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Gamma estimator of Jarzynski equality for
recovering binding energies from noisy
dynamic data sets
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A fundamental problem in thermodynamics is the recovery of macroscopic equilibrated

interaction energies from experimentally measured single-molecular interactions. The Jar-

zynski equality forms a theoretical basis in recovering the free energy difference between two

states from exponentially averaged work performed to switch the states. In practice, the

exponentially averaged work value is estimated as the mean of finite samples. Numerical

simulations have shown that samples having thousands of measurements are not large

enough for the mean to converge when the fluctuation of external work is above 4 kBT, which

is easily observable in biomolecular interactions. We report the first example of a statis-

tical gamma work distribution applied to single molecule pulling experiments. The Gibbs free

energy of surface adsorption can be accurately evaluated even for a small sample size. The

values obtained are comparable to those derived from multi-parametric surface plasmon

resonance measurements and molecular dynamics simulations.
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Protein adsorption on surfaces is a common yet complicated
phenomenon1,2. Understanding the adsorption mechanism
is essential in developing new approaches and strategies for

biomedical implants, drug encapsulation and delivery, biotem-
plated material synthesis, antifouling, biosensing, and many other
applications. The reconstruction of adsorption free energy pro-
files along a reaction coordinate offers insights into the thermo-
dynamic and kinetic properties of an adsorption process.

A number of experimental techniques have been developed to
determine adsorption free energies of proteins. Multi-parametric
surface plasmon resonance spectroscopy (MP-SPR) and adsorp-
tion measurements using a quartz crystal microbalance (QCM)
are two commonly used label-free techniques to quantify protein
adsorption energies on surfaces. These techniques monitor real-
time adsorption and desorption processes of analyte flowing
through a channel and binding to a target. Kinetic information
can be used to extract adsorption free energy by fitting a theo-
retical model, such as the Langmuir model3–5. The theoretical
basis for this type of measurement is the chemical potential
equality at equilibrium. According to thermodynamic law, the
adsorption free energy is estimated as ΔG ¼ kBT ln KD

c� , where KD

is the dissociation equilibrium constant, kB is the Boltzmann
constant, T is the temperature in Kelvin, and c⊖ is the standard
reference concentration (1 M). A long-standing problem is to
recover the macroscopically observed ΔG from experimentally
measured single-molecule interactions6,7.

The Jarzynski equality (JE) opens up the possibility of
extracting adsorption free energy from single-molecule pulling
experiments (SMPE) using atomic force microscopy6–9. The JE
relates the adsorption free energy ΔG to the ensemble average of
the Boltzmann weights of the external work W required in
moving the protein from an adsorbed state to a free state in bulk
solution:

e�βΔG ¼ e�βW
� � ð1Þ

where β= 1/kBT and the bracket is the ensemble average of the
Boltzmann weights of the external work W over an infinite
number of repeated experiments. In the following, we will use kBT
as the units of work and energy so the symbol β is dropped.

The JE forms a rigorous theoretical basis for the extraction of
equilibrium free energy change from non-equilibrium single-
molecule pulling experiments. The commonly used JE estimatorcΔGMN is the mean of finite exponentially weighted work values
from experiments:

cΔGMN ¼ � log
1
N

XN
i¼1

e�Wi

 !
ð2Þ

However, cΔGMN estimates are notoriously difficult to converge.
It has been shown that when the standard deviation (SD) of work
is above 4 kBT, a sample size as large as 500,000 is not large
enough for the ΔGMN to converge10,11. The cΔGMN estimates are
strongly biased by small work values that rarely happen. The
trajectories corresponding to the small work values may not
appear in limited pulling repetitions or may be ignored by
operators. This leads to unreproducible results and discrepancies
in reported results12–14.

To overcome the difficulty, correction and extrapolation
schemes have been proposed in post-processing15,16. Methods to
limit large perturbations in the first place have also been pro-
posed6,9,17. Among them, the stiff-spring approximation has
proved efficient18. Under the stiff-spring approximation, the work
distribution is expected to be Gaussian with a small deviation
such that the average of exponential work can be reduced to the
fluctuation-dissipation (FD) theorem ΔG ¼ Wh i � 1

2 σ
2, where σ

is the standard deviation of the work distribution. Thus the free

energy can be estimated without an exponential operation as18:

cΔGFD ¼ Ŵ � 1
2
bσ2 ð3Þ

where Ŵ ¼ 1
N

PN
i¼1

Wi and bσ2 ¼ N
N�1

1
N

PN
i¼1

W2
i � 1

N

PN
i¼1

Wi

� �2
" #

.

