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3 We present an application of birth-and-death processes on configuration spaces to a generalized mutation-
4 selection balance model. The model describes the aging of population as a process of accumulation of mu-
5 tations in a genotype. A rigorous treatment demands that mutations correspond to points in abstract spaces.
6 Our model describes an infinite-population, infinite-sites model in continuum. The dynamical equation which
7 describes the system, is of Kimura-Maruyama type. The problem can be posed in terms of evolution of states
8 (differential equation) or, equivalently, represented in terms of Feynman-Kac formula. The questions of interest
9 are the existence of a solution, its asymptotic behavior, and properties of the limiting state. In the non-epistatic
10 case the problem was posed and solved in [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005,
11 35(1)]. In our model we consider a topological space X as the space of positions of mutations and the influ-
12 ence of an epistatic potential.

13 Key words:

14 PACS: 02.50.Ga

s 1. The model

16 First recall some genetical concepts and notions, see e.g. [1]. A gene represents a (contiguous)
17 region of DNA coding. It may have different forms, called alleles. Thus an allele is one of the
18 variant forms of a gene that occupies a given locus (position) on a chromosome, i.e. alleles are
19 DNA sequences that code a gene. An individual’s genotype for a certain gene is the collection
20 of alleles it consists of. A change of genetic material is called a mutation, and the affected allele
a1 is called mutant allele. We call the “null genotype” the one which has wild-type alleles at every
22 locus and carries none of mutant alleles. So a wild-type allele is an allele which is considered to
23 be “normal” for the organism in question, as opposed to a mutant allele which appears due to
2« mutation. In this chapter we will use the word “genotype” in a sense somewhat different from the
s mentioned above: a genotype represents a set of mutant alleles that an individual may carry. So in
26 contrast to the usual definition we are interested only in the set of mutant alleles, rather than in
27 the complete information about all alleles.
28 In this section we describe a model introduced by [8], which describes the aging of a population.
2 Let X be a Polish space, interpreted as the space of loci (i.e. positions of possible mutations). Denote
20 the Borel o—algebra on X by B(X), and fix a Borel o-finite measure ¢ on (X, B(X)) — interpreted
a1 as mutation rate. For simplicity, we assume that at each locus at most one mutation may occur.
2 A locally finite configuration of points in X (defined as usual) is interpreted as a genotype. Then
s v = 0 plays the role of the null genotype (wild-type genotype). The set of all genotypes v is thus
s the configuration space I' := T'(X). We assume that genotypes are influenced by a selection cost
s P, which is a continuous function ® : I' — R, e.g. ®(0) =0, ®(y) > 0, for v # 0.
The emergence of mutant alleles is described by a stochastic process, the state of the population
of genotypes at each fixed moment of time t is described by a probability measure p; on I'. The
time development of the population is modelled by a Kimura-Maruyama type equation

S lF) = ( | #eua) - F<~>>do<m>) (P ®) + o (F) (@), 1)
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where i (F) := [ Fdps, F: T — R is a bounded cylindric function. The questions of interest
for us are: the existence of solution p;, convergence of u; — u for ¢ — 400 and properties of the
obtained limiting state u. The useful choice of time parameterization is to start the process in the
remote past, namely at time ¢t = —T < 0, in the state pg_p. Then we arrive at ¢ = 0 in the state
to,7- The limiting state for long time is then given by

lim = .
o Mo, 7 = Mo

Next, we consider another representation of the model, which gives us an explicit solution of
equation (1) with the help of the Feynman-Kac formula. Denote by E := I'(X). Remind that E is
a Polish space. Let L be a Markov generator defined by

LF(y) = /X (F(yUz) — F(7))do(z)

for bounded cylindric functions F' : E — R. The continuous function ® : E — R will play the
role of potential in Feynman-Kac formula. Rewriting (1) in terms of these notations we obtain

d r

T (F) = pg (LF) = g (F - @) + i (F)p (®). (2)

Denote by uf, —T < t < 0 the measure-valued dynamical system which is the solution of (2) for
each bounded cylindric function F : E — R, started in u?, = pu.
The solution u of (2) can be explicitly written as

1 .
T_ _ - t+T)(L—P)
e =7 <I>)e K

where Z; is the normalizing constant. Via Feynmann-Kac formula we can represent u! as

E [f(el)e I'r 2]
E {1 P s <I>(£TT)dT}

pui (f) =

)

where ¢ denotes the Markov process corresponding to the generator L, started in puZ, = p.
Performing the limit 7' — 400 gives us heuristically

ml= [ HEOM ), ®)

where

A (E()) = e e HET g, (W

Z is the normalizing constant.

