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MODEL STRUCTURES FOR HOMOTOPY
OF INTERNAL CATEGORIES

T. EVERAERT, R.W. KIEBOOM AND T. VAN DER LINDEN

Abstract. The aim of this paper is to describe Quillen model category structures on
the category CatC of internal categories and functors in a given finitely complete category
C. Several non-equivalent notions of internal equivalence exist; to capture these notions,
the model structures are defined relative to a given Grothendieck topology on C.

Under mild conditions on C, the regular epimorphism topology determines a model
structure where we is the class of weak equivalences of internal categories (in the sense
of Bunge and Paré). For a Grothendieck topos C we get a structure that, though
different from Joyal and Tierney’s, has an equivalent homotopy category. In case C is
semi-abelian, these weak equivalences turn out to be homology isomorphisms, and the
model structure on CatC induces a notion of homotopy of internal crossed modules. In
case C is the category Gp of groups and homomorphisms, it reduces to the case of crossed
modules of groups.

The trivial topology on a category C determines a model structure on CatC where we is
the class of strong equivalences (homotopy equivalences), fib the class of internal functors
with the homotopy lifting property, and cof the class of functors with the homotopy
extension property. As a special case, the “folk” Quillen model category structure on
the category Cat = CatSet of small categories is recovered.
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1. Introduction

It is very well-known that the following choices of morphisms define a Quillen model
category [38] structure—known as the “folk” structure—on the category Cat of small
categories and functors between them: we is the class of equivalences of categories, cof
the class of functors, injective on objects and fib the class of functors p : E �� B
such that for any object e of E and any isomorphism β : b �� p(e) in B there exists
an isomorphism ε with codomain e such that p(ε) = β; this notion was introduced for
groupoids by R. Brown in [14]. We are unaware of who first proved this fact; certainly, it
is a special case of Joyal and Tierney’s structure [30], but it was probably known before.
A very explicit proof may be found in an unpublished paper by Rezk [39].

Other approaches to model category structures on Cat exist: Golasiński uses the ho-
motopy theory of cubical sets to define a model structure on the category of pro-objects
in Cat [21]; Thomason uses an adjunction to simplicial sets to acquire a model structure
on Cat itself [41]. Both are very different from the folk structure. Related work includes
folk-style model category structures on categories of 2-categories and bicategories (Lack
[34], [33]) and a Thomason-style model category structure for 2-categories (Worytkiewicz,
Hess, Parent and Tonks [42]).

If E is a Grothendieck topos there are two model structures on the category CatE of
internal categories in E . On can define the cofibrations and weak equivalences “as in Cat”,
and then define the fibrations via a right lifting property. This gives Joyal and Tierney’s
model structure [30]. Alternatively one can define the fibrations and weak equivalences
“as in Cat” and than define the cofibrations via a left lifting property. This gives the model
structure in this paper. The two structures coincide when every object is projective, as
in the case E = Set.

More generally, if C is a full subcategory of E , one gets a full embedding of CatC
into CatE , and one can then define the weak equivalences and fibrations in CatC “as in
CatE”, and the cofibrations via a left lifting property. In particular one can do this when
E = Sh(C, T ), for a subcanonical Grothendieck topology T on an arbitrary category C.
Starting with such a C, one may also view this as follows: the notions of fibration and weak
equivalence in the folk structure may be internalized, provided that one specifies what is
meant by essential surjectivity and the existence claim in the definition of fibration. Both
of them require some notion of surjection; this will be provided by a topology T on C.

There are three main obstructions on a site (C, T ) for such a model category structure
to exist. First of all, by definition, a model category has finite colimits. We give some
sufficient conditions on C for CatC to be finitely cocomplete: either C is a topos with
natural numbers object; or it is a locally finitely presentable category; or it is a finitely
cocomplete regular Mal’tsev category. Next, in a model category, the class we of weak
equivalences has the two-out-of-three property. This means that if two out of three mor-
phisms f , g, g◦f belong to we then the third also belongs to we. A sufficient condition
for this to be the case is that T is subcanonical. Finally, we want T to induce a weak
factorization system in the following way. Let YT : C �� Sh(C, T ) denote the composite
of the Yoneda embedding with the sheafification functor. A morphism p : E �� B in



68 T. EVERAERT, R.W. KIEBOOM AND T. VAN DER LINDEN

C will be called a T -epimorphism if YT (p) is an epimorphism in Sh(C, T ). The class of
T -epimorphisms is denoted by ET . If (�ET , ET ) forms a weak factorization system, we
call it the weak factorization system induced by T . This is the case when C has enough
ET -projective objects.

Joyal and Tierney’s model structure [30] is defined as follows. Let (C, T ) be a site
and Sh(C, T ) its category of sheaves. Then a weak equivalence in CatSh(C, T ) is a weak
equivalence of internal categories in the sense of Bunge and Paré [15]; a cofibration is a
functor, monic on objects; and a fibration has the right lifting property with respect to
trivial cofibrations. Using the functor YT we could try to transport Joyal and Tierney’s
model structure from CatSh(C, T ) to C as follows. For a subcanonical topology T , the
Yoneda embedding, considered as a functor C �� Sh(C, T ), is equal to YT . It follows
that YT is full and faithful and preserves and reflects limits. Hence it induces a 2-functor
CatYT : CatC ��CatSh(C, T ). Say that an internal functor f : A ��B is an equivalence
or cofibration, resp., if and only if so is the induced functor CatYT (f ) in Sh(C, T ), and
define fibrations using the right lifting property.

We shall, however, consider a different structure on CatC, mainly because of its ap-
plication in the semi-abelian context. The weak equivalences, called T -equivalences, are
the ones described above. (As a consequence, in the case of a Grothendieck topos, we get
a structure that is different from Joyal and Tierney’s, but has an equivalent homotopy
category.) Where Joyal and Tierney internalize the notion of cofibration, we do so for the
fibrations: p : E �� B is called a T -fibration if and only if in the diagram

iso(E)

δ1

��

iso(p)1

��
(rp)0

��
(Pp)0

p0 ��

δ1
��

iso(B)

δ1
��

E0 p0

�� B0

where iso(E) denotes the object of invertible arrows in the category E, the induced uni-
versal arrow (rp)0 is in ET . T -cofibrations are defined using the left lifting property.

The paper is organized as follows. In Section 3, we study a cocylinder on CatC that
characterizes homotopy of internal categories, i.e. such that two internal functors are
homotopic if and only if they are naturally isomorphic. This cocylinder is used in Section
4 where we study the notion of internal equivalence, relative to the Grothendieck topology
T on C defined above. For the trivial topology (the smallest one), a T -equivalence is
a strong equivalence, i.e. a homotopy equivalence with respect to the cocylinder. We
recall that the strong equivalences are exactly the adjoint equivalences in the 2-category
CatC. If T is the regular epimorphism topology (generated by covering families consisting
of a single pullback-stable regular epimorphism), T -equivalences are the so-called weak
equivalences [15]. There is no topology T on Set for which the T -equivalences are the
equivalences of Thomason’s model structure on Cat: any adjoint is an equivalence in the
latter sense, whereas a T -equivalence is always fully faithful.
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In Section 5 we study T -fibrations. We prove—this is Theorem 5.5—that the T -
equivalences form the class we(T ) and the T -fibrations the class fib(T ) of a model category
structure on CatC, as soon as the three obstructions mentioned above are taken into
account.

Two special cases are subject to a more detailed study: in Section 6, the model
structure induced by the regular epimorphism topology; in Section 7, the one induced
by the trivial topology. In the first case we give special attention to the situation where
C is a semi-abelian category, because then weak equivalences turn out to be homology
isomorphisms, and the fibrations, Kan fibrations. Moreover, the category of internal
categories in a semi-abelian category C is equivalent to Janelidze’s category of internal
crossed modules in C [25]. Reformulating the model structure in terms of internal crossed
modules (as is done in Theorem 6.7) simplifies its description. If C is the category of
groups and homomorphisms, we obtain the model structures on the category CatGp of
categorical groups and the category XMod of crossed modules of groups, as described by
Garzón and Miranda in [20].

