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Abstract—Network slicing (NS) has been widely identified as

a key architectural technology for 5G-and-beyond systems by

supporting divergent requirements in a sustainable way. In radio

access network (RAN) slicing, due to the device-base station

(BS)-NS three layer association relationship, device association

(including access control and handoff management) becomes

an essential yet challenging issue. With the increasing concerns

on stringent data security and device privacy, exploiting local

resources to solve device association problem while enforcing

data security and device privacy becomes attractive. Fortunately,

recently emerging federated learning (FL), a distributed learning

paradigm with data protection, provides an effective tool to

address this type of issues in mobile networks. In this paper,

we propose an efficient device association scheme for RAN

slicing by exploiting a hybrid FL reinforcement learning (HDRL)

framework, with the aim to improve network throughput while

reducing handoff cost. In our proposed framework, individual

smart devices train a local machine learning model based on

local data and then send the model features to the serving

BS/encrypted party for aggregation, so as to efficiently reduce

bandwidth consumption for learning while enforcing data pri-

vacy. Specifically, we use deep reinforcement learning to train

the local model on smart devices under a hybrid FL framework,

where horizontal FL is employed for parameter aggregation on

BS, while vertical FL is employed for NS/BS pair selection aggre-

gation on the encrypted party. Numerical results show that the

proposed HDRL scheme can achieve significant performance gain

in terms of network throughput and communication efficiency in

comparison with some state-of-the-art solutions.

Index Terms—RAN Slicing, Device Association, Federated

Learning, Deep Reinforcement Learning

I. INTRODUCTION

It is widely acknowledged that network slicing (NS) is one
of the most vital architectural technologies for 5G-and-beyond
systems. In order to support various applications with diverse
quality of service (QoS) requirements in different communi-
cation scenarios, e.g., enhanced mobile broadband (eMBB),
massive machine-type communications (mMTC), and ultra-
reliable and low-latency communications (URLLC), multiple
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isolated network slices (NSs) can be designed, deployed, cus-
tomized, and optimized on a common physical network infras-
tructure [1]–[3]. The NS based networks (virtualized networks)
can provide tailored services efficiently and flexibly to meet
the specific needs of applications and corresponding Service
Level Agreement. However, driven by the rapidly growing
wireless applications with diversified service requirements,
how to identify and classify service flows for accommodation
by appropriate application-specific NS (i.e., device association
including access control and handoff management) is still a
challenging issue, especially in radio access network (RAN)
domain.

In RAN slicing, device association and relevant resource
allocation are fundamentally distinct from that in conventional
mobile networks because of the introduction of NS [4], [5].
On one hand, NSs are logically virtualized and isolated over
shared physical networks [4], [5]. Thus, both physical and vir-
tual resource, e.g. computing, network, storage, radio, access
hardware, and virtual network functions, should be considered
to form a function chain for a specific service [4]. On the
other hand, to meet the service requirements, a device needs
to select an appropriate NS which may cover multiple access
points (APs), i.e., base stations (BSs) [5]. Therefore, in vir-
tualized networks, device association inherently includes NS
selection, BS association, and associated resource allocation
issues, which should be addressed jointly to improve resource
utilization while guaranteeing service quality. Moreover, due
to the dynamic nature of network environments, the computa-
tional complexity incurred by searching the optimal solution
could be too high and the environmental changes may not be
accurately described in some complex and dynamic scenarios.
Fortunately, recently emerging reinforcement learning (RL)
can be exploited to solve such sequential decision problems
under complex network environments. By using RL, devices
can continuously interact with the environments and thus
obtain an optimal solution by using a trial and error learning
process. Although RL works well in decision-making scenar-
ios, the effectiveness of RL diminishes as the size of the state-
action space becomes large [6], [7]. Then, deep reinforcement
learning (DRL) emerges as a good alternative to solve the
decision-making problem in the wireless system with a large
size of data [6].

With the dramatic growth of the heterogeneous data from
geographically distributed devices, traditional centralized DRL
algorithms may not be feasible in practice since they require
the data to be transferred and processed in a central entity,
which definitely causes large latency in uploading a huge
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amount of raw data and consumes certain precious network
bandwidth [8], [9]. As a result, decentralized DRL algorithms
that exploit local data are much more appealing. Furthermore,
in light of the increasingly stringent data security and de-
vice privacy concerns, an emerging decentralized approach,
federated learning (FL) [10], is introduced. FL trains non-
independently identically distribution and unbalanced data
locally at individual devices and exploits the collaboration
of the devices. Specifically, FL is classified into horizontally
FL (hFL), vertically FL (vFL), and federated transfer learning
based on how data is distributed among various devices in
the feature and sample space [10], [11]. Most of the existing
related work focuses on hFL to share the sample space or vFL
to share the feature space, such as [9], [12], [13]. Indeed, in
order to reduce the amount of required training samples and/or
make more precise decisions, combing hFL and vFL, called
hybrid FL, is intuitively advantageous [10].

In this paper, we propose an intelligent device association
scheme for RAN slicing, called hybrid federated deep rein-
forcement learning (HDRL) scheme, with the aim to improve
network throughput while reducing handoff cost. Considering
the large state-action space and the diversity of services,
HDRL is designed to consist of two layer model aggregations:
1) Horizontal aggregation: for the same type of services
(e.g., eMBB services), we aggregate the parameters of local
DRL model on BSs to share the similar samples; 2) Vertical
aggregation: for the services of different types (e.g., eMBB
and URLLC services), we aggregate the access features of
local DRL model on the third encrypted party in vFL [10],
where we use Shapley value [11] to evaluate aggregated
access features. Numerical results show that in the typical
scenarios, our proposed HDRL scheme for device association
significantly outperforms the traditional solutions in terms of
network throughput and communication efficiency.

The main contributions of this work can be summarized as
follows:

(1) We combine DRL and hFL to train distributed data over
smart devices, with the aim to retain the privacy of local
data.

(2) We calculate Shapley values to evaluate the importance
of different global access features [10], [11] and promote
collaboration between devices.

(3) We propose to exploit two levels of aggregation for device
association problem. Specifically, one is for the same type
of services to aggregate the local parameter models to
share the similar samples. Another one is for the different
types of services to aggregate access features to make a
global optimal decision on NS and BS selection.

In the rest of this paper, we begin with an overview
of related work in Section II. Then we present the system
model and problem formulation in Section III and Section
IV respectively. In Section V, HDRL is presented to solve the
device association problem of RAN slicing. Finally, we present
the numerical results in Section VI and conclude the paper in
Section VII.

II. RELATED WORK

In recent years, there has been a large body of research
work on resource management in the virtualized core network
(CN), such as [14]–[18], etc. However, considering that end-
to-end slices span both CN and RAN, in order to improve
the efficiency and resource utilization of the virtualized net-
works, RAN slicing should also be considered to provide
specific services for smart devices through end-to-end NSs.
The authors of [19]–[23] pointed out that device association
is one of the key issues in virtualized networks since that
device association determining whether a device is associated
with a certain NS via a specific BS, plays a crucial role
for load balancing, radio spectrum efficiency, and network
efficiency [20]. Moreover, device association in sliced mobile
networks is fundamentally distinct from that in conventional
mobile networks because of the device-BS-NS three layer
association relationship. Thus existing access/handoff control
schemes for traditional mobile network cannot be applicable
to virtualized mobile networks [20], [21]. Specifically, a joint
optimization of NS and BS selection for a device with specific
QoS requirements should be addressed [19]–[23]. In addition,
the handoff under device-BS-NS three layer relationship is
different from traditional reference signal received power
(RSRP)-based handoff mechanisms. Both the handoff types
(i.e., switching NS only, switching BS only, switching NS
and BS) and the RSRP of BS should be taken into account to
guarantee the service quality [20], [21], [23].

