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Abstract

In Parts I [1] and II [2] of this series, a novel computational framework was presented for
the numerical analysis of large strain fast solid dynamics in compressible and nearly/truly in-
compressible isothermal hyperelasticity. The methodology exploited the use of a system of first
order Total Lagrangian conservation laws formulated in terms of the linear momentum and a
triplet of deformation measures comprised of the deformation gradient tensor, its co-factor and
its Jacobian. Moreover, the consideration of polyconvex constitutive laws was exploited in order
to guarantee the hyperbolicity of the system and show the existence of a convex entropy function
(sum of kinetic and strain energy per unit undeformed volume) necessary for symmetrisation.
In this new paper, the framework is extended to the more general case of thermo-elasticity by
incorporating the first law of thermodynamics as an additional conservation law, written in
terms of either the entropy (suitable for smooth solutions) or the total energy density (suitable
for discontinuous solutions) of the system. The paper is further enhanced with the following
key novelties. First, sufficient conditions are put forward in terms of the internal energy density
and the entropy measured at reference temperature in order to ensure ab-initio the polycon-
vexity of the internal energy density in terms of the extended set comprised of the triplet of
deformation measures and the entropy. Second, the study of the eigenvalue structure of the sys-
tem is performed as proof of hyperbolicity and with the purpose of obtaining correct time step
bounds for explicit time integrators. Application to two well-established thermo-elastic models
is presented: Mie-Grüneisen and modified entropic elasticity. Third, the use of polyconvex in-
ternal energy constitutive laws enables the definition of a generalised convex entropy function,
namely the ballistic energy, and associated entropy fluxes, allowing the symmetrisation of the
system of conservation laws in terms of entropy-conjugate fields. Fourth, and in line with the
previous papers of the series, an explicit stabilised Petrov-Galerkin framework is presented for
the numerical solution of the thermo-elastic system of conservation laws when considering the
entropy as an unknown of the system. Finally, a series of numerical examples is presented in
order to assess the applicability and robustness of the proposed formulation.
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1. Introduction

In Parts I [1] and II [2] of this series, a novel computational framework was presented for
the numerical analysis of large strain fast solid dynamics in isothermal hyperelasticity. Whilst
the aim of Part I was on compressible hyperelasticity, the focus of Part II moved towards nearly
and truly incompressible hyperelasticity. The fundamental motivating factor for such work has
been the development of a methodology capable of addressing the shortcomings of traditional
displacement based formulations, such as: reduced order of convergence for strains and stresses
[3], poor performance in bending dominated scenarios [4–7], numerical instabilities of the type
of shear/volumetric locking [8, 9] and spurious pressure fluctuations [10–12] and high frequency
oscillations in the vicinity of sharp spatial gradients when using Newmark-type time integrators
[13, 14].

Apart from the possible use of high order schemes [15], extensive literature on low order
schemes (typically preferred by the software industry), is available on a variety of techniques ca-
pable of addressing some (if not all) of the above shortcomings. In the case of linear tetrahedral
elements, the earliest attempt at employing a system of conservation laws in solid dynamics
originates from the work of [16, 17], where the conservation variables of the mixed based ap-
proach were the linear momentum p and the deformation gradient tensor F . Specifically,
an upwind Godunov-type cell centred Finite Volume Method was presented for small strain
linear elasticity. With a similar philosophy, an alternative version of cell centred FVM [18],
approximated using node based numerical fluxes, was introduced in isothermal hyperelasticity
[19, 20]. Recently, Scovazzi and co-authors [21–25] explored a mixed based (velocity-pressure)
approach for the applications of transient solid dynamics by utilising a Variational Multi-Scale
method. Codina, Cervera and collaborators [26–30] also explored a similar idea of incorporating
stabilised nodal stresses with the use of orthogonal subgrid scale method.

In recent years, some of the authors of this manuscript have pursued the same {p,F }
system whilst exploiting well-established fluid inspired spatial discretisation techniques [3, 31–
34]. In subsequent papers, the {p,F } system was then augmented by incorporating a new
conservation law for the Jacobian of the deformation J [35] to effectively solve nearly/truly
incompressible deformations. Further enhancement of this framework has been reported by the
authors [1, 2], when considering isothermal materials governed by a polyconvex constitutive
law where the co-factor H of the deformation plays a dominant role. The full set of unknowns
{p,F ,H , J} yields an elegant system of conservation laws, where the existence of a generalised
convex entropy function enables the derivation of a symmetric system of hyperbolic equations,
dual of that expressed in terms of entropy conjugates of the conservation variables [2].

Consideration of thermal effects, especially in the context of large strain fast transient
dynamics, is fundamental in order to obtain a realistic representation of stresses when a solid
undergoes a complex and rapidly evolving deformation pattern. With focus on thermo-elasticity
and thermo-inelasticity, numerous authors have worked over the years putting forward a variety
of computational schemes where both displacements and thermal variables are solved either
monolithically or in staggered fashion [33, 36–40]. Traditionally, authors prefer the use of the
temperature θ as the thermal unknown to be solved, although alternative schemes in terms of
the entropy η are also possible [36, 41].

The aim of this Part III paper is to further extend the work thus far presented in this
series to account for strongly thermally-coupled scenarios, through the consideration of non-
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reversible thermo-elastic constitutive models5. With this in mind, a generalised system of
first order conservation laws is presented in terms of the set {p,F ,H , J, η}, where the first
law of thermodynamics is incorporated as an extra conservation law in addition to the linear
momentum and geometric conservation already covered in Parts I and II.

A crucial aspect that requires special attention (especially in the case of coupled problems)
is that of the stability of the formulation, from both the continuum and numerical standpoints.
With respect to the former, this paper seeks the use of ab initio stable polyconvex constitutive
internal energy functionals in the most generic thermal case, that is, not only restricted to
isothermal or isentropic scenarios [42–46]. Thus, and following the definition of polyconvexity
with respect to the extended set of arguments {F ,H , J, η}, as proposed in [47], a set of sufficient
conditions will be put forward for the (i) internal energy density and (ii) the entropy measured
at reference temperature, in order to ensure ab initio the polyconvexity of the general internal
energy density function. As it is well known, polyconvexity is a sufficient guarantor of ellipticity
or rank-one convexity (in the quasi-static case) and hyperbolicity6 (in the dynamic case). In this
paper, the latter condition is demonstrated and, moreover, the study of the eigenvalue structure
of the system is carried out with the purpose of obtaining correct time step bounds for explicit
time integrators. Application to two well-established thermo-elastic models is presented: Mie-
Grüneisen and modified entropic elasticity. The complexity of the algebra is tremendously
facilitated by means of the use of a tensor cross product operation which can be originally
found in [49, 50] and exploited for the first time in the context of solid mechanics in [51, 52].

The use of polyconvex internal energy density functionals facilitates the transformation of
the system of conservation laws into a symmetric set via the introduction of a suitable convex
entropy function7. In the context of thermo-elasticity, this convex entropy function will be
identified with the well-known ballistic energy [53] (also known as Lyapunov function [54, 55])
of the system. Moreover, and although the main focus of the paper is on the use of the entropy
as the thermal unknown (suitable for the case of smooth fields), it is also shown how the use of
the ballistic energy as convex entropy function permits the use of the total energy density as an
alternative thermal unknown (in the case of discontinuous fields). From the numerical point of
view, and in consistency with previous work in this series, an explicit stabilised Petrov-Galerkin
framework is employed for the numerical solution of the thermo-elastic system of conservation
laws when considering the entropy as an unknown of the system.

The outline of the paper is as follows. Section 2 briefly recaps and summarises the system of
Total Lagrangian conservation laws for the case of non-thermal hyperelasticity. Section 3 starts
by introducing some fundamental concepts of thermo-elasticity and calorimetry, necessary for
the remainder of the paper. The Section then presents alternative representations of the internal
energy density before introducing some sufficient conditions that, if ensured, guarantee ab-initio
the polyconvexity of the internal energy density functional. Section 3 concludes by presenting
examples of universally convex functions for the case of volumetric-deviatoric Mie-Grüneisen
constitutive models. In Section 4, a proof of hyperbolicity is presented along with accurate time
bounds for the volumetric and shear wave speeds. Section 5 demonstrates the existence of a
convex entropy function, the so-called ballistic energy, which permits the symmetrisation of the
system of conservation laws. Section 6 discusses the time and spatial discretisation and presents

5Further inelastic contributions (i.e. plasticity, viscoplasticity, viscoelasticity, thermo-viscoplasticity) are not
within the scope of this paper.

6Also known as the Legendre-Hadamard condition [48].
7Not to be confused with the entropy density field.

3



the stabilised Petrov-Galerkin Finite Element scheme pursued in this paper, implemented in
the form of a Variational MultiScale approach. Section 7 summarises for completeness the
solution procedure. In Section 8, an extensive set of numerical examples with emphasis on
smooth problems is presented to assess the performance of the proposed method and draw some
comparisons against an alternative vertex centred Finite Volume method recently developed by
the authors. Section 9 summarises some concluding remarks and current directions of research.
In addition, Appendix A computes the volumetric and wave speeds for the modified entropic
elasticity case. Appendix B briefly summarises the key ingredients of the formulation whereby
the total energy density is preferred, instead of the entropy, as thermal unknown. Finally,
Appendix C presents the linearisation of the set of conservation laws which is used to derive a
closed form solution used to verify the numerical spatial convergence of the formulation.

2. First order conservation laws for non-thermal elasticity

Consider the motion of a non-thermal8 elastic body that is described by a time-dependent
mapping field φ(X, t) which links a material particle from an initial reference configurationX ∈
VR of boundary ∂VR (with outward unit normalN ) to the time-dependent spatial configuration
x ∈ VR(t) of boundary ∂VR(t) (with outward unit normal n) according to x = φ(X, t). As
presented in Part I [1] and Part II [2] of this series, the motion can be described by a system
of first order Total Lagrangian conservation laws as follows:

∂p

∂t
−DIVP = fR; (1a)

∂F

∂t
−DIV

(
1

ρR
p⊗ I

)
= 0; (1b)

∂H

∂t
− CURL

(
1

ρR
p F

)
= 0; (1c)

∂J

∂t
−DIV

(
1

ρR
HTp

)
= 0. (1d)

Here, p = ρRv is the linear momentum per unit of undeformed volume, ρR is the density of
the undeformed configuration, v represents the velocity field, fR is the body force per unit of
reference volume, F is the deformation gradient tensor (or fibre map), H is the co-factor of the
deformation gradient tensor (area map), J is the Jacobian of the deformation gradient tensor
(volume map), P represents the first Piola-Kirchhoff stress tensor, I is the identity tensor,
DIV and CURL represent the material divergence and curl operators, respectively. The symbol
⊗ is the standard dyadic outer product, whilst represents the tensor cross product between
vectors and/or second order tensors as that presented in [51, 52]. Finally, for post-processing
purposes, the deformed geometry x can be recovered through time integration of the velocity
field denoted as

dx

dt
=
p

ρR
. (2)

8When using the term non-thermal, two possible scenarios can be considered, namely that of isothermal
(constant temperature) or isentropic (constant entropy).
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As the system of conservation laws presented above has more equations than needed, suitable
compatibility relationships, also known as involutions [56], are necessary, namely9,

CURLF = 0; DIVH = 0. (3)

In the presence of non-smooth solutions (outside the scope of this paper), above balance
equations (1) are accompanied by appropriate Rankine Hugoniot jump conditions. For an in-
depth derivation and use of these conditions, the reader is referred to Part I in the series and
to further contributions by the authors, typically in the context of non-Finite Element based
spatial discretisations [3, 32, 34, 57–61].

For closure of system (1), and to guarantee the existence of real wave speeds in the ma-
terial (hyperbolicity) for the entire range of possible deformations, suitable constitutive laws
compliant with the principle of objectivity (frame invariance) and the second law of Thermody-
namics (Coleman-Noll procedure) must be established [62]. In Parts I and II, and for reversible
elastodynamics, objective constitutive laws were defined via polyconvex elastic strain energy
density functionals [42, 43, 63–67]10, that is, the strain energy density is written as a convex
combination of the triplet of deformation measures X = {F ,H , J}.

3. Thermo-elasticity

3.1. First law of thermodynamics in terms of the total energy

The above system (1) can be extended to more general constitutive models that take into
account thermal effects, such as thermo-elasticity. The resulting processes are generally irre-
versible and require an additional conservation law and variable describing the total balance
of energy in the system. This is known as the first law of thermodynamics and is expressed as
[68]:

d

dt

∫
VR

E dVR =

∫
∂VR

t · v dA−
∫
∂VR

QB dA+

∫
VR

fR · v dVR +

∫
VR

rR dVR, (4)

where E(X, t) is the total energy density (per unit undeformed volume), t = PN the boundary
traction vector, QB = Q ·N is the heat flow normal to the boundary ∂VR, rR the thermal heat
source per unit reference volume. The equivalent pointwise conservation law is given by

∂E

∂t
+ DIV

(
Q− P Tv

)
= fR · v + rR, (5)

with jump conditions being defined as [3]

U JE K = JQ K ·N − JP Tv K ·N , (6)

where J• K := [•]+− [•]− denotes the jump operator across a discontinuous surface defined by a
unit normal N (pointing from [•]− towards [•]+) propagating within the material with normal
speed U .

9Conservation equations for the cofactor and Jacobian of the deformation are not strictly necessary from
a continuum standpoint as these two kinematic fields are strongly related (via compatibility equations or in-
volutions) with the deformation gradient. However, from a semi-discrete viewpoint, this strong compatibility
weakens and can be “exploited” in order to add flexibility to a low order numerical scheme circumventing locking
related problems.