The FD theorem is valid when the fluctuation of work is
comparable to temperature6,18. We refer to Eqs. (2) and (3) as the
mean and FD estimator of the JE, respectively.

However, in protein adsorption studies using SMPE, it is
easily observed that the work fluctuation is large, ranging from
a few kBT to hundreds. Even for a 12-mer short peptide A3
(Ala-Tyr-Ser-Ser-Gly-Ala-Pro-Pro-Met-Pro-Pro-Phe)19, the
reported adsorption free energies show large differences. The
A3 peptide is a well-studied gold binding peptide previously
identified from a combinatorial phage display peptide library.
Heinz et al. proposed that the entropic gain due to interfacial
water release compensates the entropic loss due to peptide
binding on a surface so that the calculated enthalpy change
−106 kBT is an acceptable approximation of binding
free energy20. Tang et al. argued that the entropic contribution
due to a large number of adsorbed conformations must be
accounted for to interpret a QCM measured binding adsorption
free energy −12.8 kBT4. To investigate the discrepancy, we have
studied the binding of peptide A3 on a gold (111) surface using
SMPE. Indeed, we have found the above two estimators of JE
are not applicable. For the mean estimator cΔGMN, the results
differ from one experiment to another due to the available small
sample sizes of work values obtained from experiments. Since
the work fluctuation is large, the Gaussian work distribution
estimator cΔGFD is not applicable either. Motivated by recent
theoretical work11, we have observed that the underlying work
distribution is a gamma distribution. For a given gamma dis-
tribution with probability density function

ρ Wð Þ ¼ λαWα�1e�λW=Γ αð Þ forW> 0; ð4Þ
an exact expression for ΔG can be obtained as11

ΔGGA ¼ α ln
λþ 1
λ

� �
ð5Þ

where α and λ are the shape and rate parameters of the gamma
distribution. For a finite set of experimental data Wif gNi¼1, the
parameters α and λ can be estimated by maximizing the log of
the likelihood function as

L ¼
XN
i¼1

logðλαWα�1
i e�λWi=Γ αð ÞÞ ð6Þ

We refer to cΔGGA as the gamma estimator of JE. To implement
the gamma estimator for peptide adsorption free energy calcu-
lations, pulling trajectories for single-peptide binding events must
first be sorted out. Such a task is difficult to manually accomplish
because real force-distance curves exhibit complicated patterns12.
Large efforts have been devoted to both automatically and reliably
sorting out single binding events21–29. To the best of our
knowledge, there is no open-source code available for free energy
calculations. We have developed the R package afmFreeEnergy
tool; the implementation code is freely available at https://github.
com/comtook/afmFreeEnergy. The efficiency of the procedure
has been demonstrated by calculating the A3 peptide adsorption
free energy on a gold surface. Furthermore, the estimated
adsorption free energy is compared with that obtained from MP-
SPR measurements and molecular dynamics simulation using the
adaptive biasing force (ABF) algorithm30–33.
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Results
Single-peptide pulling experiments. A schematic representation
of the AFM experimental setup is shown in Fig. 1a. The distance
Ds from the tip to the surface is called the separation distance.
The distance Dp from the cantilever to surface is called the piezo
displacement. The AFM tip is functionalized with the peptide via
a heterobifunctional maleimide (MAL) terminated polyethylene
glycol (–PEG–)n linker. The linker serves two functions—to
extend the peptide away from the tip and to provide rotational
freedom for the peptide to interact with the surface. To facilitate
coupling of the A3 peptide to the linker, a tetrapeptide segment
containing a cysteine residue and three glycine residues are
appended on the C-terminus of the A3 peptide (AYSS-
GAPPMPPF-GGGC).

When the cantilever moves towards (approach) and away
(retraction) from the gold surface, it will deflect from its
horizontal level due to interfacial interactions between the
surface and molecular entities on the tip. The cantilever
deflection (distance) can be detected and converted into
interaction force using Hooke’s law and the force-distance
curves are acquired. A representative force-distance curve
(FDC) is shown in Fig. 1b.

When the tip is far away from the surface, it experiences no
interaction with the surface so that the force in this bulk region
fluctuates around zero according to a Gaussian distribution due
to molecular thermal motion. We have used a linear regression
method to align the force-distance curve so that the force is
around zero when the tip is away from the surface. We have used
a parameter Alpha= 0.5 ~ 0.7 to indicate the percent of collected
data points that are away from the surface. A true interaction
force signal must be above a certain noise level LOD * σ, where σ

is the standard deviation of the Gaussian noise, and LOD is the
limit of detection.

