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Abstract 
This thesis is concerned with Electrical Impedance Spectroscopy (EIS), a non- 
invasive technique for characterising biological tissue and distinguishing pathology. 
The thesis is focused on the development of an improved method for extracting 
physiologically related parameters from the measured impedance data in vivo and 
instrumentation for spectroscopic measurements. 

In EIS, the electrical properties of physiological tissues, defined by their com- 
position and structure, are measured as functions of frequency. Experimental 

observations of the existence of dielectric dispersions caused by distributions of 
dielectric relaxation time (DRT) constants were made on different types of bio- 
logical material. It is postulated that widely used approaches for modelling these 
electrical properties are fundamentally flawed. The research work concentrates on 
the reconstruction of DRT spectra directly from the measured frequency response. 
The reconstruction problem involves inversion of a linear operator and like many 
inverse problems, is complicated by the ill-posed nature of the problem. In this 
thesis an inversion algorithm - Galerkin Regularised Inverse Method (GRIM) - 
based on standard mathematical methods is developed. The DRT spectrum es- 
tablishes a link between the raw impedance data and the physiological structure 
and function of biological tissues. The GRIM yields a large number of indepen- 
dent parameters each related to process on a different scale. Special care was 
taken in testing the method on simulated data and improving its resolution. 

The thesis is also concerned with the design and practical implementation of 
EIS systems. Two approaches are considered: systems based on commercially 
available Impedance Analysers and systems designed specially for studies in vivo. 
To evaluate the GRIM, an Impedance Analyser, benefitting from a higher accu- 
racy and a wider frequency range, is used. To meet the more rigorous specification 
demanded for studies on living human tissues, an electrical impedance spectrom- 
eter is developed. The suitability of different current sources is investigated. 

This research work includes studies of animal tissue in vitro and in vivo. Op- 
timal experiments are defined in terms of the measurement frequency range and 
the entire experimental protocol for dielectric spectroscopy is established. These 
biological data are used to evaluate the GRIM. A comparison between different 
tissue classes in vivo is made. From studying ischemic tissues, it is postulated 
and verified that physiological differences and changes can be measured using the 
technique of DRT spectroscopy. 
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Chapter 1 

Introduction 

1.1 Impedance measurement 
It is well known that virtually every liquid and solid is able to pass current when a 
voltage is applied to it. For a sine wave (AC) voltage, applied to a linear material, 
a sine wave current flows through it. The ratio of voltage to current (V/I) am- 
plitude is known as the impedance, (Z). In most materials the impedance varies 
with the frequency of the applied voltage, in a way that is related to the proper- 
ties of the material. This may be due to the physical structure of the material, 
to chemical processes within it, or to a combination of both. If a measurement 
of impedance over a suitable frequency range is made, and the results plotted 
on suitable axes, it is possible to relate the results to the physical and chemical 
properties of the material. Since an impedance measurements are repeatable and 
non-destructive, it can provide valuable information about a wide variety of sub- 
stances, components and systems. 

The features that make impedance measurement attractive over other inves- 
tigative techniques, such as X-ray, Magnetic Resonance Imaging (MRI), Comput- 

erised Tomography (CT) and ultrasound techniques, include: 

" Rapid acquisition of data (often within microseconds) 

" Accurate and repeatable measurements 

" Measurements relate to process activity 

" Investigates a wide range of size and time scales 

" Non-destructive; completely harmless to biological tissue 

". Highly. adaptable to a. wide variety of different applications 

1 



CHAPTER 1. INTRODUCTION 

. Low cost. 
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Impedance measurements find a wide range of application. For example, in 
electrochemistry the measurements of impedance are used in order to indicate 
the presence and the rate of corrosion, [1]. Electrical impedance techniques are 
also used in geophysical prospecting. Practical applications exist in hydrology, 
mapping of coal or sand deposits, seismological studies and many others, [2]. 
Electrical impedance is often used in medicine and physiology. For example, it 
can be used for monitoring changes in fluid volume within the lung, which can 
be related to the changes in the thoracic impedance. The changes in transtho- 
racic impedance can also be related to the events in the cardiac cycle and in 
some circumstances cardiac output can be estimated. Investigative techniques us- 
ing electrical impedance measurements include Electrical Impedance Tomography 
(EIT) and Electrical Impedance Spectroscopy (EIS). EIT aims to image two and 
three dimensional volumes containing different types of tissues and physiological 
functions. EIT systems usually operate at a fixed frequency. EIT relies on the 
observation that different tissue types have different impedance. At a particular 
frequency, there are large differences between the impedances of organs. However, 
in practice, there is no single frequency at which impedance can discriminate all 
types of tissue. Neither can a single frequency characterise the types of tissue 
within an organ. Therefore, measurements at a number of frequencies are neces- 
sary and this is known as Electrical Impedance Spectroscopy. This latter method 
is considered in the subsequent chapters and defines the area of the present re- 
search. 

1.2 Electrical Impedance Spectroscopy 

Electrical Impedance Spectroscopy (EIS) is a powerful method for characterising 
many of the electrical properties of materials and their interfaces with electron- 
ically conducting electrodes. EIS has been recognised as a useful analytical tool 
in material research and development as well as in medicine because it involves 
relatively simple electrical measurements that can be automated and results can 
be used for the interpretation of fundamental electrochemical and electronic pro- 
cesses. 

In EIS, the impedance of a sample of material can be measured directly in the 
frequency domain by applying a single-frequency voltage of known amplitude to 
the interface and measuring the phase shift and amplitude, or real and imaginary 

. parts, of the resulting. current at that frequency. Typically the frequency of the 
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applied voltage is swept across a range of frequencies spanning several decades. 
Commercial instruments are available which measure the impedance as a function 

of frequency automatically and which are easily interfaced to Personal Computers. 
The complexity of the method comes from the difficulty in performing reproducible 
experiments, the problem of separating the response of the measuring equipment 
from that of the sample and the interpretation of the measurements. 

1.3 EIS in Medicine 

This thesis focuses on applications of EIS in medicine. Non-invasive techniques 
for studying the body have long been popular with both patients and doctors. 
Most widely used are X-ray photographs, X-Ray computerised Axial Tomogra- 

phy (CAT scan), Ultrasound and MRI. In all these methods, energy is applied to 
the body in the form of an oscillating field or wave. This interacts with the tissues 

and the response is measured. Each of these techniques images different proper- 
ties of the tissue and the operation of organs and so has different applications. 

More recently, EIT has been developed as an alternative to complement the 

methods mentioned above with particular application in functional imaging. EIT 
is fast, cheap, harmless and can be used for long term monitoring. It may also 
image rapid changes in the physiological state of tissue such as the beginning of an 
epileptic fit in the brain. EIT is an area of active research: particularly studies of 
medical applications, such as measuring lung perfusion, lung ventilation, gastric 
emptying, cardiac output and locating epileptic foci. 

A current research aim is to develop multi-frequency EIT (MEIT). In order 
to produce MEIT images that are useful for medical diagnosis purposes, the mea- 
surement system must identify different tissues located close to each other in the 
body, such as liver and spleen or muscle and lung. Usually two or more frequencies 

are used in MEIT. The contrast of the resulting images is higher if the impedance 
variation with frequency is larger, and is different for different tissues. 

Multi-frequency measurements allow the tissue impedance spectrogram to be 

produced [3], [4]. Typically, multi-frequency electrical data are collected for sev- 
eral tissue types and the measurements are fitted to some mathematical model, 
such as the Cole model [5]. Some widely used mathematical models will be pre- 
sented in chapter 2. Fitting parameters are calculated for each type of tissue. 
These parameters are plotted on a scatter diagram and statistical techniques, 
such as cluster analysis, are used to test if the different classes of tissue are distin- 
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Table 1.1: Relative permittivity of Biological Tissues by Gabriel et al [17] 

4 

frequency, Hz 

Material 10 104 106 2x 1010 

Liver, Ovine 0 37°C 1.81 X 107 3.15 x 104 1.56 x 103 20.8 
Lung deflated, Human ® 37°C 4.62 x 107 1.63 x 104 5.8 x 102 10.7 
Lung inflated, Human 0 37°C 3x 107 1.63 x 104 5.8 x 102 10.66 
Muscle, Ovine CO 37°C 

Parallel Fibers 
Transverse Fibers 

8.31 x 107 
4.07 x 107 

2.86 x 104 
3.04 x 104 

4.11 x 102 
1.57 x 103 

29.7 
28.3 

Kidney, Ovine 0 37°C 2.78 x 107 4.15 x 104 1.97 x 103 27.5 
Fat, Bovine 0 37°C 1.06 x 107 1.14 x 103 24.7 3.19 
Spleen, Ovine 0 37°C 4.77 x 107 1.38 x 104 1.96 x 103 29.9 

guishable by these data. A large and growing body of literature exists confirming 
that multi-frequency electrical measurements of tissue can be used to distinguish 
different tissues and clinically useful tissue characteristics [6], [7], [8]. 

This empirical approach is useful in developing clinical techniques but does not 
directly illuminate the link between impedance measurements and tissue physiol- 
ogy or function. This thesis attempts to extract parameters, related to structure 
and processes occurring on different size and time scales, from the impedance 

spectrogram. In later chapters these data are interpreted in terms of cell physiol- 
ogy. 

The applicability of EIS for medical purposes hinges on the variation in the 
electrical properties of normal and pathological tissues as a function of frequency 
for the different organs. Table 1.1 shows the dependence of dielectric permittivity 
on frequency for different types of tissue. The dielectric permittivity is directly 

related to the impedance (see section 2.3). It is clear that soft tissue permittivities 
range across 7 orders of magnitude as the frequency is swept from 10 Hz to 20 
GHz. At the same frequency, the permittivity of soft tissue can vary by a factor 

of 10. 

1.4 Brief History 

Ohm presented his famous law in 1827. It establishes a linear relationship between 
DC current and voltage and -originally was developed for metals. However, it was ri 
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followed by various attempts to measure the resistance of all sorts of materials, 
including biological tissues. During the 19th century a number of researchers, e. g. 
du Bois-Reymond, demonstrated that the resistance of animal tissues decreased 

with increasing frequency. 

Bernstein postulated that tissue consisted of conductive cells enclosed in an 
insulating membrane. The cell membrane is slightly permeable to ions and there- 
fore represents the resistive part of cells. 

Experimental support for the membrane hypothesis was provided by Hober 
(1910,1912,1913) [9] who measured the impedance of red blood cells over a wide 
frequency range. He found a large decrease in the resistivity of a sample of blood, 

after the cells had been haemolysed and the cell membrane destroyed. The con- 
clusion was that the intracellular fluid of the living cell was an electrolyte which 
played a part in conduction after the destruction of membranes. The first esti- 
mates for the low- and high-frequency conductivity values were provided. 

Philippson (1921) [10] interpreted tissue impedance in terms of the resistor- 
capacitor model shown in Fig. 1.1. 

Cm 

R, 

Rm 
Figure 1.1: A resistor-capacitor model for the impedance of tissue (Philipp- 

son/Lapicque). 

The model was previously proposed by Lapicque (1907) [11] who investi- 

gated the behaviour of nerve cell membranes. In this model, at low frequencies 
the impedance is represented by resistances R, + R,, because the capacitor Cm 
has a high impedance and passes little current. With increasing frequency, the 
impedance of capacitor C,,, decreases, and it increasingly "short circuits" Rm. The 
overall resistance therefore decreases to R,. R; was interpreted as the resistivity 
of the intracellular space, while Rm and Cm the resistance and capacitance of the 
membrane. 

., ' .. -. 1 , --ý t- 
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In 1925 Fricke and Morse [12] found that their measurements on suspensions of 
red blood cells could be accurately fitted to a circuit shown in Fig. 1.2. R repre- 
sents the resistive properties of the suspending medium, S that of the intracellular 
space, while C is the membrane capacitance. 

R 

H___ 
CS 

Figure 1.2: The equivalent circuit model used by Fricke and Morse to represent 
the electrical properties of cell suspensions. 

However, these simple RC circuits could not explain the form of the impedance 
loci. The observed steps in the loci were called dispersions and three were identi- 
fied and labelled a, ß and ry. Fricke, Cole and Curtis made the first step to explain 
the ß-dispersion by applying the relevant Maxwell equations to cell suspensions 
surrounded by membranes. 

Cole (1932) [13] noted that many cell membranes could be represented by 
the series combination of a frequency-dependent capacitance and resistance. He 

was the first to draw the "depressed" semicircular impedance loci, since known 

as Cole-Cole plots, for a wide range of biological tissues. The parameters of 
the circular arcs were used to characterise the tissues. Cole proposed a modified 
Lapicque equivalent circuit model which included a "constant phase element", 
ZcpE, related to the frequency dependence of the resistive and capacitive com- 
ponents. The model involves the parallel combination of ZCPE and a resistance. 
Then the famous "Cole-Cole equation" for the overall impedance of his modified 
circuit eventually appeared in 1940, see Fig. 2.3. 

After 1941, studies by biophysicists Foster, Schwan, etc. [14] identified re- 
laxation phenomena as the underlying mechanism leading to Cole-Cole loci. It 
was determined that distributions of dielectric relaxation times lead to depressed, 
semi-circular impedance loci. 

A more detailed historical overview can be found in the paper of McAdams 
and Jossinet--(15]. Also the most complete tissue data have been published 'by - -""- ''' 
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Camelia and Sami Gabriel who studied electrical properties of over than 30 tissue 
types in wide frequency range 10 Hz to 20 GHz [16], [17], [18]. 

1.5 EIS at Oxford Brookes University 
The work of EIT Oxford Polytechnic (Oxford Brookes University since 1991) 
group was started in 1985. Interest developed in the mathematics of the EIT 

reconstruction as an inverse problem and led to the design and construction of 
the first tomograph OXPACT 1, [19]. The system operated only at one frequency, 
60 kHz. The subsequent tomograph OXBACT 2 was completed by Q. S. Zhu in 
1991, [20]. The new system had important limitations preventing its use in vivo. 
One of the problems was that system had no electrical isolation, which is required 
by standard patient safety regulations. To conduct experiments in vivo, it was 
decided to design a third generation of the system OXBACT 3. OXBACT 3 is 

currently being used for clinical studies. It was designed as a multi-frequency 
tomograph which could operate at three frequencies 10 kHz, 40 kHz and 160 kHz. 
It was considered that with three frequencies and with a complex measurement 
scheme, enough information would be available to determine the circle and its 

parameters, known as the Cole parameters, for internal organs. The overview of 
hardware on the first and existing systems can be found in chapter 5. 

Multi-frequency EIT has primarily been developed for static imaging. Static, 

or absolute, imaging attempts to calculate the true impedance everywhere in 
the region to be imaged. It has the potential to combine two techniques, EIT 
and Spectroscopy. It would have the important advantage that a large volume 
could be "scanned" and the tissue characterised at all locations within the imaged 

volume. Technically this goal will be very difficult to achieve due to the hardware 

problems discussed in chapter 5 and the lack of resolution in EIT measurements 
far from the electrodes. One of the biggest problems is the connection between the 
patient and the instrument. There are many potential sources of error introduced 
by electrode-skin interactions. The work on the design of an impedance probe 
for EIS measurements in vivo was carried out at Oxford Brookes University by 
K. S. Paulson, [21]. It consists of four circular, concentric electrodes. The size 
and geometry of the probe allow sampling of localised volume of tissue but with 
increased sampling depth in comparison with the standard four-electrode probe. 
This probe is described in detail in section 5.6. In the beginning of this project, 
it was decided to separate spectroscopy and EIT in order to obtain more detailed 
information about tissue electrical characteristics. 
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1.6 The aim and the contents of the thesis 
The aim of this thesis is to develop EIS for tissue characterisation. To achieve this 
aim, work has been carried out on both EIS instrumentation and a mathematical 
method for data analysis. Different approaches have been considered and will be 

presented in subsequent chapters. 

Even if impedance data could be collected within a wide frequency range in 
EIS, an effective method to determine the useful information about specific tissue 

characteristics, such as cell size, shape, number, clustering, hydration and the 

clinically useful intra-cellular to inter-cellular volume ratio, does not exist. A 

novel mathematical method for EIS has been developed aiming to establish a link 
between the electrical measurements on the biological sample and its cell charac- 
teristics. The problems of the approaches described by other authors have been 

also discussed. Attempts have been made to derive tissue physiological informa- 
tion rather than give the raw frequency response. Some of the results that are 
presented in this thesis have been already published [22], [23], [24]. The purpose 
of. this presentation is not only to summarise these results but to give a theoretical 
background of the proposed method based on the computation of the dielectric re- 
laxation time distribution. The presented method has been tested with real data. 
The data have been collected in vitro and in vivo. The proposed mathematical 
method has been compared with some other well-known interpretations of data 
in EIS such as a Cole-Cole model and equivalent circuit analysis. A review of 
them is also given. Much attention is directed towards an understanding of the 

permittivity spectra and developing DRT spectroscopy as a possible means of im- 

proving their understanding. 

The thesis is divided into seven chapters. After the Introduction in chap- 
ter 1, the electrical properties of biological tissues are considered in chapter 2. 
This chapter gives the theoretical basis of relaxation processes in tissue when an 
electrical field is applied. A review of well-known methods such as parametric 
model (Cole-Cole), electrical models and equivalent circuit analysis are intro- 
duced. Their disadvantages are discussed. 

The mathematical relationship between the DRT distribution and the fre- 
quency response is presented in chapter 3. Analytic DRT distributions with known 
frequency responses are reviewed. This chapter introduces the general DRT in- 
verse problem where arbitrary DRT distributions are calculated from impedance 
spectrograms measured experimentally. The most recent approach for reconstruc- 
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tion of relaxation spectrum - moving-average formulae - is presented in section 
3.4. This chapter introduces important sampling localisation theorems which de- 
fine the measurement frequency range. The drawbacks of these mathematical 
approaches for real data are considered. 

In chapter 4a new analysis for Dielectric Relaxation Time Spectroscopy (DRTS) 
is presented. The GRIM solves a weak form of the inverse problem using the 
Rayleigh-Ritz Galerkin method. Regularisation techniques are developed to deal 

with the ill-posedness of the inverse problem. The limitations of the method and 
possible improvement of the resolving power are discussed in section 4.8. Section 
4.10 presents the MatLab implementation. The method is tested with both sim- 
ulated data and physical electrical models. 

Chapter 5 presents a historical overview of hardware developed at Oxford 
Brookes University. Two approaches are considered for the development of EIS 
instrumentation: to design a bespoke EIS system or to adapt a commercially 
available device. The hardware of the bespoke system is based on the design of 
the existing two voltage channel system working at four frequencies. A new EIS 

system, suitable for in vivo experiment, is designed, built and evaluated. Differ- 

ent current sources are considered and their limitations are highlighted. In section 
5.5 an instrument based on a commercial Impedance Analyser is considered as a 
possible EIS system for use in vivo. The comparison of these two approaches 
is given. This chapter also gives an overview of different electrode systems and 
possible applications of EIS. 

Chapter 6 shows results obtained from the measurements in vitro and in vivo. 
After successful results obtained from simulations and resistor/capacitor circuits 
the GRIM is applied to biological data. An entire experimental protocol for di- 

electric spectroscopy is established in this chapter. The studies of pathological 
and in vivo tissues are presented. Distributions of relaxation time constants are 
computed and displayed. This chapter contributes to the understanding of the 
relationship between the electrical properties and spatial structure of tissue. 

In chapter 7 there are discussion and conclusion sections. The results of whole 
thesis are summed up and suggestions for further development are given. 



Chapter 2 

Electrical properties of biological 

tissues 

2.1 Introduction 

EIS measures the frequency response of a sample of material to AC electrical 
stimulation. In a typical experiment, a sinusoidal alternating current of angular 
frequency w, I (w), is applied to a sample of material (typically via electrodes) 
and the voltage developed across the sample, V(w), is measured. The ratio of the 
complex amplitudes of the voltage and current is the complex impedance of the 

sample, Z(w), Eqn. 2.1. 

z(w) _ Yýj (2.1) 

The impedance is a property of the sample, its composition and the geometry of 
the experiment. It is suited to defining the electrical behaviour on the macroscopic 
scale. At the microscopic level the electrical properties of the tissues are defined by 
their complex conductivity, v*, and complex permittivity, e*, (where "*" indicates 

a complex quantity). These parameters are a function of frequency and position. 
At steady state, the conductivity at a point may be expressed in a vector equation 
analogous to Eqn. 2.1. 

J=aVV (2.2) 

where J is the current density. In a region where the electric field is uniform and 
the current stream lines parallel, Eqn. 2.2 leads to the macroscopic equation 2.1. 

One of the purposes of this chapter is to introduce the main relaxation phenom- 
ena which take place when an alternating electrical field is applied to a sample of 
material. Dielectric relaxation mechanisms are complex phenomena which have 

10 
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received much attention, [25], -and is of particular interest in biological tissues, 
[14]. This chapter reviews the frequency dependence of the electrical properties 
of tissues. 

The electrical response of biological tissues is often compared to circuits con- 
sisting of resistors and capacitors and more exotic elements. The values of these 

resistors and capacitors, for circuits with similar behaviour as tissue, are often 
interpreted in terms of tissue physiology and function, [26]. Some examples of 
circuit model analysis are presented in section 2.6. For human tissue, electrical 
circuit parameters typically include the resistances which describe the intra- and 
extracellular fluid conduction pathways, and a reactive component which is de- 
termined by the capacitance of the cell membranes. 

In some cases, parameters of a circuit model are linked to the empirical Cole- 
Cole relationship of the frequency dependence of the complex permittivity of the 
tissue, in order to reproduce the observed resistance-reactance relationship and 
permit calculation of the parameter values. The Cole-Cole relationship is consid- 
ered in sections 2.4 and 2.5. 

2.2 Dielectric dispersions in Biological Tissues 

When the frequency of the applied electrical current increases, the conductivity of 
the most tissues rises. The increase in conductivity is associated with a decrease 
in permittivity. The change of the electrical parameters of tissues with frequency 

can be explained by relaxation phenomena that occur when the current passes 
through the tissue. 

Typically, the permittivity decreases in three major steps which are designated 
the a-, Q- and 'y-dispersions at low, medium and high frequencies respectively, 
[27]. Some other minor dispersions such as the Ö-dispersion are often reported. 
The idealised representation of this is shown in Fig. 2.1, [28]. This response is 
typical for all cellular tissue, although magnitudes and dispersion frequency vary, 
[14], [27]. 

The a-dispersion dominates at low frequencies between about 10 Hz and a 
few kHz. The a-dispersion is characterised by very large permittivity variations 
due to charge carrier diffusion effects, [14]. At very low frequencies, the mem- 
branes have time to complete charging and discharging within a single period. It 
causes Alarge tissue capacitance and, therefore, a high permittivity. The current, 
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Figure 2.1: An idealised plot of the frequency variation of permittivity and conduc- 
tivity for typical biological tissue by Bourne [28]. c' and o' correspond to real parts 

of complex permittivity and conductivity respectively and explained in section 2.8. 

passes only through the extracellular medium. The measured conductivity is the 

conductivity of the extracellular medium. The a-dispersion is usually associated 
with interfacial polarisations, caused by the formation of electrical double layers, 

and surface ionic conduction effects at membrane boundaries. This dispersion 

may be considered as a dipolar relaxation where large dipoles are formed by cells 
due to the accumulation of charges of opposite polarities at either sides of mem- 
brane. 

The ß-dispersion takes place in the frequency interval from 103 -107 Hz. The 
ß-dispersion is due to the polarisation of larger biological molecules and to the 
capacitive charging of cell membranes. The membrane separates two conduct- 
ing media. During excitation a charge is built up at the interface of these two 
dissimilar dielectrics and this increases the interfacial polarisation, known as the 
Maxwell-Wagner effect. When the frequency increases, the cell capacitive reac- 
tance decreases and a larger current flow goes through the intracellular medium. 
This leads to an increase in the tissue conductivity. On the other hand, the 
increase in frequency prevents the cell walls being completely charged during a 
single period causing the decrease in the permittivity. In the high-frequency part 
of the dispersion the dipolar reorientation of biomacromolecules, such as proteins, 
appears. Biomacromolecules behave like electrical dipoles in the electrical field. 
A torque orients each dipole with the applied electrical field but this is. countered 

. jorn A2'0 °5r 
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by random thermal excitement. An orientation equilibrium is reached with the 
dielectric relaxation process. 

The ry- dispersion, at frequencies around 1010 Hz is due to the orientation 
polarisation of water molecules. At microwave frequencies, the membranes are 
short-circuited and tissues behave as a electrolyte. Their conductivity and per- 
mittivity are dominated by the relaxation of the free water molecules. 

To conclude, measurements of the complex impedance at low frequencies pro- 
vide information about extracellular conductivity and cell size. When the mea- 
surements are performed in the kilohertz range, cell wall characteristics can be 

obtained. Information about the cell interior can be obtained from high frequency 

measurements. 

