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Abstract

This thesis is concerned with Electrical Impedance Spectroscopy (EIS), a non-
invasive technique for characterising biological tissue and distinguishing pathology.
'The thesis is focused on the development of an improved method for extracting

physiologically related parameters from the measured impedance data in vivo and
instrumentation for spectroscopic measurements.

In EIS, the electrical properties of physiological tissues, defined by their com-
position and structure, are measured as functions of frequency. Experimental
observations of the existence of dielectric dispersions caused by distributions of
dielectric relaxation time (DRT) constants were made on different types of bio-
logical material. It is postulated that widely used approaches for modelling these
electrical properties are fundamentally flawed. The research work concentrates on
the reconstruction of DRT spectra directly from the measured frequency response.
The reconstruction problem involves inversion of a linear operator and like many
inverse problems, is complicated by the ill-posed nature of the problem. In this
thesis an inversion algorithm - Galerkin Regularised Inverse Method (GRIM) -
based on standard mathematical methods is developed. The DRT spectrum es-
tablishes a link between the raw impedance data and the physiological structure
and function of biological tissues. The GRIM yields a large number of indepen-
dent parameters each related to process on a different scale. Special care was
taken in testing the method on simulated data and improving its resolution.

The thesis is also concerned with the design and practical implementation of
EIS systems. Two approaches are considered: systems based on commercially
available Impedance Analysers and systems designed specially for studies in vivo.
To evaluate the GRIM, an Impedance Analyser, benefitting from a higher accu-
racy and a wider frequency range, is used. To meet the more rigorous specification
demanded for studies on living human tissues, an electrical impedance spectrom-
eter is developed. The suitability of different current sources is investigated.

This research work includes studies of animal tissue in vitro and in vivo. Op-
timal experiments are defined in terms of the measurement frequency range and
the entire experimental protocol for dielectric spectroscopy is established. These
biological data are used to evaluate the GRIM. A comparison between different
tissue classes in vivo is made. From studying ischemic tissues, it is postulated

and verified that physiological differences and changes can be measured using the
technique of DRI spectroscopy.
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Chapter 1

Int.ro duction

1.1 Impedance measurement

It is well known that virtually every liquid and solid is able to pass current when a
voltage is applied to it. For a sine wave (AC) voltage, applied to a linear material,
a sine wave current flows through it. The ratio of voltage to current (V/I) am-
plitude is known as the impedance, (Z). In most materials the impedance varies
with the frequency of the applied voltage, in a way that is related to the proper-
ties of the material. This may be due to the physical structure of the material,
to chemical processes within it, or to a combination of both. If a measurement
of impedance over a suitable frequency range is made, and the results plotted
on suitable axes, it is possible to relate the results to the physical and chemical

properties of the material. Since an impedance measurements are repeatable and

non—destructive, it can provide valuable information about a wide variety of sub-
stances, components and systems.

The features that make impedance measurement attractive over other inves-

tigative techniques, such as X-ray, Magnetic Resonance Imaging (MRI), Comput-
erised Tomography (CT) and ultrasound techniques, include:

e Rapid acquisition of data (often within microseconds)

e Accurate and repeatable measurements

o Measurements relate to process activity

e Investigates a wide range of size and time scales

e Non-destructive; completely harmless to biological tissue

o Highly.adaptable to a wide variety of different applications
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e Low cost.

Impedance measurements find a wide range of application. For example, in
electrochemistry the measurements of impedance are used in order to indicate
the presence and the rate of corrosion, [1]. Electrical impedance techniques are
also used in geophysical prospecting. Practical applications exist in hydrology,
mapping of coal or sand deposits, seismological studies and many others, [2].
Electrical impedance is often used in medicine and physiology. For example, it
can be used for monitoring changes in fluid volume within the lung, which can
be related to the changes in the thoracic impedance. The changes in transtho-
racic impedance can also be related to the events in the cardiac cycle and in
some circumstances cardiac output can be estimated. Investigative techniques us-
ing electrical impedance measurements include Electrical Impedance Tomography
(EIT) and Electrical Impedance Spectroscopy (EIS). EIT aims to image two and
three dimensional volumes containing different types of tissues and physiological
functions. EIT systems usually operate at a fixed frequency. EIT relies on the
observation that different tissue types have different impedance. At a particular
frequency, there are large differences between the impedances of organs. However,
in practice, there is no single frequency at which impedance can discriminate all
types of tissue. Neither can a single frequency characterise the types of tissue
within an organ. Therefore, measurements at a number of frequencies are neces-
sary and this is known as Electrical Impedance Spectroscopy. This latter method

1s considered in the subsequent chapters and defines the area of the present re-
search.

1.2 Electrical Impedance Spectroscopy

Electrical Impedance Spectroscopy (EIS) is a powerful method for characterising
many of the electrical properties of materials and their interfaces with electron-

ically conducting electrodes. EIS has been recognised as a useful analytical tool
in material research and development as well as in medicine because it involves

relatively simple electrical measurements that can be automated and results can

be used for the interpretation of fundamental electrochemical and electronic pro-
cesses.

In EIS, the impedance of a sample of material can be measured directly in the
frequency domain by applying a single-frequency voltage of known amplitude to
the interface and measuring the phase shift and amplitude, or real and imaginary

. parts, of the resulting current at that frequency. Typically the frequency of the
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applied voltage is swept across a range of frequencies spanning several decades.
Commercial instruments are available which measure the impedance as a function
of frequency automatically and which are easily interfaced to Personal Computers.
The complexity of the method comes from the difficulty in performing reproducible
experiments, the problem of separating the response of the measuring equipment
from that of the sample and the interpretation of the measurements.

1.3 EIS in Medicine

This thesis focuses on applications of EIS in medicine. Non-invasive techniques
for studying the body have long been popular with both patients and doctors.
Most widely used are X-ray photographs, X-Ray computerised Axial Tomogra-
phy (CAT scan), Ultrasound and MRI. In all these methods, energy is applied to
the body in the form of an oscillating field or wave. This interacts with the tissues
and the response is measured. Each of these techniques images different proper-
ties of the tissue and the operation of organs and so has different applications.

More recently, EIT has been developed as an alternative to complement the
methods mentioned above with particular application in functional imaging. EIT
is fast, cheap, harmless and can be used for long term monitoring. It may also
image rapid changes in the physiological state of tissue such as the beginning of an
epileptic fit in the brain. EIT is an area of active research: particularly studies of

medical applications, such as measuring lung perfusion, lung ventilation, gastric
emptying, cardiac output and locating epileptic foci.

A current research aim is to develop multi-frequency EIT (MEIT). In order
to produce MEIT images that are useful for medical diagnosis purposes, the mea-
surement system must identify different tissues located close to each other in the
body, such as liver and spleen or muscle and lung. Usually two or more frequencies
are used in MEIT. The contrast of the resulting images is higher if the impedance
variation with frequency is larger, and is different for different tissues.

Multi-frequency measurements allow the tissue impedance spectrogram to be
produced (3], [4]. Typically, multi-frequency electrical data are collected for sev-
eral tissue types and the measurements are fitted to some mathematical model,
such as the Cole model [5]. Some widely used mathematical models will be pre-
sented in chapter 2. Fitting parameters are calculated for each type of tissue.
These parameters are plotted on a scatter diagram and statistical techniques,
such as cluster analysis, are used to test if the different classes of tissue are distin-
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Table 1.1: Relative permittivity of Biological Tissues by Gabriel et al [17]

Liver, Ovine@37°C - | 1.81x 107 | 3.15 x 10* | 1.56 x 10

Lung deflated, Human @ 37°C | 4.62 x 107 | 1.63 x 10* | 5.8 x 10
Lung inflated, Human @ 37°C 1.63x 10* | 5.8 x 102 | 10.66

Muscle, Ovine @ 37°C
Parallel Fibers | 8.31 x 107 | 2.86 x 10* | 4. 29.7
Transverse Fibers | 4.07 x 107 | 3.04 x 104 28.3

278 x 107 | 415 10 | LO7x 10° | 273
106 107 | 114 x 10
spleen Ovine @ 37°C 77 %107 | 138 % 107 | 196 X 10°

guishable by these data. A large and growing body of literature exists confirming

that multi-frequency electrical measurements of tissue can be used to distinguish
different tissues and clinically useful tissue characteristics [6], [7], [8].

