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Integrating proteomic, sociodemographic and
clinical data to predict future depression diagnosis
in subthreshold symptomatic individuals

Sung Yeon Sarah Han', Jason D. Cooper'?, Sureyya Ozcan'*, Nitin Rustogi’, Brenda WJH. Penninx? and Sabine Bahn'

Abstract

Individuals with subthreshold depression have an increased risk of developing major depressive disorder (MDD). The
aim of this study was to develop a prediction model to predict the probability of MDD onset in subthreshold
individuals, based on their proteomic, sociodemographic and clinical data. To this end, we analysed 198 features
(146 peptides representing 77 serum proteins (measured using MRM-MS), 22 sociodemographic factors and 30 clinical
features) in 86 first-episode MDD patients (training set patient group), 37 subthreshold individuals who developed
MDD within two or four years (extrapolation test set patient group), and 86 subthreshold individuals who did not
develop MDD within four years (shared reference group). To ensure the development of a robust and reproducible
model, we applied feature extraction and model averaging across a set of 100 models obtained from repeated
application of group LASSO regression with ten-fold cross-validation on the training set. This resulted in a 12-feature
prediction model consisting of six serum proteins (AACT, APOE, APOH, FETUA, HBA and PHLD), three
sociodemographic factors (body mass index, childhood trauma and education level) and three depressive symptoms
(sadness, fatigue and leaden paralysis). Importantly, the model demonstrated a fair performance in predicting future
MDD diagnosis of subthreshold individuals in the extrapolation test set (AUC = 0.75), which involved going beyond
the scope of the model. These findings suggest that it may be possible to detect disease indications in subthreshold
individuals up to four years prior to diagnosis, which has important clinical implications regarding the identification
and treatment of high-risk individuals.

Introduction

Major depressive disorder (MDD) is a complex and
burdensome disorder that is characterised by low mood
and energy levels, as well as concentration problems, sleep
disturbances and changes in weight and appetite'”. It
affects more than 300 million people worldwide®, and is
estimated to become the most debilitating disorder
worldwide by 2030* Diagnosis of MDD currently relies
on the evaluation of symptoms in clinical interviews
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according to the criteria outlined in the Diagnostic and
Statistical Manual of Mental Disorders (DSM)-5" or the
International Statistical Classification of Diseases and
Related Health Problems (ICD), 10th Revision®.

In recent years, the notion of subthreshold (or sub-
syndromal)  depression has received increased
attention® "%, The aim is to recognise those individuals
experiencing depressive symptoms that do not fulfil the
diagnostic criteria for MDD with respect to the number,
severity and/or duration of symptoms (i.e., fewer than five
diagnostic symptoms and/or duration of symptoms for
less than two weeks based on the DSM-5), and as a result,
are overlooked by the current checklist diagnostic
approach. Although the operational definition of sub-
threshold depression varies across studies (as an officially
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agreed definition has not yet been established), they have
collectively shown that the presence of subthreshold
depressive symptoms is associated with increased func-
tional and social impairment, reduced quality of life and
increased utilisation of health services®'®**~'>. Impor-
tantly, while subthreshold depression has been identified
as a risk factor for developing MDD in the future>'®~'%,
there is also growing evidence that targeting subthreshold
individuals with indicated preventive interventions can
help to prevent or delay the onset of MDD'>*°, This
highlights the clinical importance of finding early mani-
festations or biomarkers of incident MDD in subthreshold
individuals, which could be used to identify those who will
benefit most from appropriate preventive interventions.
Early and more accurate detection of MDD is also
essential for reducing the disease burden and the related
healthcare costs.

The probability of an individual having or developing
MDD can be predicted using a risk prediction model,
based on his or her molecular, sociodemographic and/or
clinical characteristics**?. The clinical utility of such a
model is in aiding the process of decision-making with
regards to the diagnosis or treatment of patients or
symptomatic help-seekers, and it is important that the
performance of the model is reproduced when applied to
new patient data. However, as the development of a
prediction model in biomarker studies often involves
performing model selection on high-dimensional data
(small sample size relative to the number of features),
model reproducibility can be limited by problems such as
overfitting, which is when the model captures not only the
underlying relationship of interest but also noise in the
data, as well as model selection uncertainty, which is when
no single model is strongly supported by the data. These
problems need to be appropriately addressed to ensure
that a robust and generalisable model is obtained.

