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Current diagnostic criteria for the neuropathological evaluation of the traumatic brain injury-associated neurodegeneration, chronic

traumatic encephalopathy, define the pathognomonic lesion as hyperphosphorylated tau-immunoreactive neuronal and astroglial

profiles in a patchy cortical distribution, clustered around small vessels and showing preferential localization to the depths of sulci.

However, despite adoption into diagnostic criteria, there has been no formal assessment of the cortical distribution of the specific

cellular components defining chronic traumatic encephalopathy neuropathologic change. To address this, we performed compre-

hensive mapping of hyperphosphorylated tau-immunoreactive neurofibrillary tangles and thorn-shaped astrocytes contributing to

chronic traumatic encephalopathy neuropathologic change. From the Glasgow Traumatic Brain Injury Archive and the University

of Pennsylvania Center for Neurodegenerative Disease Research Brain Bank, material was selected from patients with

known chronic traumatic encephalopathy neuropathologic change, either following exposure to repetitive mild (athletes n¼ 17;

non-athletes n¼1) or to single moderate or severe traumatic brain injury (n¼ 4), together with material from patients with previ-

ously confirmed Alzheimer’s disease neuropathologic changes (n¼ 6) and no known exposure to traumatic brain injury.

Representative sections were stained for hyperphosphorylated or Alzheimer’s disease conformation-selective tau, after which stereo-

typical neurofibrillary tangles and thorn-shaped astrocytes were identified and mapped. Thorn-shaped astrocytes in chronic trau-

matic encephalopathy neuropathologic change were preferentially distributed towards sulcal depths [sulcal depth to gyral crest

ratio of thorn-shaped astrocytes 12.84 6 15.47 (mean 6 standard deviation)], with this pathology more evident in material from

patients with a history of survival from non-sport injury than those exposed to sport-associated traumatic brain injury (P¼0.009).

In contrast, neurofibrillary tangles in chronic traumatic encephalopathy neuropathologic change showed a more uniform distribu-

tion across the cortex in sections stained for either hyperphosphorylated (sulcal depth to gyral crest ratio of neurofibrillary tangles

1.40 6 0.74) or Alzheimer’s disease conformation tau (sulcal depth to gyral crest ratio 1.64 6 1.05), which was comparable to that

seen in material from patients with known Alzheimer’s disease neuropathologic changes (P¼ 0.82 and P¼0.91, respectively). Our

data demonstrate that in chronic traumatic encephalopathy neuropathologic change the astroglial component alone shows prefer-

ential distribution to the depths of cortical sulci. In contrast, the neuronal pathology of chronic traumatic encephalopathy neuropa-

thologic change is distributed more uniformly from gyral crest to sulcal depth and echoes that of Alzheimer’s disease. These obser-

vations provide new insight into the neuropathological features of chronic traumatic encephalopathy that distinguish it from other

tau pathologies and suggest that current diagnostic criteria should perhaps be reviewed and refined.
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Introduction
Traumatic brain injury (TBI) is recognized as a major

risk factor for a range of neurodegenerative diseases,

including Alzheimer’s disease and chronic traumatic en-

cephalopathy (CTE) (Johnson et al., 2017; Smith et al.,

2019). Although first described, several decades ago, as

dementia pugilistica of former boxers (Millspaugh, 1937;

Critchley, 1949; Critchley, 1957; Corsellis et al., 1973),

consensus criteria for the neuropathological assessment of

what is now recognized as CTE only emerged in the last

decade (McKee et al., 2016). These criteria define the

pathognomonic lesion of CTE neuropathologic change

(CTE-NC) as p-tau aggregates in neurons, astrocytes and
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cell processes around small vessels in an irregular pattern

at the depths of cortical sulci (McKee et al., 2016).

However, despite incorporation into diagnostic criteria,

the neocortical features currently defining CTE-NC have

not been formally evaluated using rigorous and objective

measures.

