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Abstract

Advances in Latent Variable and Causal Models

Paul Kishan Rubenstein

This thesis considers three different areas of machine learning concerned with the modelling
of data, extending theoretical understanding in each of them. First, the estimation of f-
divergences is considered in a setting that is naturally satisfied in the context of autoencoders.
By exploiting structural assumptions on the distributions of concern, the proposed estimator
is shown to exhibit fast rates of concentration and bias-decay. In contrast, in much of
the existing f-divergence estimation literature, fast rates are only obtainable under strong
conditions that are difficult to verify in practice. Next, novel identifiability results are
presented for nonlinear Independent Component Analysis (ICA) in a multi-view setting,
extending the scarce literature of known identifiability results for nonlinear ICA. A result of
particular note is that if one noiseless view of the sources is supplemented by a second view
that is appropriately corrupted by source-level noise, the sources can be fully reconstructed
from the observations up to tolerable ambiguities. This setting is applicable to areas such
as neuroimaging, where multiple data modalities may be available. Finally, a framework is
introduced to evaluate when two causal models are consistent with one another, meaning that
a correspondence can be established between them such that reasoning about the effects of
interventions in both models agree. This can be used to understand when two models of the
same system at different levels of detail are consistent, and has application to the problem of
causal variable definition. This work has broad implications to the causal modelling process
in general, as there is often a mismatch between the level at which measurements are made
and the level at which the underlying ‘true’ causal structure exists, yet causal inference

algorithms generally seek to discover causal structure at the level of measurements.
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Chapter 1

Introduction

A human looking at an image understands its content not in terms of the pixels that are
directly observed, but at higher conceptual levels. For instance, we understand that objects
exist and relate to one another. This understanding can fluidly shift between multiple scales,
so that most objects can be decomposed into smaller objects in a hierarchical fashion. Different
sensory streams can be merged into a single richer conscious experience, so that we perceive
the world in three dimensions despite each of our eyes seeing only in two dimensions. The
fact that this happens is a consequence both of evolution as well as a lifetime of experience.
Machine learning models, in contrast, generally have neither of these from which to benefit,
and in spite of the significant advances that have been made in recent years, the modelling of

structured data remains a broad and active area of research.

This thesis considers three different areas of machine learning concerned with the modelling

of data, extending theoretical understanding in each of them. These areas are:

1. Autoencoders, a family of generative models, the goal of which is to model the unknown

distribution of data given i.i.d. samples;

2. Independent Component Analysis, the goal of which is to unmix or separate signals

from independent sources that have been mixed together; and

3. Causality, a broad area concerned with the modelling and inference of causal relations

between random variables.

Autoencoders are a family of models that involve the introduction of a latent space and
associated encoder and generator. The encoder maps from the data space to the latent space
and the generator maps in the reverse direction. In recent years, substantial advances have
been made in this area as part of the general progress in machine learning and deep learning

in particular. Despite this, fundamental questions remain.



2 Introduction

The estimation and minimisation of divergences between distributions in the latent spaces
of autoencoders are important problems in modern research. Of particular interest are
divergences between distributions known as the prior and aggregate posterior, the former being
a user-specified distribution and the latter being induced by the unknown data distribution in
conjunction with the learned encoder. Chapter 3 presents and studies an estimator for a class
of divergences known as f-divergences, deriving bounds on the rate of decay of the bias and
finite sample concentration bounds. Although this estimator may be applied in other settings,
the structural assumptions required for its use are naturally satisfied in the estimation of

divergences between priors and aggregate posteriors in the autoencoder setting.

Much of the literature on f-divergence estimation considers settings in which weak knowledge
is assumed about the distributions for which the divergence is being estimated. In such settings,
the number of samples required to estimate the divergence typically grows exponentially in
the dimension of the space over which the distributions are defined, unless the associated
densities satisfy strong smoothness assumptions that are difficult to verify in practice. By
exploiting the natural structure present in the autoencoder setting, superior rates are obtained
in Chapter 3 with only mild and easily verifiable additional assumptions. These results
additionally have implications to existing work elsewhere in the literature by giving a rigorous

foundation to heuristic proposals in related settings.

Independent Component Analysis (ICA) assumes that data are generated by independent
sources that are mixed together. This is formalised by introducing a latent space over which
a factorised source distribution is assumed. Observations are obtained by passing the sources
through a mizing function, each coordinate of which is a function of several sources. Given a
dataset of observations, the goal of ICA is to invert the unknown mixing function and recover

the independent sources.

In addition to the derivation of practical algorithms, one of the main lines of enquiry in
the ICA community is the search for identifiability results. Specifying an ICA problem
requires making assumptions, for instance on the source distribution or the mixing functions,
thus defining a restricted family of models. An ICA problem is unidentifiable if there are
multiple fundamentally different models in this restricted family that result in the same
data distribution, and is identifiable otherwise. Identifiability results allow us to understand
conditions under which it is in principle possible—or impossible—to recover the latent sources

up to tolerable ambiguities.

At the one extreme of very strong assumptions, identifiability holds if the mixing functions
are linear and at most one component of the latent sources is Gaussian. At the other extreme,
the ICA problem is unidentifiable if no assumptions on the mixing functions or sources are
made. This line of research thus seeks to identify settings between these extremes where

identifiability still holds. Chapter 4 extends the scarce literature of identifiability results for
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nonlinear ICA by considering a novel setting in which multiple views of the sources through
different mixing functions are available. In particular, if one noiseless view of the sources is
supplemented by a second view that is appropriately corrupted by source-level noise, the
sources can be fully reconstructed from the observations up to tolerable ambiguities. These
theoretical results have important practical implications, as in many applications such as
neuroimaging, multiple data modalities may be available. These results show that jointly
using these different modalities can result in recovery of the sources under weaker conditions

than when using them separately.

The field of causality is largely concerned with the inference of causal relationships between
variables from data. These are distinct from statistical relationships, since if two variables
are statistically dependent, either one may causally influence the other or they could both
be influenced by a third. Causal inference algorithms generally operate on vectorial data
in which each component is assumed to be a variable that exhibits causal relations with
some subset of the other components, the goal then being to identify these relations. But
in many realistic scenarios, there is no guarantee that the components of collected data are

well-defined causal variables in this sense.

For example, early investigations into the influence of blood cholesterol on the risk of
developing heart disease found conflicting results. Some studies found that raising total
blood cholesterol levels increased the risk, while others found the opposite. Later, it was
discovered that there are in fact two types of cholesterol, one reducing the risk, the other
raising it. Attempting to identify the causal relation between their sum and the risk was
therefore doomed to failure: total blood cholesterol is not a well-defined causal variable in

relation to the risk of developing heart disease.

More generally, though any physical system in the real world exhibits causal structure at
some level of detail, measurements are typically made at a more coarse-grained or abstract
level. Chapter 5 seeks to identify when these ‘higher-level’ variables admit an interpretation
as well-defined causal variables. This is done by introducing a framework for understanding
when two causal models are consistent with one another: if a high-level model is consistent
with a low-level model that is physically grounded in real causal relations, it admits a causal
interpretation through its connection to the low-level model. This work has implications to

causal modelling generally by giving a handle on the problem of defining causal variables.

1.1 Outline and Contributions

This thesis is organised as follows.
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e Chapter 2 is an overview of the literature on generative modelling with Latent Variable
Models (LVMs), providing important background for Chapters 3 and 4. This defines
and discusses LVMs, divergences including the family of f-divergences, density ratio

estimation and examples of generative models including autoencoders.

e Chapter 3 presents and studies an estimator for f-divergences between distributions
with particular application to the setting of autoencoders. The natural structural
assumptions that hold in this setting make it possible to estimate the divergences with
fast rates. In contrast, in much of the existing f-divergence estimation literature, fast
rates are only attainable under strong assumptions that would be hard to verify in

practice. This chapter is based on the NeurIPS conference paper Rubenstein et al., 2019.

e Chapter 4 presents novel identifiability results for nonlinear ICA, extending the scarce
literature of such results. A multi-view setting is considered in which multiple observa-
tions of the sources are simultaneously available through different mixing functions. In
particular, supplementing a noiseless view of the sources with a second appropriately
corrupted view leads to the model being identifiable. This has application to practical
scenarios in which multiple data modalities are available. This chapter is based on the

UAI conference paper Gresele, Rubenstein et al., 2019.

e Chapter 5 presents a framework for understanding when two casual models at different
levels of detail are consistent with one another, showing how high-level causal variables
can arise as functions of lower-level variables. This has implications to the understanding
of causal modelling by shedding light on the definition of causal variables, and in
particular highlights the importance of considering interventions as part of the causal
modelling process. This chapter is based on the UAI conference paper Rubenstein,
Weichwald et al., 2017.

e Chapter 6 concludes and additional materials for the main chapters are included in
Appendices A, B and C.

All of the work presented in this thesis was conducted with my numerous collaborators. The
conference papers cited above on which the chapters of this thesis are based are repeated

with a full list of collaborators:

Paul K Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme and Ilya
Tolstikhin. “Practical and Consistent Estimation of f-Divergences”. Advances in
Neural Information Processing Systems (NeurIPS). 2019

Luigi Gresele*, Paul K Rubenstein®, Arash Mehrjou, Francesco Locatello and
Bernhard Schélkopf. “The Incomplete Rosetta Stone Problem: Identifiability
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Results for Multi-view Nonlinear ICA”. Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence (UAI). *Joint first authorship. 2019

Paul K Rubenstein®, Sebastian Weichwald*, Stephan Bongers, Joris M Mooij,
Dominik Janzing, Moritz Grosse-Wentrup and Bernhard Schélkopf. “Causal
consistency of structural equation models”. Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence (UAI). *Joint first authorship.
2017

In addition, the following papers were also written during my PhD but are not discussed in
this thesis.

Paul K Rubenstein, Stephan Bongers, Bernhard Scholkopf and Joris M Mooij.
“From deterministic ODEs to dynamic structural causal models”. Proceedings of
the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence (UAI). 2018

Paul K Rubenstein, Ilya Tolstikhin, Philipp Hennig and Bernhard Schélkopf.
“Probabilistic Active Learning of Functions in Structural Causal Models”. Causal-
ity Workshop of the Thirty-Third Conference on Uncertainty in Artificial Intelli-
gence (UAI). 2017

Paul K Rubenstein, Bernhard Schélkopf and Ilya Tolstikhin. “Learning Disentan-
gled Representations with Wasserstein Auto-Encoders”. International Conference
on Learning Representations (ICLR), Workshop Track. 2018

Paul K Rubenstein, Bernhard Schélkopf and Ilya Tolstikhin. “Wasserstein auto-
encoders: Latent dimensionality and random encoders”. International Conference
on Learning Representations (ICLR), Workshop Track. 2018

Paul K Rubenstein, Bernhard Schoelkopf and Ilya Tolstikhin. “On the Latent
Space of Wasserstein Auto-Encoders”. arXiv preprint arXiv:1802.03761 (2018)

Paul K Rubenstein, Yunpeng Li and Dominik Roblek. “An Empirical Study of
Generative Models with Encoders”. arXiv preprint arXiv:1812.07909 (2018)

Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly and
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International Conference on Learning Representations (ICLR). 2020
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thing”: Machine Learning and Causal Inference for Improved Decision Making.
2019



Chapter 2

Generative Modelling with Latent
Variable Models

This chapter introduces key ideas in the literature of generative modelling with latent variable
models relevant to this thesis: Chapter 8 presents learning theoretic results for divergence
estimation in the latent spaces of autoencoders, a type of latent variable generative model;
Chapter 4, which concerns Independent Component Analysis (ICA), presents identifiability

results for a particular class of latent variable models.

2.1 Introduction

Suppose that a dataset of samples, drawn independently and identically distributed (i.i.d.)
from some unknown data distribution @ x, is given. The high level goal of generative modelling
is to learn a model distribution Px that approximates the unknown data distribution ) x based
on these samples. Latent variable models are a flexible way to specify such distributions, and
work by composing simple distributions over (unobserved) latent variables with mappings to
the observed data space. The applications of latent variable generative modelling are diverse,
since having such a model of the data may be desirable for a variety of reasons, for instance:
to artificially generate new samples of data (Goodfellow et al., 2014; Oord et al., 2016); to
perform compression (Townsend et al., 2019a; Townsend et al., 2019b); to unsupervisedly
learn features for transfer to other tasks (Tschannen et al., 2018; Donahue and Simonyan,

2019); or to extract latent structure present in the data (Hyvérinen and Oja, 2000).

The goal of this chapter is to introduce the necessary background and context for Chapters 3
and 4 of this thesis. Although both concern latent variable generative models, these chapters

are set in different niches of the machine learning literature. Chapter 3 presents learning
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theoretic results that are relevant to the deep generative modelling community, a field centred
around the generation of artificial data, for which Sections 2.2, 2.4 and 2.6 of this chapter
are relevant. Chapter 4 concerns the Independent Component Analysis (ICA) community, in
which the goal is the inference of latent sources, for which Sections 2.2 and 2.5 of this chapter

are relevant.