A standard approach employed by many biomarker
studies is to use healthy controls as a reference population
against which patients are compared; however, in this
study, we examined a more clinically relevant and
appropriate sample population by defining individuals
presenting with subthreshold levels of depressive symp-
toms. We developed a disease prediction model of MDD
by comparing subthreshold individuals who did not
develop MDD (reference group) against first-episode
MDD patients, based on their proteomic, socio-
demographic and clinical profiles. As the reference group
was more similar to the patient group, this provided an
additional challenge to model selection. We implemented
several methods to limit model overfitting and ensure
model generalisability, and in the presence of model
selection uncertainty, applied feature extraction and
model averaging across a set of candidate models to
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obtain an average prediction model. To investigate the
prediction of future MDD onset, we then extrapolated this
model to differentiate between subthreshold individuals
who developed and did not develop MDD.

Materials and methods
Clinical samples

This study investigated participants from the Nether-
lands Study of Depression and Anxiety (NESDA)?, a
naturalistic, longitudinal study in which 2981 participants
(aged 18-65 years) were recruited from the general
population and mental healthcare centres between 2004
and 2007 and followed-up for up to eight years. The
protocol was approved by all relevant ethical committees
(the Ethical Review Board of the VU University Medical
Centre and by the local ethical review boards at the par-
ticipating centres of the Leiden University Medical Centre
and the Groningen University Medical Centre), and
written informed consent was obtained from all partici-
pants®®. Diagnoses of MDD and other psychiatric dis-
orders were determined at the baseline and follow-up
assessments using the Composite Interview Diagnostic
Instrument (CIDI) for DSM-IV?%.

For the purpose of this study, we selected 209 partici-
pants based on their disease status at the baseline and
second- and fourth-year follow-up assessments, and
baseline data of the 30-item Inventory of Depressive
Symptomatology (IDSsy; self-report)®®, which measures
the severity of depressive symptoms in the past seven days
on a scale of zero (none) to three (severe). Using 16 items
of the IDS34 corresponding to nine diagnostic symptoms
that comprise the DSM-5 MDD criteria (Supplementary
Table 1), we defined ‘subthreshold depression’ at baseline
as presenting with two or more depressive symptoms,
including at least one of sadness or anhedonia (two core
symptoms of the DSM), whereby a symptom was con-
sidered as present if any one of the corresponding IDS3o
items was above zero. To identify early biomarkers or
indicators of MDD, we would ideally test for differences
between subthreshold individuals who later developed
and did not develop MDD; however, as the number of
subthreshold individuals who developed MDD was lim-
ited, we first trained the model to differentiate between
86 subthreshold individuals who had no current or life-
time diagnosis of MDD at the baseline assessment and did
not develop MDD by the fourth-year follow-up assess-
ment (reference group) and 86 recent-onset MDD
patients who experienced their first and only major
depressive episode within a month before the baseline
assessment (training set patient group; to provide a fair
comparison, we ensured that they also fulfilled the criteria
for baseline subthreshold depression). We subsequently
extrapolated the model to predict the probability of
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Table 1 Sociodemographic and health characteristics of individuals in the training set patient group (first-episode MDD
patients), the extrapolation test set patient group (subthreshold symptomatic individuals who developed MDD within
two or four years) and the shared reference group (subthreshold symptomatic individuals who did not develop MDD

within four years)

Shared reference group Patient group

Training set

Extrapolation test set

N

Sex % (male/female)

Age (years)

Body mass index (kg/m?)