This empirical approach is useful in developing clinical techniques but does not
directly illuminate the link between impedance measurements and tissue physiol-
ogy or function. This thesis attempts to extract parameters, related to structure
and processes occurring on different size and time scales, from the impedance
spectrogram. In later chapters these data are interpreted in terms of cell physiol-

ogy.

The applicability of EIS for medical purposes hinges on the variation in the
electrical properties of normal and pathological tissues as a function of frequency
for the different organs. Table 1.1 shows the dependence of dielectric permittivity
on frequency for different types of tissue. The dielectric permittivity is directly
related to the impedance (see section 2.3). It is clear that soft tissue permittivities
range across 7 orders of magnitude as the frequency is swept from 10 Hz to 20

GHz. At the same frequency, the permittivity of soft tissue can vary by a factor
of 10.

1.4 Brief History

Ohm presented his famous law in 1827, It establishes a linear relationship between
DC current and voltage and originally was developed for metals. However, it-was nt
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followed by various attempts to measure the resistance of all sorts of materials,
including biological tissues. During the 19th century a number of researchers, e.g.
du Bois-Reymond, demonstrated that the resistance of animal tissues decreased
with increasing frequency.

Bernstein postulated that tissue consisted of conductive cells enclosed in an
insulating membrane. The cell membrane is slightly permeable to ions and there-
fore represents the resistive part of cells.

Experimental support for the membrane hypothesis was provided by Hober
(1910, 1912, 1913) [9] who measured the impedance of red blood cells over a wide
frequency range. He found a large decrease in the resistivity of a sample of blood,
after the cells had been haemolysed and the cell membrane destroyed. The con-
clusion was that the intracellular fluid of the living cell was an electrolyte which
played a part in conduction after the destruction of membranes. The first esti-
mates for the low— and high-frequency conductivity values were provided.

Philippson (1921) [10] interpreted tissue impedance in terms of the resistor—
capacitor model shown in Fig. 1.1.

Figure 1.1: A resistor-capacitor model for the impedance of tissue (Philipp-
son/Lapicque).

The model was previously proposed by Lapicque (1907) [11] who investi-
gated the behaviour of nerve cell membranes. In this model, at low frequencies

the impedance is represented by resistances R; + R,, because the capacitor Cp,
has a high impedance and passes little current. With increasing frequency, the
impedance of capacitor Cy, decreases, and it increasingly “short circuits” R,,. The
overall resistance therefore decreases to R;. R; was interpreted as the resistivity

of the intracellular space, while R,,, and C,, the resistance and capacitance of the
membrane.

AL U ED el AP & PR & S LA RPN B Rl T D taded B ITC.
L
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In 1925 Fricke and Morse [12] found that their measurements on suspensions of
red blood cells could be accurately fitted to a circuit shown in Fig. 1.2. R repre-

sents the resistive properties of the suspending medium, S that of the intracellular
space, while C is the membrane capacitance.

R

C S

Figure 1.2: The equivalent circuit model used by Fricke and Morse to represent
the electrical properties of cell suspensions.

However, these simple RC circuits could not explain the form of the impedance
loci. The observed steps in the loci were called dispersions and three were identi-
fied and labelled o, B and 4. Fricke, Cole and Curtis made the first step to explain

the p-dispersion by applying the relevant Maxwell equations to cell suspensions
surrounded by membranes.

Cole (1932) [13] noted that many cell membranes could be represented by
the series combination of a frequency-dependent capacitance and resistance. He
was the first to draw the “depressed” semicircular impedance loci, since known
as Cole-Cole plots, for a wide range of biological tissues. The parameters of
the circular arcs were used to characterise the tissues. Cole proposed a modified
Lapicque equivalent circuit model which included a “constant phase element”,
ZcpE, related to the frequency dependence of the resistive and capacitive com-
ponents. The model involves the parallel combination of Z¢cpr and a resistance.

Then the famous “Cole-Cole equation” for the overall impedance of his modified
circuit eventually appeared in 1940, see Fig. 2.3.

After 1941, studies by biophysicists Foster, Schwan, etc. 114] identified re-

laxation phenomena as the underlying mechanism leading to Cole-Cole loci. It

was determined that distributions of diclectric relaxation times lead to depressed,
semi-circular impedance loci.

A more detailed historical overview can be found in the paper of McAdams

-~ and Jossinet-[15]. Also the most complete tissue data have been published by--""""
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Camelia and Sami Gabriel who studied electrical properties of over than 30 tissue
types in wide frequency range 10 Hz to 20 GHz [16], [17], [18].

1.5 EIS at Oxford Brookes University

The work of EIT Oxford Polytechnic (Oxford Brookes University since 1991)
group was started in 1985. Interest developed in the mathematics of the EIT
reconstruction as an inverse problem and led to the design and construction of
the first tomograph OXPACT 1, [19]. The system operated only at one frequency,
60 kHz. The subsequent tomograph OXBACT 2 was completed by Q.S.Zhu in
1991, [20]. The new system had important limitations preventing its use in vivo.
One of the problems was that system had no electrical isolation, which is required
by standard patient safety regulations. To conduct experiments in vivo, it was
decided to design a third generation of the system OXBACT 3. OXBACT 3 is
currently being used for clinical studies. It was designed as a multi-frequency
tomograph which could operate at three frequencies 10 kHz, 40 kHz and 160 kHz.
It was considered that with three frequencies and with a complex measurement
scheme, enough information would be available to determine the circle and its

parameters, known as the Cole parameters, for internal organs. The overview of
hardware on the first and existing systems can be found in chapter 5.

Multi-frequency EIT has primarily been developed for static imaging. Static,
or absolute, imaging attempts to calculate the true impedance everywhere in
the region to be imaged. It has the potential to combine two techniques, EIT
and Spectroscopy. It would have the important advantage that a large volume
could be “scanned” and the tissue characterised at all locations within the imaged
volume. Technically this goal will be very difficult to achieve due to the hardware
problems discussed in chapter 5 and the lack of resolution in EIT measurements
far from the electrodes. One of the biggest problems is the connection between the
patient and the instrument. There are many potential sources of error introduced
by electrode-skin interactions. The work on the design of an impedance probe
for EIS measurements in vivo was carried out at Oxford Brookes University by
K. S. Paulson, [21). It consists of four circular, concentric electrodes. The size
and geometry of the probe allow sampling of localised volume of tissue but with
increased sampling depth in comparison with the standard four-electrode probe.
This probe is described in detail in section 5.6. In the beginning of this project,

it was decided to separate spectroscopy and EIT in order to obtain more detailed
information about tissue electrical characteristics.
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1.6 The aim and the contents of the thesis

The aim of this thesis is to develop EIS for tissue characterisation. To achieve this
aim, work has been carried out on both EIS instrumentation and a mathematical

method for data analysis. Different approaches have been considered and will be
presented in subsequent chapters.