In the deep generative modelling community, the problem of generative modelling is made
precise with specification of a choice of divergence D and family of distributions Pg} with

parameter 6§ € O, the goal then being

g’éiél : D (P%,QX) . (2.1)

There are two main challenges in practically implementing and solving this problem. First,
when the data are drawn from complex high dimensional distributions, how can this be
modelled with a parameterised distribution that is computationally tractable? Second, what
are appropriate choices of divergences, and how can they be estimated or minimised with

respect to the parameters 67

In general, Qx is unknown and can only be approximated as an empirical distribution
based on available samples, often denoted @ x. Thus, although the goal is to minimise a
divergence between the model distribution and the true data distribution Q) x, the problem
often reduces to minimising some divergence or loss function involving instead @ x. It may be
tempting simply to replace Q) x with @ x in Equation 2.1, however the distinction between the
underlying data distribution and empirical distribution can sometimes require subtle reasoning
for two main reasons. First, one could easily overfit if care is not taken, learning only to
reproduce the observed data. Second, in some cases divergences between model and empirical
distributions may not be well-defined. For instance, maximum likelihood learning is equivalent
to minimising the KL-divergence in Equation 2.1 when Pg} is absolutely continuous with
respect to Qx. But when P)% is a continuous distribution and Q x is an empirical distribution,
the KL-divergence is not well-defined, although the maximum likelihood interpretation still
is. For other choices of divergences, for instance Integral Probability Metrics (see Section

2.4.1), this latter issue may not arise.

In the ICA community, the goal is to use the learned model Pf( to infer the values of latent
variables. Since latent variables are by definition unknown, it is important that if multiple
solutions to the generative modelling problem exist, they should correspond to similar models
with regard to the use of the latent variables. That is, if distinct parameters 61 # 6o are such
that P)a}l = P)o? = (Qx, the corresponding models should be strongly related; for instance,
corresponding to the same model but with permuted coordinates over the latent variables.

Such results are known as identifiability results and are important in the theoretical study
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of ICA algorithms. ICA will be discussed in more detail in Chapter 4, in which novel

identifiability results are presented.

2.2 Latent Variable Models

A Latent Variable Model (LVM) is a way to specify complex distributions over potentially high-
dimensional spaces using simple components. These are flexible models that are used widely in
the machine learning literature and as such, different parts of the literature often use different
terminology to describe fundamentally similar ideas. In the following, two sets of nomenclature

will be introduced for the deep generative modelling and ICA communities.

Definition 2.1 (Latent Variable Model). A Latent Variable Model (LVM) over a data
space X consists of a distribution Py over a low dimensional latent space Z together with

conditional distributions Px|z. Together, these induce a distribution Px over the data space.

In the deep generative modelling community, Py is referred to as a prior or noise distribution
and is usually fixed to be some simple distribution such as a unit Gaussian or uniform
distribution. In the ICA community, Pz is referred to as a source distribution and may
be specified only implicitly through some assumed properties, such as being a factorised
distribution. Usually the letter S denotes the corresponding sources in the ICA literature,

but for consistency this thesis will use Z.

The conditional distributions can be thought of as a mapping g : Z — P(X) from elements
of Z to distributions over X. If all of these distributions are Dirac delta distributions (where
all probability mass is placed at a single point), the mapping g can be seen as a function
g:Z—X.

In the deep generative modelling community, the conditional distributions are referred to as
generators or decoders, and when given parameter § may be written as Pf(| 5 or g%, If the
conditional distributions they correspond to are Dirac delta distributions, the generators
are called deterministic, otherwise they are stochastic (sometimes probabilistic). In the ICA
community, the generators are generally deterministic and are known as mizing functions,

and are usually denoted by f.

When practically implemented in modern applications, generators are often realised as neural
networks. This is straightforward in the deterministic case: ¢° is simply a function and can
thus be represented as a deep network with parameters 6. If the generator is stochastic, it can
still be explicitly represented as a neural network provided that the conditional distributions
are sufficiently structured. For instance, if the conditional distributions are Gaussian with
varying mean and covariance, ¢’ can be represented as a neural network with two outputs,

one for the mean and one for the covariance.
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For a fixed choice of parameter 6, P, and P§|  specify a joint distribution Pg} zover X X Z
and thus a distribution Pg} over the data space X'. For simplicity, it will be assumed that
densities of all relevant distributions exist, so that this is equivalent to specifying P)e( via the

integral
p(x) = /pe(w!z)p(z)dz.

In some special cases (e.g. normalising flows in Section 2.3.1), the density p?(x) may
be tractable. In most cases in the deep generative modelling community, the integral is
intractable, meaning that P)o} has unknown density in practice. Despite this, LVMs are useful
here because samples from Pg} can be drawn easily: one samples first a value z ~ Pz and
then = ~ Pg}‘ 47—, All relevant distributions can be chosen so that these sampling procedures

are simple, e.g. if Pz and all Pg}‘ , are Gaussian.

2.3 Other generative models

This section briefly covers two other generative models that are encountered across the
machine learning literature. The first, normalising flows, are a specialisation of the general
formulation of LVMs as introduced in the previous section. The second, autoregressive models,

do not use latent variables and are therefore fundamentally different.

Both of these families of models have in common that the likelihood of observed data can be
calculated directly, and thus can be fit straightforwardly by maximum likelihood learning.
In practice, this typically means using the log-likelihood as an objective function which is

maximised with respect to the model parameters using stochastic gradient methods.

2.3.1 Normalising Flows

Normalising flows, first introduced by Tabak and Vanden-Eijnden, 2010 and Tabak and Turner,
2013 and subsequently popularised within the machine learning community by Dinh et al., 2014
and Rezende and Mohamed, 2015, are type of LVM for which the generator f? is deterministic
and invertible with known Jacobian and inverse. By the change of variable formula, the

density p?(x) can be explicitly calculated in terms of the prior p(z) and generator f¢

9 71
get 287 , (2.2)

P(@) = p(2) |det -

where z = f%(2). The setting of normalising flows applies naturally to the problem of ICA
due to the assumption that f? be invertible.
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By the chain rule, if two functions have known Jacobian and inverse, their composition also
has known Jacobian and inverse. Thus, f? can be specified by composing many layers of
simple components. One of the lines of research within the normalising flow community is
the development of such layers, for instance Planar Flows (Rezende and Mohamed, 2015),
Nonlinear Independent Components Estimation (NICE) (Dinh et al., 2014), Real Non-Volume
Preserving (RealNVP) (Dinh et al., 2016), Masked Autoregressive Flow (Papamakarios et al.,
2017) and Inverse Autoregressive Flow layers (Kingma et al., 2016).

The advantage of normalising flows over the more general LVMs introduced in the previous
chapter is that the likelihood of input data can be calculated exactly via Equation 2.2,
while it is still possible to featurise inputs and generate samples via f? and its inverse. The
challenge of these models is that ‘standard’ architectures (e.g. convolutions) cannot be
straightforwardly applied due to the invertibility constraint. Moreover, the assumption that
the data and latent space have the same dimension may be restrictive in some settings, for

example when modelling high-dimensional data such as images.

2.3.2 Autoregressive Models

In contrast to LVMs, autoregressive models do not involve the introduction of a latent variable
and prior distribution. Instead, the distribution over the observable variables is modelled

directly by making use of the factorisation of the joint distribution

n

() = Hp0($i|33j<i), (2.3)
i=1

where z is an n-dimensional vector and x;; is the vector of components with index smaller
than 4. Any joint distribution can be factorised this way so no assumptions need to be made
in order to use this decomposition, though part of the modelling process may be to drop some
dependencies: for example, rather than depending on all previous components, x; may depend
only on some subset of previous components. Each component p9($¢|zr:j<i) can be modelled
with a neural network, with inputs x;«; and output a distribution over x;. Such models can be

used for both discrete and continuous data by varying the choice of output distributions.

The main considerations in the modelling process are deciding the order in which to enumerate
the components x; in Equation 2.3, whether to drop any dependencies, and precisely how to

model the factors p’(z;|z<;).

Prominent methods in the literature include PixelRNN (Van Oord et al., 2016) which models
images by enumerating each pixel and colour-channel by row and column and using a recurrent
neural network to model the distribution over each pixel conditioned on all previous pixels.
PixelCNN (Van den Oord et al., 2016) instead models the distribution of a pixel using a
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masked convolution centred at that pixel, such that it is a function only of previous pixels
which are also spatially close. WaveNet (Oord et al., 2016) models audio by modelling the
wave amplitude at each time step as a function of those at previous time steps by using dilated

convolutions, achieving long-range dependencies with a convolutional architecture.

Similar to normalising flow models, autoregressive models have the advantage over LVMs
that it is possible to exactly calculate the likelihood of any observation, since this reduces
to just evaluating each of the factors in Equation 2.3. They can also be used to generate
samples, though this can be significantly slower than for LVMs, since each component needs
to be sampled sequentially given previous components. In particular, this means that high-
dimensional data such as images or audio can be slow to sample. In contrast to LVMs,

autoregressive models cannot be used to featurise data.

2.4 Divergences

A divergence is a notion of dissimilarity between pairs of distributions that is weaker than a

metric.

Definition 2.2. A divergence D is a mapping D : P(X) x P(X) - RU {oco} such that
e D(P,Q) >0 for any distributions P,Q € P(X),
e D(P,Q) =0 if and only if P = Q,

where P(X) denotes the set of all probability distributions on X.

As a technical side-note, this definition is very general, and does not assume that the
distributions admit densities; the only requirement is that P and () be probability measures
over X with the same o-algebra X over X. X is the set of all subsets or ‘events’ assigned
probability mass under the distributions. For most typical settings, where X would be a
subset of some Euclidean space R?, ¥ would canonically be the set of Lebesgue-measurable
subsets. P = @ if and only P(A) = Q(A) for all A € ¥, meaning that they assign the same
probability mass to each possible event. If P and ) admit densities p and ¢, then P = Q if

and only if p = ¢ almost everywhere as functions X — R.

A metric is additionally symmetric and obeys the triangle inequality. For a divergence
D(Pg}, Q@ x) to be useful in the context of generative modelling, it must be possible to minimise
it with respect to the parameters 6. There are two main families of divergences that are used
in the machine learning literature generally. At a high level, Integral Probability Metrics
(IPMs) can be thought of as comparing distributions by considering the pointwise difference
between their densities, while f-divergences can be thought of as considering the ratio of

their densities. These two families are discussed in the rest of this section.
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2.4.1 Integral Probability Metrics

Definition 2.3. An Integral Probability Metric (IPM) is a divergence that can be written as

/h )dP(z /h )dQ(z

for some restricted function class H = {h: X — R}.

(P, Q) = sup
heH

Elements of ‘H are referred to as witness functions. If H is too small, Dy may not be
a divergence. For instance, taking H to contain only the constant 0 function results in
Dy (P,Q) = 0 for any P and @. On the other hand, if H is too rich then Dy may not be
useful: taking H to be the set of all real-valued measurable functions leads to the trivial case
(Theorem 1, Sriperumbudur et al., 2009)

0 ifP=0Q,
o 1 .

Provided H is sufficiently rich that Dy is a divergence, it is in fact a metric, obeying

the triangle inequality and symmetry. These properties are inherited from the function
d(z,y) = |z —yl.
Commonly encountered IPMs include (Miiller, 1997; Sriperumbudur et al., 2009):

e The 1-Wasserstein distance, where H is the set of all functions with Lipschitz constant

1 with respect to some base metric;
e The Total Variation distance, where H is the set of all functions with infinity norm 1; and

e The Maximum Mean Discrepancy, where H is the set of functions in a reproducing kernel

Hilbert space with norm at most 1 induced by some kernel k (Gretton et al., 2012).

2.4.2 f-divergences

f-divergences, sometimes called ¢-divergences, are a family of divergences that compare
pairs of distributions via their density ratio, and are widespread and important in the
statistics literature (Csiszar and Shields, 2004; Liese and Vajda, 2006; Tsybakov, 2009). Their

estimation is studied in Chapter 3.

Definition 2.4. Let f be a convex real-valued function defined on (0,00) such that f(1) =0,
and let P and @Q be distributions with densities p(x) and q(x). The f-divergence between P
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and Q is defined as

Dy(P,Q) = /f <§Eg) q(x)dx.

This is defined for distributions P and @ for which P is absolutely continuous with respect
to @, meaning informally that the density ratio p(x)/q(x) is finite for all  with mass under

@, and is usually taken to be co otherwise.

A useful property of f-divergences is that for any constant ¢, replacing f(u) by f(u) =
f(u) 4+ c(u — 1) does not change the divergence D:

s (E) (05
— /f (zgg) q(x)dx + c/p(:ﬂ) — q(z)dx
= D¢(P,Q),

where the last equality holds since p(z) and ¢(x) integrate to 1. It is often convenient to
work with fo(u) := f(u) — f'(1)(u— 1) which is decreasing on (0, 1), increasing on (1, c0) and
satisfies fj(1) = 0.