Education, % (basic/intermediate/high)

Physical activity, % (low/moderate/high)

Smoking, % (yes/no)

Alcohol abuse, % (yes/no)

Weekly alcohol consumption (number of drinks per week)
Recreational drug use (past month), % (yes/no)

Partner, % (yes/no)

Children, % (yes/no)

Employment, % (employed/unemployed/retired/occupationally disabled)

Absent from work due to health problems (past 6 months), % (yes/no/not
applicable)

Childhood life event index score
Childhood trauma index score

Number of negative life events (past year)
Family history, % (yes/no)

Heart disease, % (yes/no)

Diabetes, % (yes/no)

Other chronic disease, % (yes/no)
Anti-inflammatory drug, % (yes/no)

Heart medication, % (yes/no)

IDS5, total score

86 86 37
35/65 48/52 32/68
37.8 (14.0) 418 (122) 385 (14)
23.8 (44) 26.7 (6) 256 (5)
8/42/50 6/67/27 3/59/38
23/48/29 30/44/26 27/41/32
31/69 38/62 32/68
21/79 40/60 19/81

8 (11) 6.8 (11) 6.3 (7.4)
7/93 8/92 8/92
69/31 57/43 70/30
44/56 48/52 51/49
77/17/2/3 60/17/2/20  65/30/0/5
43/35/22 41/21/38 35/32/32
03(05) 02 (05) 0.2 (05)
0.5 (0.9 1(1.3) 08 (1.1)
(1) 1(1.1) 09 (1)
73/27 87/13 84/16
1/99 5/95 5/95
3/97 6/94 11/89
26/74 40/60 22/78
2/98 8/92 8/92
10/90 23/77 8/92
149 (7.4) 374 (11.5) 202 (8.8)

IDS inventory of depressive symptomatology, MDD major depressive disorder
Numerical features are shown as the mean (standard deviation)

developing MDD in the shared reference group and
37 subthreshold individuals who had no current or life-
time diagnosis of MDD at the baseline assessment and
developed MDD by the second-year (n=21) or fourth-
year (n = 16) follow-up assessment (extrapolation test set
patient group).

Sociodemographic information of the participants was
collected at the NESDA baseline assessment™. This
included sex, age, body mass index (BMI), education level,
physical activity, smoking, alcohol abuse, recreational
drug use, employment status, family history, childhood
trauma, chronic diseases and medication use (Table 1).

Clinical features were derived from the baseline IDS;,
data: 28 depressive symptoms were derived from 30 IDS3,
items (after items on increase or decrease in weight and
appetite were aggregated into single domains of weight/
appetite increase or decrease), and the IDS3, total score
and severity classification were determined.

Targeted protein quantification

Blood serum samples were collected at the NESDA
baseline assessment, and prepared in a 96-well plate for-
mat using a liquid-handling robotic system, as described
previously®®. In this study, 77 proteins (146 peptides;
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Supplementary Table 2) were investigated using targeted
multiple reaction monitoring (MRM) mass spectrometry
(MS) analysis. The majority of these proteins was pre-
viously associated with psychiatric disorders”. Serum
samples were diluted with ammonium bicarbonate, and
dithiothreitol and iodoacetamide were used to perform
disulphide bond reduction and cysteine alkylation,
respectively. Proteins were digested overnight using
trypsin (see Supplementary Information). Stable isotope-
labelled internal standard (SIS) peptides were spiked for
each endogenous peptide.

Trypsin-digested peptides were separated and detected
using a liquid chromatography (LC) system coupled with
a triple-quadrupole (QQQ) mass spectrometer (Agilent
Infinity 1290 LC system and Agilent 6495 QQQ LC/MS
system with Agilent Jet Stream electrospray ionisation
(ESI) technology) (see Supplementary Information). Tar-
get proteins were represented by unique peptide
sequences, and peptides were quantified at the transition
level (three to four interference-free transitions were
selected for each peptide, as described previously®).
Peptide quantification was based on the peak area values
of the endogenous and the SIS peptide transitions.

Statistical analysis
Data pre-processing

Raw MS data were processed using Skyline software
package (version 3.1.0)*®. Statistical data pre-processing
and analysis were carried out using R statistical software
(version 3.4.4)*°. A quantifier transition was selected for
each peptide as the most abundant transition (highest
peak area value) in both the endogenous and the SIS.
Peptide quantification was based on the relative abun-
dance of the endogenous and the SIS quantifier transi-
tions, reported as the abundance ratio. The abundance
ratio was log,-transformed for statistical analysis. No
outlier samples were identified based on principal com-
ponent analysis (PCA) of peptide abundance ratios
(Supplementary Fig. 1).

