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Introduction 27 

Microorganisms exist in two predominant lifestyles in nature, namely, the free-floating 28 

planktonic state and the surface-attached biofilm state (1). Until the 1970s, the predominant 29 

notion among microbiologists was that bacteria exist mostly in the free-floating planktonic 30 

state; however, the pioneering work of William Costerton established the concept of “biofilms” 31 

and has subsequently driven the notion that this is their preferred growth mode in nature (2). 32 

Biofilms are defined as microbial communities encased in extracellular matrix, and are formed 33 

at solid, liquid, and air interfaces. They can exist on biotic and abiotic surfaces, as well as 34 

microaggregates (3). The biofilm state confers numerous survival advantages to 35 

microorganisms under stress conditions, during nutrient deprivation, and antibiotic treatment. 36 

Physiology, growth, and behaviour of microbial biofilms differ vastly from their planktonic 37 

counterparts (4). Due to these advantages, biofilms are able to tolerate and persist in 38 

environments in which planktonic cells would ordinarily not.  39 

The occurrence of a sessile growth mode in pathogenic microorganisms often complicates 40 

treatment strategies. Traditionally, acute infections involving planktonic microbes have been 41 

treated effectively using antibiotics. However, the growth of pathogenic microbes in biofilm 42 

state renders such treatments ineffective, leading to chronic infections (5). At least 65-80% of 43 

infectious diseases are associated with the biofilm state as per a Centers for Disease Control 44 

and Prevention (CDC) report (6). Biofilm-related infections cover a wide array of diseases 45 

including, but not limited to, catheter- and implant-associated infections, chronic wounds, 46 

chronic otitis media, chronic osteomyelitis, chronic rhinosinositis, recurrent urinary tract 47 

infection, endocarditis, and lung infections associated with cystic fibrosis. Together these 48 

infections affect millions of people worldwide, resulting in an unnecessarily high mobidity rate 49 

and increasingly large mortality rate (7). 50 

 51 

Biofilm characteristics conferring increased drug resistance properties 52 

The physical, chemical, and environmental stresses faced by microorganisms lead to 53 

phenotypic switch from planktonic to biofilm state, which helps the microbes to evade host 54 

defenses and exhibit antibiotic tolerance via certain hallmark biofilm characteristics. A typical 55 

biofilm consists of extracellular matrix (ECM), which confers protection against desiccation, 56 

antibiotics, biocides, ultraviolet radiation, and host immune responses through mechanical 57 
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stability, all of which contributes to recalcitrance (8,9). Another important biofilm 58 

characteristic associated with drug resistance is the presence of a dormant subpopulation called 59 

persisters. Persister cells were first discovered in Staphylococcus sp. (10,11) and more recently 60 

in Escherichia coli, Pseudomonas aeruginosa, Lactobacillus acidophilus, and Candida species 61 

(12–16). Since antibiotics are usually effective against metabolically active cells, the 62 

metabolically inactive persister cells are able to survive antibiotic treatment (17,18). The 63 

presence of drug efflux pumps is another attribute facilitating bacterial survival under harsh 64 

conditions. A number of hospital-related pathogens such as Acinetobacter baumannii, Bacillus 65 

subtilis, S. aureus and others exhibit tolerance towards antibiotics due to the overexpression of 66 

their drug efflux pumps, and often exhibit a multi-drug resistant phenotype (19). 67 

The unique composition and characteristics of biofilms make treatment of biofilm infections 68 

extremely difficult. Apart from the features mentioned above, factors such as genetic variations 69 

or cell wall modifying enzymes may also contribute to the increased drug resistance phenotype 70 

of biofilms. Moreover, it is now well recognized that many disease-associated biofilms are 71 

polymicrobial in nature, leading to synergized tolerance profiles of multiple resistance 72 

mechanisms. Therefore, treating biofilms with single-target approaches may not be effective, 73 

as distinct, compartmentalized microenvironments with unique characteristics are present 74 

within biofilms.  75 

Several approaches, including genetic and phenotypic characterization, have been used for 76 

understanding the critical factors regulating biofilm formation and biofilm drug tolerance of 77 

microbes (8). The complex changes governing the biofilm state require multi-faceted, systems-78 

level approaches to elucidate the reprogramming of microbial functions in this phenotype. 79 

Advances in ‘omics’ tools such as transcriptomics, proteomics, metabolomics and the 80 

integration of multi-omics data hold significant promise in investigating the systems-level 81 

regulation of biofilms. Gaining better perspectives on the biofilm phenotype of microorganisms 82 

can enable the development of effective strategies that can control both clinical and 83 

environmental biofilms. This review provides an overview of how different omics techniques 84 

such as transcriptomics, proteomics and metabolomics have been employed in microbial 85 

biofilm studies and the application of multi-omics approaches towards obtaining a holistic 86 

picture of the biofilm formation process.  87 

 88 

Transcriptomics-first-stage biofilm monitoring tool 89 
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Transcriptomics is the study of the transcriptome, which comprises the total mRNA transcripts 90 

produced by the genome (20). The transcriptome contains coding RNAs that dictate the 91 

composition of the proteome; therefore, studying an organism’s transcriptome can provide a 92 

first-level biochemical picture of how genes are regulated under specific conditions such as 93 

transition from planktonic to biofilm state and drug treatment (21,22). 94 

The analysis of the transcriptome can be performed by traditional approaches such as 95 

quantitative polymerase chain reaction (qPCR) or high-throughput approaches such as 96 

microarray and RNA-sequencing (RNA-Seq) (20). The qPCR method allows real-time 97 

monitoring of gene expression and can be used to detect gene expression changes in biofilm 98 

state or after exposure to compounds, for example, esp gene expression after zinc oxide 99 

nanoparticle treatment in Enterococcus faecalis biofilms (23). qPCR can also be used to 100 

confirm or validate microarray/RNA-Seq results (24), and although this method is rapid and 101 

relatively low cost, it can target only known sequences and only few targeted genes can be 102 

investigated. 103 

DNA microarrays are the next most commonly used tool after qPCR in transcriptomics studies. 104 

Collections of targeted DNAs embedded within wells on a chip enable DNA microarrays to 105 

examine the expression levels of numerous genes simultaneously (25). In a recent 106 

transcriptomic study, Ebersole et al (26) used DNA microarrays to compare the immune 107 

response of oral epithelial cells to infections caused by multispecies oral pathogenic bacteria 108 

in planktonic and biofilm state. Microarrays are also relatively low cost; however, the scanner 109 

is limited to a low dynamic range. With the increasing availability of next-generation 110 

sequencing (NGS) platforms, the popularity of DNA microarrays is declining and will soon be 111 

futile. 112 

RNA-Seq using NGS is now a popular high demand choice for the detection and quantification 113 

of both known and novel transcripts. It exhibits a higher capacity for detection of gene targets 114 

as well as a higher sensitivity than microarrays, with single-base resolution for quantification 115 

of rare variants and transcripts (20). Although NGS platforms are relatively costly and labor-116 

intensive, the comprehensive results obtained from RNA-seq make it ideal for gene expression 117 

studies. For instance, Cheng et al. used an HiSeq 2500 sequencer to study the transcriptomics 118 

responses of P. aeruginosa interaction as the dominant species in a microbial community (27). 119 