Indeed, there are existing some investigations focusing on
access control or slice association in RAN slicing, such as
[3], [21], [23]–[25]. In [3], the authors proposed a framework
to investigate access control, with the aim of minimizing
wireless bandwidth consumption while guaranteeing QoS of
users. In [21], the authors proposed a unified framework for
RAN slicing (including user admissibility, slice association,
and bandwidth allocation) with the aim of maximizing re-
source utilization. The authors of [23] resorted to a genetic
algorithm to investigate NS selection, with the aim to improve
network resource utilization. In [24], joint access control and
power allocation were addressed in an Open-RAN system,
where the problem of wireless link scheduling was formulated
as maximizing the energy efficiency and minimizing power
consumption and the cost of physical resources. The authors
of [25] proposed an integrated slice allocation and admission
control scheme, with the aim to improve network throughput
of the whole system. However, these existing approaches in
[3], [21], [23]–[25] which tackled similar problems under
the device-BS-NS three layer association relationship did
not consider data security and device privacy. In addition,
the authors of [3], [23], [24] did not consider the handoff
management and the authors of [25] only considered the inter-
slice handoff management. Furthermore, the authors of [3],
[21], [24], [25] applied the static optimization algorithms and
the authors of [23] applied the static heuristic algorithm (i.e.,
genetic algorithm). Both the static optimization algorithms
and heuristic algorithms may be inappropriate for device
association in complex and dynamic network scenarios as
the computational complexity could be prohibitively high to
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retain the optimality by constantly performing the optimization
algorithm in dynamic network scenarios.

Considering the uncertainty of access conditions and user
mobility, some researchers proposed to optimize the long-term
network performance by using conventional RL algorithms,
such as actor-critic (A3C) and DRL. In [26], the authors
designed an on-line scheme based on DRL to accomplish
the optimal resource orchestration in the virtualized network.
The authors of [27] exploited a collaborative A3C learning
framework to manage the resources in RAN slicing. The al-
gorithms in [26] and [27] consume certain network bandwidth
resources to transmit training data. Moreover, both of them
did not consider the data security and device privacy, which is
highly emphasized and concerned in 5G-and-beyond systems
[2], [22], [28].

Recently, in order to enforce data security and device pri-
vacy, a novel and safe distributed machine learning framework,
FL, has been introduced into wireless networks [9], [12], [13].
Specifically, the authors of [9] tried to bridge the trade-off gaps
by formulating FL over wireless network as an optimization
problem. The authors of [12] formulated the joint wireless
resource allocation and user selection as an optimization prob-
lem with the aim to minimize an FL loss function that captures
the optimal transmit power. In [13], the authors employed
FL scheme to transfer the control and responsibility from the
centralized controller to individual user devices. However, the
authors of [9], [12], [13] only focused on hFL to share the
sample space and did not consider the diversity of services.
Moreover, the authors of [11] used Shapley values in vFL
to calculate the importance of features, opening the door for
investigating hybrid FL and crediting allocation in the context
of FL in terms of diversified service types. To the best of our
knowledge, device association over RAN slices based on FL
is still not considered in current researches.

III. SYSTEM MODEL

A. Network Model

We consider a scenario where the virtualized network is
built upon a Software Define Network/Network Function
Virtualization -enabled 5G network infrastructure, which is
composed of CN and RAN. As shown in Fig. 1, the access and
mobility management function (AMF) is responsible for the
connectivity and mobility management for associating devices
with slices [29]. The selection of network slice instances for
a device is triggered by the first contacted AMF. When the
location of a device changes, the initially selected AMF entity
may be changed to receive services, to enable mobility track-
ing and enable reachability. Specifically, if the AMF entity can
serve the single network slice selection assistance information
(S-NSSAI), the AMF entity remains the serving AMF for the
device. Otherwise, the network slice selection function (NSSF)
which is responsible for selecting the set of network slice
instances (NSIs) and AMF set (or candidate AMF) to serve
devices [29], will select the NSIs and determine the target
AMF set to serve the devices. More details about network
functionalities can be found in [26]. In addition, some network
functions can be shared among multiple slices, while others are

slice-specific. For example, in CN domain, AMF and NSSF
can be shared among multiple slices, while UPF, NEF, and
UDM are slice-specific [29], [30]. In cloud-RAN domain, DU
and RU could be shared if the functions (e.g., radio functions,
baseband processing functions) are implemented by physical
devices [31]. In general, CU could be slice-specific because
it realizes the ”packet processing functions” as virtualized
network functions [31].
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Fig. 1. The NS based mobile network model.

B. RAN slicing
We consider a multi-NSs and multi-BSs RAN slicing sce-

nario, as shown as Fig.1, where an operator deploys a slice on
multiple BSs (not all BSs). In other words, a NS may expand
multiple BSs and a BS may be covered by multiple NSs. When
a device accesses the mobile network or experiences a handoff,
both BS and NS may need to be selected/reselected for provi-
sion seamless service while meeting the QoS requirements of
the device. Specifically, for serving mobile devices, the change
of device association is only the change of serving BS. For
the case that a device moves out of the coverage of a specific
slice, two methods can be used to guarantee the connections.
One is to expand the coverage of the current serving slice by
deploying it on more BSs. Another one is to change the device
association to an exiting slice which can provide the similar
service thus to fulfill the QoS requirements. In addition, if the
operator knows that a service provided by some slices, it must
cover a specific region. If the intended NS is not deployed on
a specific BS or the QoS of a device cannot be guaranteed by
a specific BS, the device can access the slice via other BSs
with the slice deployed in this region.

Let B, N , and D denote the set of BSs, NSs, and devices,
respectively. For a specific BS k, we use Nk = {j, ..., g}

to represent the set of NSs which are supported by it. For
a specific NS j, we use a four-tuple

⇣
Rj , Tj ,⌦j ,

~Wj

⌘
to

represent the state where Rj and Tj denote the minimal trans-
mission rate and the maximal latency which are provided by
NS j to serve devices. Moreover, ⌦j represents the bandwidth
allocated to NS j in CN (including transport network), and ~Wj
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is a vector, which represents the bandwidth allocation of NS j

from all BSs. We assume that the kth element in ~Wj is denoted
by bj,k, which represents the bandwidth resource allocated to
NS j by BS k, where bj,k = 0 means BS k is not covered
by NS j. For convenience, the frequently used notations are
summarized in Table I.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Definition
B the set of BSs
N the set of NSs
D the set of devices
di the ith device
T total number of time slots
Tj the maximal latency provided by NS j

Nk the set of NSs supported by BS k at t
Rj the minimal transmission rate

provided by NS j

⌦j the bandwidth allocated to NS j in CN
~Wj bandwidth allocation of NS j from all BSs
bj,k the bandwidth allocated to NS j by BS k

b
t
j,k the available bandwidth allocated to NS j

by BS k during time slot t
u the total number of smart devices
ux the number of devices with service of type x

r̂
t
i the minimum transmission rate of di
d̂
t
i the maximum tolerated latency of di

r
j,k
i,t the transmission rate of di served by NS

j via BS k

w
j,k
i,t the wireless bandwidth that BS k allocates to

di served by NS j during time slot t
T̂

j,k
i,t the transmission delay in RAN of di served

by NS j via BS k during time slot t
T̂

j,k
i,t + Tj end-to-end delay

qi the volume of flow data generated by di

↵
HO handoff cost

C. Service Requirements
Since the services required by devices may vary with time,

we assume the time is slotted, where the services remain fixed
for the duration of one time slot and change from one slot to
the next. Slotted time can be regarded as a sampled version
of continuous-time which consists of T time slots (fixed time
intervals) [32], [33]. During time slot t 2 [1, T ], we assume
that a device connects only one BS and remains connected to
the same NS and BS. Let u be the number of devices in the
network. For a specific device di 2 D, its service quality can
be described by two metrics: the minimum transmission rate
r̂
t
i and the maximum tolerated latency d̂

t
i. Therefore, NS j can

accommodate di only if Rj � r̂
t
i and Tj  d̂

t
i.