When the tip is close to the surface, van der Waals and
electrostatic repulsive interactions push the cantilever to deflect
upward, where the resulting force is positive. When the repulsive
force reaches a threshold, the tip is paused for seconds to allow
the peptide to fully relax on the surface. Then the cantilever is
retracted away from the surface at a constant pulling rate. The
first negative force minimum close to Dp= 0 is mainly due to van
der Waals and electrostatic attractive interactions between the tip
and the surface. When the cantilever moves to a point indicated
by the black vertical arrow in Fig. 1b, the PEG linker is fully
relaxed, whereas the peptide remains in contact with the surface.
We define the state corresponding to this point as the peptide
binding state A. Starting from this point, a parabolic segment
representing the stretching of the PEG linker is observed. When
the peptide is completely pulled away from the surface, the force
abruptly returns to zero, which is observed as a step function
shape in the FDC. We define this state as the free state B as
indicated with the vertical red arrow in Fig. 1b. The integration
from A to B along the parabolic segment is the required external
work to pull the peptide from its binding state (state A) to its free
state (state B). This is the work value used in the JE equation.

Data processing. As commonly seen in AFM measurements,
most of the collected curves do not meet the features described
above. Thus, it is highly desirable to quantify selected features to
automatically screen all collected curves for those satisfying the
above-described features. To this end, we have developed an R
package named afmFreeEnergy to automatically search for those
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Fig. 1 Free energy estimates from atomic force microscopy (AFM) pulling experiments. a Schematic of the AFM tip modification and experimental setup;
Dp is the piezo displacement; Ds is the tip-sample separation distance; Dt is the height of the tip; D is the deflection. b Representative force-distance curve
consisting of two segments: approach to surface (black horizontal arrow) and retraction from surface (red horizontal arrow); the vertical black and red
arrows correspond to the two quasi-equilibrium states A (bound peptide) and B (free peptide). c The different combinations of experimental parameters
yield different free energy values and converge to a unique value, as indicated by the dashed red line.
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curves satisfying the above-described features. First, we use a
linear regression method to align the force-distance curve so that
the force is around zero in the non-interaction bulk region.
Second, we locate the state B noticing that it corresponds to a
discontinuous point in the force-distance curve. This implies that
it corresponds to a maximum of the derivative of the force-
distance curve. Third, the minimum negative force close to state B
must be less than −LOD * σ, representing a true binding signal.
Fourth, we locate A having minimum absolute force in the
baseline bounded by mulBase * σ closest to B, where mulBase= 2
~ 4, depending on perturbation level. Lastly, the parabolic seg-
ment is fitted into the worm-like chain (WLC) model. For each
curve meeting the above criteria, we calculate the work value by
integrating the parabolic segment from point A to point B. Using
the obtained work, the free energy difference between State A and
State B are estimated.

Free energy calculations. The free energy difference between
states A and B is independent of the trajectory pathways and
pulling rates, so a hard criterion for verification of the calculated
free energy difference is that the obtained values must be the
same, to within experimental error, from different pulling
experiments at different pulling rates. To meet this criterion,
we have collected two sets of data at two different pulling rates
500 nm/s and 1000 nm/s. To ensure whether the results are
reproducible, we have repeated the process at different surface
contact areas at the pulling rate 500 nm/s. We also obtained
additional data from the A3 peptide without the C-terminus
GGG linker. We acquired and processed four data sets A, B, C
and D at the pulling rates 500 nm/s, 1000 nm/s, 500 nm/s, and
500 nm/s, respectively. The raw data consists of 812, 1667, 501,
and 785 curves, respectively, and are shown in Supplementary
Fig. 1a–d with details of the experimental parameters listed in
Supplementary Table 1.

Using afmFreeEnergy, we automatically sorted curves meeting
the established criteria based on four parameters Alpha, LOD,
mulBase, and nlsEr. mulBase is the baseline fluctuation level
allowing baseline force fluctuation bounded by mulBase * σ. nlsEr
is the error tolerance bounded by nlsEr * σ for WLC fitting
average residues. Setting Alpha= 0.5 or 0.7, mulBase= 2 or 3,
nlsEr= 2 or 3, and varying LOD from 3 to 9, we have obtained
different free energy estimates using the three estimators.
However, the gamma estimates converge to a unique value
16.77 ± 0.07 kBT as shown in Fig. 1c, indicated by the red dashed
line. The parameters, estimates and test statistics close to this
unique value for each dataset are listed in Table 1. The selected
curves based on the parameters in Table 1 are shown in
Supplementary Fig. 1e–h.

Using the identified curves shown in Supplementary Fig. 1e–h,
the external work values are calculated. The histograms of the
work values with gamma distribution fits are shown in Fig. 2a–d
for dataset A, B, C, and D, respectively. The empirical cumulative
distribution function i�0:5

N ; i ¼ 1; � � �N (N is the number of data
points) comparing to the calculated gamma distribution using
Eq. (4) is shown in Fig. 2e–h.