There were no peptides with missing values, and no
sociodemographic or clinical variables with more than 5%
missing values. Missing values in sociodemographic and
clinical variables were replaced using multiple imputation
(R package mice®®). Categorical variables were repre-
sented as sets of dummy variables. See supplementary
Information for more details on data pre-processing.

Model selection

A total of 198 features (146 proteomic, 22 socio-
demographic and 30 clinical) were analysed for model
selection (Supplementary Table 3). Least absolute shrink-
age and selection operator (LASSO) is a penalised
regression method that reduces overfitting by performing
shrinkage and model selection simultaneously®'. Variables
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with poor discriminatory power are eliminated from the
model as their coefficients are reduced to zero, whereas
variables with non-zero coefficients are selected. We
employed group LASSO regression®” (R package gglasso™)
to allow sets of dummy variables derived from categorical
variables to be selected together. To further reduce over-
fitting, we used ten-fold cross-validation to select the value
of the shrinkage parameter lambda that resulted in the
most regularised model. The data were randomly parti-
tioned into ten folds, and each fold was retained as the test
data, whilst the remaining nine folds were used as the
training data for each round of cross-validation.

We generated 100 models by repeatedly applying group
LASSO regression with ten-fold cross-validation on the
training set. This allowed us to investigate model selection
uncertainty by evaluating the sensitivity of model selec-
tion to small changes in the data that resulted from the
random partitioning in ten-fold cross-validation. For each
feature, we measured the proportion of models out of 100
in which it was selected, called the selection fraction. This
was a value between 0 and 1 and used to assess the relative
importance of the features. We identified unique models
based on the combination of features selected and mea-
sured the frequency of occurrence of each unique model.

Akaike information criterion and Akaike weights

We implemented model averaging using the Akaike’s
information criterion (AIC), as described in Burnham and
Anderson®**>, The AIC measures how well a model
approximates the given data (on a relative scale), where
the model with the lowest AIC value is considered to be
the best model®. We adopted the bias-corrected version
of AIC (AIC,), as the sample size (1) was small compared
with the largest value of k, where k is the number of
features selected in a model (n/k < 40%7%). We used this
to compute the Akaike weight (w) of each model, inter-
preted as the probability that the model was the best
approximating model for the data®*. The weight was a
value between 0 and 1, and the sum of weights of all
models was equal to 1. For each unique model, we sum-
med the weights of all corresponding models to estimate
the probability that the selected combination of features
comprised the best approximating model*. See Supple-
mentary Information for the formulae used for the cal-
culations of AIC. and Akaike weight.

Feature extraction and model averaging

When there was one strongly supported unique model
(e.g. w>0.9), parameter estimation and prediction could
be based on that model alone®*. In this instance, we
estimated the coefficients of the features in the dominant
unique model by averaging over the corresponding set of
models. However, in the absence of a dominant unique
model, that is, when there was uncertainty in model
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Fig. 1 Feature selection across 100 models obtained from repeated application of group LASSO regression with tenfold cross-validation
on the training set. a Analysis 1: model selection including IDSs, total score (198 features). b Analysis 2: model selection excluding IDSs, total score
(197 features). (i) The number of features selected in each model. (ii) Selection fractions of each feature

selection, we implemented feature extraction and model
averaging using all 100 models to obtain more repro-
ducible predictions of the probability of MDD outcome.
We included only features with selection fractions greater
than or equal to 0.9 in the prediction model (feature
extraction) to limit overfitting, and subsequently averaged
over the 100 models (model averaging) to obtain better
estimates of feature coefficients®**>*°, The weighted
average coefficient of a given feature across a set of

R models, 8, was computed:

. R
B= Z wifs;
i=1

where w; and /;’i were the Akaike weight and the estimated
coefficient of a feature in model i, respectively. Models in
which a feature was not selected contributed nothing to
the average coefficient estimate, resulting in the shrinkage
of the coefficient towards zero.

Predictive performance

We assessed the predictive performance of the models
when applied to the training and extrapolated test sets by
measuring the area under the receiver operating character-
istic (ROC) curves (AUC) (R package ROCR*). The AUC is

the probability that a randomly chosen individual with the
disease is ranked higher than a randomly chosen individual
without the disease (AUC: 0.9-1 = excellent; 0.8—0.9 = good;
0.7-0.8 = fair; 0.6-0.7 = poor; 0.5-0.6 = fail)**.