Let rj,ki,t be the transmission rate of di which is served by
NS j via BS k during time slot t, and w

j,k
i,t be the wireless

bandwidth that BS k allocates to di which is served by NS
j during time slot t (Here w

j,k
i,t also called consumed radio

resources of di during time slot t). In this work, the models
may affect the absolute value of communication efficiency,
but do not invalidate the relative performance enhancement of
our proposed policies. Hence, more sophisticated and precise
models can be applied here, and then use the proposed
algorithm to solve the device association problem. As we
focus the device association in the RAN slicing, we assume
the delay in CN (Tj) is a constant. The similar assumption
is widely used in related studies, such as [3], [21], [34].
Therefore, the end-to-end delay can be calculated as T̂ j,k

i,t +Tj ,
where T̂

j,k
i,t = qi/r

j,k
i,t is the delay in RAN of di served

by NS j via BS k and qi is the volume of flow data
generated by di. Moreover, we use Shannon theory to define
the transmission rate (i.e., r

j,k
i,t = w

j,k
i,t log2

�
1 + SINR

k
i,t

�
),

where SINR
k
i,t is the signal-to-interference-plus-noise-ratio

(SINR) between di and BS k during time slot t. Moreover,
SINR

k
i,t =

pk
i,t·G

k
i,tP

k2B,k0 6=k pk0
i,tG

k0
i,t+⇣2

, t 2 T , where p
k
i,t represents

the transmission power allocated to di at BS k, G
k
i,t is the

channel gain between di and BS k, and ⇣
2 is the noise power

level.

D. Handoff Cost

When the location of a device changes or the service quality
of a device cannot be satisfied, a handoff may occur to improve
the experience of the user. Once a handoff happens, the
device needs to re-select appropriate BS and NS. It is obvious
that traditional reference signal received power (RSRP)-based
handoff mechanisms [35] are no longer applicable to RAN
slicing. Specifically, a device accesses to a NS via a specific
BS, forming a three-layer associate relationship device-BS-
NS. Therefore, both the service type of NSs and the RSRP
of BSs should be taken into account to guarantee the service
quality when a handoff occurs. Therefore, unlike the handoff
in traditional mobile networks, there are three types of handoff
we need to consider: switching NS only, switching BS only,
and switching both NS and BS [36]. The amount of signaling
data needed for a handoff is different for the three types. For
example, switching NS only needs to exchange signaling in the
same BS, while switching both NS and BS needs to exchange
signaling between different BSs and NSs. Therefore, based on
the idea of [36], we define the amount of signaling data for
three types of handoff as: 1) qNS , the amount of signaling data
needed for switching NS only; 2) qBS , the amount of signaling
data needed for switching BS only; 3) qN�B , the amount
of signaling data needed for switching both NS and BS;
with the relationship qNS < qBS < qN�B [36]. Intuitively,
the amount of signaling data needed incurs corresponding
signaling overhead in terms of bandwidth consumption for
signaling exchange.

Furthermore, due to the bandwidth consumed by service
flows and the bandwidth consumed by handoff may not be in
the same order of magnitude, we define the handoff cost as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2020.3033035

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

follows [37],

↵
HO =

8
>>><

>>>:

qNS

wNS
, if switching NSs only,

qBS

wBS
, if switching BSs only,

qN�B

wN�B
, if switching both NSs and BSs,

0, otherwise.

(1)

where wNS represents the bandwidth consumed by the first
type of handoff switching NS only, wBS represents the band-
width consumed by switching BS only, and wN�B states the
bandwidth consumed by switching both BS and NS.

IV. PROBLEM FORMULATION

A. Problem Statement
Given a set of devices which may require services of differ-

ent types, we investigate the device association problem under
network resource constraints. We define a binary variable x

j,k
i,t

to indicate whether the device di is served by NS j via BS
k during time slot t or not: x

j,k
i,t = 1 yes and 0 otherwise.

Therefore, multiplying the two variables xj,k
i,t x

j0,k0

i,t�1 in adjacent
time slots indicates the handoff decision of di from time slot
t � 1 to t, which can be summarized in Table II. Note that
if x

j,k
i,t x

j0,k0

i,t�1 = 0, we know that device di is not served by
NS j

0 via BS k
0 during time slot t � 1 or/and device di is

not served by NS j via BS k during time slot t, and we
cannot judge whether a handoff happens. However, it is much
easier to judge if a handoff happens when x

j,k
i,t x

j0,k0

i,t�1 = 1.
As shown in Table II, when x

j,k
i,t x

j0,k0

i,t�1 = 1, we can judge
whether a handoff happens and derive the handoff types and
corresponding handoff cost (i.e., ↵

HO) from following four
aspects: 1) j 6= j

0, k 6= k
0, switching both BS and NS; 2)

j = j
0, k 6= k

0, switching BS only; 3) j 6= j
0, k = k

0,
switching NS only; 4) j = j

0, k = k
0, device di is served by

NS j
0
/j via BS k

0
/k during both time slot t� 1 and t. Thus

no handoff happens.

TABLE II
THE RELATIONSHIP BETWEEN HANDOFF AND xj,k

i,t x
j0,k0

i,t�1

x
j,k
i,t x

j0,k0

i,t�1 NSs BSs Switching ↵
HO

1 j 6= j
0
k 6= k

0 both BS and NS qN�B

wN�B

1 j = j
0
k 6= k

0 BS only qBS

wBS

1 j 6= j
0
k = k

0 NS only qNS

wNS

1 j = j
0
k = k

0 no handoff 0

Therefore, in order to improve network throughput while
reducing handoff cost, we define the communication efficiency
of the network during time slot t as follows,

et =
X

i2D
(↵flow

i,t x
j,k
i,t � ↵

HO
x
j,k
i,t x

j0,k0

i,t�1), 8t 2 [0, T ]. (2)

In equation (2), communication efficiency et is a bandwidth
metric value representing the bandwidth efficiency minus
signaling overhead (which is indeed the “handoff cost”).
The bandwidth efficiency ↵

flow
i,t x

j,k
i,t represents the amount of

service data transmitted in unit bandwidth during a time slot.
The signaling overhead ↵

HO
x
j,k
i,t x

j0,k0

i,t�1 denotes the amount

of signaling data transmitted in unit bandwidth. Moreover,
↵

flow
i,t = qi

wj,k
i,t

[37], where qi represents the service flow data

volume of di, and w
j,k
i,t represents the wireless bandwidth that

BS k allocates to di served by NS j.