Additionally the throughput of these technologies continue to increase as the cost per/reads 120 
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continues to reduce allowing the technology to be adopted by an increasing number of research 121 

groups.   122 

Due to the wide availability of transcriptomic tools, several microbial biofilm studies have 123 

employed transcriptomics approaches to study processes such as biofilm development, biofilm-124 

host interactions, and biofilm drug resistance mechanisms. A list of studies on the biofilm 125 

transcriptome of medically important microorganisms to address biofilm resistance, lifestyle 126 

differences between planktonic and biofilm cells, biofilm-host interaction, and other traits is 127 

provided in Supplementary Table 1. 128 

 129 

Transcriptomic strategies to uncover drug resistance of microbial biofilms 130 

High-throughput transcriptomic tools have been employed to better understand the drug 131 

resistance of microbial biofilms. Particularly, many of the recent studies have investigated the 132 

transcriptomic profiles of drug-treated vs untreated biofilms by RNA-seq analysis. For 133 

instance, an RNA-seq analysis by Seneviratne et al (28) revealed genes associated with E. 134 

faecalis biofilm formation and drug resistance. The study identified putative association of 135 

sporulation regulatory gene paiA, arsenic resistance operon genes arsR and arsD, ATP-binding 136 

cassette drug transporters, and penicillin-binding proteins with biofilm drug resistance. 137 

Similarly, Liu et al. (29) performed an RNA-seq analysis on the effect of a low ampicillin 138 

concentration on S. aureus biofilm formation. The ampicillin-induced biofilms exhibited more 139 

viability and significantly higher expression of genes encoding penicillin-binding proteins, 140 

multidrug resistance efflux pumps, and antimicrobial resistance proteins, indicating a positive 141 

response to ampicillin treatment. Wu et al (30) performed RNA-seq analysis of the response of 142 

methicillin-resistant S. aureus (MRSA) to G. chinensis aqueous extract. The expression of 143 

biofilm formation and carbohydrate metabolism-related genes was significantly downregulated 144 

in MRSA treated with G. chinensis. Differential regulation of multidrug efflux pumps and 145 

penicillin-binding proteins was observed under drug treatment conditions across most of these 146 

studies, indicating their role in mediating microbial drug resistance mechanisms. However, 147 

results from these studies require further validation by targeted molecular studies or other 148 

omics tools, as the transcriptome is still subject to variations at the translational and post-149 

translational level.  150 

Transcriptomic studies of oral biofilms  151 
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Transcriptomic analysis of clinical samples such as saliva and plaque can help in understanding 152 

the gene expression changes resulting in dysbiotic microbiome signatures associated with 153 

periodontal diseases, dental caries, and persistent root canal infections (31,32). In-depth studies 154 

of the gene expression changes associated with dysbiotic microbiome could be the precursor 155 

to the development of drugs and treatments that can reduce the prevalence of prolonged 156 

infection among dental patients. For example, Yost et al (32) conducted a metagenome and 157 

metatranscriptome (RNA-seq) analysis of subgingival biofilm samples from patients with 158 

periodontitis. The study identified distinct molecular signatures linked to the progression of 159 

periodontitis. In addition, the study observed that various TonB-dependent receptors, 160 

aerotolerance genes, proteases, peptidases, hemolysins, iron transport genes, and CRISPR-161 

associated genes were upregulated by the periodontal pathogens Porphyromonas gingivalis and 162 

Tannerella forsythia. Similarly, a study by Duran-Pinedo et al (33) conducted a metagenome 163 

and metatranscriptome analysis on the subgingival biofilm samples of patients with and 164 

without periodontitis. The study identified that biological processes related to iron acquisition, 165 

lipopolysaccharide synthesis, and flagellar synthesis were overexpressed in disease state. The 166 

periodontitis samples also had higher mean abundance of P. gingivalis, T. 167 

forsythia and Treponema denticola . In both studies, the majority of virulence factors 168 

upregulated in patients with periodontitis were associated with organisms that are not usually 169 

considered major periodontal pathogens. This suggests that changes in the overall oral 170 

community rather than a few pathogens can cause increased virulence activity, which leads to 171 

disease progression. It is also noteworthy that both of these studies conducted metagenome and 172 

metatranscriptome analysis together to directly correlate the metabolic activities profile with 173 

the dysregulated oral microbiome. This is an extremely insightful approach and when coupled 174 

with other omics tools such as proteomics can greatly further our understanding of the dysbiotic 175 

oral microbiome.   176 

 177 

Transcriptomics studies on biofilm development and maturation 178 

Adhesion and successful colonization of solid surfaces by microbes play key roles in biofilm 179 

formation. The initial adhesion and colonization of microbes may differ depending on the 180 

nature of the surface (34). A comparative DNA microarray-based transcriptomic analysis by 181 

Shemesh et al (35) was used to identify the differential gene expression in S. mutans biofilms 182 

based on biofim thickness. Comparative transcriptome analysis was performed for biofilm 183 
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depths of 100, 200, and 400 microns. Analysis of the differentially regulated genes indicated 184 

that WapA, a major surface protein, was upregulated in the 200 and 400 microns biofilm 185 

compared with the 100 microns biofilm. Peterson et al. (36) performed a transcriptomics study 186 

of biofilm formation within dental plaque using RNA-seq, which provided unique insights into 187 

biofilm biochemical properties, in addition to environmental and genetic factors that influence 188 

dental plaque biofilm formation. RNA-seq analysis allowed mapping of metabolically active 189 

members of the dental plaque community to 27 genera, with Streptococcus spp being the most 190 

abundant, followed by Veillonella spp and Capnocytophaga spp. Further, correlation analysis 191 

indicated that Streptococcus spp. exhibit weak positive correlations with one another. 192 