The second case models the situation in Cat, equipped with the folk model structure,
in the sense that here, weak equivalences are homotopy equivalences, fibrations have
the homotopy lifting property (Proposition 7.3) and cofibrations the homotopy extension
property (Proposition 7.6) with respect to the cocylinder defined in Section 3.

We used Borceux [6] and Mac Lane [35] for general category theoretic results. Lots of
information concerning internal categories (and, of course, topos theory) may be found in
Johnstone [27]. Other works on topos theory we used are Mac Lane and Moerdijk [36],
Johnstone’s Elephant [29] and SGA4 [1]. The standard work on “all things semi-abelian”
is Borceux and Bourn’s book [7].

Acknowledgements. Twice the scope of this paper has been considerably widened:
first by Stephen Lack, who pointed out the difference between notions of internal equiv-
alence, and incited us to consider weak equivalences; next by George Janelidze, who
explained us how to use Grothendieck topologies instead of projective classes. Many
thanks also to the referee, Dominique Bourn, Marino Gran and Tor Lowen for lots of very
useful comments and suggestions.

2. Preliminaries

2.1. Internal categories and groupoids. If C is a finitely complete category
then RGC (resp. CatC, GrpdC) denotes the category of internal reflexive graphs (resp.
categories, groupoids) in C. Let

GrpdC J �� CatC I �� RGC

denote the forgetful functors. It is well-known that J embeds GrpdC into CatC as a
coreflective subcategory. Carboni, Pedicchio and Pirovano prove in [17] that, if C is
Mal’tsev, then I is full, and J is an isomorphism. Moreover, an internal reflexive graph
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carries at most one structure of internal groupoid; hence GrpdC may be viewed as a
subcategory of RGC. As soon as C is, moreover, finitely cocomplete and regular, this
subcategory is reflective (see Borceux and Bourn [7, Theorem 2.8.13]). In her article [37],
M. C. Pedicchio shows that, if C is an exact Mal’tsev category with coequalizers, then
the category GrpdC is {regular epi}-reflective in RGC. This implies that GrpdC is closed in
RGC under subobjects. In [22], Gran adds to this result that CatC is closed in RGC under
quotients. It follows that CatC is Birkhoff [26] in RGC. This, in turn, implies that if C is
semi-abelian, so is CatC [18, Remark 5.4]. Gran and Rosický [23] extend these results to
the context of modular varieties. For any variety V , the category RGV is equivalent to a
variety. They show that, if, moreover, V is modular, V is Mal’tsev if and only if GrpdV is
a subvariety of RGV [23, Proposition 2.3].

Let C be finitely complete. Sending an internal category

A =
(

A1 ×A0 A1
m �� A1

d0

��

d1 ��
A0i��

)

to its object of objects A0 and an internal functor f = (f0, f1) : A �� B to its object
morphism f0 defines a functor (·)0 : CatC �� C. Here A1 ×A0 A1 denotes a pullback of
d1 along d0; by convention, d1◦ pr1 = d0◦ pr2. It is easily seen that (·)0 has both a left
and a right adjoint, resp. denoted L and R : C �� CatC. Given an object X of C and
an internal category A, the natural bijection ψ : C(X,A0) �� CatC(L(X),A) maps a
morphism f0 : X �� A0 to the internal functor

f = ψ(f0) = (f0, i◦f0) : X = L(X) �� A,

where X is the discrete internal groupoid d0 = d1 = i = m = 1X : X �� X.
The right adjoint R maps an object X to the indiscrete groupoid R(X) on X, i.e.

R(X)0 = X, R(X)1 = X × X, d0 is the first and d1 the second projection, i is the
diagonal and m : R(X)1 ×R(X)0 R(X)1

�� R(X)1 is the projection on the first and third
factor.

Sending an internal category A to its object of arrows A1 defines a functor (·)1 :
CatC �� C. Since limits in CatC are constructed by first taking the limit in RGC, then
equipping the resulting reflexive graph with the unique category structure such that the
universal cone in RGC becomes a universal cone in CatC, the functor I : CatC �� RGC
creates limits. Hence (·)1 is limit-preserving.

2.2. When is CatC (co)complete? One of the requirements for a category to be a
model category is that it is finitely complete and cocomplete. Certainly the completeness
poses no problems since it is a pretty obvious fact that CatC has all limits C has (see e.g.
Johnstone [27, Lemma 2.16]); hence CatC is always finitely complete.

The case of cocompleteness is entirely different, because in general cocompleteness of C
need not imply the existence of colimits in CatC. (Conversely, C has all colimits CatC has,
because (·)0 : CatC ��C has a right adjoint.) As far as we know, no characterization exists
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of those categories C which have a finitely cocomplete CatC; we can only give sufficient
conditions for this to be the case.

We get a first class of examples by assuming that C is a topos with a natural numbers
object (or, in particular, a Grothendieck topos, like Joyal and Tierney do in [30]). As
explained to us by George Janelidze, for a topos C, the existence of a NNO is equivalent to
CatC being finitely cocomplete. Certainly, if CatC has countable coproducts, then so has
C, hence it has a NNO: take a countable coproduct of 1. But the situation is much worse,
because CatC does not even have arbitrary coequalizers if C lacks a NNO. Considering the
ordinals 1 and 2 = 1 + 1 (equipped with the appropriate order) as internal categories 1
and 2, the coproduct inclusions induce two functors 1 �� 2. If their coequalizer in CatC
exists, it is the free internal monoid on 1, considered as a one-object category (its object
of objects is equal to 1). But by Remark D5.3.4 in [29], this implies that C has a NNO!
Conversely, in a topos with NNO, mimicking the construction in Set, the functor I may
be seen to have a left adjoint; using this left adjoint, we may construct arbitrary finite
colimits in CatC.

Locally finitely presentable categories form a second class of examples. Indeed, every
l.f.p. category is cocomplete, and if a category C if l.f.p., then so is CatC—being a category
of models of a sketch with finite diagrams [3, Proposition 1.53]. (Note that in particular,
we again find the example of Grothendieck topoi.)

A third class is given by supposing that C is finitely cocomplete and regular Mal’tsev.
Then CatC = GrpdC is a reflective [7, Theorem 2.8.13] subcategory of the functor category
RGC, and hence has all finite colimits. This class, in a way, dualizes the first one, because
the dual of any topos is a finitely cocomplete (exact) Mal’tsev category [16], [7, Example
A.5.17], [10].

2.3. Weak factorization systems and model categories. In this paper we use
the definition of model category as presented by Adámek, Herrlich, Rosický and Tholen
[2]. For us, next to its elegance, the advantage over Quillen’s original definition [38] is its
explicit use of weak factorization systems. We briefly recall some important definitions.

2.4. Definition. Let l : A �� B and r : C �� D be two morphisms of a category C.
l is said to have the left lifting property with respect to r and r is said to have the right
lifting property with respect to l if every commutative diagram

A ��

l
��

C

r

��
B ��

h
��

D

has a lifting h : B �� C. This situation is denoted l�r (and has nothing to do with
double equivalence relations).

If H is a class of morphisms then H� is the class of all morphisms r with h�r for all
h ∈ H; dually, �H is the class of all morphisms l with l�h for all h ∈ H.
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2.5. Definition. A weak factorization system in C is a pair (L,R) of classes of
morphisms such that

1. every morphism f has a factorization f = r◦l with r ∈ R and l ∈ L;

2. L� = R and L = �R.

In the presence of condition 1., 2. is equivalent to the conjunction of L�R and the
closedness in the category of arrows C→ of L and R under the formation of retracts.

2.6. Definition. [Remark 3.6 in [2]] Let C be a finitely complete and cocomplete cate-
gory. A model structure on C is determined by three classes of morphisms, fib (fibrations),
cof ( cofibrations) and we (weak equivalences), such that

1. we has the 2-out-of-3 property, i.e. if two out of three morphisms f , g, g◦f belong
to we then the third morphism also belongs to we, and we is closed under retracts
in C→;

2. (cof, fib ∩ we) and (cof ∩ we, fib) are weak factorization systems.

