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2

We present an application of birth-and-death processes on configuration spaces to a generalized mutation-3

selection balance model. The model describes the aging of population as a process of accumulation of mu-4

tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces.5

Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which6

describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states7

(differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest8

are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic9

case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005,10

35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influ-11

ence of an epistatic potential.12

Key words:13

PACS: 02.50.Ga14

1. The model15

First recall some genetical concepts and notions, see e.g. [1]. A gene represents a (contiguous)16

region of DNA coding. It may have different forms, called alleles. Thus an allele is one of the17

variant forms of a gene that occupies a given locus (position) on a chromosome, i.e. alleles are18

DNA sequences that code a gene. An individual’s genotype for a certain gene is the collection19

of alleles it consists of. A change of genetic material is called a mutation, and the affected allele20

is called mutant allele. We call the “null genotype” the one which has wild-type alleles at every21

locus and carries none of mutant alleles. So a wild-type allele is an allele which is considered to22

be “normal” for the organism in question, as opposed to a mutant allele which appears due to23

mutation. In this chapter we will use the word “genotype” in a sense somewhat different from the24

mentioned above: a genotype represents a set of mutant alleles that an individual may carry. So in25

contrast to the usual definition we are interested only in the set of mutant alleles, rather than in26

the complete information about all alleles.27

In this section we describe a model introduced by [8], which describes the aging of a population.28

LetX be a Polish space, interpreted as the space of loci (i.e. positions of possible mutations). Denote29

the Borel σ−algebra on X by B(X), and fix a Borel σ-finite measure σ on (X,B(X)) – interpreted30

as mutation rate. For simplicity, we assume that at each locus at most one mutation may occur.31

A locally finite configuration of points in X (defined as usual) is interpreted as a genotype. Then32

γ = ∅ plays the role of the null genotype (wild-type genotype). The set of all genotypes γ is thus33

the configuration space Γ := Γ(X). We assume that genotypes are influenced by a selection cost34

Φ, which is a continuous function Φ : Γ −→ R, e.g. Φ(∅) = 0, Φ(γ) > 0, for γ 6= ∅.35

The emergence of mutant alleles is described by a stochastic process, the state of the population
of genotypes at each fixed moment of time t is described by a probability measure µt on Γ. The
time development of the population is modelled by a Kimura-Maruyama type equation

d

dt
µt(F ) = µt

(
∫

X

(F (· ∪ x) − F (·))dσ(x)

)

− µt(F · Φ) + µt(F )µt(Φ), (1)
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where µt(F ) :=
∫

Γ
Fdµt, F : Γ −→ R is a bounded cylindric function. The questions of interest

for us are: the existence of solution µt, convergence of µt → µ for t → +∞ and properties of the
obtained limiting state µ. The useful choice of time parameterization is to start the process in the
remote past, namely at time t = −T < 0, in the state µ−T . Then we arrive at t = 0 in the state
µ0,T . The limiting state for long time is then given by

lim
T→+∞

µ0,T = µ0 .

Next, we consider another representation of the model, which gives us an explicit solution of
equation (1) with the help of the Feynman-Kac formula. Denote by E := Γ(X). Remind that E is
a Polish space. Let L be a Markov generator defined by

LF (γ) =

∫

X

(F (γ ∪ x) − F (γ))dσ(x)

for bounded cylindric functions F : E −→ R. The continuous function Φ : E −→ R will play the
role of potential in Feynman-Kac formula. Rewriting (1) in terms of these notations we obtain

d

dt
µTt (F ) = µTt (LF ) − µTt (F · Φ) + µTt (F )µTt (Φ). (2)

Denote by µTt ,−T 6 t 6 0 the measure-valued dynamical system which is the solution of (2) for 1

each bounded cylindric function F : E −→ R, started in µT−T = µ. 2

The solution µTt of (2) can be explicitly written as

µTt =
1

Zt(Φ)
e(t+T )(L−Φ)∗µ,

where Zt is the normalizing constant. Via Feynmann-Kac formula we can represent µTt as

µTt (f) =
E

[

f(ξTt )e−
�

t

−T
Φ(ξT

τ )dτ
]

E

[

1 · e−
�

t

−T
Φ(ξT

τ )dτ
] ,

where ξTτ denotes the Markov process corresponding to the generator L, started in µT−T = µ.