Earliest accounts of the neuropathology of CTE (then

dementia pugilistica) described abundant neuronal profiles

in the form of neurofibrillary tangles, with a noted pref-

erential involvement of superficial cortical layers and

patchy distribution of pathology. Also documented in

these early reports was the subjective impression of an

apparent concentration of tangles to the depths of cor-

tical sulci (Hof et al., 1992; Geddes et al., 1996; Geddes

et al., 1999), although this was never formally quantified.

In addition to neurofibrillary tangle pathology, tau-immu-

noreactive, thorn-shaped astrocytes (TSAs) are increasing-

ly recognized as a prominent feature of CTE (Ikeda

et al., 1995; Ikeda et al., 1998; McKee et al., 2009;

McKee et al., 2013; McKee et al., 2016), with the com-

bination of these glial and neuronal pathologies defining

the pathognomonic lesion of CTE-NC (McKee et al.,

2016); a pathology that has now been documented not

only in boxers, but in non-boxer athletes (Omalu et al.,
2005; McKee et al., 2009; McKee et al., 2013; Smith

et al., 2013; Stewart et al., 2016; Ling et al., 2017; Mez

et al., 2017; Lee et al., 2019), military veterans

(Goldstein et al., 2012; Stein et al., 2014) and individuals

exposed to a single moderate or severe TBI (Johnson

et al., 2012; Zanier et al., 2018; Tribett et al., 2019;

Arena et al., 2020).

While neurofibrillary tangles have long been described in

association with a variety of neurodegenerative pathologies,

only more recently attention has been paid to astrocytic tau

pathologies in ageing and wider neurodegeneration. Ageing-

related tau astrogliopathy (ARTAG) is increasingly recog-

nized in the brains of older individuals and as a co-morbid-

ity in a variety of neurodegenerative diseases (Kovacs et al.,

2016; Kovacs et al., 2017), with its presence suggested to

correlate with a greater degree of cognitive impairment

(Robinson et al., 2018). Comprising morphologically dis-

tinct phospho-tau immunoreactive astrocytes, ARTAG typic-

ally localizes to interface sites, such as sub-pial, perivascular

or sub-ependymal locations, or around the boundary be-

tween grey and white matter (Kovacs et al., 2016).

Notably, one morphological variant of ARTAG, TSA,

shows comparable morphology and immunophenotype to

the astroglial pathology of CTE-NC (Kovacs et al., 2016;

Liu et al., 2016; Kovacs et al., 2017; Kovacs et al., 2018;

Forrest et al., 2019; Arena et al., 2020).

There is, therefore, a need to critically appraise the

pathology of CTE-NC and, where required, refine neuro-

pathological criteria for its recognition and differentiation

from the pathologies of ageing and wider neurodegenera-

tive disease. To this end, we pursued quantitative map-

ping of the distribution of cortical neurofibrillary tangle

and astroglial pathologies in cases with previously

documented CTE-NC and in cases with Alzheimer’s dis-

ease neuropathologic changes and no known history of

TBI. Contrary to understanding reflected in current diag-

nostic criteria, our observations demonstrate that the

astroglial pathology alone shows marked concentration to

the depths of cortical sulci in CTE-NC. In contrast,

neurofibrillary tangles show only limited concentration

towards sulcal depths, which echoes that seen in

Alzheimer’s disease.

Materials and methods
All tissue samples were obtained from the Glasgow TBI

Archive, Department of Neuropathology, Queen Elizabeth

University Hospital, Glasgow, UK, or the University of

Pennsylvania Center for Neurodegenerative Disease

Research (CNDR) Brain Bank, Philadelphia, PA, USA.

Brain tissue was acquired by means of planned donation

after multi-year longitudinal follow-up, or at routine

diagnostic autopsy. Ethical approval for use of tissue in

this study was provided by the West of Scotland

Research Ethics Committee (Project ID 225271), the

Greater Glasgow and Clyde Biorepository (Application

Number 340) and the Institutional Review Board of the

University of Pennsylvania.

