V) 

Figure A 3.3.2 Temperature effect on a source-follower with a 2KQ load: Vss=VDD=1.5V 
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4.1 Introduction 
This chapter presents a critical review of existing V-I designs and outlines the design 

approach that will be adopted for the remainder of this thesis. 

Bipolar V-Is have a long history so it is an obvious approach to see how they could be 

adapted for use with MOSFETs, when these seem to offer some performance 

advantages, e.g., higher input impedance and use in MOSFET mixed-signal circuitry. 

Two types of BJT design became established. In the first [4.1], and more popular 

technique, called here, Type A, the non-linearity in the relationship between the 

collector current and base-emitter voltage of a BJT is taken care of by the use of 

negative feedback and the transconductance is defined by a resistor. 

The second, and seemingly little-used technique [4.2], called here Type B, purposely 

makes use of the exponential relationship between the collector current and base-

emitter voltage and the close parameter matching possible with bipolar devices: no 

resistor is used to define the transconductance, that is set by transistor geometry. 

Two design philosophies have emerged for MOSFETs. 

The first resembles that for BJTs in that negative feedback is employed to circumvent 

the non-linear relationship between drain current and gate-source voltage, and a 

resistor is used to define the transconductance. 

The second exploits the square-law relationship between drain current and gate-source 

voltage, and a resistor is not required to define the transconductance. As in the case of 

BJTs it is set by device geometry and a bias current. 

The next section outlines the system-level implementation of the two approaches. 

After that some typical circuits are reviewed. 
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4.2 System-level approached to V-I design 

4.2.1 Type A 

FigA.l [4.1] is a system diagram for Type A design. 

",,- - ...... 
" 1+ ... , , \ , \ 

VI (>v2) --IN , 

Vo 

I , , , 
\ L 

Figure 4.1 A system-level implementation ofa Type A V-I 

Al and A2 are operational amplifiers, with a high voltage gain, strapped to operate as 

voltage-followers. They are driven by input voltage signals Vlo V2, respectively, and 

their outputs are connected by a resistor, R. The potential difference, VR, across R for 

the ideal case of infinite amplifier voltage gain is equal to, and has the same polarity as, 

the differential input voltage, VO=VI-V2. The current JR, in R, is thus VoIR and has the 

direction shown for Vo > 0 (i.e., Vl>V2). 

Now consider the dotted contour surrounding amplifier AI. If the amplifier input 

currents are neglected (a justifiable assumption, particularly with amplifiers having 

MOSFET input stages) then Kirchhofrs Current Law (KCL) demands that IR and the 

amplifier supply-terminal currents are related by, 

(4.1) 
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The unity-gain current mirrors CMI, CM2, repeat 1+, L, respectively, and the current 

mirror outputs are combined, with the result that, 

or, 

VD I =IR =-o R (4.2) 

(4.3) 

An alternative system-level implementation involves the use of a current conveyor type 

CCII+. 

A block representative of this [4.2] is given in Fig.4.2 

VY---D: Z Iz = Ix =VxIR 
V ,---, X 9+: . 

Figure 4.2 Alternative system-level implementation of a Type A V-I 

The defining matrix for the CCII+ is, 

(4.4) 

With a resistor connected to terminal X, as shown, eqn.(4.3) is, again, applicable. 
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4.2.2 Type B 
FigA.3 illustrates the basis of this. The circuit combining II and h. 

V 

VOS2 

(Vr+Vx) (Vr+VX> 

Figure 4.3 Showing the operating principle of Type B V-I 

is, however, omitted because it involves no new principle, only the use of current 

mirrors. 

(V r+ V x) is a floating voltage source. 

Assuming MI and M2 have identical square-law characteristics when operated in the 

saturation region, we can write, 

(4.5) 

and, (4.6) 

But, (4.7) 

or, (4.8) 

Similarly, (4.9) 

Substituting for Vos!. from eqnA.8, in eqnA.S gives, 

(4.10) 
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Similarly, substituting for V OS2, from eqn.4.9, in eqn.4.6 gives 

(4.11) 

(4.12) 

(4.13) 

or, (4.14) 

Fig.4.4 illustrates the meaning of eqn.4.14: 

-Yx 

Linear operating range 

Figure 4.4 Graphical interpretation of eqn (4.14) 

4-6 



Analysis and Design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

4.3 Limitation of Type B designs 
It was decided to conduct further research only into Type A circuits. 

To understand why it is necessary to indicate the fundamental limitations of Type B 

circuits. 

Fig.4.5 shows a version of Fig.4.3 proposed by Negungadi and Visvanathan [4.3]. In 

this, the floating voltage sources of FigA.3 are provided by the source-follower 

transistors M3 and M4, which have gate widths n times larger than those of the input 

transistors M!, M2. 

If n is 'large' (>5) and the input signal voltages VI and V2.are 'small', the gate source 

( voltage ofM3 and M4 are both constant at Vr + VT ,I.e.,. Vx = vT 
If n is not large the bias current through M3 and M4 changes and the linear relationship 

A disadvantage of this arrangement is that large bias currents pass through MI and M2. 

Voo 

nK nK 

-Vss 

Figure 4.5 Circuit of Negungadi and Viswanathan [4.3] 
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Voo 

(a) 

Vos' Vr ' 

(b) 
Figure 4.6 (a) Circuit of Seevinck and Wassenaar [4.4J 

(b) Operation of a CMOS double-pair (See text) 

Seevinck and Wassenaar [404] improved on the previous circuit with the arrangement 

ofFigo4.6. 
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In this ingenious scheme, the current for the floating voltage sources (the n-p 

combinations M3a+M3b, M4a+ M4b) is fixed by independent bias sources (Is) and does 

not flow through the output transistors. 

Its operation can be understood by realising that a CMOS double pair such as 

(Mla+Mlb) in Fig.4.6 behaves as a single n channel MOSFET characterised by, 

(4.15) 

(4.16) 

and, (4.17) 

In this case, V =J2IB 
X W (4.18) 

Demosthenous and Panovic [4.5] have proposed the simpler scheme shown in Fig.4.7 

Voo 

Is 

Figure 4.7 Circuit of Demosthenous and Panovic [4.5] 
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This uses a so-called 'Flipped Voltage Follower' (discussed in more detail in a later 

chapter). Here, and M6 provide the floating voltage sources. The Vas of each is 

[VT + ] because feedback in the combination M,. M, and Ms. M, ensures that 

M4, Ms operate with a constant drain current. 

As before, (4.19) 

The deficiencies of the circuit of FigA.5 have already been mentioned. 

The circuit of FigA.6 is superior in respect of the provision of the floating voltage 

sources: the bias currents for them no longer pass through the output transistors. 

Additionally, the circuit is able to accommodate a wide input signal range. 

However, the vertical stacking of the transistors counts against operation at low rail 

voltages. This is not a problem with the circuit of FigA.7. 

All three of the circuits discussed so far in this section are open to criticisms on two 

counts. First is their dependence on the close parameter matching of the MOSFETs. 

Second, they assume a perfect square-law relationship between drain current and gate-

source voltage. For MOSFETs with channel lengths of 0.13!!m, the effect of varying 

drain voltage is significant. 

Because of these shortcomings it was decided to conduct research only into Type A 

circuits. 
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4.4 Type A development choices 

4.4.1 The differential amplifier with degeneration 

h=(J.r-I) 

____________ __________ 

lVsS 
Figure 4.8 A differential amplifier: Vo> 0 

The differential amplifier of FigA.8 is capable of offering only a small differential 

input range Vo for linear V-I conversion. 

This can be seen from the following argument. 

Adopting an approach employed elsewhere [4.6], but using different symbols, it can be 

shown that, 

(4.20) 

provided IVol (4.21) 

Let Vb = @ x = V 0 and y = ..!.. fp' Vb ' IT 

Then eqnA.20 can be re-written as, 
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U (4.22) 

For x « 1 (i.e. IVI« ) we obtain an almost linear characteristic with, 

(4.23) 

For a linearity not worse than 1 %, VD < O.28Vb. i.e. VD . 
Fig 4.9 shows the transfer characteristic for t1U'ee values of 2h, viz., O.SmA, 1mA, 

2mA and illustrates the small input range for constant transconductance. 

2.0 Ii Purple curve: pifferential Ol tput current 
when 2IT=2.0tnA 

1.5 

/ 
1.0 +----+---t--+---+---+--//--t-t;....---r-----t--t-------f 

Red curve: D ferential outp t current 
when 21T= I.OtnA 

0.5 

o 

-1.0 

Green curve: pifferential au put current 
whel1 21T=O.5 nA 

-15 / 

-2.0 ----+-----+-----+------l 
-1 ,OV -O.6V, -0.4 V -0.2V -O.OV 0.2V OAV O.6Y O.SY l.OY 

YD 

Figure 4.9 Transfer characteristics for the circuit of Fig 4.8 

4-12 



Analysis and Design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

The transfer characteristic can be made more linear using a source degeneration 

resistor, shown as R in Fig 4.10. 

h=(Jr-I) 

J Vss 

Figure 4.10 Differential amplifier with source degeneration 

Apart from the omission of current mirrors at the output, this is the simplest practical 

implementation of FigA.l. 

By inspection, 

or, Vo = + I) _ - I) + IR 

. dV 0 =1. fI 1 +1. fI 1 + R 
.. dl 2 Vf3 + I 2 Vf3 - I 

. 0 _ d(21) _ 2 
• • t - dV 0 - R fI( 1 1) 

+ V 2IJ3 ..}1 + x + ..}1- x 

tJ. I 
where, X=-

IT 

When x «1, Ot -+ 21R for any Jr. 
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G t can still approach this value for x comparable with unity if R is large enough. This 

is illustrated in Fig.4.11. 

1.0 

0.5 

Purple curve: Differen ial output current when R=2K ohm 
Red curve: Differentia output current when R I K ohm 
Green curve: Differen al output current when =500 ohm 

-0.5 

·1.0V -O.5V -O.OV 
VD 

O.5V I.OV 

Figure 4.11 Differential amplifier transfer characteristic with source 

degeneration. 

The problem is that making R large for good linearity results in a lower G,. 

Before leaving this section it is worth noting that eqn (4.27) may be re-written in the 

form, 

(4.28) 

where gml ,gm2 are, respectively, the mutual where conductance of MI and M 2 at 

operating currents (1,-+1), (1,--1) respectively. 
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4.4.2 The cross-coupled scheme 

This technique follows directly that first proposed by Caprio [4.7] for BJTs: it was 

used later by Khumsat and Worapishet [4.8]. FigA.12 shows two circuit 

configurations but the operation of the circuits was not dealt with in detail(it is 

below) , with MOSFETs. 

IVOO Voo 

I, h 1 I, h 

J-VSS 
W 

I, h 

MJ M4 

J -Vss J -VSS 

(a) (b) 

Figure 4.12 Showing two forms of the cross-coupled scheme 

(a) Using two current sinks; (b) Using two resistors 

Consider, first, the operation of the circuit of FigA.12(a). 

By inspection, 

(4.29a) 

and, (4.29b) 

(4.30) 
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But, Vasl=Vas3 because ofIDl=ID3=I1• Similarly Vas2=Vas4 because ID2=ID4-h. 

Hence, 

So, for V 0>0, 

and, 

For Fig.4.12(b), also, 

1 G =-
t R 

(4.31) 

(4.32a) 

(4.32b) 

(4.33) 

(4.34) 

The same total resistor value is used in both circuits ofFig.4.12. The two circuits are 

operationally equivalent because for differential drive. with VI= + V0I2 and 

V 2= - V 012, the mid point of resistor 2R is at signal earth potential. 
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4.4.2(a) Circuit implementation and operation 

The circuit of FigA.12(b) appears in a re-drawn version, as shown in [4.8], with 

corresponding MOSFET numbering, in FigA.13 

V
DD I 1.5V/2.5V '=' I. 12 

M, M2 I fCaeep 
lOJlm lOJlm 

V2 
V3 V4 

V7 

I. 

-Vss 
-1.5V/-2.5V I 

Figure 4.13 Redrawn version of Fig 4.12(b), as shown in [4.8] 

This was investigated to detennine its limitations, for supply voltages ±1.5V, and two 

values ofRs, 600 n and 1.2Kn. 

The discussion here focuses on the case R= 600 n. 
The operation is best understood by reference to the voltage and current traces in 

Figs4.14, 4.15, respectively and a consideration of what happens when a DC sweep 

voltage is applied to V2 and V7. Suppose, initially, V2=V7=0 then from FigA.14, 

V3=V4 -0.7V and M3, are in the saturated state, as are M\ and M2. 

(4.35) 
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O.8V 
V(7) 

O.4V 

OV 

-OAV 

-O.8V 

- - - I.OV . -o.sv O.OV o.sv 1.0V 1.SV 

Vd 

Figure 4.14 Voltage traces for Fig 4.13 

600uA 

400uA 

- l.OV -o.sV -O.OV 
Vd 

O.SV l.OV I. SV 

M3 in triode region M3, M4 in saturation M4 in triode region 

Figure 4.15 Current traces for Fig 4.13 

For R=600 n, IQ=O.509mA as indicated in Fig.4.15. As VD increases, such that 

V2= +Vo/2 and V, = -VD/2, V3 and Vs both increase by source-follower action, thus 

causing an increase in h- Meanwhile V 4 and V 6 both decrease, causing a decrease in 

This process continues till M4 enters the triode region. This occurs when (V3-V4)=VT 

A further increase in V 0 causes h to decrease, as well as I, . 
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The mechanism for this is made clearer by reference to Fig.4. 16. 

lAmA 

VGS=-1.5V 

Y 
£ t V""=-1..o. 