To see that f-divergences are indeed divergences, consider first non-negativity, which follows

from convexity of f and Jensen’s inequality:

q
=5 (f %q(z)dx) (2.4)

To show that D¢(P, Q) = 0 if and only if P = @, note first that if P = @ then D¢(P,Q) = 0,
since f(1) = 0. To see that Df(P,Q) > 0 for any P # @, observe that Inequality 2.4 above is
strict for any f that is strictly convex. This also holds for any f that does not have constant
gradient in any neighbourhood of 1, since the fy associated to any such f is strictly positive
on Ry \ {1}. For any P # @, the distribution () must put positive mass in areas for which
p(x)/q(x) # 1 and so Dy, (P, Q) must be positive. It follows that D; = Dy, is also positive.

Hence ‘most’ choices of f lead to valid f-divergences.

Different choices of f yield several commonly encountered divergences, including the Kullback-
Leibler (KL), Jensen-Shannon (JS), Total Variation (TV), x? and a-divergences as well as

the lesser known [-divergences (Osterreicher and Vajda, 2003). This family of symmetric
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Table 2.1 f and fy of divergences referenced in this thesis.

f-divergence fo(x) Other typical f(x)
Kullback-Leibler (KL) zlogr —x +1 xlogx
Total Variation (TV) 31—z -

x> 22 — 2z (x—1)% 22 -1
Squared-Hellinger (H?) 2(1 — /x) (Vr —1)2
Jensen-Shannon (JS) (1+2) log(H%) + zlogx -
a-divergence, —1 < a <1 ﬁ (1 — arlTa) — 2(5__11) 1_4a2 (1 — x#)
B-divergence, [ >0, 3 # % 1_1% [(1 + xﬂ)% - 2%—1(1 + x)} -

divergences is parameterized by 8 € (0, 0o] and includes the squared-Hellinger (H2, 3 = %),
Jensen-Shannon (8 = 1) and Total Variation (8 = oo). Table 2.1 lists the fp and other

commonly encountered choices of f for the divergences considered in Chapter 3.

2.5 Density Ratio Estimation

A natural way to distinguish between two distributions P and ) with overlapping support is
to consider the problem of classifying between draws from each distribution. Suppose that
samples from P are labelled as class 1, and samples from @ as class 0. This classification
problem can be implemented as logistic regression, in which case a function ¢ : X — [0, 1] is

introduced and trained to minimise the objective

L(e) = Eqnp [~ loge(2)] + Eong [~ log(1 — ¢(2))]

— [ ~toge@)ple) ~ log(1 - clw)g(w)da.

= %7 and so the optimal

classifier assigns x to class 1 with the posterior probability that it was drawn from P

For any particular z, the integrand is minimised by ¢*(x)

(Proposition 1, Goodfellow et al., 2014). If ¢ is parametrised as m where r : X — R,
then the optimal ¢* corresponds to r*(z) = log (p(z)/q(z)).
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This provides a useful tool for cases in which only samples from two distributions are available
and estimation of their density ratio is desired, as is the case in Chapter 4. Moreover, solving
this classification problem is closely related to divergence estimation, since for any choice of

classifier c,
L(c) > log 4 — 2 Dys(P, Q).

This follows straightforwardly from the definition of the Jensen-Shannon divergence and
the fact that equality is attained by the optimal ¢*, see Goodfellow et al., 2014 for details.
Rearranging, it follows that the Jensen-Shannon divergence between two distributions can be
estimated by maximising the lower bound

DJS(Pv Q) > log2 — L(C)

Recall that the Jensen-Shannon divergence is an f-divergence. It can be similarly shown that
any f-divergence between two distributions can be estimated by maximisation of a lower
bound corresponding to a classification problem, and that doing so results in a function of
the density ratio being estimated. All f-divergences admit a variational form as a result of
convex conjugacy (Nguyen et al., 2010). Any convex function f(u) has a conjugate f*(t)
defined as

ff(t)=sup {ut— f(u)}.
u€dom (f)
The resulting function f* is itself convex, and provided that f is continuous, f and f* are

dual in the sense that f** = f. This means that f can be written as

f(u) = sup {ut — f*(t)}.

tedom (f*)

Plugging this into the definition of f-divergences yields

DsP.@) = [atw) s (Do)} as

tedom (£+) L q(%)
> sup { [por@s - [ a@)f @)} ds

= sup Epwp [T(2)] — Eong [f*(T())]
TeT



2.6 Methods for fitting Latent Variable Models 17

where 7 is an arbitrary class of functions X — dom (f*) C R. It can be shown that the

optimal T* attaining the supremum satisfies

p(x)
=1 ().
(@) q(x)
subject to mild conditions on f (Lemma 1, Nguyen et al., 2010). In this sense, T* estimates

(a function of) the density ratio p(z)/q(x).

2.6 Methods for fitting Latent Variable Models

Solving the generative modelling problem as posed in the introduction requires the minimi-
sation of D(P%,Q x) with respect to the parameters  of the LVM in a computationally
tractable way. In general it is infeasible to estimate D(P)o}, Qx) directly, or even to compute

gradients of it with respect to 6.

There are two main families of methods that introduce auxiliary functions as computational
tricks to bound or estimate D(Pg},Q x) in a computationally tractable way. These are
Generative Adversarial Networks (GANs), which introduce a discriminator d : X — [0, 1],

and autoencoders, which introduce an encoder e : X — Z.

The remainder of this section discusses GANs and two types of autoencoders, Variational
Autoencoders (VAEs) and Wasserstein Autoencoders (WAEs), showing how specific choices

of divergences can be approximated.

2.6.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a family of methods that approximately
minimise any f-divergence and some choices of IPMs. In the case of f-divergences, the key

ideas have been already introduced in Section 2.5.

Goodfellow et al., 2014 introduced the idea of training a discriminator d? : X — [0,1] to
classify between ‘real’ samples from ()x and ‘fake’ samples from P)e(7 which then provides
a surrogate loss for a generator ¢’, trained simultaneously to maximise the loss of the

discriminator. In Goodfellow et al., 2014, the loss is implemented as logistic regression:
L(0,9) = Bongy |~ l0gd*(z)| + Bonp, |~ log(1 - d*(¢"(2))] .

As previously discussed in Section 2.5, this is a lower bound on the Jensen-Shannon divergence

Djys(P%,Qx), up to constants and scalar factors.
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Stochastic gradients of this loss can be taken with respect to both ¢ and 6 by using minibatch
samples of data to approximate the outer expectations when d? and ¢? are both differentiably
parametrised neural networks. Thus, although actually computing Djg (Pg}, Q@ x) is intractable,
it can be approximately minimised with respect to 6 by maximising L(6, ¢) with respect to ¢

and minimising this surrogate loss with respect to 6.

Nowozin et al., 2016, building on the work of Nguyen et al., 2010, generalised this to arbitrary f-

divergences using the variational formulation of f-divergences to yield the surrogate loss

Li(6,0) = gy [T@)] = Bap, [/(T%(s°(2)))] < Ds(P%, Qx),

where the function 7% is implemented as a neural network. As with the original GAN
objective, stochastic gradients of this surrogate loss can be computed. The function T plays
the role of the discriminator introduced by Goodfellow et al., 2014. Nowozin et al., 2016 thus
demonstrated how the GAN ‘trick’ can be applied to other f-divergences to approximately
minimise D ;(P%, Qx) with respect to the LVM parameters 6.

A similar idea can also be used to approximately minimise IPMs DH(P)9<, Qx), provided that
the function class H can be practically parameterised. If H is such that h € H implies that

—h € H, Dy can be written without the inner absolute function, leading to

PQ—sup/h )dP(x /h )dQ(x

heH

= sup {Eop [1(2)] — Epng [h(2)]}
heH

> Borp [M(2)] = Eang [A(2)],

where the inequality holds for any h € H, where h now plays the role of the discriminator. If
the set H can be differentiably parametrised, stochastic gradients of the loss can be obtained
with respect to its parameters. In contrast to the f-divergence case, the discriminator A must
belong to a particular class of functions, which can complicate specifying the parametrisation.
One example of an IPM-based GAN is the Wasserstein GAN of Arjovsky et al., 2017. Here,
the 1-Wasserstein distance is used, corresponding to h having Lipschitz constant at most 1.
For certain neural network architectures, including those composed of fully-connected and

convolutional layers, this can be enforced by weight clipping.

It should be noted that while the ultimate goal is to minimise the divergence D(P)H(, Qx) with
respect to the parameters 6, the surrogate losses provided by the above techniques result in
lower bounds to D(P%,Qx). This leads to several potential issues. For example, it is difficult
to make rigorous claims about the value of D(P%,Qx) and whether it indeed becomes smaller
throughout training. Furthermore, GANs are famously unstable to train, requiring a delicate

balance between updates to the generator and discriminator. Minimisation of upper bounds
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on the divergence D(P}%, Q@ x) are preferable, and one such method that does so in the case
of the KL-divergence is discussed in the next section. Other works such as Zhang et al., 2019
investigate other upper bounds for more general choices of divergences to avoid the problems
associated with GANs.

2.6.2 Variational Autoencoders

Variational Autoencdoers (VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) are a

method to minimise the KL-divergence between model and data distributions, defined as

Dx1(Qx, P%) = /q(:ﬂ) log < qe((i))) dx

= / )log q(z / q(z) log p’ (z)dz.

The first term above, the negative of the differential entropy of Qx, often written H(Qx),
cannot be estimated without knowledge of the density ¢(z). However, since it is constant as
a function of 6, it can be ignored. The term logp?(z) inside the second integral is known
as the log-likelihood or evidence, and maximisation of this quantity is known as mazimum
likelihood estimation. Although the density p’(z) is intractable, the evidence can be tractably
lower bounded leading to the so-called evidence lower bound (ELBO), which in turn leads to

a tractable upper bound on Dy, (Qx, P§) This will be derived next.

First, observe that the log-likelihood can be written

logp’(w) = log ( / pe(fCIZ)p(Z)dZ) :

Given any distribution ¢?(z|z) depending on parameter ¢ and the value of x, we can multiply

and divide inside the integral, leaving its value unchanged. This leads to

fog#*(a) = 1og ( [ p9<x|z>qf((;> i (ele)dz)

= (B [ 0103535

> By [log b’ (2] >+1ogp<z> log ¢°(2)]
= Egoofoy logp’(2]2) = Di, (¢°(212),p(2))

where the inequality follows from Jensen’s inequality due to the concavity of log. The
distribution ¢?(z|z) is a variational approximation to the true posterior p?(z|z); it can be
shown that the gap introduced by Jensen’s inequality is equal to Dx, (q¢(z\x),p9(z]a:)).

q®(z|z) is often referred to as an encoder as it maps elements of the data space X to
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distributions over the latent space Z. Putting things together yields

Dxr(Qx, PY) € —H(Qx) — Eq()Eyo o1 log p’ (2]2) + By Dk (q¢(z|x),p(z)) ;

where H(Qx) is the constant differential entropy, leading to the VAE loss

Lvag (9, ¢) = Eq@)Ege 212 {—logpe(ﬂz)} + Eq2) DkL (q¢(z|x)ap(z)> : (2.5)

(i) (ii)

Up to constants, this is an upper bound on Dkr,(Qx, Pf(). It is common for the prior to be
a standard Gaussian, the generator to output Gaussians with mean z?(z) and fixed isotropic
covariance, and the encoder to map to Gaussians with mean p?(x) and diagonal covariance
»?(z). In this case, term (i) above can be interpreted as an average reconstruction loss and

(ii) as a regulariser, hence making the model a type of regularised autoencoder?.

The encoder QZI  together with the data distribution @ x induce the push-forward distribu-
tion Q‘g known as the aggregate posterior. The term (ii) was shown by Hoffman and Johnson,
2016 to be equivalent to DKL(Q¢Z), Pz)+ I(X,Z) where I(X,Z) = DKL(Q?(Z, QXQ(E) is the
mutual information of a data sample and its encoding. Chapter 3 concerns estimation of
f-divergences (and hence the KL-divergence) between priors and aggregate posteriors, and

so is directly relevant to mutual information estimation via this equivalence.

2.6.3 Wasserstein Autoencoders

Wasserstein Autoencoders (WAEs) (Tolstikhin et al., 2018) approximately minimise optimal
transport distances between model and data distributions. These were discussed briefly in
Section 2.4.1 as they can be expressed as IPMs, but here an alternative formulation of these

distances will be used.

Let ¢ be any non-negative function on X x X satisfying ¢(x,z) = 0. For intuition, ¢(x,z")
may be thought of as a function specifying the cost of transporting a point from x to z’. The
optimal transport distance between two distributions P and @) over X is then the minimal

cost incurred by transporting the probability mass of P to that of Q.

Formally, let I' be the set of joint distributions over X x X with marginals P and ). That
is, any element y(z,2’) € T is a joint distribution satisfying v(z) = p(z) and ~(z') = ¢(2’).

!Note however that the interpretation of VAEs as a type of autoencoder breaks down when more powerful
classes of generators are used, as discussed in http://paulrubenstein.co.uk/variational-autoencoders-are-not-
autoencoders//.
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Then, the optimal transport distance is defined as

J— 3 , /
OT.(P,Q) = 'YEIII}ExI oy [e(z, )] .