2.3 Complex Conductivity and Permittivity 

To establish the relationship between complex conductivity and permittivity con- 
sider the example of a parallel plate capacitor in a vacuum, made up of two flat 

electrodes of area S and distance d apart. If a DC voltage difference V is main- 
tained between the plates, a charge of +Q is developed on the positive plate and 
a charge of -Q on the negative plate. The capacitance is defined as the ratio of 
the charge Q to the voltage V and measures a property of the vacuum known as 
its permittivity, co: 

c=Q-Co (2.3) 

If an insulating material is introduced into the space between the capacitor 
plates, then the charge on the plates is increased to Q+q and a larger capacitance, 
C', is measured. The extra charge on the plates, q, is due to polarisation, P, 
of charges within the insulating material. The ratio C'/C defines the relative 
dielectric permittivity, e, of the insulating material: 

CP 
C, +f0E (2.4) 

If the material between the plates is not perfectly insulating then some current 
will flow at low frequencies due to the movement of free charge carriers. The 
conduction current, i, is in phase with the applied electrical field, E, and equals: 

i=Q, E (2.5) 
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where a5 is the static conductivity. At low frequencies the polarisation and electri- 

cal fields are in phase and so no dielectric loss is observed and the permittivity is 

at its maximum. The conductivity is constant and equal to a.. As the frequency 

increases, the conductivity changes from o to the frequency dependent value 

a*(w). If the material undergoes dielectric losses, the capacitance and the relative 

permittivity become complex. The relationships between the complex conductiv- 
ity, v*, and the complex permittivity, e*, have been established by Maxwell, [29], 

Debye, [30], and Fricke, [31]: 

a* (w) - a8 = jwEos` (w) (2.6) 

where j= 

2.4 Dielectric Relaxations 

Certain noninsulating media, such a biological tissues, have dielectric properties 
due to a capability of storing electrostatic energy by polarisation. The relationship 
between the applied electric field, E, and the polarisation, P, is given by: 

P= &oXeE (2.7) 

where eo is the dielectric permittivity of free space (co = 8.85 x 10-12 F/m). Xe 
is the sensitivity of the material to the applied electrical field, which is linked to 

the relative dielectric permittivity by: 

Xe=E-1 (2.8) 

For noncellular media, the polarisation may be divided into two parts accord- 
ing to the time constant of the response, [32]: 

1. Distortion polarisation is due to distortion of crystal lattices and relative 
displacements of atomic nuclei and electron shells. This distortion occurs approx- 
imately 10-16 s after the application of an electric field and so can be treated as 
instantaneous at the frequencies used for EIS. 

2. Orientation polarisation occurs as naturally polar molecules, such as water, 
or molecules with induced polarity, rotate to align with the applied electric field. 
Depending on the size of the molecule this occurs in the order of 10-6 s after the 

application of an electric field. Orientation polarisation is important at the higher 
frequencies used in EIS. 
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2.4.1 Debye Equation 

To determine the frequency response of a polarizable material, consider again 
the parallel plate capacitor filled with a homogeneous material. The capacitor is 
initially uncharged and at time t=0a unit voltage is applied across the capacitor. 
The polarisation charge P(t) shows an initial, almost instantaneous, increase to 
P,,, due to distortion polarisation, then a much slower increase to P, as polar 
molecules orient with the applied electric field, E. The Debye assumption is that 

rate of increase in polarisation is proportional to P, - P(t), [30], i. e. 

P(t) = P00 + (P3 - P,, )e't/T (2.9) 

where r is the relaxation time. 

Using the defining Eqn. 2.4, the measured permittivity can be written as a 
function of time: 

C(t) = e.. + (e, - eý)e týT (2.10) 

where e, and c are respectively the permittivity limits at very low and very high 
frequencies. 

Taking the Laplace transform of Eqn. 2.10 and rearranging yields: 

_- 
ý0O 

.1 (2.11) 
Ea -E, 0 

1 +pr 

where p is the Laplace parameter. By setting p= jw the equation 2.11 yields the 
frequency response of a material with orientation polarisation time constant T: 

_(_w) - C°° 1 (2.12) 
e, - coo 1+jwr 

Neglecting the influence of the static conductivity, the Debye equation takes 
its simplest form, [28]: 

E'(w) = Coo + 68-600 (2.13) 
1+jwr 

Nevertheless, the contribution of the static conductivity to the complex permit- 
tivity can not be ignored. Therefore, in order to describe the complex permittivity 
of a polar material, the modified Debye equation is usually used. The permittivity 
spectrum can be obtained from the conductivity spectrum by separating the real 
(Eqn. 2.15) and imaginary parts (Eqn. 2.16) of Eqn. 2.6. 

ý. (W) ̀  ýº - jýºº _ 
a*(w) 

_ 
a" (a' - a, ) 

-j (2.14) 
jWE0 wea weo 
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s' = 
UliE (2.15) 

0 
i -o, (2.16) 
WEo 

The modified Debye equation takes the form as: 

e'(w)=e , +E8E" -j 
a' (2.17) 

1 +CWT WEo 

The Debye dispersion relations derived above are for a process with a single 

relaxation time. Biological tissues are heterogeneous media. The dipoles do not 
all share the same relaxation time T. Some attempts have been made to extend 
the Debye model by including processes with more than one relaxation time. If 

the relaxation processes are considered for distinct time constants, for example, 

Ti <, r2 K 7-3..., the electrical response is a multiexponential type response: 

E(w) - e00 - 
30, + 

0_1 
+ 

A62 
+ 

A63 
+... (2.18) 

wEp 1+ jWT1 1+ jWT2 1+ jWT3 

2.4.2 Cole Equation 

Cellular tissue does not exhibit distinct time constants but a more complex re- 
sponse due to continuous distributions of time constants. One of the most widely 
used relaxation functions is the one proposed by Cole, [5]. The function models 
the dielectric behaviour of the biological materials. It is based on a distribution 

of the relaxation time constants due to the range of structures that make up the 
tissue. The complex permittivity is given by the Cole-Cole equation (Eqn. 2.19) 

which has two parameters; f, (r = 1/(27r f f)) is the characteristic frequency where 
the imaginary part of the permittivity has a maximum, and a is the empirical 
parameter (0 <a< 1). 

coo C*(W) =F°°+ (jwr, (-) 
2.19) 

If the static conductivity is taken into account the Cole equation is: 

C* (w) - E°° +1+ (jwre) (1_Q) w"o 
(2.20) 

2.5 Cole-Cole plot 
The complex impedance, conductivity or permittivity can be displayed graphi- 
cally as a Nyquist plot known as the Cole-Cole plot, [33], where the impedance 
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is plotted on an Argand plane. Plotting the imaginary part of the impedance, 

-Im(Z), against the real part of the impedance, Re(Z), results in a semi-circle. 
Such a trace is often referred to as an impedance locus. 

-Im(Z 

Figure 2.2: Nyquist plot of the frequency dependence of the complex impedance. 

For the Debye relaxation with a single time constant (Eqn. 2.13), the locus is 

a semi-circle centred on the real axis. The Cole-Cole plot for biological materials 
has a semi-circular locus with a centre depressed below the real axis, Figure 2.2. 
Actually, it is the superposition of a large number of semi-circular arcs (all cen- 
tred on the real axis) resulting from a continuous distribution of relaxation time 

constants in the dispersion. 

The Cole-Cole curve is described with four parameters: the radius r, centre 
coordinates (x0, yo) and the fundamental frequency w,, =1/T, where the imaginary 

part of the impedance reaches maximum. Often one of the parameters yo or r, 
is replaced by the angle a describing the depression of the semi-circular arc. If 

a=0 then a semi-circle is centred on the real axis and is identical to Debye 

relaxation with a single time constant. 

2.6 Electrical Models and Equivalent Circuit 
Analysis 

The most common representation of the electrical properties of tissues is the 
equivalent, lumped-constant element RC-circuit model (RC stands for a resistor- 
capacitor pair). A wide variety of models have been proposed whose components 
are designed to reproduce the complex behaviour of physiological tissue structures: ' 
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The response of an equivalent circuit model is fitted to the measured response and 
the values of individual resistors and capacitors are interpreted in terms of extra- 
cellular conductivity, cell wall capacitance and intra-cellular resistivity. This well 
established analysis has two potential problems: 

1. An infinite number of different models have identical overall impedance and 
could be fitted to the same experimental data. 

2. Ideal circuit elements represent lumped-constant properties. But, EIS mea- 
surements are derived from conduction in an inhomogeneous, three-dimensional 
medium. 

Indeed, representing the real electrical properties of tissues with an electrical 

circuit that contains only discrete electrical elements is often convenient. However, 

in the complex impedance or permittivity plane, the electrical response of all 
biological tissues shows an arc of a circle whose centre is below the real axis. The 

model elements depend on the microscopic electrical properties e and a. These 

properties'are themselves frequency dependent. So it is established that ordinary 
lumped-constant element RC-circuits are inadequate to describe the electrical 
behaviour of biological tissues. To reproduce a depressed semi-circle using a 
small number of lumped components, it is necessary to introduce a non-physical, 
constant phase component. 

2.6.1 Distributed Circuit Elements 

The locus obtained in the complex plane of the impedance shows the existence 
of a continuous distribution of tissue properties. Aiming to obtain the best fit to 
the EIS data, distributed elements in the equivalent circuit are often used. 

One of the widely used distributed impedance elements is the "constant-phase 

element" (CPE) or "pseudo-capacitance", [34], [35]. The CPE is equivalent to an 
empirical transfer function. The electrical circuit involving CPE, shown in Figure 
2.3, was originally proposed by Cole as a model for dielectric systems. It yields 
capacitances C, in the w -+ 0 limit and C,,. in the w -+ oo limit. 

An ideal or "pure" capacitance can be considered as a constant-phase element 
with a phase angle of -90°. A pseudo-capacitance has a reactance which decreases 
with frequency, but not in a simple way. The pure capacitance has a complex 
reactance given by Eqn. 2.21. 

'ýý^r =-ý11(ßw)-1 0 <b<1 (2.21) 
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C, t 

C, - chi 

Figure 2.3: Electrical circuit with CPE. 

Cole's CPE has a reactance: 

K(jw)-a (2.22) 

where K is a constant with units in the form of 11. s-6. Therefore, the term 1/K 
is expressed in St-i. sa and has the dimension of a pure capacitance for 6=1. 
Parameter S has the same meaning as (1 - a) in the Cole equation 2.19. CPE 
has an impedance rather than a reactance, because (jw)-a has a real component. 
6 controls how "capacitive" the behaviour of the CPE is. 

Consider the Philippson/Lapicque electrical model shown in Fig. 1.1. In this 

model, replace the capacitance Cm representing the capacitance of the membrane 
by a constant-phase element. The parameters of the circuit are chosen to be 
R, n = Rs = 300 Q for resistances representing resistivities of membrane and 
intracellular space respectively, Cm =1 pF for the capacitance of the membrane. 
The impedance data for two different 5 parameters are displayed in Fig. 2.4. 

m 
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Figure 2.4: Plots of reactance against resistance for the circuit with CPE. 
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In Figure 2.4 the solid line represents the record obtained when CPE is equiv- 
alent to a "pure" capacitance. The centre of its semicircle is on the real axis. 
The cross line is for the case where the capacitor is replaced by a "constant-phase 

element" with parameter S=0.8 or Cole parameter a=0.2. In the latter case, 
the centre of the circle is below the resistance axis. For decreasing b (increasing 

a), the centre of the impedance locus becomes increasingly "depressed". 

Cole's equation has found widespread use. Some examples of tissue modelling 
from EIS data have been published. The first parametric electrical impedance 
images were published by Brown et al [37]. They were constructed from combi- 

nations of the parameters of the model shown in Figure 2.5, where R and S are 

respectively the extracellular and intracellular resistances and Z, e represents the 

pseudo-capacitance. 

S Zc 
e 

R 
Figure 2.5: The tissue model used by Brown et al for parametric imaging. 

This model is equivalent to the Cole model. Values of the model's parameters 
for different tissues can be found in [37] and were confirmed by Rigaud et al in [38] 

who performed electrical impedance measurements in vitro. B. Rigaud proposed 
two other electrical models for tissues exhibiting a single-circle impedance locus 

and a dual-circle impedance locus when measurements were extended to low fre- 

quencies. 

The modelling of bioimpedance data measured on normal and cancerous fe- 

male breast tissue using the R-S- Zp, model was also reported by N. Chauveau 

et al, [39]. 

Although equivalent circuit modelling of biological tissues is still proposed in 
the literature and it is possible to choose parameters so that it accurately repre- 
sents most tissues, the "constant phase element" is an arbitrary construction that 
is equivalent to a particular form of the DRT distribution. In order to interpret 
electrical response changes in terms of physiology, it is necessary to consider the 
relaxation time distribution and its evolution. :,.. :: 
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In a typical tissue, there will be a large number of cells with different sizes 
and shapes. Cole and Cole suggested that this leads to a range of local values 
of resistance and capacitance within the tissue. Different tissue types have differ- 

ent electrical impedance responses which would change with pathology. It means 
that in order to use EIS as a non-invasive tool in medicine one should use differ- 

ent electrical models that would fit the data well and that would demonstrate a 
parametric variation associated with the possible changes during tissue injury. 

2.6.2 Ambiguous Circuits 

Another potential problem with equivalent circuit analysis is that different models 
can have the same electrical impedance response. 

An equivalent circuit with three or more circuit elements can be rearranged in 

many ways and still yield exactly the same impedance. An example is presented 
in Figure 2.6. 

R, 

(R. + R) 

Rl1 +(RA/R, )) 

Figure 2.6: An example of different circuits with the same overall impedance at 
all frequencies, [32]. 

In these circuits the impedance Zi can be made up of either lumped constant 
elements, distributed elements or a combination of these types. Having the same 
frequency response, both suggested tissue models can be fitted to measured data 

and it is not clear how to interpret the values of the lumped impedances in term 
of tissue characteristics. 

In the study by Aligne et al [40] on the in vivo characterisation of human breast 
tumours induced in nude mice, the parameters of three different models can be 
fitted to the data. These models were the Cole model, the model proposed by 
Kanai et al [41], and a model derived from Kanai model by adding an RC-circuit 
in parallel with each capacitance. 

The variety of different circuits poses the problem of choosing the one that 
-rniirors'thi ''t'issue structure and also the`physiölogical properties and pröcesses. "` -'- 
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2.7 Summary 

The purpose of this chapter has been to describe the electrical properties of bi- 

ological tissue: conductivity and permittivity. These properties are frequency 
dependent. The behaviour of physiological tissues in an electrical field has been 
discussed. It has been shown that equivalent circuits can be devised, all with an 
electrical response similar to tissue. Associating a particular circuit element to 

some physiological or functional feature of the tissue is dubious. However, distri- 
butions of relaxation times do uniquely characterise the electrical response and 
may be linked to cellular properties. 

...... 
1 "ýf. 



Chapter 3 

Continuous Relaxation Spectra 

3.1 Introduction 

In this chapter the electrical response of biological materials is related to contin- 
uous distributions of relaxation processes. 

In the previous chapter the interpretation of impedance spectra with equiv- 
alent circuit models was discussed. These models can adequately mimic the be- 
haviour of tissue but the interpretation of the spectra in terms of physiology and 
function requires knowledge of -the relaxation spectra. Here the Cole-Cole model 
is shown to be equivalent to a particular distribution of dielectric relaxation times. 

Dielectric constant measurements are often analysed in terms of a distribution 

of relaxation times. It is assumed that when the observed results cannot be 

explained by a simple Debye dispersion involving only a single relaxation time, 
they arise from a distribution of relaxation times. Depending on the frequency 

range, different processes lead to distributions of time constants, e. g. : 

9 a-dispersion: existence of cells with various sizes and shapes; 

. fl-dispersion: existence of cell walls of varying thickness and porosity; 

. 7-dispersion: orientation polarisation of an enormous variety of organic 
molecules experiencing a range of bonds to surrounding molecules. 

To establish such a connection between observed results and a distribution of 
relaxation times is the aim of the present work. The continuous distribution of 
relaxation time constants can be found from the Debye equation presented in the 
section 2.4.1: 

23 
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00 % G(T) 
dr 

ý, -co -0J 1+jwT 
3.1 

where G(T)dr is the weight of relaxation times in the range [, r, 7- + dr]. 
In this chapter a number of empirical relaxation functions, proposed to pa- 

rameterise the observations of the tissue impedance behaviour, are introduced. 

3.2 Analytic Spectra Models 

3.2.1 Classical Permittivity Loci and Their Relaxation Time 
Distributions 

A small number of theoretical frequency response curves yield continuous dis- 
tributions of dielectric relaxation times with closed form expressions. The most 
common model for the EIS data parameterisation is the empirical Cole-Cole model 
with a frequency response given by the equation 2.19. The complex permittivity 
e* (w) may be separated into real and imaginary parts: 

E'-_', 
_1- 

sinh(1-a)x (3.2) 
cosh(1 - a)x + cos(air/2) E', - e', 2 

[1- 

e" cos(air/2) (3.3) 
68 - coo 2 cosh(1- a)x + sin(air/2) 

where x= logwro. The derived distribution function of time constants, G(T), is, 
[32]: 

1 sin(ar) G(r) - 27rr cosh((1 - a) log(T/To)) - cos(a7r) 
(3.4) 

The Cole-Cole distribution is symmetrical in logarithmic scale of times, in(r), 

with respect to a central frequency or relaxation time. The distribution of time 
constants is plotted as a function of the variable s- log(T/To) in Figure 3.1. 
The distribution has a peak at r= To and the variance increases as a increases. 
Therefore, increasing spread in the distribution of time constants is associated 
with increasing depression of the Cole-Cole locus. 

As was pointed out in section 2.6.1, dielectric response corresponding to the 
Cole-Cole function is produced by the circuit shown in Fig. 2.3 which contains a 
"constant-phase element". 

" Two other distribution functions are due to Kirkwood and Foos [42] and David- 
son and Cole [43]. 
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G(T) 

25 

Figure 3.1: The distribution function associated with the Cole-Cole distribution 

of relaxation times for different values a. 

The first of these is symmetric, and is again based on an extension of the 

Debye model. In Debye theory, 

en 
= sechx (3.5) 

where x= loges/wo. Instead of this, Kirkwood and Fuoss wrote 

ell 
e° = sech-yx (3.6) 

which leads to a distribution of the form 

G(s) =2, 
cos(ryic/2) coshrys (3.7) 

cost (ryr/2) + sin2rys 

where s is again equivalent to log(r/To). 

The Davidson-Cole arc is a skewed in the complex e' plane, Fig. 3.2, and the 

equation is: 

C* - coo 1 (3.8) 
e, - coo (1 + jwro)A 

The corresponding distribution of the relaxation times is highly asymmetric: 

=(o 
siýýr 

rrT G(r) 

ßQ<T 
GTp 

(3.9) ý0 
else 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

In(T%) 
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Figure 3.2: Davidson-Cole arc. 

3.2.2 Parametric Models 

1 

Several parametric models were developed to describe the variation of dielectric 

properties of tissues as a function of frequency. Parameterisation of EIS data is 

often based on the empirical Cole-Cole model. However, only few independent 

parameters can be found. 

Examples of parametric models for brain tissue have been reported by Foster 

et al, [44). The range of applicability of the models was limited by the data avail- 
able to above 1 MHz, e. g. the y-dispersion frequency range. 

A similar, but more extensive analysis was carried out by Hurt [36], who 
published the data for muscle in the frequency range from 10 Hz to 10 GHz. Hurt 

modelled the dielectric spectrum by the summation of five Debye dispersions in 

addition to a conductivity term: 

e, (W) = coo +b5 
ACn 

+ . 
a' (3.10) 

n=1 
1+ jwr° jWCO 

Gabriel et al, [18], recently used the Hurt approach to compile and describe 
the dielectric behaviour of biological tissues over a broad frequency range. The 

spectrum from 10 Hz to 100 GHz was modelled as four dispersion regions. The 
frequency dependence within each region was expressed as a Cole-Cole term: 

4 Qý, 
n as 

ý` (w) = coo +/+ (3.11) 
n_1 

1+ (jwr)(1'on) jweo 
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The model assumes the existence of the specific, continuous distributions of 
relaxation times. The DRT spectrum was assumed to consist of four near sym- 
metrical peaks as in Figure 3.1. Although each peak is broadened by its own, 
independent distribution parameter cY, no effort was made to extract more in- 
formation about the shape of each peak from the data. Choosing appropriate 
parameters for each tissue it was only used to predict the dielectric behaviour 

over a frequency range from Hz to GHz. 

The parametric model can be used to obtained the dielectric spectrum over a 
wide frequency range and can be used to distinguish different classes of biological 

tissues. The empirical approach is useful in developing clinical techniques but does 

not directly illuminate the link between specific non-electrical tissue characteris- 
tics (cell size, shape, number, clustering, etc. ) and its raw frequency response. 
The methods of Hurt and Gabriel yield, indirectly, discrete and continuous distri- 

butions of dielectric relaxation times. 

3.3 Inversion Formulae 

3.3.1 The Analytic Inverse Problem 

In electrical impedance spectroscopy the inverse problem is to determine the dis- 

tribution of relaxation times from electrical measurements made on a material. 

Introducing the proportion of dielectric time constants in the range [r, r+dr] as 
G(T)drr and the frequency response of the material, Q(w), the following expression 
can be derived from the Debye equation: 

Q( w) = 
e( w) - C. 

= 
00 I G(r) 

dr (3.12) 
e, - Eo 0 

1+jwr 

The network function Q(w) is the measured data in EIS. The above type of 
the integral equation is known as a Fredholm integral equation of the first kind. 
The function k (w, , r) = 13 is known as the kernel of the integral equation. It is 

well known that as long as Q(w) is in the range of the integral operator then the 
solution G(r) is unique up to the addition of a function in the null space. The 
inversion of this type of integral is known to be Hadamard ill-posed, [45]. Ill-posed 
problems are considered in detail in section 4.2. In particular, small changes in 
the measured network function Q(T) can lead to arbitrarily large changes in the 
relaxation spectrum G(r). The kernel k(w, r) is not self-adjoint but when Eqn. 
3.12 is split into real and imaginary parts, the new kernels are real and symmetric 
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and hence self-adjoint: 

00 00 
Q'(w)-. 7Q"(w)=J 1-}-(w) Zdr -if 1+w(T)dr 

(3.13) 
00 

A more detailed introduction to Fredholm equations of the first kind and 
problems associated with their solution as well as a stabilising techniques will be 
discussed later. 

3.3.2 Analytic Expressions 

There exist several analytic expressions for the direct calculation of relaxation 
time distributions from permittivity data. They are generally not useful for the 
inversion of incomplete and noisy data due to ill-posedness of the inverse problem 
but are included here for completeness. 

The equation 3.12 can be rewritten in terms of parameter p= jw: 

00 G Q(N) = 
fdr 

0 PT 
(3.14) 

In order for the distribution function G(T) be physically reasonable and realis- 
able, it must satisfy certain conditions. First, it must be real and always positive 
for any value of the variable T between 0 and oo. Also, from 3.14, it must be 

normalised so that: 

00 
JG(r)dr=Q(O)=1 (3.15) 
0 

Macdonald, [46), has shown that by applying the transformation A= T'I and 
a'1G(a-1) = D(A) to Equation 3.14 yields: 

00 
Q(P) = 

f'dA 
= 333ý(D(A)) = S(D(A)) (3.16) 

0P 
where represents the Laplace transform and S represents the iterated Laplace 
transform or Stieltjes transform. Thus, D(a) and hence G(a) can be recovered 
from Q(p) by iterated inverse Laplace transforms. The Laplace transform may be 
formally inverted using the Riemann Inversion Formula, which involves a complex 
integral along a Bromwich contour. The inverse Laplace transform is well known 
to be exponentially ill-posed. Algorithms exist for calculating values of the inverse 
Laplace transform of functions known only at discrete, purely imaginary values of 
p, such as Talbot's Method [47] and later variants (48]. 
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Working on the same integral equation in the field of rheology, Davies and 
Anderssen [49] derive an expression for the direct inversion of the complex part 
of the permittivity. Consider the real part of Eqn. 3.13: 

00 
Q'(w)w 

- Jf 1 -F'W2T2G(w)dr 
(3.17) 

Applying the transformations T= e'', w=et, e(t) = wQ'(w) and %F(s) _ 
G(r) to Eqn. 3.17 yields: 

00 

6(t) -J Y-+ (e 

t-8 

et ')2q'(s)ds 
(3.18) 

0 
00 

=f sech(t - s)W(s)ds 
0 

The right hand side of equation 3.18 is in the form of a convolution and so, 
assuming the Fourier transforms 0 (p) =F3 (t) and T (p) = F% (s) exist: 

4(p) =2 6(p) cosh(2irp) (3.19) 

Thus T(p) and hence G(T) can be recovered from the inverse Fourier transform 

of a filtered Fourier transform of 8(t). 