Even if impedance data could be collected within a wide frequency range in
EIS, an effective method to determine the useful information about specific tissue
characteristics, such as cell size, shape, number, clustering, hydration and the
clinically useful intra—cellular to inter—cellular volume ratio, does not exist. A
novel mathematical method for EIS has been developed aiming to establish a link
between the electrical measurements on the biological sample and its cell charac-
teristics. The problems of the approaches described by other authors have been
also discussed. Attempts have been made to derive tissue physiological informa-
tion rather than give the raw frequency response. Some of the results that are
presented in this thesis have been already published [22], [23], [24]. The purpose
of this presentation is not only to summarise these results but to give a theoretical
background of the proposed method based on the computation of the dielectric re-
laxation time distribution. The presented method has been tested with real data.
The data have been collected in vitro and in vivo. The proposed mathematical
method has been compared with some other well-known interpretations of data
in EIS such as a Cole-Cole model and equivalent circuit analysis. A review of
them is also given. Much attention is directed towards an understanding of the

permittivity spectra and developing DRT spectroscopy as a possible means of im-
proving their understanding.

The thesis is divided into seven chapters. After the Introduction in chap-
ter 1, the electrical properties of biological tissues are considered in chapter 2.
This chapter gives the theoretical basis of relaxation processes in tissue when an
electrical field is applied. A review of well-known methods such as parametric

model (Cole-Cole), electrical models and equivalent circuit analysis are intro-
duced. Their disadvantages are discussed.

The mathematical relationship between the DRT distribution and the fre-
quency response 1s presented in chapter 3. Analytic DRT distributions with known
frequency responses are reviewed. This chapter introduces the general DRT in-
verse problem where arbitrary DRT distributions are calculated from impedance
spectrograms measured experimentally. The most recent approach for reconstruc-
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tion of relaxation spectrum - moving-average formulae - is presented in section
3.4. This chapter introduces important sampling localisation theorems which de-

fine the measurement frequency range. The drawbacks of these mathematical
approaches for real data are considered.

In chapter 4 a new analysis for Dielectric Relaxation Time Spectroscopy (DRTS)
is presented. The GRIM solves a weak form of the inverse problem using the
Rayleigh-Ritz Galerkin method. Regularisation techniques are developed to deal
with the ill-posedness of the inverse problem. The limitations of the method and
possible improvement of the resolving power are discussed in section 4.8. Section

4.10 presents the MatLab implementation. The method is tested with both sim-
ulated data and physical electrical models.

Chapter 5 presents a historical overview of hardware developed at Oxford
Brookes University. Two approaches are considered for the development of EIS
instrumentation: to design a bespoke EIS system or to adapt a commercially
available device. The hardware of the bespoke system is based on the design of
the existing two voltage channel system working at four frequencies. A new EIS
system, suitable for in vivo experiment, is designed, built and evaluated. Differ-
ent current sources are considered and their limitations are highlighted. In section
5.5 an instrument based on a commercial Impedance Analyser is considered as a
possible EIS system for use tn vivo. The comparison of these two approaches

is given. This chapter also gives an overview of different electrode systems and
possible applications of EIS.

Chapter 6 shows results obtained from the measurements in vitro and in vivo.
After successful results obtained from simulations and resistor/capacitor circuits

the GRIM is applied to biological data. An entire experimental protocol for di-
electric spectroscopy is established in this chapter. The studies of pathological
and in vivo tissues are presented. Distributions of relaxation time constants are
computed and displayed. This chapter contributes to the understanding of the
relationship between the electrical properties and spatial structure of tissue.

In chapter 7 there are discussion and conclusion sections. The results of whole
thesis are summed up and suggestions for further development are given.



Chapter 2

Electrical properties of biological
tissues

2.1 Introduction

EIS measures the frequency response of a sample of material to AC electrical
stimulation. In a typical experiment, a sinusoidal alternating current of angular
frequency w, I(w), is applied to a sample of material (typically via electrodes)
and the voltage developed across the sample, V' (w), is measured. The ratio of the

complex amplitudes of the voltage and current is the complex impedance of the
sample, Z(w), Eqn. 2.1.

V(w)
Z(w) = 1) (2.1)
The impedance is a property of the sample, its composition and the geometry of
the experiment. It is suited to defining the electrical behaviour on the macroscopic
scale. At the microscopic level the electrical properties of the tissues are defined by
their complex conductivity, o*, and complex permittivity, €*, (where " *” indicates
a complex quantity). These parameters are a function of frequency and position.

At steady state, the conductivity at a point may be expressed in a vector equation
analogous to Eqn. 2.1.

J=0VV (2.2)

where J is the current density. In a region where the electric field is uniform and
the current stream lines parallel, Eqn. 2.2 leads to the macroscopic equation 2.1,

One of the purposes of this chapter is to introduce the main relaxation phenom-
ena which take place when an alternating electrical field is applied to a sample of
material. Dielectric relaxation mechanisms are complex phenomena which have

10
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received much attention, {25}, and is of particular interest in biological tissues,
114]). This chapter reviews the frequency dependence of the electrical properties
of tissues.

The electrical response of biological tissues is often compared to circuits con-
sisting of resistors and capacitors and more exotic elements. The values of these
resistors and capacitors, for circuits with similar behaviour as tissue, are often
interpreted in terms of tissue physiology and function, [26]. Some examples of
circuit model analysis are presented in section 2.6. For human tissue, electrical
circuit parameters typically include the resistances which describe the intra- and
extracellular fluid conduction pathways, and a reactive component which is de-
termined by the capacitance of the cell membranes.

In some cases, parameters of a circuit model are linked to the empirical Cole-
Cole relationship of the frequency dependence of the complex permittivity of the
tissue, in order to reproduce the observed resistance-reactance relationship and
permit calculation of the parameter values. The Cole-Cole relationship is consid-
ered in sections 2.4 and 2.5.

2.2 Dielectric dispersions in Biological Tissues

When the frequency of the applied electrical current increases, the conductivity of
the most tissues rises. The increase in conductivity is associated with a decrease
in permittivity. The change of the electrical parameters of tissues with frequency
can be explained by relaxation phenomena that occur when the current passes
-through the tissue.

Typically, the permittivity decreases in three major steps which are designated
the a—, f— and y—dispersions at low, medium and high frequencies respectively,
[27]). Some other minor dispersions such as the §—dispersion are often reported.
The idealised representation of this is shown in Fig. 2.1, [28]. This response is

typical for all cellular tissue, although magnitudes and dispersion frequency vary,
14], [27].

The a—dispersion dominates at low frequencies between about 10 Hz and a
few kHz. The a—dispersion is characterised by very large permittivity variations
due to charge carrier diffusion effects, (14]. At very low frequencies, the mem-
branes have time to complete charging and discharging within a single period. It

causes a large tissue capacitance and, therefore, a high permittivity, The current,

9o omir gl Wy e L
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Figure 2.1: An idealised plot of the frequency variation of permittivity and conduc-
tivity for typical biological tissue by Bourne [28]. €' and o' correspond to real parts
of complex permittivity and conductivity respectively and ezxplained in section 2.8.

passes only through the extracellular medium. The measured conductivity is the
conductivity of the extracellular medium. The a—dispersion is usually associated
with interfacial polarisations, caused by the formation of electrical double layers,
and surface ionic conduction effects at membrane boundaries. This dispersion
may be considered as a dipolar relaxation where large dipoles are formed by cells

due to the accumulation of charges of opposite polarities at either sides of mem-
brane.

The B—dispersion takes place in the frequency interval from 10° —107 Hz. The
B—dispersion is due to the polansatlon of larger biological molecules and to the
capacitive charging of cell membranes. The membrane separates two conduct-
ing media. During excitation a charge is built up at the interface of these two
dissimilar dielectrics and this increases the interfacial polarisation, known as the
Maxwell-Wagner effect. When the frequency increases, the cell capacitive reac-
tance decreases and a larger current flow goes through the intracellular medium.
This leads to an increase in the tissue conductivity., On the other hand, the
increase in frequency prevents the cell walls being completely charged during a
single period causing the decrease in the permittivity. In the high-frequency part
of the dispersion the dipolar reorientation of biomacromolecules, such as proteins,
appears. Biomacromolecules behave like electrical dipoles in the electrical field.