This can equivalently be written as
OTC(P, Q) = glellI"l EJ:NQEx’N’y(x’|x) [C(il], $/)] s

where v can be thought of as a conditional distribution specifying how an element of probability
mass at x should be moved and spread over the points x’. Specified this way, each element of T’

should satisfy [ ~(z'|z)q(z)dx = p(z’). In the generative modelling setting, we thus have
OT.(P%, Qx) = min By Bornn (w1 (ol 27)]

In practice, this minimisation problem cannot be solved directly: given a candidate conditional
distribution ~(z'|z) it is not practically possible to verify whether or not [ ~(2'|z)gx (z)dx =

p% (') since only samples from Qy are available and the density p% () is intractable.

Tolstikhin et al., 2018 proved the following result, giving a handle on this problem: If the
generator p?(z|z) is deterministic, any valid v can be written as a composition v(z'|z) =
[ p%(2'|2)q®(z|x)dz where ¢%(z|z) is a conditional distribution satisfying [ ¢%(z|z)q(z)dz =
p(z). That is, any 7 can be ‘factored through’ the latent space by introducing an encoder
q®(z|r), replacing the constraint of distribution matching in the data-space ([ v(z'|z)qx (z)dz =
p% (2')) with distribution matching in the latent space ([ ¢*(z|z)gq(x)dx = p(2)).

Intuitively, Py is a different parametrisation of Pg} and so if Q) x pushed through the encoder
results in Pz, pushing () x through the composition of the encoder and generator will result
in P)a(. While it is clear that the composition of any such encoder and generator induces a
valid =, it is non-trivial that any v can be decomposed as such. This is proved in Theorem 1
of Tolstikhin et al., 2018.

Writing Q7 = [ Q7 x=.q(x)dz to be the latent space distribution obtained by pushing the
data through the encoder and ¢ for the deterministic generator yields the following alternative

statement of the optimal transport distance in the LVM setting:

OT.(P%,Qx) = | min_ EpgyEangy e, [e(@,9(2))]- (2.6)

Qz1x:Qz=Pz
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Again this optimisation problem is not feasible to solve due to the hard constraint, but it can be

made computationally feasible by relaxing the constraint to obtain the WAE objective

Z|X=x

Lyae(0:6) = EonoyE, g [ela.9°(2)| + 2D (Q%, Pz), (2.7)
N—————

where D is some divergence, A is a positive scalar and the encoder is given parameter ¢.
While the generator is required to be deterministic, the encoder may be deterministic or
stochastic (Rubenstein et al., 2018c). For general choices of A and D, infy %{,QE(G, ¢) is
neither an upper nor lower bound on the original objective OTC(PQ ,Qx), but a heuristic

approximation due to the relaxation of the constraint.

Term (i) of the WAE loss is simply a reconstruction loss, corresponding to the average
distance between data sampled from ) x and the reconstruction obtained by pushing through
the encoder and generator. This is therefore simple to estimate and optimise with respect
to the parameters ¢ and #. Term (ii) is potentially challenging to estimate depending on
the choice of D. Tolstikhin et al., 2018 propose two choices for D which can be estimated
based on samples from Py and Q‘g: the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) which can be estimated directly, leading to WAE-MMD, and a GAN style estimation
of the Jensen-Shannon divergence by introducing an additional discriminator to obtain a
lower bound on the divergence, leading to WAE-GAN.

Estimating a divergence between P, and Q% using sample-based methods does not make
use of a significant degree of structure that is present in the problem. Py is typically chosen
to be a simple distribution with known density. While Q% may be complex, its density can
be decomposed as ¢?(z) = E;w ¢?(z|z) where ¢®(z|x) is also typically chosen to be simple
(e.g. Gaussian) and Qx can be sampled. The main contribution of Chapter 3 is to propose
and analyse an estimator making use of this structure for the case that D in (ii) is chosen to

be an f-divergence.

2.7 Conclusion

This chapter introduced key ideas in the literature of generative modelling with LVMs that
are relevant to this thesis, in particular the following two chapters. Next, Chapter 3 presents
learning theoretic results for divergence estimation in the latent spaces of autoencoders.
Following that, Chapter 4 presents identifiability results for ICA models, a type of LVM.
Chapter 5, the third and final main chapter of research content, concerns causality and is
less relevant to the ideas presented here, though there are strong connections between more

general probabilistic modelling and causality.



Chapter 3
Latent Space Learning Theory

This chapter presents and analyses RAM-MC, an f-divergence estimator that is applicable to
estimating divergences between particular distributions in the latent spaces of autoencoder
models such as Variational Autoencoders and Wasserstein Autoencoders. Learning theoretic
analyses of sampled-based f-divergence estimators usually yield poor rates of convergence
unless strong assumptions are made. By exploiting the natural structure present in the

autoencoder setting, RAM-MC exhibits fast rates under mild assumptions.

This work is an important contribution to the literature for two main reasons. First, it
demonstrates that the f-divergences considered can be estimated with a practical number
of samples. Second, it provides a rigorous foundation to heuristically proposed methods
for estimating and minimising Total Correlation and Mutual Information in the context of

Variational Autoencoders.
The main technical content of this chapter has been published in the paper:

Paul K Rubenstein, Olivier Bousquet, Josip Djolonga, Carlos Riquelme and Ilya
Tolstikhin. “Practical and Consistent Estimation of f-Divergences”. Advances in
Neural Information Processing Systems (NeurIPS). 2019

3.1 Introduction

The estimation and minimisation of divergences between probability distributions based on
samples are fundamental problems of machine learning. The previous chapter discussed gen-
erative modelling, but there are numerous other applications across the literature. For exam-
ple, in variational inference, an intractable posterior p(z|z) is approximated with a tractable
distribution ¢(z) chosen to minimise the Kullback-Leibler (KL) divergence Dkr,(q(z), p(z|z)).

The mutual information between two variables I(X,Y’), core to information theory and
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Bayesian machine learning, is equivalent to Dk, (Px y, Px Py ). Independence testing often
involves estimating a divergence D(Py y, Px Py ), while two-sample testing (does P = Q7)
involves estimating a divergence D(P, Q). Additionally, one approach to domain adaptation,
in which a classifier is learned on a distribution P but tested on a distinct distribution @),
involves learning a feature map ¢ such that a divergence D (¢4 P, p»Q) is minimised, where

¢4 represents the push-forward operation (Ben-David et al., 2007; Ganin et al., 2016).

This chapter concerns the estimation of f-divergences, introduced in Section 2.4.2. A
significant body of work exists studying estimation of D;(P,Q) for general probability
distributions P and ). While the majority of this focuses on a-divergences and closely related
Rényi-a divergences (Poczos and Schneider, 2011; Singh and Poczos, 2014; Krishnamurthy et
al., 2014), many works address specifically the KL-divergence (Perez-Cruz, 2008; Wang et al.,
2009) with fewer considering f-divergences in full generality (Nguyen et al., 2010; Kanamori
et al., 2012; Moon and Hero, 2014a; Moon and Hero, 2014b). Although the KL-divergence is
the most frequently encountered f-divergence in the machine learning literature, in recent
years there has been growing interest in other f-divergences (Nowozin et al., 2016; Zhang
et al., 2019), in particular in the variational inference community where they have been
employed to derive alternative evidence lower bounds (Li and Turner, 2016; Dieng et al.,
2017; Chen et al., 2018a).

The main challenge in computing D;(P, Q) is that it requires knowledge of either both
densities p(x) and ¢(z), or the density ratio p(z)/q(x). In studying this problem, assumptions
of differing strength can be made about P and (). In the weakest agnostic setting, one may
be given only a finite number of i.i.d. samples from the distributions without any further
knowledge of their densities. As an example of stronger assumptions, both distributions may
be mixtures of Gaussians (Hershey and Olsen, 2007; Durrieu et al., 2012), or one may have
access to samples from @) and have full knowledge of P as in e.g. model fitting (Hero et al.,
2001; Hero et al., 2002).

Most of the literature on f-divergence estimation considers the weaker agnostic setting. The
lack of assumptions makes such work widely applicable, but comes at the cost of needing
to work around estimation of either the densities p(x) and ¢(z) (Singh and Poczos, 2014;
Krishnamurthy et al., 2014) or the density ratio p(x)/q(z) (Nguyen et al., 2010; Kanamori
et al., 2012) from samples. Both of these estimation problems are provably hard (Tsybakov,
2009; Nguyen et al., 2010) and suffer rates—the speed at which the error of an estimator
decays as a function of the number of samples N—of order N~/ when P and Q are defined
over R? unless their densities are sufficiently smooth. This is a manifestation of the curse
of dimensionality and rates of this type are often called nonparametric. One could hope
to estimate Dy(P, Q) without explicitly estimating the densities or their ratio and thus

avoid suffering nonparametric rates, however a lower bound of the same order N~V is
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known for a-divergences (Krishnamurthy et al., 2014), a sub-family of f-divergences. While
some works considering the agnostic setting provide rates for the bias and variance of the
proposed estimator (Nguyen et al., 2010; Krishnamurthy et al., 2014) or even exponential tail
bounds (Singh and Poczos, 2014), it is more common to only show that the estimators are
asymptotically unbiased or consistent without proving specific rates of convergence (Wang
et al., 2009; Poczos and Schneider, 2011; Kanamori et al., 2012).

Motivated by recent advances in machine learning, this chapter considers a setting in which
structural assumptions are made about the distributions. Although the assumptions are
strong, they are naturally satisfied in the setting of autoencoders with probabilistic encoders,

including Wasserstein Autoencoders and variants of Variational Autoencoders.

3.1.1 Summary of setting and results

Let X and Z be two finite dimensional Euclidean spaces. This chapter studies estimation of
the divergence Df(Qz, Pz) between two probability distributions Pz and @z, both defined
over Z. It is assumed that Pz has known density p(z), while @z with density ¢(z) admits
the factorization ¢(z) = [ ¢(z|x)q(z)dz. Access to independent samples from the distribution
Qx with unknown density ¢(x) and full knowledge of the conditional distribution Q| x
with density ¢(z|x) are assumed. In the language of autoencoders, X and Z would be data
and latent spaces, Pz the prior, Qx the data distribution, )z x the encoder, and ()7 the
aggregate posterior, though the theory presented in this work does not apply exclusively to

this setting.

Given independent observations X7, ..., Xy from Qx, the goal is to estimate D;(Qz, Pz).
The main contribution of this chapter is to use the finite mixture Qg = % Zg\il Qz|x,
as a surrogate for the continuous mixture @z, to use this to approximate Df(Qz, Pz)
with D ( A]ZV , Pz), and to theoretically study conditions under which this approximation is

reasonable.

D f(QJZV , Pz) is denoted the Random Mizture (RAM) estimator and rates at which it converges
to D¢(Qz,Pz) as N grows are derived. Similar guarantees are also provided for RAM-
MC; a practical Monte-Carlo based version of RAM. By side-stepping the need to perform
density estimation, one obtains parametric rates of order N~7, where v is independent of
the dimension (see Tables 3.1 and 3.2), although the constants may still in general show
exponential dependence on dimension. This is in contrast to the agnostic setting where both

nonparametric rates and constants are exponential in dimension.

These results have immediate implications to existing literature. For the particular case
of the KL divergence, a similar approach has been heuristically applied for estimation of
mutual information (Poole et al., 2018) and total correlation (Chen et al., 2018b) in the
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context of Variational Autoencoders. Both works have application to representation learning,
the latter in particular to disentangled representation learning. The results presented in
this chapter thus provide strong theoretical grounding for these existing methods through
rigorous analysis lacking in the original proposals. In these works, the quantities being
estimated and minimised are Dk, (Qz x,QzQx) and Dk1,(Qz,[; Qz,) respectively. Each
of these quantities can be rewritten in terms of Dxy,(Qz, Pz) and so RAM-MC can be used
to estimate them. In doing so, one recovers the estimators proposed by the authors, thus
results concerning the convergence properties of RAM-MC transfer to results about their

estimators. See Section 3.5 for details.

Moreover, while this work considers estimation of D(Q z, Pz), minimisation of this quantity is
the key challenge in the training of Wasserstein Autoencoders (see Section 2.6.3). Preliminary
experiments not included in this thesis did not find the proposed RAM-MC estimator to lead
to improved training over existing methods, but future research could investigate this more

thoroughly.

Section 3.2 presents known results from the literature on f-divergences and basic results
in learning theory that are used in the proofs of novel results presented in this chapter.
Following this, Section 3.3 introduces the RAM and RAM-MC estimators and presents the
main theoretical results, including rates of convergence for the bias (Theorems 3.11 and 3.12)
and tail bounds (Theorems 3.13 and 3.14). Section 3.4 validates the results in both synthetic
and real-data experiments. Section 3.5 discusses applications of these results to the literature,
and Section 3.6 concludes. The results presented in Section 3.3 have long proofs; short sketches

are presented in the main text, while the full proofs can be found in Appendix A.

3.2 Background results

This section presents basic results from the literature that are used in the proofs of novel
results in this chapter. These include bounds relating different f-divergences, closed-form
expressions for some f-divergences in the case of Gaussian probability distributions, and

basic concentration inequalities. Proofs are omitted for referenced results.