Results

One hundred and forty-six proteomic, 22 socio-
demographic and 30 clinical features (198 total) were
measured in the training set patient group of 86 first-
episode MDD patients, the extrapolation test set patient
group of 37 subthreshold symptomatic individuals who
developed MDD within two or four years, and the shared
reference group of 86 subthreshold symptomatic individuals
who did not develop MDD within four years (Table 1).

Analysis 1: model selection including IDS3, total score
When all 198 features were used, there was minimal
uncertainty in model selection. The number of features
selected in a model ranged from one to six with an
average of one (Fig. 1a). IDS3, total score was selected 100
times, one peptide was selected four times, and four
peptides were selected once; the remaining features were
never selected (Supplementary Table 3). Three unique
models were identified based on the combination of fea-
tures selected (Supplementary Table 4). The most
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frequently occurring unique model consisting of the IDS3,
total score alone occurred 96 times and had a model
probability of 0.98. Given the strong support for this
unique model (Model 1), there was no need for feature
extraction, and the average feature coefficient was esti-
mated using the corresponding 96 models (Table 2).

The resulting single-feature model of IDS3, total score
showed an excellent predictive performance when applied
to the training set (AUC = 0.95), and a poor performance
when extrapolated to the test set (AUC = 0.68) (Fig. 2).
This suggests that while first-episode MDD patients could
be accurately distinguished from subthreshold individuals
who did not develop MDD based on the IDS3, total score
alone, the differentiation was much more difficult
between subthreshold individuals who developed and did
not develop MDD as both groups had minimal symptoms
resulting in more similar scores (Table 1).

Analysis 2: model selection excluding IDS3, total score

To improve the model predictive performance on the
extrapolation test set, we excluded IDS;, total score and
repeated the analysis to allow other features to be selected
(197 features). In this case, the number of features selected in
a model ranged from 10 to 27, with a median of 14,
demonstrating a degree of uncertainty in model selection
(Fig. 1b). Twelve features were selected at least 90 times out
of 100, among which nine features were selected 100 times.
Sixteen features were selected at least once, and 169 features
were never selected (Supplementary Table 3). We identified
17 unique models based on the combination of features
selected (Supplementary Table 4). Two competing models
consisting of 13 and 14 features occurred most frequently, 30
and 29 times, and had model probabilities of 0.22 and 0.50,
respectively; the 13 features were a subset of the 14 features.
This demonstrated that the frequency of occurrence did not
necessarily correspond to the probability of being the best
approximating model for the given data. The remaining
unique models each occurred eight times or fewer. As there
was considerable variability in feature selection and no
strongly supported unique model, we implemented feature
extraction and model averaging across all 100 models.

The resulting average model (Model 2) was comprised
of 12 features that had selection fractions greater than 0.9
(Table 2). Six peptides representing six proteins (alpha-1-
antichymotrypsin (AACT), apolipoprotein E (APOE),
apolipoprotein H (APOH), fetuin-A (FETUA), hae-
moglobin subunit alpha (HBA) and glycoprotein phos-
pholipase D (PHLD)) were included, as well as three
sociodemographic factors (BMI, childhood trauma and
education level), and three depressive symptoms (sadness,
fatigue and leaden paralysis). The 12-feature average
prediction model showed an excellent predictive perfor-
mance when applied to the training set (AUC = 0.94), and
a fair predictive performance when extrapolated to the
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Table 2 Features included in the two prediction models

Feature Model Selection Average
fraction coefficient
Proteomic
AACT_ADLSGITGAR 2 1.00 0.122
APOE_ALMDETMK 2 0.99 —0.195
APOH_EHSSLAFWK 2 1.00 0.08
FETUA_HTLNQIDEVK 2 0.97 0.082
HBA_MFLSFPTTK 2 1.00 0.231
PHLD_NQWIAAGR 2 1.00 0.286
Sociodemographic
BMI 2 1.00 0.291
Childhood trauma 2 1.00 0.115
Education; intermediate 2 093 0.065
Education; high 2 093 —0.055
Clinical
Sadness; mild 2 1.00 —0.681
Sadness; moderate 2 1.00 0.819
Sadness; severe 2 1.00 0.369
Fatigue; mild 2 1.00 —0.124
Fatigue; moderate 2 1.00 0339
Fatigue; severe 2 1.00 0.085
Leaden paralysis; mild 2 1.00 —0.145
Leaden paralysis; 2 1.00 0219
moderate
Leaden paralysis; severe 2 1.00 0.272
IDS5 total score 1 1.00 0.346