10The strain energy density is measured either at a reference temperature (i.e. isothermal hyperelasticity) or
at a reference entropy (i.e. isentropic hyperelasticity), depending on the simulation to be carried out.
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3.2. First law of thermodynamics in terms of the internal energy and the entropy

The total energy E density in the above first law of thermodynamics includes kinetic and
internal energy contributions. Multiplying the linear momentum balance principle (1a) by v
and subtracting it from the above equation (5), after some algebra, gives

∂E

∂t
+ DIVQ = P : ∇0v + rR, (7)

where E (X, t) = E − 1
2ρR

(p · p) represents the internal energy per unit undeformed volume.
Note, however, that the above transformation is only possible in the case of smooth fields.
For the Petrov-Galerkin type of finite element solutions envisaged here this will be the case.
In strict thermo-elasticity, the internal energy density E (X, t) is postulated to depend on the
triplet of deformation variables X = {F ,H , J} and the so-called entropy density (per unit of
undeformed volume) η, that is

E (X, t) = E (X η) ; X η = {X , η} = {F ,H , J, η}, (8)

where E denotes the same internal energy per unit undeformed volume as E but with a different
functional dependency. Here, the entropy density field η(X, t) is defined as the energy dual
conjugate variable to the temperature θ(X, t), that is

θ(X, t) =
∂E (X η)

∂η
= Θ(X η). (9)

Again, the notation θ and Θ is used to denote the same temperature with different functional
dependency. Similarly, energy conjugate fields can be defined to the three deformation measures
of the triplet X as

ΣF =
∂E(X η)

∂F
; ΣH =

∂E(X η)

∂H
; ΣJ =

∂E(X η)

∂J
. (10)

By comparing the time rate of the internal strain energy E (X, t) to that of its equivalent
re-expression E(X η) and, using the properties of the tensor cross product as shown in [1], it
is possible to relate the conjugate stresses defined in (10) to the standard first Piola–Kirchhoff
stress tensor as

∂E (X, t)

∂t
=
∂E(X η)

∂F
:
∂F

∂t
+
∂E(X η)

∂H
:
∂H

∂t
+
∂E(X η)

∂J

∂J

∂t
+
∂E(X η)

∂η

∂η

∂t

= ΣF : ∇0v + ΣH : (F ∇0v) + ΣJ(H : ∇0v) + θ
∂η

∂t

= [ΣF + ΣH F + ΣJH ] : ∇0v + θ
∂η

∂t
,

(11)

which leads to the following relationship

P (X η) = ΣF + ΣH F + ΣJH . (12)

It is now possible to re-write the first law of thermodynamics in terms of the entropy η by
combining equations (7) and (11) to give a thermal expression in which mechanical terms have
been conveniently eliminated to yield [48]

θ
∂η

∂t
+ DIVQ = rR. (13)
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Alternatively, noting that 1
θ
DIVQ = DIV

(
Q
θ

)
+ 1

θ2Q ·∇0θ, a conservation type of law for
the entropy emerges as

∂η

∂t
+ DIV

(
Q

θ

)
=
rR
θ
− 1

θ2
Q ·∇0θ, (14)

where Q/θ represents the flux of entropy and the right hand side term is the entropy source
per unit undeformed volume. Note that this expression (14) for the entropy assumes smooth
solutions and it is still an expression of the first law. Integration over an arbitrary volume VR
together with use of the divergence theorem gives

d

dt

∫
VR

η dVR +

∫
∂VR

(
QB

θ

)
dA =

∫
VR

(rR
θ

)
dVR −

∫
VR

1

θ2
Q ·∇0θ dVR. (15)

In relation to the heat flux vector Q, we consider the typical Fourier law to hold and which
can be defined in a Total Lagrangian fashion

Q = −K∇0θ; K = J−1HTkH . (16)

where k represents the positive semi-definite second order thermal conductivity tensor in the
deformed configuration.

3.3. Second law of thermodynamics

Given the fact that heat must flow from hotter to colder regions of the solid and, conse-
quently, the direction of Q must oppose the direction of the thermal gradient ∇0θ as

− 1

θ2
Q ·∇0θ ≥ 0. (17)

This implies that equation (15) can be written in the form of an inequality as

d

dt

∫
VR

η dVR +

∫
∂VR

(
QB

θ

)
dA ≥

∫
VR

(rR
θ

)
dVR. (18)

This inequality is known as the second law of thermodynamics. Note that in classical
rational mechanics [48] equation (18) is accepted a priory as a fundamental principle from which
the flow direction equation (17) is then obtained as a consequence. The physical implication
of this equation is that the total entropy of an isolated system (i.e. with null second and third
terms of above inequality (18)) can only grow. The equivalent differential form of equation (18)
is

∂η

∂t
+ DIV

(
Q

θ

)
≥ rR

θ
. (19)

Note that the physical consequence of this inequality implies that thermo-elastic processes in
general cannot be reversed. Typically, a process can only be reversed if the inequality becomes
an equality when Q vanishes. Such processes are known as adiabatic. In addition, if there
are no heat sources the entropy value will be preserved in which case the process is known as
isentropic.
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3.4. General thermal relationships and stability requirements

In general, the Calorimetry relationships between internal energy E , temperature θ and
entropy η can be derived from the definition of the specific heat at constant volume cv [68, 69].
This requires the re-definition of the entropy η and the internal energy density E in terms of
the triplet of deformation measures X and the temperature θ of the system, namely, X θ =
{X , θ} = {F ,H , J, θ}. Specifically,

cv
def
=
dE

dθ

∣∣∣
X=const

=
∂Ẽ (X θ)

∂θ
; Ẽ (X θ) = E (X , η̃ (X θ)) ; η = η̃(X θ), (20)

with cv = ρRCv > 0, where ρR is the density measured at a reference temperature θR and Cv
the specific heat per unit mass. As the internal energy E (X, t) can be expressed as a function
of the set of arguments X η (8), consequently equation (20) can be recast using the chain rule
to yield

cv =
∂E (X η)

∂η

∂η̃ (X θ)

∂θ
. (21)

Given that ∂E(X η)/∂η = θ (9), a constitutive relationship between the temperature θ and the
entropy η at constant deformation can be established

∂η̃ (X θ)

∂θ
=
cv
θ
. (22)

In general, the specific heat coefficient cv is a function of temperature θ. However, this
coefficient can be assumed constant for most materials for a reasonably large range of temper-
ature variations [68]. Restricting the derivations to this simple constant heat coefficient case,
enables expression (22) to be integrated analytically with respect to the entropy or temperature
changes as ∫ η̃(X θ)

η̃R(X )

dη =

∫ θ

θR

cv
θ
dθ, (23)

which leads to a simple relationship between entropy and temperature as

η̃(X θ) = η̃R(X ) + cv ln
θ

θR
; η̃R(X ) = η̃(X , θ = θR). (24)

In this expression, η̃R(X ) denotes the entropy measured at a constant temperature θR and
expressed as a function of the deformation X (after the deformation, the temperature is allowed
to return to the reference value θR). Using equation (24), the reverse relationship yielding the
temperature as a function of the entropy and deformation is given by

Θ(X η) = θRe
(η−η̃R(X ))/cv

= θRe
−η̃R(X )/cveη/cv

= Θ0(X )eη/cv ; Θ0(X ) = θRe
−η̃R(X )/cv = Θ(X , η = 0),

(25)

where Θ0(X ) denotes the temperature reached after a state of deformation X is arrived under
isentropic conditions, that is, keeping the entropy constant at its reference value zero. Finally,
it is also possible to write an explicit relationship for the internal energy E (X, t) in terms of
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the set X η, that is, E(X η). This is achieved by integrating equation (9) with respect to the
entropy field between the limits 0 and a given value η as∫ E(X η)

E0(X )

dE = Θ0(X )

∫ η

0

eη/cv dη, (26)

which then yields

E (X η) = E0 (X ) + cvΘ0(X )
[
e
η
cv − 1

]
; E0(X ) = E (X , η = 0) , (27)

where the term E0(X ) represents the amount of internal energy per unit reference volume
accumulated when the body is deformed in an isentropic manner.

In order to ensure the existence of real wave speeds in the material for the entire thermo-
elastic deformation process, that is, regardless of the amount of deformation X and thermal
state η (or θ), it is important that the function E(X η) (27) is convex in its variables [47]. This
is an extension of the usual polyconvexity condition for non-thermal processes where the strain
energy density is required to be convex on the triplet of deformation variables X .

Note that since it is perfectly possible to envisage isentropic deformation processes taking
place where the second term in (27a) vanishes, it is necessary that the function E0(X ) should
be convex in X , that is E0(X ) shall be polyconvex. However, it is also easy to see that the
convexity of E0(X ) alone does not ensure the convexity of E(X η) as per equation (27) for
all values of X and η. Furthermore, since it is also perfectly physically possible to envisage
processes taking place at a given constant temperature, for instance θR, the energy potential
defining the material behaviour at this temperature, namely the Helmholtz free energy function
ψR(X ) must also be polyconvex11. The isothermal Helmholtz free energy potential is related
to the internal energy density as

ψR(X ) = ẼR(X )− θRη̃R(X ); ẼR(X ) = Ẽ(X , θ = θR) = E(X , η̃R(X )). (28)

The internal energy term ẼR (X ) represents the energy per unit undeformed volume caused
by the deformation after the temperature has been allowed to return back to the reference
value θR. This is in contrast to E0(X ), which measures the energy per unit undeformed volume
caused by deformation but before any heat flow has been allowed to take place so that the
entropy, rather than the temperature, remains at its reference zero value. In summary, for a
well defined constitutive model, the following three conditions must be satisfied, namely

(i) E(X η) is convex in {X η} = {X , η} = {F ,H , J, η},

(ii) E0(X ) is convex in X = {F ,H , J}, and

(iii) ψR(X ) is convex in X = {F ,H , J}.

When defining the internal energy density, it is very tempting to do so in terms of simple
polyconvex functions for E0(X ) or ψR(X ) as shown in Parts I or II [1, 2], for instance,

E0(X ) = ς0
(
J−2/3IIF − 3

)
+ ξ0

(
J−2II

3/2
H − 3

√
3
)

+
κ0

2
(J − 1)2; {ς0, ξ0, κ0} ≥ 0 (29)

11E0(X ) and ψR(X ) correspond correspond to the classical strain energy potentials used in non-thermal
isentropic and isothermal simulations, respectively.

9



or

ψR(X ) = ςR
(
J−2/3IIF − 3

)
+ ξR

(
J−2II

3/2
H − 3

√
3
)

+
κR
2

(J − 1)2; {ςR, ξR, κR} ≥ 0, (30)

where IIF = F : F and IIH = H : H . Appropriate values for the material parameters ς0,R
and ξ0,R can be defined in terms of the shear modulus µ, that is, 2ς0,R + 3

√
3ξ0,R = µ0,R [2].

Unfortunately, neither the use of (29) nor (30) alone is sufficient to ensure that condition
(i) is satisfied for general thermo-elastic materials where the thermo-mechanical coupling is
determined by, for instance, a Mie-Grüneisen model. The next section describes sufficient
conditions for (i), (ii) and (iii) to be satisfied.

3.5. Polyconvex thermo-mechanical internal energy functionals

This section presents conditions that are sufficient for E(X η) to be universally polycon-
vex and presents some simple examples of such energy functions. Several examples of uni-
versally polyconvex strain energy models are proposed for materials governed by a general
Mie-Grüneisen coupling model. The relationship between the resulting polyconvex models’
coefficients and the standard coefficients {ς0, ξ0, κ0} and {ςR, ξR, κR} given in (29) and (30)
can then be derived. Additionally, alternative polyconvex strain energy models for modified
entropic elasticity [70] are also presented in Appendix A for completeness.

3.5.1. Sufficient conditions for a polyconvex energy function

In order to derive sufficient conditions to satisfy (i), (ii) and (iii), note first that expression
(27) can be re-written as

E(X η) = E0(X ) + cvΘ0(X )
[
e
η
cv − 1

]
= E0(X ) + cv (θR −Θ0(X )) + cv

(
Θ0(X )eη/cv − θR

)
= ẼR(X ) + cv

(
Θ0(X )eη/cv − θR

)
= ẼR(X ) + cvθR

(
e
η−η̃R(X )

cv − 1
)
,

(31)

where the following relationship (obtained from directly integrating (20) with respect to the
temperature field between θR and Θ0(X )) has been used

ẼR(X ) = E0(X ) + cv (θR −Θ0(X )) . (32)

Proposition 1. Convexity conditions (i), (ii) and (iii) are satisfied for any value of X η if both
ẼR(X ) and −η̃R(X ) are convex in X , that is, they are both polyconvex functionals.

Proof. Condition (iii) is an obvious consequence of equation (28). In order to prove that
conditions (i) and (ii) are also satisfied, it is first necessary to show that the exponential of a
polyconvex function is also a polyconvex function, that is, if φ(α) is a polyconvex function in
α, then ϕ(α) = eφ(α) is also polyconvex in α. This is achieved by noting that the Hessian of

ϕ ([Hϕ] = ∂2ϕ
∂α∂α

) and the Hessian of φ ([Hφ] = ∂2φ
∂α∂α

) are related via the chain rule, to give

[Hϕ] =

[
[Hφ] +

∂φ

∂α
⊗ ∂φ

∂α

]
eφ(α). (33)
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Hence,

δα · [Hϕ] δα =

[
δα · [Hφ] δα+

(
δα · ∂φ

∂α

)2
]
eφ(α) ≥ 0; ∀δα, (34)

provided [Hφ] is positive semi-definite.

This implies that if −η̃R(X ) is convex in X , then Θ0(X ) = θRe
−η̃R(X )

cv is also convex in
X . Consequently, if both ẼR(X ) and −η̃R(X ) are polyconvex, then equation (32) implies that
condition (ii) is also satisfied. Finally, if −η̃R(X ) is polyconvex, then (η − η̃R(X )) /cv is convex
in X η and therefore equation (31) implies that condition (i) is also satisfied, which concludes
the proof of the above propositon.

3.5.2. Distortional-volumetric energy decomposition

A more general formulation valid for a wide range of materials, including most metals, relies
on the assumption that the shear or distortional behaviour of the material can be split from
the volumetric response [71] and, more crucially, that the thermo-mechanical coupling is only
associated with the volumetric component of the deformation, that is η̃R(X ) ≈ η̃R(J). This
assumption closely matches the intuitive expectation that changes of temperature only lead
to changes in volume and not the shape distortion of the material. Mathematically, these as-
sumptions are expressed by means of an additive decomposition of the internal energy E(X η)
into thermally coupled volumetric U(J, η) and non-thermally coupled distortional E ′(X ) com-
ponents. Comparing this with expression (31), and considering a similar deviatoric-volumetric
energy split for ẼR(X ) = Ẽ ′R(X) + ŨR(J) in (31), gives

E(X η) = Ẽ ′R(X )+U(J, η); U(J, η) = ŨR(J)+cvθR

(
e
η−η̃R(J)

cv − 1
)

; ŨR(J) = U(J, η̃R(J)).

(35)
The evaluation of the first Piola-Kirchhoff stress now emerges as a deviatoric-pressure decom-
position given by

P (X η) = P ′(X ) + p(J, η)H ; p =
∂U(J, η)

∂J
, (36)

with the deviatoric first Piola-Kirchhoff stress P ′(X ) being defined as

P ′(X ) = ΣF + ΣH F + Σ′JH ; ΣF =
∂Ẽ ′R(X )

∂F
; ΣH =

∂Ẽ ′R(X )

∂H
; Σ′J =

∂Ẽ ′R(X )

∂J
.

(37)
Using the volumetric energy representation in (35), the pressure p(J, η) can be written as

p(J, η) =
dŨR(J)

dJ
+ θR

(
e
η−η̃R(J)

cv

)(
−dη̃R(J)

dJ

)
= p̃R(J)− θR

dη̃R(J)

dJ
e
η−η̃R(J)

cv ; p̃R(J) =
dŨR(J)

dJ
.