3.4 Moving-Average Formulae 

3.4.1 Introduction 

Different attempts have been made by several researchers in the search for direct, 
numerical inversion algorithms for following equations: 

00 
Q' (w) =J10+ 

(w2r2 
dr (3.20) 

00 w7-G 
2r2 

dr (3.21) Q°(w) =1+ 
w( 0 

The pair of equations 3.20 and 3.21 are also encountered in the field of rheol- 
ogy where they describe the distribution of shear waves in a viscoelastic medium. 
Davies and Anderssen [49], [50], [51) have proposed a direct inversion method for 
use on shear wave data. 
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In this chapter it will be shown that their results are equally applicable to 
the inversion of normalised admittivity data to yield dielectric relaxation times. 
The continuous moving-average formulae and then their discretised forms will be 

presented. Two specific Sampling Localisation theorems are considered in detail 

as they are useful and have the primary importance for the determination of the 
extent of the interval over which the distribution of relaxation times is completely 
recovered. An example of the application of the method will reconstruct a single 
time constant distribution. The detailed derivation of these results are may be 
found in the referenced articles. 

3.4.2 Derivation of Continuous Moving-Average 
Formulae 

In this section the derivation of the moving-average formulae using mid-point 
product integration is outlined, for more details refer to [50]. The results of 
Davies and Anderssen are presented in the context of the recovery of dielectric 

relaxation times. 

Let the function S(w) be defined as: 

S(w) = jWQ(w) (3.22) 

Writing Eqn. 3.13 in terms of S(w) and taking real and imaginary parts yields: 

G(T)W2T2 d7- /' G(T)wr dr 
S, (W) + is" (W) = J! 1+ w272 T+J1+ w2TZ T 

(3.23) 
00 

These equations are identical to the equations investigated by Davies and An- 
derssen where S' is the storage modulus and S" is the loss modulus of shear waves 
in a viscoelastic fluid and G(T) is the relaxation spectrum. 

Let Tiab denote the contribution from dielectric relaxation times in the range 
a<r<b; and Cab be the mean of the relaxation time distribution over this 
interval, i. e. 

b 

l7ab =f G(T)dr (3.24) 

Cab =b- (3.25) 



CHAPTER 3. CONTINUOUS RELAXATION SPECTRA 31 

Davies and Anderssen show that, provided ln(b/a) < 7r then: 

- ln(a)+ir/2 

77ab ° Tiab =f [E"(ln(bw)) - E"(ln(aw))] 
S 

ý(rý 

dw 

- ln(b)-a/2 

- In(a)+7r/2 

7l'ß =f [E'(In(bw)) - E'(ln(aw))] 
Sw (3.26) 

- ln(b)-r/2 

where: 

E'(x) =l im EE (x) E° (x) =l im E' (x) 

1 
Ea (x) =Ea (x) + iEä (x) _ 

Ir 
er f (x äi), ö>0 (3.27) 

Eqn. 3.26 provides two alternative routes to calculate S(w) which, given com- 

plete and noiseless data, should yield the same result. The elementary sampling 
function E6 *(x) :S --3 0 in the functional representations of 7la, b is composed of an 
infinite number of pulses of infinite amplitude in the interval -7r/2 <x< ir/2. 
Davies and Anderssen used this result to prove the two Sampling Localisation 
Theorems introduced in the subsequent section. 

3.4.3 Sampling Localisation Theorems 

Davies and Anderssen provided the answer to the fundamental question: 

"What precise range of frequencies worin <w< w° need to be sampled in 

order to determine the relaxation spectrum over a given range of relaxation times 

a<T<b? " 

Throughout this thesis, reference will be made to the Sampling Localisation 
Theorems and how limitations in the measurements of the permittivity data lead 
to restrictions in the recoverable relaxation spectrum. 

The First Sampling Localisation Theorem 

If 1< b/a < ell, then the distribution of dielectric relaxation times in the interval 

a<r<b is completely determined by the admittivity in the angular frequency 

range: 

e 
bf << ea (3.28) 
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Table 3.1: Three Transcendental numbers. 

e, 
x e2 

x 

e'2 

= 23.14069263 

= 4.81047738 
_ 101.3647635 

_ 100.68218818 

= 0.20787958 = 10-0.68218818 

The Second Sampling Localisation Theorem 
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If b> ae, then the dielectric relaxation times in the interval a<T<b are 
completely determined by the admittivity in the two angular frequency ranges: 

ee e- 
w<e b <w<b and 

a<a 
(3.29) 

Three constants are important to introduce here: ell, of and e'1. Floating 

point approximations to these numbers are given in Table 3.1. Referring to this 
table, the first theorem can be rewritten as: 

w"a 
=101.36 (3.30) 

Wmin a 

Thus, determining the dielectric relaxation time density in the range a<r<b 
requires knowledge of the permittivity in the frequency range 1.36 decades broader 
than the reciprocal range a-1 <w< b'1,0.68 decades on either side. 

The next conclusions follow from the above theorems: 

" To recover the dielectric time constant distribution over a decade of relax- 
ation times it is necessary to measure the permittivity over 2.36 decades of 
frequency; i. e. , 0.68 decades either side of the reciprocal relaxation time 
range. 

. The measurements of the permittivity over at least 1.36 decades of frequency 
are needed to tell anything about the relaxation spectrum. 

3.4.4 Discretisation and Numerical Implementation 
A numerical algorithm for the inversion of the normalised permittivity data to 
yield the approximate relaxation time distribution can be obtained by the dis- 
cretisation of Eqn. 3.26. Davies and Anderssen used mid-point product integra- 
tion. This results in two, simple, moving-average formulae linking the permittivity 
sampled at specific frequencies to the mean relaxation time density ovm intervals.,. .,. 
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The strategy proposed by Davies and Andessen can be summarised as follows. 

To establish a correspondence between the continuous and discrete formulae, 
the nature of the discretisation has to be defined. The permittivity data are 
assumed to be available at discrete set of K+1 frequencies: 

wk) k=0,1,..., K (3.31) 

which increase as a function of k. To apply the formulae it is necessary to have 

permittivity data exponentially sampled at frequencies given by: 

Wk = wo exp(hk) 0: 9 k<K (3.32) 

where h is a constant which is constrained by the length L of the moving-average 
formulae, where L>2. The lowest frequency, wo, is unconstrained. The re- 
laxation time distribution will be estimated at points in the reciprocal range 
'rk = 1/wk. Each relaxation time sample is at the geometric centre of an in- 
terval [e-2 , rk, e2 'rk] . If 77k is defined as the integral of the relaxation time density 
function over this interval, then the moving average formulae of length L are of 
the form: 

L 

711 - aiQ'(Wj+t) 
i=-L 

j =L, L+1,..., K-L 

L 

77j = ßQýýýW7+lý 

1. -L 

j =L, L+1,..., K-L (3.33) 

where r7i =17ý = raj . 
A numerical procedure for the calculation of the coefficients a; and , 8;, based 

on the discretisation of Eqn. 3.26, is given in Davies and Anderssen [50]. 

The coefficients a, and #1 may be determined by fitting the dual model: 

SN(w) _Z(, 
liwi)w2 ri (3.34) 

j_1 
1+ w2r 

N 
5N(w) _ 

(ý'wf )wrf 
(3.35) 

f_1 
1+ w2Tj 

where rjj is defined by Eqn. 3.33. 
As an example, consider a DRT spectrum consisting of a single relaxation with 

a time constant of one unit, i. e. G(r) is the delta function centred at T =1: 

G(r)i= b(T -1) (3.36) 
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then 

Se(w) 
1+ w2 

SI 
1+ w2 

(3.37) 

Using the formulae in Eqn. 3.33 with LT4 the dielectric relaxation time 
density based on 20 analytically calculated, permittivity samples at frequencies 
{w = exp(f ), i=0,1, ..., 10} was reconstructed [22]. Figure 3.3 illustrates ob- 
tained results. 

M 

co) 

Figure 3.3: The reconstruction of a relaxation time distribution G(T) = J(T - 1) 

using moving-average formulae of length 4. 

The recovered relaxation spectrum is broadened due to the sampling of the 

data space and the truncation of the moving-average filter. It can be seen that 

ae-formulae has recovered a better resolved spectrum than ß-formulae for the 

same length of filter L. 

The alternative estimates for i7 j from Eqn. 3.33 have different properties; 

77j has higher noise amplification than raj but also has higher resolving power. 
Similarly, as the formula length L increases, the resolving power decreases but 

the formulae become more robust to noise. L acts as a discrete regularisation 
parameter. Due to this, one application of the formula may not be sufficient to 

recover an accurate spectrum when using noisy data and so successive iterations of 
the formulae are needed. Increasing the filter length, L, will smooth the spectrum 
and some information about the spectrum contained in the original data will be 
lost. It may be concluded that proposed formulae are sensitive to noise and, even 
for perfect, noiseless data, the temporal resolution is limited by the finite sampling 
interval of the data. The inflexibility of the method to regularisation is a major 
-handicap: w,. ,. 
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3.5 Summary 

Analytic spectrum models and inversion formulae were discussed in this chapter. 
Several models were introduced that represented permittivity spectra as sums of 
Debye or Cole-Cole responses. Each response is controlled by a small number of 
parameters. DRT spectra may be calculated by finding the best-fit parameterised 
permittivity spectrum to the measured data. 

The Davies-Anderssen method was more sophisticated in that it imaged arbi- 
trary DRT spectra. 

All the methods suffer from the inherent ill-posedness of the inverse problem. 
Practical inversion algorithms must be robust and adaptable to noisy, inconsistent 
and limited data. 

Two important theorems in the section 3.4.3 define the measuring frequency 
limits for the reconstruction of the complete distribution of relaxation times for 
the area of interest. The knowledge of this theorems will define the frequency 

range for experiments (Chapter 6). 



Chapter 4 

Galerkin Regularised Inverse 
Method 

4.1 Introduction 

In the previous chapter, analytical and semi analytical methods for recovering re- 
laxation spectra were discussed. These methods lacked adaptability to the range 
of noise and errors likely to be present in real data. 

In this chapter a Galerkin Regularised Inverse Method (GRIM) is proposed. It 

applies standard mathematical methods to recover the relaxation time spectrum 
from measurements of the real and imaginary parts of the impedance. As this 

method solves the Fredholm integral, Eqn. 3.23, this leads to a general review 
of inverse and ill-posed problems. The method is based on the Rayleigh-Ritz 
Galerkin Approximation which will be shown in detail. In the presentation it is 

assumed that the analytic problem (e. g. integral equation) has been discretised 

and discussion is therefore based on the finite-dimensional systems. However, 
finite dimensional problems have properties very similar to those of continuous 
ill-posed problems. To deal with the ill-posedness, the Tikhonov regularisation 
method is used and presented in subsequent sections. 

Finally, the resolution of the method and some attempts to improve it are 
discussed. 

36 
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4.2 Inverse and Ill-posed Problems 
The problem of determining the relaxation spectrum from permittivity measure- 
ments involves the inversion of one or both of the following pair of integral equa- 
tions: 

00G(T)wZT2 dr 
S (w) =f1+ 

w2T2 T 
(4.1) 

0 
00 
% T)wr dr 

S (w) =J;: 
- w2T2 T 

(4.2) 
0 

The common form of these equations is: 

b 
f K(x, y)f (y)dy = 9(x) (4.3) 
a 

Each integral equation is a linear Fredholm integral of the first kind, where 
K(x, y) is called the kernel, g(x) is a given function (usually called "data"), and 
f (y) is an unknown function which is sought. This equation is important in 
the theory of the inverse problems since many inverse problems lead to a linear 
Fredholm integral equation, e. g. diffusion problems. Equation 4.3 could be also 
written in terms of operators, i. e. 

Kf =g (4.4) 

where f is in the space Y, g is in the space X and K is a mapping from the space Y 
into space X. A direct problem would be one where K(x, y) and f (y) were known 

and g(x) is to be calculated. Assuming K was well-defined and continuous, then 
for a given f there is a unique g, and small changes in f would lead to small 
changes in g. 

However, if instead of knowing f, the g function is known, or alternatively, 
f and g are known but not K, then there is an inverse problem, which is less 

straightforward to solve. The questions of existence, uniqueness and stability of 
solutions arise. 

At the beginning of the last century J. Hadamard formalised the concept of 
well-posedness. He said that a well-posed problem was one where 

1) a solution exists, i. e. for each g in Y there is af in X (existence) 
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2) the solution is unique (uniqueness) 

3) the solution depends continuously on the data (stability) 

An ill-posed problem would be one where one or more of the above criteria 
does not hold. Usually mathematicians are more concerned with (2) and (3) since 
(1) can usually be enforced. Clearly for (1) to hold there must be the equation 
Y= K(X), that is, the mapping K: X -+ Y must be surjective. If a solution 
does exist it may not be unique and the choice of the "best" one is required. 
Non-uniqueness may be introduced because the data is discrete. Since the data 
is also likely to have error or noise, then if the solution does not depend continu- 
ously on the data these errors, even if small, will have a large effect on the solution. 

A problem which is not well-posed is called ill posed. In this case many 
functions f satisfy Kf=g within the accuracy that g is known. Some other 
information is needed to choose one f from the many possible answers. Typically, 
the f is chosen which optimise some smoothness criteria. This process for solving 
ill-posed problems is known as regularisation. 

In EIS it would be useful to calculate the Relaxation Time Distribution G(T). 
Unfortunately, the relaxation spectrum cannot be measured directly in experi- 
ments. It is therefore necessary to use the equations which relate the relaxation 
spectrum and the function S(w) defined by Eqn. 3.22. The link between the 

measured permittivity data and related relaxation spectrum is: 

S(w) = jwQ(w) = jw 
(w) - )=wQ"+iwQ'= 
fi - coo 

_ 

00 G(T)W2r2 dT °° G(T)wr dT 

J1 +W2T2 T 
+) 

J1 +W2TZ T 
(4.5) 

00 

It is thus evident that equations for real and imaginary parts of S(w) are Fred- 
holm integral equations of the first kind, and the problem of calculating G(T), 
knowing S'(w) and S"(w) is inverse and ill-posed. The ill-posedness of this prob- 
lem is demonstrated in section 4.5.1. The experimental data, S(W) and S"(W), 
will be noisy, discrete and from a limited range of frequencies. 

Further, note that G(T) may be recovered from either the real or the imaginary 
part of Q(w). This redundancy is an opportunity for noise reduction. It also 
implies that the real and imaginary parts of Q(w) are not independent and'so all 
noisy data will be inconsistent. These issues are discussed further in section, 4,9. 
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4.3 Rayleigh-Ritz Galerkin Approximation 

In this section the Rayleigh-Ritz Galerkin numerical inversion technique is applied 
to the computation of relaxation spectra. This method is chosen as it clarifies the 
ill-conditioning of the problem and allows regularisation of the inverse problem to 
be adapted to the noise characteristics. 

The Rayleigh-Ritz Galerkin Approximation is based on the discretisation of 
the continuous operators. Knowing that the data will only be measured at a 
discrete set of frequencies, wk, the relationship between the continuous formulae 

and their discrete counterparts will be defined. 

4.3.1 Sampled, Frequency Limited Data 

From equations 3.22 and 3.12, which demonstrate the linear relationship between 

the relaxation time distribution and the normalised permittivity function: 

00 
S(w) =jf 

GT 
dr (4.6) 

0 
1+jwr 

Assume that the permittivity has been measured for frequencies: 

-Z < 1n(WO) <Z (4.7) 

where wo is the geometric centre of the range of frequencies and wo = wminwmax" 

The range [-c, C] corresponds to [ln( ), ln(r)]. Therefore the measured (JO 
frequencies have to be exponentially sampled 

Wk = woekk k=O, f1, f2, ... , fN (4.8) 

which corresponds to uniform sampling in the log-frequency domain 

ln(Wk) =1n(wo) +kNk=0, ±1, ±2,. .., ±N (4.9) 

By the sampling localisation theorem this restricts the knowledge of the relax- 
ation time distribution to no more than the reciprocal range: -ý < ln(Z-) < e; 
where ro =1/wo is the geometric centre of the range of time constants. 

Assume that the time constant is zero outside this range. Making the substi- 
tution u= In(I L) and v =1n(-L) into Eqn. 4.6 yields wo 70 

- ''...:., j . 
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{ 
woeuTOev 

{. U+° Su (M) = .7I 
G°(v)1 

+j eu+ti 
dv - 

JG(v)1, 
}. j eu+° 

dv (4.10) 

-E -e 
where Su(u) = S(w) and G°(v) = G(r). Note also that worn = 1. 

By rationalising the denominator and splitting into real and imaginary parts: 

{ 
e2(u+v) eu+v 

S., (U) +jS"(u) =f Gv(v) 
[1+e2(u+v) 

+j1 
+ e2(u+v) 

dv 

-f 
{ 

e2u+2°dv %{ eu+vdv (4.11) =f C9 (v)1 
+ e2u+2v 

+ý 
,/ 

Gv (v)1 
+ e2u+2v 

The kernels of these two integrals, k'(u, v) = te '° and k"(u, v) 
are both bounded, real and symmetric and hence compact and self-adjoint when 
the range of integration is finite. 

4.3.2 Discretisation of the Integral Equation 

The integral operators in Eqn. 4.11 may be discretised by approximating the 
functions Su (u), Su "(u) and G° (v) in some finite basis B= {Bi, i=1,2, ..., Na } 

which is orthonormal with respect to some inner product, i. e. 

f 
(Bi, B1) =f Bi(z)Bj(z)dz = 51j (4.12) 

SS (u) SiBi(u) S (u) S; B{(u) G, (v) =E giB{(v) (4.13) 
{; 

By orthogonality, the projection of the function Su onto the subspace spanned 
by the basis can be found using Si' S' (u)Bi(u)du, and similar for Si". 

By replacing the functions Su and G. by their finite dimensional approxima- 
tions, the real part of Eqn. 4.11 is transformed to: 

E 
S; B; (u) =f giB, (v)K'(u, v)dv =E gi Bi(v)K'(u, v)dv (4.14) 

E -E 
Multiplying both sides by B1(u)du and integrating gives 



CHAPTER 4. GALERKIN REGULARISED INVERSE METHOD 41 

4f 
f SiB1(u)Bj(u)du= f E9t f-' 

fB, 
(v)K'(u, v)dvBj(u)du 

-9 i ZZ i 
ZEZ 

ESi f B; (u)Bj(u)du=Egi ffB; (v)K'(u, v)Bj(u)dvdu (4.15) 

-f -Z -E 

By orthogonality of the basis functions, the lefthand side is equal to S. 
In a similar way a relation for the imaginary part vector S" = (Si') can be 

derived. Then the discretised approximate equations take the form: 

S' = K'G S" = K"G (4.16) 

where K' is a matrix with elements K; j=fI BiK'(u, v)B3dudv. 
-C -C 

Thus, the Rayleigh-Ritz Galerkin method has transformed the integral equa- 
tions 4.5 into a discretised weak form equivalent to a system of linear equations 
where the unknowns are the components of the DRT spectrum in the chosen basis. 

4.3.3 Choice of Basis functions 

For most choices of basis functions, the one and two dimensional integrals required 
to evaluate the data vectors S' and S", and the operator matrices K' and K", can 
not be evaluated exactly. In these cases some approximate quadrature rules are 
required. Here the Gaussian quadrature is applied. If the N points xj are the 

abscissas and the set wf are the weights then the Gaussian formula is 

xN N fw(x)f(x)dx 
=Ew! f (2! ) (4.17) 

sl j=1 

where W (x) is some known weight function. 
In Gaussian quadrature the weights and abscissas are chosen such that the 

approximation 4.17 is exact if /(x) is a polynomial of degree 2N -1 or less. 
In the fundamental case when WW (x) =1 and the range of inversion is the 

unit interval [-1,1] then the weights and abscissas are derived from zeros and 
derivatives of a set of polynomials, orthogonal on the unit interval, known as 
Legendre polynomials. These polynomials satisfy the recurrence relation: 

P_1=0 Po=1 

(j + 1)Pj+i = (2j + 1)xPj - jPj_1 (4.18) 
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where Pj is Legendre polynomial. 
For example, if the quadrature rule is applied to the integral for K' from the 

right side of Eqn. 4.15 it follows 

4{NN 
ff Bi(v)K'(u, v)BB(u)dvdu =EE wjwiB, (v1)K'(ui, vj)B,, (u; ) (4.19) 

-f -f j_i i=l 

Eqn. 4.17 is an approximation as the integrand is effectively of infinite degree 
due to the exponential nature of the kernel. The basis functions are evaluated at 
the Gauss points found from the Gauss-Legendre formula 4.18. 

The operators K' and K" are approximated by matrices defined by: 

K'= (K'Bi, B1) K" = (K"B1, B1) (4.20) 

As the operators are real and self-adjoint, the matrices are real and symmetric. 
The usefulness of this approximation is that the eigenvalues and eigenvectors of 
the matrices K' and K" approximate the eigenvalues and eigenfunctions of the 
operators K' and K". If the eigenvalues of the matrix are ordered AT < ... AN- < 
0< AN+ < ... A then the following result holds [52]: 

if N_ >0 then p :5 A- n=1, ..., N_ (4.21) 

if N+ >0 then µ, +, > an n=1, ..., N+ 

where p{ and pt are the negative and positive eigenvalues of the correspond- 
ing operator. As the eigenvalues are extreme values of the Rayleigh quotient 
Rk(p) _ (Kp, p)/(p, p), where p is the corresponding orthonormal sequence of 
eigenvectors, the eigenvalues are better approximated than the eigenfunctions. 

Now consider approximating the operators K' and K" using basis functions: 

Bn = 
/2n± 

2£ 
1Pn( ) (4.22) 

where Pn is the nth monic Legendre polynomial. This basis is orthonormal with 
respect to the inner-product, Eqn. 4.12. 

The basis functions are odd when n is odd and even when n is even. The kernel 
k"(u, v) = 1+-+ =2 sech(u + v) has the property that k"(u, v) = k"(-u, -v) 
and thus it preserves the even or oddness of the function it acts upon, i. e. : 
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if K"B1(u) =f Bj(v)k"(u, v)dv then 

K"B1(-u) =f B1(v)k"(-u, v)dv 

=f B1(-v)k"(-u, -v)dv 

=f BB(v)k"(u, v)dv 

_ 
K"B, (u) Bj even 

-K"Bj (u) B1 odd 
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(4.23) 

It follows that K" = (K"Bi, B3) =0 if Bs is odd and Bj is even, or vice versa. 
Thus, reordering the basis B into even functions followed by odd functions natu- 
rally partitions the eigenvalue problem into two independent eigenvalue problems 
i. e. 

K" _ 
Keven 0 (4.24) 

0K 
The eigenvalues of Ke°en are positive and decrease to zero, as the eigenfunc- 

tions become more oscillatory. Similarly, the eigenvalues of Köm are negative and 
increase to zero, as the eigenfunctions become more oscillatory. 

A data vector may be calculated from experimental measurements: S" = 
(St, Bi), then the relaxation time distribution can be reconstructed by solving 
the system 

S" = K"G (4.25) 

where G= (G,,, B{). 

Similar results hold for the operator K' with kernel k'(u, v) =ý ý'y 2(1 +tanh(u+v)). 
If the kernel is separated into odd and even parts, i. e. kl°e°(u, v) = z, kodd(u, v) _ 

2 tanh(u + v) then: 

KivenBJ = Bj (v) 
2 

dv (4.26 
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f 

= 
fBj(v)sfiiBo(v)dv 

T/2 j=0 
0 else 

{ eBo(v) j=0 (Bs, KevenBj) =f Bj(v) 
0 else 

dv 

_ 
i=j=0 

to else 

44 

(4.27) 

and, as k(u, v) = -k'"(-u, -v) , the odd part reverses the even or oddness 

of the function it acts upon, i. e. : 

if Ko"BB(u) =f B1(v)ködd(u, v)dv then (4.28) 

K Bj(-u) = 
JBj(v)k'(-u, 

v)dv 

=f B1(-v)koa(-u, -v)dv 

BB(-v)ko"(u, v)dv 

f -K Bj(u) BB even 

1 Kodd Bj (u) Bj odd 

Reordering the basis B into Bo, the n even functions followed by n odd func- 

tions leads to a block representation of K': 

K0'0 0 KO,, 
K' =00 K' (4.29) 

(KO'. ) T (R,,, ) T0 

where KO= is a scalar, K0E Rlxn and KK0 E Rnxn are a non-symmetric 
matrices. 

If S' and G are similarly blocked then this system may be solved in the fol- 
lowing steps: 
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1. solve 

Keo(G. )o = (Su). (4.30) 

2. calculate 

(G°)o = ((SU)o - Köo(G, )o)/ý (4.31) 

3. solve 

(Keo)T (G. ), = ((Su)o - (KÖo)T (G, )o) (4.32) 

Both the systems Su = K'G° and S' = K"G° contain information about 
G,,. Where Su and S'' are derived from experimental measurements the system of 
equations: 

(: )G=(::, ) 
(4.33) 

form an overdetermined, inconsistent set of equations. Solving this system in 
the least-squares sense is equivalent to finding the maximum a posteriori (MAP) 

relaxation time distribution. 