3.2.1 f-divergence bounds

The results presented here are inequalities relating the values taken by f-divergences. These
are mostly used in the proof of Theorem 3.11. A comprehensive treatment of the relationships
between different f-divergences can be found in Tsybakov, 2009, from which many of the

results below are taken.
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Lemma 3.1 (Lemma 2.4, Tsybakov, 2009). Let A and B be probability distributions. Then,

H?(A, B) < KL(A, B).

Lemma 3.2 (Pinsker’s inequality, Lemma 2.5, Tsybakov, 2009). Let A and B be probability

distributions. Then,
/1
TV(A,B) < §KL(A,B).

Lemma 3.3 (Lemma 2.7, Tsybakov, 2009). Let A and B be probability distributions. Then,

KL(A, B) < XUAB) _ 1 <2(4, B).

Lemma 3.4 (Theorem 2, Osterreicher and Vajda, 2003). Let A and B be probability distri-
butions. For any value 8 > 0, there exists a scalar ¥ (B) such that

Dy, (A, B) < %(B)TV(4, B).

1
Lemma 3.5. Suppose that DJ% satisfies the triangle inequality. Let An be a sequence of
probability distributions, and let B and C' be fixed probability distributions. Then for any A > 0,
1

Df (AN,C) —Df (B,C) < (1 —f—)\)Df (AN,B) + \

D¢ (B,C).
If, furthermore, Dy (AN, B) = O (ﬁ) for some k > 0, then

Dy (An.C) — D; (B,C) = O (Nllm) .

1
Proof. The first inequality follows from the triangle inequality applied to D ]% (An,C), and
the fact that 2vab < Aa + % for a,b, A\ > 0. The second inequality follows from the first by
taking A = N5, O

3.2.2 Closed-form expressions for f-divergences between Gaussians

The closed-form expressions for f-divergences presented here are used for the experiments in
Section 3.4, as well as to understand cases in which the assumptions of all results hold in

practical scenarios, discussed at the end of Section 3.3.
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Lemma 3.6 (Exercise 1.6.11, Pardo, 2005). The KL-divergence between two d-variate

Gaussians is

|22

1
KL (N (11, $1), N (pt, £2)) = 3 (tr (25121) + (2 — 1) "85 (2 — p1) — d + log |E1|) )

Lemma 3.7 (Exercise 1.6.14, Pardo, 2005). The squared Hellinger (H?) divergence between

two multivariate Gaussians is

H2 (N (11, 51), N (2, 22))

det(21)1/4 det(2q) /4 1 Y14 3o\ !
=1- ) (1/22) exp —g(m — p2)" (122> (11— p2) ¢
det (721'522>

Lemma 3.8 (Lemma 1, Nielsen and Nock, 2014). Suppose that P; and P, are members
of the same exponential family of distributions with log-partition function F and natural

parameters 01 and Oy respectively. Then

XQ(Pl,PQ) — F(202—01)—(2F(02)—F(61)) _ 1

and is finite provided that 205 — 01 belongs to the natural parameter space. In the particular

case of Gaussians,

det (25! 1, ~
X* (N (1, B N (2, 32)) = &) exp (2;/221 Lig — ph 3 1:“1)
Vdet(255 " — £ det(S7)

1 _ RIS SN NN _
X exp (—4(2u’122 P S (G ) (28 i = 3y 1#2)) - L

3.2.3 Concentration inequalities

Concentration inequalities provide bounds on the probability with which a random variable
deviates from its expectation. Here two such results are outlined; a comprehensive study can

be found in Boucheron et al., 2013. One basic result is Chebyshev’s inequality.

Lemma 3.9 (Chebyshev’s inequality, Section 2.1, Boucheron et al., 2013). Let X be a

random variable with finite expectation and variance. Then, for anyt > 0,

P(X —EX|>t) <

Var(X)
P

A much stronger concentration result, McDiarmid’s inequality (sometimes called the bounded
difference inequality), provides an exponential bound if the bounded difference property is
satisfied. This result forms the basis of the proof of Theorem 3.13.
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Theorem 3.10 (McDiarmid’s inequality, Theorem 6.2, Boucheron et al., 2013). Suppose
that X1,...,Xn € X are independent random variables and that ¢ : XN — R is a function.
If it holds that for alli € {1,...,N} and x1,...,xN, Xy,

|o(21, .o L1, Ty T 1y -+, EN) — AT, - o Tim1, Tt Tig 1, - - -, TN)| < ¢,

then

942
P(|¢(X1,..., Xn) — E| > t) < 2exp (ﬁ’}) .

i=16G
3.3 Random mixture estimator and convergence results

This section introduces the proposed f-divergence estimator and presents theoretical guaran-
tees for it. The existence is assumed of probability distributions Pz and ()7 defined over Z
with known density p(z) and intractable density ¢(z) = [ ¢(z|z)q(z)dz respectively, where
Qz|x is known. Qx defined over X is unknown, but a set of i.i.d. samples XN ={Xy,...,Xn}

from @Qx are given. The ultimate goal is to estimate the f-divergence

q(z)
D¢(Qz, Pz Z/f<>pzdz.
£ ) v (2)
This cannot be directly computed since @z is unknown. Substituting )z with a sample-

based finite mixture QA]ZV = % Zfil Qz|x; leads to the proposed Random Mizture estimator
(RAM):

Dy (QY, Pz) = Df(% > QZ|XZ-7PZ>- (3.1)

Although QAg = QJZV (XN ) is a function of the i.i.d. samples XN this explicit dependence is
omitted for notational brevity. The true f-divergence D¢(Qz, Pz) is a real-valued scalar, but

Dy (Qg , P7) is a random variable whose randomness is inherited from the i.i.d. samples.

The rest of this section is devoted to the exploration of conditions under which D f(Qg , Pz)
is a ‘good’ estimator of D;(Qz, Pz). More formally, conditions are established under which
the estimator is asymptotically unbiased, concentrates to its expected value and can be

practically estimated using Monte-Carlo sampling.

3.3.1 Convergence rates for the bias of RAM

The following proposition shows that D f(Qg , Pz) upper bounds D¢(Qz, Pz) in expectation
for any finite IV, and that the upper bound becomes tighter with increasing N. It follows that



30 Latent Space Learning Theory

the bias of RAM, the difference between its expectation and the true value of the quantity

being estimated, is positive and decreasing in N.

Proposition 1. Let M < N be integers. Then
Df(Qz, Pz) <Exn[Ds(QF,Pz)] < Exm[Ds(QY,Pz)]. (3.2)

Proof sketch (full proof in Appendiz A.1). The first inequality follows from Jensen’s inequal-
ity, using the facts that f is convex and QQz = Exw~ [QJZV ]. The second holds since a sample
XM can be drawn by sub-sampling (without replacement) M entries of XV, and by applying

Jensen’s inequality again. d

As a function of N, the expectation of RAM is a decreasing sequence that is bounded below.
By the monotone convergence theorem, the sequence converges. Theorems 3.11 and 3.12 below
give sufficient conditions under which the expectation of RAM converges to D;(Qz, Pz) as
N — oo for a variety of fs and provide rates at which this happens, summarised in Table 3.1.
The two theorems are proved using different techniques and assumptions. These assumptions,

along with those of other methods (see Table 3.3) are discussed in Section 3.3.5.

Theorem 3.11 (Rates of the bias). If Ex~qy [x*(Qzx,Qz)] and KL (Qz, Pz) are finite
then the bias Exx [D;(QY, Pz)] — Dy (Qz, Pz) decays with rate as given in the first row of
Table 3.1.

Proof sketch (full proof in Appendiz A.2). The proofs vary slightly for each choice of f but
there are two key steps. The first is to bound the bias in terms of Exw [Df(QN, Qz)].
The second step is to bound Exn [D(Q%, Q)] in terms of Exn [x*(QY,Qz)]. From the
definition of the x? divergence, the latter quantity is the variance of the average of N

i.i.d. random variables and therefore decomposes as Ex~qy [x*(Qzx,Qz)]/N = O(N™1).

For KL, the first bound is an equality provided that KL (Qz, Pz) is finite, and the second
follows from the fact that KL < x? (Lemma 3.3). For TV, the first bound holds because it is
a metric, after which Pinsker’s inequality (Lemma 3.2) can be used to upper bound in terms
of the rate for the KL.

For Dy,, which includes H? and JS as special cases, the first bound is derived by applying
Lemma 3.5, using the property that D}g 2
and Bousquet, 2005). The rate for H? can then be related to that of the KL by the relation
H? < KL (Lemma 3.1), while for the other Dy, (including JS), it can be related to that of

TV via the relation Dy, < ¢(8)TV for some scalar ¢(3) (Lemma 3.4). O

satisfies the triangle inequality for 5 > % (Hein

Theorem 3.12 (Rates of the bias). If Exwqy.z~p,[¢*(Z|X)/p*(Z)] is finite then the bias
Exw~ [Df(Qg,PZ)] — D¢ (Qz, Pz) decays with rate as given in the second row of Table 3.1.
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Dy Dy
-divergence KL T 2 H? s “
f & VX IS 1<B<1l  1<B<oo  —1<a<l
1 1 1 1 1
Theorem 3.11 N1 N™2 - N™2 N4 N1 N1 -
_1 1 1 1 1 1 _atl
Theorem 3.12 N 3logN N2 N-!' N5 N 3logN N~3 N™2 N~ o+5

Proof sketch (full proof in Appendiz A.J). The exact proof is different for each choice of f.
For the y?-divergence, this bias can be bounded directly in terms of the assumed finite

expectation Ex~qy,z~P, [q4(Z’X)/P4(Z)] .

For all other divergences, the proofs have the following general outline. A convex function lies
above any supporting hyperplane, and so f(u +t) > f(u) + f/(u)t for any u,t in the scalar
case. Taking a = u, b = u+1t and rearranging yields the inequality f(a)— f(b) < (a—b)f'(a).
Denoting by gy (z) the density of Q]ZV

Exv [D(QF, P2)] = Dy (Qz, Pz)

— ExnEp, _f(q;f ] -2 [r(55)]
~ ExvEr, [ (2 ) ()]

<motn [R5 (55)

< \IEXNEPZ [( ( )( ) (2)> NEXNEPZ [fl? <q;v(g)ﬂ

where the second upper bound follows by Cauchy-Schwartz. The left term can be bounded in

terms of Ex~qy.z~p, [¢*(Z|X)/p*(Z)], while the right hand term is bounded by controlling
f.

Subtle treatment is required for the case that f’ diverges as the density ratio gn(z)/p(z)
approaches zero. In this case, the bias is written as a sum of integrals over separate ranges

of values for Gy (z)/p(z). For small values of gn(z)/p(2), the integral is controlled directly,

while for sufficiently large values the above inequalities are used. O

3.3.2 Tail bounds for RAM

Theorems 3.11 and 3.12 describe the convergence of the expectation of the random variable
Dy (Qg , Pz). In practical scenarios, the spread of its distribution will also be of interest,

because evaluation based on a single set of i.i.d. samples X*V corresponds to a single observation
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Table 3.2 Rate (N of high probability bounds for Dy (QY, P7) (Theorem 3.13).

Df/3 Dy,

. 2 2
f-divergence KL TV x* H JS l<p<l 1<B<oo I<a<i

_1 _1 _1 _1 _1 _1 1-3o
P(N) N7 8logN N2 N2 - N~ 6log N N™8 N72 N a+5

of the random variable Dy (QY, Pz). If the spread were large, then even if the bias were
small, one could not confidently conclude that a single draw of Dy (Qg , P7) would be close to
the true divergence Ds(Qz, Pz). Fortunately, the following result shows that RAM rapidly

concentrates to its expectation.

Theorem 3.13 (Tail bounds for RAM). Suppose that x> (QZW PZ> < C < oo forall z and
for some constant C'. Then, the RAM estimator Df(Q]ZV, Pz) concentrates to its mean in the
following sense. For N > 8 and for any § > 0, with probability at least 1 — § it holds that

D1(QY., P2) — Exn [Dr(QY. P))| < K - w(N) /log(2/9).
where K is a constant and ¥(N) is given in Table 3.2.

Proof sketch (full proof in Appendiz A.5). These results follow by McDiarmid’s inequality
applied to D f(Qg , P7z) (Theorem 3.10). To apply it, it needs to be shown that RAM viewed
as a function of X" exhibits the bounded differences property. That is, when changing a
single coordinate X; of XV = (X1, Xo,..., Xy), the value of Df(Qg(XN), Py) changes by
at most a constant ¢; y that may depend on N. This constant is shown to be O(N~1/2¢)(N))

for all values of ¢, from which the result follows directly from McDiarmid.