IDS inventory of depressive symptomatology, BMI body mass index, AACT alpha-
1-antichymotrypsin, APOE apolipoprotein E, APOH apolipoprotein H, FETUA
fetuin-A, HBA haemoglobin subunit alpha, PHLD glycoprotein phospholipase D
Model 1 (one feature) was based on the dominant unique model in Analysis 1
(model selection including IDSs, total score), and Model 2 (12 features) was
developed by implementing feature extraction and model averaging in Analysis
2 (model selection excluding IDS3, total score) in the absence of a dominant
unique model. The selection fraction and the average coefficient of the features
are shown. Proteomic features are represented in a Protein_Peptide format.
Categorical features (education, sadness, fatigue and leaden paralysis) are
represented as sets of dummy variables

test set (AUC = 0.75) (Fig. 2). Here, the reduced perfor-
mance on the latter can be explained by subthreshold
individuals who developed MDD generally displaying
weaker indications of disease (i.e., more similar to the
reference group) compared to first-episode MDD patients
(Fig. 3), as expected.

Discussion

In this study, we evaluated the accuracy with which
future onset of MDD could be predicted in subthreshold
symptomatic individuals by extrapolating a disease
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prediction model of MDD that was trained to differentiate
between first-episode MDD patients and subthreshold
symptomatic individuals who did not develop MDD. We
obtained a fair predictive performance (AUC = 0.75),
which was promising given that it involved going beyond
the scope of the model, although there is potential for
improvement. Consequently, we demonstrated that some
indicators of future MDD onset could be detected in
subthreshold individuals using samples and data collected
up to four years prior to diagnosis. This has important
clinical implications with regards to enabling healthcare
professionals to identify individuals with high prob-
abilities of incident MDD and subsequently provide
appropriate early intervention strategies, in light of
accumulating evidence that subthreshold individuals have
an increased risk of developing MDD'*'*™'® and that
subthreshold depression may represent a prodromal stage
of MDD*.

The disease prediction model was comprised a combi-
nation of 12 proteomic, sociodemographic and clinical
features. We identified six proteins (represented by six
peptides) as biomarkers of MDD: AACT, APOE, APOH,
FETUA, HBA and PHLD, which have functional roles in
inflammatory response, lipid transport and metabolism,
blood coagulation and oxygen transport™*. Alterations in
peripheral proteins involved in inflammatory response,
the hypothalamic—pituitary—adrenal (HPA) axis, and
carbohydrate and lipid metabolism have been reported in
previous biomarker studies on depression**~>'. Other
apolipoproteins (apolipoprotein A, apolipoprotein B,
apolipoprotein C-III and apolipoprotein D) have also been
linked to depression*””*~>>_ It is worth mentioning that in

this study, only the abundance levels of the peptides
within these proteins and not necessarily those of the
whole proteins were altered. In addition, it should be
noted that some of the proteins identified in this study as
biomarkers of MDD overlap with those identified in
Cooper et al.?” as biomarkers of schizophrenia (APOE,
APOH, FETUA and HBA). This is not entirely unex-
pected, not only because the same panel of protein pep-
tides were used in both studies but also because different
psychiatric disorders share common genetic predisposi-
tions®. Similarly, a review by Chan et al.*® has demon-
strated that the same proteins have been identified as
biomarkers of more than one major psychiatric disorder
among MDD, schizophrenia and bipolar disorder.