Performing the limit T −→ +∞ gives us heuristically

µ0(f) =

∫

Ω(R−→E)

f(ξ(0))dνΦ(ξ(·)), (3)

where

dνΦ(ξ(·)) =
1

Z
e−

�
0

−∞
Φ(ξ(τ))dτdν0(ξ(·)), (4)

Z is the normalizing constant. 3

The aim of the following sections is to give proper sense to νΦ, defining the measure first in 4

a bounded volume and for finite time and then going to the limit. By means of νΦ we derive the 5

large time asymptotic for µT0 . 6

In the non-epistatic case the problem was posed and solved in [8]. The articles [3], [4] were 7

motivated by this work, and treat the case of a more general potential – the epistatic one. In both 8

articles the space of the possible positions of mutations is R
d. The generalization to a topological 9

space X seems important because of the nonlinear structure of the DNA. In our model we consider 10

a topological space X as the space of positions of mutations and the influence of an epistatic 11

potential. 12
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2. Pure birth process1

We define the pure birth Markov process on Γ(X), starting with an empty configuration at
time t = −T , via the generator

LBF (γ) =

∫

X

(F (γ ∪ y) − F (γ))σ(dy) (5)

for bounded cylinder functions F (γ). In our interpretation this means that there were no mutant2

alleles at the beginning, in other words we start with the null genotype. As the time passes, the3

mutations gradually appear in some points xi ∈ X at times ti, −T < ti 6 0, and then they stay4

forever.5

Notational convention: for readability reasons we prefer to consider the following positive times.
Nevertheless, we would like to consider 0 as the final time. Therefore, we reflect the time w.r.t. to
the origin. So we consider our pure birth process on the space of marked configurations Γ̂(X,R+),
which is defined by

Γ̂(X,R+) = {γ̂ = (γ, s(γ))| γ ∈ Γ(X), s(γ) = {sx|x ∈ γ}, sx ∈ R+}.

For more details about marked configuration spaces see cf. [1,6,7]. The spaces Γ̂(Λ,R+) and
Γ̂(Λ, [0, T ]) are defined analogously. Denote the marked Poisson measure on Γ̂(X, [0, T ]) by ν0

T ,

and its restriction to Γ̂(Λ, [0, T ]) by ν0
Λ,T . It is well known that the marked Poisson measure ν0

T

can be characterized by its Laplace transform

∫

Γ̂(X,[0,T ])

e〈f,γ̂〉dν0
T (γ̂) = exp

{

∫

X

∫ T

0

(ef(x,t) − 1)dtdσ(x)

}

, f ∈ C0(X × [0, T ]). (6)

The Markov birth process ξτ (γ̂), 0 6 τ 6 T (time is going backwards, i.e. the process starts at T
and ends at 0) on (Γ̂(X, [0, T ]), ν0

T ), corresponding to the generator (5) can be realized by

ξτ : Γ̂(X, [0, T ]) → Γ(X), ξτ (γ̂) = {x ∈ γ| τ 6 sx(γ)}. (7)

Further, we assume the effect of a selection cost function Φ : Γ −→ R+, which consists of two
parts:

Φ(γ) = Φne(γ) + Φe(γ).

Φne(γ) is the nonepistatic part, which describes the life costs of a mutation, and it is given by

Φne(γ) := 〈h, γ〉 =
∑

x∈γ

h(x), h(x) > c > 0.

Φe(γ) is the epistatic part, which describes the coexistence costs of mutations, and it is defined by

Φe(γ) :=
∑

{x,y}⊂γ

φ(x; y),

conditions on φ are specified later.6

As the configuration γ may contain, in general, infinite number of points, the above cost func-7

tions are well-defined only in a bounded region Λ ⊂ X.8

For convenience we introduce the corresponding path space measure in two steps: first we9

consider only the effect of the nonepistatic part of the cost function and then take into consideration10

the effect of the epistatic part.11

3
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2.1. The effect of nonepistatic part of the potential 1