4.4 Tikhonov regularisation 
In this section a technique for stabilising the ill-posed inverse problems will be 
introduced. Regularisation aims to replace the ill-posed problem by nearby well- 
posed problem. There are many nearby problems each with a different solution. 
The choice of a nearby problem, generally controlled by a regularisation parame- 
ter, is important as it directly drives the calculations. The resulting accuracy of 
the recovered spectrum is controlled by this choice and the understanding of it 
will be discussed in the next sections. 

The main difficulty in solving a Fredholm integral equation of the first kind 
arises from the instability of the inverse operator. In the forward transformation, 
from f to g, some information is greatly attenuated or lost altogether. By ne- 
cessity, when solving the inverse problem, small features in the data are greatly 
amplified to recover f. When the data are noisy, the amplification of noise fea- 
tures leads to arbitrarily large artefacts in f. In particular, small oscillations in 
measurements of the permittivity data can yield arbitrarily large oscillations in.. 
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the spectrum G(r). In order to mitigate this problem Tikhonov regularisation will 
be applied. Regularisation aims to amplify components of the data where signal 
dominates while reducing the amplification of components dominated by noise. 
More details can be found in [53]. 

Tikhonov regularisation replaces the original problem: solve Kf=g, with the 

problem of minimising the functional 

min 111 g- Kf 112 +11 11 f 112 } (4.34) 
where p>0 is a regularisation parameter, ýý " ýý is a norm and K is an operator 
which could be linear and discretised. 

The solution of 4.34 when K is linear and discretised and the standard Eu- 

clidian norm is used, known as the standard Tikhonov regularised solution, is 

(KTK + iI)f = KTg (4.35) 

f= (KTK + pI)-'K Tg (4.36) 

where superscript "T" indicates transpose and I is identity matrix. 
Since KTK has nonnegative eigenvalues, for any positive value µ, the matrix 

(KTK + µI) has nonnegative eigenvalues bounded below by p. Thus the problem 
4.34 is well-posed and the solutions given above are unique [45]. 

Many regularisation schemes, including a standard Tikhonov regularisation 
can be obtained by applying Singular Value Decomposition which will be discussed 
in the following section. 

4.5.. Singular Value Decomposition 
Singular Value Decomposition, or SVD, methods are based on the following the- 
orem of linear algebra: 

Any MxN matrix K whose number of rows M is greater than or equal to 
its number of columns N, can be written as the product of an Al xN column- 
orthogonal matrix U, an NxN diagonal matrix A with positive or zero elements 
(the singular values), and the transpose of an NxN orthogonal matrix V, e. g. 

K= UAVT (4.37) 
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In SVD the non zero elements of the diagonal matrix A= diag(Ai, A2, ... , Ak), 

k=min{M, N} are the monotonically decreasing positive singular values glt. The 

columns of U and V are the left and right singular vectors of the matrix K and 

could be determined, respectively, from: 

Kv, = Jº'u,, KTu,, = Ajvj (4.38) 

The procedure using SVD and applying Tikhonov regularisation can be di- 

rectly applied to the inverse problem of EIS for recovering the distribution of 

relaxation times. 

Consider the discretised F redholm integrals of the first kind written in terms 

of matrix operators, Eqn. 4.33. Decomposing matrix K into K= UAVT the 
following system is obtained: 

UAVTG=S (4.39) 

Multiplying by transposed matrix UT from right side the equation takes the 
form: 

UTÜAVTG = ÜTS (4.40) 

The matrices U and V are orthogonal in the sense that their columns are 

orthonormal, 

M 
ýUikUin=akn 1<_k<_N, 1<n<N (4.41) 
i=1 
N 
ýVjkVn =ökn 15k<N, 1<n<N (4.42) 
J=1 

According to the definition of the orthogonality UTU =I and VTV =I where 
I is understood to be the identity matrix of the appropriate dimension. Then 

AVTG = UTS (4.43) 

where A is diagonal matrix and A-' = diag(1/A1,1/A2, ... , 1/) ). 
Thus 

VTG = A-'UTS (4.44) 

Multiplying again by V from the right similar as it was done for U the final 

solution is 
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G= VA-1UTS (4.45) 

or 

G=ýY(yls) (4.46) 
; 

where (", ") is the standard inner product. 

SVD gives some idea about the i11-posedness of the matrix K which can be 
defined via the condition number. The condition number is defined as the ratio of 
the largest to the smallest eigenvalues: 

k= IAmax/Aminl (4.47) 

If the matrix equation Ax =b is perturbed to (A + dA) (x + dx) = (b + db) 

then the relative error in the solution is bounded by: 

IldxI' <k (IldAll 
+ IIdbII (4.48) IIxII - IIAII IIbIl 

Thus, the condition number k indicates how relative errors in the data vector 
b or the operator matrix A are amplified into relative errors in the solution vector 
x. A large condition number indicates an ill-posed problem. 

The singular values Ai are the eigenvalues of the least squares matrix KTK and 
so the ratio of the largest to the smallest singular value is the condition number of 
the least squares inverse problem. The faster the singular values decay to zero, the 
fewer components of the solution vector can be reliably determined from the data. 

For real measured data on physical objects the largest accumulation of errors 
is in the experimental measurement vector S. These errors are the combination 
of random errors, such as digital noise in the electronics used for the impedance 

measurements, and more serious systematic errors such as a matching errors in 
the driving electronics, inaccuracies in electrode attachment and errors due to in- 
homogeneity. As indicated above, the ill-posedness of the inverse problem means 
that small errors in the impedance/admittivity/permittivity data are translated 
into large errors in the reconstructed relaxation spectrum. A small relative error 
in S will result in the relaxation spectrum generated by Eqn. 4.46 being domi- 

nated by highly amplified noise artifacts. 

The problem is partially solved by applying the Tikhonov regularisation tech- 
nique, i. e. solving 
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(KTK + pI)G = KTS (4.49) 

Repeating the above steps for SVD the solution for a reconstructed distribution 

of relaxation times is found: 

G=EY 
Ai 

(Ui, S) (4.50) 
i As + µ2 

It is clear from this formulation that the relaxation time distribution is a 
weighted sum of the right singular vectors where the weighting is a product of an 
amplification factor, Ai, and the inner product (Ui, S) 

A{ _ Ai 
+ 

A2 
(4.51) 

The amplification factor grows infinitely as both . \i and µ approach zero. Note 
that as Ai -+ 0, the unregularised inverse amplification factor 1/ X, -+ oo while 

ity , \7AL- -4 0. Figure 4.1 displays the amplification factor with different values of 
Tikhonov parameter. 
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20 .... ..... ............................................ .... ...... 

1a ................................... ...... 

........... ............ ...........:........ :........ 

.................................. ....................:................. 

0 
u. z o., oa0. a 1 1.2 1.4 1.5 1.0 2 

singular values 

Figure 4.1: The amplification factor A(A) =-3 for µ2=0.0001,0.001,0.01, 
0.1, from top to bottom. 

4.5.1 Error Analysis using Singular Value Decomposition 

Singular Value Decomposition helps to understand the ill-posedness of the prob- 
lem and the effect of varying the Tikhonov regularisation parameter p. 
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Figure 4.2: The natural logarithm of the singular values of the derivative matrix 
K'. 

Figure 4.2 displays the logarithm of singular values of a derivative matrix K'. 
The decay is approximately linear with a gradient of -1/4 for the first 30 singular 
values and hence the singular values, A,,, of the system approximately satisfy: 

ae1 n (4.52) 

where n is the singular number. Singular values are effected by choice of number 
of basis functions. 

The decay rate of the singular values indicates the level of the ill-posedness 

of the inverse problem. In Electrical Impedance Tomography (EIT), known as an 
extreme ill-posed medical imaging problem, it was found, [54), that the singular 
values decays as fast as a° oc e-"'. 

Thus it can be concluded that the calculation of the dielectric relaxation time 
spectra is much better conditioned than the EIT inverse problem. 

The singular basis V spans the space of DRT spectra while U spans the mea- 
sured permittivity data. If the Tikhonov parameter it =0 then the amplification 
factor is 1/\i. Typically the permittivity vector S will be degraded by systematic 
and random noise introduced by the measurement process. Random noise will 
include components of all the right singular vectors, U{. The noise in the compo- 
nents with a small singular values will be greatly amplified when the relaxation 
time distribution is calculated. The Tikhonov factor limits the maximum ampli- 
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fication up 1/2µ when Ai = p. The amplification factor converges to zero as the 

singular values tend to zero. Singular functions tend to become more oscillatory 
as the singular values decrease therefore, the component of each singular func- 
tion in the measured data also decreases for increasing singular number. At some 
stage the component (Uj, S) becomes dominated by noise and, including terms 
beyond this in the solution, leads to artifacts looking like high frequency, random 
oscillations. Thus increasing the Tikhonov factor smoothes the solution from the 

unregularised solution dominated by high frequency noise artifacts to a smoothed 
version of a correct answer (necessarily distorted) and eventually into a smooth 
function close to zero. 

Tikhonov regularisation requires the selection of a Tikhonov parameter to fit 

the singular noise spectrum of electrical measurements. The noise spectrum is 

uniformly distributed for the most forms of the random noise such as a electronic 
noise in the data acquisition system. However, due to systematic errors it can 
be concentrated in few singular components. The singular spectrum of the ex- 
perimental measurements is typically weighted in the early singular components 
with the largest singular values. So, large Tikhonov factors include only the most 
reliable data but also reduce the resolution of the reconstruction. 

When the Tikhonov regularisation is used, a significant problem is the choice 
of a good regularisation parameter it. As it was shown above this parameter plays 
essentially the same role as the bandwidth of the filter when smoothing noisy 
data. 

There are several strategies to determine the regularisation parameter. For a 
detailed analysis see e. g. [55], [56] and the references therein. The choice of the 

parameter is based on a-priori information about the solution. In practice, little 
information is available on the noise spectrum of the experimental measurements, 
so the Tikhonov factor might be chosen using some very general criteria. In the 
application of the GRIM presented in the subsequent section the Tikhonov factor 

will be chosen on the basis of test results of the analytic circuit with known time 
constants and applied noise. 

4.6 Example Application 

Consider using GRIM to recover the relaxation time spectra for a material with 
a single time constant To. Assume that the frequency response of the material is 
known for a range of frequencies In (WO) E [-ˆ ]ˆ where wo = 1/To. In this 
case the. DRT distribution is G°(v). = 5(v).. It allows direct comparison, with the,..... ,.......,.. 
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example application of the moving-average method of Davies and Anderssen in 

section 3.4.4 (Fig. 3.3). To use the numerical procedure a number of choices need 
to be made: the number of basis functions to use, the order of Gauss-Legendre 
integration to use and the Tikhonov regularisation factor to use. In this example 
six basis functions are used. The order of integration must accurately approximate 
the integrals in Eqn. 4.15 for the highest degree basis functions. In this example 
N= 21 is chosen. Figure 4.3 illustrates the reconstructed DRT spectrum with no 
regularisation and using a Tikhonov factor of µ=0.001. 
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Figure 4.3: Reconstruction of a DRT distribution G°(v) = 5(v) using 21 samples 
of S" without (left) and with Tikhonov regularisation, i. e. solving Egn.. 4.49. 

The ringing in the reconstructed time constant distribution is a combination 
of Gibbs effect due to the limited number of basis functions used and noise due 
to errors in approximate integrals. The ringing can be reduced, at the expense of 
resolution, by using Tikhonov regularisation or applying a Hamming filter to the 
calculated spectrum. The Tikhonov regularisation was introduced in the previ- 
ous section and the decrease in resolution it causes will be discussed in section 4.8. 

Fig. 4.4 illustrates the relaxation time distribution reconstructed using the 
same data as Fig. 4.3, i. e. S' calculated at 21 Gauss-Legendre integration ab- 
scissa over the interval [-17*' i4 ], assuming a single time constant was present 
G°(v) = b(v). Tikhonov regularisation was used, implemented by filtering the 
singular values. 

In both cases the peak is taller and the relative ripple amplitude is less than 
the moving-average result although the resolution is similar. 
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Figure 4.4: Reconstruction of a time constant distribution G°(v) = 5(v) using 21 

samples of S' and inverting using Tikhonov regularisation, i. e. solving Eqn. 4.49 

4.7 Calculation of Data Vector 
E 

In the example in section 4.6, the components of the data vector Si =fS,, (u)B; (u)du 
-f 

were calculated from the analytic frequency response using Gauss-Legendre inte- 

gration. In practise, the frequency response of the material is usually measured 
at discrete, exponentially distributed frequencies corresponding to equally spaced 
samples in the logarithmic frequency domain. Also, the data are contaminated 
by noise. Although the measured data could be interpolated to Gauss points, this 

would yield a poor estimate of the required integral. Less sophisticated, Newton- 
Cotes formulae, such as the Trapezoidal or Simpson's rules, use all the measured 
data and reduce the sensitivity of the low-order components of the data vector to 

noise in the experimental measurements. 

Using the Trapezoidal rule and discretising as described in section 4.3.2 (see 
Eqn. 4.13), each element of a data vector can be computed as: 

Si = 
NS(uo)Bj(uo) 

+N 
NE 

S(uj)Bi(uj) + 
NS(uN)Bi(uN) (4.53) 

j=1 

where u= In (EL) and N is a number of samples. 

For any particular experiment where the measurement noise characteristics are 
known, 'the integration method use, to calculate S should be chosen to--minimise 
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the sensitivity to the noise. 

4.8 Resolving Power 

The resolving power of the GRIM is a measure of the ability to separate two 
neighbouring relaxation times. Ideally, the recovered spectrum should consist of 
delta-functions at large number of time constants. In practice the relaxation time 
distribution is recovered as a broadened peak or a series of such peaks, Fig. 4.3. 

The breadth of each peak depends on the following: 

" the number of basis functions and data truncation; 

" the noise characteristics and regularisation used. 

Limiting the number of basis functions causes the resulting DRT spectrum to 
be smoothed and hence some information about the spectrum is lost. It is equiv- 
alent to truncated singular value decomposition. Increasing the number of basis 
functions will increase the time of computation. When the relaxation spectrum 
is recovered, an ill-posed problem must be solved. The resolution is limited by 
the minimum of the number of basis functions used and the effective number of 
singular components used. The latter is determined by the regularisation. As 
long as a sufficient number of basis functions are used, the number of indepen- 
dent parameters in the solution is determined by the quantity and quality of the 
measurements. Solving the system 4.33 increasingly amplifies the errors in higher 

singular components. If the noise spectrum is flat while the data spectrum decays 
for higher singular values, then the relative error increases in the higher singular 
components of the data. At some stage in the summation Eqn. 4.13, adding 
another singular component increases the relative error in the solution. 

The matrices Kjj are calculated using numerical integration and have some 
errors too. Typically, these errors will increase for basis functions of higher degree. 

The best regularisation depends upon the users objective: optimising the sig- 
nal to noise ratio in G(r) will often require different regularisation to optimising 
the resolution. For a general method, Tikhonov regularisation is a good compro- 
mise. When the noise spectrum of the equipment and experimental protocol are 
known, the regularisation may be tailored to the users specification. 

Consider the resolving power of the algorithm for the perfect data, i. e. no noise 
data compared with noisy data. From the statements above it follows that: 
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. for the perfect data, increasing the number of basis functions and decreasing 
Tikhonov factor increases the resolution; 

" for the noisy data, increasing the number of basis functions and decreasing 

the Tikhonov factor introduces components into the spectra with highly 

amplified noise. 

To estimate the optimal number of basis functions and Tikhonov factor, noisy 
impedance data were simulated for the system with two time constants: 7-1 = 
1x 10-7 s and r2 =1x 10-4 s. Random Gaussian noise with a standard deviation 

of 0.5% in the amplitude and 1.5% in the phase was applied. Figure 4.5 demon- 

strates a reconstructed relaxation spectrum for 20,30 and 40 basis functions. The 

Tikhonov factor was fixed at 0.001. 

- N. 20 
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v. In(tho) (To a 3.550-7 s) 

Figure 4.5: Reconstruction of a relaxation spectrum for different number of basis 
functions and Tikhonov factor ji = 0.001. 

The obtained results show that increasing the number of basis functions from 
20 to 30 makes pulses narrower and therefore the resolving power is higher. The 
breadth of peaks corresponding to 30 and 40 basis functions stays the same but 

ringing has been reduced. Further increase of the number of basis functions did 

not improve the resolution as this was limited by the regularisation applied to 

control noise introduced by the floating point accuracy of the calculations . The 

optimal number can also be chosen from Figure 4.2. According to this picture 
the singular values decays fast after 30 basis functions'and so the reconstruction, -A -ý ý., 
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problem becomes increasingly ill-posed when these components are imaged. 

Figure 4.6 illustrates the relaxation time distributions reconstructed for the 

same data. The number of basis functions has been set to 40. Tikhonov factor 

was varied and equaled to 0.0001,0.001 and 0.01. 
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Figure 4.6: Relaxation spectrum for 40 basis functions and different Tikhonov 

factor. 

Figure 4.6 shows that the oscillations are of lower amplitude when the Tikhonov 

factor is large but the final solution is oversmoothed. The relaxation spectrum has 

a higher resolution for Tikhonov factor equal 0.001. Further decrease of Tikhonov 

leads to a more oscillatory result especially for a high number of basis functions. 
The method of choosing the Tikhonov factor was also discussed in the section 
4.5.1. 

From the above test results the following conclusion can be made: the choice 
of the number of basis functions is more or less arbitrary and should be done so 
as not to limit the resolution given the noise. For flexibility, more basis functions 

than are needed should be used and then the regularisation can be controlled by 

using the Tikhonov factor. 
For the further tests the number of basis functions is set to be 40 and the 

Tikhonov factor to 0.001. 
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Two more impedance data sets with added Gaussian noise were simulated. 
Gaussian noise has been increased and had a standard deviation of 1% and 3% 
in the amplitude and 2% and 5% in the phase for the first and the second data 

sets respectively. It has been concluded that, with respect to the data with the 
random noise, the proposed GRIM is stable. The result becomes closer to the 

reconstructions obtained using exact data as the level of the noise on the data 
decreases. For increasing noise level, large Tikhonov factor was required to achieve 
the subjective best result, i. e. narrowest peak for some level of ringing. 

4.9 Kramers-Kronig Relationships 

In this section the GRIM and Kramers-Kronig (KK) relations are discussed in 
terms of the frequency-dependent error estimation. 

The KK relations, developed in the field of optics, are integral equations 
which constrain the real and imaginary components of complex quantities (e. g. 
impedance, permittivity and etc. ) for systems that satisfy conditions of causality, 
linearity, and stability. The KK transforms can take several mathematical forms. 
Two integrals below are written for the real and imaginary parts of the impedance 
Z(w) = R(w) + jX (w): 

7wX(w) 
R(w4) = R(oo) +2- WaX (wa) 

dw (4.54) 
7r w2-wQ 

0 

00 
wQ 

27nf R(w) 
w- 

RZwa) dw (4.55) 
0a 

where wa is the angular frequency where the imaginary (real) part of the impedance 
is sought and w is measured angular frequency. 

The frequency response of tissues is casual, stable and, under most conditions, 
linear. The usual way of using KK equations is to calculate the imaginary com- 
ponent of impedance from the measured real component using Eqn. 4.55 as the 
real part is less prone to errors. Then the new values X are compared with the 
values obtained from experiment. 

The Kramers-Kronig (KK) relations has been proposed as a means to check 
the consistency of experimental impedance data or to obtain the imaginary part 
of the impedance or the permittivity when only the real part is available. 

Although the detection of measurement errors is critical to the data analy- 
w=ý º,. "w" sis, the -KK-transforms have not found widespread, use in the interpretation, of 
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impedance spectroscopy data due to difficulties with their application. The nu- 
merical implementation of KK transformations are complicated by the singular 
nature of the integrand, the infinite range of integration and problems introduced 
by noisy, sampled data. The application of KK transforms and their practical 
limitations were reported in the literature [571. 

The use of KK transforms is unnecessary when the new proposed method for 

calculation of the dielectric time distribution is applied. The transformation to 

reconstruct the distribution of relaxation times are: 

K'G,, = S. and K"G° = Sü (4.56) 

where data vectors S' and S" are related to the real and imaginary parts of 

permittivity respectively. 
From Eqn. 4.56 it is clear that 

G° = (K')-1S;, and G, = (K")'1S;; (4.57) 

where K-1 is the inverse form of matrix K. It follows that: 

(K')-'SU = (K")-'SU (4.58) 

K"(K')-1S' - S;; (4.59) 
u 

So, data vectors S' and S" are not independent and related by: 

KK1S' = S" (4.60) 

where KKl = K"(K")-1. 
The KK transform can written in general form as: 

KKe' = e" (4.61) 

This equation is equivalent to 4.60 when KK integrals are written in terms of 
data vector S. 

The DRT distribution G can be derived from either S' or S". If Eqn. 4.60 
is satisfied then the system 4.56 is consistent. If the real and imaginary part 
of permittivity were measured independently then they will be inconsistent and 
include different errors. In this case, the system 4.56 can be solved in the least 
squares sense and then K'G and K"G are the real and imaginary parts of a KK 
consistent frequency response. 

The error estimation is important for the interpretation of relaxation spec- 
trum:., ̀Errors can-be divided into random and systematic. The stability"of"GRIM --ý 
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to the random errors was checked by inverting data with added Gaussian noise 
and was shown in the previous section. Systematic errors of two different kinds 

can be expected. The first type of systematic errors is equivalent to impedances 
in series or parallel (or combination) with the measured one. In this case, the re- 
sulting measured value will not be the actual wanted value, but it will have all the 

properties of an impedance function. The second type of systematic errors yield 
inconsistent data due to e. g. a cross talk between the injection and detection sides. 

When Eqn. 4.56 are solved simultaneously, in the minimum error norm sense, 
the solution DRT distribution has consistent real and imaginary permittivity spec- 
trum which is closest to the inconsistent data. Therefore, the method is relatively 
insensitive to errors in data vectors S' and S" which are not KK consistent. 

4.10 MatLab Implementation 

A new mathematical method - GRIM - for computation of dielectric relaxation 
time distributions has been described in previous sections of this chapter. The 

algorithm has been implemented using programming language MatLab. The flow 
diagram is shown in Figure 4.7 and the main steps are considered here. 

The program has Input, Main body and Output. Input includes amplitudes of 
impedance z, phases of impedance phi, frequencies w, number of basis functions 
NB and Tikhonov factor M. Initial impedance data (z, phz) are stored in files. 
The number of basis functions and a Tikhonov factor can be chosen by means of 
methods discussed earlier in this chapter. 

The Main body of the program consists of several subroutines. Firstly, the 
impedance data are inverted to yield the conductance (o, ph, ) and then to a net- 
work function Q(w) and S-function, Eqn. 4.5. This procedure will be shown in 
detail in section 6.2, Eqn. 6.1 - 6.8. The first subroutine returns real and imagi- 
nary parts (Sp, Sim). At the next step the second subprogram is called. In the 
flow diagram it is surrounded with dash line. This subprogram solves the existing 
inverse problem. Inside the subprogram some small subroutines are called to com- 
pute Gauss abscissas and weights (w1, X5) for Gaussian quadrature formula Eqn. 
4.17, K-matrices and data vectors S. As soon as wj and Xj are known the Legen- 
dre polynomials P°(, ) are found at the Gauss points over the integration range 
(-, ) where = In( The Legendre polynomials are orthonormalised WmfOýmUt 

and basis functions BN are computed in accordance with Eqn. 4.22. The initial 

.:: .. functions of. integral, equations, (S. p, SIm),, a, re discretised by approximating them 
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Figure 4.7: Flow diagram for MatLab program. 
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in the finite basis BN. The vector for the imaginary part S" is separated into two 

parts as Seven and Sodd" Matrices K' and K" approximate integral operators of 
inverse problem and they are real and symmetric. The basis BN can be reordered 
into even and odd functions, Eqn. 4.23. The eigenvalue problem is separated 
into two independent eigenvalue problems Ke'ven and Ködd. The inverse problem 
is solved by using the SVD and the Tikhonov regularisation. Three vectors G;,, 
Geien and G' can be calculated from equation 4.50. Smooth approximations to 
G(v) may be calculated as linear combinations of basis functions, Eqn. 4.13. 

If the frequency range is known then matrices K' and K", the SVD of KTK 

and the basis functions can all be pre-calculated. In this case, calculation of G 

using Eqn. 4.50 requires < 2N flops which can be performed in milliseconds. 

At the Output of the program a plot of dielectric relaxation time distributions 

can be displayed and relaxation times as well as their dispersion amplitudes are 

calculated. 