The statistical hypothesis that the work values may be
represented by a gamma distribution is tested using the
Kolmogorov–Smirnov test34. The P-values for data sets A, B, C,
and D are 0.98, 0.96, 0.93, and 0.85, respectively, which strongly
support the hypothesis. The gamma estimator of JE produces the
estimate of the free energy 16.67, 16.84, 16.79, and 16.78 kBT for
data sets A, B, C, and D, respectively.

The mean estimator produces the free energy 49.46, 47.85,
42.92, and 85.12 kBT for datasets A, B, C, and D, respectively.
Thus, different datasets yielded different values, and no

convergent result was obtained. This clearly implies that, based
on small experimental sample sizes, caution must be exercised in
estimating the free energy using the mean JE estimator.

If the work distribution is modeled by a Gaussian distribution
as shown in Supplementary Fig. 2, the probability of having
negative work values for dataset A, B, C, and D is 0.017, 0.02,
0.011, and 0.022 because of large fluctuations σ= 104, 96, 58, and
133 kBT, respectively. In this case, the FD estimators are not
applicable, since in our experimental setting negative work values
should never occur. This implies that the negative work values in
the left tail of a Gaussian distribution overestimate and dominate
the free energy estimates, which yield nonphysical results −5140,
−4431, −1532, and −8619 kBT. Only the gamma estimator gives
consistent results in all four cases.

First, note that the gamma density curves in Fig. 2a–d are
drawn using Eq. (4) with parameters α= (4.198, 4.42, 5.11, 3.968)
and λ= (0.019, 0.023, 0.039, 0.015) which maximize the
likelihood function (Eq. (6)) for dataset A, B, C, and D,
respectively. The histograms under the curves are added for
comparison and the bin sizes have no impact on the free energy
estimates, as shown in Supplementary Fig. 3. Assuming the data
come from a gamma distribution, we have found that the
maximum likelihood method is consistent and efficient for
estimating the parameters characterizing the distribution. It
would be very appealing if we could nonparametrically learn a
distribution model directly from data by plotting a histogram. We
provide a description in deriving a distribution model from a
histogram in Supplementary Note 1.

Second, to investigate whether there is overfitting, we have
randomly shuffled the obtained work values and randomly selected
90% to repeat the gamma fitting (10 times). The obtained average
gamma distribution parameters α= (4.284 ± 0.215, 4.414 ± 0.174,
5.113 ± 0.169, 3.964 ± 0.165) and λ= (0.0197 ± 0.000996, 0.0226 ±
0.000923, 0.0389 ± 0.00196, 0.0148 ± 0.000544) for dataset A, B, C,
and D agree very well with the point estimates of the full work
values. Figure 3a shows the gamma density functions derived from
total or partial data sets agree well for each dataset. This implies that
there is no overfitting.

Third, we noticed the shape of the work distribution of dataset
C is different from the others. The cumulative distribution
function for dataset C converges towards 1.0 about 250 kBT while

Table 1 Parameters and statistics for A3-gold adsorption
free energy estimates.

Dataset A B C D

parameters Alpha 0.5 0.5 0.5 0.7
mulBase 3 2.4 2.6 4
LOD 5.5 5.5 5.5 9
nlsEr 3 2 3 3

Mean Samples 171 48 79 47
ΔGMN 49.46 47.85 42.92 85.12

Gamma ΔGGA 16.67 16.84 16.79 16.78
Shape 4.198 4.42 5.11 3.968
Rate 0.019 0.023 0.039 0.015
DKS 0.037 0.069 0.059 0.086
P 0.976 0.96 0.93 0.853

Norm ΔGFD −5140 −4431 −1532 −8619
Mean 219 195 132 268
Sd 104 96 58 133
DKS 0.069 0.11 0.091 0.113
P 0.397 0.62 0.49 0.546
Prob 0.017 0.02 0.011 0.022

DKS is the Kolmogorov–Smirnov test statistic; P is the P-value representing the likelihood of
observing the test statistic; Prob is the probability of taking a negative work value.
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others accumulate towards 1.0 about 600 kBT. Since work values
depend on peptide binding conformation and pulling pathways,
we speculate that some conformations with stronger binding may
be lost in collecting the smallest dataset C. This provides strong
evidence to support the suggestion that the peptide undergoes
significant conformational changes upon adsorption on a surface
as Tang et al. proposed4. However, it is very interesting to see
from Fig. 3a that all four curves converge around 17 kBT. As
stated in the introduction section, the adsorption free energy is
dominated by the small work values, and what really matters is
the overlap of the distribution in the small work region.