1.2mA 

1.0rnA 

IY D \ VGS=-1.OV 
" 

/L-'" - I 

V VGS=-D.75V 

1\ 
£ \ a' VGS=-D.SV 

\ VGS-O,-D.2SV 

DAmA 

D.2mA 

-IAV -1.2V -1.OV -D.BV -D.6V -DAV -D.2V -D.OV 

r 
Vo 

r 
4 

M4 in triode region M4 in saturation 

Figure 4.16 Showing the output characteristics of M4 and current change in 12 

when Vo changes positively from zero, corresponding to PI 

This shows the output characteristics of M4 , with a 600 n source load, and the drain 

load characteristic, aa', for the source-gate circuit ofM2 when Vo=O. At PI, TI =Iz=I. 

Consequent decrease in V 4, and increase in V 3, causes the characteristic aa' to move to 

the left and the operating point to move to P2 corresponding to the linear limit of the 

saturation region for M4 . 

Subsequent increase in Vo causes a decrease in T2. Throughout this process M, and 

M2 always operate in the saturation region. 

The voltage and cunent traces for Vo < 0 are mirror images, about the veltical axis, of 

the these for V 0 > O. 
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2.0m 

VDD=-VSS=l.5V 
Gt= 1.0686mS, RS rsoo ohm 
./ 

j V , 
Gt=O.564mS, RS=I 
./ ...... 

l.Om 

o ::;....- .............:: 

---==== 
. - l.OV -O.5V -O.OV 

Vd 

O.5V 

Figure 4.17 Transconductance characteristic for Fig 4.13 

I.OV 1.5V 

Fig.4.17 shows the transconductance characteristic derived from Fig.4.14 and Fig.4.15. 

Using eqn.4.34, the ideal design value of G t is 1.666mS. 

However, the observed value is only 1.069mS. 

The difference can be explained most simply by a simple small-signal voltage-gain 

analysis. 

Referring to Fig 4.13 , suppose the voltage-gain of the source-followers M! and M2 is 

m and that of M),M4 is n. 

Then, in the vicinity ofVD=O, 

(4.36) 

Similarly, 

(4.37) 

Hence, (4.38) 

Looking at the voltage traces in Fig.4.41 it is apparent that 1> m > n because the graph 

for V4 is more nearly parallel to V7 than V6 is to V4 . This is understandable because 

M2 (M!) has a source load with a higher incremental resistance than that ofM4 (M) . 
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It is evident that, mn ;:::: 1.068611.6666=0.64 (4.39) 

Theoretically [See Chapter 3], m ;:::: 11 (1 +x) (4.40) 

and, n = !li[l+ Il(l+ x)+(rdslR)] (4.41) 

Substituting data from Chapter 2 on X, Il and rds, at I=0.5mA gives, 

mn ;:::: 0.62 (4.42) 

There is, thus, fair argument between the theoretical value of mn given by eqnAA2 and 

that determined by simulation, eqnA.39. Towards the edge of the 'linear' region it is no 

longer true that the voltage gains of MI and M2 are equal or that those of M3 and M4 

are equal. This is a cause of non-constancy of G t • 

From eqn (4.33) it follows that Gt > 0 if, 

(4.43) 

Gt < 0 for M3 in the triode region because TI increases more rapidly than h. 

Simi larly, Gt < 0 for M4 in the triode region because h decays more rapidly than II. 

Total Harmonic Distortion (THO) as a function of amplitude and frequency is 

displayed in Fig.4.18. Spot values are given in Appendix4.1 

THDofa cross-coupled scheme (600ohm) 

-50 
-55 
-60 

-65 

CD -70 
"C -75 

-80 

-85 
-90 
-95 

100 200 300 400 

Different input Volt. (mV),Vo 

500 

• • + • • f=10MHz 

_ f=100MHz 

f=1GHz 

Figure 4.18 Total Harmonic Distortion as a function of amplitude and frequency. 
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Under the worst conditions (vo=SOOm V, f= 1 GHz) the THD is better than O.IS%. 

There are two types of distortion, amplitude distortion, resulting from the non-

constancy of the Gt characteristic for varying vo, and frequency distortion caused by 

the variation in the magnitude and phase of Gt due to circuit capacitances. 

A general discussion of ampli tude distortion is well-covered in [4.9]. 

The third-harmonic component of this most impo11ant in the present case. This is 

inversely related to the open loop-gain, AoL, in a feedback system, and also increases 

with input signal amplitude. 

For a source-follower the loop-gain is given by, 

A gm 
OL = 

gm + gmb + gL + gds 
(4.44) 

In the cross-coupled scheme under discussion, this cannot exceed gmR. Furthermore, 

gm :::;:: SmS at O.SmA and R=600 n, so gmR :::;:: 3. This small value limits the distortion 

performance. Frequency distortion causes a worsening in the distortion figure . 

Fig.4.19 shows acceptable operation for small-amplitude differential input signals at a 

frequency of 1 GHz. 

50m 60u ,r---r<=,--- r-7'"'>---,-----,-.,.....--,-----,--, ...... 

40u .hll--\--l---H , - -\--+---+-1 - ---\--1----+-/ '- -\-f-----+-It-...-...:\-+---J 

20u 

OV OA 

_20u4l---ft- --I4---!-\r- --I1f------4--1r-- -II-----l-II---#+--- - -l-ll-- -I-l 

-40u 

-50m 6ou1(P.()ns 10.'5hs II.Ons 11.5ns 12.0ns 12.5ns 
Time 

13.0ns 13.5n5 14.0n5 14.5ns IS.Ons 

Figure 4.19 Showing differential input voltages (full line curve) and differential 

output current (dotted-line curve) at I GHz 
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An assessment of the suitability of this configuration for further development is given 

in the Conclusions section of this chapter. 

4.4.2(b) Limitations of the cross-coupled scheme 

The operation of the two circuits in FigA.12 is not dependent on the nature of the 

mutual characteristics of the MOSFETs used, only on the matching in the respective 

characteristic of the devices. 

The circuit technique employed did, after all, have its origins in a bipolar version. 

However, MOSFETs do not exhibit the close matching possible with bipolar 

transistors. 

For Gt in the mS range, R must be less than lKO. Consequences of a substrate bias 

dependent on input voltage, and an rds comparable with R, are a Gt value that is not 

accurately predictable and a THD figure that is only modest (typically, 0.1 %) because 

of limited source-follower open-loop gain. The circuit of FigA.12(a) is preferable to 

that of FigA.12(b), in that it does not rely on the resistor matching necessary with 

the configuration FigA.12(b). 

However, FigA.12(b) can operate with lower supply rails because the simplest current 

sinks in FigA.12(a) would be the outputs of current mirrors, the minimum voltage 

across which, in saturation, would be about OAV. 

A limitation of both circuits in FigA.l2 is that the linear range for Gt is determined by 

MOSFET threshold voltage. 

The range can be extended by use of the modified arrangement of Fig.4.20, in which 

R=lKn and IB=O.SmA. 
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Voo (=1.5V) 

(IK 

-Vss (=-2.5V) 

Figure 4.20 Modification of Fig 4.12(b) for extended linear range 

Is= 0.5mA 
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The extra range, provided by the voltage drops across Ms and M6, is evident in 

Fig 4.21. 

1.6mA...--__ 

OA -1 .SV • -l.OV . -O.5V 

Extended 
Linear Range 

OV 
VD 

O.5V l.OV 

... : 

Figure 4.21 Current traces for Fig 4.20 showing extended linear range 

l. 5V 

The disadvantages incurred are the necessity for a higher value of V ss (increased to 

2.SV) to accommodate the voltage drops across Ms and M6 and the current sinks, 

shown here as ideal ( but in linear simplest case the output of current mirrors), and 

matching in the cun-ent sinks IBI and J132. 

Finally, it should be noted that there is an unwanted positive feedback loop in the 

circuit which could give rise to parasitic oscillations. 

A small-signal low-frequency equivalent circuit of the loop is shown in Fig 4.22. 
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Source output resistances 

Figure 4.22 Showing the existence of a small-signal positive feedback loop 

In this Ro is the source output resistance of MI and of M2. The loop is 'cut' at the gate 

ofM4 and a small positive-going test signal, V2, applied. This causes changes V3 and VI 

to occur in the directions indicated. It can be seen, by inspection of the circuit, that the 

loop-gain of the circuit is guaranteed to be less unity, with the result that parasitic 

oscillations cannot occur, ifR>Ro. 

4.4.3 The current-feedback configuration 

This scheme is similar to that of Fig.4.12(a), in the previous section, in that a version of 

one of the inputs of a differential voltage drive signal appears at one end of a 

transconductance-determining resistor after passage through two cascaded source-

followers and a similar version of the second input of the drive appears at the other end 

of the resistor, again after passing through two cascaded source-followers. 

The difference between this and the previous scheme lies in the in the way the 

differential output current is obtained. 
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The circuit, shown schematically in FigA.23 [4.10], comprises two half-circuits, one 

each side of the line aa' bisecting the degeneration resistance R. 

It-I CM 
1:1 

-Vss 

I 

IrI 

a 
VDO 

R 

Ir+I 

a' 

Figure 4.23 Current-feedback V-I [4.10J 

CM 
1:1 

-Vss 

Ir+I 

A DC analysis of the circuit is given in full in Appendix 4.1 so only a brief, alternative 

analysis is given here. 

By inspection, 

(4.45) 

or, (4.46) 

dVD d ( ) R=---- Vasl - Vas3 + Vas4 - Vas2 dI dI 
(4.47) 

Let us suppose we can make the bracketed term on the r.h.s of eqnA.4 7 equal to zero. 

This requires that, (4.48a) 
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and, dVGS4 _ dVGS2 =0 
dI dI 

These conditions are met if, 

where gmr(r=1. .. 4) is the transconductance ofMOSFET Mr. 

Now; gmr = 

So we require that, 

(IT - I) = (IT - I) 

(IT + I) = (IT + I) 

Both eqn (4.55a), (4.55b) are satisfied if, 

For MOSFETs with the same channel length this requires that, 

or, 

(4.48b) 

(4.49a) 

(4.49b) 

(4.50a) 

(4.50b) 

(4.51) 

(4.52) 

(4.53) 

in which J..le, Jlh. are electron and hole nobilities in the n and p MOSFET, respectively. 

When eqn (4.51) is valid, 

(4.54) 

The intended linear range for Gt is IrR because the condition III=Irmeans that either M3 

is cut off or is cut off. 
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4.4.3(a) Circuit implementation and operation 

Figo4.24 shows the circuit used in simulation tests. 

1 Voo(1.5V) 
Ir IT - II h 

2 IR R 
4 S 3 

600 Ohm M2 
IOu 

r-VSS (-1.5V) 

Figure 4.24 Circuit for simulation tests 

From SPICE data (WJ.1h) = 4040, so Wp was made 44J.1 to satisfy eqno4.53 with Ln=lOJ.1. 

To achieve the desired linear range Ir was made ImA. With VI=V2=O, 15=16(I1=12) 

=1.093mA, i.e. some 10% more than Ir. The reason for this small difference, with the 

simple 1:1 current mirrors (M6+MS and M7+MS), is the small difference between the 

drain voltage ofinput MOSFET (-O.8607V) and the output MOSFETs (-O.6653V). 

Nodal voltage traces for the condition V6=-VrVoI2 are shown in Figo4.25, and 

accompanying current traces in Figo4.26. To understand the circuit operation most 

easily we consider what happens to one half of the circuit (that encompassing MI, M3, 

M6 and Ms) when Vo increases from zero: Vs follows V6 but the follower action is less 

than ideal because of the increasing inequality in the drain voltages of the current 
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mirror transistors M6 and Ms. The source voltage, V 4, of M5 attempts to followers V 8 

but the follower action is poor. This is because the follower incremental load is only 

300 Q. (The mid-point of R is at signal earth for the applied input voltages) Cut-off in 

M3 is accompanied by a decrease in the gate-source voltage of M, and the condition 

I=h. Subsequent increase in Vo now causes equal decreases in V4 and Vs since 

1.5 
YO) 

-LOY . 

VDD=-VSS= I.S ; R=600 Ohm 

Y(lO) 

• -O.5-Y OY 

YD 
O.5Y 

Figure 4.25 Voltage traces for Fig 4.24 

LOY L5Y 

2.0mA,-----,...-----,------.-------.------.------. 

OA 

_2.0mA.-'-.------'-------'--------'-----L-----.l------l 
2.0mAr---- - =-----,..------.------.,.-------=-------. 

II,S 

OA -1 .5Y • -LOY -O.5Y OV 

YD 
O.5Y 

Figure 4.26 Current traces for Fig 4.24 
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The voltage and current traces for V 0 < 0 are mirror images, about the axis V 0=0, of 

these for V 0 >0. 

Application of straight edge to the graph of I in Fig.4.26 shows it to be a straight line. 

However, the same cannot be said [or Ch-I,). 

3.0 

2.0 

-1.0 V 
-2.0 -1,SV 

r---
I 
I 

/ 
-l.OV 

VOO=-VSS=1.5V Gl= I.44S0mS, R=6( 

V 

\ 

-O.5V -O.OV 
VD 

O.5V l.OV 

Figure 4.27 G t characteristic for Fig 4.24 

" 
l.SV 

This accOlmts for the shoulders on the Gl characteristic of Figo4.27. At V 0=0, Gt= lo448 

wruch is much less than the desired value of3.33mS. 

The reason for this is the same as that for the circuit of the cross-coupled scheme of 

Section 4042, i.e., limited source-follower gain. 