Cases for inclusion were identified as all available cases

from each archive with documented pathology of CTE-NC,

or a random sample of cases from the CNDR archive with

known Alzheimer’s disease neuropathologic changes and no

known history of exposure to TBI. All CTE-NC cases

(n¼ 22) had a history of previous exposure to head

trauma, had been subject to comprehensive and standar-

dized neuropathological assessment for neurodegenerative

disease pathologies at autopsy and had documented cortical

tau pathology consistent with the pathognomonic pathology

of CTE-NC defined in diagnostic criteria (McKee et al.,

2016). In each case where CTE-NC was present, the extent

and distribution of pathology was further dichotomized as

‘low’ or ‘high’; corresponding to stages I/II or III/IV, re-

spectively, of a widely used protocol (McKee et al., 2013).

For CTE-NC cases, histories included a remote history of

exposure to repetitive mild TBI (soccer, n¼ 8; American

football, n¼ 4; rugby union, n¼ 3; boxing, n¼ 1; mixed

sports, n¼ 1; non-sport, n¼ 1) or a single moderate or se-

vere TBI (fall, n¼ 2; assault, n¼ 1; motor vehicle collision,

n¼ 1). Detailed reports from the original diagnostic

autopsies were available for all cases; supplemented, where

necessary, by forensic and clinical records. All Alzheimer’s

disease cases had no documented history of TBI or partici-

pation in contact sport, and met neuropathological criteria

for the diagnosis of Alzheimer’s disease [n¼ 6; 4 high and

2 intermediate Alzhemier’s disease neuropathologic changes

(ADNC) (Montine et al., 2012)]. A single representative

cortical sulcus containing pathognomonic hyperphosphory-

lated tau (p-tau) pathology was selected for analysis in each

case. Regionally matched tissue sections from the frontal,
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angular and temporal cortices were selected from ADNC

cases for comparison with CTE-NC. Clinical, demographic

and neuropathologic information for each case, including

integrated clinicopathologic diagnosis (Lee, 2018; Lee et al.,

2019), is summarized in Table 1.

Brain tissue handling and

immunohistochemistry

Whole brains from the Glasgow TBI Archive were fixed in

10% formol saline at autopsy for a minimum of 2 weeks

prior to dissection, standardized anatomical sampling, tis-

sue processing and paraffin embedding as described previ-

ously (Graham et al., 1995). Tissue blocks sampled from

fresh brains at the University of Pennsylvania CNDR were

fixed overnight in 70% ethanol and 150 mmol sodium

chloride or 10% neutral-buffered formalin and processed

to paraffin as described previously (Toledo et al., 2014).

For each case, a single representative cortical block was

chosen to include the defining pathognomonic pathology

of CTE-NC or, for AD cases, a high burden of ADNC.

From each tissue block, 8 lm tissue sections were prepared

and subjected to deparaffinization and rehydration to H2O

before immersion in 3% aqueous H2O2 to quench

endogenous peroxidase activity. Antigen retrieval was per-

formed via microwave pressure cooker in either Tris/

EDTA (CP13) or citrate buffer following formic acid pre-

treatment (GT-38), as optimized for each antibody.

Sections were blocked using normal horse serum (Vector

Labs, Burlingame, CA) in Optimax buffer (BioGenex,

Fremont, CA) for 30 min followed by incubation in the

primary antibody overnight at 4�C. Specifically, tau anti-

bodies CP13 (specific for phosphoepitope S202, 1:1000 di-

lution, courtesy Dr Peter Davies) (Jicha et al., 1999) and

GT-38 (1:1000 dilution, UPenn CNDR) were applied. GT-

38 has been shown to detect a conformation-dependent

epitope present in tau within the inclusions of Alzheimer’s

disease requiring both 3R and 4R tau, but not the 3R or

4R-only tau of other primary tauopathies, and in a phos-

phorylation-independent manner (Gibbons et al., 2018;