First we construct the path space measure νh on the space Γ̂(X,R+), obtained under the effect
of Φne. The restriction of νh to Γ̂(Λ, [0, T ]) is denoted by νhΛ,T , and defined for bounded Λ ⊂ X as

dνhΛ,T (γ̂Λ) =
1

ZΛ,T
exp

{

−

∫ T

0

ΦT,Λne (ξτ (γ̂Λ))dτ

}

dν0
Λ,T (γ̂Λ), (8)

where ZΛ,T is the normalizing constant

ZΛ,T =

∫

Γ̂(Λ,[0,T ])

exp

{

−

∫ T

0

ΦT,Λne (ξτ (γ̂Λ))dτ

}

dν0
Λ,T (γ̂Λ). (9)

Then we obtain the measure νh as a limit of measures νhΛ,T , which are defined in a bounded volume 2

Λ and for finite time T . νhΛ,T is the so-called Gibbs perturbation of marked Poisson measure ν0
T plus . 3

First we will show that νhΛ,T still remains a Poisson measure. For this purpose we calculate its 4

intensity measure by computing the Laplace transform of νhΛ,T . 5

Lemma 2.1. Let F (γ̂) = e〈f,γ̂〉, f ∈ C0(X × [−T, 0]) where

〈f, γ̂〉 :=
∑

(x,tx)∈γ̂

f(x, tx) =

T
∫

0

∫

X

f(x, s)γ̂(dx,ds), γ̂ ∈ Γ̂(X,R+).

Then we have

∫

Γ̂(Λ,[0,T ])

F (γ̂Λ) exp

{

−

∫ T

0

ΦT,Λne (ξτ (γ̂Λ))dτ

}

dν0
Λ,T (γ̂Λ)

= exp

{

∫

Λ

∫ T

0

(exp {f(x, s) − sh(x)} − 1)dsdσ(x)

}

.

Then the normalizing constant ZΛ,T is

ZΛ,T = exp

{

∫

Λ

∫ T

0

(exp {−sh(x)} − 1)dsdσ(x)

}

. (10)

Calculating the integral of F = e〈f,γ̂〉 w.r.t the measure νhΛ,T we obtain

∫

F (γ̂Λ)dνhΛ,T (γ̂Λ) =
exp

{

∫

Λ

∫ T

0
(exp {f(x, s) − sh(x)} − 1)dsdσ(x)

}

exp
{

∫

Λ

∫ T

0
(exp {−sh(x)} − 1)dsdσ(x)

}

= exp

{

∫

Λ

∫ T

0

(ef(x,s) − 1)e−sh(x)dsdσ(x)

}

.

Thus νhΛ,T is a marked Poisson measure on Γ̂(Λ, [0, T ]) with intensity measure e−sh(x)dσ(x)ds. 6

Recall that we say that there exists a weak limit lim
Λ↑X

ρΛ = ρ if

∫

F (γ̂)dρΛ(γ̂) −−−−→
Λ↗X

∫

F (γ̂)dρ(γ̂).

for all bounded cylinder functions F ∈ FL0(Γ̂(X, [0, T ])). The set of cylinder functions FL0(Γ̂(X, [0, T ]))
is defined as the set of all measurable F such that there exists a Λ ∈ Bc(X) with

F (γ̂) = F (γ̂ �Λ×[0,T ]).

4
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We are interested in the weak limit of νhΛ,T for Λ ↑ X, T → +∞. In the case considered here the1

limit does not depend on the order in which the limits are taken. First we can take, for example,2

Λ ↑ X, then T → +∞. As a result we get the following statement:3

Theorem 2.2. 1) There exists a weak limit

lim
Λ↑X

νhΛ,T = νhT ,

where νhT is a marked Poisson measure on Γ̂(X, [0, T ]) with intensity measure e−sh(x)σ(dx)ds.4

2) There exists a weak limit

lim
T→+∞

νhT = νh,

where νh is a marked Poisson measure on Γ̂(X,R+) with the same intensity measure e−sh(x)σ(dx)ds.5

Ultimately, the measure νh can also be described as a marked point field γ̂ = (γ, sγ), where γ is6

distributed according to πσ/h(x) – Poisson measure on Γ(X) – with marks sx ∈ R+ distributed7

independently with probability p(ds) = h(x)e−h(x)sds on R+.8

The main object of our interest is the final distribution of mutations µh, i.e. it is the distribution
of end points of the bars. Recall that we have chosen the time range so that the final time is 0. We
obtain µh, similar to the construction above, as the limit of final distributions µ0