For 1.5V > Vo > 1 V, Gt < 0 because ofI,=O and h is decreasing. 

A plot of THD versus V 0 for the three different input signal frequencies is shown in 

Figo4.28 . Spot values are given in Appendix 4.3. 
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THO of the current feedback scheme (R= 600ohm) 

-50 

-55 

-60 

-65 

fB -70 

-75 E-.- -
____ f=1 OOM-tz 

-a-- f=1GHz 

-80 

-85 

-90 
100 200 300 400 500 

Differential input volt. (mV),V o 

Figure 4.28 THD characteristic for Fig 4.24 

Fig.4.29 shows input and output wavefonns for a small-amplitude differential voltage 

signal at IGHz. 

sOm 

40uA 

OV OA 

-40uA 

II.0ns Il.5ns 12.011s 12.5ns 13.0ns 13.5ns 14.Ons 14.511s 15.0n 
Time 

Figure 4.29 Showing differential input voltage (full line curve) and differential 

output current (dotted-line curve) at IGHz 
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4.4.3(b) Limitations of the current-feedback scheme 

The performance of the current feedback scheme is limited by: matching in the p 

values ofn and p channel devices; source-follower gain; current-mirror performance. 

Matching p values requires an accurate knowledge of the mobility ratio (J.!elJ.!h) for the 

n and p channel MOSFETs. For a given channel length (i.e., Lp=Ln) the design 

requires unequal channel widths (W p > W n). 

Source-follower gain is less than unity, because of substrate bias, and much less unity 

for the p channel MOSFET because each 'sees' an incremental source load of only 

3000 for the design value ofGt• 

The variable performance of the simple 1: 1 current mirror used has been discussed in 

Chapter 3. More sophisticated mirrors require Vss > 1.SV. 

4.5 Summary and Conclusions 
This chapter has reviewed, critically, two types of MOSFET V-I converter design, 

designated here, for convenience, Type A and Type B. 

In Type A the transconductance, Gtt is determined by a chosen resistor: in Type B, Gt 

is set by MOSFET parameters and a chosen bias current. 

Type B designs require an accurate square-law relationship between In and V GS and 

close device parameter matching. 

Consequently, it was decided to concentrate on Type A designs. 

A number of possible circuit configurations exist, three of which were the subject of 

detailed analysis. Two of these, the cross-coupled scheme (based on an existing BJT 

circuit) and a current-feedback scheme were shown, by simulation measurements, not 

to produce an easily designable Gtt especially for Gt in the mS range. This was because 

of the relatively poor performance of the source-followers involved when working with 
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resistive loads necessarily less than 1 K!l, and the effect of variable source-substrate 

bias. 

In the cross-coupled case the proposed constant range for Gt was limited by MOSFET 

threshold voltage. 

In both the cross-coupled circuit and the current-feedback circuit an undesirable 

positive feedback loop existed. 

It was decided to look again at the long-tailed pair stage ,with its associated 

degeneration resistor, to see what improvement would be made in order to obtain 

acceptable and predictable performance for Gt > 1 mS. 

The circuits that result from this investigation are the subject of the chapters that follow. 
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4.7 Appendix 4 

Appendix 4.1 A DC analysis ofthe current-feedback V-I 

Ideal transconductance analysis for FigA.24: 

(A 4.1) 

(A 4.2) 

(A 4.3) 

(A 4.4) 

where, if we use the same parameters of N channel and P channel MOSFET devices. 

the equation can be simplified as: 
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And if PN and pp are well matched, the expression shows as following: 

Vo=I·R+O 

dVo dl 1 
:.--=R,or--=-

dl dVo R 

Because 10 = IOS2 - lost = (IT + I) - (IT - I) = 21 

dlo d(21) 
so -=--

'dV dVo 

The output transconductance is thus: 

d(21) 2 
Gt(ideal) = dV

o 
= R 
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Appendix 4.2 Data for Total Harmonic Distortion of the cross-coupled scheme 

Table A 4.1 Data of Fig.4.18 

Cross-coupled scheme 600 Ohm 

Frequency(MHz) Amplitude(mV) dB 

10 100 -88.5 

200 -76.9 

300 -69.5 

400 -64.1 

500 -59.6 

100 100 -87.1 

200 -76.7 

300. -69.5 

400 -64.1 

500 -59.6 

1000 100 -77 

200 -73 

300 -66 

400 -60.7 

500 -56.4 
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Appendix 4.3 Data for Total Harmonic Distortion of the current-feedback 

scheme 

Table A 4.2 Data of Fig 4.28 

Current-feedback scheme 600 Ohm 

Frequency(MHz) Amplitude(mV) dB 

10 100 -87.1 

200 -74.4 

300 -67.3 

400 -62.3 

500 -58.3 

100 100 -86 

200 -74.3 

300 -67.3 

400 -62.2 

500 -58.3 

1000 100 -81.1 

200 -71.3 

300 -64.6 

400 -59.7 

500 -55.8 
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CH-APTER5 
DESIGN OF A V-I CONVERTER USING 
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5.1 Introduction 
Section4.41 considered the transfer characteristic of a basic long-tailed-pair V-I 

converter with source degeneration .. 

It was noted in eqn.4.28, repeated here for convenience, that the mutual conductance 

Gt could be written in the form, 

(5.1) 

To achieve the ideal relationship G t= necessitates the condition gml=gm2 =00. 
R 

There are two other equivalent ways of appreciating what this means. We can say 

that the resistance looking into the source of each MOSFET is reduced to zero, or that 

the gate-source voltage of each MOSFET remains constant over the operating range. 

To produce an apparent increase in the gm, of each of the MOSFETs used in a source-

degenerated long-tailed pair, we can make use of experience gained with BJTs and 

employ a complementary Darlington-type circuit in a drain-source feedback 

configuration. The use of this in the design of a V-I is the subject of this chapter. 

5.2 Half-circuit structure 

The circuit that emerges and is the starting point in the proposed V-I design, when N 

channel MOSFETs are used in the long-tailed pair. is shown in Fig 5.1. In this: h is a 

constant tail current; Vos is the gate-source voltage of MA and 10 its drain current, 

supplied by a current source with an incremental output resistance rop; IF, the drain 

current of additional MOSFET, Ma, provides feedback; and, IL is a load current. 
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Voo 

Figure 5.1 Schematic of a complementary MOSFET source-follower half-circuit 

A first-order small-signal analysis, in which substrate effects and MOSFET drain-

source incremental resistance are ignored, serves to highlight the essential operating 

mechanism of the circuit. 

Suppose id, if, il are small changes in 10, IF, IL brought about by a small change, vgs, in 

Vas. 

and, iJ = id +ic= gmA Vgs [l+gmB rop] 

(5.2) 

(5.3) 

(5.4) 

where gmA, gmB are respectively the mutual conductances of MA (at drain current 10) 

and MB (at the drain current IF). In general gmA -:f:. gmB. 

It follows from eqn (5.2) to (5.4) that the apparent mutual conductance, gmT, is given 

by, 

(5.5) 
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(5.6) 

For this ideal case an equivalent representation of Fig.5.1 is shown in Fig.5.2 

Io 

Vt ---' 

Figure 5.2 Ideal representation of circuit operation of Fig.5.1 

(5.7) 

Since Jr, ID are constant it follows that, as VI changes, 

(5.8) 

To obtain an output current, 10 , that is linearly related to k we add a further 

MOSFET, Me, as shown in Fig 5.3. 
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IT 

-Vss J 

Me V 
00 

Io=Ip 

t---..;o-- - - - -D--

Figure 5.3 Obtaining an output current, 10, directly related to IL 

5.3 The proposed V-I in schematic form 

In a V-I intended to interface directly with a Gilbert mixer cell [5.1] using n-channel 

MOSFETs it is beneficial to use a complementary version of the half-circuit of 

Fig.5.3, as in Fig.5A. 
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Von 1 It IT 

VR 
IR 

VI V2 

I R I 
IF 101 102 IF' 

Me Me' 

10 10 

-V" I 
Figure 5.4 Schematic representation of proposed V-I with the condition 

5.3.1 Ideal circuit operation 

The following brief description of circuit operation assumes constancy in the drain 

currents ofMA and MA' and perfect source-follower performance, so 

For Vo=O it follows that VR=O, IR=O, IOl=I02=IF=IF' = (Ir-1o). 

IR>O when Vo>O and has the direction shown in Fig 5.4. Then IOl=h= (Jr-Io)-IR, and 

IR adds to the current already in Ma" so I02=IF' =(Jr-Io)+IR. 

For Vo < 0 the roles ofMa, Ma' are inter-changed 

Hence, G t = d(I02 - I Ol ) = 
dVo R 

(5.9) 

The maximum operating, V OM, i.e., the input voltage range over which Gt is intended 

to be constant, is governed by the condition IF 0, or IF' 0, for which 
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IIRI= (Ir-Io). 

Consequently, VOM = (Ir - Io)R (S.10) 

Combining eqnsS.9 and5.10 gives the following fundamental relationship for this type 

of circuit, 

(S.11) 

In the idealised description of circuit operation, just presented, MA and MA' can be 

regarded as current-steering devices. 

In practice, of course, 10 cannot be constant, though it may vary by only a small 

amount, because of the necessary control action that the steering process requires. 

The way in which the non-ideal performance of MA and MA' affects the magnitude of 

Gt can be calculated by analysis of the half-circuit of Fig SA when loaded with a 

resistor Rl2. This is because the mid-point of R appears at signal earth for the 

condition V1=VoI2, V2= -VoI2. 

5.3.2 Calculation of non-ideal value of Gt 

Fig.5.5 is a re-drawn section of that part of Fig.5A that involves MA and Ma. They 

are labelled here Mit M2 and their parameters subscripted accordingly. A MOSFET 

corresponding to Me does not appear on this diagram because it does not affect low-

frequency calculations. 
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Yoo 

RI2 

-Yss J 
Figure 5.5 Half-circuit used in analysis 

A small-signal low-frequency equivalent circuit ofFig.5.5 is shown in Fig.5.6 

.... ---·----······-··V:············· .... .,........... --

(, 
'. 

VI I'\.. •••••• .. ... ............ .. 

rdsI 

........ ,\ 

..' .. ............... . 
__ .......... .......... _- .. -............... .. M2 .. ............... _ ..................... .. 

". .. .. 
/", "'\ 

rdS2) 

, " 
\...... "i# ...... .. ... ................ _ ....... .. 

RJ2 

Figure 5.6 Small-signal low-frequency equivalent circuit of Fig 5.5 

KCL at the source ofMI gives, 

(5.12) 
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or, (S.13) 

KCL at the drain ofMI gives, 

(S.14) 

Substituting for Vo from (S.13) in (S.14), to find V2 in terms of VI, gives 

(S.IS) 

Making the assumptions (later to be justified) that r2 »rdslo I/gm2 , and 

(2/R»> (lIrl+ lIrds2), we find that 

(S.16) 

or, (S.17) 

But, 

so, • -2VI 

10 = 2 ( 1 ) --+R I+X+-
JlIgm2 JlI 

(5.18) 

2 
Hence, G t = ( 1 ) 2 

R I+X+- +--
JlI Jllgm2 

(S.19) 
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For the ideal case :x,=O and J.l.l=OO, this reduces to eqn.S.9) 

5.3.3 Design choices for a given specification 

The following proposed design steps are based upon the equations of the previous 

section. In the design example chosen: Gt=3.3mS; Vo=0.5V. 

(a) Choose VoM=0.6V, instead of the O.5V specified, to allow for uncertainties 

in (Ir-Io) and possible ambient temperature charges. 

(b) Select R for Gt=3.3mS with the assumptions:x,=O and I!I=OO. 

Gt=21R=3.33mS, so, R=600 n 

(c) Calculate (Ir-Io). 

From eqn (5.11), Gt x VOM= 3.3mS x 0.6V = 2(Ir-Io) 

Say, (Ir-ID) =lmA. 

(d) Choose the ratio (IrlIo) 

There would appear to be no obvious choice for (Inlh) so a default value 

of unity might seem acceptable. 

However, three factors which affect the choice of 10 are: the desirability of 

maximising I!I in eqn.5.19; the minimisation of circuit power dissipation; 

the maximisation of the frequency response ofGt• 

The first two of these factors are achieved by operating with a low value 

for 10, but a very low value (e.g. IJ.l.A) is undesirable because of the circuit 

design complexity in producing it, if large resistor values are ruled out. 

Furthermore, the third factor detracts from such a choice for 10 because the 

fr of a MOSFET decreases with drain current. 
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The arbitrary, but circuit-wise convenient, choice Io=50IlA is chosen. 

Thus Ir==1.05mA, Io=50IlA. 

If the choice of this does not give an acceptable frequency response it can 

be changed (Practical designs sometimes involve changed initial choices in 

the light of experimental results.) 
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5.4 Circuit implementation 
There are four versions of the circuit to suit different user requirements. 

The family name given here is DSFC (Drain Source Feedback Circuit) and the 

various versions are coded DSFC1(a), DSFC1(b), DSFC2(a), DSFC2(b). 

DSFC1(a), shown in Fig.5.7 is the basic scheme and is dealt with first. 

1 

3 ! Ir 4 5 ! Ir 

I (val) 

10 

RB 

12 

Figure 5.7 

I(va4) R 
l(va3) 

14 

I (va7) I (valO) 
M2 M1 27 I(va2) I (va6) 

17 ! Is 
I(va9 

M1S 
10 ! 

34 

DSFCl(a) The proposed basic circuit: VDD=-Vss=1.5V; R=600!l; 

Rl=Rl=4K!l; IB=lmA; ID=50 .. A. Substrates arc connected to the 

appropriate rail supplies. 
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Ra sets the reference bias current in the circuit at lmA. 