A torque orients each dipole with the applied electrical field but this is: countered -~ |
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by random thermal excitement. An orientation equilibrium is reached with the
dielectric relaxation process.

The y— dispersion, at frequencies around 10!° Hz is due to the orientation
polarisation of water molecules. At microwave frequencies, the membranes are
short-circuited and tissues behave as a electrolyte. Their conductivity and per-
mittivity are dominated by the relaxation of the free water molecules.

To conclude, measurements of the complex impedance at low frequencies pro-
vide information about extracellular conductivity and cell size. When the mea-
surements are performed in the kilohertz range, cell wall characteristics can be
obtained. Information about the cell interior can be obtained from high frequency
measurements.

2.3 Complex Conductivity and Permittivity

To establish the relationship between complex conductivity and permittivity con-
sider the example of a parallel plate capacitor in a vacuum, made up of two flat
electrodes of area S and distance d apart. If a DC voltage difference V is main-
tained between the plates, a charge of +@Q) is developed on the positive plate and
a charge of —@ on the negative plate. The capacitance is defined as the ratio of

the charge @ to the voltage V' and measures a property of the vacuum known as
its permittivity, €o:

_Q &S
C=%=2 (2.3)

If an insulating material is introduced into the space between the capacitor
plates, then the charge on the plates is increased to Q@+ ¢ and a larger capacitance,
C', is measured. The extra charge on the plates, g, is due to polarisation, P,

of charges within the insulating material. The ratio C'/C defines the relative
dielectric permittivity, €, of the insulating material:

C o1+ L
C EQE

If the material between the plates is not perfectly insulating then some current
will flow at low frequencies due to the movement of free charge carriers. The

conduction current, ¢, is in phase with the applied electrical field, E, and equals:

€ (2.4)

i =0,F (2.5)
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where o, is the static conductivity. At low frequencies the polarisation and electri-
cal fields are in phase and so no dielectric loss is observed and the permittivity 1s
at its maximum. The conductivity is constant and equal to o,. As the frequency
increases, the conductivity changes from o, to the frequency dependent value
o*(w). If the material undergoes dielectric losses, the capacitance and the relative
permittivity become complex. The relationships between the complex conductiv-
ity, o*, and the complex permittivity, €*, have been established by Maxwell, [29],
Debye, [30], and Fricke, [31]:

o*(w) — o, = jweee* (w) (2.6)

where j = v/—1.

2.4 Dielectric Relaxations

Certain noninsulating media, such a biological tissues, have dielectric properties
due to a capability of storing electrostatic energy by polarisation. The relationship
between the applied electric field, E, and the polarisation, P, is given by:

P = EOXeE (2.7)

where & is the dielectric permittivity of free space (€p = 8.85 x 10™** F/m). X,
is the sensitivity of the material to the applied electrical field, which is linked to
the relative dielectric permittivity by:

Xe =€ —1 (2.8)

For noncellular media, the polarisation may be divided into two parts accord-
ing to the time constant of the response, [32]:

1. Distortion polarisation is due to distortion of crystal lattices and relative
displacements of atomic nuclei and electron shells. This distortion occurs approx-
imately 10~1° s after the application of an electric field and so can be treated as
instantaneous at the frequencies used for EIS.

2. Orientation polarisation occurs as naturally polar molecules, such as water,
or molecules with induced polarity, rotate to align with the applied electric field.
Depending on the size of the molecule this occurs in the order of 107° s after the

application of an electric field. Orientation polarisation is important at the higher
frequencies used in EIS.
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2.4.1 Debye Equation

To determine the frequency response of a polarizable material, consider again
the parallel plate capacitor filled with a homogeneous material. The capacitor is
initially uncharged and at time ¢ = 0 a unit voltage is applied across the capacitor.
The polarisation charge P(t) shows an initial, almost instantaneous, increase to
P, due to distortion polarisation, then a much slower increase to P, as polar
molecules orient with the applied electric field, EF. The Debye assumption is that
rate of increase in polarisation is proportional to P, — P(t), [30], i.e.

P(t) = Py + (P, — Py )e " (2.9)

where 7 is the relaxation time.

Using the defining Eqn. 2.4, the measured permittivity can be written as a
function of time:

E(t) = €00 + (€5 — Em)e-th (2.10)

where €, and £, are respectively the permittivity limits at very low and very high
frequencies.

Taking the Laplace transform of Eqn. 2.10 and rearranging yields:

e(p) — €00 1

Es —Eco 14 pT

where p is the Laplace parameter. By setting p = jw the equation 2.11 yields the
frequency response of a material with orientation polarisation time constant 7:

(2.11)

e(jw) — €co _ 1 (2.12)
53 - 800 1 +ij .

Neglecting the influence of the static conductivity, the Debye equation takes
its simplest form, [28]:

€s = Eoo
1+ jwTr

Nevertheless, the contribution of the static conductivity to the cémplex permit-
tivity can not be ignored. Therefore, in order to describe the complex permittivity
of a polar material, the modified Debye equation is usually used. The permittivity
spectrum can be obtained from the conductivity spectrum by separating the real

(Eqn. 2.15) and imaginary parts (Eqn. 2.16) of Eqn. 2.6.

£*'(w) = €00 + (2.13)

o' (w) — " -
(_) L ._j.(f__f_'_). (2.14)
JWEo WEQ WEo

Et(fAJ) — EI —"jE" —
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£ = w—so' (2.15)
’ —
g = (2.16)
WEp

The modified Debye equation takes the form as:;

Es —E . O

1’ n jwc’:- — J;é; (2.17)
The Debye dispersion relations derived above are for a process with a single

relaxation time. Biological tissues are heterogeneous media. The dipoles do not

all share the same relaxation time 7. Some attempts have been made to extend

the Debye model by including processes with more than one relaxation time. If

the relaxation processes are considered for distinct time constants, for example,

nn & 1 < T3..., the electrical response is a multiexponential type response:

e*'(w) = € +

* 10, Agy Aes JAVY!
= AT R -——-—-—:—-— _—:—— ———l:——- PR 2.18
#*(w) = €eo weo+1+.7w'rl T 1+Jw1'2+ 1+Jw7'3+ ( )

2.4.2 Cole Equation

Cellular tissue does not exhibit distinct time constants but a more complex re-
sponse due to continuous distributions of time constants. One of the most widely
used relaxation functions is the one proposed by Cole, [5]. The function models
the dielectric behaviour of the biological materials. It is based on a distribution
of the relaxation time constants due to the range of structures that make up the
tissue. The complex permittivity is given by the Cole-Cole equation (Eqn. 2.19)
which has two parameters; f. (7. = 1/(27f.)) is the characteristic frequency where

the imaginary part of the permittivity has a maximum, and a is the empirical
parameter (0 < a < 1).

€s — €0

e*' (W) = €o0 + W (2.19)
If the static conductivity is taken into account the Cole equation is:
* €s — €0 . O |
EW)=€p+—m—mm—m——a - J—— .
( ) S | -+ (Jch)(l"a) Jwgo (2 20)

2.5 Cole—Cole plot

The complex impedance, conductivity or permittivity can be displayed graphi-
cally as a Nyquist plot known as the Cole-Cole plot, [33], where the impedance
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is plotted on an Argand plane. Plotting the imaginary part of the impedance,

—Im(Z), against the real part of the impedance, Re(Z), results in a semi—circle.
Such a trace is often referred to as an impedance locus.

-Im(Z) P (X.Y)

Re@

RF%
I

(xoyo)

Figure 2.2: Nyquist plot of the frequency dependence of the complex impedance.