In our model, xj,k
i,t is a decision variable, which represents

the decision on NS and BS selection of di. As the device
association is indeed a sequential decision problem, we use
the long-term communication efficiency of the network as
the optimization objective in (3), with the aim to improve
network throughput while reducing handoff cost. Therefore,
we formulate the device association problem as follows.

max lim
T!+1

E[
1

T

TX

t=1

et] (3)

s.t.
X

k2B

X

i2D
xj,k
i,t r

j,k
i,t  ⌦j , 8j 2 N , t 2 [0, T ] (3.1)

X

i2D
xj,k
i,t w

j,k
i,t  bj,k, 8j 2 N , 8k 2 B, t 2 [0, T ] (3.2)

X

j2N

X

k2B
xj,k
i,t r

j,k
i,t � r̂ti , 8i 2 D, t 2 [0, T ] (3.3)

X

j2N

X

k2B
xj,k
i,t Rj � r̂ti , 8i 2 D, t 2 [0, T ] (3.4)

X

j2N

X

k2B
xj,k
i,t (T̂

j,k
i,t + Tj)  d̂ti, 8i 2 D, t 2 [0, T ] (3.5)

X

j2N

X

k2B
xj,k
i,t = 1, 8i 2 D, t 2 [0, T ] (3.6)

xj,k
i,t 2 {0, 1}, 8i 2 D, 8j 2 N , 8k 2 B, t 2 [0, T ] (3.7)

In problem (3), constraint (3.1) represents the limitation of
wired link resource, where the total transmission rate offered
by NS cannot exceed the link resource budget during any time
slot t. Constraint (3.2) states the wireless bandwidth limitation,
which means that the total wireless bandwidth allocated to
devices by NS j via BS k cannot exceed the total bandwidth
of NS j allocated from BS k during any time slot t. Constrains
(3.3) - (3.5) state that the service quality of devices should
be satisfied by its serving BS and NS during any time slot
t even the selected NS/BS pair and network environment
change. Specifically, constraints (3.3) and (3.4) guarantee the
transmission rate, and constraint (3.5) guarantees the end-to-
end delay. Moreover, constraint (3.6) represents the access
limitation, which means that a device can access only one
NS via one BS during time slot t. The binary constraint on
the decision variable is shown in (3.7).

Theorem 1. Problem (3) with constraints (3.1)-(3.7) is NP-
hard.

Proof: A special case with fixed w
j,k
i,t and r

j,k
i,t in problem

(3), can be mapped into a Multiple Choice Multidimensional
Knapsack problem (MMKP) [38] which is NP-hard [39].
When w

j,k
i,t and r

j,k
i,t change with time, problem (3) with

constraints (3.1)-(3.7), is a dynamic MMKP (DMMKP). If
DMMKP has solution in polynomial time, its corresponding
MMKP should also have solution in polynomial time. Thus,
DMMKP can reduce to MMKP. Therefore, problem (3) with
constraints (3.1)-(3.7), is NP-hard.
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B. Markov Decision Process Modeling for Device Association

As Problem (3) is NP-hard, there is no polynomial-time
algorithm for solving it. Meanwhile, in view of the dynamic
nature of access conditions, the change of relevant parame-
ters (including consumed bandwidth, transmission rate, and
service delay) in the device association scheme over time,
we formulate the device association problem as a markov
decision process (MDP) model. An MDP consists of four-
tuple M = (S,A, P,R), where S represents the state space,
A represents the action space, P is the transition probability
between states, and R represents the reward function. As
shown in Fig. 2, for a specific device, the device needs to make
a decision to select an appropriate combination of BS and NS
(action) to access at the beginning of each time slot. This may
change the state of access conditions, causing the network state
to transit to another state. Through this action, the device can
obtain a certain reward. The state, action, transition probability,
and reward are respectively defined as follows.

State

Reward

Agent (Device)

Action 

tr

i
ts

BSs

i
tq( )rg t

i
+1ts

BS 1… BS k

AMF

NSSF
SMF

UPF

UDMPCF

NEFAUSF

AMF

NSSF
SMF

UPF

UDMPCF

NEFAUSF

NS 1 
…

NS j

Environment

+1tr

i
ta

Fig. 2. The Markov transition diagram.

State: The current access conditions are used to describe
the system state. We assume S is the set of all network states
for all devices, and the number of NSs and BSs are |N | and
|B| respectively. For a specific device di 2 D, the state can
be represented by s

i
t = {Ii, b

t
1,1, ..., b

t
j,k, ..., b

t
|B|,|N |}, where

s
i
t 2 S , Ii = (j, k) states the current selected NS/BS pair of di,

and b
t
j,k represents the available wireless bandwidth allocated

to NS j from BS k at time slot t with constraint btj,k  bj,k.
Moreover, we filter out btj,k if NS j or BS k is not engaged
for di.

Action: We remove the infeasible actions which do not
satisfy either the network resource constraints (3.1)-(3.2), the
service quality of devices (3.3)-(3.5), or the access constraints
(3.6)-(3.7). Moreover, we assume A is the set of actions for all
devices. For a specific device di 2 D, let ai

t = (j, k, wj,k
i,t ) be

the action, which means di will consume w
j,k
i,t MHz wireless

bandwidth if it accesses to NS j via BS k at time slot t. Here
w

j,k
i,t is selected randomly from [r̂ti/log2(1 + SINR

k
i,t), b

t
j,k],

where r̂
t
i is the minimal transmission rate of di at time slot t.

Transition Probability: Let the transition probability of di
be P =

n
p
ai
t

si
ts

i
t+1

|a
i
t 2 A, s

i
t, s

i
t+1 2 S

o
, which represents the

probability that network state of di transits from s
i
t to s

i
t+1

through action a
i
t.

Reward: In order to maximize the communication effi-
ciency while considering the incurred communication cost in
FL, we define the reward as rt = et � u · xt · ↵

c
i,k, where u

is the number of devices, xt is the number of communication
rounds in FL from the first time slot to the tth time slot, and
↵

c
i,k is the communication cost of each round in FL between

di and BS k. More details about communication round and
FL are shown in next section.

In summary, the information used for training local DRL
model includes the consumed radio resources (i.e., wj,k

i,t ), the
current selected NS/BS pair (i.e., Ii = j, k), the communi-
cation efficiency (i.e., et), the handoff cost (i.e., ↵

HO), the
bandwidth allocated to NS j from BS k (i.e., bj,k), and the
available bandwidth allocated to NS j from BS k at time slot
t.

In the MDP for device association, a smart device can
obtain an optimal long-term reward by continuously inter-
acting with the network environment. But the effectiveness
fades as the size of the state-action space becomes large (i.e.,
the state space of MDP for device association is a discrete
space with |B| · |N | + 1 dimensions, the action space is a
discrete space with |B| · |N | · bj,k dimensions). To address
the aforementioned difficulty, we employ DRL to solve the
decision-making problem of a large size of state-action space.
Meanwhile, in the paradigm of distributed machine learning,
federated learning can be exploited to efficiently promote the
collaboration between devices and save the network bandwidth
consumption for transmitting training data while retaining the
privacy of local data.