A category equipped with a model structure is called a model category. A morphism in
fib∩we (resp. cof∩we) is called a trivial fibration (resp. trivial cofibration). Let 0 denote
an initial and 1 a terminal object of C. A cofibrant object A is such that the unique arrow
0 �� A is a cofibration; A is called fibrant if A �� 1 is in fib.

2.7. Grothendieck topologies. We shall consider model category structures on
CatC which are defined relative to some Grothendieck topology T on C. Recall that such
is a function that assigns to each object C of C a collection T (C) of sieves on C (a sieve S
on C being a class of morphisms with codomain C such that f ∈ S implies that f ◦g ∈ S,
whenever this composite exists), satisfying

1. the maximal sieve on C is in T (C);

2. (stability axiom) if S ∈ T (C) then its pullback h∗(S) along any arrow h : D �� C
is in T (D);

3. (transitivity axiom) if S ∈ T (C) and R is a sieve on C such that h∗(R) ∈ T (D) for
all h : D �� C in S, then R ∈ T (C).

A sieve in some T (C) is called covering. We would like to consider sheaves over arbitrary
sites (C, T ), not just small ones (i.e. where C is a small category). For this to work
flawlessly, a standard solution is to use the theory of universes, as introduced in [1]. The
idea is to extend the Zermelo-Fraenkel axioms of set theory with the axiom (U) “every
set is an element of a universe”, where a universe U is a set satisfying

1. if x ∈ U and y ∈ x then y ∈ U ;

2. if x, y ∈ U then {x, y} ∈ U ;
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3. if x ∈ U then the powerset P(x) of x is in U ;

4. if I ∈ U and (xi)i∈I is a family of elements of U then
⋃

i∈I xi ∈ U .

A set is called U-small if it has the same cardinality as an element of U . (We sometimes,
informally, use the word class for a set that is not U -small.) We shall always consider
universes containing the set N of natural numbers, and work in ZFCU (with the ZF axioms
+ the axiom of choice + the universe axiom). A category consists of a set of objects and
a set of arrows with the usual structure; USet (UCat) denotes the category whose objects
are elements of U (categories with sets of objects and arrows in U) and whose arrows
are functions (functors) between them. Now given a site (C, T ), the category C is in
UCat for some universe U ; hence it makes sense to consider the category of presheaves
UPrC = Fun(Cop,USet) and the associated category USh(C, T ) of sheaves. In what follows,
we shall not mention the universe U we are working with and just write Set, Cat, PrC,
Sh(C, T ), etc.

2.8. Examples. On a finitely complete category C, the regular epimorphism topology
is generated by the following basis: a covering family on an object A consists of a single
pullback-stable regular epimorphism A′ �� A. It is easily seen that this topology is
subcanonical, i.e. that every representable functor is a sheaf. Hence the Yoneda embedding
Y : C �� PrC may be considered as a functor C �� Sh(C, T ).

The trivial topology is the smallest one: the only covering sieve on an object A is the
sieve of all morphisms with codomain A. Every presheaf if a sheaf for the trivial topology.

The largest topology is called cotrivial : every sieve is covering. The only sheaf for this
topology is the terminal presheaf.

We shall consider the weak factorization system on a category C, generated by a
Grothendieck topology in the following way.

2.9. Definition. Let T be a topology on a category C and let YT : C �� Sh(C, T )
denote the composite of the Yoneda embedding Y : C ��PrC with the sheafification functor
PrC �� Sh(C, T ). A morphism p : E �� B will be called a T -epimorphism if YT (p) is
an epimorphism in Sh(C, T ). The class of T -epimorphisms is denoted by ET . If (�ET , ET )
forms a weak factorization system, we call it the weak factorization system induced by
T .

2.10. Remark. Note that if T is subcanonical, then YT is equal to the Yoneda
embedding; hence it is a full and faithful functor.

2.11. Remark. The only condition a subcanonical T needs to fulfil, for it to induce
a model structure on CatC, is that (�ET , ET ) is a weak factorization system. When C has
binary coproducts, this is equivalent to C having enough ET -projectives [2].

One way of avoiding universes is by avoiding sheaves: indeed, T -epimorphisms have
a well-known characterization in terms of the topology alone.
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2.12. Proposition. [Corollary III.7.5 and III.7.6 in [36]] Let T be a topology on
a category C. Then a morphism p : E �� B in C is T -epic if and only if for every
g : X �� B there exists a covering family (fi : Ui

�� X)i∈I and a family of morphisms
(ui : Ui

�� E)i∈I such that for every i ∈ I, p◦ui = g◦fi.

2.13. Examples. If T is the trivial topology, it is easily seen that the T -epimorphisms
are exactly the split epimorphisms.

When T is the cotrivial topology, every morphism is T -epic.
In case T is the regular epimorphism topology, a T -epimorphism is nothing but a

pullback-stable regular epimorphism: certainly, every pullback-stable regular epimor-
phism is T -epic; conversely, one shows that if p◦u = f is a pullback-stable regular epi-
morphism then so is p.

3. A cocylinder on CatC
One way of defining homotopy in a category C is relative to a cocylinder on C. Recall
(e.g. from Kamps [31] or Kamps and Porter [32]) that this is a structure

((·)I : C �� C, ε0, ε1 : (·)I �� 1C, s : 1C �� (·)I)

such that ε0•s = ε1•s = 11C . Given a cocylinder ((·)I , ε0, ε1, s) on C, two morphisms
f, g : X �� Y are called homotopic (or, more precisely, right homotopic, to distinguish
with the notion of left homotopy defined using a cylinder) if there exists a morphism
H : X �� Y I such that ε0(Y )◦H = f and ε1(Y )◦H = g. The morphism H is called a
homotopy from f to g and the situation is denoted H : f � g.

Let C be a finitely complete category. In this section, we describe a cocylinder on CatC
such that two internal functors are homotopic if and only if they are naturally isomorphic.
We follow the situation in Cat very closely. Let I denote the interval groupoid, i.e. the
category with two objects {0, 1} and the following four arrows.

010 		
τ



1
τ−1

�� 11
��

Then putting CI = Fun(I, C), the category of functors from I to C, defines a cocylinder
on Cat. It is easily seen that an object of CI , being a functor I �� C, is determined
by the choice of an isomorphism in C; a morphism of CI , being a natural transformation
µ : F ��G : I ��C between two such functors, is determined by a commutative square

F (0)
µ0 ��

F (τ) ∼=
��

G(0)

∼= G(τ)
��

F (1) µ1

�� G(1)

in C with invertible downward-pointing arrows.
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It is well-known that the category GrpdC is coreflective in CatC; let iso : CatC ��GrpdC
denote the right adjoint of the inclusion J : GrpdC ��CatC. Given a category A in C, the
functor iso may be used to describe the object iso(A) of “isomorphisms in A” (cf. Bunge
and Paré [15]) as the object of arrows of iso(A), the couniversal groupoid associated with
A. The counit εA : iso(A) �� A at A is a monomorphism, and will be denoted

iso(A)

δ0
��

δ1
��

�� j �� A1

d0

��
d1

��
A0

ι



A0.

i



The object AI
1 of “commutative squares with invertible downward-pointing arrows in

A” is given by the the pullback

AI
1

pr2 ��

pr1
��

A1 ×A0 iso(A)

m◦(1A1
×1A0

j)

��
iso(A) ×A0 A1

m◦(j×1A0
1A1

)
�� A1.

The unique morphism induced by a cone on this diagram, represented by (f, g, h, k) :
X �� iso(A) × A1 × A1 × iso(A), will be denoted by

· h ��

f
��

·
k

��· g
�� ·

: X �� AI
1.