For the Debye relaxation with a single time constant (Eqn. 2.13), the locus is
a semi-circle centred on the real axis. The Cole-Cole plot for biological materials
has a semi-circular locus with a centre depressed below the real axis, Figure 2.2.
Actually, it is the superposition of a large number of semi-circular arcs (all cen-

tred on the real axis) resulting from a continuous distribution of relaxation time
constants in the dispersion.

The Cole-Cole curve is described with four parameters: the radius r, centre
coordinates (zg, ¥o) and the fundamental frequency w, = 1/7, where the imaginary
part of the impedance reaches maximum. Often one of the parameters g, or r,

is replaced by the angle a describing the depression of the semi-circular arc. If

a = 0 then a semi-circle is centred on the real axis and is identical to Debye
relaxation with a single time constant.

2.6 Electrical Models and Equivalent Circuit
Analysis

The most common representation of the electrical properties of tissues is the
equivalent, lumped-constant element RC~circuit model (RC stands for a resistor-

capacitor pair). A wide variety of models have been proposed whose components
are designed to reproduce the complex behaviour of physiological tissue structuress t« *viiv
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The response of an equivalent circuit model is fitted to the measured response and
the values of individual resistors and capacitors are interpreted in terms of extra-

cellular conductivity, cell wall capacitance and intra-cellular resistivity. This well
established analysis has two potential problems:

1. An infinite number of different models have identical overall impedance and
could be fitted to the same experimental data.

2. Ideal circuit elements represent lumped-constant properties. But, EIS mea-

surements are derived from conduction in an inhomogeneous, three—dimensional

medium.

Indeed, representing the real electrical properties of tissues with an electrical
circuit that contains only discrete electrical elements is often convenient. However,
in the complex impedance or permittivity plane, the electrical response of all
biological tissues shows an arc of a circle whose centre is below the real axis. The
model elements depend on the microscopic electrical properties € and o. These
properties are themselves frequency dependent. So it is established that ordinary
lumped-constant element RC-circuits are inadequate to describe the electrical
behaviour of biological tissues. To reproduce a depressed semi-circle using a

small number of lumped components, it is necessary to introduce a non-physical,
constant phase component.

2.6.1 Distributed Circuit Elements

The locus obtained in the complex plane of the impedance shows the existence
of a continuous distribution of tissue properties. Aiming to obtain the best fit to
the EIS data, distributed elements in the equivalent circuit are often used.

One of the widely used distributed impedance elements is the “constant-phase

element” (CPE) or “pseudo-capacitance”, [34], [35]. The CPE is equivalent to an
‘empirical transfer function. The electrical circuit involving CPE, shown in Figure

2.3, was originally proposed by Cole as a model for dielectric systems. It yields
capacitances C, in the w — 0 limit and C, in the w — oo limit.

An ideal or “pure” capacitance can be considered as a constant~-phase element
with a phase angle of —~90°. A pseudo-capacitance has a reactance which decreases

with frequency, but not in a simple way. The pure capacitance has a complex
reactance given by Eqn. 2.21.

—— T e wmen | A -]
B AR HE-SFRF OO S '}f:“‘-*%,wc.‘nl' :i"""‘C (Jw) 9 <5 <1 " et et (2'2:1:*)14;'..

s {11
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Cut

C' - Chf
Figure 2.3: Electrical circuit with CPE.

Cole’s CPE has a reactance:

K(jw)™° (2.22)

where K is a constant with units in the form of Q.s7%. Therefore, the term 1/K
is expressed in ©71.s° and has the dimension of a pure capacitance for § = 1.
Parameter ¢ has the same meaning as (1 — a) in the Cole equation 2.19. CPE

has an impedance rather than a reactance, because (jw)~¢ has a real component.
& controls how “capacitive” the behaviour of the CPE is.

Consider the Philippson/Lapicque electrical model shown in Fig. 1.1. In this
model, replace the capacitance Cy, representing the capacitance of the membrane
by a constant-phase element. The parameters of the circuit are chosen to be
R,, = R; = 300 €2 for resistances representing resistivities of membrane and

intracellular space respectively, Cy, = 1 uF for the capacitance of the membrane.
The impedance data for two different § parameters are displayed in Fig. 2.4.

llllllllllllllllllllllllllllll
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Figure 2.4: Plots of reactance against resistance for the circuit with CPE.
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In Figure 2.4 the solid line represents the record obtained when CPE is equiv-
alent to a “pure” capacitance. The centre of its semicircle is on the real axis.
The cross line is for the case where the capacitor is replaced by a “constant-phase
element” with parameter 0 = 0.8 or Cole parameter a = 0.2. In the latter case,
the centre of the circle is below the resistance axis. For decreasing ¢ (increasing
a), the centre of the impedance locus becomes increasingly “depressed”.

Cole’s equation has found widespread use. Some examples of tissue modelling
from EIS data have been published. The first parametric electrical impedance
images were published by Brown et al [37]. They were constructed from combi-
nations of the parameters of the model shown in Figure 2.5, where R and S are
respectively the extracellular and intracellular resistances and Z.p, represents the
pseudo—capacitance.

Figure 2.5: The tissue model used by Brown et al for parametric imaging.

This model is equivalent to the Cole model. Values of the model’s parameters
for different tissues can be found in [37] and were confirmed by Rigaud et alin [38]
who performed electrical impedance measurements in vitro. B. Rigaud proposed
two other electrical models for tissues exhibiting a single-circle impedance locus

and a dual-circle impedance locus when measurements were extended to low fre-
quencies.

The modelling of bioimpedance data measured on normal and cancerous fe-

male breast tissue using the R—S — Z,, model was also reported by N. Chauveau
et al, [39].

Although equivalent circuit modelling of biological tissues is still proposed in
the literature and 1t is possible to choose parameters so that it accurately repre-
sents most tissues, the “constant phase element” is an arbitrary construction that
is equivalent to a particular form of the DRT distribution. In order to interpret

electrical response changes in terms of physiology, it is necessary to consider the
relaxation time distribution and its evolution. vt
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In a typical tissue, there will be a large number of cells with different sizes
and shapes. Cole and Cole suggested that this leads to a range of local values
of resistance and capacitance within the tissue. Different tissue types have differ-
ent electrical impedance responses which would change with pathology. It means
that in order to use EIS as a non-invasive tool in medicine one should use differ-
ent electrical models that would fit the data well and that would demonstrate a
parametric variation associated with the possible changes during tissue injury.

2.6.2 Ambiguous Circuits

Another potential problem with equivalent circuit analysis is that different models
can have the same electrical impedance response.

An equivalent circuit with three or more circuit elements can be rearranged in
many ways and still yield exactly the same impedance. An example is presented
in Figure 2.6.

g HC

RIT + (Ry/R)]

Figure 2.6: An example of different circuits with the same overall impedance at
all frequencies, [82].

In these circuits the impedance Z; can be made up of either lumped constant
elements, distributed elements or a combination of these types. Having the same

frequency response, both suggested tissue models can be fitted to measured data

and it is not clear how to interpret the values of the lumped impedances in term
of tissue characteristics.

In the study by Aligne et al [40] on the in vivo characterisation of human breast
tumours induced in nude mice, the parameters of three different models can be
fitted to the data. These models were the Cole model, the model proposed by

Kanai et al [41], and a model derived from Kanai model by adding an RC—circuit
in parallel with each capacitance.

The variety of different circuits poses the problem of choosing the one that
‘mirrors' the tissue structure and also the physiological properties and processes.
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2.7 Summary

The purpose of this chapter has been to describe the electrical properties of bi-
ological tissue: conductivity and permittivity. These properties are frequency
dependent. The behaviour of physiological tissues in an electrical field has been
discussed. It has been shown that equivalent circuits can be devised, all with an
electrical response similar to tissue. Associating a particular circuit element to
some physiological or functional feature of the tissue is dubious. However, distri-
butions of relaxation times do uniquely characterise the electrical response and

may be linked to cellular properties.