V. HYBRID FEDERATED DEEP REINFORCEMENT
LEARNING FOR DEVICE ASSOCIATION

A. Framework of HDRL

By incorporating the DRL into the FL framework, we
propose a collaborative hybrid federated deep reinforcement
learning scheme, called HDRL. Fig. 3 shows the architecture
of HDRL, which consists of DRL running on individual
devices, and two levels of model aggregation based on DRL:
horizontal weights aggregation (called hDRL) and vertical
access feature aggregation (called vDRL). Specifically, in
hDRL, we exploit hFL for the same type services to aggregate
the parameters (i.e., ✓

i
t) to share the similar data samples,

where smart devices and BSs can be enabled to train a
global model (i.e., gr(t)) together without raw data transfer.
As the RAN needs to support multiple service types, the
selected NS/BS pairs derived from hDRL may be not optimal.
Therefore, in vDRL, we exploit vFL to aggregate the access
features to form a larger feature space for different types of
services (e.g., in the scenario of Fig. 3, there are two service
types). In our proposed HDRL framework, devices such as
cell phones are involved in local model training. Although
a certain amount of energy is consumed, HDRL is effective
for the following reasons: 1) The power consumption of the
training process on a smartphone is smaller than that of some
typical smartphone applications (e.g., video play, large-scale
game) [40]; 2) Many cell phone vendors, e.g., Apple, Huawei,
have introduced smartphones with dedicated powerful AI chips

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVT.2020.3033035

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

vDRL
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Fig. 3. The hybrid federated deep reinforcement learning (HDRL) framework
for device association.

that can perform up to 5 trillion operations per second [41] and
thus the battery power consumed by training neural network
on the phone is acceptable [40]; 3) Our proposed collaborative
HDRL enables independent devices to jointly train the global
model together, where the number of training samples and the
number of trainings on each device can be reduced and thus
the energy consumption for local model training is limited. In
the following, we elaborate the detailed mechanisms at smart
devices and two aggregation levels.

DRL on smart devices: As FL can inherently support
privacy protection on private data, the training data should
be kept where it is generated. In other words, devices need to
train their own data independently. Furthermore, on one hand,
modern smart devices (e.g., smartphones) have fast processors
(including GPUs) and AI chips to accelerate training and
reduce energy consumption [42]. On the other hand, the state
space of MDP for device association is a discrete space
with |B| · |N | + 1 dimensions, and the action space is a
discrete space with |B| · |N | · bj,k dimensions. Therefore,
we employ the discrete-action DRL algorithm, double deep
Q-Network (DDQN), to train the local model on individual
smart devices. DDQN can address MDP with large state-
action space by introducing the experience pool, improve
the stability of the training results by introducing the target
network, and decouple the selection from the evaluation to
reduce the correlation between data [43].

Horizontal model aggregation (hDRL) level: Since dif-
ferent smart devices may generate local data with different
patterns based on the usage of the devices, no device has a
representative sample of the popular distribution in general.
However, for the same type of service, the flow data from
different devices is strongly correlated because the data flows
not only have similar features (e.g., the service type mark), but
also compete for the radio and computing resources in similar
slices. Therefore, for the different services of the same type,
we propose horizontal aggregation to integrate the similar data
samples to train a global access model by adopting an iterative
approach that requires a number of model update iterations,
where each model update iteration is called a communication
round [7] [10]. Fig. 4 shows the process of a communication
round, which consists of five steps: initialization of DDQN
parameters, local model training, local model transmission,

global model update, and global model transmission. In each
communication round, we aim to update model through the
cooperation between BSs and smart devices (i.e., aggregating
training samples for updating the global model and using DRL
for updating the local model). As a result, an individual device
can share the updates of parameters with other devices.

Fig. 4. The process of a communication round.

hDRL is performed in two steps: 1) DRL for training and
updating local model; 2) Horizontal weights aggregation for
aggregating training samples with some similar data features.
Specifically, in the first step, based on the received global
model, all devices use their own data to update the local
model at the beginning of each communication round, and
then continue to train local model through using DRL with
the aim to approach optimal parameters that minimize the
loss function. In the second step, individual devices send their
local model to the corresponding BSs at the end of each
communication round. Upon receiving all local models of the
trained devices, BSs will update the global model and then
send back the updated global model to individual devices.

Vertical model aggregation (vDRL) level: As the RAN
needs to support multiple types of services, horizontal ag-
gregation for aggregating the similar data samples may be
not optimal. Therefore, in order to further promote the col-
laboration between devices, we aggregate the local access
features to form a global access feature, where the data
from different flows is strongly correlated because data flows
compete for radio resources with each other. Furthermore, as
shown in the Table. 1 and Table. 2 in [10], it brings much
more communication cost to directly aggregate the data of
services of different types compared with aggregating the data
of the same type services, because the parameters are more
frequently transmitted and updated in each communication
round. Therefore, in order to reduce communication cost in
vDRL, based on the aggregated global access feature, we
introduce Shapley values [11] in (4) which represents the
average marginal contribution of a specific feature across all
possible feature combinations, to compare the importance of
global access feature,

�f =
1

M

MX

m=1

�
f(xm

+i)� f(xm
�i)

�
, (4)

where M is the number of iterations. f(xm
+i) is the prediction
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for instance x. x
m
�i is identical to x

m
+i, except that x

m
+i is

different. Thus, we can derive the global optimal decision on
NS and BS selection by selecting the maximal Shapley value.
Here the access feature refers to the selected NS/BS pair and
its corresponding estimated value (i.e., the target value for
local selected NS/BS pair and the Shapley value for global
decision on NS and BS selection).

In vDRL, both the local and global selected NS/BS pairs can
be represented by a 0-1 matrix (i.e., local 0-1 matrix, global
0-1 matrix). Specifically, the global 0-1 matrix is composed
of the row vectors of the local 0-1 matrices, where each
row vector of the global 0-1 matrix represents a selected
NS/BS pair of a specific device. Moreover, a local 0-1 matrix
consists of possible local selected NS/BS pairs, where each
row vector of a local 0-1 matrix represents a specific selected
NS/BS pair of this device. Therefore, we can update the local
and global decisions on NS and BS selection by changing
the row vectors of the global 0-1 matrix. Furthermore, three
steps are executed in vDRL: 1) Aggregate access features.
All devices will send their own local access features (0-1
matrix and the corresponding target values) to the trusted
third encrypted party every several communication rounds
(i.e., v). Thus, different global decisions on NS/BS selection
(i.e., global 0-1 matrix) can be obtained by selecting different
row vectors of the local 0-1 matrices; 2) Calculate and compare
Shapley value. Based on the formed global 0-1 matrices, we
can calculate the Shapley values and obtain a global optimal
0-1 matrix (global optimal decision on NS and BS selection)
with the maximal Shapley value by comparing these Shapley
values; 3) Store and update the global decision on NS and
BS selection. The third encrypted party will store the global
optimal decision on NS and BS selection and Shapley value
until it is replaced by a better one. Here the third encrypted
party is a logical entity used to aggregate the different features
without exposing their respective data. Currently, there are
no standards or researchers explicitly specify which entity
could play the role of the third encrypted party in a mobile
network. In our views, a MEC/cloud encrypted server or a
secure computing node in CN/RAN could serve as the third
encrypted party because the aggregation on this entity needs
certain computing resources. Indeed, the instantiation of the
third encrypted party does not affect the effectiveness of our
proposed algorithm.