Ml6 is the input MOSFET of simple triple-output current mirror, supplying Ir(1mA, 

non-ideal) to Ml and M3 and a bias current, IK (=lmA) to the series connected 'diode'-

strapped MOSFETs M13,MI4 the purpose of which is mentioned shortly. 

MIS is the input MOSFET of a dual-output Widlar-type current mirror, as described in 

Chapter 3. The source resistors RI, R2, both 4KO, produce drain currents in 

Mil andMl2. 

The MOSFETs Ms, M9 in Fig.5.7 correspond, respectively, to Ma, Me in the 

schematic diagram of Fig.5A, and M6, MIO correspond, respectively, to Ma', Me'. In 

Fig.5.7, however, the outputs of Ms, M9 are cascoded by M3, M7 and the outputs of 

Mlo are cas coded by Ms. 

The purpose of these casco de transistors is : to equalize the drain voltages of Ms and 

M9, and of M6 and MIO so that their respective drain currents are close in value and 

track over the linear range as V 0 changes; to produce an increased output impedance 

(indicating a higher rds2 in Fig.5.6. 

The gate voltage of the cascode transistors is set by the voltage drop across the series-

connected MOSFETs, M13, MI4 which are supplied with the bias current IK, 

mentioned above. IK is chosen to be tmA for circuit simplicity, but it could be 

smaller, with a consequent small saving in circuit power dissipation, at the cost of a 

narrower gate width for MIS, or the inclusion of a resistor in its source lead. 
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5.5 DC Conditions 

The DC conditions in the circuit for V ,=V2=OV are given, [or completeness, in 

Appendix5.1 from which it is evident that the circuit will on ly just work fo r 

V DD= 1.5V and V DM/2=O.5V because the gates of M ,7, M' 9 are at O.5153V and their 

drains are at O.6082V. 

2.0V 

LOV 

OV 

-LOV 

-2.0V 

2.0V 

LOV 

OV 

-LOV 

-2.0V 

V(I) 

V(2) 

V(l 4l. ----
V(1S) ,)IP' V(33) ....... r--

V(I ) 

V(28) 
I-- ..i - - r--

W 19)' 

V(22)" 

r .-

------

V(S) --
-LSV -LOV -O.SV , -O.OV 

VD 

----
V(20)-. V(l2) 

-- -VmL 

V(16) 
VI14 ' 

- -
O.5V LOV 

Figure 5.8 Voltage traces for DSFC1(a) 
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2.4mA 

2.0mA 
I(Va2);.." 

I(Va3)"" 
LOrnA 

I(Va9) 
OA 
2.4mA 

2.0mA 

I(Va4r. 
LOrnA 

I (Va5) ........ 

OA 
-L5Y -LOY 

o 

Figure 5.9 

, 
(Val)"", 

'" 

/ 
/ 

/ I(Ya8) 

-O.SY -O.OV 

YD 
O.5Y 

Current traces for DSFCl(a) 

M leVa?) 

"r-- I(VaIO) 

LOY 

The voltage traces of Fig.5_8 and the current traces of Fig_5_9 illustrate circuit action 

when a DC sweep voltage is applied in such a way that VI =+VD/2, V2=-VD/2-

The voltage traces show good source-follower action in M I, M2 over the linear range 

but an incremental voltagc gain less than unity_ This is to be expected since the 

substrates of the transistors arc not connected to their sources. The drain current of 

M7 is slightly greater than that of M3 because the drain voltage of M7 is connected to 

V DO for tests, and thus at a higher potential than that of M3. Similar comments apply 

to the drain currents ofMs and M 4. 
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4.Orn 

9!=3.0302mS; Tem . = 27°C 
3.Orn r '\ 

G,(S) 2.0m 

I.Om 

o -1.5V -I.OV -O.5V OV O.5V LOV L5V 
O(l(Va7)-I(Va6)) VD 

Figure 5.10 Gt VS. VO at 27°C for D FC1(a) 

The room temperature (27°C) G t vs. VD plot of Fig.5.10 shows the specified linear 

range and a Gt, measured at VD=OY, of 3.03mS. Thi is somewhat higher than the 

value expected for x i 0 (and a measured half-circuit voltage gain, on load, of 0.871) 

and is attributable to the greater than unity current tran Cer ratios oC M7, M3 and Mg, 

M4 mentioned above. Gt appears to be constant in the linear range on the scale used. 

It does not eventually fall to zero, in Fig.S.IO, outside the linear range because of the 

finite output resistance of MI7 and M 19. Thu , when MI i cut off the incremental 

source load for M2 is the output resistance of MI 9 in parallel with the series 

combination of the output resistance of MI 7 added to R. This causes the maximum 

drain current of M.t, and thus Mg, to ri se above the 2mA to be expected when M 17, 

MI 9 have infinite output resistances. 

In circuit variation D Fe l (b), not shown, the substrates orM I and M2 are connected 

to their sources. This make X = 0 in eqn.S.9. The measured halC-circuit vo ltage gain 

was 0.974 so G t should be 3.243m . The higher value shown in Fig.5.1 1 j , again, 

due to the slight greater than unity CUlT nt transfer ratios of the output cunent mirrors. 
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4.0rn 
GI=3.3 55rnS, Tern . = 27°C 

f 
3.0m 

l.Orn 

o -J,5V -l.OV -O.5V 
D(I(Va7)-I(Va6)) 

/' 

-O.OV 
VO 

'\ 

O.5V 

Figure 5.11 G t vs. Yo, at 27°C, for DSFCl(b) 

The variation ofGt with temperature, T, is shown in Fig.S.I2 

4.0m 

3.Om 

-40°C 
_27°C "-... 

soe_ 

I.Om 

o -J.5-¥ -l.OV 
D(I(Va7)-J(Va6)) 

( I ( 

r; 

-O.5V OV 
VO 

\ \ 

O.5V 

l.OV 

l.OV 

Figure 5.12 Showing the temperature-dependence of G t 

The value of G l in the linear range is not noticeably dependent on temperature. This 

is to be expected since it j mainly dependent on R, which is assumed in this design to 

be temperature insensitive, and only marginally dependent on the temperature 
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variation of the parameters X and in the small error terms in the denominator of 

eqn.5.9. 

The main effect of temperature variation is to alter the width of the linear range. This 

comes about through change in Ir via change in Ia. 

That occurs because of variation in the gate-source voltage of MIs and M16. It was 

assumed that if Ia was made independent of T then so also would be V OM. 

To check whether this was so, simulation measurements were made on Fig.5.13. In 

this the currents supplying MIS, MI6 do not vary with T. 

R 

"1 I (va6) I (va7) 

VEE 

I 
Figure 5.13 Test set-up for VDM with I8#: f(T) 
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4.Om 

3.Om rr 

2.0m 

l.Om 

o -IS\.< - l.OV -O.5V 
D(I(Va7)-I(Va6)) 

GI=3.0304mS Temp. = -40°C g Temp. =27°C 
_ GI=3.038 ImS Temp. =85°C ., 

-o.OV 
Vo 

0.5 V 

Figure 5.14 Showing G t as a function of T for Fig 5.13 

l.OV 

Fig.5.14 shows that perfect temperature compensation IS not achieved, indicating 

some other factor at work. This was not investigated fUl1her, because the results of 

Fig.5.14 were considered to be good enough to design a practical scheme for keeping 

Ir constant. 

In DSFC1(a), a temperature-insensitive version of DSFCl(b), RB in Fig.5.7 is 

replaced by two practical current generators. One supplies a (nominally) temperature-

independent current of 1mA to the drain ofM l6; the other a complementary version of 

the first supplies a (nominally) temperature-independent current of ImA to the drain 

of MI s. 

The principle of operation of the current generator (sec Appendix5 .2) supplying 

current to MI 6 is made clear by the annotated voltage diagram ofFig.5 .13. In this, the 

effects of MOSFET substrate voltage and arly voltage arc ignored and the 

MOSFETs are assumed to operate at the same current. (i.e. I, =Iz) Consequently, in a 

first-order calculation their gate-source voltages arc identical. 
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l-VDD 

To drain ofM I6 

... 
I 
I 
I 
I 

Figure S.lS A current sink with a temperature insensitive output current, 

h(=VDIv'2) 

It follows that the output current h is sensibly independent of Vas and hence T, as R2 

is assumed to have a zero temperature coefficient. 

The design of the current source supplying the drain of MIs parallels that 

for the current sink. 

Fig 5.16 shows the full circuit ofDSFC2(a) 
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RBla-O.76k 

H1 IIva6 

IDH1S 

R82b-O • .f05k I 
Figure 5.16 DSFC2(a), a temperature-insen itive version of DSFCl(a) 

The simulated temperature variation of DSFC2(a) is shown in Fig.5.17, which is 

vi ltually identical with Fig.5 .1 4 

The DSFC2(b), not shown, is a temperature insensitive version of the DSFCl(b) 

4.0 lIT 

IAt3.0319ms, T t=3.0317I11S, T 
Gt-3.0394mS: T 

·mp. = - 40°C 
mp. = 27°C 
mp. = 85°C 

3.0 n rr "\ 

G,(S) 2.0 -m 

l.Om 

o _ 1.5-'.' -l.OV 
D(I(Va7)-I(Va6)) 

-O.SV -O.OV 
VD 

O.5V I.OV 

Figure 5.17 Showing the temperature-dependence of DSFC2(a) 
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5.6 Small-signal high-frequency performance 
The small-signal frequency response of Gb for the DSFC, is dependent on the 

frequency response of each half-circuit since R is considered to be purely resistive. 

Theoretically, this can be found by replacing each resistance in eqn.5.l5 by an 

impedance comprising the resistance itself in parallel with an associated capacitance. 

Considering the number of resistors involved this produces an expression which tends 

to obscure physical insight into the operating mechanism, so a different approach was 

adopted, viz., establishing the existence of a dominant pole. 

Thus in the left-hand half-circuit ofFig.5.7 the choice and the design of the 

Widlar-type current-mirror to produce it, guarantees that the largest incremental 

circuit resistance, Rr say, exists at the gate terminal of Ms. This is also the terminal 

where the greatest capacitance Cr exists since Cr=(Cgdl+2V gsS+4CgdS), where the 

number subscripts referring to the transistor numbers and the factor 4 arises because 

the 'Miller-multiplication' of the Cgd of both Ms and M9• 

Consequently, CTRT represents the dominant time constant in the circuit. 

To investigate the matter further and check for loop stability, the circuit arrangement 

ofFig.5.18 was used in simulation measurements. 

In this, Ro(300!l) and Co (=1 OF) provide a load which is effectively resistive for 

co » llRoCo. 

A small constant amplitude a.c. current of variable frequency is applied at the source 

terminal ofMI and gives rise to a source current lsI. This is amplified by Ms, which 

produces a drain current IdS that is fed back to the source of MI. 
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VDO 

1.SV 

VEE 
-l.SV I 

RD 3000hm 

Ids 

I 
co 
lor 

Figure 5.18 Measurement of current loop gain (Ids/lsl) for a half-circuit 

M1J 

M14 

A plot ofloop gain (IdJIsl) is shown in Fig.5.19, from which it is evident that the loop 

is stable. 
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Figure 5.19 Current loop-gain (Ids/lsl) of half-circuit (a)Magnitude ;(b) Phase 
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DB(G(Va7)-1(Va6»/(V(28)-V(27») Frequency. f 

Figure 5.20 G t vs. f for the DSFC 

The resultant frequency response for Gt of the DSFC is sho\\TI in Fig.5.20, which 

indicates a bandwidth exceeding 6GHz. 
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5.7 Distortion 

A plot of the THD versus VD for three different input frequencies is shown in Fig.5.21 
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Figure 5.22 Output frequency Spectrum at IGHz. (500mVp-p input signal.) 
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Figure 5.23 Upper curve shows a IGHz differential input voltage signal. 

Lower curve shows the resulting differential output current. 

Fig.S.22 indicates that for a SOOmV, IGHz, input voltage signal there is a third 

harmonic component of output current of amplitude 946.286nA. 

Now the spot figure for HID for this input signal is -57.84dB [See Append ixS.3] 

corresponding to 0.128%. If this were on ly due to third harmonic distortion the third 

harmonic component would be 9S2.3SnA. Comparing the two figures shows that 

third harmonic distortion dominates the THD figure. 

An impression of the quality of the output signa l current for a I GHz input signal is 

conveyed by the waveform in Fig.S.23. 
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5.8 Terminal impedances 

With reference to Fig.S.7, in the linear operating region the impedance looking into 

the gate ofMI is expected to be solely attributable to the input capacitance CI. 

(S.20) 

where Av is the source-follower incremental voltage gain. 

Since Av 0.9 (for the substrate 'ofMI connected to VDD) it follows that 

IZil 
(dB) 
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• DB V 27 n vinl: 
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1\ 

107.07OdB) 

6Od1.IlHz 10Hz 100Hz l.OKHz 10KHz 100KHz l.OMHz lOMHz l00MHz l.!XJHz IOGHz 
P(V(27)II(vin» Frequency 

Figure 5.24 Showing the impedance looking into the gate of MJ in Fig 5.7: 

(a) Magnitude; (b) Phase 

From the simulation measurements in Fig.S.24, CI is calculated to be 7.0SfF which is 

close to the expected value. This is also, of course, the capacitance looking into the 

gate ofM2. 

The output impedance seen looking into the drain ofM7 and Ms, of Fig.S.7, with the 

input tenninals of the DSFC earthed, is shown in magnitude and phase in Fig.S.2S. 