Chapter 3

Continuous Relaxation Spectra

3.1 Introduction

In this chapter the electrical response of biological materials is related to contin-
uous distributions of relaxation processes.

In the previous chapter the interpretation of impedance spectra with equiv-
alent circuit models was discussed. These models can adequately mimic the be-
haviour of tissue but the interpretation of the spectra in terms of physiology and
function requires knowledge of the relaxation spectra. Here the Cole-Cole model
is shown to be equivalent to a particular distribution of dielectric relaxation times.

Dielectric constant measurements are often analysed in terms of a distribution
of relaxation times. It is assumed that when the observed results cannot be
explained by a simple Debye dispersion involving only a single relaxation time,
they arise from a distribution of relaxation times. Depending on the frequency
range, diflerent processes lead to distributions of time constants, e.g. :

e a—dispersion: existence of cells with various sizes and shapes;

o f—dispersion: existence of cell walls of varying thickness and porosity;

o y—dispersion: orientation polarisation of an enormous variety of organic
molecules experiencing a range of bonds to surrounding molecules.

To establish such a connection between observed results and a distribution of
relaxation times is the aim of the present work. The continuous distribution of

relaxation time constants can be found from the Debye equation presented in the
section 2.4.1:

23
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E(Jw) — o0 _ / G(r) ,
1 +Jw'r

(3.1)

—-6m

where G(7)dr is the weight of relaxation times in the range [, 7 + dr].
In this chapter a number of empirical relaxation functions, proposed to pa-
rameterise the observations of the tissue impedance behaviour, are introduced.

3.2 Analytic Spectra Models

3.2.1 Classical Permittivity Loci and Their Relaxation Time
Distributions

A small number of theoretical frequency response curves yield continuous dis-
tributions of dielectric relaxation times with closed form expressions. The most
common model for the EIS data parameterisation is the empirical Cole-Cole model

with a frequency response given by the equation 2.19. The complex permittivity
e*(w) may be separated into real and imaginary parts:

' =€ _ 1 { sinh(l - a)z (3.2)
Es — Eco 2 cosh(l — a)z + cos(ar/2) '
e 1 cos(am/2) (3.3)

Eg = Eoo ) cosh(l - a)z + sin(an/2)
where z = logwTms. The derived distribution function of time constants, G(7), is,
[32]:

1 sin(aw)
G(r) = 277 cosh((1 — a) log(r /7)) — cos(an) (3.4)

The Cole-Cole distribution is symmetrical in logarithmic scale of times, In(7),
with respect to a central frequency or relaxation time. The distribution of time
constants 1s plotted as a function of the variable s = log(r/7) in Figure 3.1.
The distribution has a peak at 7 = 75 and the variance increases as o increases.

Therefore, increasing spread in the distribution of time constants is associated
with increasing depression of the Cole~-Cole locus.

As was pointed out in section 2.6.1, dielectric response corresponding to the

Cole-Cole function is produced by the circuit shown in Fig. 2.3 which contains a
“constant-phase element”.

T'wo other distribution functions are due to Kirkwood and Fuos [42] and David-
son and Cole [43].
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Figure 3.1: The distribution function associated with the Cole-Cole distribution
of relazation times for different values a.

The first of these is symmetric, and is again based on an extension of the
Debye model. In Debye theory,

= = sechz (3.5)

Enac
where = = logw/w,. Instead of this, Kirkwood and Fuoss wrote

6”
E&: — sech'y:z: (3.6)

which leads to a distribution of the form

2  cos(ym/2)cosh~nys 3
e l7
G(s) m  cos?(ym/2) + sin?ys (3.7)

where s is again equivalent to log(7 /7).

The Davidson-Cole arc is a skewed in the complex ¢* plane, Fig. 3.2, and the
equation is:

€'~ € _ |
€9 — €00 B (1 "l".‘)”Ca..J‘T‘o)ﬂ (38)

The corresponding distribution of the relaxation times is highly asymmetric:

gin Sx» r B
G(7) = _1rL (-r,,--r) 0<7< 7 (3.9)
0 else
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Figure 3.2: Davidson-Cole arc.

3.2.2 Parametric Models

Several parametric models were developed to describe the variation of dielectric
properties of tissues as a function of frequency. Parameterisation of EIS data is

often based on the empirical Cole-Cole model. However, only few independent
parameters can be found.

Examples of parametric models for brain tissue have been reported by Foster

et al, {44]. The range of applicability of the models was limited by the data avail-
able to above 1 MHz, e.g. the y—dispersion frequency range.

A similar, but more extensive analysis was carried out by Hurt [36], who
published the data for muscle in the frequency range from 10 Hz to 10 GHz. Hurt

modelled the dielectric spectrum by the summation of five Debye dispersions in
addition to a conductivity term:

Z C":

Gabriel et al, [18], recently used the Hurt approach to compile and describe

the dielectric behaviour of biological tissues over a broad frequency range. The

spectrum from 10 Hz to 100 GHz was modelled as four dispersion regions. The
frequency dependence within each region was expressed as a Cole-Cole term:

Ae
W) = Eoo + —_— 3.11
FW) = oo £1+(Jwrn)<"""’ +sto (841
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The model assumes the existence of the specific, continuous distributions of
relaxation times. The DRT spectrum was assumed to consist of four near sym-
metrical peaks as in Figure 3.1. Although each peak is broadened by its own,
independent distribution parameter «, no effort was made to extract more in-
formation about the shape of each peak from the data. Choosing appropriate

parameters for each tissue it was only used to predict the dielectric behaviour
over a frequency range from Hz to GHz.

The parametric model can be used to obtained the dielectric spectrum over a
wide frequency range and can be used to distinguish different classes of biological
tissues. The empirical approach is useful in developing clinical techniques but does
not directly illuminate the link between specific non-electrical tissue characteris-
tics (cell size, shape, number, clustering, etc. ) and its raw frequency response.
The methods of Hurt and Gabriel yield, indirectly, discrete and continuous distri-
butions of dielectric relaxation times.

3.3 Inversion Formulae

3.3.1 The Analytic Inverse Problem

In electrical impedance spectroscopy the inverse problem is to determine the dis-
tribution of relaxation times from electrical measurements made on a material.

Introducing the proportion of dielectric time constants in the range [r, 7+d7] as

G(1)dr and the frequency response of the material, Q(w), the following expression
can be derived from the Debye equation:

Qjw) = elw) = oo _ 7 G(T) dr (3.12)

The network function Q(w) is the measured data in EIS. The above type of
the integral equation is known as a Fredholm integral equation of the first kind.
The function k(w, 7) = 7= is known as the kernel of the integral equation. It is
well known that as long as Q(w) is in the range of the integral operator then the
solution G(7) is unique up to the addition of a function in the null space. The
inversion of this type of integral is known to be Hadamard ill-posed, [45). Ill-posed
problems are considercd in detail in section 4.2. In particular, small changes in
the measured network function Q(7) can lead to arbitrarily large changes in the

relaxation spectrum G(r). The kernel k(w,7) is not self-adjoint but when Eqn.
3.12 is split into real and imaginary parts, the new kernels are real and symmetric
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and hence self-adjoint:

o0
Q(w) - jQ"(w) =
0
A more detailed introduction to Fredholm equations of the first kind and

problems associated with their solution as well as a stabilising techniques will be
discussed later.

G(r) dr — } [ w'rG('r) dr (3.13)

1+ wir? 1 + w?r?

3.3.2 Analytic Expressions

There exist several analytic expressions for the direct calculation of relaxation
time distributions from permittivity data. They are generally not useful for the
inversion of incomplete and noisy data due to ill-posedness of the inverse problem
but are included here for completeness.