4.11 Summary 

In this chapter the Galerkin Regularised Inverse method has been developed. The 

method solves an ill-posed, linear, inverse problem. The ill-posedness has been 

stabilised by applying the standard Tikhonov regularisation which is achieved by 
filtered SVD. The error analysis is performed and the optimal Tikhonov regular- 
isation parameter as well as the number of basis functions are found for typical 
levels of random noise. The proposed GRIM has advantages over the methods pre- 
sented in chapters 2 and 3. It provides information about as many of independent 

parameters as the data can justify. The method does not rely upon an arbitrary 
and non-unique equivalent circuit model. Furthermore, the method is adaptable 
to the noise spectrum of the particular data set and to the users particular in- 
terests. The GRIM also checks data for the consistency. The DRT distribution 

establishes the direct link between raw frequency response of biological sample 
and the properties of cells. Possible applications of GRIM are considered in the 
chapter 6. 



Chapter 5 

Instrumentation 

5.1 Introduction 

This chapter examines some of the important aspects of the technology used in 

measuring electrical impedance with the purpose of characterising tissues by their 
impedance spectra. These aspects include, in particular, the instrumentation and 
the influence of the electrode/tissue interface impedance. As discussed earlier, a 
wide frequency range is important for obtaining information about the whole di- 

electric relaxation time spectrum and hence designing a measuring system able to 

perform measurements from a few hertz up to megahertz is critical. The chapter 
gives an overview of available commercial devices and also describes some work 
carried out on EIS hardware in Oxford Brookes University. Different types of 
electrodes and a noninvasive impedance probe are presented in the section 5.5. 
In addition, some potential applications of EIS and biological limitations are de- 

scribed. 

5.2 Multi-frequency EIT and EIS: existing and 
new systems 

EIS as implemented in the current research is a noninvasive technique that con- 
sists of measuring the voltage induced by passing a current through a sample 
over wide frequency range. For current densities lower than some mA/an 2, the 
dielectric properties of biological tissues can be considered to be linear and to be 

characterised by a complex electrical impedance, Z, which obeys Ohm's law. 

Considerable effort in Electrical Impedance Tomography (EIT) has been di- 
rected toward the development of equipment for the accurate measurements of 
the electrical properties of biological tissue. "; "'. ', " 
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Electrical Impedance Tomography is a technique that produces images of the 
impedance distribution in a slice through a body by means of noninvasive elec- 
trical measurements and a- reconstruction algorithm. Since different tissues have 

different impedances, it is possible to generate impedance images and to detect 

the time course of physiological events. Typically, measurements for EIT are per- 
formed by injecting a current by means of a current source and measuring voltages. 
Such systems are known as current driven. However, the opposite scheme of us- 
ing voltage drives and current measurements (voltage driven strategy) can also be 

adopted. Much of the debate over the benefits of current driven or voltage driven 

systems come down to semantics. Often the desired currents are driven by apply- 
ing the appropriate voltages. The data for EIT and EIS systems are simultaneous 

current and voltage measurements irrespective of which were applied and which 

were measured. 

The work on EIT in Oxford Brookes University has been briefly described in 

section 1.5. Here it is considered in terms of hardware design. The first EIT 

system was designed and developed in 1987. The system adopted a current 
driven approach and operated at a single frequency of 60 kHz. Demodulation 

was performed with an analogue phase-sensitive detector. The next contribution 

was made by Q. S. Zhu [20] who developed the second system: OXBACT2. The, 

OXBACT2 system used voltage drivers as opposed to the more widespread use of 

current sources. This approach was adopted in order to overcome problems asso- 

ciated with designing an accurate and stable current generator with a high output 
impedance at high frequencies. The system established the desired current dis- 

tributed on the boundary of the region by using the measured trans-impedance 

matrix. This matrix performs the transformation between applied voltage and 

applied current and may be used to determine the correct voltages to be applied 
to the electrodes to obtain the desired output current field. The operating fre- 

quency was 9.6 kHz. A digital signal generator and digital demodulation were 
implemented allowing a non-uniform sampling scheme to eliminate synchronised 
random noise. A commercial ADC card PC26A (Amplicon, UK) was used for data 

acquisition and controlled by a host computer. The data acquisition speed was 
80 kHz. The system was used in vitro experiments only since it had no electrical 
isolation which is required by standard patient safety regulations. Further sys- 
tem development was directed to towards developing circuits for using a current 
driven strategy and thereby preventing the problem of changing load impedances 
from altering current patterns appearing when the voltage driven front is used. 
Thus, the new system called OXBACT3 was designed for experiments in vivo. 

S 
The system includes an important innovation - it operates at three frequencies: 
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10 kHz, 40 kHz, 160 kHz. The system has a 10 MHz sampling rate, uses digital de- 

modulation and is'able to measure the real and imaginary components of voltage 
and current to enable complex impedance values to be determined. The system 
is able to apply currents and measure voltages sufficiently fast for imaging at 25 
frames per second. Measuring at three frequencies provides enough information 
to determine Cole parameters (angle of depression, coordinates of centre, radius 
and characteristic frequency where the imaginary part of impedance reaches its 

maximum). Therefore the measuring system OXBACT3 allows multi-frequency 
EIT to be performed. One more EIT system was built before the EIS system 
presented in section 5.3 was designed. OXBACT4 was designed to produce 3D - 
images using 192 current sources and 816 voltage measurement points. It has 

an operating frequency of 5.6 kHz. Demodulation is performed digitally using a 
12-bit PC mounted ADC card (Amplicon PC226). 

An experimental two channel multi-frequency EIS system was developed from 

the OXBACT 3 signal generator. It operated at four frequencies - 10 kHz, 40 
kHz, 160 kHz and 640 kHz and employed digital demodulation by means of the 
PC226 data acquisition card with a sampling speed of 750 kHz. Initially it was 
thought that the work on this two channel multi-frequency system could include 
the option of extending the system to include a current measurement. However, 
it soon became apparent, that the problems introduced by a limited measurement 
frequency range was critical for spectroscopic purposes and that an independent 
EIS system was required. It was decided to build an EIS system as a further de- 

velopment of the two channel system with the inclusion of current measurements 
and expanded frequency range. 

Multi-frequency EIT reconstructs images in which tissues can be discriminated 
by their frequency response. By carefully choosing the measuring frequencies it 

should be. possible to optimise the contrast according to the type of tissue to 
be visualised. This approach has opened up particularly interesting perspectives 
for impedance' imaging: noninvasive tissue characterisation or EIT spectroscopy. 
The disadvantages of using Cole parameters for tissue characterisation were dis- 
cussed in previous chapters. The Cole parameters do not directly establish the 
link between the frequency response of biological tissues and their non-electrical 
microscopic characteristics. 

A new mathematical method - GRIM - has been developed and described 
in detail in Chapter 4. The algorithm reconstructs a distribution of dielectric 
relaxation times from. impedance measurements. There are three dispersions - a, 
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ß and ry - in biological tissue that take place at different points in the frequency 

range. Each dispersion is a result of the particular processes happening at the cell 
level inside tissue. Section 2.2 examined these processes. If a relaxation spectrum 
is reconstructed over a wide frequency range it may provide some information 

about, for instance, extracellular and intracellular volumes and cell membranes. 
So, it is important to be able to collect impedance data in the frequency range 
from a few hertz (ca-dispersion) up to megahertz (ß-dispersion). If internal parts 
of cells are the subject of interest then a measurement system has to be able to 

work in GHz range. Osypka and Gersing published some results concerning the 

maximum and minimum limits needed for EIT to include pathological tissue: 1 
kHz -3 MHz, [58]. Usually the widest frequencies of interest for EIS are: 100 Hz 

- 10 MHz, which include a- and fl-dispersions, [28]. 

Due to the reasons stated above, the existing two channel multi-frequency 
system is unable to provide the data required by EIS. In the beginning of this 
PhD project it was decided to design a new system. Section 5.3 describes some of 
the options available for the design of an EIS data acquisition system and their 

relative merits. 

5.3 Safety 

For medical applications and studies in vivo, an EIS system has to meet safety 
requirements. Safety is the most important consideration in medical electronics. 
When electrodes are applied to the human body, the application of unsafe currents 
are of greatest concern. Such currents may be due to the current leakage derived 
from the mains power supply or may be due to the applied current signal. 

The IEC (International Electromechanical Committee) 601-1 standard re- 
stricts the current applied to a patient to only 10 µA rms for frequencies below 0.1 
Hz. This limits the harm caused by the electrolytic action of near DC currents. 
The allowable currents increase to 100 µA rms at 1 kHz, 1 mA rms at 10 kHz 

and 10 mA rms at 100 kHz due to the reduction in biological sensitivity to higher 
frequencies. There is a clear advantage in using relatively high frequencies. 

Another safety feature required in the standard is isolation from the mains 
power supply. The 50 Hz mains supply is of relatively low frequency and hence is 
relatively dangerous in comparison with the signals applied in EIS. 

Three types of leakage currents can be defined: . -"4 . Artr.,:, "w.., I. " r 
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" Lead-to-ground leakage; 

9 AC isolation or risk current (when the patient touches mains supply); 

" Leakage between leads. 

In order to avoid any leakage current, all medical electrical equipment must 
be tested under all possible combinations of operating conditions and under any 
single fault condition, e. g. with the instruments on and off, with the ground wire 
broken, etc. 

For the case of the lead-to-ground leakage and the AC isolation (risk) current, 
the safety may be provided by isolating the equipment power supply from the 

mains supply by means of a transformer. Standard transformers do not necessarily 
provide sufficient DC isolation because of the conduction path through the winding 
isolation and the magnetic core which may allow greater than the maximum 100 

µA. Isolation transformers may be required to provide a sufficient protection. 
Alternatively, isolation may be provided by running the data acquisition system 
from a battery-based power supply. This provides excellent isolation but has the 
inconvenience of adding weight and size to the system or of limiting the operational 
period. Some more options for system isolation will be considered in next sections. 

5.4 System design 

A two channel data acquisition system, based on the design of EIT systems, was 
available at the beginning of this project. The existing system worked at four 
frequencies: 10 kHz, 40 kHz, 160 kHz and 640 kHz and had two voltage measure- 
ment channels. The block diagram is shown in Figure 5.1. 

PC 

°O1O Data Acquisition 
Elechodes Data ACquls"lon card 

System vbnaps WO 

L Pc 226 

Figure 5.1: Block diagram for dual channel system. 
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Since a wide frequency range is important for EIS measurements, it was de- 
cided to build, a' new EIS system which would allow- in, vivo measurements and, -,, (, 
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would include a number of further features not included in the two channel ex- 
perimental EIS system. These are described in the next section. 

5.4.1 Hardware requirements 
It was decided that the system would operate at more than four frequencies. The 

permitted current level determined the lowest frequency and the waveform accu- 
racy determined the highest frequency. The frequency range would be from 2.5 
kHz to 2.5 MHz. 

A new EIS system would be based on a current driven approach used in 
OXBACT3. The specification for a high quality output current with an accu- 
racy of ±0.012% (12 bit) was set with an acceptable minimum of at least ±0.05% 
(10 bit). 

The current source of a current driven system must have a very high output 
impedance preventing changing load current if the load impedances changes. To 

achieve the specified accuracy over a load range of 100 12 to 3 ki 1, the current 
generator must have an output impedance of greater than 12 Ml or at least 3 
MSZ as the minimum. 

It was decided that the system should be able to measure the amplitude and 
phase of voltages to enable complex impedance values to be determined. The 

phase error should be less than 1.27 degrees. Also the system should include a 
known resistor and a voltage should be measured across it enabling the actual 
applied current to be measured. The input voltage to the current source should 
be a bipolar signal with an amplitude ±1 V. The output current should be also a 
bipolar signal with an amplitude of 1 mA. The system should include the neces- 
sary isolation and other safety features for use in vivo. 

The new EIS system has two main elements: a custom data acquisition board 

and a commercial data acquisition card (PC 226). 

5.4.2 Data Acquisition Card. PC 226 

The PC 226 is a high performance, fast and accurate data acquisition card with 
software programmable gain for each individual channel, data FIFO ("First In 
First Out") and computer bus interface (ISA) for use in a desk top PC. It provides 
16 channels of analogue input with 12-bit analogue to digital (A/D) conversion 
and 24 lines of digital input/output: These-digital lines provide a means for trans- + "ýrý'ý ýýý+''' } ýý 
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ferring digital data or control signals from the host PC to any system connected 
to this interface. The required analogue channel can be selected by an address 
obtained from the FIFO channel list. The programmable gain, instrumentation 

amplifier provides voltage gain in programmable steps. The gain is automatically 
selected for each channel by the gain code stored in the channel list. The PC 226 
is triggered externally. The single channel mode operation is chosen, initiated by a 
synchronising trigger from the signal generator. It stops when the preset number 
of samples (1368) has been completed. In single channel mode a high speed data 

acquisition up to 750 kHz takes place. A non-uniform sampling scheme has been 
implemented, [20]. 

5.4.3 Data Acquisition Board 

The data acquisition board generates the sinusoid current from the 12 MHz clock 
of the data acquisition card. This current is applied to the tissue through elec- 
trodes. The four electrode system used for measurements in vivo has two current 
driving and two voltage measuring electrodes. The impedance probe is described 
in detail in section 5.5. Voltages on the current electrodes are measured in addi- 
tion to those on the voltage electrodes. The voltages are buffered and multiplexed 
before being transferred to and sampled by the PC 226. The data are processed by 

software and displayed. The original software was written in Turbo Pascal. The 

new data acquisition system was run by software written in Delphi and discussed 
later. The data acquisition board can be divided into a digital and an analogue 
part. 

Digital Section 

The digital part provides two important functions within the system, these being 

the trigger signal for PC 226 and the generation of the reference cosine signal. 
The circuit diagram is given in Figure 5.2. 

The cosine reference signal is generated digitally by means of a fast DAC 
(DAC1, Analog Devices AD668) driven by the output of the ROM. The ROM 

consists of two 8-bit devices (27H010). They operate in parallel to provide a 
12-bit output and contain the instantaneous values corresponding to one or more 
cycles of the cosine reference signal. By applying a sequential series of addresses 
to the ROM, the appropriate cosine values are generated on the data lines of the 
ROM. The output of the ROM is latched into two 74HCT273s on the positive 
edge of the clock. Then the data is passed to DAC1. The binary counter formed 
from four 74HCT163 4-bit counters generates addresses to the ROM at the rate 
of. 12_, MHz.. The. ogic. NAND. gate.. (74HCT30) resets the counter after. 4864. clocks 
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Figure 5.2: Digital part of the data acquisition board. 
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and generates the trigger signal which is used to start the sampling of the PC 226. 

The codes corresponding to different frequencies are stored in different areas 
of the ROM. It was decided to increase the number of frequencies from 4 up to 11. 
The new signal generator board can generate frequencies from 2.5 kHz up to 2.5 
MHz in geometrical progression with a common ratio of 2.11 different frequencies 
have been obtained by adding four new signal lines from PC 226 (A13, A14, A15, 
A16). They select one of sixteen different areas within the ROM. Each carries 
the binary values for one frequency. The ROM contains a different number of 
cycles depending on frequency. For example, the 12 MHz clock allows up to 19 
independent samples over 4 cycles. In each case the data set is stored in 4864 
locations with a single 12-bit value stored in each location. 

The cosine wave corresponding to the 12-bit binary value (B1-B12) is gener- 
ated by the DAC. The output from DAC is a bipolar signal with a peak amplitude 
of 1 V. The magnitude of the cosine value can be attenuated or amplified by means 
of the multiplier MLT1 (MLT04) (four-quadrant, with the bandwidth of 8 MHz) 
in conjunction with DAC2 (AD557)(8 bit voltage output, bipolar). To ensure the 

required isolation a transformer (TR1) is used. 

Analogue Section 

The analogue part provides the electrode current drive signal required by EIS. 
After the transformer the cosine wave voltage is converted to a load independent 

current by the voltage-controlled current source (VCCS). Two types of VCCS are 
available on the board: a)transistor arrays plus operational amplifier [59] and b) 

operational transconductance amplifier; either can be chosen by switching of the 
jumper JP4. Both VCCSs are discussed in the subsequent section. Figure 5.3 

shows the analog part of the data acquisition board for the new EIS system. 
The output of a current generator is connected to the core of the coaxial cable 

which links the current generator to the current electrodes of the impedance probe. 
To prevent DC leakage passing through the current electrodes, a DC blocking 

capacitor is included in series with the current source output. The current which 
is applied to the tissue is measured as the voltage across a known series resistor. 
The voltage on the reference electrode is also measured, see section 5.5. High 
bandwidth amplifiers AD8004 and AD8002 are used for current cable screen and 
to screen the signal lines from the voltage electrodes. The amplifiers are connected 
as unity-gain buffers. The signals from these amplifiers go to five channels of the 
high-speed video multiplexer MAX440 (8 channels). Note that all the electrode 
screens are actively driven with a buffered version of the signal in the core: 
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The multiplexer architecture ensures that no two input channels are ever con- 
nected together. The channel selection is performed by applying a binary code 
from PC 226 to the address inputs (A0, Al, A2). The input EN is driven high 

and the address latch is provided. When the LEVEL/EDGE is low, this indicates 
that the latch operates in the edge-triggered mode. The addresses are transferred 
from PC 226 through single channel high speed optocouplers (Hewlett Packard 
HCNW136). These diode-transistor optocouplers use an insulating layer between 

an LED and an integrated photodetector to provide electrical insulation between 
input and output and guarantee the required isolation. The multiplexer output 
signal passes through the transformer TR(C3) to maintain isolation. 

Two power supplies are available with the data acquisition board: the 5V 

power supply directly from the PC and the external 9V power supply which gives 
5V after the voltage regulator 78L05. To comply with the safety regulations, the 
DC/DC(A1) converter is used to provide power to the analogue part. 

5.4.4 Voltage-Controlled Current Source 

The ideal solution for a current-driven system is a current source with an infinite 

output impedance. In practice, it must be sufficiently high so that the load cur- 
rent will not change significantly if the load impedance changes by the maximum 
expected extent. Building a current source with high output impedance is ex- 
tremely difficult especially for a wide frequency range since the output impedance 
is frequency dependent. In this section several possible solutions are proposed. 

The first VCCS uses current mirrors and an operational amplifier (op-amp) 

that was adopted from the existing dual channel EIS system and originally de- 

signed for EIT by Denyer [60]. The circuit diagram is shown in Figure 5.4. 
A current mirror is a current-controlled current source (CCCS) with a high 

output impedance and a current gain which is close to unity. Because the current 
mirror is a unipolar device two mirrors are needed to provide a bipolar current. An 

operational amplifier has a very high input impedance. The design provides that 
the output current is almost equal to the input current and equal to the difference 
between the supply currents. Because the aim was to build an EIS system for 

medical applications, the system is required to be isolated (the power supply and 
input voltage are isolated, see section 5.4.3) and no DC current must be applied. 
Small mismatches between the input and the output op-amp currents creates an 
error voltage and the output current changes to restore the match. The output 
DC voltage is fed back to the inverting input of the op-amp for stable operation. 
A high value resistor - 10 MS2 - from the output to the input is used to maintain 
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Figure 5.4: Current mirror source (R=n = 1kg2, R= lOMSZ, C=0.1µF). 
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very high output impedance. The signal is passed to the same input via a 0.1 µF. 

The first op-amp chosen was Analog Devices OP-42 and current mirrors are 
two transistor array devices Elantec EP2015 and EN2016. The same components 
were suggested for OXBACT3. The output impedance test diagram of this circuit 
is presented in Figure 5.5. 
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Figure 5.5: Output impedance for the current source: OP-42 and Elantec transis- 
tor arrays. 

The maximum output impedance is 230 M. It decreases very quickly above 
100 kHz. The maximum frequency that was targeted is 2.5 MHz. Thereföre, the' 
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chosen components are not suitable for a wideband current source. 

To improve the existing current source design other possible solutions have 
been checked. It was decided to test other available components for the replace- 
ment in the current source. The gain responses of three op-amps - Elantec EL 
2045, Analog Devices OP-42, Analog Devices AD 844 - have been compared as 
well as the gain responses of two transistor arrays from Elantec and Motorola. 
The results are shown in Figures 5.6 and 5.7. 
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Figure 5.6: Gain responses of three op-amps. 
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Figure 5.7: Gain responses of transistor arrays. 

The implemented current source design, known as the Wilson design, must 
have a high open loop gain, a low bias current (pA), a high full power bandwidth 
and a high input impedance. None of the three tested op-amps show these fea- 
tures. The OP 42 has- the highescinput impedance and the highest''ope'n loop "' '"' 
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gain but it can be used only up to 1 MHz. 
Neither transistor array shows the required characteristics; on their own, their 

(-3dB) frequencies are 750 kHz (Elantec) and 1.5 MHz (Motorola). 

The second type of VCCS available on the data acquisition board is an op- 
erational transconductance amplifier (OTA) CA 3280. The OTA has all the 

generic characteristics of an operational voltage amplifier except that it has a 
well-specified transconductance gain rather than voltage gain and the output sig- 
nal is a current. The transconductance can be varied by adjusting an external DC 
bias current. The magnitude of the output current is equal to the product of the 
transconductance and the input voltage. The ideal OTA has infinite input and 
infinite output impedances. The advantages of this particular OTA are: 

" wide frequency range 

" internal resistor network, no feedback network needed 

9 current output 

" high output impedance 

0 low cost 

9 single chip solution 

In practice an OTA has several limitations. Figure 5.8 shows the frequency 

characteristic of the output impedance of CA 3280. 
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Figure 5.8: The frequency response of 0TA. 
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The frequency range of the OTA is limited by the presence of some parasitic 
elements` in the'input and output: It leads to the output impedance decreasing 
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at high frequencies. Also, the transconductance is non-linearly dependent on the 
bias current and changes with the temperature and other parameters. 

However, the output impedance is better than any of the previous circuits. The 
10 MS) output impedance is reached for frequencies up to 100 kHz. For frequencies 

more than 1 MHz the OTA operates as a voltage source. Nevertheless, this circuit 
has a better performance than the Wilson circuit. The output impedance at 160 
kHz is greater than 300 MI. According to the specification in section 5.4.1 the 

maximum expected load impedance change is assumed to be 3 kSl - 100 St = 2.9 
kSl: These are extremes of electrode impedance and a more realistic figure is the 

change of impedance during a set of impedance measurements, i. e. such that a 
current measurement at the beginning will still be valid during the corresponding 
voltage measurements. To maintain 12-bit accuracy, the load current must change 
by less than ±0.012%. However, since current measurements are also performed 
by the designed system the output impedance of 290 kil is adequate. Also it 

allows the frequency range to be extended and to increase the number of sampling 
frequencies. Hence, the new EIS system can accurately measure from 2.5 kHz up 
to 160 kHz at 7 doubling frequencies and with a care up to 2.5 MHz, and so it 

was decided to build the OTA into the board. 

5.4.5 Operational sequence and Delphi programming 
The system is operated by commands from a PC to the data acquisition card 
PC226 and then to the data acquisition board. The front panel interface is writ- 
ten in the programming language Delphi which gives interactive control of the 
system. Appendix A provides pictures for the front panel and sub-events from 
the menu. 

The first stage after power up is the setting of the ADC card (address, mode, 
external trigger, etc. and the gain of the programmable gain amplifier (PGA) as 
well as sending data to DAC2 which sets up the multiplier to amplify or attenuate 
the signal. 

Subsequently, the calibration procedure should be undertaken to determine the 
applied current for performed measurement. The calibration resistance should be 
chosen. Then, the appropriate commands are sent to generate the 11 frequencies 
and to make calibration current and voltage measurements at each frequency. 

As soon as the calibration procedure is completed the ADC card is set to take 
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measurements on current electrodes. Voltage measurements are made and current 
values at each frequency are calculated and displayed. The graphical panels for 
this stage are shown in Appendix A. 

Data acquisition to collect multi-frequency data may then be undertaken. At 

each frequency, voltage values and phases are obtained at each channel by sending 
a set of commands to the multiplexer via the optocouplers. The amplitude of the 

voltages and their phases are calculated and also displayed. 

Finally, the impedance is found as a- function of frequency. The impedance 

and current values as well as all setup data are presented at the front panel. Also 
displayed are voltage charts for observing the voltages at current and voltage 
electrodes at each. frequency. The disadvantage of the system is that the time to 
take multi-frequency measurements is too long to allow more than one data point 
(impedance measurement) within one cardiac cycle. 

5.4.6 Advantages and Disadvantages of a self-developed 
EIS system 

A new multi-frequency, printed circuit board (PCB) based EIS system has been 
designed. The new design has a range of merits that can make the system valuable 
for the EIS: 

1. Measurements at 11 different frequencies from 2.5 kHz up to 2.5 MHz can 
be made. 

2. The measurements of current and voltage at the current electrode are in- 

cluded in order to maximise the system's data accuracy. A separate calibra- 
tion board is not required since a calibration resistor is built on the board. 
This reduces the complexity of measurements. 