Λ,T given in the

bounded volume and for finite time. The measure µ0
Λ,T on Γ(X) is defined for F (η) = e〈f,η〉, η ∈

Γ(X) by

∫

Γ(X)

F (γΛ)dµ0
Λ,T (γΛ) :=

∫

Γ̂(Λ,[0,T ])

F (ξ0(γ̂Λ))dνhΛ,T (γ̂Λ)

=

∫

F (ξ0(γ̂Λ)) exp{−
∫ T

0
ΦT,Λne (ξt(γ̂Λ))dt}dν0

Λ,T (γ̂Λ)
∫

exp{−
∫ T

0
ΦT,Λne (ξt(γ̂Λ))dt}dν0

Λ,T (γ̂Λ)
. (11)

By definition of µhΛ,T the integral w.r.t. µhΛ,T is given by

∫

Γ̂(Λ,[0,T ])

F (γ̂)dµhΛ,T (γ̂) =

∫

Γ̂(Λ,[0,T ])
eT (LΛ−ΦT,Λ

ne )F (γ̂)dµ0
Λ,T (γ̂)

∫

Γ̂(Λ,[0,T ])
eT (LΛ−ΦT,Λ

ne )1dµ0
Λ,T (γ̂)

, (12)

so µ0
Λ,T is the solution of (1) in the bounded volume Λ for finite time T , where Φ(γ) := 〈h, γ〉.9

Note that for f ∈ C0(X), γ̂ ∈ Γ̂(X,R+) we have

〈f, ξ0(γ̂)〉 =

∫

X

T
∫

0

f(x)γ̂(dx,ds) = 〈F, γ̂〉,

where F (x, s) = f(x)11[0,T ](s). Therefore, the following lemma is the corollary of Lemma 2.1.10

Lemma 2.3. Let F (η) = e〈f,η〉, where η ∈ Γ(X), f ∈ C0(X). Then

∫

F (ξ0(γ̂Λ)) exp

{

−

∫ T

0

ΦT,Λne (ξt(γ̂Λ))dt

}

dν0
Λ,T (γ̂Λ)

= exp

{

∫

Λ

∫ T

0

(exp {f(x) − sh(x)} − 1)dsdσ(x)

}

.

5
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Now we calculate the integral in (11)

∫

F (γΛ)dµ0
Λ,T (γΛ) =

exp
{

∫

Λ

∫ T

0
(exp {f(x) − sh(x)} − 1)dsdσ(x)

}

exp
{

∫

Λ

∫ T

0
(exp {−sh(x)} − 1)dsdσ(x)

}

= exp

{
∫

Λ

(ef(x) − 1)
(1 − exp {−Th(x)})

h(x)
dσ(x)

}

.

Again, as before, we are interested in the weak limit of µ0
Λ,T for Λ ↑ X, T → +∞. The limit 1

does not depend on the order as well. We can first take for example Λ ↑ X, then T → +∞. As a 2

result, we get the following statement: 3

Theorem 2.4. (cf. [8]) 4

1) There exists a weak limit
lim
Λ↑X

µ0
Λ,T = µhT ,

where µhT is a Poisson measure on Γ(X) with intensity

(1 − exp {−Th(x)})

h(x)
dσ(x).

The weak limit means that for all bounded cylinder functions F ∈ FL0(Γ(X))

∫

F (γ̂)dµ0
Λ,T (γ̂) −−−−→

Λ↗X

∫

F (γ̂)dµhT (γ̂).

2) According to Lebesgues dominated convergence theorem, there exists a weak limit

lim
T→+∞

µhT = µh,

where µh is a Poisson measure on Γ(X) with intensity measure 1
h(x)σ. 5

2.2. The effect of the epistatic part of the potential 6

Now we include the effect of the epistatic part of the potential Φe(γ). We consider the Gibbs
perturbation of measure νh from Theorem 2.2 through Φe, i.e.

dνβ,φ(γ̂) =
1

Zβ
exp

{

−β

∫ +∞

0

Φe(ξτ (γ̂))dτ

}

dνh(γ̂), β > 0.