B. Algorithm of Horizontal Model Aggregation

DDQN for training local model: At the beginning of each
communication round, smart devices will receive the global
model from BSs to update their local model (i.e., weight ✓)
if communication round r 6= 1. Otherwise the devices will
update their local model directly with initial weights (which
are set as zero). We assume that each communication round
consists of ⌧ time slots. During each time slot, each device
performs local training once. Therefore, after completing the
local model update, the devices continue to train their local
model independently with DDQN during ⌧ time slots. DDQN
evaluates the greedy policy according to the Q-network with
weight ✓ and estimates state-action value Q(·) according to the

target network Q̂ with weight ✓̂ [43]. The update in DDQN is
the same as that in DQN, but the target is replaced by

y
i
t = rt+1 + �Q(si

t+1, argmaxai
t
Q(si

t+1, ai
t; ✓

i
t); ✓̂

i
t), (5)

where argmaxai
t
Q(si

t+1, ai
t; ✓

i
t) is an ✏-greedy policy used to

select access or handoff actions, and ✓
i
t is the weight vector

of Q-network for device di.
For a specific device di, if di satisfies the access condition

and takes access or handoff action ai
t at the beginning of time

slot t, we will obtain the corresponding state-action value,
which is given by

Q(si
t, a

i
t) = E[

TX

k=t

�
k
rt|s

i
t, a

i
t], (6)

where � 2 [0, 1] is the discount factor representing the
discounted impact of the future reward. The objective of
DDQN is to minimize the gap between the estimated Q(·)
and the target value. Therefore, DDQN running on di can be
trained by minimizing the loss function, which is given by

L(✓i
t) = E[(yi

t �Q(si
t, ai

t; ✓
i
t))

2]. (7)

Moreover, when DDQN approximates the value function
using the neural network, it indeed updates the parameter value
✓

i
t by using the gradient descent method. Therefore, the update

algorithm in DDQN is given by

✓
i
t+1 = ✓

i
t + ↵

⇥
y

i
t� Q

�
s

i
t, a

i
t; ✓

i
t

�⇤
rQ

�
s

i
t, a

i
t; ✓

i
t

�
. (8)

After training local data for ⌧ time slots, device di will send
the local model (i.e., ✓i

t) to the BSs to update the global model.
Update models: Once receiving all local models from indi-

vidual devices, BSs will update the global model as follows,

gr(t) =

Pux

i=1 Ki✓
i
t

K
, 81  t  T, (9)

where Ki is the amount of training data of di, K =
Pux

i=1 Ki

is the total amount of training data of the devices with
service of type x, ux is the number of devices which has the
same service type x, and r represents the rth communication
round of hDRL. After updating the global model in the rth
communication round, BSs will transmit the global mode gr(t)
to all devices with the same type services to update the local
DDQN models based on (10).

✓
i
t+1 = gr(t)�

�

Ki

uX

i=1

rL(✓i
t), 8i 2 D, 1  t  T, (10)

where � is the learning rate, and L(✓i
t) is the loss function

of DDQN in (7). After updating the local model, the devices
will continue to train their local model. The horizontal model
aggregation algorithm is presented as Algorithm 1, where the
complexity of horizontally FL framework is O (R(u+ |B|))
because each communication round includes the computation
of BS aggregation and local model updating, where R, u, and
|B| are the number of communication rounds, smart devices,
and BSs.
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Algorithm 1 Algorithm of Horizon Model Aggregation
Input: s

i, ai, ↵, �, C, R, Ki, ux, x, �, ⌧
output: Selected NS/BS pair ⇡

i, target value
y

i
t.
1: Initialize experience relay pool Di

x, 8i 2 D;
2: Initialize the global weights g0;
3: for communication round r = 1, 2, ..., R do

4: if r == 1 then

5: Initialize ✓
i
0;

6: else

7: . Update local model
8: for i = 1, 2, ..., ux do

9: ✓
i
0 = gr�1(t)�

�
Ki

Pux

i=1 rL(✓i
t).

10: end for

11: end if

12: . Local model training
13: Let ✓̂i

0 = ✓
i
0, initialize target action-value function Q̂(·)

according to the parameter ✓̂i
0;

14: for t = 1 to ⌧ do

15: Receive the initial observed state s
1
1, s

2
1, ..., s

ux
1 ;

16: if t  |D
i
x| then

17: Randomly select a1
t , a

2
t , ...;

18: else

19: Select ai
t = argmaxaQ(·) using ✏-greedy policy;

20: Execute action a
i
t, obtain r

i
t and s

i
t+1;

21: Store (si
t, a

i
t, r

i
t, s

i
t+1) into D

i
x, 8i 2 D;

22: Randomly select a sample
�
s

i
j , a

i
j , r

i
j , s

i
j+1

�
from

the experience relay pool Di
, 8i 2 D;

23: Calculate y
i
t according to equation (4);

24: Perform a gradient descent step on
uX

i=1

�
y

i
j �Q

�
s

i
j , a

i
j ; ✓

i
t

��2

25: Update the parameter ✓i
t, 8i 2 D;

26: Every C slots reset Q̂ = Q;
27: end if

28: end for

29: . Update global model
30: for i = 1, 2, ..., ux do

31: gr(t) =
Pu

i=1 Ki✓
i
⌧

K .

32: end for

33: end for

34: Obtain selected NS/BS pair ⇡i, target value y
i
t.

C. Algorithm of Vertical Model Aggregation

The aforementioned horizontal model aggregation is used
for the same type services with similar data samples. As
multiple types of services are considered in this paper, vertical
model aggregation could be exploited for further improving
the network performance, by aggregating local access features
incurred from different types of services. Due to the data on
each device is private and not visible to other devices, we use
a 0-1 matrix to represent a local global decision on NS and
BS selection, where we can update global access feature by
transforming these 0-1 matrices. In this paper, according to

[11], the estimated global target value of a global decision on
NS and BS selection is given by

'f =
uX

i=1

y
i
t � E

"
uX

i=1

y
i
t

#
, (11)

where f ✓ X is a specific global decision on NS and BS
selection (0-1 matrix), each row vector of f represents a local
selected NS/BS pair. Moreover, yi

t is the target value in (5).
For example, we assume there are two devices (i.e., d1 and
d2) sending two service requests in the overlapping area of
multiple BSs (i.e., BS 1, BS 2). Thus X can be given by

X = {


1 0
0 1

�
,


0 1
1 0

�
,


1 0
1 0

�
,


0 1
0 1

�
},

where X is the set of possible global selections. Each element
of X represents a global decision on NS and BS selection,
composed of row vectors of matrix A and H, where A and
H are given by

A = H =


1 0
0 1

�
.

In this case, A and H represent the possible selected NS/BS
pairs of device 1 and device 2 respectively. For example, in
A, the first row [1 0] represents that device 1 accesses to BS 1
and the second row [0 1] represents that device 1 accesses to
BS 2. Moreover, the sum of each row of A or H is 1, which
means that a device can only access to one BS.

In [11], the authors proposed an Monte-Carlo sampling,
where the Shapley value is given by

�f =
1

M

MX

m=1

('+f � '�f ) , (12)

where M is the number of access feature updates in vDRL.
Moreover, �f is the Shapley value for a specific global
decision on NS and BS selection f , representing the average
marginal contribution of f across all possible access feature
combinations X . For example, in X above-mentioned, if
f = X{1}, we can get the +f = X{1} and �f is randomly
chosen in {X{2},X{3},X{4}}. Therefore, we can obtain the
Shapley value �f of the corresponding global decision on NS
and BS selection f through (12) and derive the global optimal
0-1 matrix by comparing the Shapley values. Thus, when the
devices send their service requests, the third encrypted party
will send the i-th row vector of f to devices, where the i-th
row vector of f represents the local selected NS/BS pair of
di.

D. HDRL Algorithm for Device Association
Next we elaborate the model training process of HDRL

scheme. Fig. 5 shows an illustrative example of HDRL pro-
cess, where two types of services are considered. In this
process, we assume that each communication round consists
of ⌧ time slots, where only the first and last time slots in a
communication round are involved in the global parameter ag-
gregation. Between BSs and devices, the parameters (including
global model gr(t) and local model ✓i

t ) are transmitted and
updated for a global model for the same type services. In the
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first time slot of each communication round, the global model
will be sent to individual devices if communication round
r 6= 1. Otherwise the devices will update their local model
directly with initial weights zero. During each communication
round, based on the received global model or initial weights,
the devices will update local weights and train their own data
with DDQN. At the last time slot of each communication
round, according to the service type, the devices will send their
local model to BSs to update corresponding global model. It
is worth noting that each device and each BS store all models
of all the service types.