Proof of the bounded difference property proceeds similarly to the proof of Theorem 3.12.
Let XY and X' be two vectors that differ only in their first coordinate, so that X; # X7,
but X; = X/ for all j > 1. Denote by gy and ¢y the densities of Q% (X") and Q]ZV(XN/)
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respectively. Then,

Dy (QY(XN). Pz) - Dy (QF (XN'), Pz)

- (5] (56
e (85 (4)
con [0 (55

IN

_ |En, l(llvqum; - )Q(ZIX{)>2] \/EPZ I (q}i())ﬂ
|

1 q(2X1) — q(2] X))\ \/
o (ALY

A similar bound can be derived by swapping the role of X~ and X /, thus the absolute

value of the difference is upper bounded by the maximum of these bounds. By symmetry,
it suffices to control one of them. The left hand term is controlled by the assumption that
X2 (Q Zlas PZ) < C < oo. The right hand term requires separate treatment for each choice of
f. Similar to the proof of Theorem 3.12, special care is required for the case that f diverges

as the density ratio ¢y (2)/p(z) goes to zero. O

3.3.3 Practical estimation with RAM-MC

In practice it may not be possible to evaluate D f(@g , P7) analytically as this would require
solving a potentially complicated integral. However, since both densities Gy (z) and p(z) are
known, Monte-Carlo (MC) sampling can be used to estimate the integral. In particular,
consider importance sampling with proposal distribution 7(z|X"), where 7 can depend on
the sample X, If 7(2|X") = p(2) this reduces to normal MC sampling. We arrive at the
RAM-MC estimator based on M i.i.d.samples ZM := {Z;,..., Zy;} from 7(z|XV):

M AN oy L (v (Zm)\ | P(Zm)
Dy (Qz, Pz) = Mmz::lf ( o2 ) XY (3.3)
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Theorem 3.14 (RAM-MC is unbiased and consistent). For any proposal distribution T,
RAM-MC is unbiased:

If the hypothesis of Theorem 3.13 holds and moreover either of the following conditions are
satisfied:

(2| XN) =
(i) EQX/f< >2p )dz < o0,
o (05 <
(z\XN>:q
i B [1 (%5 > (i) b <
EQX/( & &) g(2|X)dz < oo,

then denoting by () the rate given in Table 3.2, the variance of RAM-MC decays as
Vargw xn [D}(QY, P7)| = 0 (M71) + 0 (4(N)?) .

Proof sketch (proof in Appendix A.6). For unbiasedness, observe that

A

EZM»XND}VI(Q%PZ) = Exn |:EZMi~L'i»7r(Z|XN DM( 5 PZ)

Q
— Exn [EZNW(Z|XN)f ( ) IXN }
=Exn~ [Df (QgJDZ)} ‘

By the law of total variance, the variance can be decomposed as
Val'xN7zM [D}\J] = EXN [Var [_ﬁ}\/l ‘XN]] + VarXN [Df(QJZV’ PZ)] .

The first of these terms is O(M 1) by standard results on MC integration, subject to the

finiteness assumptions. The concentration results of Theorem 3.13 imply bounds on the
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Table 3.3 Rate of bias for other estimators of Dy(P, Q).

. Dy Dy,
-divergen KL T L S g -
f-divergence VX IS 1<t 1<p<oo —l<a<l
—3s
Krishnamurthy et al., 2014 - - - - - - - N~ 3 +N2s+d
Nguyen et al., 2010 N"3 - - - - - - -
_1 _1 _1 1 1 1 1
Moon and Hero, 2014a N2 - N2 N2 N 2 N2 N2 N2

second term, since for a random variable X,

VarX = E(X — EX)?
_/ (X —EX)?>t)dt
_/ (1X —EX| > Vi) dt.

For the second term, observe first that the tail bound of Theorem 3.13 can be rewritten as

P (‘Df (Q¥.Ps) ~ED; (QQ,PZ)‘ > K(N)y/log 3) <.

-1
Taking v/t = K1(N)/log 2 implies § = 2¢¥?%(™)? and so plugging into the above formula

for the variance yields

VarXN [Df (Qg,Pz>} < /OOO 26Xp (K'QLZJl(Wt) dt
= 2K%)(N)?
=0 (V(N)?).

O]

In general, a variance better than O(M~!) is not possible using importance sampling.
However, the constant and hence practical performance may vary significantly depending on
the choice of . Through Chebyshev’s inequality (Lemma 3.9) it is also possible to derive
confidence bounds for RAM-MC of the form similar to Theorem 3.13, but with an additional
dependence on M and the worse dependence on & of 1/4 instead of 1/log(2/9).

3.3.4 Discussion about assumptions

Although the data distribution @ x will generally be unknown, in some practical scenarios

such as autoencoder models, Pz may be chosen by design and ()7 x learned subject to
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architectural constraints. In such cases, the assumptions of Theorems 3.12, 3.13 and 3.14 can

be satisfied by making suitable restrictions (we conjecture also for Theorem 3.11).

For example, a common architectural choice would be to take Pz = N (0, 1) and @ 71X =
N (u(X),X(X)) with X diagonal. If furthermore there exist constants K, e > 0 such that
|u(X)|| < K and ¥;4(X) € [¢, 1] for all ¢, then the assumptions of Theorems 3.12, 3.13 and
3.14 hold.

Indeed, x? (Qz|z» Pz) can be written in terms of x(X) and X(X) and is finite for all z € X
by Lemma 3.8. Since both x(X) and (X)) take value in compact sets, it follows that there
exists C' < oo such that XQ(QZ‘QC, Pz) < C and thus the setting of Theorem 3.13 holds.

A similar argument based on compactness shows that the density ratio is uniformly bounded
in z and x, so that ¢(z|z)/p(z) < C’ for some C' < oo for all values of z and z. It
follows that the conditions of Theorems 3.12 and 3.14 hold. For the former this is because
[ ¢*(z]x)/p*(2)dP(z) < C'* < o0, and for the latter this is because the terms inside the

integrals of condition (i) are bounded and thus the norms and expectations are finite.

The existence of such an € and K are not particularly strong assumptions in practice, since
numerical stability often requires the diagonal entries of 3 to be lower bounded by a small
number (e.g. 107°%), and if X is compact (as is the case for images) then such a K is

guaranteed to exist; if not, choosing K very large yields an insignificant constraint.

We conjecture that the strong boundedness assumptions on p(X) and X(X) also imply the
setting of Theorem 3.11 for which it is required that Ex [x*(Qzx,Qz)] < oco. Since the
divergence )z explicitly depends on the data distribution, this is more difficult to verify than
the conditions of Theorems 3.12 and 3.13. The crude upper bound provided by convexity

Ex[x*(Qzx,Q2)] < ExEx [x*(Qzx,Qzx")]

means that finiteness of the right hand side would imply that the assumptions of Theorem
3.11 hold. This would be the case, for instance, if [|(X)| < K and %;;(X) € [ +¢,1] for

all 7, however this is a rather strong and unrealistic assumption on ¥(X).

3.3.5 Summary

All of the rates presented for RAM and RAM-MC are independent of the dimension of the
space Z over which the distributions are defined. However, the constants may exhibit some
dependence on the dimension. Accordingly, for fixed N, the bias and variance may generally

grow with the dimension.
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Table 3.3 summarises the rates of bias for some existing methods. In contrast to the proposals
of this work, the assumptions of these estimators may in practice be difficult to verify. For the
estimator of Krishnamurthy et al., 2014, both densities p and ¢ must belong to the periodic
Hélder class of smoothness s (see Definition 1 of Krishnamurthy et al., 2014), be supported on
[0, 1]d and satisfy 0 < m1 < p,q < 19 < oo on the support for known constants 71, 72. For that
of Nguyen et al., 2010, the density ratio p/q must satisfy 0 < 1 < p/q < n2 < oo and belong
to a function class G whose bracketing entropy (a measure of the complexity of a function
class, see Section III.A of Nguyen et al., 2010) is bounded. The condition on the bracketing
entropy is quite strong and ensures that the density ratio is well behaved. For the estimator
of Moon and Hero, 2014a, both p and ¢ must have the same bounded support and satisfy
0 <n <p,q<me < oo on the support. p and ¢ must have continuous bounded derivatives of
order d (which is stronger than the assumptions of Krishnamurthy et al., 2014), and f must
have derivatives of order at least d. Observe that the bounded support assumption does not

hold in the case of autoencoders with Gaussian priors or encoders.

In summary, the RAM estimator D;(QY, Pz) for D¢(Qz, Pz) is consistent since it concen-
trates to its expectation Exn [Df(Qg, Py)], which in turn converges to D¢(Qz, Pz). It is
also practical because it can be efficiently estimated with Monte-Carlo sampling via RAM-
MC.

3.4 Empirical evaluation

The previous section discussed theoretical properties of the proposed RAM-MC estimator.
This section demonstrates its empirical performance. First, its behaviour is probed in a
synthetic, controlled setting where all distributions and divergences are known. After this, a
more realistic setting is considered in which the goal is to estimate a divergence between the

aggregate posterior (Jz and prior Py in pretrained autoencoder models.

3.4.1 Synthetic experiments

The aim is to investigate the behaviour of the RAM-MC estimator for various d = dim(Z2)
and f-divergences in a synthetic controlled setting. This is done by considering a setting in
which Q%, parametrised by a scalar A\, and Pz are both d-variate Gaussians for d € {1,4,16}.
In this case D f(Qg, Pz) can be computed analytically for the KL, x?, and H? divergences

(see Section 3.2.2). These analytic values can be used as baselines to compare with the
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estimates obtained through use of RAM-MC. Specifically, take

Py = N(O, Id),
Q)Z\|X:x =N (A)\x + by, €2Id> )
Px =N (0, Iy) ,

where the constant € = 0.5.1 This results in Q% = N (by, A\A] + €21,). by was chosen by
randomly sampling a vector v from the unit sphere and setting by = Av. A, was chosen
by randomly sampling a (d,20)-dimensional matrix Ay with i.i.d. Gaussian entries and
normalising it to have unit Frobenius norm, taking A; to be the similarly sized matrix with 1

on the main diagonal and 0 elsewhere, and setting Ay = %Al + AAp.

Figure 3.1 shows the behaviour of RAM-MC with N € {1,500} and M =128 compared to
the ground truth as A € [—2,2] is varied. The columns of Figure 3.1 correspond to different
dimensions d € {1,4,16}, and rows to the KL, x? and H? divergences, respectively. For
each column, the values of Ag and v were randomly sampled so that the distributions being
compared are the same within columns and different between columns. Two other baseline
methods are included for comparison. First, a plug-in method based on kernel density
estimation (Moon and Hero, 2014a). Second, and only for the KL case, the M1 method of

Nguyen et al., 2010 based on density ratio estimation (see Section 2.5).

To produce each plot, the following was performed 10 times, with the mean result giving
the bold lines and standard deviation giving the error bars. First, N points X" were
drawn from Qx. Then M=128 points Z* were drawn from Q]ZV and RAM-MC (Equation
3.3) was evaluated. Using Qg as the proposal distribution resulted in significantly better
results compared to using Pz as the proposal distribution for all divergences. For the plug-
in estimator, the densities §(z) and p(z) were estimated by kernel density estimation with
500 samples from @z and Pz respectively using the default settings of the Python library
scipy.stats.gaussian_kde. The divergence was then estimated via MC-sampling using
128 samples from )z and the surrogate densities. Note that this density estimation approach
ignores all of the structure present, and thus demonstrates the poor performance of an agnostic
method. It would also be possible to exploit part of the problem structure and use one of the
known density p(z) or @g , rather than estimating both by density estimation; these cases
led to performance better than the naive density estimation approach, but still significantly
worse than RAM-MC and were omitted from Figure 3.1 to avoid clutter. The M1 estimator
involves solving a convex linear program in /N variables to maximise a lower bound on the

true divergence, see Nguyen et al., 2010 for more details. Although the M1 estimator can

"Multiple values of € were experimented with, and although changing its value does change the scale of the
plots in Figure 3.1, the general shapes and conclusions drawn from the results are the same.
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[H M1 estimator, N=500 &—a Plug-in estimator, N=500 % RAM-MC estimator, N=1 4L RAM-MC estimator, N=500 —_— Truth]

d=1 d=4 d=16

10!

H2 1.0
0.5

0.0

Figure 3.1 Results of synthetic experiments, Section 3.4.1. Estimating
Dy (N (pa, X5), N(0,14)) for various f, d, and parameters py and Xy indexed by A € R.
Horizontal axis correspond to A € [~2,2], columns to d € {1,4,16} and rows to KL, x?,
and H? divergences respectively. Blue are true divergences, black and red are RAM-MC
estimators (Equation 3.3) for N € {1,500} respectively, green are M1 estimator of (Nguyen
et al., 2010) and orange are plug-in estimates based on Gaussian kernel density estimation
(Moon and Hero, 2014a). N = 500 and M = 128 in all the plots if not specified otherwise.
Error bars depict one standard deviation over 10 experiments.
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in principle be used for arbitrary f-divergences, its implementation requires hand-crafted

derivations that are supplied only for the KL in Nguyen et al., 2010.