We identified three sociodemographic factors (BMI,
childhood trauma and education level) and three
depressive symptoms (sadness, fatigue and leaden
paralysis) as important predictors of MDD outcome. The
relationship between BMI and depression is well
known®”*%, and some studies have reported a shared
pathophysiology between obesity and depression, includ-
ing dysregulation of the HPA axis and inflammatory
response®~®!, We found that MDD was associated with a
higher childhood trauma index score, which measured
experiences of emotional neglect, psychological abuse,
physical abuse and sexual abuse in early life. Consistent
with this, adverse or traumatic experience in childhood
has been found as a strong risk factor for developing
depression in adulthood®>~®* and this relationship has
been suggested to be reflected in disturbances in the
neuroendocrine and autoimmune stress response sys-
tem®>°®. The link between education level and depression
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is less well established, with some studies reporting a
decreased risk and others reporting an increased risk of
depression with a higher education level®’~*°. Moreover,
the identification of depressive symptoms as key pre-
dictors of MDD supports the idea that individual symp-
toms are associated with different risk factors, and that
they are not interchangeable as assumed by the current
diagnostic approach, in which symptoms are added
together’®’". Note that sadness is one of the two core
symptoms of depression according to both the DSM-5
and ICD-10, and was also required as a core symptom for
the definition of subthreshold depression in this study.
Fatigue (reduced energy level) is specified as a core
symptom in the ICD-10, but not in the DSM-5. The
identification of leaden paralysis (heaviness in arms and
legs) as a key feature was interesting, as it is a symptom of
atypical depression, a subtype of depression, and not
included in the DSM-5 or ICD-10 criteria for general
MDD. Overall, we demonstrated the advantage of inte-
grating different aspects of patient data (i.e., proteomic,
sociodemographic and clinical) for developing a clinically
useful disease prediction model.

Furthermore, we demonstrated that the combined use
of feature extraction and model averaging could effec-
tively address model selection uncertainty and result in a
parsimonious prediction model. In comparison with the
one-feature model of IDS3, total score (Model 1) that was
based on the dominant unique model in Analysis 1, the
12-feature model (Model 2) that was developed by
implementing feature extraction and model averaging in
Analysis 2 (in the absence of a dominant unique model)
resulted in an improved predictive performance when
applied to the extrapolation test set. Although the per-
formance of the 12-feature model on the extrapolation
test set was reduced compared with that on the training
set, we considered the discrepancy to be largely due to the
model having to go beyond its scope to make predictions
on the test set, and less a result of model overfitting as we
implemented several methods (LASSO regression, repe-
ated tenfold cross-validation, feature extraction and
model averaging) specifically to limit this. The utility of
this method in producing reproducible predictions of a
complex psychiatric disorder has been recently demon-
strated by Cooper et al.”’.

A limitation of this study is that models were trained
on MDD patients given the limited availability of sub-
threshold individuals who developed MDD in the data
set; we anticipate that model reproducibility would
improve if training is conducted on the latter group.
Small sample size is a major limitation in many psy-
chiatric studies, due to the general difficulty associated
with recruiting appropriate patient and reference sam-
ples. To ensure sufficient sample size for the present
analysis, we employed a relatively liberal definition of
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subthreshold depression compared with other studies,
allowing individuals experiencing mild and/or infrequent
symptoms to be included as long as they fulfilled the
specified criteria. In addition, we allowed a period of up
to four years between initial assessment and subsequent
diagnosis of MDD, but predictive performance may
improve if a shorter period is examined. Finally, although
we aimed to conduct a comprehensive analysis of the
various features that could be associated with MDD
outcome, other potentially important features may have
been overlooked.

In conclusion, we investigated the prediction of future
onset of depression in subthreshold symptomatic indivi-
duals using their proteomic, sociodemographic and clin-
ical data. We developed a parsimonious 12-feature
prediction model in the presence of model selection
uncertainty by applying feature extraction and model
averaging based on a set of candidate models. The results
of this study suggest that early manifestations of depres-
sion, as represented by a combination of serum proteins,
sociodemographic factors and depressive symptoms, can
be detected in subthreshold individuals up to four years
prior to clinical diagnosis. Having demonstrated that
subthreshold individuals who developed MDD could be
differentiated from those who did not develop MDD,
further studies need to be conducted in subthreshold
individuals for a better identification and characterisation
of the condition to enable earlier interventions and
improved outcomes.

Code availability
The R code that was used to generate the results can be made available upon
request.
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