The aim of the following sections is to give proper sense to v®, defining the measure first in
a bounded volume and for finite time and then going to the limit. By means of #® we derive the
large time asymptotic for ud .

In the non-epistatic case the problem was posed and solved in [8]. The articles [3], [4] were
motivated by this work, and treat the case of a more general potential — the epistatic one. In both
articles the space of the possible positions of mutations is R?. The generalization to a topological
space X seems important because of the nonlinear structure of the DNA. In our model we consider
a topological space X as the space of positions of mutations and the influence of an epistatic
potential.
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2. Pure birth process

We define the pure birth Markov process on I'(X), starting with an empty configuration at
time ¢t = —7T, via the generator

LyF(y) = /X (F(yUy) — F(7))o(dy) (5)

for bounded cylinder functions F'(vy). In our interpretation this means that there were no mutant
alleles at the beginning, in other words we start with the null genotype. As the time passes, the
mutations gradually appear in some points z; € X at times ¢;, =T < ¢; < 0, and then they stay
forever.

Notational convention: for readability reasons we prefer to consider the following positive times.
Nevertheless, we would like to consider 0 as the final time. Therefore, we reflect the time w.r.t. to
the origin. So we consider our pure birth process on the space of marked configurations I'(X,R.),
which is defined by

DX Ry) = {5 = (7,s0)) v € T(X), s(7) = {sale € 7}, 50 € Ry},

For more details about marked configuration spaces see cf. [1,6,7]. The spaces I'(A,Ry) and
['(A,[0,T]) are defined analogously. Denote the marked Poisson measure on T'(X,[0,T]) by v,
and its restriction to I'(A,[0,T]) by I/XT. It is well known that the marked Poisson measure v,
can be characterized by its Laplace transform

T
/ e<fﬁ>dy%(@)—exp{ / / (ef(”)—l)dtda(x)}, f e Co(X x[0,T]). (6)
'(X,[0,77) x Jo

The Markov birth process &-(7),0 < 7 < T' (time is going backwards, i.e. the process starts at T
and ends at 0) on (I'(X,[0,T7]), ¥2), corresponding to the generator (5) can be realized by

& DX, [0,T]) = D(X), &) ={zeql<s(7)} (7)

Further, we assume the effect of a selection cost function ® : I' — R, which consists of two
parts:

(I)(fy) = (I)ne(’)/) + (be(y)'

®,,.(7) is the nonepistatic part, which describes the life costs of a mutation, and it is given by

e (7) = (h,7) = Y h(x), h(z) = c> 0.

rey

. () is the epistatic part, which describes the coexistence costs of mutations, and it is defined by

Oo(v) = Y lwy),

{z,y}Cy

conditions on ¢ are specified later.

As the configuration v may contain, in general, infinite number of points, the above cost func-
tions are well-defined only in a bounded region A C X.

For convenience we introduce the corresponding path space measure in two steps: first we
consider only the effect of the nonepistatic part of the cost function and then take into consideration
the effect of the epistatic part.
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2.1. The effect of nonepistatic part of the potential 1

First we construct the path space measure v" on the space f(X ,R;), obtained under the effect
of ®,,. The restriction of v to I'(A, [0, T1]) is denoted by v} 1, and defined for bounded A C X as

T
A} r(3n) = 57— exp {— | ot m»dv} a2 () ®

where Zj 7 is the normalizing constant

T
ZAT :[ exp {/ ‘I’ZéA(fr(’AYA))dT} dVR,T(’AYA)- 9)
£'(A,[0,T]) 0

h

Then we obtain the measure v" as a limit of measures v/} ., which are defined in a bounded volume

A and for finite time T'. l/k’T is the so-called Gibbs perturbation of marked Poisson measure V%plus . 3
First we will show that I/KT still remains a Poisson measure. For this purpose we calculate its 4
intensity measure by computing the Laplace transform of Z/X’T . 5