Again the construction is well-defined only for a bounded region Λ ⊂ X and we first consider the
restriction of measures to the space Γ̂(Λ,R+) :

dνβ,φΛ (γ̂Λ) =
1

Zβ,Λ
exp

{

−β

∫ +∞

0

ΦΛ
e (ξτ (γ̂Λ))dτ

}

dνhΛ(γ̂Λ). (13)

We define the measure νβ,φ as the weak limit of νβ,φΛ . The main technique is based on cluster
expansion method cf. [6,5]. Note that

∫ +∞

0

Φe(ξτ (γ̂))dτ =
∑

{x,y}⊆γ

φ(x; y)min(sx, sy), γ̂ = (γ, s(γ)).

To use the appropriate convergence theorems we have to make some assumptions on φ and ψ,
where

ψ(x̂, ŷ) := φ(x; y)min(sx, sy), x̂ = (x, sx), ŷ = (y, sy).

6
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(S) Stability of φ: ∃B > 0 such that ∀γ ∈ Γ0(X)

∑

{x,y}⊆γ

φ(x; y) > −B|γ|. (14)

(Iψ) Integrability of ψ

C(β, h) := esssup
y∈X, t∈R+

∫

X

∫ +∞

0

|e−βψ((x,s),(y,t)) − 1|e2βBs−hsdsσ(dx) <∞. (15)

Consequence of stability assumption:1

Lemma 2.5. Let φ fulfill (S). Then ∀γ̂ = (γ, s(γ)) ∈ Γ̂0(X,R+)

∑

{x,y}⊆γ

φ(x; y)min(sx, sy) > −B
∑

x∈γ

sx(γ). (16)

and ∀γ̂ = (γ, s(γ)) ∈ Γ̂0(X,R+) there exists x0 ∈ γ such that

∑

x∈γ\{x0}

φ(x;x0)min(sx, sx0
) > −2Bsx0

. (17)

2.3. Cluster expansion2

By the definition of dνβ,φΛ

dνβ,φΛ (γ̂Λ) =
1

Zβ,Λ
exp







−β
∑

{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)







dνhΛ(γ̂Λ). (18)

Denote by σ̂(dx,ds) = e−sh(x)σ(dx)ds. Theorem 2.2 says that νhΛ is the Poisson measure on

Γ̂(Λ,R+) with intensity σ̂(dx,ds). By the definition of Poisson and the Lebesgue-Poisson measure

dνhΛ = exp{−σ̂(Λ × [0,+∞))}dλσ̂ .

Then (18) can be written as

dµβ,φΛ (γ̂Λ) =
1

Ẑβ,Λ
exp







−β
∑

{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)







dλσ̂(γΛ),

where Ẑβ,Λ = Zβ,Λ · exp{σ̂(Λ × [0,+∞))}.3

Cluster expansion is a tool which is used to effectively estimate the Gibbs factor e−βE(γ) for
small parameters, see e.g. [7]. Here we follow the presentation given in [5,6]. There the cluster
expansion was generalized to a general metric space, i.e. no translation invariant structure is
present. In our case the factor which we are going to decompose is

pΛ,β(γ̂Λ) := exp







−β
∑

{x̂,ŷ}⊆γ̂Λ

ψ(x̂; ŷ)







. (19)

From [5,6] we know that the cluster decomposition of (19) is as follows:

pΛ,β(γ̂Λ) =
∑

(γ̂1,γ̂2,...,γ̂m)

(γ̂Λ) k(γ̂1)k(γ̂2) . . . k(γ̂m),

7
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pΛ,β(∅) = 1. Here
∑

(γ̂1,γ̂2,...,γ̂m)

(γ̂Λ) means the summation over all partitions of the configuration γ̂Λ 1

into non-empty subconfigurations γ̂i ⊆ γ̂Λ, i.e. over all non-ordered sets {γ̂1, γ̂2, . . . , γ̂m}, m = 2

1, 2, . . . , |γ̂Λ| of subconfigurations of γ̂Λ with pair-disjoint supports γi ⊆ γΛ such that ∪mi=1γi = γΛ. 3

The values of k(γ̂) are given for a finite non-empty configuration γ̂ by

k(γ̂) =
∑

G∈G(γ̂)

∏

{x,y}∈G

(e−βφ(x;y) min{sx,sy} − 1),

k(γ̂) = 1 if |γ̂| = 1. By G(γ̂) we denote the set of all connected graphs with the set of vertices γ,
and the product