Fourth, deletion of the GGG linker in data set D shows no
impact on the estimated adsorption free energy. One reason the
GGG linker has little impact is because the glycine residues have

no functional side group to interact with the gold surface.
Additionally, the strong hydrophilicity of the cysteine carbox-
ylate, as well as the carbonyl groups of the maleimide and amide
groups in the functionalized PEG linker, pulls it away from the
surface and prevent their interaction with the gold substrate.
Additional details regarding the impact of the linker are provided
in Supplementary Note 2. Computational experiments were
performed on the simulated molecule (SM) shown in Supple-
mentary Fig. 4 and the results are shown in Supplementary Fig. 5.

Last, we can compare our estimates with analytical solutions.
The contour lines obtained from Eq. (5) in Fig. 3b show that a
particular free energy value can be obtained by infinite
combinations of the shape and rate parameters α and λ. Our
estimates coincide with the contour curve of free energy ~17 kBT.
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Based on the above discussion, we conclude that the adsorption
free energy of A3 peptide on gold surface is 16.77 ± 0.07 kBT.

Free adsorption energy from MP-SPR experiments. To com-
pare the above result with macroscopic measurements, we have
collected a range of kinetic data from MP-SPR experiments at 0.1,
0.5, 1, and 25 μM peptide concentrations. They are fitted by least-
squares regression to Langmuir isotherms given by3:

θ tð Þ ¼ C
C þ KD

1� e�kobst
� � ð7Þ

where θ(t) is the fraction of surface coverage, C is the con-
centration, kobs= kaC+ kd is the observed rate constant where ka
and kd are the association and dissociation rate constants, KD=
kd/ka is the equilibrium dissociation constant, θeq= C/(C+ KD) is
the equilibrium fraction of surface coverage, and t is time.

One of the key assumptions for the Langmuir model is that
peptide-peptide interactions are ignored. This implies that the
Langmuir model should work well in infinite dilute solutions. As
Fig. 4a, b shows, at the initial short time period up to 400 s and
under low concentrations (0.1, 0.5, and 1 μM), the Langmuir model
fits very well with the kinetic profiles obtained by MP-SPR.
However, at high concentration 25 μM, obvious deviation of the
experimental data from the fitting curve can be observed. Therefore,
we used the kinetic profiles obtained at the three lowest
concentrations to extract the kinetic rate constants. We repeated
the analysis using three different time periods 300 s, 350 s, and 400 s
to make sure that overfitting has not occurred.

For each concentration, the fitting analysis shown in Fig. 4b
produces a pair of values θeq and kobs. We have used linear
regression to calculate the adsorption (ka) and desorption (kd)

rate constants as shown in Fig. 4c. The obtained values are listed
in Table 2.

According to the fitting, the average value obtained for KD is
0.154 ± 0.019 µM. Using equation ΔG ¼ RT ln KD

c� , where R is
the ideal gas constant, T is the temperature in Kelvin and c⊖ is the
standard reference concentration (1 M), the adsorption free
energy ΔG for this system is estimated as −15.69 ± 0.13 kBT, in
excellent agreement with the result obtained from single-peptide
pulling experiments.

Molecular dynamics simulation. We have further validated the
experimentally determined adsorption free energy using the
adaptive biasing force method (ABF)33,35,36. First, we constructed
the potential mean force (PMF) profile as described in the
methods section. The reaction coordinate D is defined as the
distance from the mass center of the peptide alpha carbons to
surface. The PMF profile in Fig. 5a shows four different phases:
(1) when D > 2 nm, the peptide is in the bulk solvent; (2) when
2 >D > 1.2 nm, biased diffusion occurs to the peptide; (3) when
1.2 >D > 0.9 nm, the N terminal of the peptide touches the sur-
face, which is shown in Fig. 5b. This yields a narrow plateau
around 1 nm in the PMF curve; (4) When 0.9 >D > 0.5 nm, the
peptide experiences conformational changes and adsorbs on the
surface. Representative peptide conformations are shown in
Fig. 5c, d. This adsorption scenario is in agreement with the
adsorption process observed by other groups37.

The above observations allow us to set a separation distance D0

at any position in the plateau 1.2 >D > 0.9 nm to define an
adsorbed state (a) for distances shorter than D0 and a solution
state (s) for larger distances than D0. Thus, the average probability
of finding the peptide in the adsorbed and solution states is
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Fig. 4 Fitting of the multi-parametric surface plasmon resonance (MP-SPR) experimental data using the Langmuir model. a Kinetic profiles obtained by
MP-SPR at four different concentrations, fitted in the full range 600 s. The experimental data is denoted by the circles and the solid lines are the respective
fitting curves. b The initial 400 s data at low concentrations used to extract kinetic rate constants. c Observed rate constants (kobs) plotted as a function of
the peptide concentration. Linear regression was used to calculate the adsorption (ka) and desorption (kd) rates.