Gibbons et al., 2019). After rinsing, sections were incu-

bated in a biotinylated universal secondary antibody

(Vector Labs) for 30 min, followed by the avidin–biotin

complex for 30 min (Vector Labs). Visualization was

achieved using the DAB peroxidase substrate kit (Vector

Labs). Sections were counterstained with haematoxylin, fol-

lowed by rinsing, dehydration and coverslipping. Sections

from a known positive control were stained in parallel

Table 1 Case demographics

Case no. Age at death Sex TBI/sport exposure Integrated clinicopathologic

diagnosis

CTE-NC stage PMI

C1 40s M Football CBD Low 7 h

C2 50s M sTBI, Fall No NDD Low 108 h

C3 60s M Football CBD Low 3 h

C4 60s M Multiple non-sport mTBI DLB Low 21 h

C5 70s M Football DLB Low 18 h

C6 70s M Rugby AD Low 48 h

C7 70s M Rugby Mixed AD/VaD Low 48 h

C8 70s M sTBI, MVC CTE Low 24 h

C9 70s M sTBI, Fall PDD Low 7.5 h

C10 80s M Soccer AD Low 24 h

C11 80s M Soccer AD Low 20 h

C12 50s M Soccer CTE High Unknown

C13 60s M sTBI, Assault No NDD High 24 h

C14 60s M Boxing CTE High 24 h

C15 60s M Soccer VaD High 11 days

C16 70s M Rugby CTE High 12 h

C17 70s M Soccer DLB High 4 days

C18 70s M Soccer CTE High 3 days

C19 80s M Football FTLD-TDP High 7 h

C20 80s M Soccer NPH High 3 days

C21 80s M Soccer CTE and PD High 3 days

C22 80s M Boxing, Rugby, Soccer PDD High 4 days

A1 60s M No AD n/a 13.5 h

A2 60s M No AD n/a 5 h

A3 70s M No AD n/a 4 h

A4 70s M No AD n/a 8.5 h

A5 70s F No AD n/a 11 h

A6 80s F No AD n/a 6 h

AD, Alzheimer’s disease; ADNC, Alzheimer’s disease neuropathologic changes; CBD, corticobasal degeneration; CTE-NC, chronic traumatic encephalopathy neuropathologic

change; DLB, dementia with Lewy bodies; FTLD-TDP, frontotemporal lobar degeneration with TDP-43 inclusions; MVC, motor vehicle collision; n/a, not applicable; NDD, neurode-

generative disease; NPH, normal pressure hydrocephalus; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PMI, post-mortem interval; sTBI, single moderate or severe

traumatic brain injury; TBI, traumatic brain injury; VaD, vascular dementia.
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with test sections, with omission of the primary antibody

for one section to control for non-specific staining.

Mapping of pathologies

Stained sections from the Glasgow TBI Archive were

scanned at a magnification of 20� with a Hamamatsu

NanoZoomer 2.0-HT slide scanner, saved as NDPI files

and evaluated using Aperio ImageScope Viewer 12.3.3

software (Leica Biosystems, Wetzlar, Germany). Sections

from the University of Pennsylvania CNDR were scanned

at a magnification of 20� with a Lamina Slide Scanner

(Perkin Elmer, Waltham, MA) and saved as MSRX files,

exported to ImageJ (National Institutes of Health,

Bethesda, MD) using QuPath Open Source Digital

Pathology software and then saved as TIFF file format

and evaluated using Aperio ImageScope Viewer 12.3.3

(Leica Biosystems, Wetzlar, Germany).