3. The system is fully isolated by means of transformers and optocouplers. 

4. It is easy to transport as an external power supply can be used. This is 
important for clinical applications. 

5. The data acquisition speed is relatively high. 

6. The system is compact, self contained, portable and has a low cost. 

7. The easy-to-use software provides control, data acquisition and simple data 
analysis.. .. -,. ".. 
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Several important limitations pose problems for using it in F, IS. During the 
PhD a Galerkin Regularised Inverse Method has been developed. It is based On 
the knowledge of impedance data in a wide frequency range in order to extract 
information about the distribution of relaxation times. The method requires high 

accuracy in measurements of the real and imaginary parts oft he impedance. Prob- 

lems associated with systematic errors have been discussed in section -4.9. It, be- 

came obvious that the bespoke system does not meet such requirements. Firstly. 

the limitation is the design of a current source with high output, iinpeclan(e at 
high frequencies. Secondly. the number of sampling frequencies has to be iii- 

creased further. In addition. there is a problem with isolation as the transformers 

and optocouplers are also frequency limited. Also, as rnent ioned above. the data 

acquisition speed is not enough for measurements within one cardiac cycle. lihtis. 

further work is required on this system. In order to increase a frequency range 

and a number of sampling points, the use of a DDS Svntliesiser. can be suggested. 
The Synthesiser AD 9851 is a highly integrated device that enables a digitally 

programmable frequency synthesiser and clock generator function. The 
. -AD 9851 

synthesiser generates a stable frequency and phase-progranitnahle. digitised. ana- 
log output sine wave. This sine wave can he used directly as a frequency source. 
The AD 98.51 has a 180 N11-iz clock svsi eni. 

The development and further iuiprovernent of, the 111(1110(1 deui, iudS aI mw 
instrument which would enable measurements of imii! )edance over six derwl(ýs o, f' 
frequencies. One solution is to use an iiiipedauce aiialvmer. A iiieasurenim svstAqni 
based on an impedance analyser is discussed in t lie next s'ecl iu, n. 

5.5 Impedance Analyser 

Further experiments were carried mit with ri Ih w1eti I>acbrd 111' 11'. 12. A iiup, dri (, 
analyser. Figure 5.9 illustrates the general Structure of an itiil, oclall(e analyser 
setup for in vitro mea. surell-l 'i1ts of electrical iiºipo(1ance. 

I IN P) 2A Irnpcdmmcc Analyicr 
Ii\IHi 

fuuUUý I. w ýýýý. 

"ý. 
ýN 

Figure 5.9: Strurturc Of HIC In. c'as? cM7ii. (7). t SY. S1. ('1rc. 
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impedance parameters - amplitudes of impedance and admittance, phase angle, 
resistance, etc. All have a basic accuracy of 0.1% and a resolution of 4 digits. 
Measuring frequencies can be set from 5 Hz to 13 MHz with 0.005% accuracy. 
The HP4192A has a very good phase resolution (0.01°). In addition, impedance 

parameters can be measured over a wide range, e. g. amplitude: 0.1mf to 1MS2. 
A sweep capability permits measurements of parameters to be made in linear or 
logarithmic frequency steps. The range of frequencies and step values can be eas- 
ily set up. 

The impedance analyser is a programmable device. It is connected to a PC by 

means of General-Purpose Interface Bus (GPIB). GPIB devices can be talkers, 
listeners or controllers. A talker sends out data messages. A listener receives 
data messages. The controller manages the flow of information on the bus. It de- 
fines communication links and sends GPIB commands to devices. The impedance 

analyser is set in the mode of Talker or Listener. The PC handles the Controller 
function. The computer is equipped with an Amplicon plug and play ISA-GPIB 

card with a fast transfer rate greater. than 300 Kbyte/s. The ISA-GPIB adheres 
to IEEE-488.2 standard. The data acquisition and management uses software 
written in a graphical programming language, LabVIEW. 

LabVIEW is a program development environment that creates programs in 
block diagram form. It provides libraries of functions and subroutines for pro- 
gramming tasks and contains application-specific libraries for data acquisition, 
GPIB and serial instrument control, data analysis, data presentation, and data 

storage. LabVIEW programs are called virtual instruments (VIs) because their 
appearance and operation can imitate an actual instrument. A VI consists of an 
interactive user interface and a datafiow diagram. Figure 5.10 shows the interface 

and the block diagram created to control HP4192A. In vitro measurements have 
been carried out in the frequency range from 1 kHz up to 10 MHz. Data have 
been saved in a text file and processed. The impedance analyser is supplied with 
a standard front-panel: direct attachment high frequency fixture (part number 
16047C). It has been mainly used only for measurements of lumped-component 

electrical RC circuits. For experiments in vitro a probe designed by Paulson et al 
[21] has been used. Results of experiments are presented in chapter 6. 

In practice, it is impossible to connect the instrument with a probe directly 
to tissue sample. Coaxial cables one meter long have been used. The leads have 

stray capacitance which is liable to introduce measurement errors. The obtained 
measurements with this setup are outside the analyser relative error. specifica- 
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Figure 5.10: Fruit pururl and block diagram for II/', 19l . 4. 
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tions for frequencies above a few hundred kilohertz. Figure 5.11 shows that the 

measurement error includes the combination of errors related to the stray capac- 
itances, the source generator output impedance, and the measurement channel 
input impedances represented by parasitic transfer functions Hs°(w), H's°(w) 

and Hsi(w) respectively. These errors all increase as the frequency increases. 

Generator 1 --'=' 

Ns%w) 

Voltage measurement 
channel "JN Kel 

H}%o) 

Current measurement 
uOý 

channel 

IMPEDANCE 
ANALYZER 

Figure 5.11: In vitro spectroscopic measurement system using an impedance anal- 
yser. v(w) and i(w) are respectively the voltage difference at voltage electrodes 

and the current through the impedance cell. vm(w) and im(w) are respectively the 

measured voltage difference and the measured current. 

In part, the solution involves keeping the cables as short as possible. Prac- 

tically, cables have to be at least 1 meter long and so a measurement interface 
between the measurement cell and the impedance analyser is needed to reduce 
measurement errors. Also it was observed that when the analyser was used as 
recommended by the manufacturer for impedance measurements, some phase mea- 
surement errors were still obtained at frequencies above 1 MHz. Similar errors 
were reported by Schmukler et al [61] and Rigaud et al [62]. 

5.5.1 Measurement Interfaces 

Impedance analysers or gain-phase analysers in the "impedance" mode are pop- 
ular among researches for acquiring complex impedance data. As discussed ear- 
lier, several errors are induced into measured values. Different measurement ap- 
proaches can be found in the literature and some examples are examined in this 

section. 
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The proposed front-end interfaces are analogue. One of the most popular 
designs was proposed by Gersing et al [63] and includes two instrumentation am- 
plifiers. Impedance analysers have four terminals of which two are for voltage mea- 
surements and two for current. In Gersing's scheme, the analyser measures two 

single-ended voltages supplied to the two analyser voltage channels. One of the 

single-ended voltages is proportional to the voltage difference at the measurement 
electrodes. The second voltage channel of the impedance analyser measures the 

voltage across a series resistance to determine the injected current. This requires 
wide-frequency-range instrumentation amplifiers. In order to avoid measurement 
errors due to current leakage to ground, one of the current electrodes is grounded. 
Furthermore, the length of the two coaxial cables is adjusted in such a way that 
the propagation time in these cables is identical, and then the phase error due to 
the cables is minimised over the whole frequency range. 

Some other approaches use wideband operational amplifiers employing a volt- 
age feedback structure as an instrumentation amplifier or a wideband transcon- 
ductance amplifier without any feedback. However, the proposed approaches are 
suitable only for measurements in vitro since they do not introduce any isolation. 

5.5.2 Isolation 

The Model HP4192A impedance analyser has been designed to conform to the 

safety requirements of IEC discussed in section 5.3. 

It is also necessary to isolate the impedance analyser from the mains supply. 
Isolation can be done by inserting isolation amplifiers between the impedance 

analyser and the instrumentation amplifiers of the measurement interface. The 
instrumentation amplifiers available on the market have a limited bandwidth. The 
ISO 122P (Burr Brown) has a bandwidth 50 kHz, and the IS0102 has a bandwidth 
70 kHz. Thus, these components are not suitable for EIS measurements when a- 
and ß- dispersions are observed. 

Another possible method of ensuring isolation is to use isolation transformers 
between the mains power supply and the impedance analyser. For the case of a 
PC connected to the impedance analyser with the GPIB bus, a laptop operated 
from a battery-based power supply may be used. 

5.5.3 Drawbacks of an Impedance Analyser 

Among the drawbacks of using an impedance analyser in a spectroscopic mea- 
surement system are: 
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1. a measurement interface is still needed to reduce measurement errors corre- 
sponding to the stray capacitance of the cable and phase errors; 

2. electrical isolation for use in vivo is necessary; 

3. relatively low data acquisition speed for real-time measurements. It is de- 

sirable to perform measurements during a single cardiac cycle; 

4. the large size of the equipment, especially for work in small sterile rooms 
and for transportation; 

5. the high cost of the whole system including impedance analyser, computer 
or even laptop, and the measurement interface. 

In this case, it may be better to set aside many of the possibilities provided 
by an analyser and replace it with a compact piece of equipment e. g. based on 
that introduced in the section 5.3. 

5.6 An Impedance Probe 

The measurements of impedance of living tissue are extremely difficult to make. 
There are many reasons for this difficulty and some of them were discussed in 
the previous section, e. g. electrically isolating the tissue sample and controlling 
parameters such as temperature, pH, etc. Tissues exhibit inhomogeneities over a 
wide range of scales. Tissue, such as a muscle, shows a large degree of anisotropy, 
typically having a transverse impedivity of more than ten times the longitudinal 

value [64]. 

In vivo measurements are typically made using an impedance probe which in- 
troduces needle or plate electrodes into the region of impedance measurements. 
Electrodes are needed to inject current into a sample and the same or others are 
used to measure the induced voltage which is used to calculate the impedance, 
i. e. impedance can be measured using two-electrode or four-electrode experi- 
ments. The conduction mechanism changes at the electrode-tissue interface lead- 
ing to complex electrochemical reactions that create a polarisation effect. This 
frequency dependent polarisation impedance, known as the contact impedance, 
is largely capacitive. It depends on the electrode material and also on the na- 
ture of the electrolyte [65]. Different methods exist to approximately correct or 
compensate for the contact impedance. Four-electrode measurements use sep- 
arate sets of electrodes for current injection and voltage sensing. As the high 
input impedance, voltage sensing electrodes sink practically no current, the tissue°,,., 
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impedance measurement does not include the contact impedance. High source 
impedance currents should be unaffected by the contact impedance at the current 
electrodes. 

Probes can be also divided into invasive and non-invasive types. Invasive 

probes may consist of needles which are inserted into the tissue, [66]. Compound 

needles pass current and measure voltage between segments of needles. In this 

case, impedance measurements are affected by a highly conductive layer of blood 

which surrounds the needles. Also the contact area is small and therefore any 
variations in the material behaviour at this point strongly affects the impedance 

measurements. Non-invasive probes make electrical measurements between two 

or four electrodes on the surface of the tissue. The non-invasive electrode system, 
designed by Paulson et al [21], was used in conjunction with the impedance anal- 
yser. The probe, intended for in vivo measurements, consists of five, concentric, 
circular electrodes, see Figure 5.12. 

o 
Figure 5.12: Cross-section through a current driving electrode and the active sur- 
face of the impedance probe, [21] 

Current is driven between a central disk shaped electrode and an outer an- 
nular electrode. The induced voltage is measured on two, much narrower, ring 
electrodes, placed between the current driving electrodes. A further measurement 
point is available in a small insulated area at the centre of the disk electrode. The 
probe was designed in such a way that it should be small enough to model the 
organ under investigation as a semi-infinite, homogeneous region and also large 

enough to reduce the contact impedance and average local cellular and vascular 
variations. A limit in this design is its rotational symmetry, which makes the 
probe unsuitable for use with anisotropic materials. 

". 
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5.7 Application of EIS 
The characterisation of tissues by means of their electrical properties is the richest 
application field for impedance spectroscopy. The electrical properties of biolog- 
ical tissues are related to the microscopic structure of cellular media and to the 

physiological and pathological state of organs at the macroscopic level. A large 

and growing body of literature exists showing that multi-frequency electrical mea- 
surements of tissue can be used to distinguish different tissues and clinically useful 
tissue characteristics. Practically all organs have been the subject of impedance 

spectroscopy measurements to determine electrical or dielectric properties. Data 

published for tissue impedance are commonly from in vitro measurements [67], 
[68]. These data are mainly used for the development of complex models and for 

studying the modifications in the electrical parameters according to the measure- 
ment conditions and the conditions of the tissue. However, data obtained from 

in vitro measurements do not represent the real properties of living tissues. Data 

published for blood impedance have demonstrated the large changes which occur 

with haemocrit, temperature and blood flow rate in extra-corporeal flow rigs, [69]. 

The impedance of living tissue is strongly influenced by the blood flowing through 
it. 

In vivo measurements of the impedance of living tissue are notoriously difficult 
to make and published measurements often vary by a factor of two or more, [70]. 
Some of the reasons behind the difficulty of physical access have been discussed 
in this chapter. The most recent literature review of dielectric properties of dif- 
ferent types of tissues have been provided by Gabriel et at, [16]. Some attempts 
to obtain spectroscopic data for liver, spleen and muscle have been made during 
this research work. 

The studies of pathological tissues mainly correspond to the characterisation 
of cancerous tissue and the study of ischemia during organ conservation and trans- 
plantation. Work on the application of EIS for monitoring of ischemia levels has 
been published by Gersing et al [71] and Schäfer et al (72). The author of the 
present research has collaborated with Dr. M. Schäfer and the group from Heidel- 
berg University (Germany) in conducting experiments. Impedance spectra were 
measured and analysed for different types of tissue under ischemia. The experi- 
ment setup, measured data and its analysis will be discussed in chapter 6. 
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5.8 Summary 

86 

This chapter has described the EIS system design and the reasoning behind the 
design choices. It also gives an overview on research carried out in EIT hardware 
design at Oxford Brookes University prior the EIS system. Different components 
for the current source implemented from OXBACT3 have been investigated. An 

alternative current source - an operational transconductance amplifier - has been 

suggested for use in the EIS data acquisition system. The circuit design of the 
data acquisition system is shown in section 5.3.2. Disadvantages and limitations 

of the bespoke system have been discussed. A commercial instrument -a HP 
impedance analyser - used for the current work has been introduced. Important 
limitations preventing its use in vivo have been given. 



Chapter 6 

Experimental Results 

6.1 Introduction 

A method for calculating dielectric relaxation time spectra was proposed in chap- 
ter 4. In this chapter the method is applied to permittivity data collected for 
different types of biological tissues. Tissue structures are complex and hence 
bring additional complications in the results of analysis. In order to evaluate the 
GRIM, it has first been tested on data from both computer simulation and mea- 
surements on known lumped-constant element circuits. The results are shown in 

sections 6.2 and 6.3. 

The use of noninvasive techniques such as electrical impedance spectroscopy 
(EIS) would be a great advantage in medicine. Different tissue types have differ- 

ent impedance spectra that are known to change with pathology, but it is often 
difficult to determine which components of these spectra are important and how 
their changes relate back to even the most basic physiological parameters, [731, 
[74]. One of the widely used applications of EIS is for the monitoring of cell 
death during periods of interrupted blood supply (ischemia). However, it not al- 
ways easy to see changes in the electrical impedance spectrum during ischemia 
that show clearly the transition from reversible to irreversible damage. One of 
the purposes of these studies is to investigate the possibility of using the GRIM 
to characterise organ tissues and also the level of ischemia. Experimental work 
has been performed with different tissue types affected by ischemia in a well- 
established protocol and in which repeatable EIS results have been obtained (see 

section 6.4). Along with ischemia studies on excised tissue, in vivo studies have 
been carried out and the results are discussed in section 6.5. 

It is shown that the GRIM may be a helpful tool for separating different types 

87 
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of tissue as well as for providing information about the physiological processes 
inside tissues. 

6.2 Results for simulated data 

In this section, computer simulated data are used to evaluate the GRIM. Dielec- 
tric relaxation time distributions have been calculated for simple lumped-constant 

element (LCE) circuits with a single RC-arm, two and three RC-arms (here RC 

stands for a resistor-capacitor pair). For each LCE circuit, complex impedance 
has been computed at points on a logarithmic frequency scale. This approach 
is ideal for calculating the DRT distributions since the noise is very small and 
data can be generated across a wide frequency range. In the examples presented, 
the frequency has been varied within a range of 9.3 decades. Thus, by the sam- 
pling localisation theorem presented in section 3.4.3 this frequency range yields 
knowledge of the relaxation distribution over 7.9 decades. For simulated data, the 
time constants can be chosen to lie within this narrower range. However, for real 
experimental measurements, it is not always the case due to hardware limitations 

and the range of real relaxation times present in biological media. 

The resistor and capacitor values have been chosen arbitrarily in order to 
simulate EIS measurements in the frequency range from 10 Hz to 20 GHz. The 

resistors R1, R2, R3 and R4 are equal to 1 SZ (see Fig. 6.1,6.3,6.5). Capacitors 
C1, C2 and C3 have been set to 10-4 F, 10-5 F and 10-6 F respectively. The 
impedance spectra have been transformed analytically to yield the conductance 
and then permittivity spectrum. The example below demonstrates the transform 
stages Z -* a -4 e -4 Q -+ S for the two RC-circuit in Fig. 6.3. The impedance 
for each arm of the circuit, Zi, equals to: 

Zs = Rf +j 
wci 

Thus the total conductance is of = 1/Zt and: 

(6.1) 

_ 
jwcl jwC2 1 

ýt 1+jwT1+1+jwr2+R3 6.2 

where Tl = R1C1 and 7-2 = R2C2. 
The static conductance can be calculated accurately from the known parame- 

ters of the circuit as o,, = 1/R3. From Eqn. 2.6 it follows that: 

jwCl jwC2 
a, _+-= jwEOS* (6.3) 1+jwrl 1 +jW72 
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Cl = C2 (6.4) CO (1 + jwr1) + 
CO (1 + jw72) 

In order to find a network function Q(w) from Eqn. 3.12, the permittivity 
limits have to be determined: 

C1+C2 
Cal = (6.5) 

f req=0 CO 

CO° 
Ifreq=oo 

=0 (6.6) 

Then the network function Q(w) and function S(w) are: 

_ 
Cl 1 C2 1 

Qýwý 
CZ+C2ýI+ýWT1)+C1+C2(1+jWT2 

(6.7) 

SW) 
Cl jw l+ C2 (1 jw 6.8 (C1+C2(1+jwrj) 

C1+C2\+jwr2) 

Using self-developed software written in MatLab (see section 4.10) the data 

vectors S' and S" have been generated and calculated at 40 Gauss-Legendre in- 

tegration abscissa. 

Figures 6.2,6.4 and 6.6 show the relaxation time distributions for the three 
LCE circuits corresponding to Fig. 6.1,6.3,6.5 respectively. Figures 6.1,6.3 

and 6.5 also show Cole-Cole plots for corresponding electrical circuits. The time 

constants are sufficiently close to each other. The impedance curves show no dis- 

tinct semi-circles. The reconstruction of DRT distributions does not require prior 
knowledge about how many relaxation times are present. However, distribution 
functions G(r) clearly show one, two or three positive peaks at the correct time 

constants for one-, two- and three-RC circuits respectively. The horizontal axis 
is on a logarithmic scale. The numbers v defined in section 4.3 allow the estima- 
tion of time constants. For a single-armed RC circuit: r1 = 1.003 x 10-4 s; for 

a two-armed RC circuit: r1 = 1.05 x 10-4s and r2 = 9.57 x 10-6 s; for a three- 
armed RC circuit: r1 = 1.054 x 10-4 s, 7-2 = 1.006 x 10-5 s and 73 = 9.59 x 10-7 

s. The time constants are within a few percents of the values of chosen parameters. 

All DRT distributions have been reconstructed using Tikhonov regularisation, 
i. e. solving (K")TS" = ((K")TK" + ILI) G, where µ=0.001. The number of 
basis function was equal to 40. Calculated spectra are smoothed versions of the 

actual relaxation time spectra which lead to anomalous negative densities. The 

smoothing needs to be taken into account when interpreting the spectra. When 

using areas to-estimate the contribution of resolved time constants the effects -of r, 
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Figure 6.1: Electrical circuit model: R1=R2=111, C1=10-4 and its Cole-Cole plot 
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Figure 6.2: Relaxation spectrum for the single armed RC-circuit. 
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Figure 6.3: Electrical circuit model: R1=R2=R3=1Q, C1=10-4, C2=10-5 and its 

Cole-Cole plot respectively. 
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Figure 6.4: Relaxation spectrum for the two armed RC-circuit. 
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Figure 6.5: Electrical circuit model: R1=R2=R3=R41SZ, C1=10'4, C2=10'5, 

C3=10-6 and its Cole-Cole plot respectively. 
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Figure 6.6: Relaxation spectrum for the three armed RC-circuit. 
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band limiting the solution need to be taken into account. 

The area of each pulse shows the contribution of each time constant to the 

relaxation process. For lumped circuits, the weight of the delta-function varies ac- 
cording to the capacitance associated with that time constant. For the relaxation 
spectrum consisting of two delta-functions centred at r= Ti and T= T2: 

G(T) = G, 1 +, C23(7--7-1)+ Cl +2 C, 2S(r 
- r2) (6.9) 

The delta-function is the limit of the unit area pulse as it gets infinitely narrow 

and infinitely tall. In this method the relaxation time axis has a natural logarith- 

mic scale and so two smoothed delta-functions of the same area at different time 

constants will have different heights. The area enclosed by each peak is equivalent 
to the capacitance of the respective process. Figures 6.4 and 6.6 illustrate this 

statement. For example, Fig. 6.4 shows two peaks of approximately the same 
height. However, taking into account the logarithmic scale the area under the 

right peak is bigger than the area under the left peak. The ratio of these two 

areas is equal to the ratio of corresponding capacitor values. Some more examples 
including area estimates will be shown in the subsequent section. 

Results obtained from simulated data have been found to be in good agreement 
with the preliminary settings of LCE circuit parameters. In summary, this section 
shows that the GRIM enables different relaxation time constants to be identified 

and measured. 

6.3 Analysis of experimental data for 3-RC elec- 
trical model 

In order to illustrate the application of the GRIM to actual experimental data, 

some results on a simple, physical, electrical model representative of a biological 
tissue are discussed in this section. 

A physical, electrical model is similar to the LCE circuit in Fig. 6.5 with known 

parameters: R1=3309 SZ, R2=1000 11, R3=3916 SZ, R4=683.3 11, C1=126.2 x 10-12 
F, C2=C3=3.3 x 10-9 F. In the literature this model is often suggested for sim- 
ulating in vivo tissue impedance measurements, [75]. Experimental data were 
collected with the HP4192A Impedance Analyser with a standard four terminal 
front end. The frequency-dependent, complex impedance data were recorded and 
transmitted to a PC-via the GPIB interface. A sketch of the complete experimen- r" - 
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tal setup has been shown and discussed in section 5.4 (Fig. 5.9). The amplitude 
and phase of the impedance values have been measured between 2 kHz and 1 MHz 

at 189 points. In accordance with the sampling localisation theorem, the DRT 
distribution can be estimated over 1.34 decades only. However, parameters of the 

physical electrical model have been chosen so that the contributions of the relax- 
ation time spectrum are within the experimental measurement range and reliable 
results can be obtained. For the numerical analysis the impedance data have been 

transformed into conductance and then permittivity data. The data vectors S' 

and S" have been estimated and the matrices K' and K" have been calculated 
using the 40 point Gauss integration. The relaxation time constant distribution 
is presented in Figure 6.7. 
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Figure 6.7: Reconstruction of a time constant distribution using 189 sample points 
of (S')i using Tikhonov regularisation (µ = 0.001). 

There are three positive peaks corresponding to three time constants: 

T1=0.39µs T2 =3.2 µs 73 =19µs 

The time constants calculated from the component values are: 

T1=R1C1=0.42µs T2=R2C2=3.3µs r3=R3C3=13µs 

The GRIM shows a good estimation of relaxation time constants although the 
resolution is low due to the narrow range of frequencies. In order to check the 

..., .. statement about-the pulse area, - Eqn. 6.9, the area under-each peak of the time 
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distribution, and the ratio between them, have been calculated numerically. Us- 

ing Equation 6.9 the correct weights (capacitor values) for the delta-functions are 
0.018,0.49 and 0.49. So the ratio between the first weight and the second weight 
is approximately 27. The second and third peaks should be weighted equally. The 

ratios between the areas of pulses, calculated by Simpson's integration rule, for 

the physical electrical model show similar results: 28.3 and 0.95 respectively. This 

confirms that the areas and not the heights should be considered for finding the 

relative capacitor values. 