The equation 3.12 can be rewritten in terms of parameter p = jw:

Qlp) =

In order for the distribution functlon G(7) be physically reasonable and realis-
able, it must satisfy certain conditions. First, it must be real and always positive

for any value of the variable 7 between 0 and oo. Also, from 3.14, it must be
normalised so that:

(3.14)

7G(T)d‘r = Q(O) =1 (315)

Macdonald, [46], has shown that by applying the transformation A = r~! and
AIG(AY) = D()) to Equation 3.14 yields:

T D())

Q(p) = [p“

where 3 represents the Laplace transform and S represents the iterated Laplace
transform or Stieltjes transform. Thus, D()) and hence G()\) can be recovered
from Q(p) by iterated inverse Laplace transforms. The Laplace transform may be
formally inverted using the Riemann Inversion Formula, which involves a complex
integral along a Bromwich contour. The inverse Laplace transform is well known
to be exponentially ill-posed. Algorithms exist for calculatin g values of the inverse

Laplace transform of functions known only at discrete, purely imaginary values of
p, such as Talbot’s Method [47] and later variants [48).

=20 = 93(D(N) = S(D(N)) (3.16)
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Working on the same integral equation in the field of rheology, Davies and
Anderssen [49] derive an expression for the direct inversion of the complex part
of the permittivity. Consider the real part of Eqn. 3.13:

Q' (ww = [ : +w27_2G(w)dT (3.17)

Applying the transformations 7 = e™%, w = €e~%, O(t) = wQ'(w) and ¥(s) =
G(7) to Eqn. 3.17 yields:

O(t) = ¥(s)ds (3.18)

[T

= / sech(t — s)¥(s)ds

0

The right hand side of equation 3.18 is in the form of a convolution and so,
assuming the Fourier transforms ©(p) = FO(t) and ¥(p) = F¥(s) exist:

¥(p) = -72—ré(p) cosh(%ﬂp) (3.19)

Thus ¥(p) and hence G(7) can be recovered from the inverse Fourier transform
of a filtered Fourier transform of ©(t).

3.4 Moving—Average Formulae

3.4.1 Introduction

Different attempts have been made by several researchers in the search for direct,
numerical inversion algorithms for following equations:

') — i G(7)
Q' (w) = 4 T2 dr (3.20)
Q') = [ 100 4 (3.21
0

The pair of equations 3.20 and 3.21 are also encountered in the field of rheol-
ogy where they describe the distribution of shear waves in a viscoelastic medium.

Davies and Anderssen [49], [50], [51] have proposed a direct inversion method for
use on shear wave data.
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In this chapter it will be shown that their results are equally applicable to
the inversion of normalised admittivity data to yield dielectric relaxation times.
The continuous moving-average formulae and then their discretised forms will be
presented. Two specific Sampling Localisation theorems are considered in detail
as they are useful and have the primary importance for the determination of the
extent of the interval over which the distribution of relaxation times is completely
recovered. An example of the application of the method will reconstruct a single

time constant distribution. The detailed derivation of these results are may be
found in the referenced articles.

3.4.2 Derivation of Continuous Moving—Average
Formulae

In this section the derivation of the moving-average formulae using mid-point
product integration is outlined, for more details refer to [50]. The results of
Davies and Anderssen are presented in the context of the recovery of dielectric
relaxation times.

Let the function S(w) be defined as:

S(w) = jwQ(w) (3.22)
Writing Eqn. 3.13 in terms of S(w) and taking real and imaginary parts yields:

, . ot T G(r)w?r2dr | T G(r)wr dr
SW+iS'0 = [ TiamT+i Trany 69

These equations are identical to the equations investigated by Davies and An-
derssen where S’ is the storage modulus and S” is the loss modulus of shear waves
in a viscoelastic fluid and G(7) is the relaxation spectrum.

Let 7,5 denote the contribution from dielectric relaxation times in the range

a < 7 < b; and G, be the mean of the relaxation time distribution over this
interval, i.e.

b
Nad = / G(r)dr (3.24)
Gy = b (3.25)

b-a
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Davies and Anderssen show that, provided In(b/a) < 7 then:

~In(a)+n/2

" ' S” dw
m=te= | [E(n(w) - B"(in(aw)) S22
~In(b)-=/2
~In(a)+7/2
I ! ! SI d(‘d
=n,, = / [E'(In(bw)) — E'(In(aw)) —f—j—{-)-j (3.26)
~In(b)~=x/2
where:
E(z)=lmEB(z)  E'()=limEi()
R R § z + %—'n'i
E;(z) = Es(z) +1E5(z) = 7r«'31'.)*'( 735 ), >0 (3.27)

Eqn. 3.26 provides two alternative routes to calculate S(w) which, given com-
plete and noiseless data, should yield the same result. The elementary sampling

function Ej(z) : § = 0 in the functional representations of 7, is composed of an
infinite number of pulses of infinite amplitude in the interval —7/2 < z < 7/2.

Davies and Anderssen used this result to prove the two Sampling Localisation
Theorems introduced in the subsequent section.

3.4.3 Sampling Localisation Theorems
Davies and Anderssen provided the answer to the fundamental question:
”What precise range of frequencies Wmin < W < Whmar need to be sampled in

order to determine the relazation spectrum over a given range of relazation times
a<7<b?

Throughout this thesis, reference will be made to the Sampling Localisation ..

Theorems and how limitations in the measurements of the permittivity data lead
to restrictions in the recoverable relaxation spectrum.

The First Sampling Localisation Theorem

If 1 <b/a < e”,then the distribution of dielectric relaxation times in the interval

a < T < b is completely determined by the admittivity in the angular frequency
range:

5 W< — (3.28)
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Table 3.1: Three Transcendental numbers.

e™  =23.14069263 = 1(1-3647635
ez  =4.81047738 = 1(0-68218818
"7 =0.20787958 = 107008218818

Q0

The Second Sampling Localisation Theorem

If b > ae™, then the dielectric relaxation times in the interval a < 7 < b are
completely determined by the admittivity in the two angular frequency ranges:

e‘% e% e'% e%
—_— — ua— —_— 3.29
T <w< = and — <w<— (3.29)

Three constants are important to introduce here: e*, e¥ and e~3. Floating

point approximations to these numbers are given in Table 3.1. Referring to this
table, the first theorem can be rewritten as:

Wmaz _ 1 01.36 (2) (3.30)

Wmin a
Thus, determining the dielectric relaxation time density in therangea < 7 < b

requires knowledge of the permittivity in the frequency range 1.36 decades broader
than the reciprocal range a~! < w < b1, 0.68 decades on either side.

The next conclusions follow from the above theorems:

e To recover the dielectric time constant distribution over a decade of relax-
ation times it is necessary to measure the permittivity over 2.36 decades of

frequency; i.e. , 0.68 decades either side of the reciprocal relaxation time
range.

e The measurements of the permittivity over at least 1.36 decades of frequency
are needed to tell anything about the relaxation spectrum.

3.4.4 Discretisation and Numerical Implementation

A numerical algorithm for the inversion of the normalised permittivity data to
yield the approximate relaxation time distribution can be obtained by the dis-
cretisation of Eqn. 3.26. Davies and Anderssen used mid-point product integra-

tion. This results in two, simple, moving-average formulae linking the permittivity
sampled at specific frequencies to the mean relaxation time density over.intervals... .. .
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The strategy proposed by Davies and Andessen can be summarised as follows.