S-27 



Analysis and Design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

From this it appears that the output impedance can be represented by an incremental 

resistance to earth of 76KQ in parallel with a capacitance of 6.8fF. These figures 

agree with what was found for a cascode output stage in Chapter 3. 
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Figure 5.25 DSFC output impedance (at the drains of M7 and Ms) 
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5.9 Summary and Conclusions 

In this chapter an analysis of the operation of a MOSFET DSFC V-I converter has 

been presented and a proposed design procedure has shown that a given specification 

regarding transconductance can be met. 

The converter comprises a resistor-linked pair of half-circuits using drain-source 

feedback. This half-circuit structure has been called a Super Source-Follower [5.2], 

though it is more simply regarded as a complementary source-follower, analogous to 

its historical cousin the complementary emitter-follower. 

A fundamental relationship was shown to exist between the transconductance, Gb and 

the maximum input voltage range over which Gt is intended to be constant: thus, 

GtxVo(max)=2(h-lo), in which h,lo are design-selectable DC bias currents, 10 being 

the operating current of the input MOSFETs. 

A novel temperature compensation scheme has been proposed which makes V o(max) 

temperature-insensitive. 

Two topics which were not pursued further but deserve investigation in the future are: 

the optimisation of the ratio (loIIT) for a given (Ir-Io); the development of a sub-

circuit that avoids the need for close matching in the grounded-source transistors in 

the casco de feedback and output stages. 

With regard to the latter, the basis of a possible scheme has been proposed in a paper 

by Acosta, Carvajal and Jimenez [5.3]. Working independently, and at the same time 

as the author of this thesis, they managed to obtain prior publication. 

The configuration they proposed for avoiding close MOSFET matching, mentioned 

above, used a long-tailed pair as a unity-gain current transfer stage. 

A modified version of the left-hand half-circuit ofFig.S.7 that incorporates the idea is 

shown Fig.5.26 
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Figure 5.26 Modified version of the left-hand half-circuit of Fig 5.4 

Poor matching in the gate widths of MQ and MR only affects circuit DC offset because 

if the current sink IL, normally equal to 2(Ir-Io), is perfect then 

However, It is for from ideal in practice. The simplest current sink, with It in the rnA 

range, is the output of a current mirror, the incremental output of which is using in the 

low Kn region. A higher output resistance is obviously possible using a current 

mirror with a cascode output stage but the problem then is that the sum of three 

vertically stacked gate-source voltage drops (MQ plus cascoded transistors) rules out 

operation with Vss =1.5V. 

There is yet another problem in that the drain voltages of MQ, MR are unequal. If MQ, 

MR are cascoded then V ss has to be even greater for the cascode transistors to operate 

in saturation. 
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5.11 Appendix 5 

Appendix 5.1 DC Conditions (for the DSFC with both inputs earthed). 

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 

( 1) 1.5000 ( 2) .5153 ( 3) .6085 ( 4) -.1401 

( 5) .6085 ( 6) .6085 ( 10) .5153 ( 11) .6085 

( 12) -.8607 ( 14) .6085 ( 15) .6085 ( 16) -1.3069 

( 17) -.8744 ( 18) -.8036 ( 19) -.1401 ( 20) -.7730 

( 21) -.7730 ( 22) -.8036 ( 23) -.8744 ( 24) -.8744 

( 25) -.8744 ( 26) -.8552 ( 27) 0.0000 ( 28) 0.0000 

( 30) 1.5000 ( 31) 1.5000 ( 33) -1.3069 ( 34) -1.5000 

( 100) 0.0000 ( 101) 0.0000 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

VD O.OOOE+OO 
Vern O.OOOE+OO 
VDD -5.941E-03 
Vss 5.941E-03 
Val 1.000E-03 
Va2 9.452E-04 
Va3 9.935E-04 
Va4 1.035E-03 
VaS 9.935E-04 
Va6 9.593E-04 
Va7 9.593E-04 
VaS 4.S28E-05 
Va9 4.828E-05 
Val0 9.452E-04 
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Appendix 5.2 Theory of the temperature compensation scheme 

(M16 in Fig.S.16) 

-Voo I 
Figure A 5.1 N channel MOSFET temperature compensation scheme 

II = 2Voo - Vasl - Vas2 = VOD _ (Vas I + Vas2 ) 
2RI R 2R 

VaSI=VaS2 ifM .. M2 work at the same ID 

The voltage at the gate of M3 is 

=-VOO+VDo-Vas1+2VasI 

= +Vasl 

The voltage at source ofM) is Vasl-Vas3. Now ifh=II. then Vas3=Vasl 
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The voltage at the source of M3 is zero (i.e. earth potential) and remains so as Vos 

varies with temp. 

:. P.O. across R2 is Voo and the current in it is VOolR2 -:j:. f (T). 

This analysis is only approximate because VOl -:j:. V G2 because of different substrate-

source voltages (which affect threshold voltage). Similarly VG3 -:j:. VGl, again because 

of different substrate-source voltages. 

Similar considerations apply to the P channel section of the compensation scheme. 
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Appendix 5.3 THD data: spot figures 

Table A 5.1 Spot figures of Fig.S.2l 

Drain Source Feedback Circuit R=6000hm 

Frequency(MHz) Amplitude(mV) dB 

10 100 -105.48 

200 -98.24 

300 -92.42 

400 -87.92 

500 -84.31 

100 100 -85.77 

200 -80.52 

300 -74.94 

400 -70.19 

500 -66.2 

1000 100 -63.08 

200 -62.25 

300 -61.36 

400 -59.58 

500 -57.84 
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6.1 Introduction 
Chapter 5 dealt with the design ofa type of V-I converter employing source-followers 

using drain to source feedback in a complementary circuit configuration. By contrast, 

this chapter considers the design of a V-I converter employing source-followers using 

drain to gate feedback in a circuit configuration that is a modification of the so-called 

'Flipped Voltage Follower' (FVF). 

First of all the characteristics and limitation of the FVF are reviewed, then the 'Folded 

Flipped Voltage Follower' (FFVF) introduced. 

The proposed V-I comprises two half-circuits, each using an FFVF, linked by a 

transconductance-determining resistor. The performance characteristics of this V-I 

are fully explored in the remainder of the chapter. 

6.2 Evolution of the half-circuit structure 

The name 'Flipped Voltage Follower' (FVF) was coined by Carvajal et al [6.1] to 

describe a class of pre-existing [6.2] and new, low power! low voltage analogue 

circuits. 

A prototype FVF is a two transistors source-follower in which the input MOSFET is 

forced to operate at a sensibly constant DC drain current, set by ancillary circuitry, 

despite variation in input voltage or load current. This is achieved by the action of 

shunt negative feedback. 

The overall result is a source-follower with decreased output impedance and increased 

linearity in its voltage transfer characteristic. The so-called 'Super Source-Follower' 

[6.3] the subject of the design in Chapter 5, can even be regarded as a member of the 

FVF family. 
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+Voo 

Rs 

-Vss 

J 
Figure 6.1 A prototype 'Flipped Voltage Follower' (FVF) 

In Fig 6.1, M, and M2 are inter-connected to form an N-channel FVF the operating 

current for which in supplied by Mw, the output MOSFET of a simple 1:1 current 

mirror. The mirror input current, Ia is set by choice ofRa. 

M, passes an effectively constant current so its V GS is sensibly constant and the 

incremental voltage gain, II V sf!:!. V G, of the FVF is close to unity, providing it operates 

in its linear region. Unfortunately, as has been noted in [6.1], the valid linear range 

decreases with threshold voltage. This is most easily seen by applying eqns6.1, 6.2, 

which follow, to the case in which the characteristic ofM, and M2 are identical. 

(6.1) 

and, " VOS(min) = (6.2) 
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Linear operation requires both MI and M2 to operate in the saturation region. Using 

eqns 6.1, 6.2 the conditions for this for the circuit of Fig.6.1 are, 

(6.3) 

and, (6.4) 

B 

t 
Vo 

-VSS+2VTN 

-VSS+VTN 

0,0 

Figure 6.2 The hatched area shows the limited range for V G for the circuit of 

In Fig.6.2, line A with a slope of +2 represents the lower limit for V G, as specified in 

eqn.6.3, and line B with a slope of unity indicates the upper limit for V G, as specified 

by eqn.6.4. The shaded region in between, indicates the allowable region for linear 

operation, which obviously decreases with increase in 10. 

In general, the linear range l1V G, for V G, is given by, 

(6.5) 
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This analysis applies to the particular case of equal values of (W/L) for MJ and M2 

that is relevant to the work of this chapter. Carvajal et al [6.1] consider the more 

general case of unequal values of (W/L) for these MOSFETs but it is a shortcoming 

of their work that they did not consider the effects of loading at the source of M J and 

its effect on the magnitude of the linear range. 

There are two cases to consider: with MJ supplying an external load, with all of its 

drain current, and M2 just cut off; with M2 sinking a current in ID from the load. 

The first case is illustrated in Fig.6.3 (a), from which it follows that, 

10 
Jo nIo 

M2 (n+l)Io .. 
M2 

-Vss I_iv, -Vss J_iVSG2 

(a) (b) 

Figure 6.3 V G limit condition with loading 

(a) M. sourcing In and Ml at the edge of cut-off 

(b) Ml sinking (n+1) In 
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(6.6) 

The second case is shown in Fig.6.3 (b), from which it follows that, 

(6.7) 

Equations 6.6 and 6.7 are, respectively, more restrictive than eqns 6,4 and 6.3, so llVo 

is reduced. 

(6.8) 

The linear range can be extended by using a floating DC voltage generator, VB, shown 

in Fig.6,4 (a). An approximate way of achieving this is by the use of source-follower 

coupling [6.3], as indicated in Fig.6,4 (b). 

For this a current sink Ix is required for source-follower biasing. 

The equivalent VB for Fig.6,4 (b) is VT + so eqn.6.6 

so now replaced by eqn.6.9 

(6.9) 

There is also an additional constraint imposed by the current source supplying Jo. If 

the minimum voltage across this for saturated region operation in VM then, 

(6.10) 
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Io 

Va 

r-Vss 

(a) (b) 

Figure 6.4 (a) Extending V G(mu) using a floating source 

(b) A practical implementation of (a) 

VOOJ 
VSG3 t 
I IZjV0I-+---I 

Vo 

(a) (b) (c) 

Figure 6.S Variations on the Folded Flipped Voltage Follower (FFVF) 

(a) Basic scheme: VSGl=VTP+V2Ix/Pp 

(b), (c) Avoiding the use of a separate Vrtr 
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Once it is appreciated that an extra MOSFET, MJ, and the associated sink, Ix, are 

required to extend the linear operating range an alternative scheme, a MOSFET 

version of a bipolar configuration [6.4], and sho\\TI in Fig.6.5(a), becomes attractive 

[6.5]. 

Now, the third transistor MJ is opposite in polarity to that ofM! and M2. 

For Fig.6.5(a), the maximum value of Vo is limited by whichever of the relationship 

is eqns 6.11 a and 6.11 c is the more restrictive. 

(6.11a) 

or, (6.11b) 

(6.11c) 

The negative rail voltage -Vss does not now limit the maximum allowable value of 

Vo. 

A disadvantage of the circuit of Fig.6.5(a) is that it requires a reference voltage, Vref. 

As far as the author of this thesis is aware there has, so far, been no published FFVF 

circuit in which, the gate of MJ is directly connected to that of Mt. as proposed here 

and sho\\TI in Fig.6.5(b). This has the obvious advantage of avoiding the use ofVref 

and brings with it the bootstrapping of the drain of M! to its gate, with consequent 

reduction in follower input capacitance. 

(6.12a) 

i.e, (6.12b) 

Fig.6.5(c) [6.6] offers the possibility of achieving the maximum range for Vo 

because, 

(6.13a) 
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or, (6.13b) 

But, (Vasl - Vsm ) = VaDl and MI does not leave the saturated state till VOS I> V TN 

Hence, theoretically, the limiting value of V G is now given by, 

(6.14) 

To achieve this condition it is necessary that Vsmjust exceeds the minimum VOSI for 

saturation. This is given by, 

(6.15) 

Chip processing variations and their effect on parameter tolerances require that, for 

reproducible design, the equality sign in eqn.6.15 be replaced by a 'greater than' sign 

(6.16) 

The allowed operating area for saturation-region operation is shown shaded in Fig.6.6. 

On this line C has a slope [l+V(n+l)], which takes into account the requirements of 

eqn.6.8, rather than eqn.6.3 

-VSS+VTN 

Figure 6.6 The shaded area shows the extended operating range possible with 

the circuit of Fig 6.S (c) 
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The circuit ofFig.6.l is shown again, [or convenience in discussion as Fig.6.7(a). 

A practical vers ion ofFig.6.5 (c) is shown in Fig.6.8 (a). In simulation tests at 27° 

all the MOSFET, except M3, had L=O.13 and W= 1 It was assumed that [or 

low voltage operation VDD and V s would not gencra ll y exceed 1.5V and ID would not 

exceed lmA. , so these values were used. For a fair comparison MI was made to 

operate at the same current in both ci rcu its. 

Mx and Rx (=4K) in the output circuit of a Widlar current mirror, provide Ix. 

For M3, the choices (so h = 1.05 mA), guaranteed that 

its gate-drain voltage exceed zero. 