On each scanned image, the region of interest was

defined as the cortical grey matter of an entire involved

sulcus and the adjacent gyral crests in which the patholo-

gies of either CTE-NC or ADNC were present. This re-

gion of interest was then further sub-divided into sulcal

depth and gyral crest (non-depth cortex) regions; the sul-

cal depth region defined as extending 1 mm from the

deepest aspect of the sulcus towards the gyral crest and

to the underlying grey-white junction (Holleran et al.,

2017). In accordance with standard diagnostic and re-

search practices, neuronal or astroglial tau-immunoreac-

tive pathologies were identified as classical neurofibrillary

tangles or thorn-shaped astrocytes by their defining and

stereotypical cellular morphologies (Montine et al., 2012;

Crary et al., 2014; Kovacs, 2015; Kovacs et al., 2016;

McKee et al., 2016; Kovacs et al., 2017). CP13 immu-

nostaining revealed both neurofibrillary tangles and

thorn-shaped astrocytes, whereas GT-38 exclusively iden-

tified neurofibrillary tangles, as described previously

(Arena et al., 2020). The location of each immunoreac-

tive profile was then annotated within the region of inter-

est (Fig. 1). All assessments were performed blind to

clinical information and neuropathological diagnoses.

Quantification of pathology and
statistical analysis

Densities of tau-immunoreactive profiles in each region

were calculated as the number of profiles per mm2

assessed. From these data, a depth to crest ratio was cal-

culated for neurofibrillary tangles or thorn-shaped astro-

cytes by dividing the density of the pathology in the

depth sub-region by the density in the adjacent crest. A

subset of cortical regions was independently annotated

and assessed by two reviewers, resulting in a good-to-ex-

cellent inter-rater reliability, with intra-class correlation

coefficient 0.923 (95% confidence interval, 0.718–0.980;

two-way random effects, absolute agreement and single

measurement) (Koo and Li, 2016).

Statistical analyses

Statistical analyses were performed using STATA v15.1

statistics software (College Station, TX) and GraphPad

Prism v8.2.1 (San Diego, CA). Non-parametric tests were

used in comparisons of depth to crest ratio, as assump-

tions of normality were not met after tests of skewness

and kurtosis. Unpaired data samples were compared

using the Mann–Whitney test, and paired samples were

compared using the Wilcoxon signed-rank test.

Associations between pathology and age were calculated

by linear regression. Statistical significance was deter-

mined using an alpha level of 0.05.

Data availability

The authors confirm that the data supporting the findings

of this study are available within the article.

Results

Thorn-shaped astrocytes show
concentration at sulcal depths in
CTE-neuropathologic change

In keeping with previous descriptions, low power examin-

ation of sections from cases with known CTE-NC

showed a patchy deposition of p-tau immunoreactivity,

with apparent concentration to the depths of cortical

sulci and distribution to superficial cortical layers

(Fig. 1). While p-tau-immunoreactive thorn-shaped astro-

cytes were not observed in sections with ADNC, these

were abundant in cases with CTE-NC (Fig. 1). Typically,

p-tau immunoreactive thorn-shaped astrocytes in cases

with CTE-NC were present in sub-pial locations and

extending into deeper cortical layers (Fig. 2), with cluster-

ing around intracortical vessels. Formal mapping and

quantitative assessment revealed thorn-shaped astrocytes

in CTE-NC heavily concentrated to the sulcal depths (sul-

cal depth to gyral crest ratio of thorn-shaped astrocytes

12.84 6 15.47, mean 6 SD) (Figs. 3A and 4).

Limited sulcal neurofibrillary tangle
concentration in CTE-
neuropathologic change echoes
Alzheimer’s disease

Mapping of neuronal profiles demonstrated a mild increase

in density of p-tau immunoreactive (CP13) neurofibrillary

tangles and GT-38 immunoreactive profiles at the depths of

cortical sulci compared to adjacent gyral crests in cases

with CTE-NC and also in cases with ADNC (Figs. 2 and

3B). Notably, the mild sulcal depth concentration of neur-

onal profiles in CTE-NC was similar to that observed in

cases with ADNC, whether assessed in sections stained for

CP13 [sulcal depth to gyral crest ratio of neurofibrillary
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tangles in CTE-NC 1.40 6 0.74 (mean 6 standard devi-

ation); ADNC 1.20 6 0.10; P¼ 0.82; Mann–Whitney test]

or for GT-38 (1.64 6 1.05, CTE-NC; 1.29 6 0.15, ADNC;

P¼ 0.91) (Fig. 4). Furthermore, the sulcal depth to gyral

crest concentration of neurofibrillary tangles in CTE-NC

was considerably lower than that of thorn-shaped astrocytes

in matched sections (P< 0.001, Wilcoxon signed-rank test)

(Fig. 4).