Functional mapping of the transcripts showed that the most abundant transcriptional categories 193 

belong to protein translation and carbohydrate utilization.  194 

 195 

 A study by Sztukowska et al (37) investigated the role of the internalin-family protein InlJ in 196 

mediating inter-species adhesion between Candida albicans and Porphyromonas gingivalis by 197 

mutagenesis and RNA-seq analysis. Transcriptional profiling established that 57 genes were 198 

uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, 199 

including components of the type IX secretion apparatus. The results indicate that C. albicans 200 

could potentially increase the pathogenicity of P.gingivalis through induction of the type IX 201 

secretion system. This induction of the type IX secretion system could also be a possible 202 

defense strategy employed by P. gingivalis against C. albicans. A study on the type VI 203 

secretion system of Serratia marcescens showed that antifungal effectors are deployed via the 204 

type VI secretion system against microbial competitors such as C. albicans in a coculture of S. 205 

marcescens and C. albicans (38). 206 

 207 

Single-cell transcriptomics 208 

The majority of the current transcriptomic studies are performed under the assumption that the 209 

biofilm population is homogenous. However, biofilms comprise a heterogenous population of 210 

cells with varying metabolic activity levels, which may dictate the antimicrobial resistance 211 

profile observed in biofilms. Therefore, for such cases, analyzing the transcriptomic profile at 212 

the single cell level can provide a more detailed insight into the specific factors mediating 213 

antibiotic/drug resiatnce in microbial biofilms. With the advances in next-generation 214 

sequencing, it is possible to elucidate the transcriptome profile at the single-cell level. For 215 

instance, a study by Peyrusson et al (39) performed an in-depth RNA-seq analysis of S. aureus 216 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4132376_fcimb-04-00108-g0004.jpg
https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4132376_fcimb-04-00108-g0004.jpg
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persisters that were induced by prolonged antibiotic exposure in a macrophage infection model. 217 

Trascriptomic analysis indicated that overall metabolic activity levels were downregulated, 218 

including those associated with proliferation and amino acid metabolism. However, the 219 

persisters remained metabolically active with transcriptomic reprogramming. Pathways 220 

associated with central carbon metabolism were adjusted to redirect transcription towards 221 

adaptive responses.  222 

 223 

Collectively, transcriptomic approaches provide an opportunity to more fully comprehend the 224 

key biological processes driving biofilm formation, drug resistance, etc as opposed to 225 

investigating a limited number of preconceived genes of interest. However, the nature of the 226 

model (in vitro or in vivo) used for transcriptomic analysis may influence the gene expression 227 

patterns. A study by Cornforth et al (40) performed RNA-seq analysis of P. aeruginosa from 228 

three different sample types, namely, in vitro cultures, human infections, and mouse infections. 229 

Machine learning approaches were used to identify the transcriptome signature that can 230 

distinguish between human infection and in vitro cultures of P. aeruginosa. This transcriptome 231 

signature included many of the genes from central carbon metabolism and iron acquisition.  232 

 233 

As mentioned earlier, transcriptomics represents only the first stage in gene expression. 234 

Numerous changes occur at the translational and post-translational level, which can ultimately 235 

lead to phenotypes that may or may not reflect the transcriptomic profile observed. The data 236 

observed at the transcriptomic level may therefore not show perfect correlation with higher 237 

level omics data such as proteomics or metabolomics data. Hence, data derived from 238 

transcriptomic studies should be treated with caution and should be substantiated by next level 239 

omics tools such as proteomics and metabolomics.  240 

 241 

Proteomics – second-stage biofilm monitoring tool 242 

The term “proteome” represents the entire set of proteins expressed by an organism at a given 243 

point of time under a defined set of conditions (41). While the transcriptome is usually a 244 

reflection of changes at the gene level, monitoring the proteome profile can provide a more 245 

holistic and stable picture of the biological changes occurring within an organism. Moreover, 246 

microbes can sense stress/harsh environmental conditions and accordingly adjust their protein 247 

expression to overcome the challenges they are exposed to (42).  248 

 249 
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Proteomics encompasses qualitative as well as quantitative analysis of the proteome. It enables 250 

the accurate analysis/measurement of changes in organisms under growth, development, and 251 

other environmental conditions. Early proteomics studies used gel-based proteomics 252 

approaches (43). However, in recent years, gel-free approaches have become more widespread 253 

due to their simpler sample preparation steps as well as advances in mass Spectrometry (MS) 254 

techniques (44,45). MS-based techniques enable identification and quantification of a larger 255 

number of proteins in a relatively short period, including low-abundance proteins and difficult 256 

protein fractions such as membrane proteins. Differential protein expression can be quantified 257 

by label-free or isotopic labeling MS methods. Both freeware and commercial software 258 

packages are available for proteomics data analysis. APEX (46), Census (47,48), MapQuant 259 

(49), MaxQuant (50), MaXIC-Q (51), and MSQuant (52) are some of the freeware for 260 

proteomics data analysis, while ProteinPilot, Pro Quant, BioWorks, Elucidator, and Progenesis 261 

are commercial software (53). 262 

 263 

Proteomics tools used in biofilm studies 264 

The use of high-throughput proteomics has generated a great wealth of information, and it is 265 

now being used extensively to study microbial biofilms (54). A list of studies on the biofilm 266 

proteome of medically important microorganisms to address biofilm resistance, phenotypic 267 

differences between planktonic and biofilm cells, biofilm-host interaction, and other traits is 268 

provided in Supplementary Table 2.  269 

 270 

Gel-free, differential isotopic labeling methods such as Isotope-Coded Affinity Tags (ICAT), 271 

Stable-Isotope Labeling by Aminoacids in Cell culture (SILAC), isobaric Tags for Relative 272 

and Absolute Quantitation (iTRAQ), and Tandem Mass Tag (TMT) have been used in many 273 

of the recent microbial biofilm studies for relative quantification of proteins (55–58). For 274 

instance, Philips et al (59) used SILAC labeling approach for proteome profiling of planktonic 275 

vs biofilm Neisseria gonorrhoeae. Similarly, other groups have investigated the differential 276 

expression profile of biofilms comprising both antibiotic sensitive and resistant strains of 277 

Aeromonas hydrophila and Candida biofilms by TMT labeling and iTRAQ analysis, 278 

respectively (60–63).  279 

 280 

Label-free methods are based on counting unique spectra/peak intensities and have also been 281 

used in many of the biofilm studies, including both bacterial and fungal biofilm studies (64–282 

71). For instance, Bao et al employed a label-free, quantitative proteomics approach to study 283 
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the interaction of A. actinomycetemcomitans with other oral bacteria in a 10-species 284 

subgingival biofilm model (67). In the presence of A. actinomycetemcomitans, all of the 285 

quantified proteins of Prevotella intermedia were found to upregulated, whereas most of the 286 

quantified proteins from S. anginosus, Campylobacter rectus, and P. gingivalis were 287 

downregulated. Pathway enrichment analysis showed that the differentially regulated proteins 288 

were related to 5S RNA binding capacity, ferric iron binding, and metabolic rate.  289 