Put AI
0 = iso(A). Horizontal composition

comp =

·
m◦(pr1 ◦ pr2 ×δ0

pr1 ◦pr2)
��

pr1 ◦ pr1 ◦ pr1
��

·
pr2 ◦ pr2 ◦pr2

��·
m◦(pr2 ◦ pr1 ×δ1

pr2 ◦pr1)
�� ·

, id =

· i◦δ0 ��

1iso(A)1

��

·
1iso(A)1

��·
i◦δ1

�� ·
,

dom = pr1 ◦ pr1 and cod = pr2 ◦ pr2 now define an internal category

AI =
(

AI
1 ×AI

0
AI

1
comp �� AI

1
dom

��
cod ��

AI
0id��
)
.

Thus we get a functor (·)I : CatC �� CatC. Putting

ε0(A) = (δ0, pr1 ◦ pr2) : AI �� A, ε1(A) = (δ1, pr2 ◦ pr1) : AI �� A
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and s(A) = (ι, s(A)1) with

s(A)1 =

·
1A1 ��

ι◦d0

��

·
ι◦d1

��·
1A1

�� ·
: A1

�� AI
1

gives rise to natural transformations ε0, ε1 : (·)I �� 1CatC and s : 1CatC �� (·)I such that
ε0•s = ε1•s = 11CatC .

Recall that, for internal functors f , g : A �� B, an internal natural transformation
µ : f ��g is a morphism µ : A0

��B1 such that d0◦µ = f0, d1◦µ = g0 and m◦(f1, µ◦d1) =
m◦(µ◦d0, g1). Categories, functors and natural transformations in a given category C
form a 2-category CatC. For two internal natural transformations µ : f �� g and
ν : g �� h , ν•µ = m◦(ν, µ) is their (vertical) composition; for µ : f �� g : A �� B
and µ′ : f ′ �� g ′ : B �� C, the (horizontal) composition is

µ′◦µ = m◦(µ′◦f0, g
′
1◦µ) = m◦(f ′

1◦µ, µ′◦g0) : f ′◦f �� g ′◦g : A �� C.

An internal natural transformation µ : f �� g : A �� B is an internal natural isomor-
phism if and only if an internal natural transformation µ−1 : g �� f exists such that
µ•µ−1 = 1g = i◦g0 and µ−1•µ = 1f = i◦f0. Hence an internal natural isomorphism is noth-
ing but an isomorphism in a hom-category CatC(A,B). Moreover, this is the case, exactly
when µ factors over j : iso(A) �� A1. Note that, if B is a groupoid, and tw : B1

�� B1

denotes its “twisting isomorphism”, then µ−1 = tw ◦µ.

3.1. Example. For every internal category A of C, the morphism

· i◦δ0 ��

ι◦δ0
��

·
1iso(A)

��·
j

�� ·
: iso(A) = AI

0
�� AI

1

is a natural isomorphism s(A)◦ε0(A) �� 1AI : AI �� AI.

As expected:

3.2. Proposition. [cf. Exercise 2.3 in Johnstone [27]] If µ : f �� g : A �� B is an
internal natural isomorphism, then H = (µ,H1) : A �� BI with

H1 =

· f1 ��

µ◦d0

��

·
µ◦d1

��· g1

�� ·
: A1

�� BI
1

is a homotopy H : f � g. If H : A �� BI is a homotopy f � g : A �� B then
j◦H0 : A0

�� B1 is an internal natural isomorphism f �� g. Hence the homotopy
relation � is an equivalence relation on every CatC(A,B).
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3.3. Proposition. For any internal category A of C, putting d0 = ε0(A), d1 = ε1(A) :
AI �� A and i = s(A) : A �� AI defines a reflexive graph in CatC which carries a
structure of internal groupoid; hence it is a double category in C.

The following well-known construction will be very useful.

3.4. Definition. [Mapping path space construction] Let f : A �� B be an internal
functor. Pulling back the split epimorphism ε1(B) along f yields the following diagram,
where both the upward and downward pointing squares commute, and ε1(B)◦s(B) = 1A.

Pf
f ��

ε1(B)��

BI

ε1(B)

��
A

s(B)



f
�� B

s(B)



(I)

The object Pf is called a mapping path space of f. We denote the universal arrow induced
by the commutative square ε1(B)◦f I = f◦ε1(A) by rf : AI �� Pf.

4. T -equivalences

Let C be a finitely complete category. Recall (e.g. from Bunge and Paré [15]) that an
internal functor f : A �� B in C is called full (resp. faithful, fully faithful) when, for
any internal category X of C, the functor

CatC(X, f ) : CatC(X,A) �� CatC(X,B)

is full (resp. faithful, fully faithful). There is the following well-known characterization of
full and faithful functors.

4.1. Proposition. Let f : A �� B be a functor in a finitely complete category C.

1. If f is full, then the square

A1

(d0,d1)

��

f1 �� B1

(d0,d1)

��
A0 × A0 f0×f0

�� B0 × B0

(II)

is a weak pullback in C.

2. f is faithful if and only if the morphisms d0, d1 : A1
�� A0 together with f1 :

A1
�� B1 form a monosource.

3. f is fully faithful if and only if II is a pullback.
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4.2. Remark. Since fully faithful functors reflect isomorphisms, the Yoneda Lemma
(e.g. in the form of Metatheorem 0.1.3 in [7]) implies that the functor iso : CatC ��GrpdC
preserves fully faithful internal functors. Quite obviously, they are also stable under
pulling back.

The following lifting property of fully faithful functors will prove very useful.

4.3. Proposition. [cf. the proof of Lemma 2.1 in Joyal and Tierney [30]] Consider
a commutative square

A

j
��

f �� E

p

��
X

h
��

g
�� B

(III)

in CatC with p fully faithful. This square has a lifting h : X �� E if and only if there
exists a morphism h0 : X0

�� E0 such that p0◦h0 = g0 and h0◦j0 = f0.

For us, the notion of essential surjectivity has several relevant internalizations, result-
ing in different notions of internal equivalence. Our weak equivalences in CatC will be
defined relative to some class of morphisms E in C, which in practice will be the class of
T -epimorphisms for a topology T on C.

4.4. Definition. Let E be a class of morphisms and f : A �� B an internal functor
in C. If the morphism δ0◦f0 in the diagram

(Pf )0

δ1
��

f0 �� iso(B)
δ0 ��

δ1
��

B0

A0 f0

�� B0

is in E, then f is called essentially E-surjective. An E-equivalence is an internal func-
tor which is full, faithful and essentially E-surjective. If E = ET is the class of T -
epimorphisms for a Grothendieck topology T on C, the respective notions become essen-
tially T -surjective and T -equivalence. The class of T -equivalences for a topology T is
denoted by we(T ).

4.5. Example. In case T is the cotrivial topology, any functor is essentially T -
surjective, and hence the T -equivalences are exactly the fully faithful functors.

4.6. Example. If T is the trivial topology then an internal functor f : A �� B is
essentially T -surjective if and only if the functor CatC(X, f ) is essentially surjective for all
X. If f is moreover fully faithful, it is called a strong equivalence. This name is justified
by the obvious fact that a strong equivalence is a T -equivalence for every topology T .
If f is a strong equivalence, a functor g : B �� A exists and natural isomorphisms
ε : f ◦g �� 1B and η : 1A

�� g◦f ; hence f is a homotopy equivalence with respect to
the cocylinder from Section 3. There is even more:
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Recall that an internal adjunction is a quadruple

(f : A �� B, g : B �� A, ε : f ◦g �� 1B, η : 1A
�� g◦f )

such that the triangular identities (ε◦1f )•(1f ◦η) = 1f and (1g ◦ε)•(η◦1g) = 1g hold. Then
f is left adjoint to g , g right adjoint to f , ε the counit and η the unit of the adjunction.
Using J. W. Gray’s terminology [24], we shall call lali a left adjoint left inverse functor,
and, dually, rari a right adjoint right inverse functor. In case f is left adjoint left inverse
to g , we denote the situation f = lali g or g = rari f .

4.7. Remark. Since then f ◦g = 1B and ε = 11B
: 1B

�� 1B, the triangular identities
reduce to 1f = (11B

◦1f )•(1f ◦η) = 1f ◦η, which means that

f1◦i = m◦(f1◦i, f1◦η) = f1◦m◦(i, η) = f1◦m◦(i◦d0, 1A)◦η = f1◦η,

and 1g = (1g ◦11A
)•(η◦1g) = η◦1g , meaning that i◦g0 = η◦g0.