Figure 1 Neuronal and astroglial tau pathologies of CTE neuropathologic change. (A) Low power view of cortical material from a

former American football player who died in his 70s with a diagnosis of dementia with Lewy bodies (Case C5) reveals a patchy distribution of p-

tau-immunoreactive (CP13) profiles, with apparent concentration of pathology to the sulcal depth (outlined in green) compared to the gyral

crest (outlined in black). (B, C) There is clustering of p-tau immunoreactive profiles around cortical vessels, (D, E) which on higher power are

revealed as typical neurofibrillary tangles (blue circles) and thorn-shaped astrocytes (red circles). Scale bars: (A) 1 mm, (B, C) 500 lm and (D, E)

50 lm
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Figure 2 Maps of neurofibrillary tangles and thorn-shaped astrocytes in CTE-NC and ADNC. (A) Reviewing the annotated map of

p-tau-immunoreactive (CP13) profiles in CTE-NC reveals numerous neurofibrillary tangles (blue) and thorn-shaped astrocytes (red), (C) with

the former showing relatively uniform distribution across the sulcal depth (outlined in green) and gyral crest (outlined in black). (E) In contrast,

thorn-shaped astrocytes (red) show marked clustering and concentration to the sulcal depth. (B) In parallel, analysis of ADNC (D) reveals a

heavy burden of neurofibrillary tangles arranged in a classical bilaminar distribution across the cortex, with limited concentration to the sulcal

depth. (F) No thorn-shaped astrocytes were present in ADNC. (A, C, E) Case C10, a former soccer player age 80s. (B, D, F) Case A6, a

patient with known Alzheimer’s disease (age, 80 years)
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Association between injury and
patient variables and distribution of
thorn-shaped astrocytes in CTE

Sub-dividing cases with known CTE-NC by history of in-

jury exposure demonstrated greater sulcal concentration

of thorn-shaped astrocytes in cases with a history of sur-

vival from non-sport TBI than in cases with history of

exposure to repetitive mild TBI through contact sports

participation (sulcal depth to gyral crest ratio of thorn-

shaped astrocytes 31.21 6 22.79 versus 7.44 6 6.92;

P¼ 0.009; Fig. 5A). No difference in concentration of

CP13 or GT-38 neurofibrillary tangles was noted be-

tween sport and non-sport TBI cases. There was no sig-

nificant difference in sulcal concentration of thorn-shaped

astrocytes in low-stage compared to high-stage CTE-NC

(18.90 6 19.80 versus 6.78 6 5.48; p¼ 0.12) (Fig. 5A).

Sucal depth to gyral crest ratios of both neurofibrillary

tangles and thorn-shaped astrocytes (Fig. 5B) was inde-

pendent of patient age.

Figure 3 Sulcal depth to gyral crest distributions of neuronal and astroglial pathologies in each case. (A) In cases with known

CTE-NC, the ratio of sulcal depth to gyral crest CP13-positive thorn-shaped astrocyte pathology was typically high, in contrast to neurofibrillary

tangles, which showed only limited sulcal concentration. (B) There was a close correlation between density of neurofibrillary tangles

immunoreactive for CP13 and neuronal profiles identified using the antibody GT-38, which detects a conformation-dependent epitope of tau

present in Alzheimer’s disease. The sulcal depth concentration of these pathologies in cases with CTE-NC was similar to that seen in cases with

ADNC. NFT, neurofibrillary tangles; TSA, thorn-shaped astrocytes
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Discussion
Herein, we present formal, quantitative evaluation of the

distribution of neocortical neuronal and astroglial tau

pathologies contributing to CTE neuropathologic change.