Fig. 5. The process of HDRL.

The global access feature aggregation is performed in the
last time slot every several communication rounds (i.e., v).
Between the third encrypted party and devices, access features
are transmitted and aggregated for making a global decision
on NS and BS selection. At the last time slot of every v

communication rounds, we aggregate the access feature of
individual devices to form a global access feature on the
third encrypted party. Based on the aggregated global decision,
we calculate the Shapley values and derive a global optimal
decision on NS and BS selection with the maximal Shapley
value by comparing these Shapley values. Then the third
encrypted party will store the global decision on NS and BS
selection until it is replaced by a better one. Note that if
devices send their service requests simultaneously, the third
encrypted party will send the corresponding local selected
NS/BS pairs to devices. Otherwise the smart devices can make
decisions on NS and BS selection according to their own local
model. Based on the train Algorithm 1, the HDRL algorithm
is presented as Algorithm 2.

E. Convergence Analysis

HDRL can be regarded as fully distributed DRL if neither
horizontal aggregation nor vertical aggregation is performed
(i.e., r = R = v = 0), and also can be regarded as
centralized DRL if we perform global aggregation after every
local update (i.e., ⌧ = v = 1) and then the data samples
and features are available for the centralized controller, and
the communication cost is ignored [44]. Furthermore, we use

Algorithm 2 HDRL
Input: M , individual selected NS/BS pair ⇡i, and target value
y

i
t from Algorithm 1, iterations.

output: Shapley value �f , the optimal global decision on NS
and BS selection f .

1: Initialize the maximum Shapley value �max = 0;
2: Initialize selected NS/BS pairs for all devices f0 = ?;
3: for m = 1, 2, ...,M do

4: Get ⇡i, ✓i, and y
i
t of the devices with different service

categories in the same overlapping converges of multi-
ple BSs;

5: Get X through ⇡i;
6: Remove unfeasible solution in X ;
7: for i = 1, 2, ..., |X | do

8: f = X{i};
9: Initial the sets of �f ;

10: Calculate 'f ;
11: for iterations= 1, 2, ... do

12: Choose �f in {X � X{i}};
13: if �f ✓ F then

14: Continue.
15: else

16: Calculate '�f .
17: end if

18: end for

19: Calculate �f

20: if �max  �f then

21: �max = �f ;
22: f0 = f .
23: end if

24: end for

25: end for

26: Obtain Shapley value �f , the optimal global decision on
NS and BS selection f = f0.

an auxiliary parameter vector vr
t , which follows a centralized

gradient descent according to

v
r
t+1 = v

r
t � ⌘rL(vr

t ), 1  t  ⌧, 8r 2 R. (13)

According to [10], [44], the global parameters gr(t) should
be very close to v

r
t when ⌧ = v = 1. Formally, we have an

upper bound on the difference between L(gr(t)) and L(vr
t )

within [t� (r � 1)⌧, t], which is given by

|L(gr(t))� L(vr
t )|  h(⌧, r). (14)

We have h(⌧, r) = 0 if fully distributed DRL or centralized
DRL is performed. However, the fully distributed DRL, r =
R = v = 0, is always the worst solution compared with cen-
tralized DRL and HDRL, since fully distributed DRL always
only considers independent training and independent decision
on NS and BS selection. Moreover, it is always optimal when
setting ⌧ = 1 and v = 1 if we have unlimited resource budget
and ignore the privacy issue, since centralized DRL jointly
trains a global model for all services. Theoretically, the perfor-
mance of model training in HDRL should be between that of
the fully distributed DDQN and centralized DDQN. From the
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investigations in [44], h(⌧, r) is affected by data distribution,
r, and ⌧ . Therefore, when data distribution, ⌧ and r are
given, we can obtain the upper bound of the divergence (i.e.,
h(⌧, r)) between HDRL derived loss function and the global
loss function. Moreover, since we use a non-linear sigmoid
function in the neural network, the loss function in this paper is
non-convex. Therefore, we can obtain h(⌧, r) through training
and further obtain the convergence bound of HDRL derived
loss function [L(vr

t )�h(⌧, r), L(vr
t )+h(⌧, r)]. Intuitively, the

frequency of performing global weights aggregation (i.e., ⌧ )
should be carefully specified, as the communication cost with
a large number of communication rounds cannot be ignored.
Numerical results in the subsequent section will illustrate this.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of our proposed
HDRL scheme through simulation experiments. We employ
four reference device association (DA) schemes as comparison
reference:
(1) Greedy Algorithm for DA (GDA): In this scheme, each

device chooses NS/BS to access which can provide the
maximal communication efficiency based on instanta-
neous network conditions, instead of considering long-
term optimal communication efficiency.

(2) Centralized DDQN for DA (CDA): In this scheme, all
devices transmit data to a controller for centralized train-
ing in DDQN. Then the controller makes global decision
on NS and BS selection for all devices, where no cost
for transferring training data is taken into account.

(3) Distributed DDQN without data aggregation for DA
(DDA): In this scheme, individual devices train their own
data through DDQN and make decision on NS and BS
selection independently, where no data aggregation of FL
is used. Moreover, the reward function in CDA and DDA
remains the same as that in HDRL except that the cost
of communication round is zero.

(4) RSRP-based BS selection for device association (RDA):
In this scheme, devices first select the BS with highest
RSRP, and then select the slice that can provide the
maximum communication efficiency on this BS.

A. Simulation Settings
We consider a network scenario where four BSs are ran-

domly distributed in a square area of 1060 ⇥ 1060 m2

[23]. The parameters of network scenario are listed in Table
III. Specifically, we assume that five end-to-end slices are
deployed in the network. The maximal transmit power and
the noise power of BSs are set to 47dBm and -174dBm/Hz
respectively [23], [38]. The path loss for BSs is modeled as
L(d) = 34 + 40log(d) [23], [38]. Furthermore, the wireless
bandwidth of each BS is set to 20 MHz. For a specific BS k,
the total wireless bandwidth is randomly allocated to all NSs
deployed at BS k. In other words, bj,k is randomly chosen
from [0, 20] MHz with the constraint

P5
j=1 bj,k  20MHz

[23]. Meanwhile, devices are randomly distributed within the
simulation area with different transmission rate and delay
requirements. In this paper, we assume three types of services

(i.e., eMBB, mMTC, and URLLC) are supported. The service
type is characterized by transmission rate and delay, where the
minimal transmission rate r̂

t
i is randomly generated from [2,

10]Mbps [23], [45] and the delay in CN is randomly generated
from [1, 10]ms [45].