Proteomics studies on biofilm-host interaction  290 

To date, only a limited number of studies have investigated host-biofilm interaction using 291 

proteomics. One particular study, performed by Bostanci et al (66) used label-free proteomics 292 

to profile the proteins secreted by the host in a co-culture model of multi-layered gingival 293 

epithelium interacting with a 10-species subgingival biofilm. Overall, the number of proteins 294 

secreted by the gingival epithelium was reduced when interacting with the biofilm. 295 

Inflammation and apoptosis pathways were upregulated in the gingival epithelium, whereas 296 

pathways associated with the disruption of epithelial tissue integrity and impairment of tissue 297 

turnover were downregulated. Further negative regulation of metabolic processes and 298 

degradation of various molecular complexes was observed over 48 h. The study identified a 299 

key role of the “red-complex” bacterial species in the mediation of the host immune response.  300 

 301 

Proteomics studies on biofilm drug resistance  302 

One of the most intriguing traits of microbial biofilms is their increased ability to withstand 303 

harsh environmental conditions such as antimicrobial challenges, in comparison with 304 

planktonic cells. Proteomics studies have provided valuable insights into the elusive 305 

mechanism of increased resistance in microbial biofilms.  306 

Biofilms comprise a heterogeneous collection of cells with varying metabolic activity levels. 307 

The increased resistance of microbial biofilms can possibly be attributed to the slower rates of 308 

growth, protein synthesis and metabolic activity observed within biofilm communities. For 309 

instance, a shotgun proteomics study on E. coli biofilms observed that energy generating 310 

pathways such as glycolysis and pentose-phosphate pathways show lower expression levels in 311 

biofilms (9). Similarly, decreased expression of glycolysis pathway has also been observed in 312 

S. mutans biofilms vs planktonic proteome (72). A study on Candida glabrata biofilms 313 

observed decreased expression of carbohydrate metabolism pathways in biofilms vs planktonic 314 
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cells (73). Proteomics analysis of A. fumigatus biofilms has shown that metabolic activity 315 

decreases as the biofilm matures, with lower expression of enzymes of ATP synthesis, TCA 316 

cycle, and glycolysis (74). However, some studies have provided contradictory views showing 317 

similar or higher metabolic activities in the biofilm state compared to planktonic state (75,76). 318 

Another possible hypothesis accounting for the increased drug resistance in microbial biofilms 319 

is the activation of oxidative stress response pathways. Proteomics studies on Candida biofilms 320 

have observed that biofilms show enhanced anti-oxidative capacity. Anti-oxidant proteins such 321 

as Ahp1p and Trx1p are expressed at higher levels in the biofilms of C. albicans and C. 322 

glabrata compared with plaktonic cells (73,77). Similarly, a proteomics study on Shiga toxin-323 

producing E. coli O157:H7 (STEC) biofilms demonstrated higher expression levels of 324 

periplasmic antioxidant systems (SodC and Tpx) in the biofilm vs planktonic phenotype (78). 325 

In a proteomics analysis of biofilm vs planktonic Neisseria meningitidis, oxidative defense 326 

proteins were expressed at higher levels in the biofilm vs planktonic state (79). In another study, 327 

increased expression of stress response proteins including antioxidants was observed in the 328 

Actinomyces naeslundii biofilm vs planktonic proteome (80). Similarly, higher levels of anti-329 

oxidant proteins were observed in P. aeruginosa in the biofilm state (81). Listeria 330 

monocytogenes and Salmonella enterica have also shown higher expression levels of 331 

superoxide dismutase in the biofilm vs planktonic mode, indicating higher anti-oxidative 332 

capacities in the biofilm state (82,83). The above studies support the role of anti-oxidant 333 

defense system in mediating increased antimicrobial resistance of biofilms (57).  334 

Some biofilm proteomics studies have characterized the differential protein expression profiles 335 

in strong and weak biofilm forming strains to elucidate the markers regulating the extent of 336 

biofilm formation. A comparative proteomics study of strong vs weak biofilm forming E. 337 

faecalis strains by Qayyum et al (84) showed that weak biofilm formation is associated with 338 

downregulation of the osmotically inducible protein C, an OsmC/Ohr family oxidative stress 339 

protein. Another study by Suriyanarayanan et al (61) on strong vs weak biofilm forming E. 340 

faecalis clinical isolates identified lower levels of metabolic activity in the strong biofilm 341 

former relative to the weak biofilm former, signifying the role of metabolic activity levels in 342 

governing biofilm formation.  343 

Thus, the theme of metabolic activity levels governing biofilm formation as well as the extent 344 

of biofilm formation has been well explored in several proteomics studies. Although the results 345 

from some of these studies have been contradictory, it is worthwhile examining the metabolic 346 
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activity levels of persister cells to glean a better understanding of the role of metabolic activity 347 

levels in regulating biofilm formation.   348 

 349 

Proteomics studies on biofilm EPS 350 

Many studies have examined the factors associated with increased drug resistance in microbial 351 

biofilms. There are differing opinions within the literature on the importance of the 352 

extracellular matrix and the polysaccharide components in drug resistance. For example, a 353 

study comparing the proteome of S. enterica under different high- and low-flow conditions 354 

demonstrated that there were no major pattern shifts in whole cell protein expression under the 355 

different flow conditions, despite some changes in the EPS composition and biofilm structure 356 

(83). The majority of EPS studies have looked at their polysaccharide composition; however, 357 

some are specifically targeted toward their protein composition. The study of the EPS 358 

polysaccharide components is better suited for metabolomics (85–87). The complex nature of 359 

the EPS, which is conferred protection by several components, complicates the recovery of 360 

EPS proteins. This presents significant challenges in studying the EPS proteins, particularly in 361 

getting a reproducible protein extraction procedure. Physical and chemical extraction and a 362 

combination of both methods have been used to extract EPS. Therefore, for the most efficient 363 

protein recovery, it is important to optimize the extraction methodology prior to the beginning 364 

of the experiment. 365 

An exoproteome study by Gil et al (88) on exopolysaccharide- and protein-based biofilm 366 

matrices of methicillin sensitive and methicillin-resistant S. aureus and a clinical strain showed 367 

that S. aureus expressed higher levels of immuno-evasive proteins in the biofilm vs planktonic 368 

cells. In another analysis of EPS proteins obtained from P. aeruginosa biofilms at different 369 

stages, presence of putative type III secretion system effectors was observed in the matrix, 370 

suggesting that ECM proteins may have roles in stress resistance, nutrient acquisition and 371 

pathogenesis (89).  372 

A study on C. albicans EPS by Zarnowski et al (90,91) showed that proteins comprise the 373 

majority of the EPS, far exceeding the polysaccharide content, contrary to common belief (90). 374 