(38)

In the above expression, p̃R(J) = p(J, η̃R(J)) describes the way in which the pressure in the
solid changes as a consequence of changes in volume at constant temperature.

Furthermore, the symmetric positive semi-definite Hessian operator [HE ] of the strain energy
functional E is introduced by computing the second derivative of E (35) with respect to the set
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X η, to give

[HE ] =


EFF EFH EFJ EF η
EHF EHH EHJ EHη

EJF EJH EJJ EJη
EηF EηH EηJ Eηη

 =


∂2E
∂F ∂F

∂2E
∂F ∂H

∂2E
∂F ∂J

∂2E
∂F ∂η

∂2E
∂H∂F

∂2E
∂H∂H

∂2E
∂H∂J

∂2E
∂H∂η

∂2E
∂J∂F

∂2E
∂J∂H

∂2E
∂J∂J

∂2E
∂J∂η

∂2E
∂η∂F

∂2E
∂η∂H

∂2E
∂η∂J

∂2E
∂η∂η

 . (39)

3.5.3. Universally polyconvex energy functions

One of the most commonly used constitutive models describing the volumetric thermal
coupling in solids is given by the Mie-Grüneisen equation of state. In this model, the nonlinear
relationship [68, 69] between the pressure and thermal energy is12

J
dp

dE

∣∣∣
J=constant

= −Γ0J
q, (40)

where Γ0 is a positive material constant and q a coefficient that varies from zero (for a perfect
gas) to one (for solid materials). Above expression simply means the way pressure p changes
with thermal energy at confined volumes (J = constant) is only a function of J and not the
temperature θ (nor η).

Using the above Mie-Grüneisen relation (40), it is now possible to obtain an explicit expres-
sion for η̃R(J). This is achieved by combing equations (9), (27) and (38) to give

dp

dE

∣∣∣
J=constant

=
1

∂E(X η)

∂η

∂p(J, η)

∂η
=

1

θ

∂p(J, η)

∂η
= − 1

cv

dη̃R(J)

dJ
= −Γ0J

q−1, (41)

from which η̃R(J) can be integrated to give13

− η̃R(J) = cvΓ0
1− Jq

q
. (42)

Crucially, differentiating equation (42) twice with respect to J implies the convexity of
−η̃R(J), that is

− d2η̃R(J)

dJ2
= (1− q)cvΓ0J

q−2 ≥ 0 ∀ 0 ≤ q ≤ 1 and {cv,Γ0} > 0. (43)

In order to complete the constitutive model, as given in (35), it is necessary to ensure that
ẼR(X ) is also polyconvex. In fact, it would be tempting to choose a function ẼR(X ) as those
in (29) or (30). This, however, would lead to a non-vanishing state of stress at the reference

12In linear elasticity, an isotropic material with a linear thermal expansion coefficient α∆t (measured per
Kelvin), as observed experimentally, will experience a volumetric expansion equal to 3α∆t per unit of increased
temperature. If the volume remains constant, the relation between the pressure variation and the thermal

change is given as dp
dE

∣∣∣
J=1

= − 3α∆tκ
cv

. Comparing this with equation (40) at J = 1, the parameter Γ0 can then

be related to the linear thermal expansion as Γ0 = 3α∆tκ/cv.
13For the limiting case of q = 0, the thermo-mechanical coupling term (42) becomes

−η̃R(J) = −cvΓ0 ln J,

which indeed is the expression used for perfect gases [33].
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configuration (X I = {F = I,H = I, J = 1} and η = 0), which is contrary to the definition of a
stress-free reference configuration. In order to resolve this problem, it is important that ẼR(X )
satisfies appropriate initial conditions at X I = {I, I, 1}. In particular, the first Piola-Kirchhoff
stresses at the reference configuration {X I , η = 0} should vanish and, therefore, differentiating
equation (32) gives

0 =

[
∂E0

∂F
+
∂E0

∂H
F +

∂E0

∂J
H

]
XI

=

[
∂ẼR
∂F

+
∂ẼR
∂H

I +
∂ẼR
∂J

I

]
XI

+ θR

(
−dη̃R(J)

dJ

) ∣∣∣∣∣
J=1

I,

(44)
where equation (25) and the fact that η̃R(J = 1) = 0 have been used. By doing this, equation
(44) gives an initial condition for ẼR(X ) in terms of η̃R(J) as[

∂ẼR
∂F

+
∂ẼR
∂H

I +
∂ẼR
∂J

I

]
XI

= θR
dη̃R
dJ

∣∣∣∣∣
J=1

I. (45)

It is worth noticing that the same expression (45) could have been derived from the isothermal
potential ψR(X ) by using equation (28) together with the isothermal stress free condition. Using
the deviatoric-volumetric energy decomposition for a Mie-Grüneisen model, that is ẼR(X ) =
Ẽ ′R(X ) + ŨR(J), expression (45) implies

0 =

[
∂Ẽ ′R
∂F

+
∂Ẽ ′R
∂H

I +
∂Ẽ ′R
∂J

I

]
XI

;
dŨR
dJ

∣∣∣∣∣
J=1

= θR
dη̃R
dJ

∣∣∣∣∣
J=1

= cvΓ0θR. (46)

Inspired by expression (29) or (30), one simple polyconvex energy function that satisfies the
above conditions (46) is

Ẽ ′R(X ) = ς
(
J−2/3IIF − 3

)
+ξ
(
J−2II

3/2
H − 3

√
3
)

; ŨR(J) =
κ

2
(J−1)2+cvΓ0θR(J−1), (47)

which gives a universally polyconvex strain energy function for Mie-Grüneisen model as

E(X η) = Ẽ ′R(X ) + ŨR(J) + cvθR
(
e(η−η̃R(J))/cv − 1

)
(48)

where 2ς + 3
√

3ξ = µ. The above function is convex for any value of X η provided that
{µ, κ,Γ0, cv} ≥ 0 and 0 ≤ q ≤ 1. Given the fact that only volumetric thermal coupling is
considered in this model, the shear modulus µ used in the deviatoric component Ẽ ′R(X ) of (47)
is related with µ0 and µR, given in expressions (29) and (30) respectively, as µ = µ0 = µR.

Remark 1: The equivalent Helmholtz free energy potential of (48) can also be derived. The
relationship between the internal energy and the Helmholtz free energy function described as
ψ(X θ) = Ẽ(X θ)−θη̃(X θ), combined with the respective volumetric-distortional decomposition
of ψ and E , implies that

ψ′R(X ) = Ẽ ′R(X ); ψvol(J, θ) = U(J, η̃(J, θ))− θη̃(J, θ). (49)

Notice that there is no difference between the distortional internal energy or distortional
Helmholtz free energy since the thermal effects are confined to the volumetric components.
By defining the volumetric component of Helmholtz free energy at reference temperature

ψR,vol(J) = U(J, η̃R(J))− θRη̃R(J) = ŨR(J)− θRη̃R(J), (50)
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and combining the relationship between entropy and temperature (25) gives

ψ(X θ) = ψR(X )− ϑη̃R(J) + T (θ); T (θ) = cv

(
ϑ− θ ln

θ

θR

)
, (51)

where ϑ = θ − θR is the temperature increment. In (51), the first term, that is ψR(X ) =
ψ′R(X ) +ψR,vol(J), represents the material behaviour at the reference temperature, the second
term accounts for the thermo-mechanical coupling and the third term T (θ) is purely thermal
and embodies the temperature-entropy relationships described in the previous section.

Finally, it is interesting to find the relationship between κ as in equation (47) and the
traditional κ0 and κR as

κ0 =
d2U0(J)

dJ2

∣∣∣∣∣
J=1

; κR =
d2ψR,vol(J)

dJ2

∣∣∣∣
J=1

, (52)

that is the initial bulk modulus at constant entropy and constant temperature, respectively.
Noting that the volumetric components of equations (32) and (28) implies that

U0(J) = ŨR(J) + cvθR

(
e

Γ0(1−Jq)
q − 1

)
; (53a)

ψR,vol(J) = ŨR(J)− θRcvΓ0
Jq − 1

q
, (53b)

where ŨR is already defined in (47). Simple double differentiation of the above expressions
gives at J = 1 the following bulk moduli relationships

κR = κ+ cvθRΓ0(1− q); κ0 = κ+ cvθRΓ2
0. (54)

Notice that for the particular case of q = 1, then κ = κR.

3.5.4. Stress evaluation and Hessian operator

Recalling equation (36), the first Piola-Kirchhoff stress tensor is evaluated by differentiating
the internal energy expression given by equation (48) with respect to the extended set of
deformation variables X . After some algebraic manipulation, the conjugate stresses become

ΣF = 2ςJ−2/3F ; ΣH = 3ξJ−2II
1/2
H H ; ΣJ = Σ′J + p (55)

with

Σ′J = −2ς

3
J−5/3IIF − 2ξJ−3II

3/2
H ; p = κ(J − 1) + cvΓ0θR

(
1− Jq−1e

η
cv eΓ0

1−Jq
q

)
. (56)

Moreover, the Hessian operator [HE ] of the universally polyconvex strain energy function
given in expression (48) adopts the following expression

[HE ] =


EFF 0 EFJ 0
0 EHH EHJ 0
EJF EJH EJJ EJη
0 0 EηJ Eηη

 , (57)
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with components

EFF =
∂2Ẽ ′R
∂F ∂F

= 2ςJ−2/3I; EHH =
∂2Ẽ ′R
∂H∂H

= 3ξJ−2II
1/2
H

[
II−1
H H ⊗H + I

]
,

EFJ = EJF =
∂2Ẽ ′R
∂F ∂J

= −4ς

3
J−5/3F ; EHJ = EJH =

∂2Ẽ ′R
∂H∂J

= −6ξJ−3II
1/2
H H ,

Eηη =
∂2U

∂η∂η
=

θ

cv
; EJη = EηJ =

∂2U

∂J∂η
= −Γ0J

q−1θ,

EJJ =
∂2E
∂J∂J

= γ + κ+ κη,

(58)

where γ = 10ς
9
J−8/3IIF + 6ξJ−4II

3/2
H and κη = θcvΓ0J

q−2 [Γ0J
q + (1− q)]. Here, I represents

the fourth order identity tensor defined in indicial notation as [I]iIjJ = δijδIJ . It is easy to
prove that the above Hessian matrix (57) is positive definite for parameters {µ, κ, cv,Γ0} > 0
and 0 ≤ q ≤ 1 (refer to Part II [2] of this series where the non-thermal component of this
Hessian matrix is studied).

3.6. Combined equations

At this juncture, it is important to emphasise that the (conductive) nature of the heat flux
vector Q (16) is very different to the (convective) nature of the fluxes featuring in the linear
momentum balance equation (1a) and the geometric conservation laws for {F ,H , J} described
in (1b)-(1d). Convective fluxes F c

I(U) are functions of the conservation variables, whereas
conductive fluxes Fv

I(U ,∇0U) depend also on the gradients of these variables. Combining all
the balance laws described in expressions (1a)-(1d) and (14), a full set of first order conservation
laws can be established for thermo-elasticity as

∂U
∂t

+
3∑
I=1

∂F c
I(U)

∂XI

+
3∑
I=1

∂Fv
I(U ,∇0U)

∂XI

= S, (59)

with vector of variables U , convective flux vector F c
I(U), conductive flux vector Fv

I(U ,∇0U)
are

U =


p
F
H
J
η

 ; F c
I = −


PEI

1
ρR
p⊗EI

F
(

1
ρR
p⊗EI

)
H :

(
1
ρR
p⊗EI

)
0

 ; Fv
I =


0
0
0
0

1
Θ
Q ·EI

 , (60)

and source terms S given by

S =


fR
0
0
0

rR
Θ
− 1

Θ2Q · (∇0Θ)

 , (61)

where the Cartesian coordinate basis are

E1 =

 1
0
0

 ; E2 =

 0
1
0

 ; E3 =

 0
0
1

 . (62)
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Since the number of unknowns is greater than the number of equations, appropriate con-
stitutive equations are required to close the above system (59). For instance, in the case of
Mie-Grüneisen thermo-elastic model, the first Piola–Kirchhoff stress P and the relationship
between the entropy and temperature are

P (X η) = P ′(X ) + p(J, η)H ; Θ(J, η) = θRe
η/cveΓ0(1−Jq)/q, (63)

respectively, where the deviatoric stress P ′ and pressure p are defined in equations (55) and
(56). In addition, the material heat flux vectorQ (16) is related to the deformation and thermal
gradient ∇0Θ and is repeated here for convenience

Q = −K∇0Θ; K = J−1HTkH . (64)

Finally, for the complete definition of the initial boundary value problem, initial and bound-
ary (essential and natural) conditions must be suitably specified.

Remark 2: It is also interesting to view the resulting convective flux F c
I , as given in (60), to be

additively decomposed into a convective flux F c,F
I associated with F , a convective flux F c,H

I

associated with H and a convective flux F c,J
I of J , as

F c
I = F c,F

I + F c,H
I + F c,J

I , (65)

with their components

F c,F
I = −


ΣFEI

1
ρR
p⊗EI

0
0
0

 ; F c,H
I = −


(ΣH F )EI

0

F
(

1
ρR
p⊗EI

)
0
0

 ; F c,J
I = −


(ΣJH)EI

0
0

H :
(

1
ρR
p⊗EI

)
0

 .
(66)

For the Petrov-Galerkin type of discretisation envisaged in this paper, and taking advantage
of the above flux vector splitting type of approach, we can then introduce suitable Petrov-
Galerkin weights specifically designed for the hyperbolic system (59) under consideration.

4. Hyperbolicity

As shown in this series [1, 2], the study of the eigenvalue structure of the system (59)
is crucial in order to guarantee its hyperbolicity. In Reference [33], the authors verified the
hyperbolic nature of the problem for a (non-polyconvex) Mie-Grüneisen thermo-elastic model,
hence not universally guaranteeing the existence of real wave speeds at any state of thermo-
elastic deformation X η. In addition, the procedure presented therein required the formation of
the flux Jacobian matrix (namely, the derivative of the fluxes F(U) with respect to conservation
variables U), which sometimes can be quite cumbersome.

With the use of the polyconvex Mie-Grüneisen model (48), and taking advantage of the
tensor cross product operation [49, 50] recently re-introduced in [1, 2] in computational solid
mechanics, we examine the hyperbolicity of the system (59) in a convection dominated scenario,
that is, neglecting the contribution of the conductive heat flux Q. For completeness, the same
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procedure is also applied to the case of a modified entropic elasticity model, which is included
in Appendix A.