I.OV 

Mw 

10 O.sv VI) 
VW 

ov 

Rs 
-O.SV 

- I.OV 

I -Vss -I.OV . -O.SV 

(a) 

Figure 6.7 TheFVF 

(a) Circuit; (b) Voltage traces 
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I.OV 

O.SV 

OV 

Vx 

- O.SV 

- I.oy I .OV . -O.SV OV O.SV I.OV 

VG ----+ 

(a) (b) 

Figure 6.8 The proposed FFVF 

(a) Circuit; (b) Voltage traces 

The simulated tests results for the circuit of Fig.6.7(a) are shown in Fig.6.7 (b) and 

those for Fig.6.8(a) in Fig.6.8(b) 

When VG is such than MJ i pas ing on ly a small leakage current the curves [or V D in 

Fi gs 6.7(b) and 6.8(b) are simi lar, as arc those for Vs. 

However, once MJ commences conduction differences appear. In Fig.6.8(b) there is 

no region [or which the voltage trace for Vs is parallel to that for VG as would be the 

case for M J, M2 both operati ng in thei r saturated regions. 

In Fig.6.8(b) there is an extended region, above V G == O.SV where the voltage traces 

for VD «VG) and Vs are para lle l to that of VG, in accordance with the theory 

presented. (Above VG=lV the onset o[triode behaviour in Mw causes non-linearity) 
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The superior DC performance of the proposed FFVF, compared with that o[ the FVF 

in respect of the linearity and range of the operating region, is clearly evident. 

The current traces for the two circuits, shown in Figs 6.9, 6.10, illu trate further the 

operation of the circuit and point to a limitation in the performance of the FFVF. 

Consider first Fig.6.9. With IB= lmA, To rises to a maximum value of 1.05mA 

(approx) with increase in VG form its initial va lue o[ -1.5V. This is because of the 

non-unity current transfer ratio of the current mirror supplying it. [From ig.6.7(b) 

the drain voltage of Mw is about -O.4V so its Vo is 1.9V ID i then ensib lyeon tant 

because the drain voltage does not change appreciably with V G. 

l.2mA 

l.OmA 

O.SmA 

0.6mA 

0.4 rnA i-

0.2mA 

OA -l.,:iV 

Figure 6.9 

/' 

/ 
I 
I 

I 
) 

-l.OV -O.5V 

Current traces for theFVF 
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1.2mA 
IT 

/' IB 
1/ :---(f 

ID --

LOrnA 

O. rnA 

O.6mA 

OAmA 

A 
O.2rnA A 
OA ./ 

-LOV -O.5V 

Figure 6.10 Current traces for the FFVF 

-O.DV 
Va 

O.5V 

Ix 

I.OV 

Consider next Fig.6.l O. iT rises to a maximum va lue slightly greater than 10 in Fig.6.9 

because IB is now I.OSmA. IIowever, in thi s ca e, Ir doe not stay constant as V G 

changes. Thus, an increase in V G causes an increase in V $, by source-fo llower action 

in MI, and VD consequently increases because of source-follower action in M3. 

dIr 1 
Hence -- == --

, dVG - rdsw 

where rdsw is the incremental outpu t resistance of Mw. 

(6. 17) 

Ix stays constant, after M3 enter its saturation regi n, becau e the change in V x with 

V G is small , and the output resistance o[ Mx is high becau e of the presence of thc 

sou rce degeneration resisto r Rx. As a result , the fall in II) (=h-1x) with increase in V G 

parallels that ofh until Mw enters its triode operating region . 

The existence of the feedback loop fro l11 the drain of MI to the gate ofM2 give ri se to 

the description DGF (Drain- Gate Feedback ircuit) to the V-I converters family of 

schemes making use of the FFYF circui t described in this section. 
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The first of these schemes is considered next. 

6.3 The basic V-I converter type DGFC in schematic form 

The proposed V-I, shown in Fig.6.11, comprises two half-circuits, each a FFVF of the 

type described in the previous section, linked by a resistor R, which is a common load 

for them. Added transistors (Mt, M4') provide output currents. 

.r.. +VDD 

IT IT 

R 

Ix Ix J"VSS 

Figure 6.11 Schematic of proposed V-I converter 
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6.3.1 Ideal circuit operation 

An idealised equivalent circuit for explaining circuit operation is shown in F:ig.6.12 

+Voo 

10 10 

V,--. 
Vas 

R 

-Vss 

Figure 6.12 Idealised representation of circuit operation 

The gate-source voltage, Vos of each of the input transistors is assumed constant 

because their drain currents are held constant. 

Hence, 

(6.18) 

(6.19) 

Also by 1:1 current mirror action IOl=IF and IOl=IF'. 

AI 2 Therefore, G t = _0_ = -
AVo R 

(6.20) 

As in the case of the DSFC, the maximum linear range, V OM, over which Gt is 

intended to be constant is VOM= (Ir-Io)R and eqn.5.11 is applicable. 
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6.3.2 Non-ideal performance 

-J- ---, 
t 

row 

J M. i. 

Vg t 
MJ 

id R 
Vs 

ir 
i2 

M2 ix 

fRo 
/ ._- __ I 

Vall 

J -vss 

Figure 6.13 Showing current changes for an incremental 

positive increase, Vg, in input signal voltage 

A qualitative understanding of what happens when Vo changes by a small positive 

increment from a quiescent value of zero can be appreciated by reference to Fig.6.l3. 

This shows the consequent signal changes that occur, in the directions indicated. The 

current ix is smaller than id because of current loss at the drain of MI but it gives rise 

to a significant change, ix Ro in the gate-source voltage of Ml, with the result that 

h=mid, where m> 1. 

However, (6.21) 
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Thus, . ir (6.22a) Id =lm+lJ m+l 

and, mi (6.22b) i2 =lm+lJ m+l 

Furthennore, Vs = irR = {m + l)idR (6.23) 

and, Vg =vs+vgsl =( vs+...!L) (6.24) 
gml 

SO, (6.25) 
Vg 

By design, m» 1 so we can draw the following conclusions from the above equations. 

(a) The change in ir is brought about mainly by a reduction in the drain current 

(b) There is little change in id, and hence VOSI. 

Initially, VOSI = (6.26) 

h After the c arge vasl + AVOS I = J3 (6.27) 

Suppose id = yIo (6.28) 

where, y«1 

From eqns 6.21, 6.26, 6.27, 6.28, with the condition (y/m)«I, the 

binomial expansion gives, 

(6.29) 

For the cases m > 50, y «1, it is apparent that 

L\Vasl < (1% of Vas I) (6.30) 

This also follows, of course, from eqn.6.30 
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Fig 6.14, a re-drawn version of Fig 6.13, allocates the nodal voltage lettering used in 

the small-signal equivalent circuit of Fig 6.15, when the V-I converter is driven in 

Subsequent analysis is straight-forward but somewhat lengthy. That is presented in 

Appendix6.1, so the results only are presented here. 

Voo 

l 
L. Top 

Vo 

Figure 6.14 Half-circuit used in analysis 
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\ 
\ , 
'" 

' . ...... _----_ ... 
Mz+ load 

Vo 

, .. -- .......... . , . , 
" Ro " , I 

, I 
I , 
I I , , , . 

.................. ,.' 
Current sink output 
resistance 

Figure 6.15 Small-signal low-frequency equivalent circuit of Fig 6.14 

6.4 Circuit implementation of the DGFCI 

The design steps for the proposed V-I converter are identical to those listed in 

Section5.3.3. 

Fig.6.16 shows the DGFC1, the basic V-I converter version, simulated for general 

assessment. Note that the transistor numbering is different from that used so far and 

starts with the current sources supplying Ir (ImA). 

Ignore, for the present, the capacitors C), C2. (Their location and value are dealt with 

in a later section.) 

In this particular circuit the substrate of M6 is taken to V DO. The voltage traces of 

Figs6.17, 6.18 show that M4 and Ms provide good source follower action. However, 

the source-follower action of M6, M7 is not so good because their substrates are not 

tied to their sources. 
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ISM4 

ISM12 ISMS 

R 

IR 600 
IOM6 10M? 
(Ix) (Ix) 

-Yss 

I -1.5V 
GND 

Figure 6.16 The V-I converter type DGFCI 
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l.5V ,------,-------,-------,-------,-----,-----, 

l.OV +------j-------jf-------I-------t------j------I 

VI 
O.5V +-----+-----I-----+------+-----:::::::-+-=-----iVDM3 

OV 

-O.5V 
VSM4 

-l.OV +-____ -l-_-=_ = -f-------I---==_-=:t------j------IVDMI4 

-l.5V .I.-____ --l-____ ____ -l-____ ___ ____ --J VR2 
-1,5V .-l.OV. -O.5V -o.OV O.5V l.OV l.5V 

VD(=VI-Vl) 

Figure 6.17 Voltage traces For Fig 6.16 

1.5V VDD 

l.OV +------+-----f-----+------+------t-------J 

O.5V -t----.;::::,,-J.o=-------1I------+------+-----+------IVOM2 

OV 

-l.OV +------j------j;;:;--='----t------+-=::",-....=__ -!------1 

-1.5V .L---___ .....J-___ _____ -'-____ --L. _____ __ ...J 

-1 ,5V . -l.{)V . . -O.5V -O.OV 
VD 

Figure 6.18 Further voltage traces of Fig 6.16 
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5.0rnA -

I.OmA 

\ 

---
I'--.. 

-....... 

b-" 

IOM6(=lx) 

4.DmA 

3.0mA 

2.0mA 

I 
I 
0\12 C- IT) 

B 

OA -1.5V • -O.5V -O.OV O.5V LOV J.5V 

Figure 6.19 Current traces for Fig 6.16 

5.0mA 

/ 
-

V--
V 

./' 

4.0mA 

3.0mA 

2.0mA 

l.OrnA 

0/\ -1 ,5V • -I.oV 
J' V 
·0.5 V ·O.OV 

vo 
O.5V J.OV 

=-= 
J. 5V 

Figure 6.20 Further current traces for Fig 6.16 

The current traces of Fi gs 6.19, 6.20 show that ['I' and Ix rema in en ibly constant at 

ImA and rcspective ly. Howcver, 1l)M 12 is s ignificantl y largcr than II)MS 

because, although M 12 and M s have the identica l output characteri tics and the ame 

Yes, they have different values ofYI) . Similar comment apply to M 4 and M 13. 

The way the cun'ent increase comes about can be under tood by reference to Fig 6.2 J. 
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IQ --. -------

V DSQ 1.5 V VDS 

Figure 6.21 Showing how 101\112 > 101\18 

On the output characteristics of Ms, point PI, with co-ordinates V))sQ, IQ dcfines the 

quiescent condition with VI =OY, P2 (for VI> O) and P3 (for VI <O) repre cnt two 

arbitrary points in the intended linear operating range for G t • 

The line P2PIP3 represents a section of the dynamic load line for a resi tive load of 

RJ2, corresponding to the load seen by a half-circuit when the Y -1 convert r i driven 

differentially with V I=Yd2 and V2=-Vli2. 

At PI, P2, P3, TDMI2 exceeds TDM 8 by respectively. 

The apparent current magnification in the output stages produce the characteri tic 

shown in Fig.6. 12. QI, at 4 .27m , is unacceptable, for an intended de ign value of 

3.33m . 
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S.Om 
4.2685mS 

I' - -- - - - r- -4.0m 

10m r--
G,(S) 

2.Om -

( tl 
V "-LOrn 

-o -7oom V -6OOm v -400mv -200m V ov 200mV 400mV 600mV 700mV 
Vn 

Figure 6.22 The transconductance characteri tic for Fig 6.16 

Proposed modifications, described in the next section, lead to the DGF 2 . 
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6.5 The DGFC2 and DGFC3 

The first modification to the circuit of Fig 6.16 is the connection of the substrate of 

M6 and M7 to theirs sources for improved source-follower action. 

The second modification involves a reduction in the apparent, undesired, current gain 

in the output stages. 

These ensure small VK and small l:NK/IlV I• so A(=112118) is 
t----t--.. closer to unity and almost constant over the linear design 

range. 

Figure 6.23 Showing modifications to the DGFCI 

Both these modifications are shown in the half-circuit of Fig.6.23. 

An unfortunate consequence of the inclusion ofMI6 is an increased Vss to allow for 

the extra voltage drop involved. 

Fig.6.24 which showed be compared with Fig.6.21. is a graphical interpretation of the 

effect of the second modification. 
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Io 

t t 
Voso I.SV 

Figure 6.24 Load-line re-Iocation explains the reason for the presence of MJ6, 

MJ8 in Fig.6.23 

The vertical load line for MI2 in Fig.6.21 is effectively re-Iocated, to appear as 

P2'PJ'PJ' in Fig.6.24. Ideally, this would be coincident with P2PIPJ but it is not so for 

two reasons: first, Vk (Fig.6.23) :# 0 because the drain voltage of MIs exceeds that 

M16; second, the incremental voltage gain of the source-follower of which the input 

transistor is MIS is not unity. (Furthermore it varies slightly over the linear voltage 

range because its J.I. is dependent on 112. This is a source of non-linearity, which, 

though small, contributes to distortion.) 

The complete circuit of the V·I, now designated DGFC2, is shown in Fig.6.25. The 

DGFC 3 is a temperature-insensitive reason of DGFC 2: the only difference between 

it and the DGFC 2 is the biasing scheme, which is considered later. 
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Figure 6.25 The DGFC 2 
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6.5.1 DC Conditions 

The DC Conditions in the circuit [or the case V) =V2=O arc given in Appendix6.2 

2.5V ,....-----,....----......,------,.------,..-----r-----, 

OV 

Vs 
-L5V , l.OV , .fJ.SV . ov O.5V l.OV 1.5 V 

2.SV 

OV 

-2.5V .l.5V . , l.OV. 