However, proteomics technologies have not yet been fully utilized in the direction of studying 375 

EPS components of microbial biofilms.  376 
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Proteomic profiling of drug response in biofilms 377 

Drug resistance is one of the major phenotypes attributing to the persistence of the biofilm 378 

mode of growth. The drug resistance phenotype in biofilms has been investigated in a wide 379 

array of conditions. A proteomics study on the biofilms of chlortetracycline-resistant and 380 

susceptible A. hydrophila strains showed that increased fatty acid biosynthesis may be 381 

associated with antibiotic resistance of A. hydrophila (60). In another study examining the 382 

inhibitory effects of carolacton (secondary metabolite isolated from the myxobacterium 383 

Sorangium cellulosum), a disturbance in peptidoglycan biosynthesis and degradation was 384 

observed in both planktonic and biofilm cells, suggesting that carolacton results in cell death 385 

by damaging the cell wall integrity (92).  386 

Some proteomics studies have specifically examined the proteome of the persister population 387 

to understand the drug resistance process. A study on P. aeruginosa biofilm persisters 388 

demonstrated increased expression levels of type IV pili assembly proteins and quorum 389 

sensing-regulated proteins such as chitinase, LasB, and phenazine/pycocyanin synthesis 390 

proteins in the persister subpopulation (58). The study suggested that type IV pili aids in the 391 

migration of antibiotic-tolerant cells to the top layer of biofilms, with new antibiotic-tolerant 392 

subpopulations established with the help of quorum sensing. The study proposed that the use 393 

of motility and quorum sensing inhibitors along with traditional antibiotics could prevent 394 

persistent infections.  395 

Metabolomics – end-point biofilm monitoring tool  396 

Metabolites are low molecular weight intermediates or end-products of enzyme-catalyzed 397 

reactions in a cell. Metabolites can be classified into two types, namely, primary and secondary 398 

metabolites. Primary metabolites are vital for cell growth and development and are produced 399 

actively during growth phase (e.g. amino acids and ethanol). Secondary metabolites are not 400 

essential for growth and development but may have specialized roles in ensuring overall 401 

survivability and adaptability (e.g., antibiotics and second messenger signalling molecules) 402 

(93). Metabolomics is the comprehensive detection, identification, and quantification of the 403 

metabolome of a biological system. The profiling of metabolites can provide insights into the 404 

physiological, pathological and biochemical status of a cell. Metabolomics is an end-point 405 

monitoring tool, as metabolite profiles can be directly correlated with the observed phenotype 406 

unlike genes and proteins. Genes or proteins may undergo epigenetic or post-translational 407 
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modifications, and hence the observed transcriptomic or proteomic profiles may not be directly 408 

reflective of the observed phenotype. In some cases, protein or gene expression changes may 409 

affect the metabolite levels even in the absence of obvious phenotypic changes. 410 

 411 

Biofilm metabolomics  412 

Metabolomics is a valuable tool for studying antimicrobial resistance in biofilms (94). Key 413 

primary and secondary metabolites can influence biofilm formation significantly; therefore, 414 

metabolome profiling, coupled with modeling of biological systems, can facilitate the 415 

identification of pathways associated with biofilm formation. This, in turn, can enable new 416 

strategies for controlling biofilm formation and development. The metabolite flux observed 417 

during drug/antibiotic resistance can point to the key molecules/mechanisms mediating this 418 

process, leading to the development of targeted therapeutics against the identified molecules. 419 

For instance, metabolomics tools have been employed to identify S. aureus antibiotic resistance 420 

mechanisms (95). Similarly, the effect of different environmental stimuli on biofilm formation 421 

has also been investigated by metabolite changes monitoring (96). Drug-discovery studies can 422 

also benefit significantly from metabolomics approaches. For example, metabolomics 423 

screening of molecules that inhibit or mimick the activity of autoinducers, which have crucial 424 

roles in biofilm formation, is a promising approach to combat biofilm formation (97). 425 

Metabolomics identification of intra- or intercellular small molecules associated with biofilm 426 

formation and development can also lead to potential drug targets (98).  427 

Biofilms comprise a spatially organized, heterogeneous collection of cells with varying states 428 

of metabolic activities to maximize survival. To better understand the nature of biofilms, a 429 

comprehensive analysis of all the metabolic states that occur within this intricate community 430 

is essential. Metabolomics offers a systematic platform to analyze the complex biofilm 431 

community (98).  432 

 433 

Metabolomic approaches for studying biofilms  434 

Microbial systems are ideal for performing metabolomics studies, as they can be easily 435 

manipulated. However, the observed number and types of metabolites can differ dramatically 436 

in different organisms, rendering the technology less generalizable and necessitating organism-437 

specific optimization (99,100). Moreover, the complex inter-networking of metabolic 438 
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pathways and their sensitivity toward even minor changes in the system present considerable 439 

challenges in obtaining an overall metabolite fingerprint. Additionally, a wide range of 440 

compounds, including volatile alcohols, hydrophilic carbohydrates, amino /non-amino organic 441 

acids, hydrophobic lipids, ketones, and complex natural compounds are observed in a 442 

metabolome (101). The use of a single approach may not always be sufficient to profile all 443 

these compounds due to their distinct properties and may require complementary analytical 444 

platforms. The most common analytical techniques used in metabolomics are MS- and nuclear 445 

magnetic resonance spectroscopy (NMR)-based platforms (102,103). A list of metabolomics 446 

studies of medically important microorganisms to address biofilm resistance, phenotypic 447 

differences between planktonic and biofilm cells and other traits is provided in Supplementary 448 

Table 3. Detailed information on the analytical platforms used for metabolomics analysis has been 449 

outlined in greater detail in previous articles (104–107). Metabolite profiling can be performed 450 

via either untargeted or targeted approaches (108,109). The overall goal of the study and 451 

number of metabolites targeted are some of the factors governing the choice of a suitable 452 

metabolomics approach.  453 

 454 

Untargeted metabolomics 455 

Untargeted or global metabolomics approaches do not attempt to identify or precisely quantify 456 

all the metabolites in the sample. A snapshot of the metabolite profile occurring at a particular 457 

state/time point is captured via this approach. Untargeted approaches are especially suited for 458 

drug discovery or other discovery-based studies (110). The aim of untargeted metabolomics is 459 

to capture as many metabolites as possible in the samples under comparison without any bias 460 

and is usually implemented as a hypothesis-generating approach. Monitoring of global 461 

metabolic profiles occurring under different physiological states (planktonic vs biofilm) 462 