The eigenvalues (or wave speeds) of the system (59) can be determined by identifying
possible plane wave solutions (in the absence of source terms) of the type [1]

U = φ(X ·N − cαt)Uα = φ(X ·N − cαt)


pα
F α

Hα

Jα
ηα

 , (67)

where φ denotes a scalar real valued function, cα is the wave speed corresponding to the
eigenmode Uα and N is the direction of propagation. Substitution of the above equation into
expression (59) leads to a characteristic equation of the system given by

ANUα = cαUα; AN =
∂FN

∂U ; FN =
3∑
I=1

F INI . (68)

However, above eigenvalue problem (68) unfortunately requires the explicit expression for
the (convective) flux Jacobian matrix AN . To avoid this, it is important to note that above
equation can be re-written by utilising the concept of directional derivative [71] to give

DFN [Uα] = cαUα. (69)

Considering each individual component of this system (60)

−


D (PN) [F α,Hα, Jα, ηα]

D (v ⊗N ) [vα]
D (F (v ⊗N )) [vα,F α]
D (H : (v ⊗N )) [vα,Hα]

0

 = cα


ρRvα
F α

Hα

Jα
ηα

 . (70)

For the case where cα 6= 0, the geometric equations {F α,Hα, Jα}, as well as the entropy
equation ηα, of the system, result in

F α = − 1

cα
vα ⊗N ; (71a)

Hα = − 1

cα
[F α (v ⊗N ) + F (vα ⊗N )] ; (71b)

Jα = − 1

cα
[Hα : (v ⊗N ) +H : (vα ⊗N )] ; (71c)

ηα = 0. (71d)

Substitution of (71a) into (71b) yields

Hα = − 1

cα

(vα ⊗N ) (v ⊗N )︸ ︷︷ ︸
0

+F (vα ⊗N )

 = − 1

cα
F (vα ⊗N ) . (72)
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It is possible to demonstrate after some algebra that the first term on the right hand side
of (71c) is zero, yielding the reduced equation

Jα = − 1

cα
H : (vα ⊗N ) . (73)

Substitution of (71a), (72) and (73) into (70a) results in

ρRc
2
αvα = D (PN) [vα ⊗N ,F (vα ⊗N ) ,H : (vα ⊗N ) , 0] (74)

For convenience, above expression can also be pre-multiplied by a generic virtual velocity
field δv to give14

ρRc
2
αδv · vα = (δv ⊗N ) : DP [vα ⊗N ,F (vα ⊗N ) ,H : (vα ⊗N ) , 0]

= (δv ⊗N ) : D (ΣF + ΣH F + ΣJH) [vα ⊗N ,F (vα ⊗N ) ,H : (vα ⊗N ) , 0]

=


(δv ⊗N ) :

F (δv ⊗N ) :
H : (δv ⊗N )

0


T

[HE ]


: (vα ⊗N )

: F (vα ⊗N )
H : (vα ⊗N )

0


︸ ︷︷ ︸

Constitutive term

+ (ΣH + ΣJF ) : [(δv ⊗N ) (vα ⊗N )]︸ ︷︷ ︸
Geometric term

.

(75)
Taking δv = vα, the geometric term in above equation (75) goes to zero and this leads to

the satisfaction of well known Legendre-Hadamard condition, namely

ρRc
2
α =


(vα ⊗N ) :

F (vα ⊗N ) :
H : (vα ⊗N )

0


T

[HE ]


: (vα ⊗N )

: F (vα ⊗N )
H : (vα ⊗N )

0

 ≥ 0, (76)

if and only if [HE ] is a positive semi-definite matrix. This is indeed the case in this paper since
the Hessian operator (57) is evaluated based on a polyconvex internal energy function.

Remark 3: In general, it is also possible [72, 73] to re-write equation (75c) in an alternative
manner by relating the Hessian components with a fourth order elasticity tensor C, described
as follows

ρRc
2
αδv · vα = (δv ⊗N ) : C : (vα ⊗N ) = δv · (CNNvα) , (77)

with the acoustic tensor CNN being defined as

[CNN ]ij = [C]iIjJ NINJ . (78)

Comparison of (75) and (77) enables the fourth order elasticity tensor C to be obtained as
a summation of a material contribution Cm (depending upon second derivatives of E) and a

14It is interesting to see how the use of the tensor cross product allows for simple expressions of the resulting
tangent operator which neatly separates material from geometrical dependencies.
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geometrical contribution Cg, namely C = Cm + Cg, with components

Cm = EFF + F EHH F + EJJH ⊗H + EFH F + F EHF + EFJ ⊗H (79a)

+H ⊗ EJF + F EHJ ⊗H +H ⊗ EJH F ,

Cg = I (ΣH + ΣJF ) . (79b)

Here, [I]iIjJ = δijδIJ and notice also that the contribution of the geometrical component
Cg in (77) vanishes when δv = vα, that is (vα ⊗N ) : Cg : (vα ⊗N ) = 0.

Utilising the Hessian operator described in (57), the thermo-mechanical acoustic tensor for
Mie-Grüneisen model CNN (78) becomes

CNN = CX
NN + κηΛ

2
Hn⊗ n. (80)

In this equation, the first term CX
NN , already presented in Part II [2], refers to a non-thermal

acoustic tensor and the second term represents an additional contribution characterised by
thermal effects. For convenience, the non-thermal acoustic tensor is repeated here (refer to
equation (40) in [2]) as

CX
NN = αI +βΛ2

TI −βΛT +
[
ζΛFΛH + βΛM

(
ΛMII

−1
H − 4J−1ΛH

)
+ (γ + κ) Λ2

H

]
n⊗n, (81)

and the following notations are used

ΛHn = HN ;

ΛFn = FN ;

ΛMn = (FT 1)× (HT 2) + (HT 1)× (FT 2) ;

ΛT = (FT 1)⊗ (FT 1) + (FT 2)⊗ (FT 2);

Λ2
T = (FT 1) · (FT 1) + (FT 2) · (FT 2);

α = 2ςRJ
−2/3;

β = 3ξRJ
−2II

1/2
H ;

γ =
10

9
ςRJ

−8/3IIF + 6ξRJ
−4II

3/2
H ;

ζ = −8

3
ςRJ

−5/3.

(82)

Instead of deriving a close form solution for the wave speed for any possible orientation N ,
it is sufficient to obtain bounds of the wave speeds by assuming N is a principal direction.
In this particular case, the first two eigenvalues correspond to pressure waves are obtained by
taking vα = n, where n is a unit vector orthogonal to the vectors FT 1,2 = t1,2 which lie on
the propagation surface. This is achieved by substituting equation (80) into (77) and taking
δv = vα = n to give,

ρRc
2
p = α + βΛ2

T + ζΛHΛF + βΛM

[
ΛMII

−1
H − 4J−1ΛH

]
+ (γ + κ+ κη)Λ

2
H . (83)

As a result, the first set of eigenvalues corresponding to pressure wave cp is

c1,2 = ±cp, (84)
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where

cp =

√
α + βΛ2

T + ζΛHΛF + βΛM

[
ΛMII

−1
H − 4J−1ΛH

]
+ (γ + κ)Λ2

H

ρR
+
κηΛ2

H

ρR
. (85)

Here, κη = θcvΓ0J
q−2 [Γ0J

q + (1− q)] > 0 provided that {θ, cv,Γ0} > 0 and 0 ≤ q ≤ 1.
Similarly, by taking δv = vα = t1,2, the remaining four eigenvalues corresponding to shear
wave speeds

c3,4 = ±cs1 ; c5,6 = ±cs2 ; cs1 =

√
α + β(Λ2

T − λ2
1)

ρR
; cs2 =

√
α + β(Λ2

T − λ2
2)

ρR
, (86)

where λ2
1,2 are the eigenvalues of ΛT . In this model, due to coupling of thermal and mechanical

effects only in the volumetric contribution, it is worth emphasising that only pressure waves
(85) take into account the combined effect of mechanical deformation and temperature. On
the contrary, the shear waves described in (86) however remain unaltered with respect to
temperature.

5. Entropy based balance laws for thermo-elasticity

Using the entropy as thermal variable allows the so-called ballistic free energy function B
[53] to be chosen as a generalised convex entropy function S [1] of the hyperbolic set of equations
(59) defined by

S(p,X η) = B(p,X η) =
1

2ρR
p · p︸ ︷︷ ︸

Kinetic energy

+ E (X η)︸ ︷︷ ︸
Internal energy

−θRη︸ ︷︷ ︸
Thermal conduction

= E(p,X η)− θRη, (87)

where the total energy E is the summation of kinetic and internal energies such that E(p,X η) =
1

2ρR
p · p + E (X η). Above generalised convex entropy function S clearly represents the total

energy E and thermal energy contributions per unit of undeformed volume. A conjugate set of
entropy variables V is obtained through the derivatives of S (87) as

V =
∂S

∂U =



∂S
∂p

∂S
∂F

∂S
∂H

∂S
∂J

∂S
∂η


=


v

ΣF

ΣH

ΣJ

ϑ

 . (88)

The Hessian operator [HS] associated with the convex entropy function S can now follow
by taking derivatives of the conjugate variables described above

[HS] =
∂V
∂U =

∂S

∂U∂U =

 1
ρR
I 0

0 [HE ]

 , (89)

where I symbolises the second order identity tensor and [HE ] represents the Hessian operator
of the energy function E(X η) (39).
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Remark 4: It is possible to provide interesting relationships between ballistic free energy B and
total energy E in non-thermal scenarios. For the isentropic case (where η = 0), it is easy to
show that the ballistic free energy B in (87) is simply the total energy per unit of undeformed
volume described as

B0(p,X ) =
1

2ρR
p · p+ E0(X ) = E0(p,X ); B0 = B(p,X , η = 0); E0 = E(p,X , η = 0).

(90)
Notice thatB0 and E0 represent the ballistic energy and total energy at isentropic conditions,

respectively. On the other hand, in the case of isothermal process (for instance, θ = θR), we
demonstrate that the ballistic free energy B̃R is the total energy per unit undeformed volume
minus the entropy energy component due to changes in deformation, which is equivalent to
the kinetic energy plus the Helmholtz’s free energy at the reference temperature. This is
achieved by first re-expressing B(p,X η) = B̃(p,X θ) and E(X η) = Ẽ(X θ), combined with the
transformation ψR(X ) = ẼR(X )− θRη̃R(X ), to yield

B̃R(p,X ) =
1

2ρR
p · p+ ẼR(X )− θRη̃R(X ) = ẼR(p,X )− θRη̃R(X ) =

1

2ρR
p · p+ψR(X ). (91)

Here, ẼR = 1
2ρR
p ·p+ ẼR(X ) = Ẽ(p,X , θ = θR) represents the total energy accumulated at

reference temperature θR.

Remark 5: As shown in [74], another option to address irreversible thermal effects is the
introduction of a variable describing the total balance energy E of the system as given in
(5). In this case, an alternative set of conservation variables is thus considered, namely Û =
[p,F ,H , J, E]T [74]. This approach is necessary in the case of non-smooth solutions, which will
not be the focus of this publication. For completeness, a suitable generalised convex entropy
function and its conjugate entropy variables are derived and summarised in Appendix B.

Pre-multiplication of system (59) with the Hessian [HS] leads to the symmetric form of the
conservation laws as [74–76]

[HS]−1 ∂

∂t


v

ΣF

ΣH

ΣJ

ϑ

−


DIVΣF + CURLΣH × F +H (∇0ΣJ)
∇0v

F ∇0v
H : ∇0v

0

 =


0
0
0
0

DIV
(

1
θ
K∇0θ

)



+


fR
0
0
0

rR
θ

+ 1
θ2 (K∇0θ) ·∇0θ

 .
(92)

Here, [A×B]i = EijkAjLBkL for any second order tensors A and B. The above set of symmet-
ric equations for the entropy conjugate variables can also be written in the transformed form
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as [2]

∂v

∂t
− 1

ρR
(DIVΣF + CURLΣH × F +H∇0ΣJ) =

1

ρR
fR; (93a)

∂ΣF

∂t
− (EFF + EFJ ⊗H) : ∇0v = 0; (93b)

∂ΣH

∂t
− (EHH F + EHJ ⊗H) : ∇0v = 0; (93c)

∂ΣJ

∂t
− (EJF + EJH F + EJJH) : ∇0v = 0; (93d)

∂ϑ

∂t
− EηJH : ∇0v =

1

cv
(rR + DIV(K∇0θ)) , (93e)

with Hessian components defined in (58).

6. Stabilised variational formulation

In line with previous work in this series [1, 2], a stabilised variational statement for the set of
conservation laws (59) is introduced by means of a Petrov-Galerkin approach [76–82] whereby
the conjugate weight functions δV are suitably augmented via a (convective) flux splitting type
of approach (65) as

δVst = δV +

(
∂F c

I

∂U τ̃

)T
∂δV
∂XI

= δV +

(
∂F c,F

I

∂U τ̃F +
∂F c,H

I

∂U τ̃H +
∂F c,J

I

∂U τ̃ J

)T
∂δV
∂XI

. (94)

Here, {τ̃F , τ̃H , τ̃ J} denote matrices of stabilisation parameters tailor-made for the hyper-
bolic system given in (59) as

τ̃F =


0 0 0 0 0
0 τF I 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ; τ̃H =


0 0 0 0 0
0 0 0 0 0
0 0 τHI 0 0
0 0 0 0 0
0 0 0 0 0

 ; τ̃ J =


τpI 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 τJ 0
0 0 0 0 τη

 .
(95)

With these at hand, the individual components of (94) can be obtained as

δvst = δv − τp
ρR

(H∇0δΣJ) ; (96a)

δΣst
F = δΣF − τFEFF : ∇0δv; (96b)

δΣst
H = δΣH − τHEHH : (F ∇0δv) ; (96c)

δΣst
J = δΣJ − τJEJJH : ∇0δv; (96d)

δϑst = δϑ− τηEηJH : ∇0δv. (96e)

Notice that the units of the above five τ -parameters (i.e. τp, τF , τH , τJ and τη) are those
of time and are chosen as a fraction of the time step for explicit integration schemes [83]. The
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residuals R of the conservation laws are defined by

R =


Rp

RF

RH

RJ

Rη

 =


DIVP + fR − ṗ

∇0v − Ḟ
F ∇0v − Ḣ
H : ∇0v − J̇

rR −DIVQ− θη̇

 , (97)

where the dot over a variable is used to denote differentiation in time. It is now possible to
derive a (stabilised) weak statement by multiplying appropriate conjugate virtual fields δVst

with the corresponding residuals R, and integrating over the initial reference volume VR, to
give

0 =

∫
VR

(
δvst ·Rp + δΣst

F : RF + δΣst
H : RH + δΣst

JRJ + δϑstRη

)
dVR. (98)

By re-grouping expression (98) according to each virtual conjugate variable, it is possible
to first extract the terms containing the virtual velocity field δv as

0 =

∫
VR

δv·Rp dVR−
∫
VR

[τFEFF : RF + τHEHH : RH + τJEJJRJH + τηEηJRηH ] : ∇0δv dVR.