Vo (Diffe rentinl input 

/..- Desl8Jl Range 

Figure 6.26 Voltage traces for F ig 6.25 

vs 
.fJ.5Y OV O.sV 

Vo (Diffe renti nl input) 

f.- Desl8Jl Range 

l.OV 

Figure 6.27 Further voltage trace' for Fig 6.25 
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I OM6 
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-1.5V • 

3.5mA 

3.0mA 

2.5mA 

2.0mA 

l.5rnA 

ISM5 

l.OrnA 
113 

0.5mA 

OA 
-1.5V • 

I OM I2 

IOMs 

- l.OV • 

" 
" "" -

-O.5V OV O.5V 
V o(Di fferential input) r- Design Range -1 

Figure 6.28 Current traces for Fig 6.25 

-l.OV • 

W 
/ 

lL 
/ 

/ 
V 

-0.5 V OV O.5V 
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InM 

I I)M9 
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l.OV 1.5 V 

L 
-

IOM I 

11)\17 -. 
l.OV l.5V 

Figure 6.29 Further current traces for Fig 6.25 
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In Fig.6.26 the voltage traces how very good voltage-follower action by M4 over the 

linear design range and the tracking in V DMI 2 and VI)M8 that is a con equcllcc of the 

second modification referred to above. 

The voltage traces in Fig.6.27 are a mirror image, about the line V 1)=0, of those in 

Fig.6.26. 

The current traces in Fig.6.28 show a distinct improvement over those in Fig.6.19. 

From Appendix6.2, 11 2/T8= 1.045, i.e., the current gain of the output stages exceed 

unity by less than 5%. 

The constancy of Ix (16) is apparent. 

As with the voltage traces, the current traces of Fig.6.29 are a mirror image about 

the line VD= O, of those ofFig.6.28. 

4.0m 
/3.5776mS 

3.001 

G,( ) 2.001 

I.Om / 

) 
- -o -I .OV -0.5 V OV O.5V I.OV 

Figure 6.30 The G. eharacteri tic for the DGF 2 at T=27 °C 

6-30 



Analysis and Design of High-Transconductance RF MOSFET VOltage-to-Current Converters 

R2 R\ 
____ -rr-__ __ 4K 

r Vss 
= -2 .5V 

Figure 6.31 The DGFC 3 (A temperature insensitive ver ion of the DGFC 2) 

4.0m 

3.0m 
Colour k{ y: 
Bluc:+85 C 
Red:+27° 
p recn:-4( °C 

G,(S) 2.0m 

l.Om 

J \ 

I'---. \ 
--------o -1 .0,V. -O.8Y -O.6Y -O.4V -O.2Y O.2v OAY O.6Y O. Y l.OY 

Figure 6.32 Temperature performance of the DGFC 3 

Fig.6.30 shows the G1 cbaracteristic at 27°C. 
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The design theory for the DGFC 3, shown in Fig.6.31 is identical to that employed in 

Chapter 5.(pp 19,20 and Appendix5.2) 

The resulting Gt characteristic for three different temperatures, -40°C, 27°C, 85°C, 

shown in Fig.6.32, demonstrates good temperature-insensitivity. 

6.5.2 Small-signal high-frequency performance 

As in the DGFC schemes the small-signal frequency response is dependent on the 

frequency response of each loaded half-circuit. 

An assessment of the impedance levels associated with each mode in the left-hand 

half-circuit of Fig.6.25 suggested that the dominant time constant would exist at the 

gate of Ms (and M12) and that even if this did not guarantee feedback-loop stability 

then capacitance could be added at this point to ensure that stability did exist. 

Fig.6.33 shows a simulated test circuit for loop-gain measurement. 

ISMI2 ISMB 

1 Voo 
+2.SV 

-Vss 
-2.5vI 

Figure 6.33 Loop-gain test circuit 
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The IF capacitor guarantees that the external a.c.load at the source ofM4 is the 300.0, 

with which it is in series, for all frequencies of interest. 

The feedback loop is imagined to be 'cut' at the gate of Ms but in so-doing it is 

necessary to preserve the DC conditions impedance levels that existed before the cut 

was made. 

This is the reason for incorporating the network comprising RMI. Rill and Co. 

A small (::::: ImV peak) a.c. test signal, Vx• applied at the gate ofMg(and M12) produces 

a feedback signal vx' at the drain of M6. The capacitor CD isolates the two signals. 

The loop-gain. L.G .• is vx'/vx. To ensure stability with an adequate phase margin it 

was necessary to affix a capacitor CI.(and C2) 

A value ofO.155pF for CI and C2. gave a phase margin of some 55°. (see Fig.6.35) 

50 "'- ,I 
48.334dB 

(I2.973MHz 

'" ILGI 0 
in dB 

LLG 

-so 
180d 

93d 

Od 

10Hz 100Hz 1.0KHz 10KHz 

(3.0079GHz. OdB/,\ 

Hz 134.665) -
0.00790 , 

100KHz 1.0MHz 10MBz lOOMHz l.ooHz 100Hz 
Frequency 

Figure 6.34 Loop-gain magnitude and phase plots for Fig 6.33 
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In Fig 6.25 the capacitance associated with the gate of Mg is actuall y greater then 

O.155pF because of the gate input capacitance. 

This was intentionally discounted because the gate capacitance could not be 

calculated with a great deal of accuracy. 

-45 -48.928dB (4.2039Gllz 5J.928dB) /' 

J:_ 
j 

-50 

-55 

G, -60 

.1 

\) -65 

-70 

-75 J.@Hz 10Hz 100Hz 1.0KJlz 10KHz J.OMHz 10Mllz lOOMllz J.OGllz IOGHz lOOGHz 
Frequency 

Figure 6.35 G t vs. f for the DGFC 2 and DGFC 3 

The resultant small signal frequency response, shown In Fig 6.35 indicate a 

bandwidth of 4.2GHz. 

65.3 Di tortion 

40 ,--------.-----

-50 

-
____ f=100MHz 

-k- f=lGHz 

- --
dB -60 

-70 

------+------+-----
-80 -'------------

100 200 300 400 500 

Differentia l input voltage (mV), VI) 

Figure 6.36 THD vs. VD for the DGFC 2 and DGFC 3 
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From Fig.6.36, which shows the variation ofTHD with VD and frequency it is evident 

that in the worst case (V D=500m V and f =l GHz) the THD is -50dB. An output 

frequency spectrum is shown in Fig.6.37. 

1.0rnA 
1.0 Hz, 478 .542u f\) 

IOOuA 

IOuA 
(3 .0G ll z, l .4 8uA) 

--< 1.00A - -

IDOnA 
O.5GHz O.8GHz 1.2Gllz I.6GHz 2.OC1Hz 2.4GHz 2.8Gllz 3.2GIIz 3.5GHz 

Frequency 

Figure 6.37 Output Frequency spectrum for J=l GHz, VD=500mV. 

ov OA 

-SOmv -2OOJ 

-Ironv 

Figure 6.38 

Ioo (Differential output clU1"ent) 

445.:ns 446.Ons 446 . .:n8 447.Ons 447.5ns 448.Ons 448.5ns 449.Ons 449.5118 
Time 

howing 100 for Vo=100mV, j = lGHz 

Fig.6.38 shows the quality of the differential output cun-ent (T D) for a 100mV 

differential input signal at f= 1 GHz. 
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6.5.4 Terminal impedances 
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Figure 6.39 The input impedance at the gate of M .. with the gate of Ms 
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Figure 6.40 Output impedance ofM 17 and MI8 with VI=V2=OV 
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6.6 Summary and conclusions 

Shortly before the research work described in this chapter was done, the word 

'Flipped' had been employed to categorize a type of source-follower in which the 

drain current was held constant, by the use of some negative feedback scheme, in 

order to improve the linearity in its DC voltage transfer characteristic and decrease its 

incremental output impedance: hence, the short-fonn description FVF (Flipped 

Voltage Follower) has been used in published papers using it. 

The first part of the chapter demonstrated two shortcomings of the prototype FVF, 

namely, the limited (and, in some applications, unacceptably small) linear input 

voltage range or the requirement for an ancillary voltage bias circuit, and showed how 

these could be overcome by proposed circuit modifications that are thought to be 

novel. 

The resulting circuit comes under the classification FFVF.( Folded Flipped Voltage 

Follower) 

In this the input voltage range is maximised for given sail supplies. This makes the 

circuit potentially useful, as a unit or 'cell' in the design of a variety of low-voltage 

systems. 

The second part of the chapter considered the particular use of the proposed FFVF in 

the design of a V-I converter. The first circuit to emerge, the DGFCl, showed a 

current gain in the output stages that was not considered sufficiently predictable. 

The DGFC 2 overcome this problem but at the cost of higher rail voltages, +1-2.SV 

instead of +1-1.SV. 

A development of this, the DGFC 3, showed a temperature-insensitive linear input 

voltage range. 
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Future work could involve the development of a circuit with the perfonnance 

characteristics ofDGFC 2, or DGFC 3, but using +/- 1.5V rail supplies. 
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6.8 Appendix 6 

Appendix 6.1 Small Signal calculations for a half-circuit 

Calculation of Gt 

l r----- -----, Lrop 
Vo 

Vo ----' 

Rl2 

Vo 

Figure A 6.1 Hair-circuit of a DGFC 

Vo 

Figure A 6.2 Small-signal equivalent circuit for transconductance analysis 
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Referring to Figs. A 6.1, A6.2, Kirchhoffs Current Laws give: 

(_1 +_1 Yo +(gm2 +_I_)yo =0 
fo2 R rop Ro 

Putting eqns A 6.1.1, A6.2.1 and A 6.3.1, into determinant form, 

( 1 1 2) - gml+-+-+-
fol fo2 R 

-gm3 

This is ofthe form [5.4], 

a l hi c1 Yo kl 

a2 h2 c2· Yo = k2 

a3 h3 C3 Yo k3 

1 
fOI 

+ (gm3 +_1 ) 
fo3 

1 
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( 1 1 2) where, al= - gml +-+-+-
rol ro2 R 

CI= --gm2 

C2= _(_1 +_1 ) 
r03 Ro 

C3= (gm2 + ;0 ) 
kl=-gmIVO 
k2=O 
k3=O 

The voltage gain (VaN,) is given: 

Ifwe assume that ro!. ro2 are infinite then the variables become: 

al= -( gml + 

a2= -gm3 
2 a3= -
R 

b,=O 

b2= (gm3 +_1 ) 
ro3 

b3= _1_ 
rop 

CI= -gm2 

C2= _(_1 +_1 ) 
r03 Ro 
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Equation A6.6 rearranged gives: 

Vo -gml(a2b3 -a3b2) -gml(a2b3 -a3b2) 
-V-I = a1b2c3 +a2b3cl -a3b2cl -a1b3c2 = al(b2c3 -b3C2)+c1(a2b3 -a3b2) 

(A6.6.1) 
Substituting for at, etc. into A6.6.1 is gives: 

(A6.6.2) 

But, Gt=2gm V a. Using A 6.6.1 and the output current becomes: 

(A 6.7) 

The input voltage ofthe full circuit is (VI-V2) 

The Gt is given by, 

G
t
= 10 = -gm2·gml(a2b3- a3b2) 

VI - V2 (a lb2c3 +a2b2c1 -a3b2cl -a1b3c2) 
(A 6.7.1) 

Hence, 

G
t 

= -(gml + 2). [(gm3 +_1 ).(gm2 +_1 )+(_1 ).(_1 +_1 ) +(gm2 (gm3).(_1 )+(R2 ).(gm3 +_1 ) 
R T03 Ra Top r03 Ra rop r03 

(A 6.7.2) 

For the normal case gm3» lIr03 (since J.l3» 1) and the special case fop -+00, 
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Gt = 1 
2+---

gm2Ro 

gmt 
gmt,R gmt,R 

2 2·Rog m2 

Calculation of open-loop gain 

(A 6.7.3) 

(A 6.7.4) 

(A 6.7.5) 

Vo 

Figure A 6.3 small-signal equivalent circuit for open-loop gain analysis 

Referring to Fig A6.3, and applying KCL gives: 

(A 6.8) 

(A 6.8.1) 
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(A 6.9) 

(A 6.9.1) 

(A 6.10) 

Putting eqns A 6.8.1 t A 6.9.1 and A 6.10, into determinant form: 

( I I 2) I 0 - gml +.-+-+-
rol ro2 R rol Vo gm2Vx 

(gm3 +_1 ) -C:3 + RIo) -gm3 . Vo = 0 
r03 V' -gm2 Vx (1 2) I 1 x 

-+-
ro2 R rop Ro 

(A 6.11) 

A simplified determinate matrix is given; 

ai' bl ' CI' VO k l ' 

a2' b2 ' C2"VO = 0 (A 6.12) 
a3' b3' C3' VX k3' 

We now calculate the open loop gain from eqn. A 6.11 and A 6.12 (kl'=-k3'=gm2 Vx) 

(A 6.13) 

( 1 1 2) where, al'= - gml +-+-+-
rol ro2 R 
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b2'= (gmJ +_1 ) 
foJ 

1 b3'= --
fop 

CI'= 0 

C2'= _(_1 +_1 ) 
fOJ Ro 

1 
CJ'=-

Ro 
kl'=gm2Vx 

k2 '=O 
kJ'=-gm2Vx 

Because Cl' = 0 eqn.A 6.13 is simplified as below, 

Ifwe assume that fol and fo2 are infinite then eqn A 6.13.1 becomes 

Substituted those variables into A 6.14 then the loop gain is given, 

gm2[gmJ +(gmJ +_1 ).(gml +.i.)] 
V ' fop foJ R _x = ____ __ 
Vx -(gml +_1 ).(_1 )_(_1 J.(-1 __ 1 )] 