(111,112) or drug-treatment/stress conditions (113) would provide an overview of the changes 463 

occurring within a system and can provide key insights into the regulatory pathways mediating 464 

bacterial lifestyle switch, drug resistance, or persister cell formation. However, there are many 465 

technical difficulties associated with untargeted metabolomics, which may lead to bias in 466 

analysis. The wide range of polarities of the metabolome makes total extraction difficult, 467 

necessitating the implementation of various extraction techniques to reduce bias at the 468 

extraction stage. Other technical limitations include sensitivity issues for compounds with low 469 

detection limits and usage of certain ionization modes, chromatography columns and buffers 470 
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in mobile phases, leading to better separation or ionization of particular sets of metabolites. 471 

The inherent limitations of MS scanning make it easier to detect metabolites at higher 472 

concentrations than those at lower concentration. In addition to the above, missing data and 473 

statistics make the dataset generated from an untargeted metabolomics experiment significantly 474 

more complex, hindering the interpretation of meaningful data (114). Since manual inspection 475 

of metabolomics data is difficult, specific software have been developed for data analysis. Both 476 

freeware and commercial software are available for data preprocessing and analysis. MetDAT, 477 

Mzmine, MetAlign, XCMS, MetaboAnalyst, MetExplore, MathDAMP, and datPAV are 478 

examples of freeware, while Mass Profiler Professional (MPP), Mass Hunter, Progenesis, and 479 

Sieve are examples of manufacturers’ proprietary software (115–121). Although these software 480 

products have contributed hugely towards the elucidation of significant metabolite patterns, 481 

tools for further validation are required for successful interpretation of untargeted 482 

metabolomics data (122). Untargeted metabolomics can nevertheless be a valuable drug 483 

discovery tool and can aid in the identification of novel biofilm formation pathways (108,123). 484 

 485 

Targeted metabolomics 486 

Targeted metabolomics approaches are driven by a specific hypothesis or biological question. 487 

For example, the targeted approach is an appropriate tool in studies aiming to quantify specific 488 

polysaccharides of the biofilm EPS matrix (124). Since targeted approach probes specific 489 

pathways of interest, it can provide a direct answer to the biological question under study. 490 

Targeted metabolomics can be used to directly quantify metabolites of interest. This approach 491 

is extremely sensitive and allows for very low limits of detection (124). Targeted metabolomics 492 

approaches are usually performed as a follow-up to either untargeted metabolomics or other 493 

omics approach such as proteomics (125). This is because targeted analysis usually requires a 494 

priori knowledge of the metabolite of interest generated from a more global approach first 495 

(126). To perform targeted analysis, a metabolite standard for the metabolite of interest should 496 

preferably be available in a purified form. While the targeted approach cannot be used to 497 

discover novel compounds (127), quantitation of the metabolite of interest and novel 498 

associations of known compounds to pathways can still be made, making it a useful technique 499 

to be used together with untargeted metabolomics. 500 

Metabolic flux analysis 501 
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While metabolomics provides a snapshot of the metabolome at a certain state, metabolic flux 502 

analysis (MFA) enables monitoring of the metabolome over time. In MFA, stable or 503 

radioisotopes of primary or secondary metabolites are used in the bacterial culture to produce 504 

downstream intermediates of the metabolic pathway. Stable isotopes do not require the 505 

additional safety precautions of radioactive work, and the metabolite flux can be monitored 506 

using mass spectrometers. Mathematically, the changes of intracellular metabolite pools are 507 

expressed as functions of reaction stoichiometries and fluxes to and from these pools in MFA 508 

(128). MFA helps to overcome the limitations of conventional metabolomics by enabling the 509 

tracing of pathways of labelled metabolites. MFA also highlights the importance of changes in 510 

metabolite turnover rather than that of changes in concentrations, which might not be reflected 511 

in static metabolomics.  512 

In a study of P. aeruginosa biofilm formation by Wan et al (129), significantly different 513 

metabolic pathways between biofilm and planktonic cells were discovered by 13C tracing. The 514 

turnover of labelled glucose-6-phopsphate was slower in the biofilm, indicating slower 515 

metabolism. In another study of Corynebacterium glutamicum by Krömer et al (130), cultures 516 

of the bacteria in stable isotopes of glucose showed increased flux through the lysine 517 

production pathways and TCA cycles, but these were not reflected in transcriptional or protein 518 

level changes. This further illustrates the need for a multi-omics approach when studying the 519 

metabolic changes of bacteria. 520 

 521 

Challenges in biofilm metabolomics 522 

As mentioned earlier, the number and types of metabolites observed vary based on 523 

microorganisms. In some cases, the identity of compounds observed maybe unknown. 524 

Additionally, the metabolic products generated are constantly in a state of flux and are highly 525 

variable in their chemical structure and properties. Dynamic changes in metabolite levels make 526 

it difficult to capture the complete snapshot of metabolite profile at a given physiological state. 527 

In the context of biofilm metabolomics, the variability in EPS matrix composition and the 528 

interactions among its various components add new layers of complexity, posing considerable 529 

challenges towards the development of EPS-targeting therapeutics. Sample extraction is a 530 

crucial step that must be considered carefully as it determines the success of any metabolomics 531 

experiment. The ideal sample extraction strategy should ensure that metabolites across all 532 
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classes of compounds are represented (131,132). This is usually ensured by separating the 533 

metabolite pool into organic and hydrophobic phases and analyzing them separately.  534 

The composition of EPS, which is one of the major biofilm components determining the 535 

resistance behavior, complicates both the extraction and analysis process (133). 536 

Exopolysaccharides comprise the majority of the EPS. While some of the exopolysaccharides 537 

are homopolysaccharides, most of them are heteropolysaccharides comprising a mixture of 538 

charged and neutral residues. Alginate, cellulose and poly-N-acetyl glucosamine (PNAG) are 539 

some of the well-known bacterial biofilm exopolysaccharides (133,134). Alginate consists of 540 

the uronic acid residues β-d-mannuronate (M) and its C-5 epimer, α-l-guluronate (G). It 541 

provides mechanical stability to the biofilms and is involved in microcolony formation in the 542 

early biofilm development stages (134). Cellulose is a polymer consisting of β-1-4–linked 543 

linear glucose chains. It is a crucial component of the ECM of Salmonella and E. coli biofilms 544 

(133). PNAG is a linear homoglycan comprising β-1, 6-N-acetylglucosamine residues. It has 545 

essential roles in adherence and biofilm formation of certain bacterial species (133). β-1,3-546 

glucans and galactosaminogalactan are some of the common exopolysaccharides found in 547 

fungal biofilm matrix. β-1,3-glucans helps in sequestration of antifungal agents and prevents 548 

recognition by neutrophils in C. albicans. Galactosaminogalactan mediates adhesion to 549 

surfaces and confers protection against host responses in A. fumigatus (135). 550 

Many of the extraction methodologies for EPS are suitable for their soluble portion only (134). 551 