(99)
Integrating by parts the first term on the right hand side of (99), and expanding the resulting
equation yields∫

VR

δv · ∂p
∂t

dVR =

∫
VR

δv · fR dVR +

∫
∂VR

δv · tB dA−
∫
VR

P st : ∇0δv dVR, (100)

where the stabilised first Piola Kirchhoff stress being defined as

P st = Σst
F + Σst

H F + Σst
JH (101)

with the corresponding stabilised conjugate stresses as

Σst
F = ΣF + τFEFF : RF ; Σst

H = ΣH + τHEHH : RH ; Σst
J = ΣJ + τJEJJRJ + τηEJηRη.

(102)
Following a Variational Multi-Scale (VMS) stabilisation procedure [2, 21–24], these stresses

(102) can be alternatively approximated in terms of stabilised strains as

Σst
F ≈ ΣF (F st,H , J, η); Σst

H ≈ ΣH(F ,Hst, J, η); Σst
J ≈ ΣJ(F ,H , Jst, ηst), (103)

where

F st = F + τFRF ; Hst = H + τHRH ; Jst = J + τJRJ ; ηst = η + τηRη. (104)

In the above expression (104), the residual terms {RF ,RH ,RJ} represent the difference be-
tween the time rate of the corresponding strain variable and its evaluation in terms of the
material gradient of the velocities. To reduce the implicitness of the formulation, a simple
procedure is used whereby time integrated geometric terms {Rx

F ,Rx
H ,RxJ} are incorporated

in (104a,b,c) to give [31, 84]

F st = F + τFRF + ζFRx
F ; Rx

F = Fx − F ; (105a)

Hst = H + τHRH + ζHRx
H ; Rx

H =
1

2
(Fx Fx)−H ; (105b)

Jst = J + τJRJ + ζJRxJ ; RxJ = detFx − J, (105c)
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where Fx = ∇0φ(X, t) and ζF , ζH , ζJ are dimensionless stabilisation parameters usually in the
range of [0, 0.5] [1, 2, 31, 35, 84].

It is important to notice that both approaches (e.g. Petrov-Galerkin (102) and VMS (103)
[81, 85, 86]) are not strictly identical, except for the linear constitutive law [1]. From the
implementation point of view, the VMS approach (102) is slightly more advantageous as it
avoids the need to explicitly compute the Hessian components for the computation of the
stabilisation terms.

With focus on linear tetrahedral finite elements, we can introduce the linear shape functions
Na (where a = 1 . . . N , N being the total number of nodes in the underlying mesh) for the
interpolation of he momentum and virtual velocity fields, to give a set of equations for the rate
of change of momentum at each node a given as

N∑
b=1

Mabṗb =

∫
VR

NafR dVR +

∫
∂VR

NatB dA−
∫
VR

P st∇0Na dVR, (106)

where the consistent mass-like contribution15 Mab =
∫
VR
NaNb dVR. Similarly, the enhanced

conjugate stress measures (96) can be introduced into the weighted residual equation (98) to
give a set of of strain update equations as

N∑
b=1

MabḞ b =

∫
VR

Na∇0

(
1

ρR
p

)
dVR; (107a)

N∑
b=1

MabḢb =

∫
VR

NaF ∇0

(
1

ρR
p

)
dVR; (107b)

N∑
b=1

MabJ̇b =

∫
VR

NaH : ∇0

(
1

ρR
p

)
dVR −

∫
VR

τp
ρR

(
HTRp

)
·∇0Na dVR. (107c)

Finally, the entropy update equation can now follow

N∑
b=1

Mabη̇b =

∫
VR

(
Q

θ

)
·∇0Na dVR+

∫
VR

Na
rR
θ
dVR−

∫
VR

1

θ2
(∇0θ ·Q)Na dVR−

∫
∂VR

Na

(
QB

θ

)
dA.

(108)
The main advantage of integrating by parts as shown above is to enable the imposition

of the boundary conditions via boundary fluxes. This is indeed useful for the momentum
equation (106) and the entropy equation (108) as both expressions introduce naturally the
boundary tractions tB and the boundary heat flux QB, but less important in the case of
geometric conservation laws. Hence, as shown in (107a)-(107c), the strain update equations for
{F ,H , J} are obtained without utilising integration by parts.

Moreover, by setting τJ = τη = 0, and by assigning τH = τF and ζH = ζJ = ζF , ex-
pressions (106), (107a), (107b), (107c) and (108) are fully decoupled and can be solved in a
sequential manner, without resorting to a more computationally expensive iterative algorithm.
For instance, equations (107a), (107b) and (108) are first solved to obtain {Ḟ , Ḣ , η̇} which can
then be substituted into (106) to deduce ṗ. Once ṗ is determined, J̇ can finally be obtained

15Notice that Mab is called consistent mass-like component as its units are not of mass but of volume.
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Table 1: A summary of the semi-discrete version of Petrov-Galerkin Finite Element Method

Linear momentum equation
∑N

b=1Mabṗb = Epa − T pa
Epa =

∫
VR
NafR dVR +

∫
∂VR

NatB dA; T pa =
∫
VR
P st∇0Na dVR

Fibre map evolution equation
∑N

b=1MabḞ b = T Fa

T Fa =
∫
VR
Na∇0

(
1
ρR
p
)
dVR

Area map evolution equation
∑N

b=1MabḢb = THa

THa =
∫
VR
NaF ∇0

(
1
ρR
p
)
dVR

Volume map evolution equation
∑N

b=1MabJ̇b = T Ja

T Ja =
∫
VR
NaH : ∇0

(
1
ρR
p
)
dVR −

∫
VR

τp
ρR

(
HTRp

)
·∇0Na dVR

Entropy equation
∑N

b=1Mabη̇b = Eη
a − T ηa

Eη
a =

∫
VR
Na

rR
θ
dVR −

∫
∂VR

Na

(
QB
θ

)
dA

T ηa =
∫
VR

1
θ2 (∇0θ ·Q)Na dVR −

∫
VR

(
Q
θ

)
·∇0Na dVR

from (107c). Hence, the semi-discrete version of the five-field p-F -H-J-η conservation formu-
lation (see equations (106)-(108)) for thermo-elasticity is reduced to the consideration of three
stabilising parameters, namely {τF , ζF , τp}.

Finally, above set of stabilised semi-discrete nodal equations along with the geometry x (2)
can then be explicitly integrated from time step tn to tn+1. In this case, an explicit one-step
two-stage Total Variation Diminishing (TVD) Runge–Kutta time integrator [1, 2] is preferred
due to its excellent TVD properties. The evaluation of the maximum time increment ∆t is
intimately related to the minimum size of element hmin, the maximum (pressure) wave speed
cp,max (85) and the Courant–Friedrichs–Lewy number αCFL, described as

∆t = αCFL
hmin

cp,max

. (109)

For the numerical examples presented in this paper, a value of αCFL = 0.3 has been chosen to
ensure both the accuracy and stability of the algorithm.

Finally, in order to guarantee the conservation of angular momentum within a system, the
scheme is suitably modified via a posteriori global projection procedure already described in
[1].

7. Solution procedure

For the purpose of implementation, equations (106), (107a), (107b), (107c) and (108) can
summarised in Table 1. Following the standard element by element assembly [71], these ex-
pressions can then be collected into a single system of equations written in vector format as

MU̇
p

= Ep −Tp; MU̇
F

= TF ; MU̇
H

= TH ; MU̇
J

= TJ ; MU̇
η

= Eη −Tη. (110)

Here, M represents a consistent mass-like matrix, U is the vector of nodal unknowns

M =


M11I3×3 M12I3×3 . . . M1NI3×3

M21I3×3 M22I3×3 . . . M2NI3×3
...

...
...

MN1I3×3 MN2I3×3 . . . MNNI3×3

 ; U[•] =


[•]1
[•]2

...
[•]N

 (111)
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Algorithm 1: Petrov-Galerkin Finite Element Method for thermo-elasticity

Input : Initial geometry X; Material properties; Solution parameters; Initial
conditions {Up

0 ,U
F
0 ,U

H
0 ,U

J
0 ,U

η
0}, Mass matrix

Output: Current value of conservation variables {Up
N ,U

F
N ,U

H
N ,U

J
N ,U

η
N} and current

geometry xN

for iTIME = 1:Number of time steps do

Compute maximum wave speed;

Evaluate time increment ∆t;

for iRK=1:2 do

Incorporate (Neumann) boundary contributions: Ep and Eη;

Compute {U̇F
, U̇

H
, U̇

η} ;

Evaluate the equivalent internal force vector Tp and U̇
p

;

Activate angular momentum projection algorithm [1];

Compute U̇
J
;

Update mesh coordinates x;

Update conservation variables {Up,UF ,UH ,UJ ,Uη};
Apply strong boundary conditions on Up and Uη;

end

Update conservation variables {Up,UF ,UH ,UJ ,Uη}, mesh coordinates x and
time;

Apply strong boundary conditions on Up and Uη;

Output results;

end
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with I3×3 the second order identity tensor. Similarly, E[•] and T[•] are the equivalent external
and internal vectors defined as

E[•] =


E

[•]
1

E
[•]
2
...

E
[•]
N

 ; T[•] =


T

[•]
1

T
[•]
2
...

T
[•]
N

 , (112)

respectively. In order to speed up the algorithm, the consistent mass-like matrix contributions
are replaced by its lumped counterpart ML without affecting the order of convergence [1]. This
is defined as

ML =


ML

11I3×3 03×3 . . . 03×3

03×3 ML
22I3×3 . . . 03×3

...
...

...
03×3 03×3 . . . ML

NNI3×3

 ; ML
aa =

N∑
b=1

Mab. (113)

For completeness, Algorithm 1 summarises the complete algorithmic description of the
Petrov-Galerkin type of Finite Element Method described above, with all necessary numerical
ingredients.

8. Numerical examples

In this section, a wide spectrum of three dimensional numerical examples are presented in
order to assess the performance, effectiveness and applicability of the Petrov-Galerkin Finite
Element Method (PG-FEM) described above. It is crucial to show that the overall PG-FEM
linear tetrahedral formulation

• achieves second order convergence not only for velocities and stresses (or strains), but
now also include temperature (or entropy),

• circumvents locking difficulties and hour-glassing,

• preserves the total angular momentum over a long term response, and

• guarantees a non-negative rate of production of entropy in an isolated system.

In the following numerical computations, the thermal conductivity tensor is particularised
for the case of isotropy, whereby it can be expressed in terms of the scalar conductivity field h,
that is k = hI (16). The global a posteriori angular momentum projection algorithm as shown
in [1] is activated unless otherwise stated.

8.1. Convergence

The main objective of this example is to demonstrate the order of convergence of the pro-
posed framework. A linear thermo-elastic constitutive model [62] is used and its detailed
derivation is presented in Appendix C. Following a similar procedure as that described in
Part I [1] and Part II [2], the analysis of an ad-hoc manufactured solution is now extended to
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thermo-elasticity. We consider a cubic shaped domain of unit length16. The exact fields associ-
ated with the mapping description φ(X, t) and the temperature profile θ(X, t) are specifically
chosen as

φexact(X, t) = X + U0 cos(ξπt)


sin(πX

2
) cos(πY

2
) cos(πZ

2
)

cos(πX
2

) sin(πY
2

) cos(πZ
2

)

cos(πX
2

) cos(πY
2

) sin(πZ
2

)

 (114)

and

θexact(X, t) = θR

(
1− 3π

2
U0 cos(ξπt)Γ0

[
cos

(
πX

2

)
cos

(
πY

2

)
cos

(
πZ

2

)])
. (115)

Here, the parameter ξ is defined as

ξ =

√
3

2

√(
2µR + λR

ρR

)
+

(
θRΓ2

0cv
ρR

)
. (116)

For values of U0 below 0.001 m, the solution can be considered to be linear. Consequently,
the exact deformation gradient tensor F exact and the exact temperature gradient can now be
computed

F exact(X, t) = I+∇0φ
exact, ∇0θ

exact(X, t) =
3π2θRΓ0

4
U0 cos(ξπt)


sin(πX

2
) cos(πY

2
) cos(πZ

2
)

cos(πX
2

) sin(πY
2

) cos(πZ
2

)

cos(πX
2

) cos(πY
2

) sin(πZ
2

)

 .
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Here, the material gradient of a mapping is given as

∇0φ
exact = α

 cos
(
πX
2

)
cos
(
πY
2

)
cos
(
πZ
2

)
− sin

(
πX
2

)
sin
(
πY
2

)
cos
(
πZ
2

)
− sin

(
πX
2

)
cos
(
πY
2

)
sin
(
πZ
2

)
− sin

(
πX
2

)
sin
(
πY
2

)
cos
(
πZ
2

)
cos
(
πX
2

)
cos
(
πY
2

)
cos
(
πZ
2

)
− cos

(
πX
2

)
sin
(
πY
2

)
sin
(
πZ
2

)
− sin

(
πX
2

)
cos
(
πY
2

)
sin
(
πZ
2

)
− cos

(
πX
2

)
sin
(
πY
2

)
sin
(
πZ
2

)
cos
(
πX
2

)
cos
(
πY
2

)
cos
(
πZ
2

)
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with α = U0π cos(ξπt)
2

. This enables the evaluation of exact fields for both area and volume
mappings described as [1]

Hexact(X, t) =
1

2
F exact F exact; Jexact(X, t) =

1

3
Hexact : F exact. (119)

With these at hand, and recalling that both the first Piola (C.12) and the (linearised)
relation between entropy and temperature (C.11), we can obtain the exact expressions for the
body force fR and the entropy source term sR, as given in (61). Using the chain rule, and after

16The geometry of this problem can be found in Part I [1] on pg. 716, but with {X1, X2, X3} now being
replaced by {X,Y, Z}.
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some simple algebra, the body force in this case vanishes and this is demonstrated as below

fR =
∂(ρRv)

∂t
−DIVP exact

=
∂

∂t

(
ρR
∂φexact

∂t

)
−
[
∂P exact

∂F
•∇0F

exact +
∂P exact

∂θ

(
∇0θ

exact
)]

= ρR
∂2φexact

∂t2
−
[
∂P exact

∂F
•
(
∇0(∇0φ

exact)
)

+
∂P exact

∂θ

(
∇0θ

exact
)]

= 0.