∏

{x,y}∈G

is taken over all edges of the graph G. For γ ∈ Ω0 \ ∅, x̂ = (x, sx) ∈ γ̂

define k̄ as
k̄({x̂}, γ̂ \ {x̂}) := k(γ̂). (20)

The general idea of cluster expansion is to find a function Q dominating k̄. One can show that

Q(γ̂, ζ̂) =
∏

y∈γ∪ζ

exp{2βBsy}
∑

T∈T (γ̂∪ζ̂)

∏

{y,y′}∈T

|e−βφ(y,y′) min(sy,sy′ ) − 1| (21)

gives such an upper bound. Using the function Q we prove the following fact. 4

Theorem 2.6. Let Λ ∈ Bc(Γ̂(X,R+)) be given. Then for any parameters β and h such that
2βB − h < 0 and

C(β, h) <
1

2e
, (22)

where C(β, h) is given by the integrability condition (15), we have
∫

Γ̂(Λ,R+)\{∅}

∫

Γ̂0(X,R+)

|k(γ̂ ∪ η̂)|λσ̂(dγ̂)λσ̂(dη̂) <∞. (23)

From this theorem there follows our main result, similarly to Theorem 3.3.23 [5]. 5

Theorem 2.7. Let conditions (S), (Iψ) be fulfilled, 2βB − h < 0, and

C(β, h) <
1

2e
. (24)

Then there exists a weak limit νβ,φΛ → νβ,φ, Λ ↑ X. 6

We intend to find some sufficient conditions on φ such that conditions of Theorem 2.7 are
fulfilled. First, we derive another expression for C(β, h).

C(β, h) = esssup
y∈X, t∈R+

∫

X

β|φ(x, y)|(1 − e(2βB−h−βφ(x,y))t)

(2βB − h)(2βB − h− βφ(x, y))
σ(dx).

For applications in genetics it seems reasonable to assume that

φ(x, y) > 0, ∀x, y ∈ X.

In this case, the stability condition (14) is fulfilled for B = 0 and

C(β, h) = esssup
y∈X, t∈R+

∫

X

βφ(x, y)

h(h+ βφ(x, y))
(1 − e−(h+βφ(x,y))t)σ(dx).

From now on we assume for simplicity that h(x) ≡ const. Then, we have

C(β, h) = esssup
y∈X

∫

X

βφ(x, y)

h(h+ βφ(x, y))
σ(dx).

We reformulate Theorem 2.7 for nonnegative φ(x, y). 7

8
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Theorem 2.8. Let φ(x, y) be nonnegative, and

esssup
y∈X

∫

X

βφ(x, y)

h(h+ βφ(x, y))
σ(dx) 6

1

2e
. (25)

Then the weak limit νβ,φΛ → νβ,φ, Λ ↑ X exists.1
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Моделi селекцiйно-мутацiйного балансу з епiстатичною
селекцiєю

Ю.Кондратьєв, Т.Куна, Н.Олерiх

Унiверситет Бiлефельда, Бiлефельд, Нiмеччиная

Отримано 31 сiчня 2008 р.

20

Ми представляємо застосування процесiв народження-знищення на конфiгурацiйних просторах до21

узагальненої моделi селекцiйно-мутацiйного балансу. Модель описує старiння популяцiї як процес22

накопичення мутацiй в генотипi. В математично строгому пiдходi мутацiї вiдповiдають точкам у аб-23

страктному просторi. Наша модель описує нескiнчено-популяцiйну модель з безмежною кiлькiстю24

точок у континуумi. Динамiчне рiвняння, що описує систему, є типу Кiмури-Маруями. Проблема мо-25

же бути поставлена в термiнах еволюцiї станiв (диференцiальнi рiвняння) або, що є еквiвалентно, за26

допомогою формули Фейнмана-Каца. Дослiджується питання iснування розв’язку, його асимптоти-27

чної поведiнки, властивостi граничного стану. У неепiстатичному випадку проблема була поставлена28

i розв’язана у [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. В нашiй моделi ми29

розглядаємо топологiчний простiр X як простiр позицiй мутацiй та вплив на епiстатичний потенцiал.30

Ключовi слова:31

PACS: 02.50.Ga32
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