TABLE III
NETWORK PARAMETERS

Parameter Value
The number of BSs 4
The number of NSs 5

Simulation area 1060⇥ 1060 m2

Noise power -174dBm/Hz
Path loss function L(d) = 34 + 40log(d)

BS wireless bandwidth 20MHz
The minimal transmission rate U[2, 10]Mbps

The delay in CN U[1, 10]ms
The maximal transmit power of BSs 47dBm
The wireless bandwidth that BS k U[0,20]MHZ

allocates to NS j, bj,k

TABLE IV
PARAMETERS OF AGGREGATION

Parameter Value
The number of input neurons 12

The number of hidden neurons 25
Target network update interval step 5

The discount factor 0.99
Learning rate for training 0.001

Learning rate for updating local model 0.001
The batch size 64

Replay memory size 1000
Aggregation frequency of access features 2

Table IV lists the parameters used in two levels of aggrega-
tion. For each device, we consider a three-layer fully connected
neural network, including input layer, hidden layer, and output
layer. Specifically, the input layer consists of 12 neurons,
representing the input of access condition and access/handoff
action. The hidden layer consists of 25 neurons, where the
activation function is set to sigmoid function. The output layer
has one neuron, where the activation function is linear. To
avoid correlation between action-values and target values, we
copy the weights of Q-network ✓ to the weights of target
network ✓̂ every 5 training steps [46]. Moreover, the memory
size for each service type is set to 1000, the batch size is set
to 64, the discount factor is set to 0.99 [46], and the access
feature is updated every 2 communication rounds. In addition,
both the learning rate for training and the learning rate for
updating local model are set to 0.001.

B. Numerical Results and Discussions
First, we examine the relationship between the total long-

term reward and the frequency of performing global aggrega-
tion. In this experiment, we assume that the communication
cost for one communication round, ↵c

i,k, is a constant which
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is set to 0.05. Fig. 6 illustrates the total long-term reward as a
function of the number of communication rounds. From Fig.
6, we can observe that, the total long-term reward increases
in the beginning and then decreases with the number of
communication rounds. There is an optimal number of rounds,
say 15, which leads to the maximal total reward when the
number of trainings in a communication round (i.e., ⌧ ) is
set to 2000. Furthermore, we observe that the number of
trainings in a communication round (i.e., ⌧ ) affects the optimal
number of communication rounds. The reasons are as follows.
On one hand, the local model changes with the number of
trainings in a communication round (i.e., ⌧ ). On the other
hand, the communication cost increases with the number of
communication rounds.
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Fig. 6. The relationship between the number of communication rounds and
the total long-term reward.

Then, we verify the convergence property of our proposed
HDRL by depicting its learning curve (the curve of weights vs.
the total number of trainings). We set ⌧ = 2000 and randomly
select three corresponding local models (i.e., ✓

1, ✓
2, ✓

3) on
three different devices. As shown in Fig. 7, HDRL converges
with the total number of trainings increasing. Furthermore,
Fig. 8 shows the partial convergence curve of Fig. 7 within
[5⌧, 20⌧ ]. From Fig. 8, we observe that the three corresponding
weights from different smart devices coincide when they
tend to be stable, which further illustrates the effectiveness
of training a global model with multiple independent smart
devices. In the following experiments, we set ⌧ = 2000 and
R = 15 to evaluate the performance of HDRL.

Next, we explore how the total long-term reward changes
with the number of devices in HDRL. Fig. 9 shows the total
long-term reward as a function of the number of devices.
From Fig. 9, we see that the total long-term reward increases
with the number of devices, and further, the increasing speed
of the total long-term reward is different. The reasons are
as follows. As the number of devices increases, HDRL can
exploit more similar data samples for training. However, when
the number of devices (i.e., u) is more than 15, the number of
duplicate data samples which should be filtered out increases
quickly, so that the increasing speed becomes lower than that
in the beginning. Moreover, when the number of devices is
greater than 35, the devices have sufficient data samples to
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Fig. 7. Convergence of HDRL.
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Fig. 8. Partial convergence curve of Fig. 7 within [5⌧, 20⌧ ].

approximate the value function so that the total long-term
reward increases rapidly. Furthermore, when the number of
devices continues to increase (i.e., more than 40), due to the
constrained network resources, the increasing speed of the total
long-term rewards decreases.
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Fig. 9. The relationship between the number of devices and the total long-
term reward.

Then, we compare the total long-term reward of five
schemes (i.e., HDRL, CDA, DDA, GDA, and RDA) when
the number of devices is 35 (i.e., u = 35). Fig. 10 shows the
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total long-term reward of the five schemes. From Fig. 10, we
can see that HDRL and CDA achieve higher long-term reward
than other three schemes. This is because HDRL and CDA aim
to find the global optimal decision on NS and BS selection,
while DDA, GDA, and RDA focus on the local selected NS/BS
pair. Moreover, compared with CDA, HDRL aggregates the
same type services on BSs, reducing the correlation between
the training data from different devices. Therefore, the total
reward of HDRL is higher than that of CDA.

10 20 30 40 50
Decision Episode

5

10

15

20

25

30

35

40

T
o
ta

l L
o
n
g
-t

e
rm

 R
e
w

a
rd

HDRL
DDA
GDA
CDA
RDA

Fig. 10. The performance of the total long-term reward.

Next, we examine the performance of the five schemes
in terms of network throughput. Fig. 11 shows the network
throughput as a function of the number of devices. We can
see that HDRL always outperforms CDA, DDA, GDA, and
RDA on network throughput. This is because that HDRL
integrates the similar data samples into a global model before
aggregating the access features. Moreover, the access feature
aggregation in HDRL takes the global optimal decision on NS
and BS selection into account. In comparison, the duplicate
data samples in CDA for centralized training increase the cor-
relation of data, resulting in overfitting easily. Moreover, DDA,
GDA, and RDA focus on individual devices without global
perspective. In addition, GDA and RDA makes decisions
on NS and BS selection based on instantaneous conditions,
instead of considering long-term optimization objectives.

5 10 15 20 25 30
The number of devices

0

5

10

15

20

25

30

35

40

45

N
e
tw

o
rk

 T
h
ro

u
g
h
p
u
t 
(M

b
p
s)

HDRL
CDA
DDA
GDA
RDA

Fig. 11. Comparison of network throughput as a function of the number of
devices in five schemes.

Next, we compare handoff cost of the five schemes. Fig. 12
shows the comparison of handoff cost of the five schemes.
We can see that HDRL incurs the highest handoff cost.
Moreover, the handoff cost of HDRL and DDA is always
higher than that of CDA, this is because HDRL and DDA
are based on distributed learning, where smart devices train
their own data independently. Although HDRL employs two
levels of aggregation, training on smart devices independently
is not affected. Furthermore, we compare the communication
efficiency by combining network throughput and handoff cost
to further evaluate the performance of the five schemes.
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Fig. 12. Comparison of handoff cost of five schemes.

Finally, we compare the performance of communication
efficiency of the five schemes in Fig. 13. We see that HDRL
always outperforms DDA, CDA, GDA, and RDA in terms
of communication efficiency. This is because HDRL not only
considers the optimal global decision on NS and BS selection,
but also integrates the similar data samples. In particular,
numerical results show that HDRL achieves higher commu-
nication efficiency by about 14.19%, 20.80%, 26.60%, and
36.36% on average compared with CDA, DDA, GDA, and
RDA respectively.
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Fig. 13. Comparison of communication efficiency of five schemes.

VII. CONCLUSION

In this paper, with the aim to improve network throughput
while reducing handoff cost, we have modeled the device
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association problem for RAN slicing as an MDP model and
solved it by developing a novel HDRL scheme that exploits
hybrid FL based on DRL. In HDRL, we employ two levels of
model aggregation based on DRL to promote the collaboration
between smart devices while enforcing the privacy of local
data. Numerical results show that our proposed HDRL scheme
achieves a significant performance improvement in terms
of network throughput and communication efficiency when
compared with the state-of-the-art algorithms. In the future,
hybrid FL based on DRL is still a challenging issue in Cloud-
RAN in terms of privacy, independence, and service diversity,
we will continue to explore HDRL schemes in Cloud-RAN in
5G-and-beyond wireless network.
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