Table 2 Kinetics extracted from MP-SPR data.

Duration (s) ka (M−1 s−1) kd × 10−3 (s−1) KD × 10−7 (M) ΔGads (kBT)

300 10568.27 ± 1008.29 1.43 ± 0.65 1.36 ± 0.62 −15.81 ± 0.46
350 9882.01 ± 244.17 1.71 ± 0.16 1.73 ± 0.16 −15.57 ± 0.09
400 9769.10 ± 69.66 1.49 ± 0.05 1.53 ± 0.05 −15.69 ± 0.03
Average 10073.13 ± 432.50 1.55 ± 0.15 1.54 ± 0.19 −15.69 ± 0.13

Adsorption rate (ka), desorption rate (kd), equilibrium dissociation constant (KD), and free adsorption energy estimated for three different initial time periods.
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proportional to ρa and ρs, which can be calculated by38–40

ρa ¼
1

D0 � Dmin

ZD0

Dmin

e�βΔG zð Þdz ð8Þ

ρs ¼
1

Dmax � D0

ZDmax

D0

e�βΔG zð Þdz ð9Þ

where Dmin= 0.5 nm, D0= 1.0 nm, and Dmax= 4.2 nm.
Next, we have calculated the adsorption free energy from PMF

data collected at 350 ns, 400 ns, and 450 ns using the following
equation

ΔGads ¼ �kBT ln
ρa
ρs

� �
ð10Þ

The averaged adsorption free energy ΔGads ¼�17:598 ± 0:265 kBT is in good agreement with experimental
values.

We have noticed that the estimated adsorption free energy
using Eq. (10) depends on the choice of the separation distance
D0. If we choose D0 around 2 nm counting the biased diffusion
peptide as a bound peptide, the estimated adsorption free
energy is about 26.82 kBT, which gives the upper bound of the

adsorption free energy. Between the two adsorption free energy
values 12.8 and 106 kBT reported previously4,20, our result
supports the hypothesis that significant conformational change
of A3 upon adsorption on gold surfaces contributes to the
entropic change.

In the SMPE measurement, a linker –GGGC-MAL-(PEG)n– is
covalently attached to the C-terminus of the peptide A3. In the
MP-SPR measurement and ABF-MD simulation, only the peptide
A3 is investigated. But comparable adsorption free energy has
been obtained. Is the agreement a coincidence? To answer this
question, we have performed two additional experiments. The
first one is to vary the linker by deleting GGG in the data set D.
The second one is to apply the same approach to a new peptide-
graphene system as described in Supplementary Note 3 and
displayed in Supplementary Fig. 6. In both cases, we have seen
little impact of the linker on the estimated adsorption free energy.
One explanation is that in choosing the right bound state A in the
data process, the impact of the linker is effectively excluded.
Indeed, we have seen the results depend on the choice of the
bound state A by varying the parameter mulBase, as shown in
Fig. 1c. The other explanation is that the maleimide-based linker
is away from the surface. We have discussed this possibility in
Supplementary Note 2. In conclusion, the approach proposed
here is robust in extracting adsorption free energies from surface
bound peptides.
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Fig. 5 Molecular dynamics simulation. a The calculated potential of mean force (PMF) using adaptive biasing force method. After 400 ns simulation, the
solution converges. b Snapshot of peptide conformation in the window centered at 1.5 nm; when the distance of the mass center of all the alpha carbons of
the peptide from surface is ~1.2 nm, the N-terminal touches the surface and stays for a while, which corresponds to the plateau around 1 nm shown in (a).
c Snapshot of peptide conformation in the window centered at 0.9 nm. d Snapshot of peptide conformation in the window centered at 0.3 nm. The center-
of-mass is represented by a red sphere.
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Discussion
The Jarzynski equality has been widely used to evaluate equili-
brium free energy differences from single-molecule pulling
experiments. We have estimated the adsorption free energy of the
A3 peptide on a gold surface using different estimators of the
Jarzynski equality. The finite sample average estimator is biased
by small work values. Based on small experimental sample sizes,
those rare trajectories having small work values may be collected
or may be lost, so divergent results may be obtained so that
extreme caution must be exercised in estimating the free energy
using the average JE estimator. The hard criterion is that the same
free energy should be obtained using different pulling rates.
When the Gaussian work distribution approximation has been
proven to be in the regime of near-equilibrium, where the work
fluctuation is about kBT, we have demonstrated that the Gaussian
work distribution estimator gives nonphysical results when the
work fluctuation is much greater than kBT. Here we have pre-
sented the first real-world example demonstrating a gamma work
distribution with SPME. Using a gamma distribution estimator,
four datasets produced consistent results comparable to those
obtained from MP-SPR and molecular dynamics. Our results
demonstrate the advantage of the gamma distribution estimator
in estimating the adsorption free energy of peptide adsorbed on
surfaces. However, our studies have focused on peptide-material
surface interactions like gold and graphene, and further studies
are needed using other biological and multivalent interactions to
fully understand the application of statistical gamma work dis-
tribution. Nonetheless, our results show that the appropriate
designation of the statistical family of the work distribution is
critical in applying JE in biological systems.