The results of this experiment empirically support Proposition 1 and Theorems 3.11, 3.12,
and 3.14: (i) in expectation, RAM-MC upper bounds the true divergence; (ii) increasing
N from 1 to 500 clearly decreases both the bias and the variance of RAM-MC. When the
dimension d increases, the bias for fixed N also increases. This is consistent with the theory
in that, although the rates are independent of d, the constants are not. By side-stepping
the issue of density estimation—that is, samples are drawn at the level of X’ so that @z is
approximated as a mixture of known components, rather than performing kernel density
estimation based on samples at the level of Z—RAM-MC performs favourably compared to
the plug-in and M1 estimators, more so in higher dimensions (d = 16). In particular, the
shape of the RAM-MC curve follows that of the truth for each divergence, while that of the
plug-in estimator does not for larger dimensions. In some cases the plug-in estimator can

even take negative values due to the large variance.

3.4.2 Real-data experiments

To investigate the behaviour of RAM-MC in a more realistic setting, this experiment con-
siders the estimation of divergences in the context of Variational Autoencoders (VAEs) and
Wasserstein Autoencoders (WAESs), introduced in Section 2.6. Similar to the synthetic exper-
iments, we are purely concerned with estimating D;(Qz, Pz) with pre-trained models here,
not actually training models from scratch. Recall that both VAEs and WAESs have a prior
Pz over the latent space and involve learning an encoder Q‘é‘ y With parameter ¢ mapping
from the data to latent space. Although the divergence D¢(Qz, Pz) does not appear in the
VAE objective function, pretrained VAEs can nonetheless be used alongside WAEs as more
realistic, higher dimensional settings to investigate estimation of this quantity compared to

the simple synthetic setting considered in the previous section.

Pretrained models that were trained on the CelebA dataset (Liu et al., 2015) were used to
evaluate the RAM-MC estimator as follows. The test dataset is taken as the ground-truth @ x,
and this is embedded into the latent space via the trained encoder. Since all models considered
have Gaussian encoders, the resulting empirical aggregate posterior is a ~20k-component
Gaussian mixture for )z, one component for each item in the test dataset. Since @)z is a finite—
not continuous—mixture, the true D¢(Qz, Pz) can be estimated using a large number of
MC samples (10* samples were used). This is computationally costly as it involves evaluating
2. 10* Gaussian densities for each of the 10* MC points. This evaluation was repeated 10
times, and the means and standard deviations are reported in Figures 3.2 and 3.3 for the KL
and H? divergences respectively. RAM-MC is evaluated using N € {20,2!,... 214} and M €



3.4 Empirical evaluation 41

{10,103}. For each combination (N, M), RAM-MC was computed 50 times with the means
plotted as bold lines and standard deviations as error bars. This procedure was performed

for the KL and H? divergences on six models that were chosen to have latent dimension
d € {32,64,128} and were selected from the classes VAE, WAE-MMD and WAE-GAN.

Figure 3.2 shows the result of performing this for the KL divergence on six different models.
In all cases RAM-MC achieves a reasonable accuracy with N relatively small, even for the
bottom right model where the true KL divergence (=~ 1910) is large. There is evidence
supporting Theorem 3.14, which informally states that the variance of RAM-MC is mostly
determined by the smaller of ¢)(N) and M: when N is small, the variance of RAM-MC does
not change significantly with M, however when N is large, increasing M significantly reduces
the variance. It was found that there are two general modes of behaviour of RAM-MC across
the six trained models considered. In the bottom row of Figure 3.2, the decrease in bias with
N is very obvious, supporting Proposition 1 and Theorems 3.11 and 3.12. In contrast, in the
top row it is less obvious, because the comparatively larger variance for M =10 dominates
reductions in the bias. Even in this case, both the bias and variance of RAM-MC with
M=1000 become negligible for large N. Importantly, the behaviour of RAM-MC does not

degrade in higher dimensions.

The baseline estimators (plug-in of Moon and Hero, 2014a and M1 of Nguyen et al., 2010)
perform so poorly that their inclusion would distort the y-axis scale. In contrast, even with
a relatively modest N=2% and M=1000 samples, RAM-MC behaves reasonably well in all

cases.

Figure 3.3 displays similar results for the H2-divergence. Since H?(A4, B) € [0,2] for any
probability distributions A and B and all computed estimates were close to 2, considerations of
scale mean that the estimated values log (2 — lA)I% (Qg , P7)) were plotted instead. Decreasing
bias in N of RAM-MC therefore manifests itself as the lines increasing in Figure 3.3. Concavity
of log means that the reduction in variance when increasing M results in RAM-MC with
M=1000 being above RAM-MC with M=10. Similar to the results for the KL, these also

support the theoretical findings presented in the previous section.

Additionally, the same experiment was attempted using the y2-divergence but numerical issues
were encountered. This can be understood as a consequence of the inequality eXFAB) — 1 <
x%(A, B) for any distributions A and B (Lemma 3.3). From Figure 3.2 it can be seen that
the KL-divergence reaches values higher than 1000, making the corresponding value of the

x2-divergence larger than can be represented using double-precision floats.
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Figure 3.2 Results of real-data experiments, Section 3.4.2. Estimates of KL(QGZ, Py) for
pretrained autoencoder models with RAM-MC as a function of N for M=10 (green) and
M=1000 (red) compared to an accurate MC estimate of the ground truth (blue). Lines and
error bars represent means and standard deviations over 50 trials.
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Figure 3.3 Results of real-data experiments, Section 3.4.2. Estimating H2(QQZ,PZ) in
pretrained autoencoder models with RAM-MC as a function of N for M = 10 (green) and
M=1000 (red) compared to ground truth (blue). Lines and error bars represent means and
standard deviations over 50 trials. Plots depict log (2 — 1511‘{/12 (QJZV ,P7)) since H? is close to 2
in all models. Omitted lower error bars correspond to error bars going to —oo introduced
by log. Note that the approximately increasing behaviour evident here corresponds to the
expectation of RAM-MC decreasing as a function of N. Due to concavity of log, the decrease
in variance when increasing M manifests itself as the red line (M =1000) being consistently
above the green line (M=10).
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3.5 Applications

This section details some direct consequences of the proposed estimator and its theoretical
guarantees to existing literature, illustrating the applicability of this work. We remind
the reader that these results apply specifically to the setting of LVMs with probabilistic

encoders.

3.5.1 Entropy estimation

The differential entropy, defined as H(Qz) = — [z q(z)logq(z)dz, is often a quantity of
interest in machine learning. While it is intractable in general, straightforward computation

shows that for any Pz

H(Qz) — Ex~H(QY)
= _/q(z) log q(z)dz + Exn /QN(Z) log 4n (2)d=
S / q(2)log q(z)dz + / q(z)logp(z)dz

~ [ Exvin()logp(2)dz + Bxn [ an()log i (2)dz

= . @ z in(2) lo an(z) z
= —/q(Z)logp(z)d +Exw/qzv( Jlog = 5°d

= Ex~ DL (Q]zv, PZ) — Dy (Qz, Pz) -

Therefore, Theorems 3.11 and 3.12 provide sufficient conditions under which H(QY) is an
asymptotically unbiased estimator of H(Qz). Note that it suffices for the assumptions of
these results to hold for any choice of Pz, suggesting that a more direct analysis of the

behaviour of H(QY) could yield milder sufficient conditions.

3.5.2 Total correlation estimation

The results on entropy estimation have consequences for some existing VAE literature. The

Total Correlation (TC) of a distribution @z, defined in terms of the KL-divergence, can be
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written in terms of differential entropy:

dz
TC(Qz) == Dk, (QZ’ H in)

i=1

== Joeres (i)

— — [a@oga(z)dz + [ a(2) X log a(z)dz

= —/q(z) logq(z)dz—i-z:/q(zi)logQ(Zi)dz

dz
=Y H(Qz) - H(Qz),

i=1
where @)z, is the ith marginal of (Jz. This is considered by Chen et al., 2018b, who subtract
it from the VAE loss function (see Section 2.6). Since a non-negative quantity is subtracted
from a lower bound on the evidence, the resulting loss function is still an evidence lower
bound, with additional encouragement for @z to be factorised. This is named the 5-TC-
VAE algorithm. By the identities above, estimation of TC can be reduced to estimation of
H(Qz) with only slight modifications needed to treat H(Qz,).

Two methods are proposed by Chen et al., 2018b for estimating H(Q z), both of which assume
a finite dataset of size D. One of these, named Minibatch Weighted Sample (MWS), coincides
with H (Qg ) + log D estimated with a particular form of MC sampling. The results presented
in this chapter therefore imply inconsistency of the MWS method due to the constant log D
offset. This inconsistency is fact not problematic in the context of Chen et al., 2018b since they
are concerned with minimising (not estimating) the TC, and a constant offset does not affect
gradient-based optimization techniques. Interestingly, although their derivations suppose a
data distribution of finite support, the results presented here show that minor modifications

result in an estimator suitable for both finite and infinite support data distributions.

3.5.3 Mutual information estimation

The mutual information (MI) between variables with joint distribution @z x is defined

as
I(Z,X) = Dk (Qzx,Q2zQx) = Ex Dk, (szo QZ)-

Several recent papers have estimated or optimised this quantity in the context of autoencoder
architectures, coinciding with the setting considered here (Hoffman and Johnson, 2016; Alemi

et al., 2018; Dieng et al., 2018). In particular, Poole et al., 2018 propose the following estimator
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based on replacing Q7 with QJZV , proving it to be a lower bound on the true MI:
INopo(Z,X) =Exn |+ SN, Dxr (Quix, QY ) | < 1(Z, X).
TCPC\“» XN | N 2ui=1 KL Z\Xi %z > 5
The gap in this inequality can be written as
(Z,X) = Itcpc(Z, X) = Exn DxL (QQ,PZ) — Dk (Qz, Pz)

where Py is any distribution. Therefore, the results in this chapter also provide sufficient
conditions under which IQZYC pc 1s an asymptotically unbiased estimator of the true mutual

information.

3.5.4 Related, but fundamentally different work

Burda et al., 2015 propose to reduce the gap introduced by Jensen’s inequality in the
derivation of the classical ELBO by using multiple Monte-Carlo samples from the approximate
posterior @z x. This is similar in flavour to the approach considered in this chapter, but is
fundamentally different since the approach taken here uses multiple samples from the data

distribution to reduce a different Jensen gap.

To avoid confusion, note that replacing the ‘regulariser’ term Ex|[Dx1(Qz x, Pz)] of the
classical ELBO with expectation of the proposed estimator Exx [Dkr(QY, P7)] results in an
upper bound of the classical ELBO (by Proposition 1) but is itself not in general an evidence

lower bound:

Ex [Eq, \ logp(X|2) — Dxi(Qzyx, P7)| < Ex[Eq, , logp(X|2)| — Exx~ [Dir(QF, Pr)|.

3.6 Conclusion

This chapter introduced a practical estimator for the f-divergence Df(Qz, Pz) where Qz =
/Q 71xdQx, samples from Q) x are available, and Pz and @)z x have known density. The RAM
estimator is based on approximating the true ()7 with data samples as a random mixture
via QY = % >-n @7|x,, and RAM-MC is the version of this estimator where Df(Qg, Pz) is
estimated with MC sampling.

Rates of convergence and concentration were proved for both RAM and RAM-MC, in terms of
sample size N and MC samples M under a variety of choices of f. Due to the strong structural
assumptions made on the forms of the distributions in question, the fast rates presented here
hold under relatively mild and verifiable further assumptions, thus making them applicable to

the estimation of divergences in the latent spaces of autoencoders. In contrast, in the existing
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literature on f-divergence estimation, which generally makes few structural assumptions, fast
rates are only obtained under strong assumptions on the smoothness of densities or density

ratios of the distributions.

Synthetic and real-data experiments strongly support the validity of the proposal in practice,
and the theoretical results provide guarantees for methods previously proposed heuristically
in existing literature for mutual information and total correlation estimation, thus extending
understanding of the conditions under which these quantities can be estimated with practical

numbers of samples.

Future work should investigate the use of the proposals for optimization loops, in contrast to
pure estimation. When Q% « depends on parameter ¢ and the goal is to minimise D f(QZ, Py)
with respect to ¢, RAM-MC provides a practical surrogate loss that can be minimised using
stochastic gradient methods. The obvious setting to apply this is in training WAEs, where
the main problem is minimisation of a divergence term D(Q(zZ), Py), discussed in Section 2.6.3.
Indeed, the research presented in this chapter was originally motivated by the study of WAEs.
Preliminary experiements not included in this thesis found little improvement when using
RAM-MC as the latent-space matching penalty compared to existing methods (WAE-MMD
and WAE-GAN). It is possible that this lack of improvement is attributable to deficiencies in
the proposed method, or to the use of f-divergences in this setting more generally. It may

instead be due to the insufficiently thorough nature of those preliminary experiments.

Another more theoretical direction of research relating the proposed RAM-MC estimator
to its application in training WAEs would be to investigate how bounds on the divergence
D f(Q‘iZ’, Pz) in combination with the reconstruction error of a WAE relate to the optimal
transport distance OT (Pg}, Q@ x) that a WAE is ultimately supposed to minimise. Work in
this direction has been done by Patrini et al., 2018, who relate the reconstruction error and
latent-space optimal transport distance OT (de), Pyz) with the data-space optimal transport
distance OT(P%,Qx). However, it is not clear whether such a connection must hold for
other choices of latent-space divergences, since the ‘relaxed” WAE objective (Equation 2.7) is
itself a heuristic approximation to the original ‘constrained’ optimal transport formulation
(Equation 2.6).