Lemma 2.1. Let F(¥) = e/ f € Co(X x [~T,0]) where

(z,tz)€%

T
(FAY=Y_ flat)=[ [ fx,9)5(dz,ds), §eD(X,Ry).
/]
Then we have
T
[ Flew { / @Zﬁ(@(%))df} a2 ()
£(A,0,T)) 0
T
=exp {/A/O (exp{f(x,s) — sh(x)} — l)dsda(aj)} .
Then the normalizing constant Zx ¢ is
Za 1 = €exp {/A/o (exp {—sh(z)} — 1)dsda(x)} . (10)

Calculating the integral of F' = e{/*") w.r.t the measure Z/X’T we obtain

exp {fA fOT(eXp {f(x,s) — sh(z)} — 1)dsda(1‘)}
FANAVE (Aa) =
/ Gn)dvi.r () exp { [, Jy (exp {~sh(x)} — dsdo(x)}

T
= exp {/ / (ef (@) 1)e_Sh(”)dsdo(m)} .
AJo

Thus I/k,T is a marked Poisson measure on I'(A, [0,T]) with intensity measure e=*"@)do(z)ds. &
Recall that we say that there exists a weak limit 11\1% pa = p if

[ FGaont) [ Fl)anti).

for all bounded cylinder functions F € FL°(I'(X, [0, T])). The set of cylinder functions FL°(I'(X, [0, T]))
is defined as the set of all measurable F' such that there exists a A € B.(X) with

F(7) = F(¥ Iaxjo,)-
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1 We are interested in the weak limit of I/k,T for AT X, T — +4o0. In the case considered here the
2 limit does not depend on the order in which the limits are taken. First we can take, for example,
3 AT X, then T — +00. As a result we get the following statement:

Theorem 2.2. 1) There exists a weak limit

lim v} . = vk
ATX AT T

« where v is a marked Poisson measure on T'(X, [0, T]) with intensity measure e~ g (dz)ds.

2) There exists a weak limit

lim vl =",
T—+o0 T
s where V" is a marked Poisson measure on (X, R ) with the same intensity measure e=*"®) g (dz)ds.

¢ Ultimately, the measure v can also be described as a marked point field 4 = (v, sy), where 7y is

7 distributed according to T, p(py — Poisson measure on I'(X) — with marks s, € Ry distributed
s independently with probability p(ds) = h(z)e”™®)*ds on R,.

The main object of our interest is the final distribution of mutations x", i.e. it is the distribution
of end points of the bars. Recall that we have chosen the time range so that the final time is 0. We
obtain p”, similar to the construction above, as the limit of final distributions /1,10\7T given in the

bounded volume and for finite time. The measure u} , on I'(X) is defined for F(n) = elfm n e
I'(X) by

‘/‘ fva>du%g«vA>::(/f F(€o(3a))dv} r(3n)
I(X) I'(A,[0,T7)

_ JF(&(n)) exp{- fo DL ft(ryl\))dt}dVRT(ﬁ/A)’
Jexp{— [ @ (& (An))dt}dv 1 (3a)

(11)

By definition of uf{’T the integral w.r.t. /‘/}(,T is given by

T,A ~ N

s i ff(A,[o,T])eT(LAfhc )F(’Y)dﬂg)\,T(’Y)
) F(y)dug r(7) = T T 100 (A
£(A,[0,7)) Jeaory €70 1A ()

(12)

s SO0 yUA7T is the solution of (1) in the bounded volume A for finite time T', where ®(vy) := (h,7).
Note that for f € Co(X), 4 € ['(X,R,) we have

o3 //f 3(de, ds) = (F,4),

©  where F(z,s) = f(z)ljo,7)(s). Therefore, the following lemma is the corollary of Lemma 2.1.

Lemma 2.3. Let F(n) = &'/ where n € T(X), f € Co(X). Then

T
/F(éo(%))exp{—/o @Z;A(Et(%))dt} AR 7 ()

T
= exp {/A/o (exp{f(x) —sh(x)} — l)dsda(x)} .
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Now we calculate the integral in (11)

exp {fA fOT(eXp {f(z) —sh(z)} — l)dsda(x)}
exp {fA fOT(exp {—sh(z)} — 1)dsda(w)}

~ exp { /A (/@ _ L= eXph{(;)Th(x)})da(x)} .

/F('YA)dM(/)\,T('YA) =

Again, as before, we are interested in the weak limit of yf , for A 7 X, T — +o0. The limit
does not depend on the order as well. We can first take for example AT X, then T — +00. As a
result, we get the following statement:

Theorem 2.4. (cf. [8])
1) There exists a weak limit

li h
Algl( ,UA T = K5
where pk is a Poisson measure on T'(X) with intensity

(1 — exp{-Th(x)})
7@ do(z).