Methods
Chemicals and materials. Bruker MLCT AFM tips modified with (3-Amino-
propyl)triethoxysilane (APTES) were purchased from Novascan Technologies,
Ames, IA USA. Heterobifunctional PEGs, MAL-PEG5000-SCM, MAL-PEG2000-
SCM, and HO-PEG2000-NHS, were purchased from Creative PEGWorks. The
gold-binding A3 peptide was purchased with a –GGGC terminal group for covalent
linkage to the maleimide group on the PEG linker. The peptide AYSSGAPPMPPF-
GGGC was purchased from GenScript at 99.6% purity. The peptide AYSSGAP
PMPPF-C was purchased from New England Peptide at >95% purity. Au (111)
thin films on freshly cleaved mica substrates were purchased from Phasis Sàrl,
Geneva – Switzerland. Chloroform, 99%, anhydrous was purchased from Sigma
Aldrich. Triethylamine, ≥99%, was purchased from Sigma Aldrich and stored over
4 Å sieves.

AFM Measurements. Force spectroscopy experiments were performed on a
Bruker Dimension Icon AFM with NanoScope V Controller under aqueous con-
ditions. Deflection sensitivity calibration was performed on a sapphire substrate
and the thermal noise method was used to estimate the cantilever spring constant.
A maximum force of 500 pN was set during contact with the sample before tip
retraction. A 1–2 s dwell time was set to allow time for peptide interaction with the
surface.

AFM Tip preparation. All glassware for PEG modifications was baked for at least
1 h prior to use at 100 °C under vacuum. PEG solutions were prepared in anhy-
drous chloroform at 5 mM concentration. Modification strategies differed for the
different data sets presented. For the AFM tips used to collect data sets A, C, and D,
two different PEGs were used to control the density of the A3 peptide on the tip.
MAL-PEG5000-SCM was used as the linker to provide a parabolic signature in the
AFM F-D curves with an unbinding separation distance around 50 nm, and HO-
PEG2000-NHS was used as a spacer molecule to control the density of peptide.
These PEGs were mixed in a ratio of 1:7, respectively, and the APTES modified
AFM tips were incubated in the solution for 1 h at room temperature. For data set
B, the AFM tip was modified using MAL-PEG2000-SCM as the linker in the same
concentration as the linker used in the other data sets, but with no spacer. The PEG
modified tips were then washed three times with chloroform, dried briefly, and
transferred into the peptide solution. The peptide solution was prepared by dis-
solving A3-GGGC peptide (for data sets A, B, and C) or A3-C peptide (for data set
D) at a concentration of 0.2 mg/mL in 0.1 M sodium phosphate buffer with 0.01 M
EDTA at pH 7.2. The tips were transferred into this solution and incubated for 4 h
at room temperature. Tips were then rinsed two times in buffer, once in water, and
then transferred into water for storage at 4 °C.

Gold surface preparation. Gold (111) substrates were rinsed with water, followed
by isopropanol, and cleaned using UV-ozone treatment for 10 min prior to use
(PSD Pro Series UV-Ozone cleaner from Novascan Technologies).

Data processing. Five steps were performed to detect a retraction force-distance
curve (FDC) with a single-peptide binding event. First, the rupture point was
detected by calculating the derivative of FDC. The derivatives at each point i of
FDC were calculated in a window [i− r, i+ r] using the linear regression fitting
method, where r is the radius of the window. The radius r was increased step by
step until the number of significant maxima in the derivative FDC stopped varying.
Those significant maxima were corresponding to discontinuous points in FDC. The
one far away from the surface is the rupture point.

Second, the force in the segment of FDC away from the last rupture point was
set as a zero-force reference within the fluctuation limit. The linear regression
fitting method was used to align the mean force to zero. The standard deviation σ
of the force was estimated.