An adjoint equivalence is a (left and right) adjoint functor with unit and counit nat-
ural isomorphisms. It is well known that every equivalence of categories is an adjoint
equivalence; see e.g. Borceux [6] or Mac Lane [35]. It is somewhat less known that this
is still the case for strong equivalences of internal categories. In fact, in any 2-category,
an equivalence between two objects is always an adjoint equivalence; see Blackwell, Kelly
and Power [5]. More precisely, the following holds.

4.8. Proposition. [Blackwell, Kelly and Power, [5]] Let C be a 2-category and
f : C �� D a 1-cell of C. Then f is an adjoint equivalence if and only if for every object
X of C, the functor C(X, f) : C(X,C) �� C(X,D) is an equivalence of categories.

Hence, in the 2-category CatC of internal categories in a given finitely complete cat-
egory C, every strong equivalence is adjoint; and in the 2-category GrpdC of internal
groupoids in C, the notions “adjunction”, “strong equivalence” and “adjoint equivalence”
coincide.

4.9. Remark. If f : A �� B is a split epimorphic fully faithful functor, it is
always a strong equivalence. Denote g = rari f : B �� A its right adjoint right inverse.
Then the unit η of the adjunction induces a homotopy H : A �� AI from 1A to g◦f .
It is easily checked that the triangular identities now amount to f I◦s(A) = f I◦H and
s(A)◦g = H ◦g .

4.10. Example. Example 3.1 implies that for any internal category A, s(A) is a right
adjoint right inverse of ε0(A) and ε1(A). A fortiori, the three internal functors are strong
equivalences.

4.11. Example. If T is the regular epimorphism topology then an internal functor f is
in we(T ) if and only if it is a weak equivalence in the sense of Bunge and Paré [15]. In case
C is semi-abelian, weak equivalences may be characterized using homology (Proposition
6.5).



80 T. EVERAERT, R.W. KIEBOOM AND T. VAN DER LINDEN

In order, for a class of morphisms in a category, to be the class of weak equivalences in
a model structure, it needs to satisfy the two-out-of-three property (Definition 2.6). The
following proposition gives a sufficient condition for this to be the case.

4.12. Proposition. If T is a subcanonical topology on a category C then the class of
T -equivalences has the two-out-of-three property.

Proof. For a subcanonical topology T , the Yoneda embedding, considered as a functor
C �� Sh(C, T ), is equal to YT . It follows that YT is full and faithful and preserves and
reflects limits. Hence it induces a 2-functor CatYT : CatC �� CatSh(C, T ). Moreover,
this 2-functor is such that an internal functor f : A �� B in C is a T -equivalence if and
only if the functor CatYT (f ) in CatSh(C, T ) is a weak equivalence. According to Joyal
and Tierney [30], weak equivalences in a Grothendieck topos have the two-out-of-three
property; the result follows.

Not every topology induces a class of equivalences that satisfies the two-out-of-three
property, as shows the following example.

4.13. Example. Let g : B �� C a functor between small categories which preserves
terminal objects. Let f : 1 ��B be a functor from a terminal category to B determined
by the choice of a terminal object in B. Then g◦f and f are fully faithful functors,
whereas g need not be fully faithful. Hence the class of T -equivalences induced by the
cotrivial topology on Set does not satisfy the two-out-of-three property.

5. The T -model structure on CatC
In this section we suppose that C is a finitely complete category such that CatC is finitely
complete and cocomplete.

5.1. Definition. Let E be a class of morphisms in C and p : E �� B an internal
functor. p is called an E-fibration if and only if in the left hand side diagram

iso(E)

δ1

��

iso(p)1

��

(rp)0

��

X

e

��

β

��

Ui

fi

��

εi

��
(Pp)0

p0 ��

δ1

��

iso(B)

δ1

��

iso(E)

(i)

iso(p)1 ��

δ1

��

iso(B)

δ1

��
E0 p0

�� B0 E0 p0

�� B0

(IV)
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the induced universal arrow (rp)0 is in E. If E = ET comes from a topology T on C we say
that p is a T -fibration. The functor p is said to be star surjective, relative to T if, given an
object X in C and arrows e and β such as in the right hand side diagram above, there exists
a covering family (fi : Ui

�� X)i∈I and a family of morphisms (εi : Ui
�� iso(E))i∈I

keeping it commutative for all i ∈ I.

By Proposition 2.12, an internal functor p is a T -fibration if and only if it is star
surjective, relative to T .

5.2. Example. If T is the trivial topology then an internal functor p is a T -fibration
if and only if the square i is a weak pullback. Such a p is called a strong fibration. In case
C is Set, the strong fibrations are the star-surjective functors [14]. It is easily seen that
the unique arrow A �� 1 from an arbitrary internal category A to a terminal object 1
of CatC is always a strong fibration; hence every object of CatC is strongly fibrant.

5.3. Example. Obviously, if T is the cotrivial topology, any functor is a T -fibration.

5.4. Example. An internal functor p : E �� B is called a discrete fibration if the
square

E1

d1

��

p1 �� B1

d1

��
E0 p0

�� B0

is a pullback. Every discrete fibration is a strong fibration. Note that this is obvious in
case E is a groupoid; in general, one proves it by considering morphisms e : X ��E0 and
β : X �� iso(B) such that p0◦e = δ1◦β = d1◦j◦β. Then a unique morphism ε : X �� E1

exists such that p1◦ε = j◦β and d1◦ε = e. This ε factors over iso(E): indeed, since e′ = d0◦ε
is such that p0◦e

′ = d0◦p1◦ε = d1◦j◦ tw ◦β, there exists a unique arrow ε′ : X �� E1 such
that d1◦ε

′ = e′ and p1◦ε
′ = j◦ tw ◦β. Using the fact that the square above is a pullback, it

is easily shown that ε′ is the inverse of ε.

Given a topology T on C, we shall consider the following structure on CatC: we(T )
is the class of T -weak equivalences; fib(T ) is the class of T -fibrations; cof(T ) is the class
�(fib(T ) ∩ we(T )) of T -cofibrations, internal functors having the left lifting property with
respect to all trivial T -fibrations.

The aim of this section is to prove the following

5.5. Theorem. If we(T ) has the two-out-of-three property and C has enough ET -
projectives then (CatC, fib(T ), cof(T ), we(T )) is a model category.

5.6. Proposition. A functor p : E �� B is a trivial T -fibration if and only if it is
fully faithful, and such that p0 is a T -epimorphism.
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Proof. If p is a trivial T -fibration then it is a fully faithful functor; now suppose that
b : X �� B0 is an arbitrary morphism. Since p is essentially T -surjective, a covering
family (fi : Ui

�� X)i∈I exists and families of morphisms (βi : Ui
�� B1)i∈I and

(ei : Ui
�� E0)i∈I such that p0◦ei = δ1◦βi and δ0◦βi = b◦fi. Since p is a T -fibration,

for every i ∈ I, ei and βi induce a covering family (gij : Vij
�� Ui)j∈Ii

and a family of
morphisms (εij : Vij

�� iso(E))j∈Ii
. Put b′ij = δ0◦εij : Vij

�� E0, then p0◦b
′
ij = b◦fi◦gij;

because by the transitivity axiom, (fi◦gij : Vij
�� X)j∈Ii,i∈I forms a covering family, this

shows that p0 is a T -epimorphism.

Conversely, we have to prove that p is an essentially T -surjective T -fibration. Given
b : X �� B0, the fact that p0 ∈ ET induces a covering family (fi : Ui

�� X)i∈I and
a family of morphisms (ei : Ui

�� E0)i∈I such that p0◦ei = b◦fi. Using the equality
δ0◦(ι◦b) = δ1◦(ι◦b) = b, this shows that p is essentially T -surjective. To prove p a T -
fibration, consider the right hand side commutative diagram of solid arrows IV above.
Because p0 is a T -epimorphism, there is a covering family (fi : Ui

�� X)i∈I and a family
(e′i : Ui

�� E0)i∈I such that p0◦e
′
i = δ0◦β◦fi. This gives rise to a diagram

Ui

(e◦fi,e
′
i)

��

β◦fi

��
εi

��
iso(E)

iso(p)1 ��

(δ0,δ1)
��

iso(B)

(δ0,δ1)

��
E0 × E0 p0×p0

�� B0 × B0

for every i ∈ I. p being fully faithful, according to Remark 4.2, its square is a pullback,
and induces the needed family of dotted arrows (εi : Ui

�� iso(E))i∈I .