(120)

Here, the symbol • indicates the inner product between a fourth order tensor D and a third
order tensor A, defined as [D •A]i = CiIjJAjJI . Analogously, by making use of (C.11) and a
simple isotropic conductivity tensor K = hI (where h is a non-negative thermal conductivity),
the entropy source term sR becomes

sR = DIVQexact + θexact∂η̃(F , θ)

∂t

= DIV
(
−K∇0θ

exact
)

+ θexact

(
∂η̃

∂F
:
∂F exact

∂t
+
∂η̃

∂θ

∂θexact

∂t

)
= −hDIV

(
∇0θ

exact
)

+ θexact

(
cvΓ0I : ∇0

(
∂φexact

∂t

)
+
cv
θR

∂θexact

∂t

)
= −hDIV

(
∇0θ

exact
)

+ θexact

(
cvΓ0∇0 ·

(
∂φexact

∂t

)
+
cv
θR

∂θexact

∂t

)
= −9π3

8
hθRΓ0U0 cos(ξπt)

[
cos

(
πX

2

)
cos

(
πY

2

)
cos

(
πZ

2

)]
.
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Dirichlet boundary conditions compatible with the exact fields {φexact, θexact}, as described
in (114) and (115), are applied on the boundary of the domain. In particular, the cube has
symmetric boundary conditions (i.e. restricted to tangential movement) at the faces X = 0,
Y = 0 and Z = 0 and skew symmetric boundary conditions (i.e. restricted to normal movement)
at the faces X = 1, Y = 1 and Z = 1. Moreover, and according to (115), fixed reference
temperature θR must be constantly applied at any time at those three boundary faces X = 1,
Y = 1 and Z = 1.

The problem is initialised with the mapping field φ
∣∣∣
t=0

= φexact(X, t = 0) (114) and,

subsequently, the initial deformation gradient, its co-factor and its Jacobian can be obtained
as

F
∣∣∣
t=0

= F exact(X, t = 0); H
∣∣∣
t=0

= Hexact(X, t = 0); J
∣∣∣
t=0

= Jexact(X, t = 0). (122)

An initial distribution of the entropy is given in terms on an initial temperature distribution,
by using the following (linearised) relation between the entropy and temperature (refer to
(C.11))

η
∣∣∣
t=0

= η̃
(
F
∣∣∣
t=0
, θ
∣∣∣
t=0

)
= cvΓ0

(
trF

∣∣∣
t=0
− 3
)

+ cv

θ
∣∣∣
t=0

θR
− 1

 ; θ
∣∣∣
t=0

= θexact(X, t = 0).

(123)
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A list of parameters used for this simulation is summarised in Table 2. As compared to the closed
form solutions described in (114) and (115), Tables 3 and 4 show the L2 global convergence
analysis at time t = 8 × 10−4 s for (1) the components of the velocity v, (2) the components
of the first Piola-Kirchhoff stress tensor P and (3) the temperature θ. Their corresponding
graphical representations are depicted in Figure 1. As expected, the proposed computational
framework achieves equal second order convergence for all the variables solved, namely velocity,
the stress tensor and the temperature. This equal order convergence for all derived variables is
one of the advantages of the proposed framework.

Table 2: Linear thermo-elasticity: problem and material parameters used in the simulation

Problem parameter U0 5 × 10−4 m
Lamé parameters µ 6.5385 MPa

λ 9.8077 MPa
Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 8.5889

Table 3: Linear thermo-elasticity: numerical values for the relative error of {vx, vy, vz, θ} as compared to the
exact solution, measured with L2 norm. Convergence rate calculated using the results of the two finest meshes.

vx (m/s) vy (m/s) vz (m/s) θ (K)

1/3 6.553× 10−3 6.547× 10−3 6.489× 10−3 1.019× 10−1

1/6 1.906× 10−3 1.880× 10−3 1.875× 10−3 2.537× 10−2

1/12 4.373× 10−4 4.402× 10−4 4.768× 10−4 6.837× 10−3

1/24 1.086× 10−4 1.018× 10−4 1.231× 10−4 1.644× 10−3

conv. rate 2.056 2.113 1.954 2.025

Table 4: Linear thermo-elasticity: numerical values for the relative error of {PxX , PyY , PzZ} as compared to the
exact solution, measured with L2 norm. Convergence rate calculated using the results of the two finest meshes.

PxX (Pa) PyY (Pa) PzZ (Pa)

1/3 1.538× 103 1.543× 103 1.553× 103

1/6 3.902× 102 3.91× 102 3.967× 102

1/12 1.13× 102 1.108× 102 1.109× 102

1/24 2.776× 101 2.833× 101 2.724× 101

conv. rate 2.025 1.967 2.026

8.2. Conservation
8.2.1. L-shaped block

As previously explored in References [37, 39, 87, 88], the main objective of this classical
benchmark problem is to examine the capability of the proposed PG-FEM scheme in preserving
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(a) (b)

Figure 1: Linear thermo-elasticity: L2 global convergence analysis at time t = 8 × 10−4 s for (a) the compo-
nents of velocity and temperature and (b) the components of the first Piola Kirchhoff stress tensor. Results
obtained using a linear thermo-elastic model as described in equation (C.12). The material properties used are
summarised in Table 2.

both the linear and angular momenta of a system. The geometry of the problem is displayed
in Figure 2a. The L-shaped structure is subjected to an external torque induced by a pair of
time-varying boundary forces F 1(t) and F 2(t) acting on two of its boundary faces, described
as

F 1(t) = −F 2(t) =

 150
300
450

 f(t); f(t) =


t 0 ≤ t < 2.5 s,

5− t 2.5 s ≤ t < 5 s,

0 t ≥ 5 s.

Moreover, the initial distribution of the temperature profile on the structure is not entirely
homogeneous, that is

θ
∣∣∣
t=0

=


300 K Y = 10 m,

250 K X = 6 m,

θR elsewhere.

In this example, a polyconvex Mie-Grüneisen thermo-elastic model as presented in Section
3.5.3 is considered. The values of all the relevant material and geometrical parameters used can
be found in Table 5. For completeness, three different levels of mesh refinement are considered
(see Figure 2b-d). For instance, {Mesh#I, Mesh#II, Mesh#III } comprise {3, 862, 12, 216,
28, 059} linear tetrahedral finite elements, respectively.

First, a mesh refinement study is carried out. This can be seen in the first three columns of
Figure 3. It is remarkable that the deformation pattern, together with pressure and temperature
profiles, predicted using a small number of elements (Mesh#I) agrees extremely well with those
results obtained using finer discretisations (i.e. Mesh#II and Mesh#III). For benchmarking
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(a) (b) (c) (d)

Figure 2: L-shaped block: (a) geometry and its finite element discretisation, namely (b) Mesh#I (3, 862 linear
tetrahedra), (c) Mesh#II (12, 216 linear tetrahedra) and (d) Mesh#III (28, 059 linear tetrahedra).

Table 5: L-shaped block: material parameters used in the simulation

Lamé parameters µ 19.423 kPa
λ 29.135 kPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 0.0255
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Table 6: Rotating disk: material parameters used in the simulation

Lamé parameters µ 0.4986 kPa
λ 10.834 kPa

Specific heat capacity Cv 10 JK−1kg−1

Reference temperature θR 308.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 10 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 0.0745

purposes, an alternative in-house Upwind Vertex Centred Finite Volume Method (Upwind-
VCFVM) [33] with ultrafine discretisation (i.e. 81, 222 number of linear tetrahedral meshes)
is also employed and compared. Comparing the results of PG-FEM and Upwind-VCFVM,
practically identical results are observed (see Figure 3).

Second, Figures 4a,b demonstrate the ability of the proposed algorithm in preserving both
the linear momentum and angular momentum of the system. The total linear momentum,
Ltotal =

∫
VR
p dVR, is very zero at all times as no movement of the centre of mass is appreciated.

The total angular momentum, Atotal =
∫
VR
x × p dVR, is expected to be conserved after the

loading phase, that is when time t > 5 s. Another interesting variable of interest is the global
entropy ηtotal =

∫
VR
η dVR, which increases over time for the entire simulation. This is seen in

Figure 4c. In addition, Figure 4d illustrates the time histories of different forms of energy. These
include kinetic energy Ktotal =

∫
VR

1
2ρR
p · p dVR, internal energy associated with mechanical

contribution E total
X =

∫
VR
ẼR(X ) dVR and internal energy associated with thermal effects E total

η =∫
VR
cvθR

(
e
η−η̃R(X )

cv − 1
)
dVR. In the absence of boundary heat flux, the external power only

arises as a result of external boundary traction, that is ψ̇ext =
∫
∂VR

t ·v dA. With these at hand,

the total energy Etotal, mathematically defined as Etotal = Ktotal+E total
X +E total

η −ψext, can now be
computed. This consequently leads to an alternative energy measure known as ballistic energy,
that is Stotal = Etotal − θRηtotal. Due to the fact that a residual-based upwinding stabilisation
term is introduced in our PG-FEM, a slight decrease in the total energy is unavoidable after
the loading phase.

Third, and for qualitative comparison purposes, Figure 5a monitors the temperature evolu-
tion at three different positions, namely point A at position [0, 10, 0]T , point B at [6, 0, 0]T and
point C at [3, 3, 3]T . Additionally, the time history of the velocity component vx is also moni-
tored at point A. It is clear that the solution converges with a progressive level of refinement.
Finally, a series of deformed states are shown in Figures 6 and 7, where the colour contour plot
indicates, respectively, the temperature and pressure representations.

8.2.2. Rotating disk

Similar to the objectives described in the above section, another interesting problem pre-
viously explored by other authors [37, 39] is considered. A rotating disk (refer to Figure 8) is
first initialised by the following rotational velocity defined as

v
∣∣
t=0

= ω ×X, with ω =

 1
1
1

 , (124)
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Figure 3: L-shaped block: comparison of deformed shapes at time t = 11 s. The first three columns show the
mesh refinement of a structure simulated using PG-FEM, whereas the last column shows a deformed structure
via Upwind-VCFVM. The first row depicts the temperature contour and the second row illustrates pressure
contour. A polyconvex Mie-Grüneisen thermo-elastic constitutive model as described in (48) is used. Their
corresponding material parameters are summarised in Table 5.
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(a) (b)

(c) (d)

Figure 4: L-shaped block: time evolution of (a) global linear momentum, (b) global angular momentum, (c)
global entropy, and (d) different energy measures. A polyconvex Mie-Grüneisen thermo-elastic constitutive
model as described in (48) is used. Their corresponding material parameters are summarised in Table 5.
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(a) (b)

Figure 5: L-shaped block: time evolution of (a) temperature at three different points {A,B,C}, and (b) velocity
vx at point A. Point A refers to position [0, 10, 0]T , point B refers to position [6, 0, 0]T and point C refers to
[3, 3, 3]T . A polyconvex Mie-Grüneisen thermo-elastic constitutive model as described in (48) is used. Their
corresponding material parameters are summarised in Table 5.

and is then left floating in space.
The initial temperature profile of the disk is homogeneously distributed and equal to the

reference temperature, that is θ
∣∣∣
t=0

= θR. To achieve heat build-up within the disk, a negative

value of the boundary heat flux is prescribed on a quarter of its lateral boundary surface (see
Figure 8) within a period of time t ∈ [0, 4] s. This is described as

QB(t) = −1591.5 f(t)(W/m2) where f(t) =

sin

(
πt

4

)
t ≤ 4s

0 t > 4s.
(125)

The remaining boundary surfaces are assumed to be thermally insulated. A polyconvex Mie-
Grüneisen model (48) is chosen and their material parameters are summarised in Table 6.

As illustrated in Figure 9a, the new PG-FEM is capable of preserving the global angular
momentum within the underlying thermo-mechanical system. When time t ≤ 4 s, the total
energy of the system is expected to increase due to the prescribed heat flux described in (125),
that is heat flows into the system. When time t > 4 s, that is after the removal of heat flux, the
system is considered as closed. This implies that the total energy should either stay constant or
possibly decrease as the result of numerical dissipation. This is shown in Figure 9b, where the
total energy decreases slightly over time. Perhaps more importantly, the amount of numerical
dissipation decreases with the reduction in mesh size (see Figure 9c). No numerical instability
is observed.

In order to ensure the algorithm correctly reproduces the second law of thermodynamics,
the global entropy is monitored (see Figure 9d). As expected, the global entropy of the system
increases during the period t ∈ [0, 4] s. As the system is closed (after t > 4 s), the global entropy
of the system is a non-decreasing function over time, whereby the irreversibility is caused by
heat conduction.

For visualisation purposes, a sequence of deformation pattern of the disk is displayed in
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Figure 6: L-shaped block: a sequence of deformed structures with temperature distribution at times t =
{0, 1, 2, 3, ..., 48} s (left to right and top to bottom), respectively. Results obtained using a polyconvex Mie-
Grüneisen equation of state as described in (48). Their corresponding material parameters are summarised in
Table 5.
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Figure 7: L-shaped block: a sequence of deformed structures with pressure distribution at times t =
{0, 1, 2, 3, ..., 48} s (left to right and top to bottom), respectively. Results obtained using a polyconvex Mie-
Grüneisen equation of state as described in (48). Their corresponding material parameters are summarised in
Table 5.

38



(a) (b) (c) (d)

Figure 8: Rotating disk: (a) geometry and its finite element discretisation, namely (b) Mesh#I (3, 328 linear
tetrahedra), (c) Mesh#II (21, 520 linear tetrahedra) and (d) Mesh#III (159, 596 linear tetrahedra).

(a) (b)

(c) (d)

Figure 9: Rotating disk: time evolution of (a) global angular momentum, (b) various energy forms, (c) Bal-
listic and total energy with mesh refinement, and (d) global entropy with mesh refinement. A polyconvex
Mie-Grüneisen thermo-elastic constitutive model as described in (48) is used. Their corresponding material
parameters are summarised in Table 6.
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Figure 10: Rotating disk: a sequence of deformed structures with temperature distribution at times t =
{0, 1, 2, 3, ..., 58} s (left to right and top to bottom). Results obtained using a polyconvex Mie-Grüneisen
equation of state as described in (48). Their corresponding material parameters are summarised in Table 6.
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Figure 11: Rotating disk: a sequence of deformed structures with pressure distribution at times t =
{0, 1, 2, 3, ..., 58} s (left to right and top to bottom). Results obtained using a polyconvex Mie-Grüneisen
equation of state as described in (48). Their corresponding material parameters are summarised in Table 6.
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(a) (b) (c) (d)

Figure 12: Punch block: (a) geometry and its finite element discretisation, namely (b) Mesh#I (15, 931 linear
tetrahedra), (c) Mesh#II (36, 722 linear tetrahedra) and (d) Mesh#III (113, 846 linear tetrahedra).

Table 7: Punch block: material parameters used in the simulation

Lamé parameters µ 6.5385 MPa
λ 9.8077 MPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 8.5889

Figures 10 and 11 with snapshots at successive points in time. Both temperature and pressure
distributions are shown.