The weak limit means that for all bounded cylinder functions F € FLY(I'(X))

[Pt —= [FOdkEG
2) According to Lebesgues dominated convergence theorem, there exists a weak limit

li =
T—l}foo'uT ,u )

where p" is a Poisson measure on I'(X) with intensity measure ﬁa.

2.2. The effect of the epistatic part of the potential

Now we include the effect of the epistatic part of the potential ®.(vy). We consider the Gibbs
perturbation of measure v" from Theorem 2.2 through ®., i.e.

—+o0
duﬁ%):;ﬁexp{—ﬁ / ée(fm))dr}duhw), >0,

Again the construction is well-defined only for a bounded region A C X and we first consider the
restriction of measures to the space I'(A,R ) :

+oo
af? 0 = e {0 [ e i f ko) (13)

)

We define the measure v%? as the weak limit of V§’¢. The main technique is based on cluster
expansion method cf. [6,5]. Note that

+oo
/0 ST = 3 Gy min(sas,), A= (35(1):

{z,y}Cv

To use the appropriate convergence theorems we have to make some assumptions on ¢ and 1,
where

P(2,9) = oz y) min(se, sy), &= (7,80), § = (y,8y)-
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(S) Stability of ¢: 3B > 0 such that Vy € I'o(X)
> b(x;y) = —Bhl. (14)
{z,y}Cvy

(Iy) Integrability of v

C(B,h) esssup / / le=Bv((@8).(w:1) _ 1|e2BBs—hsq50(dx) < oo. (15)
yEX teR

Consequence of stability assumption:

Lemma 2.5. Let ¢ fulfill (S). Then ¥4 = (v,s(7y)) € To(X,R,)

Z o(z;y) min(s,, sy) > BZSQC (16)

{z,y} <y zEY

and Y4 = (7, 5(7)) € To(X, Ry ) there exists xo € v such that

Z O(z; o) min(sy, Sg) = —2BSy,. (17)
z€y\{zo}
2.3. Cluster expansion
By the definition of duf’d’
A 1 ) .
Ay (Gn) = —exp Q=B D w(@5d) p dvi(a). (18)
8,A
{2,9}CAA
Denote by &(dz,ds) = e **®)g(dz)ds. Theorem 2.2 says that v} is the Poisson measure on

f(A, R, ) with intensity 6(dz,ds). By the definition of Poisson and the Lebesgue-Poisson measure
duvll = exp{—6&(A x [0, +00))}dAs .

Then (18) can be written as

1
RO = z—exp§ =8 D 0(E9) o drs(im)

BA {2,9}CAA

where Zg A = Zg 5 - exp{6(A x [0, +00))}.

Cluster expansion is a tool which is used to effectively estimate the Gibbs factor e #F() for
small parameters, see e.g. [7]. Here we follow the presentation given in [5,6]. There the cluster
expansion was generalized to a general metric space, i.e. no translation invariant structure is
present. In our case the factor which we are going to decompose is

pas(Ba) ==exp =8 > P(&:9) o - (19)

{2,9}CAA

From [5,6] we know that the cluster decomposition of (19) is as follows:

pas(n) = YO k(ERGA2) - k()

(F1:525--9m)
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pa,p(0) = 1. Here S (98) means the summation over all partitions of the configuration 44
(1925 ¥m)

into non-empty subconfigurations 4; C 4, i.e. over all non-ordered sets {%1,%2,...,%m}, m =

1,2,...,|9a]| of subconfigurations of 4, with pair-disjoint supports 7; C v such that U ;v; = ya.

The values of k(%) are given for a finite non-empty configuration 4 by
k(3) = Z H (efﬁ¢(m;y) min{sg,sy} _ 1),
Geg(y) {=y}eG

k(#) = 1if |5 = 1. By G(%) we denote the set of all connected graphs with the set of vertices =,

and the product [ is taken over all edges of the graph G. For v € Qo \ 0, & = (z,s,) € ¥
{z,y}eG
define k as

k({z}, A\ {2}) = k(). (20)
The general idea of cluster expansion is to find a function @ dominating k. One can show that
Q3.0 = [[ expf28Bs,} D [ [ert0mintunsn) —q (21)
yEYUC TeT(3ul) {y.y' T
gives such an upper bound. Using the function @ we prove the following fact.