5.7. Example. For any internal category A, ε0(A) and ε1(A), being strong equiva-
lences which are split epimorphic on objects, are strong fibrations.

5.8. Corollary. A functor p : E �� B is a T -fibration if and only if the universal
arrow rp : EI �� Pp is a trivial T -fibration.

Proof. This is an immediate consequence of Proposition 5.6, Example 4.10 and the
fact that strong equivalences have the two-out-of-three property (Proposition 4.12).

5.9. Corollary. An internal functor j : A �� X is a T -cofibration if and only if
j0 ∈ �ET .

Proof. This follows from Proposition 4.3 and Proposition 5.6.

5.10. Proposition. Every internal functor of C may be factored as a strong equivalence
(right inverse to a strong trivial fibration) followed by a strong fibration.
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Proof. This is an application of K. S. Brown’s Factorization Lemma [13]. To use it,
we must show that (CatC,F ,W), where F is the class of strong fibrations and W is the
class of strong equivalences, forms a category of fibrant objects. Condition (A) is just
Proposition 4.12 and (B) follows from the fact that split epimorphisms are stable under
pulling back. Proving (C) that strong fibrations are stable under pulling back is easy, as
is the stability of F ∩W, the class of split epimorphic fully faithful functors. The path
space needed for (D) is just the cocylinder from Section 3. Finally, according to Example
5.2, every internal category is strongly fibrant, which shows condition (E).

5.11. Proposition. Any trivial T -cofibration is a split monic adjoint equivalence.

Proof. Using Proposition 5.10, factor the trivial T -cofibration j : A �� X as a
strong equivalence f : A ��B (in fact, a right adjoint right inverse) followed by a strong
fibration p : B �� X. By the two-out-of-three property of weak equivalences, p is a
trivial T -fibration; hence the commutative square

A

j
��

f �� B

p

��
X

s
��

X

has a lifting s : X �� B. It follows that j is a retract of f . The class of right adjoint
right inverse functors being closed under retracts, we may conclude that j is a split monic
adjoint equivalence.

5.12. Proposition. [Covering Homotopy Extension Property] Consider the commu-
tative diagram of solid arrows

A

j

��

H �� EI

ε1(E)��

pI
�� BI

ε1(B)
��

X

L
��

K

�����������������
f

�� E p
�� B.

If j ∈ cof(T ) and p ∈ fib(T ), then a morphism L : X �� EI exists keeping the diagram
commutative.

Proof. Since p is a T -fibration, by Corollary 5.8, the associated universal arrow
rp : EI �� Pp is a trivial T -fibration. Let M : X �� Pp be the unique morphism such

that ε1(B)◦M = f and p◦M = K (cf. Diagram I); then the square

A

j

��

H �� EI

rp

��
X

L
��

M
�� Pp

commutes, and yields the needed lifting L.
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5.13. Proposition. [cf. Proposition I.3.11 of Kamps and Porter [32]] Any T -fibration
has the right lifting property with respect to any trivial T -cofibration.

Proof. Suppose that in square III, j ∈ cof(T )∩we(T ) and p ∈ fib(T ). By Proposition
5.11, j is a split monomorphic adjoint equivalence; denote k = lali j : X ��A. According
to Remark 4.9, a homotopy H : X �� XI from 1X to j ◦k may be found such that
H ◦j = s(X)◦j : A �� XI. Because the diagram of solid arrows

A

j

��

s(E)◦f �� EI

ε1(E)��

pI
�� BI

ε1(B)

��
X

L
��

gI◦H����������

����

f ◦k
�� E p

�� B

commutes, the Covering Homotopy Extension Property 5.12 gives rise to a morphism
L : X �� EI; the morphism h = ε0(E)◦L is the desired lifting for Diagram III.

5.14. Lemma. [cf. Lemma 2.1 in Johnstone [28]] Let B be a category in C and let
p0 : E0

�� B0 be a morphism in C. Form the pullback

E1
p1 ��

(d0,d1)
��

B1

(d0,d1)
��

E0 × E0 p0×p0

�� B0 × B0.

Then the left hand side graph E carries a unique internal category structure such that
p = (p0, p1) : E �� B is a functor. Moreover, p is a fully faithful functor, and if p0 is a
T -epimorphism, then p is a trivial T -fibration.

5.15. Proposition. Every internal functor of C may be factored as a T -cofibration
followed by a trivial T -fibration.

Proof. Let f : A ��B be an internal functor, and, using Remark 2.11 that (�ET , ET )
forms a weak factorization system, factor f0 as an element j0 : A0

�� E0 of �ET followed
by a T -epimorphism p0 : E0

��B0. Then the construction in Lemma 5.14 yields a trivial
T -fibration p : E ��B. Let j1 : A1

��E1 be the unique morphism such that p1◦j1 = f1

and (d0, d1)◦j1 = (j0 × j0)◦(d0, d1). Since p is faithful, j = (j0, j1) : A �� E is a functor;
according to Corollary 5.9, it is a T -cofibration.

5.16. Proposition. Every internal functor of C may be factored as a trivial T -
cofibration followed by a T -fibration.

Proof. For an internal functor f : A ��B, let f = p◦j ′ be the factorization of f from
Proposition 5.10. Then p is a T -fibration and j ′ a T -equivalence. Using Proposition 5.15,
this j ′ may be factored as a (necessarily trivial) T -cofibration j followed by a T -fibration
p ′. Thus we get a trivial T -cofibration j and a T -fibration p◦p ′ such that f = (p◦p ′)◦j .
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Proof of Theorem 5.5. We only need to comment on the closedness under retracts
of the classes fib(T ), cof(T ) and we(T ). For the T -fibrations, T -cofibrations and essen-
tially T -surjective morphisms, closedness under retracts follows from the closedness of the
classes ET and �ET ; for fully faithful functors, the property has a straightforward direct
proof.

6. Case study: the regular epimorphism topology

This section treats the model category structure on CatC induced by choosing T the
regular epimorphism topology on C. Let us recall what we already know about it: the class
we(T ) consists of weak equivalences of internal categories; fibrations are {regular epi}-
fibrations and cofibrations have an object morphism in � {regular epi}. Hence all of its
objects are fibrant, and an internal category is cofibrant if and only if its object of objects
is {regular epi}-projective.

We shall be focused mainly on semi-abelian categories and internal crossed modules,
but we start by explaining a connection with Grothendieck topoi and Joyal and Tierney’s
model structure.

6.1. Grothendieck topoi. Let C be a Grothendieck topos equipped with the regular
epimorphism topology T . Since all epimorphisms are regular, it is clear that epimorphisms
and T -epimorphisms coincide. It follows that the notion of T -equivalence coincides with
the one considered by Joyal and Tierney in [30]. Consequently, the two structures have
equivalent homotopy categories. It is, however, clear that in general, Joyal and Tierney’s
fibrations and cofibrations are different from ours.

6.2. Semi-abelian categories. From now on we suppose that C is semi-abelian with
enough {regular epi}-projectives, to give an alternative characterization of weak equiva-
lences, and to describe the induced model category structure on the category of internal
crossed modules.