The results for this experiment confirm that the GRIM is an appropriate 
method for analysing permittivity spectroscopy data: with the GRIM the dis- 

tributions and the amplitudes of the relaxation time constants can be identified. 

Obviously, the resolution of the method could be improved with more data. 

6.4 Biological Material during Ischemia 

Patho-physiological events in biological tissue result in changes in its electrical 

properties. EIS is a noninvasive technique that is capable of recording these 

changes. It is very important to interpret the data correctly and to extract those 

parameters which are really related to physiological processes. In previous sec- 
tions it has been demonstrated that the GRIM can isolate more parameters within 
the data than other conventional methods. Therefore, there are good reasons to 

suppose that dielectric relaxation time spectroscopy may be able to provide infor- 

mation about cell properties and processes inside tissues. 

In this section GRIM is applied to biological impedance data. The study 

presents the electrical properties of some different types of tissue under ischemia. 
Investigation of the characterisation of tissues and the study of ischemia in dif- 
ferent organs is very important for the development of methods for protecting 
and preserving human tissues during clinical procedures, such as surgical opera- 
tions and transplants. This section shows that the GRIM may become a useful 
technique for detecting different states of ischemic tissues. 

6.4.1 Biological aspects of ischemia 

Ischemia means that there is no blood flow to supply the tissue cells with oxy- 
gen and energy rich substrates and to remove metabolic end products. Ischemia 

of organs can occur during heart failure, thrombosis or surgical procedures, e. g. 

,.,., , transplantation. The, survival time, of, organs under ischemia depends on the. energy 
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reserves and the energy consumption in the cells as well as on the consequences 

of the acidification of the tissue by metabolic products. Metabolic processes pro- 
duce ions which result in increasing conductivity and cell edema (abnormal fluid 

accumulation) because of the raised osmotic pressure. Irreversible damage occurs 
over time and the organs die. 

Adjacent cells in some tissues can communicate through low-resistance inter- 

cellular pathways called gap junctions by means of molecules or ions. Each cell 

controls the opening or closing of gap junctions. If the conditions for normal life 

are disturbed, affected cells disconnect from the surrounding cells by closing the 
junctions. Electrically the gap junction can be modelled as a resistance shunted 
by the capacitance of the cell wall. 

The main changes in organs after the beginning of ischemia are, [76]: 

1. acidification of tissue (decreasing pH value) because of the accumulation of 
metabolic products such as H+ ion; 

2. fluid shift from extracellular space into the cells to maintain the osmotic 
balance and, consequently, cell swelling and narrowing of the extracellular 

space; 

3. closing of the gap junctions which happens when cells are entering an,, ab- 
normal state, e. g. decrease in pH value and/or a lack of energy. The gap 
junctions closure is thought to be related to the transition from reversible 
to irreversible stage. 

Much work has been reported on monitoring the state of organs by measur- 
ing the electrical properties and their dependence on ischemia time, [77], [78), 
[79]. In the case of myocardium and liver, characteristic changes were found in 

the electrical impedance spectrum that show clearly the transition from reversible 
to irreversible damage, [71], [80]. In the particular case of porcine liver, at low 
frequencies (a few Hz), there was found an additional dispersion (a-dispersion) 
that vanishes in time, [81]. The disappearance of the a-dispersion is proposed 
as a possible indicator for irreversible damage to the liver tissue and can be ex- 
plained by the closure of gap junctions. However, there is no a-dispersion seen in 
the electrical spectra of canine liver. Also interpretation of changes of electrical 
properties of tissues is difficult and not completely understood. Interpretation 
is only possible by establishing a direct link between some particular electrical 
property of tissue and cell characteristics. This fact motivated the present study 
of electrical properties and the reconstruction of the relaxation time distributions 

of porcine änd "canine liver tissues. 
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6.4.2 Experimental Setup 

97 

All experiments with ischemic tissues have been carried out in cooperation with 
Dr. M. Schäfer, from the Department of Experimental Surgery at Heidelberg 
University, under existing ethnical approval. 

The experiments were performed with canine and porcine livers from 6 dogs 

and 2 pigs. At the beginning of the surgical operations animals were anaesthetised 
with a. gas mixture and then their chests were opened. The blood circulation 
was then stopped. The main blood vessels to and from the liver were cut and 
connected to an external circulation. Livers were perfused with Ringer solution 
(Ringer, Braun Melsungen AG, Melsungen, Germany) at 80 C for 8 min after 3 

min of pure ischemia in order to prolong the survival time (by minimising energy 

consumption and buffering the pH-value). Thereafter, the livers were excised and 
cut into pieces of 2 cm x2 cm x2 cm. The organ samples were incubated in 

measuring chambers at two different temperatures: 5 °C and 25 °C and measured 
within 3-7 hours of the sacrifice of the animals. The dielectric measurements were 
made in the frequency range from 12 Hz to 10 MHz using the impedance tech- 

nique (Solartron 1260 device + preamplifier + four electrode probe) of Gersing et 
al, [63]. The experimental technique and the temperature-controlled measuring 
chambers are described in Schäfer et al, [82]. The special probe used for the liver 

measurements consists of 4 electrodes with a fractal surface. The area of each 
electrode is 8 mm x 0.5 mm. The electrodes are arranged in parallel and the dis- 

tance between the outer current driving electrodes is 13 mm. The inner, potential 
measurement electrodes are 7 mm apart. The electrode system was installed in 
the floor of the measuring chamber in order to guarantee a constant pressure be- 

tween the electrodes and the tissue during the time-dependent measurements. 

The system was calibrated by using three different saline solutions with known 

electrical properties. The absolute accuracy of the measured values mainly de- 

pends on the calibration standards. Between 100 Hz and 10 MHz errors in the 
real and imaginary parts of the impedance are < 1%. Below 100 Hz, increasing 

errors occur because of electrode polarisation. 

6.4.3 Electrical properties and DRT of porcine liver tissue 

For the porcine liver, Gersing et al, [76) showed that monitoring of the impedance 

spectra at low frequencies (a-dispersion) allows the closing of gap junctions to 
be followed. Figure 6.8 represents the measured impedance spectra in different 

states: at 3 min after the end of-the blood circulation, at 48 min and-at-. 98 min. - 
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The intra-ischemic temperature of the porcine liver was 25 °C. 
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Figure 6.8: Impedance spectra of the porcine liver at 25 'C at dif fare nt t inn aft rr 

the end of the blood circulation. 
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Figure 6.9: Cole-Cole plots and permittivity spectra of porcine li. 2ler rc: s1, rctic'e ly. 

The electrical impedance spectrum correspuuding to, three nein after the cnd 

of the blood circulation clearly shows two dispersions at . 1(1 ]1z (o dispersion) ; end 
40 kHz (3-dispersion), Fig. 6.8. After 48 niiü the imped; ture spectra , ho ws (mly 

a 13-dispersion shifted to 20 kHz. The n dispersion has vanished. A((If1Iih g toi 
Gersing et al, [83], [84], the existence of the (I dispersion tnaav luu- din' toi uulu'rn 

gap Junctions. The resistance at. low frequencies increase" (luring iss livniia. 'I'hß' 

dielectric permittivity spectra and Cole Cole 1)1()tS at three diffl'n'tit titiws 1If is- 

chemia are illustrated in Fig. 6.9. 
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Quantitative description and physical interpretation of the measured data with 
traditional EIS methods (see chapters 2 and 3) are difficult. Using the GRIM, dis- 
tributions of relaxation times have been computed directly from the experimental 
impedance data without any prior assumption about the internal structure of the 
tissue in the form of equivalent circuit models. The evolution of reconstructed 
DRT distributions during ischemia is shown in Fig. 6.10. 
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Figure 6.10: DRT distribution of porcine liver at three times during ischemia. 

Whereas the relaxation processes overlap in the impedance curve (Fig. 6.9), 

several processes can be clearly distinguished in the distribution. Each relax- 
ation process is represented by one or several peaks in the distribution function. 
The characteristic parameters of the peaks are the time constant, the amplitude 
and the area. The areas under each peak can be evaluated by a simple numeri- 
cal integration, (e. g. Simpson's rule) when peaks are well separated or by fitting 
Gaussian functions when peaks overlap. It was noticed that the dispersion ampli- 
tudes change during ischemia. The amplitude of the peak at v=6.2 or r=7 ms 
(f = 20 Hz) decreases during ischemia. This peak corresponds to the a-dispersion 
that disappears when gap junctions are closed. Thus, it can be concluded that 
the DRT distribution may carry information about processes inside the tissue at 
the cell level. Also the decrease in the amplitude of the peak at v= -3 (f = 220 
kHz or T=0.72 µs) can be observed. Similar behaviour has been found in canine 
livers and it will be discussed in section 6.4.4. 

In the course of ischemia, organ tissue exhibits characteristic changes in the 
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impedance spectra mainly because of cell swelling, closing gap junctions aud ac- 

cumulation of metabolic products, [84'1. It has been shown that the resistance 

of porcine liver tissue increases at low frequencies (luring ischerni; i. The same 

effect will be demonstrated for the canine liver. The characteristic (, %-()hi1ion of 

resistance in time is a common feature in organs consisting of cells connected to- 

gether by gap junctions, [85]. However, up to now, a separate (1 dispersion has 

been found only in porcine liver. Canine liver and other organs with gap junc- 

tions, showing a steep increase in impedance at low frequencies, do not exhibit 

a visible o-dispersion. It is assumed that it is hidden in a wide .3 
dispersion. 

Further studies have been performed with canine liver and ; are t, reý, ei, t ed in the 

next section. 

6.4.4 Electrical properties and DRT of canine liver tissue 

The full experimental protocol has been descril(cxi in -((t Kai G. 1.2.16 (Nj((K 

ments with canine livers have been carried out at two incubation toujwratures: T) 
°C and 25 °C. Figures 6.11 illustrates a single but typical example of impedance 

spectra of canine liver at 25 °C showing the characteristic increase in resistance at 
low frequencies and a small decrease at high frequencies during ischieiuia. Addi- 

tionally, remarkable changes in the imaginary 1 rt of ittil)e(l nwv can be observed. 
Figure 6.12 illustrates Cole-Cole plots and pertuitt ivity sjW(t ra of liier at t We 

times during ischemia. 
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resistance (decrease in conductivity) at low frequencies can be explained by the be- 

haviour of the extracellular conducting pathways which narrow due to cell swelling. 

The decrease of the dielectric permittivity for liver at 25 °C starts about 70 

min after *the beginning of ischemia. The fast decay in conductivity is accompa- 
nied by a simultaneous increase in the dielectric permittivity until 70 min, Fig. 

6.13. 

The measured absolute values in the electrical impedance or dielectric permit- 
tivity spectra of organ tissues show significant differences from sample to sample. 
This can be due to different contents of water and fat, by inhomogeneous struc- 
ture and by variations in composition, [84]. The intra-ischemic time course can be 

affected by pre-ischemic treatment and intra-ischemic storage conditions (tem- 

perature, humidity, etc. ). The observed differences can also be as a result of 

systematic errors in the measurement process. Care has been taken to eliminate 

all known sources of systematic errors. However, below 1 kHz, the measurement 
accuracy of the complex dielectric permittivity decreases because of electrode po- 
larisation and the limited resolution of the phase angle measurements. 

The GRIM has been applied in order to derive a quantitative data description 

and to understand the time evolution of relaxation processes during ischemia. 
The reconstruction of the DRT distribution is an inverse problem that has been 
discussed in chapter 4. It has been shown that small changes in a data vector can 
lead to large variations in a resulting relaxation spectrum. This is also confirmed 
by the following examples. Figures 6.14 and 6.15 illustrate permittivity spectra 
and reconstructed DRT distributions of canine liver samples after 17 min and 77 

min of ischemia. Although the derived DRT spectra from different individuals 

show considerable similarity, the GRIM has to be performed on longitudinal data 

collected from a single tissue sample during ischemia. 

Figure 6.16 presents the evolution of DRT distributions for three canine livers 

at 25 °C. Typical changes in peak amplitudes have been found. Some results have 
been published in [24] and are also included here. 

Each DRT distribution shows at least three clear peaks and so at least nine 
parameters (time constants, amplitudes and areas) can be extracted. Remarkably, 

a similar behaviour of distribution amplitudes during ischemia has been found for 

all samples of canine liver at 25 °C. It has been noticed that the amplitudes rise 
until a specific ischemia time. In the presented examples the amplitude increases 

until about-70. min, Fig. 6.16. After that times the amplitudes for the peak-. at 
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Figure 6.16: Evolution of DRT for three canine livers at 25 0 C. 
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vN -3 corresponding to 220 kHz (r- = 0.72 µs) begin to decrease. The analysis 

of Figure 6.13 helps in understanding this behaviour. The distributions are re- 

constructed as delta-functions weighted according to the capacitance (Eqn. 6.9). 

According to the Figure 6.13 the permittivity e' rises during the first 70 min. The 

changes in dispersion amplitudes follow e' changes against time of ischemia, Fig. 

6.17. They also follow the decrease in the conductivity a that may be linked to 

the gap junction closure, [86]. The further decrease of both e' and a may be a 

result of this process continuing. It can be seen that the GRIM is capable not 

only of tracking changes in the permittivity and conductivity of the material but 

also in providing extra quantitative parameters. 
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Figure 6.17: The time evolution of the dispersion amplitude at 220 kHz for three 

canine livers at 25 O C. 

It has been found that the DRT distribution of porcine liver exhibits similar 
changes in the amplitude of the peak at v= -3 (220 kHz). However, the decrease 

of the amplitude for porcine liver starts earlier than for canine liver incubated at 
the same temperature, after just 48 min. Such changes in the peak amplitude 
at 220 kHz (Q-dispersion) coincides with the disappearance of the a-dispersion 
and, therefore, the gap junction closure. Although canine liver does not show a 

separate a-dispersion, the time course of the dispersion amplitude at 220 kHz 

could be an indicator for monitoring the gap junction closure. 

Further analysis has been carried out for canine liver at 5 °C. Impedance spec- 
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tra are shown in Fig. 6.18. Again, as for canine liver at 25 °C, a great increase 
in resistance at low frequencies during ischemia time followed by a small decrease 

at high frequencies has been found. 
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Figure 6.18: Impedance spectra of ischernic canine liver at 5 ('C'. 
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canine livers at 5 'C at 13 kHz. 

changes found for canine and porcine livers at 25 °C with only a difference in the 

specific time when the amplitude of the peak at v= -3 (T - 0.72 µs) starts to 

decrease. 
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Figure 6.21: Evolution of DRT for canine livers at 50 C. 

The DRT peak amplitude at v= -3 decreases after about 200 min of ischernia 

when the permittivity decays. The time course of the dispersion amplitude is pre- 

sented in Fig. 6.22. According to these results several relaxation processes take 

place during ischemia that can be described by time constants, their amplitudes' "' ' ý' 
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Figure 6.22: The time evolution of the dispersion amplitude at 220 kHz (v = -3) 
for canine livers at 50C. 

and peak areas. All these parameters are independent and their evolutions can 
be easily followed by means of the GRIM. They are directly linked to physical 
processes and tissue structure. If the a-dispersion is related to the gap junction 

closure then the decrease in the amplitude of the peak at r=0.72 ps is also 
related to this process. Thus, the GRIM may be a helpful tool for detecting im- 

portant states of an organ affected by ischemia. 

Applying conventional equivalent circuit methods, different curves or electrical 
models would be required to fit each data set collected during ischemia. Apart 
from a problem with non-uniqueness and difficulties with the interpretation of 
the derived parameters, such data analysis is also time consuming and clumsy . 
Usually single examples are reported. The breakthrough might be provided by 

using GRIM for the calculation of the evolution of relaxation spectra and their 
parameters leading to a common variables for data interpretation. 

6.5 In Vivo studies 
In the present study, the EIS technique has been used for measurements in vivo. 
The measurements were carried out on dog organs (liver, spleen, muscle and kid- 

ney) and pig liver. Data were obtained from the open chest of anaesthetised 
animals during surgical operation. The tissue impedance was measured with the 
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equipment described in 6.4.2 consisting of a Solartron 1260 device and a preampli- 
fier. Wires of length 40 cm were introduced between the preamplifier amd probe. 
The measurements covered the frequency range from 0.1 Hz to 10 MHz. Below 
1 kHz, increasing measurement errors in the complex dielectric perri, ittivity i, c"- 
cur due to electrode polarisation and limited phase angle ineasurenient ac( tlr, ("v. 
So, the data have been analysed in the frequency range from 1 kliz to 10 Mllz 

which covers 4 decades. According to the sampling theorems (see 11: i), t l, e 
DRT distribution can be found over 2.6 decades. In this frequency range only 
the ß-dispersion takes place. However, it is anticipated that the shape of Ow 

reconstructed distribution consists of superimposed o-- and I- dispersions. 

An important point for EIS application is to determine the comparison criteriaa 
that can be used for tissue identification as well as for tissue characterisation. 
Figures 6.23 and 6.24 show dielectric and conductivity spectra of caicirne organs 
respectively. The dielectric permittivity -' curves are smoothed by t he tont iuuc, ils 
distributions of relaxation times. The GRIM makes it possible to id(-mit ify Oase 
distributions for each type of tissue. To achieve this. the static conduct llc"e, 
the static permittivity and the permittivity at very high freyueiwies have he eil 
estimated from the data by extrapolation. Figure 6.25 illustrates the calculated 
DRT distributions corresponding to canine organs. 

Figure 6.23: Dielectric permittivity spcct. ra 7nca. s7n7'cd 071 rnllilIC 0rq(1111; 11! 7'Z1'H. 

Several peaks can be distinguished in each UIý I' distril, utiýýºº. ('ýýººýýý, º. risýýºº 
between relaxation spectra indicates the differences iii rýýlasat iun proccss 's that 
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take place in canine organ tissues. Reconstructed DRT distributions for porcine 

and canine livers also indicate the difference between them (Fig. 6.27). A small 
distortion in the real part of the dielectric permittivity, Fig. 6.26, is due to pick 

up from the 50 Hz mains power supply. 

Figure 6.26: Dielectric permittivity spectra of canine and porcine livers. 

The current study focuses on the direct computation of the relaxaºtiuýºº time 
distribution function from the impedance (permittivity) spectruin. C; Iil\l (loes 

not rely on a priori equivalent circuit model and, by changing the regularisit ion, is 

adaptable to data of varying quality and quantity. Studies of isc"heººiic and 71j i, icir 

tissues have shown that the method ca be applied to the physical interpretati(, n 

of relaxation processes. Although several parameters can be extrac"tced fruºii Hic 

distributions it, is very difficult to relate then to the physical pr(1('( "ses III (Pils. It 

provides a frame work for further studies on t he ac"quisit ion of I )I 1"I, (list rLi)IIt i((u 

parameters depending on the measureinc'nt c"()n(litiýýº, s (tetul, er,, t 11 n'. 1 11. IIIc 

content, etc. ). 

6.6 Summary 

In this chapter some applications of the GRIM have hºqqº ýýrýýýºýººtºýýI. Firstly, tQ 
method has been tested with simulated, noiseless data ý111º1 the results iuºve h, (q) 
displayed. A good agreement between the init W 1ºarainvi ms ; um1 t he derived t ine 

constants has been shown. Biological data, tneasººred in Vivo antI ()Il is Iºýýºººiý tis- 
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Figure 6.27: DRT distributions for canine and porcine livers. 
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sues, have been also used to evaluate the method. The complex tissue structure 

makes the analysis of results very difficult but it appears that a large number 

of independent parameters can be obtained using the GRIM. A comparison has 

been made between the DRT distribution of different types of canine tissues and 
between DRT distributions of canine and porcine livers. The chapter has also 

presented studies of ischemic tissues and analysis of obtained results. A distinc- 

tion can be seen between DRT distribution of living liver (canine and porcine) 

and excised liver. The results are very exciting and show a method with so much 

resolving potential that it is obviously just the beginning of a whole set of exper- 
iments. 



Chapter 7 

Conclusions 

7.1 Introduction 

This chapter summarises the work carried out in the preparation of the thesis, 

discusses some of the thesis topics and outlines the future work necessary to 

continue the development of EIS. 

7.2 Aim of Research 

The original aim of the research was to develop EIS as a noninvasive technique 

for biological tissue characterisation to distinguish pathological conditions. The 

EIS method has been considerably improved through the development of GRIM 

although it has not been possible to carry out full clinical trials in the timescale 

available for the research. The work reported in this thesis can be divided into 

two main parts: 

1. Development of a fast and more informative procedure for data analysis. 

2. Development of instrumentation and design of experiments with their exe- 
cution. 

7.3 Summary of major Achievements 

7.3.1 Data Analysis 

In this work, different approaches for tissue characterisation have been studied 

and their disadvantages have been explored in the corresponding chapters. Many 

authors still try to model electrical measurements made on tissue using simple 
electrical circuits with paths for extra- and intra-cellular conduction. In many 

113 
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cases the impedance of circuit elements have been calculated from Cole plots. 
This strategy has many problems including the non-uniqueness of circuit models 

and difficulties with the interpretation of non-physical lumped-constant elements 
as shown in chapter 2. 

When aiming to derive physiological information about tissue cells, the micro- 

scopic electrical properties of tissue such as conductivity and permittivity need to 

be considered. The relationship between these parameters as well as relaxation 

phenomena occurring inside tissue when an electrical field is applied, have been 

described in chapter 2. Understanding the mechanisms leading to the permittivity 

spectra is of prime importance. It was understood that dispersions were caused by 

distributions of dielectric relaxation time constants. It has been shown that these 

distributions may be directly related to cell characteristics (size, shape, etc. ), 

establishing a link between physiological and electrical properties of living tissue. 

During this research a number of different analytical methods for the calculation 

of dielectric relaxation time spectra directly from frequency response data have 

been investigated in chapter 3. It has been concluded that they suffer several 
disadvantages that make them inappropriate for practical applications. 

In chapter 4a novel mathematical method known as GRIM was described 

which calculates the dielectric relaxation time distribution. The computation of 
DRT distribution from permittivity spectra is notoriously difficult due to the ill- 

posedness of the inverse problem. In this chapter, a concise review on the theory 

of inverse and ill-posed problems was given. The underlying algorithm of the 
GRIM is based on standard mathematical techniques. A numerical solution of 
the integral equations 4.2 has been shown in detail. The quantitative procedure 
provides information about time constants, their distribution and their ampli- 
tudes. Also the reconstructed distribution carries additional information about 
the area enclosed under each peak which is proportional to capacitance. The re- 
laxation spectrum can be derived from the real or imaginary parts of conductivity 
(permittivity) and for perfect data will be the same in both cases. Therefore, 
the problem of DRT reconstruction is technically over-determined. The GRIM is 
flexible and a range of regularisation schemes may be used. The Tikhonov regu- 
larisation technique has been introduced and successfully applied using SVD. It 

was found that, by comparison with the extremely ill-posed EIT problem, the cal- 
culation of DRT distributions is much better conditioned. The proposed method 
allows the data to be checked for consistency. Furthermore, the method provides 
estimates of the singular functions and values which theory shows to be strictly 
conservative. The GRIM has been examined for, its robustness to random noise. 
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Also the method is adaptable, via regularisation, to the noise spectra of particular 
instruments and experimental protocols. The optimal Tikhonov parameter and 

number of basis functions were established for considered data sets. 

As a conclusion of the proposed method, the following can be said. The 
developed algorithm for the computation of the DRT distribution has a number 

of advantages over the conventional methods used so far: 

" It eliminates the discrete circuit model completely and, thus, avoid hazards 

of ambiguities and non-physical lumped-constant elements. 

" Unlike methods based on fitting semi-circles or other standard response 
curves to the permittivity spectrum, the number of independent parameters 
imaged by this method is limited only by the quality and quantity of the 

electrical measurements. 

" The choice of a regularisation technique can be matched to the characteris- 
tics of the noise and to the parameters of interest. 

" The proposed method was shown to be stable to random noise unlike existing 
analytical solutions and some other published numerical calculations, [50], 
[87], [88] that have been found sensitive to noise and even for noiseless data 
have limited resolution. 

" It has been found that the GRIM works very well with simulated data and 
also with biological data as demonstrated in chapter 6. 

" The application to real data measured on ischemic tissue showed that the 
GRIM is a useful tool for distinguishing pathological conditions. 

Finally, the GRIM has been programmed in MatLab. The list of MatLab pro. 
grams and source code are included in Appendix A. The procedure for computing 
DRT distribution, described in section 4.10, is found to be fast as many of the 
parameters and functions can be pre-calculated. 

Although this method was tested with simulated data and real measurements 
made on biological tissues, it does not mean that it can only be used in this 
context. The GRIM is fully applicable in many other situations, for instance, 
for characterisation of electrochemical systems. From a methodological point of 
view the proposed method is not restricted to be used in EIS inverse problem 
but can be applied in many other relaxation spectra inverse problems, e. g. inverse 

problems in rheology. 
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7.3.2 Instrumentation Development 
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Along with the development of a new method for data analysis, two systems for 
EIS measurements have been considered: a bespoke EIS system and a system 
based around a commercial device. 