The EPS has an abundance of carbohydrate moieties, most of which are insoluble and difficult 552 

to separate from the cells. This complicates the extraction process and very few methodologies 553 

keep this criterion in consideration. Moreover, the EPS polysaccharides can be in either ordered 554 

or disordered forms, with disordered forms being favored by elevated temperatures and low 555 

ionic concentrations (136). The exposure of biofilms to different hydrodynamic conditions 556 

based on the surrounding environment can influence the biofilm matrix composition and 557 

structure. The ECM also consists of proteins, DNA, and lipids (133). A single extraction 558 

methodology may not be ideal to obtain all the EPS metabolites; therefore, a multi-method 559 

protocol encompassing a wide spectrum of biological macromolecules is required. Further, it 560 

is difficult to obtain a proper balance between comprehensiveness and metabolite stability, as 561 

extraction conditions that favor preservation of one metabolite class may not be suitable for 562 

other metabolite classes. Ultimately, extraction methodology should be geared toward required 563 

metabolite range and the specific analytical technique used.  564 
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A unique method for overcoming problems with extraction involves the use of a matrix-assisted 565 

laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The method 566 

allows the study of intact bacterial cells by directly transferring the cells from agar plates or 567 

pelleted cultures and covering with a matrix layer for MALDI-TOF MS analysis (137). For 568 

instance, studies by Caputo et al (138) to identify biofilm producer and non-producer of 569 

Staphylococcus epidermidis, and Santos et al (139) to study proteins of Listeria monocytogenes 570 

biofilm under different conditions have used this analysis method. 571 

Current applications of biofilm metabolomics 572 

Metabolomics analysis of biofilms has been employed across a number of studies within the 573 

literature. These studies use either the targeted or untargeted approach depending on the nature 574 

of the question addressed, biofilm model employed, and the complexity of metabolites 575 

addressed. Metabolomic approaches have been used to address a wide range of biofilm 576 

phenotype-related questions. Some studies have used metabolomics to investigate the 577 

determinants of the phenotypic switch between planktonic and biofilm state or the differences 578 

between the two states. For instance, studies by Gjersing et al (140), Yeom et al (141), Chavez-579 

Dozal et al (142), Stipetic et al (111), Zhang et al (143), Favre et al (144), and Zabek et al (145) 580 

investigated the differences between the planktonic and biofilm states in P. aeruginosa, 581 

Acinetobacter baumanii, V. fischeri, S. aureus, Desulfovibrio vulgaris, Pseudoalteromonas 582 

lipolytica, and Aspergillus respectively. While most of these studies used an untargeted 583 

approach, targeted approach was used specifically by Zhang et al and Chavez-Dozal et al.  584 

Several studies have employed metabolomics approach to study mixed-species biofilms. 585 

Mixed-species biofilm studies by Sasaki et al (146), Adamiak et al (147), and Weidt et al (148) 586 

focus on mixed species biofilms in the context of anodic biofilms, halophilic biofilms, and a 587 

mixed species biofilms of C. albicans and S. aureus, respectively. Other mixed-species biofilm 588 

studies are focused on biofilms formed in the oral milieu. For instance, studies by Agnello et 589 

al (149), Califf et al (150), and Edlund et al (151) use metabolomics to investigate in-vitro 590 

mixed-species biofilm models obtained from saliva and the effect of sodium hypochlorite 591 

treatment on biofilms in periodontal pockets. A study by Slade et al (152) has employed 592 

targeted metabolomics approach to investigate P. aeruginosa in a collagen wound biofilm 593 

model.  594 

Some of the metabolomics studies evaluate the response of biofilms to stress conditions. 595 

Studies by Favre et al (113) and Booth et al (153) investigate the differential response of 596 
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planktonic vs biofilm cells in response to copper exposure in Pseudoalteromonas lipolytica 597 

and P. flourescens, respectively.  598 

Some studies have addressed very specific questions using metabolomics. For instance, Wong 599 

et al (154) have addressed the mechanisms behind the differential biofilm capabilities of H 600 

.pylori strains using an untargeted metabolomics approach. This study highlights the potential 601 

use of metabolomics to not only investigate the reasons behind bacterial lifestyle switch but 602 

also the influence of metabolite markers in determining the extent of biofilm formation. 603 

Similarly, a study by Zandona et al (155) employed untargeted metabolomics approach to 604 

investigate the dental biofilms of caries-free vs caries-active individuals. 605 

Although only a limited number of metabolomic studies have been conducted on biofilms so 606 

far, the diversity of applications existing in the current studies signify that metabolomics is a 607 

versatile tool for addressing a wide variety of biofilm-related questions. However, it should 608 

also be noted that currently there are no metabolomics studies targeting the persister 609 

subpopulation of biofilms. This is probably because methods for selectively analyzing the 610 

persister cells are still in their infancy and would require considerable advances before being 611 

subjected to metabolomics analysis.  612 

The use of metabolomic approaches for studying biofilms is extremely promising because 613 

metabolism is highly conserved within biological systems and the analytical approaches used 614 

in metabolomics are transferable across different biological systems. Further, recent 615 

technological advancements have significantly helped in overcoming the current bottlenecks 616 

in biofilm analysis, making metabolomics an invaluable tool in the field of microbial biofilms. 617 

The insights on physiological, pathological, and biochemical status obtained from the analysis of 618 

metabolites can be further combined with chemical and informatics methods.  619 

 620 

Multi-omics approaches and their application in current biofilm research  621 

Single-target or reductionist approaches, as mentioned before, yield limited information in the 622 

context of analyzing whole biological systems. With the advent of omics technologies, it has become 623 

eminently practical to capture systems-level information of biofilms. The next step towards 624 

broadening our understanding of biofilm biology would be to integrate the data available from 625 

different omics approaches. This multi-omics or integrated omics approach would provide a holistic 626 

perspective of the changes occurring in a biofilm system. However, there are some inherent 627 
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complexities in a multi-omics data integration approach. First, the sheer volume of data generated 628 

is huge, making it computationally intensive to process. Second, the inherent data type is different 629 

for each omics approach, thereby complicating the integration process. Therefore, data 630 

normalization should be performed before data integration. Data integration usually employs both 631 

statistical and machine learning approaches to reduce the dimensionality of data, facilitate clustering, 632 

and predict specific markers/features of interest (156). There are several software pipelines now 633 

available to facilitate the integration of omics data (157). Web-based tools requiring no 634 

computational experience and more versatile tools requiring computational experience are 635 

available for omics data integration. Web-based tools that do not require computational 636 

experience include 3Omics, Paintomics, and Galaxy (P, M) (156). Tools requiring 637 

computational experience include the miodin R package, which allows for vertical data integration 638 