Recall the following notion of homology of simplicial objects in a semi-abelian category
(see Everaert and Van der Linden [19]). First of all, a morphism is called proper when its
image is a kernel, and a chain complex is proper whenever all its differentials are. As in
the abelian case, the n-th homology object of a proper chain complex C with differentials
dn is said to be HnC = Cok[Cn+1

�� K[dn]]. The category of proper chain complexes in
C is denoted PChC, and SC = Fun(∆op, C) is the category of simplicial objects in C. The
Moore functor N : SC �� PChC maps a simplicial object A in C with face operators ∂i

and degeneracy operators σi to the chain complex N(A) in C given by

NnA =
n−1⋂

i=0

K[∂i : An
�� An−1], dn = ∂n◦

⋂

i

Ker ∂i : NnA �� Nn−1A,

for n ≥ 1, and NnA = 0, for n < 0. Because N(A) is proper [19, Theorem 3.6], it makes
sense to consider its homology. Indeed, the n-th homology object HnA is defined to be
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the n-th homology object HnN(A) of the associated proper chain complex N(A). This
process sends a short exact sequences of simplicial objects to a long exact sequence in C
[19, Corollary 5.7].

Since, via the nerve construction, any internal category may be considered as a simpli-
cial object, we can apply this homology theory to internal categories. More precisely, recall
(e.g. from Johnstone [27, Remark 2.13]) that there is an embedding ner : CatC �� SC
of CatC into SC as a full subcategory. Given a category A in C, its nerve nerA is the
simplicial object defined on objects by n-fold pullback nern A = A1×A0 · · ·×A0 A1 if n ≥ 2,
ner1 A = A1 and ner0 A = A0; on morphisms by ∂0 = d1, ∂1 = d0 : ner1 A �� ner0 A,
σ0 = i : ner0 A �� ner1 A; ∂0 = pr2, ∂1 = m, ∂2 = pr1 : ner2 A �� ner1 A and
σ0 = (i, 1A1), σ1 = (1A1 , i) : ner1 A �� ner2 A; etc. A simplicial object is isomorphic to
an object in the image of ner if and only if, as a functor ∆op �� C, it is left exact.

6.3. Definition. Suppose that C is semi-abelian, A is a category in C and n ∈ Z.
The object HnA = Hn nerA will be called the n-th homology object of A and the functor
Hn = Hn◦ ner : CatC �� C the n-th homology functor.

6.4. Proposition. Let A be a category in a semi-abelian category C. If n �∈ {0, 1}
then HnA = 0, H1A = K[(d0, d1) : A1

��A0×A0] and H0A = Coeq[d0, d1 : A1
��A0].

Moreover, H1A = K[(d0, d1)] is an abelian object of A.

Proof. Using e.g. the Yoneda Lemma (in the form of Metatheorem 0.2.7 in [7]), it is
quite easily shown that NA = N nerA is the chain complex

· · · �� 0 �� K[d1]
d0◦Ker d1 �� A0

�� 0 �� · · · .

By Remark 3.3 in [19], K[d0◦Ker d1] = K[d0]∩K[d1], which is clearly equal to K[(d0, d1) :
A1

�� A0 × A0]. The last equality is an application of [19, Corollary 3.10], and H1A
being abelian is a consequence of Theorem 5.5 in [19] or Bourn [11, Proposition 3.1].

6.5. Proposition. Let C be a semi-abelian category and f : A �� B a functor in C.

1. f is fully faithful if and only if H0f is mono and H1f is iso.

2. f is essentially {regular epi}-surjective if and only if H0f is a regular epimorphism.

Hence an internal functor is a weak equivalence exactly when it is a homology isomor-
phism.

Proof. In the diagram

H1A

H1f
��

� ��Ker (d0,d1) ��A1

(i)

�� ��
(d0,d1)

��

f1

��

� ��R[q]

(ii)

��

�� ��A0 × A0

f0×f0

��

R[q]

��
(iii)

����A0

f0

��

q=Coeq (d0,d1)� ��H0A

H0f
��

H1B
� ��
Ker (d0,d1)

��B1�� ��
(d0,d1)


� ��R[r] �� ��B0 × B0 R[r] ����B0

r=Coeq (d0,d1)

� ��H0B
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the arrow H1f is an isomorphism if and only if the square i is a pullback (Lemmas 4.2.4
and 4.2.5 in [7]); square ii is a pullback if and only if iii is a joint pullback, which
(by Proposition 1.1 in [9]) is the case exactly when H0f is mono. This already shows
one implication of 1. To prove the other, note that if f is fully faithful, then H1f is an
isomorphism; hence i is a pullback, ii is a pullback [26, Proposition 2.5], iii is a joint
pullback and H0f a monomorphism.

For the proof of 2. consider the following diagrams.

(Pf )0

d1

��

f0 �� B1
d0 ��

d1

��

B0

A0 f0

�� B0

(Pf )0

(iv)

d0◦f0 ��

d1

��

B0

r

��
A0 H0f◦q

�� H0B

If H0f is a regular epimorphism then so is the bottom arrow in diagram iv. Accordingly,
we only need to show that the induced arrow p : (Pf )0

�� P to the pullback P of H0f ◦q
along r is a regular epi. Now in the left hand side diagram

P

(v)r

��

�� R[r]

p1

��

p0 �� B0

r

��
A0 f0

�� B0 r
�� H0B

(Pf )

(vi)

p ��

f0

��

P

(v)

r ��

��

A0

f0

��
B1 o

�� R[r] p1

�� B0

this pullback is the outer rectangle; its left hand side square v is a pullback. Now so is
vi; it follows that and p is a regular epimorphism, so being the arrow o, universal for the
equalities p0◦o = d0 and p1◦o = d1 to hold.

Conversely, note that r◦d0◦f0 = H0f ◦q◦d1; hence if d0◦f0 is regular epic, so is H0f .

The notion of Kan fibration makes sense in the context of regular categories: see [16]
and [19]. We use it to characterize the fibrations in CatC.

6.6. Proposition. A functor p : E �� B in a semi-abelian category C is a fibration
if and only if nerp is a Kan fibration.

Proof. First note that, because a semi-abelian category is always Mal’tsev, every
category in C is an internal groupoid. We may now use M. Barr’s Embedding Theorem
for regular categories [4] in the form of Metatheorem A.5.7 in [7]. Indeed, the properties
“some internal functor is a fibration” and “some simplicial morphism is a Kan fibration”
may be added to the list of properties [7, 0.1.3], and it is well-known that in Set, a functor
between two groupoids is a fibration if and only if its nerve is a Kan fibration.

In his paper [25], Janelidze introduces a notion of crossed module in an arbitrary semi-
abelian category C. Its definition is based on Bourn and Janelidze’s notion of internal
semidirect product [12] and Borceux, Janelidze and Kelly’s notion of internal object action
[8]. Internal crossed modules also generalize the case where C = Gp in the sense that an
equivalence XModC � CatC still exists. Using this equivalence, we may transport the
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model structures from Theorem 5.5 to the category XModC. In case C has enough regular
projectives and T is the regular epimorphism topology, this has the advantage that the
classes of fibrations, cofibrations and weak equivalences have a very easy description.

We recall from [25] the definition of internal crossed modules. Given g : B �� B′ and
h : X �� X ′, the morphism g
h : B
X �� B′
X ′ is unique in making the diagram

0 �� B
X

g�h
��

� ��
κB,X �� B + X

g+h

��

[1B ,0]� �� B ��

g

��

0

0 �� B′
X ′ � ��
κB′,X′

�� B′ + X ′
[1B′ ,0]

� �� B′ �� 0

commute. The category SplitEpiC of split epimorphisms in C with a given splitting (PtC
in [12] and in Definition 2.1.14 of [7]) is equivalent to the category ActC of actions in
C, of which the objects are triples (B,X, ξ), where ξ : B
X �� X makes the following
diagram commute:

B
(B
X)
µB

X ��

1B�ξ

��

B
X

ξ

��

X
ηB

X��

��
��

��
��

��
��

��
��

B
X
ξ

�� X;

here µB
X is defined by the exactness of the rows in the diagram

0 �� B
(B
X)

µB
X

��

� ��
κB,B�X�� B + (B
X)

[in1,κB,X ]

��

[1B ,0]� �� B �� 0

0 �� B
X
� ��

κB,X

�� B + X
[1B ,0]

� �� B �� 0

and ηB
X is unique such that κB,X◦ηB

X = in2 : X ��B+X. A morphism (B,X, ξ) ��(B′, X ′, ξ′)
in ActC is a pair (g, h), where g : B �� B′ and h : X �� X ′ are morphisms in C with
h◦ξ = ξ′◦(g
h).