This PhD project started with an experimental two channel multi-frequency 
EIS system operated at four frequencies. It provided four measuring points al- 
lowing the conventional method (Cole model) to be applied. However, it became 

clear that for tissue characterisation at cell level, impedance spectroscopy has to 
be performed over a very wide frequency range. Section 5.4 explored the pos- 
sibilities for building a bespoke EIS system. Its data acquisition hardware was 
designed incorporating two current sources: one adopted from the existing EIS 

system and the other an operational transconductance amplifier. The components 
of the current source from the existing system were also replaced with components 
which showed better characteristics (section 5.4.4). In order to maximise the sys- 
tem accuracy, a calibration resistor was implemented on the board eliminating 
the need for the separate calibration. The hardware design of the EIS system was 
extended to include measurements of current and voltage on the current driving 

electrode. Easy-to-use data acquisition software was written in Delphi. Its oper- 
ational sequence is described in section 5.4.5 and its graphical panels are shown 
in Appendix B. 

The second approach was to use a commercially available HP Impedance Anal- 

yser (section 5.5). Further development of the GRIM demands an instrument able 
to measure complex impedance in a frequency range of several decades. And so, 
the HP4192A impedance analyser was adapted for spectroscopic data acquisition. 
The data acquisition software was created in LabView and its front panel is shown 
in Fig. 5.9. The measurements in vitro and in vivo were carried out using this 
device and DRT distributions were reconstructed (chapter 6). Ischemic data were 
also acquired using a Solartron 1260 device. 

The Impedance Analyser based system was used to test the method because 

of its accuracy and broad frequency range. However, the system is too slow, 
expensive and bulky for routine use where a bespoke system can be designed 

around these problems and with the added ease of electrical isolation for clinical 
studies. The pros and cons were discussed in chapter 5 and table 7.1 summarises 
the main differences of two EIS systems implemented during this project. 
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Table 7.1: Comparison of EIS systems implemented during PhD project. 
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Bespoke system Impedance Analyser 

from 2.5 kHz to 2.5 MHz from 5 Hz to 13 MHz 

accurate very high accuracy 
fast relatively low speed 
isolated non-isolated 

compact, portable, external power supply large, heavy 

easy-to-use software easy-to-use software 
limited number of sampling points sampling with a step of 5 Hz 

relatively cheap expensive 

probe can be connected directly requires measurement interface 

7.3.3 Reconstructed Distributions 

In chapter 6 the GRIM was successfully implemented and the relaxation time 

distributions were reconstructed from simulated and biological data. Simulations 

were performed with different resistor-capacitor electrical circuits. It has to be 

stressed that these electrical circuits were used only for simulations of frequency 

responses and not for interpretation of tissue structure. Obtained results demon- 

strated a good agreement with chosen parameters. The method measures as many 

meaningful parameters as the data can yield. It identifies the number and the con- 
figuration of lumped-constant elements for a ladder network. From the results it 

can be concluded that the GRIM can be used for characterisation of a complex 

system without any prior assumptions about its internal structure. 

The EIS technique combining a developed method and instrumentation was 

applied to biological material. Measurements were carried out mainly on ischemic 

tissue. The impedance data were used to directly calculate relaxation spectra (sec- 

tion 6.4). It was postulated that variations of DRT parameters (time constants, 
their amplitudes and areas under each peak) were linked to physical changes dur- 

ing ischemia. It was found that due to systematic measurement errors the GRIM 

has to be done on longitudinal data. However, the DRT curves for different species 
measured at the same ischemia time group together, Fig. 6.14 and 6.15. It means 
that cross sectional analysis is possible but requires further resolution improve- 

ment. 

Furthermore, the distribution of relaxation time constants was reconstructed 
from impedance data collected in vivo. Differences in shape and parameters (time 
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constants, their amplitudes, areas) were found. Comparison was made between 

relaxation spectra for different living organs as well as for the same type of organ 
for different species. It can be concluded that the GRIM is capable of separating 

not only different classes of tissue but also may characterise tissue itself. However, 

further experiments are required as discussed in the next section. 

7.4 Discussion and Future Work 

Future work can improve this project, some of which is described below. 

7.4.1 Resolution of the Method 

The resolving power of the GRIM was defined in section 4.8. Further improvement 

is required. When the data contain only discrete time constants, the calculated 
DRT spectra have broad peaks due to noise and frequency limitations in the data. 

If neighbouring time constants are too close to each other, the corresponding peaks 

overlap. One of the ways to separate peaks is to fit Gaussian distributions. After 

this, the characteristic parameters - time constant, amplitude and area - can be 

found. However, the fitting procedure is not very accurate. Also the contribution 

of the side-lobes of one peak to the size of another peak will result in significant 

errors. The present solution to this problem is to use more basis functions than it 

is needed, to calculate data vector at all sampling points and to apply Tikhonov 

regularisation. Further improvement of resolving power will provide the possibility 
for cross sectional analysis between different organs of the same type. It is very 
important for ischemia studies as it will define the characteristic criteria for each 
organ state. 

7.4.2 Commercial Instrument 

The adoption of HP4192A impedance analyser was to enable biological tissue to be 

characterised by means of the reconstructed DRT distributions. The impedance 

amplitude and phase were measured over a wide frequency range with a high accu- 
racy defined by the characteristics of the analyser. The experiments were mainly 
carried out in vitro. In order to use the impedance analyser in vivo some further 

work on the isolation is required. The instrument needs to be fully isolated from 

the mains supply. A possible solution is to use isolation transformers and a laptop 

computer operated from a battery. 

The measurement interface needs to be introduced between the measurement 
probe and"the ' impedance analyser` in order to reduce the measurement "errors * 
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causes by probe leads. Some possible solutions were discussed in section 5.5.1. 

Some work is also necessary to produce a "hospital friendly" system that is 

robust, transportable, unintimidating to the patient and simple to operate and 
interpret for the hospital staff. 

7.4.3 Design of EIS systems 

The use of a bespoke system for clinical purposes has two important advantages 

over commercial device. Firstly, the speed of data acquisition is high and further 

improvements can enable measurements at a real-time frame rate. The second 
important feature of the system is isolation. 

However, as an experimental system it has two main disadvantages: a limited 

and invariable frequency range and a limited number of sampling points. To solve 
this problem, a DDS Synthesiser, introduced in section 5.4.6, was suggested. 

Further work has to be done on current sources with high output impedance 

and a wide bandwidth. The present design includes current measurement and so 
impedance can be measured accurately even though the output impedance of the 

current source is lower than required by specification of the EIS system (section 

5.4.1). 

7.4.4 Interpretation of Results and Clinical Studies 

Studies of ischemic tissue were carried out and evolutions of DRT distributions 

were displayed in chapter 6. However, the full data interpretation can be done 

only after experiments with different tissue conditions (temperature, pH, perfus- 
ing solution, etc. ). Then recording the differences in DRT distributions during 

the variations of a single condition parameter will help to understand the physi- 
ology of the observed relaxation processes. 

More experiments are required in vivo in order to determine the characteristic 
parameters for different types of living tissue. 

For the system to be useful in a medical environment, it is necessary to make all 
the mentioned improvements and to carry out experiments to determine whether 
medical conditions can be accurately assessed. It would be very useful if simple 
mathematical models of cellular tissue could be built to identify the effect of block 
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characteristics (cell size, shape, extra- to intra-cellular volume ratio, etc. ) on the 

electrical response between the a- and Q-dispersions. 

7.5 Summary 

The aim of this research work was to develop an EIS technique for tissue charac- 
terisation to discern pathology. Progress has been made towards understanding 

permittivity spectra and linking dielectric relaxation time constants to specific 

physiological processes and tissue structures. An EIS system suitable for in vivo 
experiments was developed. Of the above future work, the completion of the 

system, the resolution improvement and further experiments on biological tissues 
including normal and pathological are the next logical steps. 

As a whole, the research work presented in this thesis has made some contri- 
bution to the development of EIS. It can be concluded that the EIS technique is 

a promising tool for clinical applications and may be a complement to existing 

medical methods. 
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Appendix A 

MatLab programming 

A. 1 List of software 
1. DRT_eps. m and DRTx-data. m - these two main programs reconstruct 

DRT distributions from permittivity or impedance data respectively and 
display it as well as find time constants and their amplitudes. The pro- 

grams include several functions listed below: 

" Kevin. m - the main function that returns vectors G', Geven+ Gödd and 
G. It calls the following subprograms: 

- gauleg. m - returns Gauss-Legendre abscissas and weights; 

- klpipj. m - calculates matrix K'; 

- k2pipj. m - calculates matrices Keven and Köm; 

- k. m - calculates the total matrix K; 

- data_vector. m - returns data vectors S' and S"; 

- inverse. m - solves equation 4.50 applying SVD and Tikhonov reg- 
ularisation and returns vectors G', Ge'? en and Gödd; 

- inversetot. m - returns vector G; 

" Kevin_trapez. m - the same function as Kevin. m but applying trape- 

zoidal rule for calculating data vectors. This program calls all functions 
listed above. 

" S-f unct. m -a program-function for inversion Z -+ o -+ c --ý Q -+ S. 

" distribution. m - projection of vectors G', G'°en and Gödd into the space 
spanned by the basis functions. 

" time_peaks. m - finds maximums of DRT distribution: their amplitudes 
and time constants. 
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2. f it. m - fits Gaussian curves and calculates areas under each peak. It calls 
a function f it-gauss which does a least squares curve fitting. 

3. area. m - calculates area of well-separated DRT peaks. 

4. time_evolution. m - displays the evolution of permittivity and conductivity 
during ischemia time at any frequency. 

5. noise. m -a noise simulation code. It calls raw-data. m that generates a fre- 

quency responses doe single, two and three RC circuits. 

6. readLabView_txt. m -a program for reading data from a file saved by Lab- 
View control program; 

A. 2 MatLab Source Code 

The main program for DRT reconstruction: 

%% Program for reconstruction of DRT %% 

clear; 

i=0; 
for k=20: 20 % for liver-5 

°/% Input data: load file %'/. 

filename=strcat('C: \Work\Schaefer\Liver_5\Permit\liv_eps. ', num2str(k), '7'); 
data=load(f ilename); 

freq=data(:, 1); 
Eps_Re=data(:, 2); 
loss=data(:, 3); 
Sig_Re=data(:, 4); 

%% setting of the same frequency range '/. '/. 

indl=find(freq==12.0226497699999992); 
freq=freq(indl : length(freq)) ; 
Eps_Re=Eps_Re(indi: length(Eps_Re)); 
loss=loss(indl: length(loss)); 
Sig_Re=Sig_Re(indi: length(Sig_Re)); 
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Sig_O=Sig_Re(1); 

%% Setup of extreme values %% 

omega=freq. *2*pi; 
EpsO=8.85*le-12; Eps_inf=50; 

Eps_st=3e+008; 
%Eps 

_ 
inf =0 ; 

Eps_Im=loss+Sig_O. /(EpsO. *omega); 

%% Transfer permittivity to S-functions %7. 

Q_Re=(Eps_Re-Eps_inf). /(Eps_st-Eps_inf); 

Q_Im=Eps_Im. /(Eps_st-Eps_inf); 

5 Re=-Q_Im. *omega; 
S_Im=Q Re. *omega; 

%% Display re Sc im parts of permit against log(freq) '/. % 

figure (1) ; 
loglog(freq, Eps_Re, 'kx', 'LineWidth', 1.5, 'MarkerSize', 3); 

xlabel('lg(freq, Hz)', 'FontSize', 12); 

hold on; 
loglog(freq, -Eps_Im, 'k'); 

grid on; 
hold on; 
loglog(freq, Sig_Re, 'kx', 'LineWidth', 1.5, 'MarkerSize', 3); 
hold on; 

%% Display re(permit) against im(permit) %% 

figure(2); 

plot(Eps_Re, -Eps_Im); 
hold on; 
grid on; 

%% Setup of parameters for DRT '/'/. 
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N=length(freq); Fmin=freq(1); Finax=freq(length(freq)); 
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a=log(Finax/sgrt(Fmin. *Finax)); v=[-a: 0.05: a]; 

omegaO=2*pi*sgrt(Fmin. *Finax); t=exp(v)/omegaO; tau0=1/omega0; 

%% Generating vector of ischemia times %% 

%if k==0 

time=7; 
%else 

time=strcat(num2str(k), '7'); %for livers 
y, time=str2num(time); %for liver5 

time=k; %for liver2 
%end % if 

%TIME(:, i)=time; 

%%% Calculation of DRT %% 

Mu=0.001; % Tikhonov parameter 
M=20; % 2*M - number of the basis functions 

for j=1: 1 
[G2e, G2o, G1, G]=kevin(omega, S_Re, S_Im, Mu, M); 
[disi, dis2, dis]=distribution (a, v, G2o, G2e, G1, G, M); 
[tausl, ampl]=time_peaks(t, disi); 
[taus2, amp2]=time_peaks(t, dis2); 
[taus, amp]=time_peaks(v, dis); 

DIS1(:, j)=disc; 
DIS2(:, j)=dis2; 
DIS(:, j)=dis; 

% TAUS2(i,: )=taus2(1: 3); 
'/. AMP2(i,: )=amp2(1: 3); 
% TIME(:, i)=time; 

Mu=Mu*10; 

end %f or j 

'/. % Display of DRT '/. % 

from real part 
% from imaginary part 
% total from real+imag 
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f igure(4); 
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%subplot(1,3,1); 

%plot(v, DISl, 'r'); 
%ylim([O 20000]); 
%ylim([O iie+3]); 
%title('DRT for canine liver during ischemia'); 
%hold on; 
%grid on; 

%subplot(1,3,2); 
%plot(v, DIS2, 'k'); 
%axis([-5 501.5e+5]) 
%grid on; 
%hold on; 

%subplot(1,3,3); 

plot(v, DIS, 'b', 'LineWidth', 3, 'MarkerSize', 3); 

xlabel('v=In(\tau/\tau_0)', 'FontSize', 14); 

ylabel('G(v)', 'FontSize', 14); text (3,0, ['(\tau_O \approx 

', num2str(tauO), ' s)'], 'FontSize', 12); ylim([O 
(max(amp)+max(amp)/5)]); 
%xlim([-5 51); 

grid on; hold on; 

end '/. for k 

%% Display of evolution of DRT amplitudes during ischemia '/, '/, 

%f igure (4) ; 
%plot(TIME, AMP2(:, 3), 'k'); 
%grid on; 
%hold on; 
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%Y. Display of evolution of DRT time constants during ischemia '/. '/. 

%figure(5); 
%ylim([O le-71); 
%plot(TIME, TAUS2(:, 3), 'k'); 
%grid on; 
%hold on; 
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The program for the inversion of impedance data into permittivity data: 

function [S Re, S_Im]=Sfunc(omega, z, ph); 

%calculates S-functions 
%note: frequency is in Hz 

Sigma=l. /z; 

PhSigma=-ph; 
%omega=freq. *2*pi; 

Sig_Re=Sigma. *cos(PhSigma*pi/180); 
Sig_Im=Sigma. *sin(PhSigma*pi/180); SigmaO=Sig_Re(1); 

EpsV=8.85e-12; 
k=(1. /(omega*EpsV)); 

b=diag(k); 
Eps_Re=b*Sig_Im; 
Eps_Im=-b*(Sig_Re-SigmaO); 

'/. Sig_Im/(omega*EpsV) 
"(Sig_Re-SigmaO)/(omega*EpsV) 

%Epsinf=4; 

EpsO=Eps_Re(1); 
Epsinf=Eps_Re(length(Eps_Re)); 

Q_Re=(Eps_Re-Epsinf). /(EpsO-Epsinf); 

Q_Im=Eps_Im. /(EpsO-Epsinf); 

S_Re=-diag(omega)*Q_Im; Y. --Q_Im*omega 
S_Im=diag(omega)*Q_Re; 

The MatLab implementation of the GRIM: 

function [G2e, G2o, G1, G]=kevin(omega, S_Re, S_Im, Mu, M) 

%the program solves the inverse problem K*Gv=S & 
%returns Gv as input to distribution. m 
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%use: splines are used to get S-vectors for Gauss points 
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Fmin=omega(1); % freq*2*Pi 
Finax=omega(length(omega)); % freq*2*Pi 
N=length(omega); a=log(Fmax/sqrt(Fmin*Fmax)); 
omegaO=sgrt(Fmin*Finax); 

CALCULATE GAUSS-LEGENDRE INTEGRATION WEIGHTS 

[Xomg, Womg]=gauleg(-a, a, 2*M); 
Xtau=Xomg; 
Wtau=Womg; 

xlomg=Xomg. /a; 

%Gauss abscissas and weights 

'/. scale to [-1,1] 

CALCULATE LEGENDRE POLYNOMIALS AT GAUSS-POINTS 

for j=1: 2*M 

pOomg=legendre(j, xlomg); 
pomg(j,: )=pOomg(1,: ); 

end 
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Pomg=cat(1, ones(1,2*M), pomg); % Legendre polynomial for basis function 

NORMALISE MONIC LEGENDRE POLYNOMIALS TO ORTHONORMALISE 

i= C1: 2*M+17 '; 
NORM=sqrt((i-1+1/2)/a); 
NORMd=diag(NORM); 
Bomg=NORMd*Pomg; 
Btau=Bomg; 

'/ basis functions 

'/. CALCULATE DISCRETISD MATRIX K1 

[Ki]=kipipj(Bomg, Btau, Xomg, Xtaü, Womg, Wtau, M); % return K1 

y CALCULATE DISCRETISD MARICES K2even, K2odd 

[K2even, K2odd]=k2pipj(Bomg, Xomg, Womg, M); %return K2even, K2odd 

%CALCULATE COMPLETE MATRIX Ktot=(K1, K2) 
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[Ktot]=k(K1, K2even, K2odd, M); 

'/. CALCULATE DATA MATRIX Si 

omega_sp=omegaO*exp(Xomg); 
S Re_sp=spline(omega, S Re, omega_sp); % finding reals at Gauss points 
[S1]=data_vector(Bomg, Womg, 5 Re_sp); %using 16 Gauss points 
S1=S1(1: 2*M)'; 

CALCULATE DATA MATRIX S2even and S2odd 

S_Im_sp=spline(omega, S_Im, omega_sp); 
[S2]=data_vector(Bomg, Womg, S_Im_sp); 

S2=S2(1: 2*M)'; 

p1=1: 2: length(S2); 

p2=2: 2: length(S2); 
S2even=S2(pl); S2odd=S2(p2); 

finding Imags at Gauss points 
%only 20 Gauss points 

%odd rows 
%even rows 

'/. CALCULATE COMPLETE DATA VECTOR Stot 

Stot=cat(2, S2, S1); 

SOLVE K2even*Gv2e=S2even 

[G2e, ue, se, ve, sie]=inverse(K2even, Mu, S2even); 

%SOLVE K2odd*Gv2o=S2odd 

[G2o, uo, so, vo, slo]=inverse(K2odd, Mu, S2odd); 

%SOLVE K1*Gvl=S1 

[G1, u, s, v, sl]=inverse(K1, Mu, S1); 

%SOLVE Ktot*G=Stot 

[G, ut, st, vt, sit]=inversetot(Ktot, Mu, Stot, M); 

%CALCULATE VECTOR Gve, Gvo and Gvl 
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Btau=Btau(1: 2*M,: ); p1=1: 2: length(Btau); p2=2: 2: length(Btau); 

dise=Btau(pl,: )'*G2e; diso=Btau(p2,: )'*G2o; 

dis=dise+diso; % reconstruction of DRT only at Gauss points 

PICTURES 

%amplification factor A=f (singular values) 

%ffigure(1); 
%subplot(1,3,1); 
%plot(diag(se), 1. /sle, 'k'); 

%Y=axis; 
%xlabel('singular values'); 
%ylabel('Aeven'); 
%grid on; 
'/. hold on; 

%subplot(1,3,2); 
%plot(diag(so), i. /sio, 'k'); 
'/. axis (y) ; 
%title('Anmplification factor'); 
'/. xlabel('singular values'); 
%ylabel('Aodd'); 
%grid on; 
%hold on; 

%subplot(1,3,3); 
%plot(diag(s), 1. /s1, 'k'); 
%xlabel('singular values'); 
%ylabel('A'); 
%grid on; 
%hold on; 

'/. singular values 

%figure(2); 
%subplot(1,3,1); 
%le=(diag(se)); 
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%plot(l: length(se), log(le), Ikl); 
%hold on; 
%xlabel('n'); 
%ylabel('log(Sval)'); 
%grid on; 

%subplot(1,3,2); 
%lo=(diag(so)); 
%plot(l: length(so), Iog(lo), Ikl); 
%title('Log Singular Value of K"e, K"o, K '' '); 
%hold on; 
%xlabel('n'); 
%ylabel('log(Sval)'); 
%grid on; 

%subplot(1,3,3); 
%1=(diag(s)); 
%plot(1: length(s), log(1), 'k'); 
%hold on; 
%xlabel('Singular Number'); 
%ylabel('log(Singular Value)'); 
%grid on; 

y, plot of S-data 

%figure(6); 
%subplot(1,2,1); 
%plot(1: length(S2), S2); 
%title('S"-data'); 
%hold on; 
%grid on; 

%x=u'*S2'; 

%subplot(1,2,2); 
%plot(l: length(x), x); 
%title('U*S'); 
%hold on; 
%grid on; 
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Data Acquisition Control 

program (Delphi) 

1 

MFTOM -1 

PGA Gain 1 Freq. kHZ I. mA 

10 0 000 
Mnp Gem 250 160 0.000 

40 Boon 
640 0 000 

IRü 3 as 0.000 
104ddress 320H I 20 0000 
FIFO IRO Not empty I 5 0.000 
Mode Snule 8D 0 000 
8lockSpd 750 kHz 320 0.000 
SteiTrg öepos 1 2560 DODD 
SlopTrg Samples 1280 DMO 

2 

D0 
00 

ý_. 
_.. 2.5 kHz 

.... ___. ýI 

0.0 
OA 
00 

V/div 2.000 5 kHz 
ms/dw 0 163 

10 kNz 

160 kHz 
Oe 

320 kH: 

00 20kHz 64 
0.0 
0.0 --_--Ji 40 kHz 1.28 MHz 

0.0 EE LEE 
08 

Figure B. 1: The main front panel of Delphi program. 
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IRQ J 

10 Address 320H 

FIFO IRO Not empty 

Mode Single 

Block Speed 1Fix 750 

Start Trigger Ext pos edge 

Stop Trigger Samples 

ý"° OK Cancel 

Figure B. 2: ADC panel. 

PGA Gain 

Multiplier Gain 

'' OK 

1 

1250 

r----- -- -- {, Cancel 
ý5S 

Figure B. 3: Gain panel. 
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Current Channel "0" 

Resistance 390 

GO 

Freq, kHz Vsin Vcos 

0 iU 0.00E+00 D. 00E-00 

1 160 0.00E+00 0.00E-00 

2 40 0.00E+00 U. 00E+00 

3 640 O. ODE+00 0.00E+O11 

4 2.5 0.00E+00 O. DOE+00 

5 20 0.00E+00 0.00E-00 

650.00E-00 0.0DE+00 

7 60 0 00E+00 0.00E+00 

B 320 0.00E+00 0.00E+00 
9 2560 0.00E+00 0.00E-00 

10 1200 0.00E+00 D. 00E+00 

P, 

Vrnag Current [mA] 

0.000 0 000 

0.000 0,000 

0.000 0.000 

0 000 0000 

0 000 0 000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0,000 0.000 

0.000 0.000 

0.000 0.000 

X Cancel 

Figure B. 4: Current measurements panel. 

Phase measurements 

GO I 

Freq, kHz char=0 che. n=3 chars=4 
10 0.0 0.0 0.0 
160 0.0 0.0 0.0 
40 0.0 0.0 0.0 
G40 0.0 0.0 0.0 
2.5 0.0 0.0 0.0 
20 0.0 0.0 0.0 
5 0.0 0.0 0.0 
80 0.0 0.0 0.0 
320 0.0 0.0 0.0 
2560 0.0 0.0 0.0 
1280 0.0 0.0 0.0 
---) 

f 
ýýý j( Cancel 

Figure B. 5: Phase measrI7c, mcl. t, 5 
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Measurements at channels "1 - 7" 

Go I 

Che, nnel Feq, kHz \/sin Vcos \'ma. g 

ýC' 

e 

X Cancel 

Figure B. 6: Voltage measurements panel. 

Start 

--Impedance -- -- 

Freq, kHz Z=Re(Z)+jlr (z) 

10 0.0 
160 0.0 
40 0.0 
64CI 0.0 
2.5 0.0 
20 0.0 
5 0.0 
80 0.0 
320 0.0 
2560 0.0 
1 X80 0.0 

...................................... jý Cancel 

Figure B. 7: Impedance panel. 