8.3. Locking and pressure instability

8.3.1. Spurious modes of a constrained punch block

Previously explored in [60] for non-thermal elasticity, an extension of this example to include
thermal effects is now carried out. We consider a block with 3 × 3 of vertical holes with a
diameter of D. Dimensions of the block are shown in Figure 12. The block is left free on its top
surface and is constrained with roller support (i.e. symmetric boundary conditions) on the rest
of the surfaces. The deformation of the block is initiated with a compressive (punch) velocity
profile in quarter of the domain (X ≥ 0 and Y ≥ 0), described as

v
∣∣
t=0

= −5

 0
0

Z/H

 (m/s). (126)

For inclusion of thermal effects, we assume that the initial temperature profile across the
structure is not homogeneous, given as

θ
∣∣∣
t=0

= θR + 10
Z

H
(K). (127)

Moreover, a polyconvex Mie-Grüneisen model as presented in (48) is used, where the ma-
terial parameters are summarised in Table 7.

In this example, three different meshes are explored, namely (Mesh#I) 15,931, (Mesh#II)
36,722, and (Mesh#III) 113,846 linear tetrahedral elements. It is interesting to notice, from
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Figure 13: Punch block: comparison of deformed shapes at time t = 0.05 s. The first three columns ({Mesh#I,
Mesh#II, Mesh#III}, from left to right) show the mesh refinement of a structure simulated using PG-
FEM, whereas the last column shows a deformed structure via Upwind-VCFVM. The first row depicts the
temperature contour and the second row illustrates pressure contour. A polyconvex Mie-Grüneisen thermo-
elastic constitutive model described in (48) is used, with material parameters being summarised in Table 7.
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Figure 14: Punch block: comparison of deformed shapes at bottom view at time t = 0.12 s. The first three
columns ({Mesh#I, Mesh#II, Mesh#III}, from left to right) show the mesh refinement of a structure
simulated using PG-FEM, whereas the last column shows a deformed structure via Upwind-VCFVM. The
first row depicts the temperature contour and the second row illustrates pressure contour. A polyconvex
Mie-Grüneisen thermo-elastic constitutive model as described in (48) is used, with material parameters being
summarised in Table 7.

(a) (b)

Figure 15: Punch block: time evolution of (a) various energy measures and (b) global entropy with mesh
refinement. A polyconvex Mie-Grüneisen thermo-elastic constitutive model as described in (48) is used. Their
corresponding material parameters are summarised in Table 7.
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Figure 16: Punch block: a sequence of deformed structures with temperature distribution at times t =
{10, 20, 30, ..., 300} ms (left to right and top to bottom). Results obtained using a polyconvex Mie-Grüneisen
equation of state as described in (48). Their corresponding material parameters are summarised in Table 7.
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Figure 17: Punch block: a sequence of deformed structures with pressure distribution at times t =
{10, 20, 30, ..., 300} ms (left to right and top to bottom). Results obtained using a polyconvex Mie-Grüneisen
equation of state as described in (48). Their corresponding material parameters are summarised in Table 7.

46



Figures 13 and 14, that despite increasing the number of elements from 15,931 to 113,846,
the deformation patterns predicted by the PG-FEM scheme are practically identical, but with
improved resolution in pressure and temperature. The proposed PG-FEM scheme can clearly
capture the extreme deformation of holes near the bottom plane, showing extremely good
agreement with the results simulated using Upwind-VCFVM.

In Figure 15a, the evolution in time of the kinetic energy, internal energies (e.g. heat and
mechanical contributions), total energy and ballistic energy are monitored. Notice that the
difference between the total energy (blue discontinuous line) and the ballistic energy (red dis-
continuous line) is regarded as the global entropy associated with irreversible heat conduction,
which is positive in this case. This is proven in Figure 15b as the value of global entropy is
non-negative and increases over time. Figures 16 and 17 show a series of deformed states with-
out experiencing any locking difficulties. No spurious pressure and/or temperature instabilities
are observed despite simulating a rather complex geometry.

8.3.2. Bending of a thin plate

The bending behaviour of a thin structure is assessed [41] (see Figure 18a). The main
aim of this example is to verify that PG-FEM circumvents the usual locking difficulties when
simulating a thin structure. The thin plate is subjected to an initial velocity profile given by
the following expression

v
∣∣∣
t=0

=

√
2

π

[
exp

(
−(X − 5)2

10

)
+ exp

(
−(Y − 5)2

10

)] 0
0
1

 (m/s). (128)

For consideration of thermal effects, the plate is initially subjected to a uniform temperature
distribution of θ

∣∣
t=0

= θR, and a boundary (outflow) heat flux prescribed on the bottom surface
of the plate defined as

QB(t) =

{
103 (W/m2) 0 ≤ t ≤ 2 s,

0 t > 2 s.
(129)

A polyconvex Mie-Grüneisen model (48) is chosen and a summary of the data simulation
used is detailed in Table 8.

Aiming to show mesh convergence, three successively refined meshes are used. These include
(Mesh#I) 39,366, (Mesh#II) 108,342 and (Mesh#III) 276,102 linear tetrahedral elements.
Figure 19 compares the deformation process of the structure at time t = {1.5, 3, 4.5, 6} s
using those three meshes previously described. Similar results in terms of deformed shape and
pressure field are observed. Figures 20a,b show the time history of the components of the
global linear and angular momenta of the system. In particular, the global linear momentum
is conserved under translation in space, whereas the angular momentum is perfectly conserved
with the activation of angular momentum projection algorithm. In terms of energy plot, both
the total energy and total entropy of the system first decrease as a result of heat loss induced
by a positive value of external (heat) work, that is heat flows from inside to outside of the
structure. After removal of the external heat flux at time t = 2 s, the total energy should stay
constant in time. For satisfaction of the second law of thermodynamics, the total entropy of
the underlying system should increase over time due to heat conduction. These are displayed
in Figures 20c,d.

Finally, Figure 21 illustrates the time evolution of the deformation of a plate, displaying
a smooth pressure. Top view and bottom view of the deformed structures are also displayed
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(a) (b) (c) (d)

Figure 18: Thin plate: (a) geometry and its finite element discretisation, namely (b) Mesh#I (39, 366 linear
tetrahedra), (c) Mesh#II (108, 340 linear tetrahedra) and (d) Mesh#III (276, 192 linear tetrahedra).

Table 8: Thin plate: material parameters used in the simulation

Lamé parameters µ 19.423 kPa
λ 29.135 kPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 308.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 1000 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 0.0281

in Figure 22. It is remarkable seeing how the deformation behaviour of the structure can be
captured.

8.4. Robustness

In order to assess the applicability and robustness of the proposed method, a challenging
example is presented in this section. Specifically, implosion of a thin-walled bottle of thickness
T is examined. Both the initial height H and outer diameter D0 of the bottle, as well as
the dimensions of its cross section, are shown in Figure 23. The bottle is subjected to (1) a
constant internal pressure p = −7.5 (kPa) on the side walls thereby creating a suction effect, (2)
an initial (uniform) temperature distribution of θ

∣∣
t=0

= θR, and (3) a time-varying prescribed
heat flux QB(t) applied on the outer surface of the bottle, defined as

QB(t) =

{
−103 sin(πt

a
) (W/m2) 0 ≤ t ≤ a,

0 t > a,
a = 5× 10−3 (s). (130)

For computational efficiency, the problem is simplified by considering the existence of two
symmetry planes and hence only a quarter of the domain is simulated. In this case, a polyconvex

Table 9: Bottle: material parameters used in the simulation

Lamé parameters µ 6.5385 MPa
λ 9.8077 MPa

Specific heat capacity Cv 1 JK−1kg−1

Reference temperature θR 293.15 K
Thermal conductivity h 10 WK−1m−1

Material density ρR 1100 kgm−3

Mie-Grüneisen coefficients q 1
Γ0 8.5889
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(a) Mesh#I (39,366 linear tetrahedral elements)

(b) Mesh#II (108,340 linear tetrahedral elements)

(c) Mesh#III (276,192 linear tetrahedral elements)

Figure 19: Thin plate: comparison of deformed shapes at time t = {1.5, 3, 4.5, 6} s using three different meshes,
where the colour contour plot indicates pressure field. A polyconvex Mie-Grüneisen thermo-elastic constitutive
model as described in (48) is used, with material parameters being summarised in Table 8.
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(a) (b)

(c) (d)

Figure 20: Thin plate: time evolution of (a) global linear momentum, (b) global angular momentum, (c) various
energy measures, and (d) global entropy. A polyconvex Mie-Grüneisen thermo-elastic constitutive model as
described in (48) is used. Their corresponding material parameters are summarised in Table 8.
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Figure 21: Thin plate: a sequence of deformed structures with pressure distribution at times t =
{0, 0.5, 1, 1.5, 2, ..., 7} s (left to right and top to bottom). Results obtained using a polyconvex Mie-Grüneisen
equation of state as described in (48). Their corresponding material parameters are summarised in Table 8.
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(a) Bottom view

(b) Top view

Figure 22: Thin plate: a sequence of deformed structures with pressure distribution at times t =
{0, 0.5, 1, 1.5, 2, ..., 7} s (left to right and top to bottom): (a) bottom view and (b) top view. Results ob-
tained using a polyconvex Mie-Grüneisen equation of state as described in (48). Their corresponding material
parameters are summarised in Table 8. 52



Figure 23: Implosive bottle: geometry of a bottle and its cross section

Mie-Grüneisen model is utilised. Both the geometry and material properties are presented in
Table 9.

Aiming to show mesh independent convergence for this problem, successive refinement of
meshes are explored and compared. For a quarter of the domain, we generate three dimen-
sional linear tetrahedral mesh of (Mesh#I) 14,046, (Mesh#II) 30,022, (Mesh#III) 46,837
and (Mesh#IV) 53,535 number of elements. As shown in Figure 24, the pressure contour is
smooth without showing any zero-energy modes. Convergence for both deformed shape and
pressure profile can be observed when increasing the mesh density. It is worth pointing out that
a noticeable change in the deformation pattern is observed as the mesh density is increased from
Mesh#I to Mesh#III. Further mesh refinement (Mesh#IV) ensures that its deformation
behaviour remains practically identical, thus guaranteeing mesh independence. For visualisa-
tion purposes, time evolution of the complex implosive process is shown in Figure 25. Complex
deformation modes comprising wrinkled patterns are observed.

9. Conclusions

In this paper, a new computational framework has been introduced for the analysis of
thermo-elasticity in the context of fast transient solid dynamics. In addition to conservation
laws for the linear momentum p, the deformation gradient tensor F , its co-factor H and its
Jacobian J , formerly exploited in this series [1, 2] in the context of isothermal elasticity, a
further conservation law, representing the first law of thermodynamics in terms of the entropy
η (or total energy E), is incorporated to extend the range of applications into thermally coupled
smooth (non-smooth) hyperelasticity.

From the continuum standpoint, the methodology is built upon the careful definition of
polyconvex internal energy density functionals with respect to the extended set {F ,H , J, η}
[47] by establishing sufficient conditions on the internal energy density and the entropy, when
both are measured at a reference temperature. It is then shown how the ballistic energy
[53] corresponds to a convex entropy function which, along with appropriate entropy fluxes,
guarantees not only the hyperbolicity of the system but also the existence of a symmetrisation
strategy when using appropriate entropy conjugate fields {v,ΣF ,ΣH ,ΣJ , ϑ}.

From the discretisation standpoint, and following previous work in the series, an explicit
stabilised Petrov-Galerkin method is presented and implemented in the form of a Variational
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Figure 24: Imploding bottle: results obtained with meshes comprising of Mesh#I , Mesh#II, Mesh#III
and Mesh#IV (top to bottom). First column shows four different mesh sizes, whereas the remaining columns
show pressure contour plot at time t = {1.5, 3, 4.5, 6} ms (from left to right). Both geometry and material
properties used in the simulation are presented in Table 9.
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Figure 25: Imploding bottle: results obtained with Mesh#IV. A sequence of deformation pattern at various
time t = {0.3, 0.6, 0.9,. . . , 6} ms (from left to right and top to bottom). Both geometry and material properties
used in the simulation are presented in Table 9.
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MultiScale method. This discretisation strategy is restricted to the case when the entropy η is
used as unknown. Crucially, to ensure time stability of the explicit time integrator, the Courant-
Friedichs-Lewy number is computed based on an accurate estimation of the pressure and shear
wave speeds, for which a detailed eigenvalue analysis is presented for two well-established
thermo-elastic constitutive models, namely, the deviatoric-volumetric Mie-Grüneisen model
and the modified entropic elasticity model.

An ample set of numerical examples is presented in order to assess the applicability and ro-
bustness of the proposed formulation. Both velocities, stresses (volumetric and deviatoric) and
entropy display the same (second order) rate of convergence when using linear finite elements,
in contrast to standard displacement based algorithms. The consideration of inelastic effects
and the formulation of the problem in alternative descriptions, namely Eulerian and Arbitrary
Lagrangian–Eulerian, constitute the next steps of our work.