Theorem 2.6. Let A € B.(I'(X,Ry)) be given. Then for any parameters 8 and h such that

28B —h <0 and
C(B,h) < - (22)

% )
where C(0, h) is given by the integrability condition (15), we have

/ / (Y U)X (d4) A (d) < oo (23)
F(A7R+)\{0} FO(X’R+)

From this theorem there follows our main result, similarly to Theorem 3.3.23 [5].

Theorem 2.7. Let conditions (S), (Iy) be fulfilled, 26B —h < 0, and
1
C(B,h) < % (24)

Then there exists a weak limit sz’d) — PP AT X.

We intend to find some sufficient conditions on ¢ such that conditions of Theorem 2.7 are
fulfilled. First, we derive another expression for C(8, h).

_ ﬁ|¢(m, y)|(1 _ e(2ﬁB—h—5¢(;¢,y))t)
C(B,h) = y’Ee)S(%Stlé%+ '« (2BB — 1)(26B — h — Bo(z,y)) o(dx).

For applications in genetics it seems reasonable to assume that

o(a,y) >0, Va,yeX.
In this case, the stability condition (14) is fulfilled for B = 0 and

N -, Bo(z,y) _ o (h+Bo(ay))t
C(ﬂ’h)‘yﬁifi‘é&/x hih+ Bole, ) C Jo(da).

From now on we assume for simplicity that h(x) = const. Then, we have

= esssu Ma z
G20 = yexp/ hh + Boo,g) "4

We reformulate Theorem 2.7 for nonnegative ¢(z,y).




10

11

12

13

14

15

16

17

18

19

20

21
22
23
24
25
26
27
28
29
30

31

32

Selection-mutation balance models with epistatic selection

Theorem 2.8. Let ¢(z,y) be nonnegative, and

- Boy) e L
esfexp/ Rt Do) S ge (25)

Then the weak limit l/f’(b — VPP AT X exists.
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Mopaeni cenekuiiHO-MyTaLiiHOro 6asaHcy 3 enicTaTUu4HoOIo
cenekuielo

l0.KoHgpatees, T.KyHa, H.Onepix

YHiBepcuteT binedenbaa, binedenbn, HimeydnHasn

OTpumaHo 31 ciyHg 2008 p.

Mwu npeacTaBAsSeEMO 3aCTOCYBaHHS NPOLLECIB HAPOAKEHHSA-3HNLLEHHS Ha KOHPIrypauinH1x npocTopax Ao
y3aranbHeHoi Mofeni cenekujiinHo-myTaujiiHoro 6anaHcy. Mogenb onucye ctapiHHsa nonynsauii Sk npouec
HaKOMWYEHHS MyTaLjil B reHoTMMNi. B MaTemMatnyHo cTporomy nigxonj MyTadii BignoBigaTs To4kaMm y ab-
CTpakTHOMY NpocTopi. Halwa mMoaenb onucye HeckiH4eHO-MoNynauiinHy MoAenb 3 6€3MEXHOI0 KiNbKiCTIo
TOYOK Y KOHTMHYYMi. [lJMHaMiyHe PIBHAHHS, WO onucye cuctemy, € Tuny Kimypu-Mapysmun. MNpobnema mo-
e OyTu nocTaBneHa B TepMiHax eBOOLi CTaHIB (andepeHLianbHi PiBHSAHHS) abo0, LLLO € eKBIBANIEHTHO, 3a
nonomoroto dopmynu PeiHmana-Kaua. JocnigxyeTbCst NUTaHHS ICHYBaHHS PO3B’A3KY, MOro aCUMNTOTU-
YHOT NOBeAiHKN, BNACTUBOCTI FPaHMYHOrO CTaHy. Y HeenictaTuyHOMy BUNaaky npobnema 6yna nocraBneHa
i po3B’'A3aHa y [Steinsaltz D., Evans S.N., Wachter K.W., Adv. Appl. Math., 2005, 35(1)]. B Hawliin mogeni mn
pO3rmMsAAaeEMO TONONOriYHUI NPOCTip X K NPOCTIP NO3uULLi MyTauiii Ta BB HA €NiCTaTUYHUIA NOTEHLLian.

Kniouogi cnosa:

PACS: 02.50.Ga
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