Third, the minima of FDC were detected using the convolution scheme24. The
one before the rupture point with force value smaller than the noise level −LOD * σ
was accepted as a binding site, where LOD is a parameter given by a user. Fourth, a
zero force point was detected before the binding site in the baseline allowing
mulBase * σ fluctuation.

Last, the stretching curve between the zero force point and the binding site was
fitted by the worm-like chain (WLC) model41:

F γð Þ ¼ kBT
lp

1
4

1� γ

L

� 	�2
þ γ

L
� 1
4


 �
ð11Þ

where F is the force, γ is the polymer extension, lp is the persistence length of
~0.37 nm, L is the contour length of the polymer, kB is the Boltzmann constant and T
the temperature. The work disribution was fitted using the R package fitdistrplus42.

Multiparametric surface plasmon resonance (MP-SPR). MP-SPR studies were
conducted using a BioNavis SPR Navi 200 Spectrometer, BioNavis, Finland and
gold sensors (BioNavis) (111) single crystalline surfaces. The peptide A3 was
synthesized in-house with 95% purity. Polypeptide solutions (0.1, 0.5, 1, and
25 µM) were prepared in type 1 water at pH 7. The cell temperature and flow rate
were 20 °C and 23 µLmin−1, respectively. Each experiment had a total duration of
half an hour. The region of binding was extracted from the data and fitted using the
Langmuir isotherm to obtain the dissociation constant (KD) and adsorption free
energy (ΔG).

Molecular dynamics simulation. The initial structure of the peptide A3 was pre-
dicted using I-TASSER program43. An Au(111) surface of size 7.105 nm× 7.032nm
with additional interaction sites accounting for polarizable effect was kindly provided
by Bellucci44. Since the contour length of a 12-mer peptide A3 is about 4.2 nm, a
8.5 nm high water box consisting of 14064 water molecules was put on the gold
surface to avoid image interaction of the peptide with the bottom surface of the gold
slab when periodic boundary condition was imposed. The peptide A3 was randomly
immersed in the water. The model was assembled using VMD 1.9.2 program45. A
snapshot of the modeling system is shown in Fig. 6a.

Molecular dynamics simulations were carried out using the NAMD 2.10 software
package46 and the polarisable Go1P-CHARMM force field47,48 with a time step of 1 fs
and periodic boundary conditions in all three directions. The system was first
minimized using a conjugate gradient and line search algorithm. Then the system was
incrementally heated from 0 to 300 K in steps of 30 K every 1000 fs. The system was
then allowed to equilibrate at constant temperature and pressure (300 K, 1 atm, NPT
ensemble) for 10 ns. The particle mesh Ewald (PME) method49 was used to calculate
the long-range electrostatic interactions. The cut-off, switching, and pair-list distances
were chosen as 1.0 nm, 0.9 nm, and 1.2 nm, respectively. The Langevin piston Nose-
Hoover method50,51 was used to control the pressure with piston period 200 fs and
damping time scale 100 fs. The temperature was controlled through Langevin
dynamics with damping coefficient 5/ps.

Calculation of potential of mean force. To compute the potential of mean force
(PMF) using the ABF algorithm, the distance D of the mass center of all alpha
carbons in A3 from the gold surface were chosen as the collective variable, as
shown in Fig. 6b. To enhance the sampling, the region of interest D∈ (0, 42) was
divided into 7 equally spaced windows of width 6 Å. The window centers were at 3,
9, 15, 21, 27, 33, and 39 Å, respectively. To obtain the initial configuration at each
window, seven constraint molecular dynamics simulations were run to bring the
peptide to each window center by imposing a harmonic force on the collective
variable D. To obtain smooth free energy profile, each window was divided into 60
bins so that the bin size δDY was 0.1 Å. Therefore, the free energy difference was
reconstructed by33,36

ΔA ¼ AðDb
Y Þ � AðDa

Y Þ ¼
ZDb

Y

Da
Y

dA
dDY

dDY ¼ �δDY

X420
i¼1

FDY

D E
i

ð12Þ

where FDY
is an instance force acting on the reaction coordinate in the ith bin.
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To implement Eq. (12), we have first positioned the peptide inside each window
using a biased harmonic potential with an actual force constant 30 kcal/mol/Å2.
Then half-harmonic potentials imposed at the boundary of each window with
sufficiently strong harmonic restraints 100 kcal/mol/Å2 were used to constrain the
mass center of the peptide inside each window. ABF simulations were conducted
for 450 ns in each window so that the total samples were 450,000,000 per window
and the total simulation time was 3150 ns for the whole system.

Data availability
The datasets analyzed in the study are available in Github https://github.com/comtook/
afmFreeEnergy.

Code availability
The codes generated and used in the study are available in Github https://github.com/
comtook/afmFreeEnergy.
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