Specifically, our data demonstrate that the typical p-tau

immunoreactive, thorn-shaped astrocytes of CTE-NC

showed considerable concentration to the depths of cor-

tical sulci compared to adjacent gyral crests. In contrast,

p-tau immunoreactive neurofibrillary tangles showed only

limited concentration at the depths of cortical sulci in

CTE-NC, which was not different from that observed in

material from patients with known Alzheimer’s disease

neuropathologic changes. Notably, the concentration of

p-tau-immunoreactive astroglial pathology to the depths

of cortical sulci in CTE-NC was greater in material from

patients with a history of survival from non-sport TBI

than in cases with a history of exposure to repetitive

mild TBI through participation in contact sports. In con-

trast, we found no clear association between cortical dis-

tribution of these pathologies and neuropathological stage

of CTE-NC or with patients’ age at death.

Prior studies have assessed the distribution of individual

components of p-tau pathology in CTE-NC (Armstrong

et al., 2017, 2019). In contrast to our data demonstrating

that the astroglial pathologies alone show distinctive con-

centration to the depths of cortical sulci, previous quanti-

tative analysis suggested both astrocytic and neuronal

pathologies concentrated to the sulcal depths (Armstrong

et al., 2017). However, unlike this study, no comparison

with equivalent cortical p-tau pathologies in wider

neurodegenerative disease, including Alzheimer’s disease,

was pursued. In this context, we observed sulcal concen-

tration of neurofibrillary tangles in CTE-NC when com-

pared to gyral crests; however, this was mild in

comparison to the equivalent assessment of astroglial

pathology. Furthermore, the mild concentration of neuro-

fibrillary tangles we observed in cases with CTE-NC was

of the same degree as that recorded in our cases with

ADNC which, in turn, was consistent with the previous

quantitative assessments of cortical distribution of pathol-

ogies in ADNC (Gentleman et al., 1992; Clinton et al.,

1993; Armstrong, 1994). Preferential distribution of

neurofibrillary tangle pathology to sulcal depths, there-

fore, appears neither a marked nor a specific finding in

CTE-NC.

Although finding only limited concentration of neuro-

fibrillary tangle pathology at sulcal depths in CTE-NC,

thorn-shaped astrocytes showed marked sulcal concentra-

tion. Early descriptions of thorn-shaped astrocytes in

ARTAG reported distribution to the depths of cortical

sulci in the temporal lobe (Ikeda et al., 1995; Ikeda,

1996). Furthermore, reported patterns of subpial ARTAG

across the cerebral convexities share a striking resem-

blance to CTE-NC and, in part, are hypothesized might

result from prior exposure to trauma (Kovacs et al.,

2018). Elsewhere, re-evaluation of Corsellis’ original co-

hort revealed ARTAG pathology in 10 of 14 ex-boxers,

including all cases with sulcal CTE-NC (Goldfinger et al.,

2018). Sub-pial and perivascular thorn-shaped astrocytes

have also been described in chronic survivors of military

blast injury (Shively et al., 2016) and spinal cord thorn-

Figure 4 Depth to crest ratio of tau pathologies in CTE-NC and ADNC. Quantitative assessment of thorn-shaped astrocytes and

neuronal profiles in each case reveals astrocytes with a higher ratio of sulcal depth to gyral crest density (sulcal depth to gyral crest ratio

12.84 6 15.47; mean 6 SD) than co-existing neurofibrillary tangles (1.40 6 0.74; P< 0.001). There was mild concentration of both CP13- and GT-

38-immunoreactive neurofibrillary tangles in CTE-NC, which was similar to that seen in material from patients with ADNC (all analyses not

significant). TSA, thorn-shaped astrocytes; NFT, neurofibrillary tangles; open circles, individual data points; crossed circles, outliers
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shaped astrocytes develop in the setting of chronic com-

pressive forces in cervical spondylosis (Shimizu et al.,

2008). Therefore, the possibility exists that, in the context

of neurodegeneration, distribution of astroglial tau path-

ology towards sulcal depths might serve as evidence of

prior exposure to TBI (Forrest et al., 2019).