Appendix A. Entropic elasticity

The simplest model that satisfies the sufficient conditions (i) to (iii) discussed in Section
3.4 is the case of modified entropic elasticity. In this model, the energy function ẼR(X ) is
postulated to be only a function of the volume ratio ẼR (J), that is ẼR (X ) ≈ ẼR (J). Following
the work of [69, 89, 90], a simple linear energy potential for ẼR (J) is adopted as

ẼR (J) = cvθRΓ0(J − 1). (A.1)

In order to obtain the coupling term η̃R(X ), recall first that the Helmholtz free energy at
reference temperature ψR is

ψR(X ) = ẼR(J)− θRη̃R(X ), (A.2)

which, after rearranging, enables the entropy to be expressed as

− η̃R(X ) =
1

θR

(
ψR(X )− ẼR(J)

)
. (A.3)

Since the function ẼR(J) (A.1) is linear in J (and hence, d2ẼR(J)
dJ2 = 0), it is easy to show

that −η̃R(X ) (A.3) is polyconvex in X provided that ψR(X ) is polyconvex in X . For instance,
consider the possible polyconvex Helmholtz energy function proposed in Part I [1] as

ψR(X ) = αR (IIF − 3) + βR (IIH + 1)− 4βRJ − 2αR ln J +
λR
2

(J − 1)2, (A.4)

thus, a universally polyconvex internal energy density for modified entropic elasticity is

E(X η) = ẼR(J) + cvθR

(
eη/cve(ψR(X )−ẼR(J))/cvθR − 1

)
. (A.5)

With this, the conjugate stresses (10) become

ΣF (X η) =
Θ(X η)

θR

∂ψR
∂F

=
Θ(X η)

θR
(2αRF ) ; ΣH (X η) =

Θ(X η)

θR

∂ψR
∂H

=
Θ(X η)

θR
(2βRH) ,

(A.6)
and

ΣJ(X η) =
Θ(X η)

θR

∂ψR
∂J
− ϑ̃cvΓ0 =

Θ(X η)

θR

(
−4βR −

2αR
J

+ λR(J − 1)

)
− ϑ̃cvΓ0. (A.7)
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Here, ϑ̃ = ϑ̃(X η) = Θ(X η) − θR represents the temperature increment with Θ(X η) being
defined in (25). The Hessian operator [HE ] adopts the following simple expression as

[HE ] =


EFF EFH EFJ EF η
EHF EHH EHJ EHη

EJF EJH EJJ EJη
EηF EηH EηJ Eηη

 , (A.8)

where Hessian components are

EFF =
Θ

θR

[
2αRI +

4α2
R

cvθR
F ⊗ F

]
; EHH =

Θ

θR

[
2βRI +

4β2
R

cvθR
H ⊗H

]
;

EJJ =
Θ

θR

[
f ′′ +

1

cvθR
(f ′ − cvθRΓ0)2

]
; EFH =

Θ

θR

4αRβR
cvθR

F ⊗H ; EHF =
Θ

θR

4αRβR
cvθR

H ⊗ F ;

EFJ = EJF =
Θ

θR

2αR
cvθR

(f ′ − cvθRΓ0)F ; EHJ = EJH =
Θ

θR

2βR
cvθR

(f ′ − cvθRΓ0)H ;

EF η = EηF =
Θ

cvθR
2αRF ; EHη = EηH =

Θ

cvθR
2βRH ; EJη = EηJ =

Θ

cvθR
(f ′ − cvθRΓ0) ;

Eηη =
Θ

cv
,

(A.9)
with f ′ = −4βR − 2αR

J
+ λR(J − 1) and f ′′ = λR + 2αR

J2 .
Using the Hessian components (A.8) described above, and repeating the exact same proce-

dure carried out in Section 4, the thermo-mechanical acoustic tensor for this particular model
(A.5) yields

CNN =
Θ

θR
CX
NN +

Θ

θR

1

cvθR
[2(αRΛF + βRΛM) + ΛH(f ′ − cvθRΓ0)]

2
n⊗ n, (A.10)

where CX
NN represents the acoustic tensor associated with the polyconvex (isothermal) model

described in (A.4). This term is already presented in Part I [1] and is repeated here for
convenience (refer to equation (75) in [1])

CX
NN = 2αRI + f ′′Λ2

Hn⊗ n+ 2βR(Λ2
TI −ΛT ). (A.11)

As shown in Section 4, we can now obtain bounds of the wave speeds by assuming N is
a principal direction. This is achieved by substituting equation (A.10) into (77) and taking
δv = vα = n to give

ρRc
2
p =

Θ

θR

(
2αR + Λ2

Hf
′′ + 2βRΛ2

T

)
+

Θ

θR

1

cvθR
[2(αRΛF + βRΛM) + ΛH(f ′ − cvθRΓ0)]

2
, (A.12)

from which the first set of eigenvalues corresponding to pressure wave cp is

c1,2 = ±cp; cp =

√√√√ Θ

θR

[
2αR + Λ2

Hf
′′ + 2βRΛ2

T

ρR
+

[2(αRΛF + βRΛM) + ΛH(f ′ − cvθRΓ0)]2

cvθRρR

]
.

(A.13)
The remaining four eigenvalues correspond to shear waves where the vibration takes place

on the propagation plane. The corresponding velocity vectors are orthogonal to n and in the
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directions of the unit eigenvectors {t1, t2} of the rank two tensor ΛT . The wave speeds are
given by c3,4 = ±cs1 and c5,6 = ±cs2 where

cs1 =

√
Θ

θR

[
2αR + 2βR (Λ2

T − λ2
1)

ρR

]
; cs2 =

√
Θ

θR

[
2αR + 2βR (Λ2

T − λ2
2)

ρR

]
. (A.14)

Appendix B. Alternative conservation formulation for thermo-elasticity

In order to derive a suitable generalised entropy function for the alternative set of con-
servation variables Û = [p,F ,H , J, E]T , the convex entropy function as presented in (87)
must now be re-written in terms of linear momentum p, the triplet of deformation measures
X = {F ,H , J} and total energy E as

Ŝ(p,XE) = B̂(p,XE) = E − θRη̂(p,XE); XE = {X , E} = {F ,H , J, E}. (B.1)

As shown by Wagner in [74], the function −η̂(p,XE) is convex in p and XE. In this repre-
sentation, and noticing that Ê(X , η̂(p,XE)) = E − 1

2ρR
p · p, the entropy η̂(p,XE) is obtained

implicitly via the following expression ϕ(p,XE, η̂) defined as [74]

0 = ϕ(p,XE, η̂) = Ê(X , η̂)−
(
E − 1

2ρR
p · p

)
. (B.2)

Differentiating Ŝ(p,XE) (B.1) gives the conjugate entropy variables V̂ as

V̂ =
∂Ŝ(p,XE)

∂Û
=



∂Ŝ
∂p

∂Ŝ
∂F

∂Ŝ
∂H

∂Ŝ
∂J

∂Ŝ
∂E


=


Γp
ΓF
ΓH
ΓJ
ΓE

 =


−θR ∂η̂(p,XE)

∂p

−θR ∂η̂(p,XE)
∂F

−θR ∂η̂(p,XE)
∂H

−θR ∂η̂(p,XE)
∂J

1− θR ∂η̂(p,XE)
∂E

 . (B.3)

To complete the above equation, it is now necessary to compute the derivatives of η̂(p,XE)
by differentiation of ϕ (B.2) with respect to each component of Û . By using the chain rule, the
derivative of η̂(p,XE) with respect to p can first be achieved as

0 =
∂ϕ(p,XE, η̂(p,XE))

∂p
+
∂ϕ(p,XE, η̂)

∂η̂

∂η̂(p,XE)

∂p
. (B.4a)

Since ∂ϕ(p,XE ,η̂)
∂η̂

= ∂Ê(X ,η̂)
∂η̂

= θ, equation above after rearranging becomes

− ∂η̂(p,XE)

∂p
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂p
=
v

θ
. (B.5)

Repeating the same procedure on the derivatives of η̂ with respect to F , H , J and E,
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results in

−∂η̂(p,XE)

∂F
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂F
=

1

θ
ΣF ; (B.6a)

−∂η̂(p,XE)

∂H
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂H
=

1

θ
ΣH ; (B.6b)

−∂η̂(p,XE)

∂J
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂J
=

1

θ
ΣJ ; (B.6c)

−∂η̂(p,XE)

∂E
=

(
∂ϕ

∂η̂

)−1
∂ϕ

∂E
=

1

θ
. (B.6d)

Finally, by combining equations (B.6) and (B.1), components of the conjugate entropy
variables (B.3) are

Γp =
θR
θ
v; ΓF =

θR
θ

ΣF ; ΓH =
θR
θ

ΣH ; ΓJ =
θR
θ

ΣJ ; ΓE =
ϑ

θ
, (B.7)

respectively.

Appendix C. Linearisation of thermo-elasticity equations

This Appendix is included to derive a linearised version of internal strain energy ELin followed
by the computation of the first Piola Kirchhoff stress tensor. To derive this, we use the concept
of directional derivative [71] by linearising an internal energy E(X η) with respect to a reference
configuration {X I , η = 0} demonstrated as below

ELin(δX , δη) ≈ E(XI , η = 0)︸ ︷︷ ︸
0

+DE
∣∣
XI ,0

[δX , δη] +
1

2
D (DE [δX , δη])

∣∣
XI ,0

[δX , δη]

≈ DE
∣∣
XI ,0

[δX , δη] +
1

2
D (DE [δX , δη])

∣∣
XI ,0

[δX , δη].

(C.1)

To achieve this, recall first that the general internal strain energy function (48) is

E(X η) = ẼR(X ) + cv
(
Θ0(J)eη/cv − 1

)
; Θ0(J) = θRe

−η̃R(J)/cv , (C.2)

and also notice that dΘ0(J)
dJ

= −Θ0

cv

dη̃R(J)
dJ

, the directional derivative of the energy above
becomes

DE(X η)[δX , δη] = DẼR(X )[δX ] + cvD
(
Θ0(J)eη/cv

)
[δJ, δη]

=

(
∂ẼR
∂F

+
∂ẼR
∂H

F +
∂ẼR
∂J

H

)
: δF + cve

η/cv

[(
dΘ0

dJ
δJ

)
+

(
Θ0(J)

cv
δη

)]

=

(
∂ẼR
∂F

+
∂ẼR
∂H

F +
∂ẼR
∂J

H

)
: δF + Θ0(J)eη/cv

(
δη − dη̃R(J)

dJ
δJ

)

=

(
∂ẼR
∂F

+
∂ẼR
∂H

F +

(
∂ẼR
∂J
−Θ

dη̃R(J)

dJ

)
H

)
: δF + Θδη

= P : δF + Θδη,
(C.3)
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with Θ(J, η) = Θ0(J)eη/cv . Consequently, further application of directional derivative on the
above expression gives

D (DE [δX , δη]) [δX , δη] = DP [δX , δη] : δF +DΘ[δJ, δη]δη

=


δF

F δF
H : δF
δη


T

[HE ]


δF

F δF
H : δF
δη

+ eη/cv
dΘ0(J)

dJ
δηδJ +

Θ0(J)

cv
eη/cv(δη)2

=


δF

F δF
H : δF
δη


T

[HE ]


δF

F δF
H : δF
δη

+
Θ

cv

(
(δη)2 − dη̃R

dJ
δJδη

)
.

(C.4)
With these at hand, we are now in a position to derive the linearised internal energy

ELin(F , η) as described in (C.1). This indeed can be achieved by first noticing that both
derivatives (C.3) and (C.4) defined at reference state {XI , η = 0} become

DE
∣∣
XI ,0

[δX , δη] = θRδη (C.5)

and

D (DE [δX , δη])
∣∣
XI ,0

[δX , δη] = δF : CLin : δF +
θR
cv

(δη − cvΓ0trδF )2 +(1−q)θRcvΓ0 (trδF )2 , (C.6)

where the fourth order linear elasticity tensor is defined as

CLin = λI ⊗ I + µ
(
I + Ĩ

)
, (C.7)

with [I ⊗ I]iIjJ = δiIδjJ , [I]iIjJ = δijδIJ and
[
Ĩ
]
iIjJ

= δiJδIj. Using these expressions, and

replacing δF with F and δη with η, the linearised internal energy (C.1) becomes

ELin(F , η) = ẼLin
R (F ) + θRη +

θR
2cv

(η − cvΓ0 (trF − 3))2 +
1

2
(1− q)θRcvΓ0 (trF − 3)2 , (C.8)

with the classical linear elastic model [71] being defined as

ẼLin
R (F ) =

µR
4

[(
F + F T − 2I

)
:
(
F + F T − 2I

)]
+
λR
2

(trF − 3)2 . (C.9)

The first Piola-Kirchhoff stress now follows

P (F , η) = µR(F+F T−2I)+λ̂R (trF − 3) I−θRΓ0 (η − cvΓ0 (trF − 3)) I; λ̂R = λR+(1−q)θRcvΓ0.
(C.10)

Alternatively, and noting that the linearised entropy function is in the form of [62]

η̃(F , θ) = cvΓ0 (trF − 3) + cv

(
θ

θR
− 1

)
, (C.11)

the first Piola-Kirchhoff stress (C.10) can now be written in terms of {F , θ} as

P̃ (F , θ) = µR(F + F T − 2I) + λ̂R (trF − 3) I − cvΓ0θR

(
θ

θR
− 1

)
I. (C.12)
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[47] M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Springer Berlin
Heidelberg, 1997.

[48] M. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua, Cam-
bridge University Press, 2010.

[49] J. W. Gibbs, E. B. Wilson, Vector analysis, Yale University Press, ninth edition, 1947.

[50] R. de Boer, Vektor- und Tensorrechnung für Ingenieure, Springer-Verlag, 1982.

[51] J. Bonet, A. J. Gil, R. Ortigosa, A computational framework for polyconvex large strain
elasticity, Computer Methods in Applied Mechanics and Engineering 283 (2015) 1061–
1094.

[52] J. Bonet, A. J. Gil, R. Ortigosa, On a tensor cross product based formulation of large
strain solid mechanics, International Journal of Solids and Structures 84 (2016) 49–63.

[53] J. L. Ericksen, Introduction to the thermodynamics of solids, pub-SV, New York, revised
edition, 1998.

[54] M. Kruger, M. GroB, P. Betsch, An energy-entropy-consistent time stepping scheme for
nonlinear thermo-viscoelastic continua, ZAMM - Journal of Applied Mathematics and
Mechanics 96 (2016) 141–178.

65



[55] M. E. Gurtin, Thermodynamics and stability, Archive for Rational Mechanics and Analysis
59 (1975) 63–96.

[56] C. M. Dafermos, Quasilinear hyperbolic systems with involutions, Archive for Rational
Mechanics and Analysis 94 (1986) 373–389.

[57] C. H. Lee, A. J. Gil, O. I. Hassan, J. Bonet, S. Kulasegaram, A variationally consistent
Streamline Upwind Petrov Galerkin Smooth Particle Hydrodynamics algorithm for large
strain solid dynamics, Computer Methods in Applied Mechanics and Engineering 318
(2017) 514–536.

[58] O. I. Hassan, A. Ghavamian, C. H. Lee, A. J. Gil, J. Bonet, F. Auricchio, An upwind vertex
centred finite volume algorithm for nearly and truly incompressible explicit fast solid dy-
namic applications: Total and updated lagrangian formulations, Journal of Computational
Physics: X 3 (2019) 100025.

[59] C. H. Lee, A. J. Gil, A. Ghavamian, J. Bonet, A total lagrangian upwind smooth particle
hydrodynamics algorithm for large strain explicit solid dynamics, Computer Methods in
Applied Mechanics and Engineering 344 (2019) 209 – 250.

[60] J. Haider, C. H. Lee, A. J. Gil, A. Huerta, J. Bonet, An upwind cell centred total lagrangian
finite volume algorithm for nearly incompressible explicit fast solid dynamic applications,
Computer Methods in Applied Mechanics and Engineering 340 (2018) 684 – 727.

[61] M. Aguirre, A. J. Gil, J. Bonet, A. A. Carreño, A vertex centred finite volume Jameson-
Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics,
Journal of Computational Physics 259 (2014) 672–699.

[62] O. Gonzalez, A. M. Stuart, A first course in continuum mechanics, Cambridge University
Press, 2008.

[63] J. M. Ball, Geometry, Mechanics and Dynamics, Springer, pp. 3–59.

[64] J. M. Ball, F. Murat, Quasiconvexity and variational problems for multiple integrals,
Archive for Rational Mechanics and Analysis 63 (1976) 337–403.

[65] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Annali
della Scuola Normale Superiore di Pisa, Classe di Scienze 97 (1992) 313–326.

[66] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 2008.

[67] P. Ciarlet, Existence theorems in intrinsic nonlinear elasticity, Journal des mathématiques
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