An internal precrossed module in C is a 4-tuple (B,X, ξ, f) with (B,X, ξ) in ActC and
f : X �� B a morphism in C such that the left hand side diagram

B
X
� ��
κB,X ��

ξ

��

B + X

[1B ,f ]

��

(B + X)
X
[1B ,f ]�1X ��

[1B+X ,in2]#

��

B
X

ξ

��
X

f
�� B B
X

ξ
�� X

commutes. A morphism (B,X, ξ, f) ��(B′, X ′, ξ′, f ′) is a morphism (g, h) : (B,X, ξ) ��(B′, X ′, ξ′)
in ActC such that g◦f = f ′◦h. There is an equivalence between RGC and the category
PreCrossModC of precrossed modules in C. An internal crossed module in C is an in-
ternal precrossed module (B,X, ξ, f) in C for which the right hand side diagram above
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commutes. Here [1B+X , in2]
# is the unique morphism such that κB,X◦[1B+X , in2]

# =
[1B+X , in2]◦κB+X,X . If XModC or CrossModC denotes the full subcategory of PreCrossModC
determined by the crossed modules, then the last equivalence (co)restricts to an equiv-
alence CatC � XModC. This equivalence maps an internal category A to the internal
crossed module

(A0, K[d1], ξ : A0
K[d1] �� K[d1], d0◦Ker d1 : K[d1] �� A0)

where ξ is the pullback of [i, Ker d1] : A0 + K[d1] �� A1 along Ker d1 : K[d1] �� A1.
Thus an internal functor f : A �� B is mapped to the morphism

(f0, N1f ) : (A0, N1A, ξ, d0◦Ker d1) �� (B0, N1B, ξ′, d0◦Ker d1).

If the homology objects of an internal crossed module (B,X, ξ, f) are those of the
associated internal category, the only non-trivial ones are H0(B,X, ξ, f) = Coker f and
H1(B,X, ξ, f) = Ker f (see Proposition 6.4).

6.7. Theorem. If C is a semi-abelian category with enough projectives then a model
category structure on XModC is defined by choosing we the class of homology isomor-
phisms, cof the class of morphisms (g, h) with g in � {regular epi} and fib the class of
morphisms (g, h) with h regular epic.

Proof. Only the characterization of fib needs a proof. Given an internal functor
p : E �� B, consider the diagram with exact rows

0 �� K[d1]

(i)N1p

��

� ��Ker d1 �� E1

(rp)0
��

d1 � �� E0
�� 0

0 �� K[d1]
� �� �� (Pp)0

(ii)

� ��

��

E0

p0

��

�� 0

0 �� K[d1]
� ��
Ker d1

�� B1 d1

� �� B0
�� 0

where squares i and ii are a pullbacks (cf. Lemma 4.2.2 and its Corollary 4.2.3 in [7]).
By [7, Lemma 4.2.5], N1p is a regular epimorphism if and only if (rp)0 is regular epic, i.e.
exactly when p is a {regular epi}-fibration.

6.8. Example. [Crossed modules of groups] In the specific case of C being the
semi-abelian category Gp of groups and group homomorphisms, the structure on XModC
coincides with the one considered by Garzón and Miranda in [20]. This category is
equivalent to the category XMod = XModGp of crossed modules of groups. As such,
XMod carries the model structure from Theorem 6.7.
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7. Case study: the trivial topology

In this section we suppose that T is the trivial topology on C (as a rule, we shall not
mention it), and give a more detailed description of the model structure from Theorem 5.5.
It turns out to resemble very much Strøm’s model category structure on the category Top
of topological spaces and continuous maps [40]: its weak equivalences are the homotopy
equivalences, its cofibrations are the functors which have the homotopy extension property
and its fibrations are the functors which have the homotopy lifting property.

7.1. Proposition. An internal functor is a trivial fibration if and only if it is a split
epimorphic equivalence.

Proof. This is an immediate consequence of Proposition 5.6.

It follows that every object of this model category is cofibrant. Since we already showed
them to be fibrant as well, the notion of homotopy induced by the model structure (see
Quillen [38]) is determined entirely by the cocylinder from Section 3. Hence the weak
equivalences are homotopy equivalences, also in the model-category-theoretic sense of the
word.

7.2. Definition. Let C be a finitely complete category. An internal functor p : E ��B
is said to have the homotopy lifting property if and only if the diagram

EI
pI

��

ε1(E)

��

BI

ε1(B)

��
E p

�� B

is a weak pullback in CatC.

7.3. Proposition. [cf. R. Brown, [14]] An internal functor is a strong fibration if
and only if it has the homotopy lifting property.

Proof. This follows from Proposition 7.1, Corollary 5.8 and the two-out-of-three
property of strong equivalences.

We now give a characterization of cofibrations in the following terms.

7.4. Definition. An internal functor j : A �� X is said to have the homotopy
extension property if and only if any commutative square

A
H ��

j

��

EI

ε1(E)

��
X

H
��

f
�� E

(V)

has a lifting H : X �� EI.
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To show that a functor with the homotopy extension property is a cofibration, we need
a way to approximate any trivial fibration p with some ε1(E). The next construction
allows (more or less) to consider p0 as the object morphism of ε1(pE) : (pE)I �� pE.

7.5. Lemma. If p : E �� B is an adjoint equivalence with right inverse s : B �� E
then the reflexive graph

pE =
(

E1
p0◦d0

��

p0◦d1 ��
B0i◦s0

��
)

carries an internal category structure.

Proof. The morphism m◦(p1×1B0
p1) : E1×B0E1

��B1 is such that d0◦m◦(p1×1B0
p1) =

p0◦d0◦ pr1 and d1◦m◦(p1 ×1B0
p1) = p0◦d1◦ pr2. Since p is an adjoint equivalence, it is a

fully faithful functor; by Proposition 4.1, a unique morphism m : E1×B0 E1
�� E1 exists

satisfying m◦(p1 ×1B0
p1) = p1◦m, d0◦m = d0◦ pr1 and d1◦m = d1◦ pr2. This is the needed

structure of internal category.

7.6. Proposition. An internal functor is a cofibration if and only if it has the
homotopy extension property.

Proof. One implication is obvious, ε1(E) being a trivial fibration. Now consider a
commutative square such as III above, where j has the homotopy extension property
and p ∈ fib ∩ we. By the hypothesis on j and Proposition 4.3, j0 has the left lifting
property with respect to all morphisms of the form δ1 : iso(A) �� A0 for A ∈ CatC.
In particular, by Lemma 7.5, j0 has the left lifting property with respect to p0◦d1◦j =
ε1(pE)0 : iso(pE) �� B0. If h′

0 : X0
�� iso(pE) denotes a lifting for the commutative

square g0◦j0 = (p0◦d1◦j)◦(ι◦f0), then h0 = d1◦j◦h
′
0 : X0

��E0 is such that p0◦h0 = g0 and
h0◦j0 = f0. This h0 induces the needed lifting for diagram III.

Proposition 7.1 may now be dualized as follows:

7.7. Proposition. An internal functor is a trivial cofibration if and only if it is a
split monomorphic equivalence.

Proof. One impliciation is Proposition 5.11. To prove the other, consider a commutative
square such as V above, and suppose that j : A �� X is an equivalence with left adjoint
left inverse k : X �� A. Let K : X �� XI denote a homotopy from j ◦k to 1X. Put
H0 = m◦(H0◦k0, f1◦K0) : X0

�� iso(E), then δ1◦H0 = f0 and H0◦j0 = H0. Proposition
4.3 now yields the needed lifting H : X �� EI.

7.8. Theorem. If C is a finitely complete category such that CatC is finitely cocomplete
(cf. §2.2) then a model category structure is defined on CatC by choosing we the class of
homotopy equivalences, cof the class of functors having the homotopy extension property
and fib the class of functors having the homotopy lifting property.
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