To establish a correspondence between the continuous and discrete formulae,

the nature of the discretisation has to be defined. The permittivity data are
assumed to be available at discrete set of K + 1 frequencies:

Wk, k= 0, 1, cony K (3.31)

which increase as a function of k. To apply the formulae it is necessary to have
permittivity data exponentially sampled at frequencies given by:

wy = wo exp(hk) 0<k<K (3.32)

where A is a constant which is constrained by the length L of the moving-average
formulae, where L > 2 . The lowest frequency, wp, is unconstrained. The re-
Jaxation time distribution will be estimated at points in the reciprocal range

= 1/w;. Each relaxation time sample is at the geometric centre of an in-
terval [e“%‘rk, e%n] . If n; is defined as the integral of the relaxation time density

function over this interval, then the moving average formulae of length L are of
the form:

L
ni= > Q' (wju) j=L,L+1,.,K—-L
==L
Z Q" (wjs) j=L,L+1,..,.K~L (3.33)
==L

where n; = n; = 7j.
A numerical procedure for the calculation of the coefficients o; and 5;, based
on the discretisation of Eqn. 3.26, is given in Davies and Anderssen [50].

The coefficients o; and 8; may be determined by fitting the dual model:

J"-’.f)w
Sy(w) = ;1 = (3.34)
shw) = 3 e (3.35

where 7; is defined by Eqn. 3.33.

As an example, consider a DRT spectrum consisting of a single relaxation with
a time constant of one unit, f.e. G(7) is the delta function centred at 7 = 1:

G(r)=6(r-1) (3.36)
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then
2

! W {4 W

SW=i0m S =1, (3.37)
Using the formulae in Eqn. 3.33 with L = 4 the dielectric relaxation time

density based on 20 analytically calculated, permittivity samples at frequencies

{w = exp(£%F),i =0,1,..., 10} was reconstructed [22]. Figure 3.3 illustrates ob-

tained results.

In(w)

Figure 3.3: The reconstruction of a relazation time distribution G (7) = dé(r — 1)
using moving-average formulae of length 4.

The recovered relaxation spectrum is broadened due to the sampling of the
data space and the truncation of the moving-average filter. It can be seen that
a—formulae has recovered a better resolved spectrum than S—formulae for the
same length of filter L.

The alternative estimates for 7; from Eqn. 3.33 have different properties;
n; has higher noise amplification than 77 but also has higher resolving power.

Similarly, as the formula length L increasecs, the resolving power decreases but
the formulae become more robust to noise. L acts as a discrete regularisation
parameter. Due to this, one application of the formula may not be sufficient to
recover an accurate spectrum when using noisy data and so successive iterations of
the formulae are needed. Increasing the filter length, L, will smooth the spectrum
and some information about the spectrum contained in the original data will be
lost. It may be concluded that proposed formulac are sensitive to noise and, even

for perfect, noiseless data, the temporal resolution is limited by the finite sampling

interval of the data. The inflexibility of the method to regularisation is a major
‘handicap. ~  *- TR ,
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3.5 Summary

Analytic spectrum models and inversion formulae were discussed in this chapter.
Several models were introduced that represented permittivity spectra as sums of
Debye or Cole-Cole responses. Each response is controlled by a small number of

parameters. DRT spectra may be calculated by finding the best-fit parameterised
permittivity spectrum to the measured data.

The Davies-Anderssen method was more sophisticated in that it imaged arbi-
trary DRT spectra.

All the methods suffer from the inherent ill-posedness of the inverse problem.

Practical inversion algorithms must be robust and adaptable to noisy, inconsistent
and limited data.

Two important theorems in the section 3.4.3 define the measuring frequency
limits for the reconstruction of the complete distribution of relaxation times for
the area of interest. The knowledge of this theorems will define the frequency
range for experiments (Chapter 6).



- Chapter 4

(zalerkin Regularised Inverse
Method

4.1 Introduction

In the previous chapter, analytical and semi analytical methods for recovering re-

Jaxation spectra were discussed. These methods lacked adaptability to the range
of noise and errors likely to be present in real data.

In this chapter a Galerkin Regularised Inverse Method (GRIM) is proposed. It
applies standard mathematical methods to recover the relaxation time spectrum
from measurements of the real and imaginary parts of the impedance. As this
method solves the Fredholm integral, Eqn. 3.23, this leads to a general review
of inverse and ill-posed problems. The method is based on the Rayleigh-Ritz
Galerkin Approzimation which will be shown in detail. In the presentation it is
assumed that the analytic problem (e.g. integral equation) has been discretised
and discussion is therefore based on the finite-dimensional systems. However,
finite dimensional problems have properties very similar to those of continuous

ill-posed problems. To deal with the ill-posedness, the Tikhonov regularisation
method is used and presented in subsequent sections.

Finally, the resolution of the method and some attempts to improve it are
discussed.

30
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4.2 Inverse and Ill-posed Problems

The problem of determining the relaxation spectrum from permittivity measure-

ments involves the inversion of one or both of the following pair of integral equa-
tions:

T G(r)wr? dr

W= TEar T (4.1
vy _ TG dr
S'w) = 14+ w22 7 (42)

The common form of these equations is:

[ K(z,5)f@)dy = g(2) (4.3)

Each integral equation is a linear Fredholm integral of the first kind, where
K(z,y) is called the kernel, g(z) is a given function (usually called “data”), and

f(y) is an unknown function which is sought. This equation is important in
the theory of the inverse problems since many inverse problems lead to a linear

Fredholm integral equation, e.g. diffusion problems. Equation 4.3 could be also
written in terms of operators, i.e.

Kf=g ‘ (4.4)

where f isin the space Y, g is in the space X and K is a mapping from the space Y
into space X. A direct problem would be one where K(z,y) and f(y) were known

and g(z) is to be calculated. Assuming K was well-defined and continuous, then

for a given f there is a unique g, and small changes in f would lead to small
changes in g.

However, if instead of knowing f, the g function is known, or alternatively.
f and g are known but not K, then there is an inverse problem, which is less

straightforward to solve. The questions of existence, uniqueness and stability of
solutions arise.

At the beginning of the last century J. Hadamard formalised the concept of
well-posedness. He said that a well-posed problem was one where

1) a solution exists, i.e. for each gin Y thereisa fin X (existence)
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2) the solution is unique (uniqueness)

3) the solution depends continuously on the data (stability)

An ill-posed problem would be 6ne where one or more of the above criteria
does not hold. Usually mathematicians are more concerned with (2) and (3) since
(1) can usually be enforced. Clearly for (1) to hold there must be the equation
Y = K(X), that is, the mapping K: X — Y must be surjective. If a solution
does exist it may not be unique and the choice of the “best” one is required.
Non-uniqueness may be introduced because the data is discrete. Since the data
is also likely to have error or noise, then if the solution does not depend continu-
ously on the data these errors, even if small, will have a large effect on the solution.

A problem which is not well-posed is called #ll-posed. In this case many

functions f satisfy Kf = g within the accuracy that g is known. Some other
information is needed to choose one f from the many possible answers. Typically,

the f is chosen which optimise some smoothness criteria. This process for solving
ill-posed problems is known as regqularisation.

In EIS it would be useful to calculate the Relaxation Time Distribution G(7).
Unfortunately, the relaxation spectrum cannot be measured directly in experi-
ments. It is therefore necessary to use the equations which relate the relaxation
spectrum and the function S(w) defined by Eqn. 3.22. The link between the
measured permittivity data and related relaxation spectrum is:

S(w) = jwQ(w) = jw (M) =wQ" + jw@ =

__f 1 G(r)w?r?dr J/ G(r)wr dr (4.5)

+wir? T 1+w?r? r

It 1s thus evident that equations for real and imaginary parts of S(w) are Fred-
holm integral equations of the first kind, and the problem of calculating G(7),

knowing S’(w) and S”(w) is inverse and ill-posed. The ill-posedness of this prob-
lem is demonstrated in section 4.5.1. The experimental data, S'(w) and S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>