Prior characterization has revealed that the neuronal

and astroglial pathologies of CTE-NC contain differing

tau isoform compositions and immunophenotypes, echo-

ing tau phenotypes of comparable pathologies in ageing

and Alzheimer’s disease (Arena et al., 2020). As such, in

addition to shared cellular morphologies and anatomic

distributions, thorn-shaped astrocytes of CTE-NC and

ARTAG are composed of 4R tau, with similar post-trans-

lational modifications (Arena et al., 2020). Furthermore,

assessment of the distribution of ARTAG has implicated

a possible role for chronic disruption of CSF–brain and

blood–brain barriers in its development (Kovacs et al.,

2017; Kovacs et al., 2018). In this context, persisting and

widespread blood–brain barrier disruption has been

shown following both single moderate or severe (Hay

et al., 2015) and repetitive mild TBI in humans (Doherty

et al., 2016), and as a pathological consequence of mild

TBI in experimental models (Johnson et al., 2018).

Figure 5 Association of injury exposure, CTE-NC stage and age at death with thorn-shaped astrocyte distribution. (A)

Concentration of thorn-shaped astrocytes to the sulcal depth was greater where there was a history of non-sports TBI (depth to crest ratio,

31.21 6 22.79) than when exposure to TBI was through participation in contact sports (7.44 6 6.92: P¼ 0.009). Although there was a greater

concentration of thorn-shaped astrocytes to sulcal depths in cases with low (18.90 6 19.80) versus high (6.78 6 5.48) stage CTE-NC, this was

not significant (P¼ 0.12). (B) There was no association between age at death and distribution of thorn-shaped astrocytes (R2¼ 0.063, P¼ 0.26).

TSA, thorn-shaped astrocytes; open circles, individual data points; crossed circles, outliers
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As such, the possibility that the astroglial pathologies of

CTE-NC and ARTAG share similar aetiologies might be

considered.

Current consensus criteria for the neuropathological as-

sessment and diagnosis of CTE define the pathognomonic

lesion based on the apparent presence of both neuronal

and astroglial pathologies concentrated at the depths of

cortical sulci (McKee et al., 2016). These preliminary cri-

teria were generated following standardized qualitative

methodologies for consensus reporting in which 10 cases

of known CTE with ‘late’ stage pathology were selected

from a single archive and reviewed by a panel of neuro-

pathologists blind to the original diagnosis. These known

CTE cases were assessed alongside cases of multiple other

tauopathies and, based on subjective assessments, a con-

sensus agreed upon a so-called defining pathology of

CTE. Recognized limitations of this process are the small

number of presumed CTE cases selected, their selection

as displaying already defined stereotypical pathology and

the subjective nature of assessment and review. Hence,

these criteria remain preliminary. In keeping with experi-

ences in wider neurodegenerative disease, there is a need

for continual reappraisal and refinement of consensus cri-

teria (Montine et al., 2012, 2016; McKeith et al., 2017).

Conclusion
Our quantitative assessment considered neocortical p-tau

pathologies in 22 cases with varying exposures to TBI

and known CTE-NC spanning ‘low’- and ‘high’-stage

pathology. Furthermore, we compared these pathologies

with those observed in material from patients with clinic-

ally diagnosed Alzheimer’s disease and confirmed

Alzheimer’s disease neuropathologic changes. Our obser-

vations suggest that, contrary to the description of the

pathognomonic pathology incorporated into current con-

sensus criteria for the neuropathologic assessment and

diagnosis of CTE, the distribution of p-tau immunoreac-

tive astroglial pathology, alone, might represent the spe-

cific pathology of CTE-NC. As such, current consensus

criteria for the identification of CTE-NC might require

review and refinement.
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