(experiments on the same samples) or horizontal data integration (studies on the same variables) 639 

(158). mixOmics is another R-based software package that facilitates the exploration and 640 

integration of biological datasets with a particular focus on variable selection (159). mixOmics 641 

can analyze and integrate omics data such as transcriptomics, metabolomics, proteomics, 642 

metagenomics, etc. The software can identify the key features that show high correlation and/or 643 

can explain the outcome of interest. IntegrOmics, SteinerNet, and Omics Integrator are also 644 

other such computational tools for data integration. Online tools such as XCMSOnline enable 645 

integration of metabolomics data with genomics and proteomics data (156). MetaboAnalyst is 646 

another online tool that allows integration of metabolomics data with transcriptomics or 647 

metagenomics data. A summary of multi-omics study approach is provided in Figure 1.  648 

Multi-omics approaches have so far been employed only limitedly in biofilm studies to explore 649 

systems-level associations. Most of the existing multi-omics biofilm studies have performed 650 

metagenomics and metabolomics analysis together. Multi-omics biofilm studies employing 651 

transcriptomics, proteomics, or metabolomics approaches together also exist in the current 652 

literature, albeit to a lesser extent. For instance, Harrison et al (160) performed transcriptomics, 653 

proteomics, and metabolomics analysis to understand the changes associated with nutrient 654 

adaptation and long-term survival of Haemophilus influenzae. The study analyzed the 655 

transcriptomic, proteomic, and metabolomic profile of 48 h biofilms and identified 29 proteins, 656 

55 transcripts, and 31 metabolites that showed significant changes in biofilms under transient 657 

heme restriction compared with biofilms continuously exposed to heme-iron. Enzymes in the 658 

tryptophan and glycogen pathways as well as adhesin production, metabolite transport, and 659 

DNA metabolism were significantly increased under heme restriction. The study identified that 660 
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changes in central metabolism coupled with increased stores of nutrients may counterbalance 661 

nutrient sequestration. However, in studies conducting multi-omics analysis, the use of 662 

multiple time points as opposed to single time points may help to better track the progression 663 

from transcripts to proteins/metabolites stage. A study by Favre et al (113) assessed the 664 

metabolome and proteome changes induced by copper at growth inhibitory concentrations in 665 

the marine bacterium Pseudoalteromonas lipolytica under planktonic and biofilm state. 666 

Exposure to copper induced defense and detoxification mechanisms, with drastic changes in 667 

the lipid composition of the bacterial cell membrane. Moreover, a more heterogenous response 668 

was observed in the biofilms compared to the planktonic state under copper stress. A study by 669 

Ellepola et al (63) employed transcriptomics and proteomics analysis to decipher the cross-670 

species interaction occurring in C. albicans-S. mutans mixed species biofilms. The study 671 

revealed a synergistic carbohydrate mechanism in these mixed species biofilms, which 672 

promotes co-adhesion. While the above-mentioned studies have used more than a single omics 673 

approach to investigate biofilm systems, it should be noted that they have not performed 674 

integration of data obtained from the different platforms. With data integration, a better 675 

understanding of the direction and dynamics of information flow from genes to metabolites 676 

can be obtained.  677 

Future directions of multi-omics based biofilm studies 678 

To date the majority of multi-omics studies have only integrated data obtained from a 679 

combination of two omics approaches, eg, transcriptomics plus metabolomics or proteomics 680 

plus metabolomics. This may be due to the limitation in data analysis tools that allow only a 681 

two-level data integration. However, with improvements in software development and increase 682 

in computational power, data integration across three or more levels is now feasible. These 683 

significant advancements promise holistic exploration of biofilm biology.  684 

Data integration can be performed via unsupervised or supervised methods (161,162). 685 

Unsupervised methods use approaches such as factorization and Bayesian networks to cluster 686 

the data into different groups without any external guidance (163). Supervised methods, on the 687 

other hand, require external guidance to derive patterns from categorized data such as those 688 

based on regression analysis. The derived patterns can then be used on uncategorized data to 689 

predict specific outputs (164). Supervised methods can be useful in predicting disease state 690 

based on changes in mixed species biofilm composition occurring at specific body niches such 691 

as oral or gut biofilms. Interactions between different layers can be a major concern in strategies 692 
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for data integration. The corresponding mapping of relationships between different layers such 693 

as gene expression to protein expression or to metabolite expression should be considered both 694 

independently and together during the integration process (165). Many of the earlier data 695 

integration tools did not consider the interactions occurring across different layers of data. They 696 

independently performed analysis at each level to find the common subset of biological 697 

pathways that are differentially regulated at each layer. However, the more recent state-of-the-698 

art tools such as SNF and iCluster+ consider interactions while integrating different layers. 699 

Thus, the internal relationship of different layers is considered as the driving factor that acts in 700 

a concerted manner from each omics data (166).  701 

Finally, the availability of multi-omics platforms along with the recent advancements in 702 

artificial intelligence (AI)-based tools makes it possible to develop models that can predict 703 

pathways/molecular markers associated with specific traits or phenotypes such as drug 704 

resistance, biofilm formation, etc. However, this requires large multi-omics datasets collated 705 

from existing literature to be deposited in a standardized manner in a global database 706 

repository. This database can serve as a training dataset for building models that can associate 707 

pathways with biofilm phenotypes of interest. The generated models can then be used to predict 708 

pathways or molecular markers associated with biofilm or drug resistance phenotypes in new 709 

organisms of interest (Figure 2). The use AI-based integration of multi-omics data has the 710 

potential to be immensely useful in drug development strategies as well as for translation of 711 

basic research into clinical studies. Integrated multi-omics data can also be combined with 712 

other data types, such as electronic health record (HER) data to develop precision medicine. 713 
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 1285 

Figure legends 1286 

Figure 1. Workflow summary of biofilm multi-omics studies. GC-MS, Gas 1287 

chromatography mass spectrometry; LC-MS, Liquid chromatography mass spectrometry; 1288 

NMR, nuclear magnetic resonance; UPLC, Ultra performance liquid chromatography 1289 

Figure 2. Proposed workflow for artificial intelligence-based multi-omics prediction 1290 

platforms. Multi-omics data from existing biofilm studies will be deposited in a global 1291 

database repository that will serve as a training dataset for developing prediction models. 1292 

Relevant features selected from the multi-omics database will be subjected to supervised and 1293 

unsupervised data categorization algorithms to generate prediction models for biofilm 1294 

phenotypes of interest. The generated model will then be used on multi-omics data generated 1295 

from new biofilm studies to associate the identified pathways with the corresponding biofilm 1296 

phenotypes. MS, mass spectrometry; NMR, nuclear magnetic resonance. 1297 
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