R foJ RO fop foJ RO 

Assuming again that fop=OO and gmJ » lIfoJ then, 

4 
V ' gml • gm2 + gm2 . R 
_x = __ --:-_-::::---"':'-
V 1 2 1 

x -gml'-+-'-
Ro R Ro 
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Appendix 6.2 DC conditions in the DGFC2 and DGFC3 (with both inputs 

earthed) 

DC conditions in DGFC 2 at 27°C: 
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 

( 1) 2.5000 (2) -2.5000 (3) 1.5811 ( 4) -.2300 

( S) -.2300 (6) 0.0000 (7) -.6471 (8) -1.4026 

( 9) -1.9126 (10) -1.9126 (II) -2.S000 (12) -2.5000 

( 13) -2.323S (14) -1.8834 (16) -2.3235 (17) 0.0000 

( 18) -.6471 (19) -.2300 ( 20) -.2300 (21) -1.4026 

( 22) -1.9126 (23) -2.5000 (24) -2.5000 (2S) -1.8834 

(26) I.S811 (28) -1.9126 ( 71) -.6471 (81) -1.4026 

(100) 0.0000 (101) 0.0000 (181) -.6471 (182) -.6471 

(201) -1.2940 (202) -1.2940 (203) -1.2940 (204) -1.2940 

(210) -1.4026 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

VDD -S.882E-03 
VSS 5.882E-03 
VD O.OOOE+OO 
Vern O.OOOE+OO 
val 1. 193E-03 
va2 1. 193E-03 
va3 1.086E-03 
va4 1. 149E-03 
vaS 4.412E-05 
va6 -9.148E-19 
va7 I.20SE-03 
va8 1.086E-03 
va9 1.149E-03 
va 10 4.412E-OS 
vall 1. 149E-03 
val2 1. 149E-03 
va 13 1.20SE-03 
val4 1. I 49E-03 
va15 1.20SE-03 
va16 1.149E-03 
va17 1.20SE-03 
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DC conditions in DGFC 3 at 27°C: 
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE 

( 1) 2.5000 ( 2) -2.5000 ( 3) 1.6002 ( 4) -.2196 

( 5) -.2196 ( 6) 0.0000 ( 7) -.6347 ( 8) -1.3815 

( 9) -1.9241 ( 10) -1.9241 ( 11) -2.5000 ( 12) -2.5000 

( 13) -2.3311 ( 14) -1.8933 ( 16) -2.3311 ( 17) 0.0000 

( 18) -.6347 ( 19) -.2196 ( 20) -.2196 ( 21) -1.3815 

( 22) -1.9241 ( 23) -2.5000 ( 24) -2.5000 ( 25) -1.8933 

( 26) 1.6002 ( 28) -1.9241 ( 2a) .8457 ( 2b) .0950 

( 3a) -.0454 ( 3b) -1.2204 ( 4a) -.8457 ( 4b) 1.2204 

( 5a) -.0088 ( 5b) .0547 ( 6b) -1.2204 ( 71) -.6347 

( 81) -1.3815 ( 100) 0.0000 ( 101) 0.0000 ( 181) -.6347 

( 182) -.6347 ( 201) -1.2785 ( 202) -1.2785 ( 203) -1.2785 

( 204) -1.2785 ( 210) -1.3815 ( 21a) 1.6002 (21b) -1.8933 

VOLTAGE SOURCE CURRENTS 
NAME CURRENT 

VDD -8.590E-03 
VSS 8.590E-03 
VD O.OOOE+OO 
Vcrn O.OOOE+OO 
val 1. 119E-03 
va2 I.119E-03 
va3 O.OOOE+OO 
va4 1.077E-03 
vaS 4.223E-05 
va6' O.OOOE+OO 
va7 1. 128E-03 
va8 O.OOOE+OO 
va9 I.077E-03 
va 10 4.223E-05 
vall 1.077E-03 
va12 I.077E-03 
va 13 I.I28E-03 
va14 1.077E-03 
valS 1. 128E-03 
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va16 
va17 
va18 
va19 1.019E-03 
va20 1.015E-03 
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CHAPTER 7 
CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

7.2 Future work 

7.2.1 Circuit outline and problems 

7.3 References 

7.4 Appendix 7 

Appendix 7.1 Proposed future work 
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7.1 Conclusions 
This thesis has described novel MOSFET V-I converters and also explored some 

novel measurement techniques. Although the body effect in the MOSFET has been 

discussed in some text books [7.1,7.2], none of these sources illustrate clearly the 

relationship between threshold voltage and the substrate (body) voltage for short 

channel N and P channel MOSFET. Furthennore, the Early Voltage in the short 

channel length design of very high frequency MOSFET devices has been discussed in 

some papers [7.3, 7.4] but unfortunately there have been no detailed explanations of 

how to calculate the equivalent Early voltage from device simulation parameters. 

Therefore in Chapter 2 the DC and small-signal parameters of both Nand P channel 

MOSFETs with a short channel length (L) of0.13J,lm and channel width (W) of lOJ,lm 

have been detennined by simulation on test circuits and the results have been 

presented in tabular andlor graphical fonn. In addition, a measurement technique 

thought to be novel for the direct detennination of the dependence of the 

transconductance ratios (gm/gds) and (gmt/gm) has been proposed. Furthennore, tests 

were conducted to find the values of the inter-electrode capacitances Cgs, Cgd, Cdb. 

Interestingly, textbook discussion on 'long channel devices' (L » IJ,lm) generally 

neglect Cgd. However, for much shorter channel devices the value of Cgd was found 

to be significant, and therefore cannot be ignored. 

Chapter 3, investigated three different types of current mirrors, (i) the Cascade, (ii) the 

Modified Wilson, and (iii) the 'High Compliance'. It was decided to adopt the 

cascode in preference to the other two because it gave comparable small-signal 

perfonnance to that of the Modified Wilson but had a major advantage over it, 

namely, that the output impedance was independent of the resistance of the circuit 

driving it. However, the 'High Compliance' current mirror had the best frequency 
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response but was not regarded as acceptable for two reasons. First, because its DC 

output characteristic was no better than that of the other two. Second, it requires more 

MOSFETs (a minimum of 6) compared with the other current mirrors. Furthermore, 

in this chapter both the substrate and the temperature variation effects for a source 

follower are described in detail. 

In Chapter 4, two types ofMOSFET V-I converter designs (Type A and Type B) were 

critically reviewed. In Type A the transconductance, Gb is determined by a chosen 

resistor whereas Type B designs require an accurate square-law relationship between 

10 and Vas and close device parameter matching. Therefore it was decided to 

concentrate on Type A designs. Two circuit configurations, the cross-coupled scheme, 

and a current-feedback scheme were investigated by simulation. In the cross-coupled 

case, the proposed constant range for Gt was limited by the MOSFET threshold 

voltage. Furthermore, both the cross-coupled circuit and the current feedback circuit 

suffered from an undesirable positive feedback loop. Then it was decided to revisit 

the long-tailed pair stage, with its associated degeneration resistor, to assess what 

improvements could be made in order to obtain acceptable and predictable 

performance for Gt > ImS. 

In Chapter 5 and 6, the design techniques for both DSFC and DGFC V-I circuits, 

were presented and described in detail. For fair comparison of these circuits, the bias 

current was chosen to be lmA and the value of source degeneration resistor 6000 

[7-5]. Table7.! below shows the comparative results for two novel V-I converters, 

namely, DSFC 1 (b) and DGFC3. 
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Table 7.1 A comparative table of two novel V-I converters 

DSFC l(a) DSFC l(b)* DOFC2 DOFC3 

Ot (mS) 3.0302 3.3855 4.2685 3.5776 

Ot at -3dB frequency 6.03210Hz 4.20390Hz 

ZiatlGHz 21.226K 28.435K 

Zo at 10Hz 30.613K 15.291K 

THD at 10Hz (dB) -57.84 -50.44 

Power Dissipation(mW) 17.9 28 

All those simulation results shown in Table 7.1 are based on linear operational range 

ofVD at +1- SOOmV. 

* This circuit works at +1- 1.5 rail voltages. 

It is apparent that DSFC 1 (b) has the most accrate value of transconductance because 

it is closer to the ideal Ot value of3.3mS. Also the AC performance ofDSFC l(b) is 

clearly better than DOFC 3 because its -3dB cut-off frequency is more than 60Hz 

and the THD performance is nearly 8dB lower than -SOdB. However, both V-I 

converters do meet the target specification for this research work. 

Both the (novel) circuits, DSFC l(b) and DOFC 3, were designed are implemented 

with a new temperature compensation scheme [7.6] suitable for an industrial 

environment. This scheme is scheduled for publication in due course (40°C -

7.2 Future work 
Since competing the work described in this thesis, the author has started to explore 

some new ideas using a V-I converter technique employing a different type of 

follower. The work is on-going but early results show that the technique has 

considerable promise. In this section the underlying idea of the triple feedback 
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technique is presented, and brief circuit analysis gives step by step development from 

the initial sub-circuit to the final full circuit design. 

7.2.1 Circuit outline and problems 

'Fig.7.1 shows a voltage amplifier with a differential long-tailed pair input stage with 

100% negative feedback configured to operate as a unity-gain amplifier. 

Von 1 rm 

VJ 

71 )'fV2 

-Vss ,I 
Figure 7.1 Long-tailed pair stage with feedback 

Current change in Mt. M2 when VI is applied is gm(VI-V2). Initially gmb is ignored. 

The justification for this assumption will be given later. 

(7.1) 

where, 2rds is the output resistance at drain ofM2 and rd is the drain load resistance. 

The best we can get is rd:::::: 00, or in practice, rd » 2rds so rd can be ignored. 
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(7.2) 

Get the voltage gain of the source follower based on M3 be Gc 

Then, 

(7.3) 

or (7.4) 

Now (7.5) 

Note that Jll (=gmlrds3) :f; Jl, because M3 operates at a different current, which affects 

the value of Jl. 

(7.6a) 

:: = 1 1 1 1(rds3)( 1 ) +-+-+ - -
Jl /lJl3 rm JlJl3 

(7.6b) 

If (r:: ) 1 then, 

V2 1 -;-> 1 2 
1 1+-+-

(7.7a) 

Jl JlJl3 

(7.7b) 
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For 1l3» 2 

(7.8) 

For 

(7.9) 

This analysis is only true for the un-loaded amplifier. 

Suppose it is loaded by a resistance R (=300 0) then rm (»300 0) 

in the expression for (Vl!V2) must be replaced by R. 

Now suppose rds3: IK .0, then rds31R: 3 

Then, (:1) = 1 II 3 1 I 4 
2 1+-+-+- 1+-+-

(7.10) 

J.l JlJ.l3 JlJl3 J.l JlJ.l3 

Again, -( Jl ) = A, say 
v2 1+J.l 

(7.11) 
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Voo 

lK'#Ir 

IK 

R va, 
V. -. Vb r Vb 

iR 

-Vss 

Figure 7.2 Schematic of the proposed V-I converter 

But, (7.12) 

;1 ;1 

where, i out =02 - i I) and v d =( Va - Vb) 

. . . , (7.13) 
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the theoretical analysis more accurate) Use +/- 2.5V supply rails instead of +/- 1.5V 

in order to accommodate the voltage requirement of cascode current mirror output 

stage. 

1:2CM , 

IB 
_____ ------iOOuA lmA 

R 
RBI2 I 

I 

-, 6OPOhm 

RBI2 

",' til' '" , 
I , 

I , , 
\ 
\ 

\ 
\ 

SOuA 
------ ... -, ". 

\ 

4.Sk 

\ 
\ 
I 
I , , , , , 

, , 
I 
I 

' . .. ........ _- ---,,,,"-I-25V Part of triple output 
= Widlar-type CM 

Gives SOuA with Ro > lOOk 

lout 

\\ 

\ 
\ 
I 

:, Cascode o/p stage 
,/ for accurate 

mirroring 

Figure 7.4 A detailed half-circuit of the proposed V-I converter 

The Gt of the V-I converted described in this Future Work section is better than DSFC 

l(b) and DGFC 3 circuits. Early results confirming this are sho\\1l in comparison 

Table7.2. In addition, some of the simulation results are contained in the appendices 

of this chapter to further establish that the circuit has potential. 
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Table7.2 A comparative table of two novel V-I converters and the future work 

DSFC 1(a) DSFC 1(b) DGFC2 DGFC3 Future Work 

Gt (mS) 3.0302 3.3855 4.2685 3.5776 3.2908 

Gt @-3dB frequency 6.032IGHz 4.2039GHz 1.6850GHz 

Zi@tGHz ------ 21.226K 28.435K 20.056K 

Zo@tGHz ------- 30.6t3K 15.291K 16.236K 

THD @IGHz (dB) ------ -57.84 -50.44 ------Power Dissipation(mW) 17.9 ----- 28 -------
All those simulation results in Table7.2 are based on linear operational range ofVo at 

+/- SOOmV. *The circuit works at +/-1.SV rail voltages. 
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7.4 Appendix 7 

Appendix 7.1 Proposed full circuit and preliminary performance 

Is 

Rs l.68K 

Rs 1.68K 

Vss 1-2.sv 

3.5m 

3.Om 

2.5m 

2.Om 

1.5m 

l.Om 

O.5m 

o 
-1..'iV 

OOoutl-Iout2) 

Figure A 7.1 A full proposed V-I converter 

r-

-l.OV -O.SV 

I ""-3.2908mS 

-O.OV 

VD 

......... 

O.SV 

Figure A 7.2 Transconductance G1 of Fig. A 7.1 
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