Chapter 4

Multi-view Nonlinear Independent

Component Analysis

This chapter presents identifiability results in a novel multi-view nonlinear ICA setting. In
the usual single-view setting, identifiability holds only under strong assumptions on the source
distribution and mixing functions. The results presented here show that when multiple distinct
views of the sources are available, identifiability holds under much weaker assumptions. This
work is an important contribution to the literature as it extends the few known identifiability

results for nonlinear ICA models.
The main technical content of this chapter has been published in the paper:

Luigi Gresele*, Paul K Rubenstein®, Arash Mehrjou, Francesco Locatello and
Bernhard Schoélkopf. “The Incomplete Rosetta Stone Problem: Identifiability
Results for Multi-view Nonlinear ICA”. Proceedings of the Thirty-Fifth Conference
on Uncertainty in Artificial Intelligence (UAI). *Joint first authorship. 2019.

4.1 Introduction

Independent Component Analysis (ICA) is often motivated by the so-called cocktail-party
problem. When two conversations at a party are happening simultaneously, a listener will
hear different mixtures of the two audio streams produced by the speakers in each of their
ears. Despite both ears receiving mixtures of the conversations, the listener is able to focus
on either of the conversations separately, hearing and understanding one while ignoring the
other. This is due to the brain’s ability to separate out the mixed audio streams into the

separate underlying sources, one for each conversation.
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More generally, given data that are mixtures of independent underlying sources, the goal of
ICA is to ‘unmix’ the data, thus recovering the sources. This provides a principled approach
to the disentanglement of independent latent components, blind source separation, and feature
extraction (Hyvérinen and Oja, 2000). The applications of ICA are ubiquitous, including
neuroimaging (McKeown and Sejnowski, 1998), signal processing (Sawada et al., 2003), text
mining (Honkela et al., 2010), astronomy (Nuzillard and Bijaoui, 2000) and financial time
series analysis (Oja et al., 2000).

The ICA problem can be written formally by defining the latent variable model

Z ~p(z) =[] p(z), (4.1)
X = f(2), (4.2)

where Z is a vector of independent sources, X is a vector of observations or mixtures and
f is the vector of mixzing functions expressing how each coordinate of X depends on all of
the coordinates of Z. Crucially, f is assumed to be invertible and thus X and Z are of the
same dimension. Given a dataset of observations of X, the goal of ICA is to recover the
corresponding unknown values of Z by learning to invert the unknown f. In the general case,
no assumptions are made about p(z) other than that it factorises. The latent variable model
in this setting should thus be thought of as a true descriptive model for the world, in contrast
to the deep generative modelling setting, where latent variable models with factorised priors

merely provide a convenient way to specify distributions over the observable variables.

An ICA problem is known as identifiable when it is possible to recover the sources Z up
to tolerable ambiguities. For instance, it is generally acceptable to recover Z up to linear
rescaling or permuted coordinates. Although identifiability results generally assume access to
unlimited samples of data, they are crucial for ensuring the reliability of ICA methods in
practical scenarios; in the absence of these, there is no guarantee that a proposed method

will successfully reconstruct the true sources, even in controlled settings.

It was proved by Hyvérinen and Pajunen, 1999 that the ‘vanilla’ ICA setting, in which only
independence of the sources and invertibility of f are assumed, is non-identifiable. Thus,
much of the research in this field has attempted to characterise the assumptions under which
identifiability holds. Such assumptions may be made either on the mixing functions or on

the distributions of the sources.
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(a) (b)

Figure 4.1 Graphical models depicting (a) the usual single-view ICA setting; (2) the multi-
view setting considered in this work. Z is a vector of unobserved latent sources and the X;
are observed mixtures of the components of Z. In both settings, all variables are of the same
dimension.

4.1.1 Summary of results

The central contribution of the work presented in this chapter is the derivation of identifiability
results in a novel multi-view setting, in which multiple observations of the same underlying

sources through different mixing functions are given (see Figure 4.1b):
Z ~ [1p(z),
%

Xl = fl(Z)7
X2 = fZ(Z)a

where again each f; is invertible and X1, X9 and Z are of the same dimension. In this setting,
identifiability holds subject to much weaker assumptions than are required for the single-view
setting. These results are of practical importance for applications in which multiple data

modalities may be simultaneously available.

In particular, variants on the model above are considered in which noise processes occur at
the source level in one or both views. Subject to certain assumptions holding, formalised in
the Sufficiently Distinct Views assumption (see Definition 4.2), model identifiability is proved,
meaning that it is in principle possible to recover the sources up to the noisy corruptions
(Theorems 4.1-4.5 and Corollary 4.3). Although some infinitesimally small amount of noise
is required for the results to hold, the low-noise limiting case is also analysed (Corollary 4.6).
Finally, one might hope that even in the presence of large amounts of noise, having access to
a larger number of views should be beneficial. First results in this direction are given in in
Theorem 4.8.

For a high-level intuition of the results, consider the perception of 3D structure through
eyesight. Each of our eyes only sees a 2D projection of the true state of the 3D world. With

only a single eye available, it may be possible to infer the 3D structure present in a scene
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by exploiting known cues, such as the objects in the scene being familiar to the viewer or
the presence of shadows. But with two eyes together, a human can perceive 3D structure
immediately, even without such cues. Analogously, the results presented in this work show
that inference of latent structure can be performed under much weaker assumptions when

more than a single view is available.

The remainder of this chapter is structured as follows. Section 4.2 provides an introduction to
ICA and the literature surrounding it, as well as literature from other areas that is relevant
to the setting considered in this work. Section 4.3 presents the main results. Section 4.4

discusses the assumptions of these results, and Section 4.5 concludes.

4.2 Overview of ICA and related literature

This section provides an overview of different ICA settings for which identifiability results
are known, and discusses other literature relevant to the multi-view setting considered in this

work.

4.2.1 Linear ICA

Linear ICA refers to the setting in which the vector of mixing functions f is a linear map, in

which case the ICA model can be written

Z ~ Hp(zi),
X = AZ,

where A is a square matrix. This problem has been extensively studied and has been shown to
be identifiable if at most one of the latent components is Gaussian (Darmois, 1953; Skitovich,
1954; Comon, 1994). Nonidentifiability in the case of more than one Gaussian component
is a consequence of the fact that an isotropic Gaussian is invariant under orthogonal linear
mappings. Thus if the diagonal matrix A rescales the Gaussian components of Z to be unit

variance, and U is an orthogonal matrix mixing these components, X can be rewritten
X = (AAT'UY) (UAZ).

Since both Z and UAZ have independent components, it is impossible to tell which of Z
and UAZ corresponds to the true source distribution. For most such U, UAZ nontrivially
mixes the components of Z, and thus the problem is nonidentifiable due to the existence of

multiple plausible, yet fundamentally different, solutions.
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Note that even in the non-Gaussian case, taking U = I or a permutation matrix also results
in UAZ being a valid solution. This, however, corresponds to a ‘trivial’ indeterminacy of the
linear ICA problem, since in this case UAZ still recovers the separate components of Z, only

linearly rescaled and in a different order.

The non-Gaussianity assumption is exploited by linear ICA algorithms by seeking linear maps
W such that the transformed data WX have maximally non-Gaussian components. Intuition
for why such an approach works can be seen in the Central Limit Theorem which, informally,
states that an average of i.i.d. random variables becomes more Gaussian-like as the number of
variables in the average increases. Similarly, in a sense that can be made formal (Hyvérinen and
Oja, 2000), linearly mixing random variables makes them more Gaussian-like, meaning that

appropriate measures of Gaussianity can be used as objective functions for de-mixing.

Linear ICA methods can be used for causal discovery in linear causal models, as will be

discussed in Section 5.3.2.

4.2.2 Nonlinear ICA

It was proved by Hyvérinen and Pajunen, 1999 that if only independence of the sources
and invertibility of f are assumed, the nonlinear ICA problem is unidentifiable. Specifically,
given any distribution over the observable variables X that admits density with respect to
Lebesgue measure, there exist many vector-valued invertible mappings g with the property
that the components of g(X) are independent, and these many solutions are non-trivially
different.

This is proved by first demonstrating the existence of a function ¢ with the property that
Y = ¢(X) is uniformly distributed on the unit cube [0,1]", a generalisation of the result
that, for a one-dimensional random variable U with cumulative distribution function Fy;, the
random variable Fy7(U) is uniformly distributed on [0, 1]. Next, non-uniqueness is proved by
demonstrating the existence of an infinite class of functions A which are measure-preserving
maps [0, 1]™ — [0, 1]™. That is, if Y is uniformly distributed on [0, 1]" then so is Y' = h(Y). It
follows that h o g thus provides a valid solution to the nonlinear ICA problem and thus there
are infinitely many solutions. Such a class of measure-preserving functions is given explicitly
in the case of n = 2 dimensions; by extending such functions to the identity mapping on

extra dimensions and composing, such a class can be generated for any n.

Note that any function k : R™ — R"™ that acts coordinate-wise and is invertible—that is, for
each i, k(X); = k;(X;) for some j with k; invertible—can be composed with g to result in
the random vector Y/ = k o g(X) having any desired factorised distribution. This is in some
sense a ‘trivial’ indeterminacy of nonlinear ICA, analogous to the scalar and permutation

indeterminacy of linear ICA. All of the novel identifiability results presented in Section 4.3
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hold only up to such functions, which are referred to throughout as component-wise invertible

transformations.

Other works have shown that identifiability is possible when additional assumptions are
made. Mostly these assume that the observations correspond not to i.i.d. samples of the
sources, but rather time series with temporal structure (Singer and Coifman, 2008; Sprekeler
et al., 2014). In contrast, Taleb and Jutten, 1999 prove identifiability under the rather strong
post-nonlinear mixing assumption on the mixing functions, corresponding to linear mixing

followed by a nonlinear component-wise invertible function.

4.2.3 Nonlinear ICA with auxiliary variables

Hyvérinen et al., 2019, generalising the results of Hyvirinen and Morioka, 2016 and Hyvéarinen
and Morioka, 2017, study a modification of the typical ICA setting where an additional
observed auxiliary variable U is introduced. U is assumed to be always observed with the

sources Z being conditionally independent given U, resulting in the model
Z|U ~ p(zlu) = HP¢(2¢|U)7 (4.3)
X = f(2). (4.4)

This general model includes temporally dependent sources as a special case, taking (U, X) =
(Xt, X¢41). Hyvérinen et al., 2019 prove identifiability results under conditions on both the
conditional distributions p;(z;|u), the relationships between sources and auxiliary variables,
and subject to U having a sufficiently diverse influence on X in a sense that is formalised as

the assumption of variability.

Identifiability in this model is proved constructively by considering classification between
tuples (z,u), sampled from the joint distribution p(x,u), and tuples (z,u*) sampled from the
product of marginals p(u)p(z). Tuples from the former distribution correspond to the same
value of the sources z, and thus share information, while tuples from the latter correspond to
different sources and thus do not share information. By appropriately constraining the form
of the regression function used in this classification, it is shown that the optimal classifier

extracts z up to component-wise invertible functions.

The results presented in Section 4.3 build on this approach, extending the results to a novel

multi-view setting.
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4.2.4 Other related work

A central concept of the work presented in this chapter is the extraction of features from
multiple simultaneous views. This section briefly reviews some related work considering

similar settings outside of the ICA literature.

Canonical Correlation Analysis

Given two vector-valued random variables, the goal of Canonical Correlation Analysis
(CCA) is to find a pair of linear subspaces that have high cross-correlation, so that each
component within one of the subspaces is correlated with a single component from the other
subspace (Hotelling, 1992; Bishop, 2006). CCA admits a probabilistic interpretation (Bach
and Jordan, 2005) and is equivalent to maximum likelihood estimation in a graphical model

which is a special case of that depicted in Figure 4.1b.

The main differences compared to the setting of this chapter are that the latent components
retrieved in CCA are forced to be uncorrelated, whereas ICA is concerned with independent
components; and in CCA, mappings between the sources and observations are linear, whereas
this work considers nonlinear mappings. In dealing with correlation instead of independence,
CCA is more closely related to Principal Component Analysis (PCA) than to ICA. Nonlinear
extensions of the basic CCA framework have been proposed (Lai and Fyfe, 2000; Fukumizu
et al., 2007; Andrew et al., 2013; Michaeli et al., 2016), but identifiability results in the sense

considered in this work are lacking.

Multi-view latent variable models

Song et al., 2014 prove identifiability for multi-view, discrete latent variable models. While
the setting they consider is similar to that of this work, their proposed method is aimed at
estimating model parameters with the goal of performing density estimation, rather than
estimating the values of (continuous) latent variables. The paper considers a setting in
which L variables X;, [ = 1,..., L are observed; additionally, there exists an unobserved
discrete latent variable H, such that conditional distributions P(X;|H) are independent.
Their method is based on the mean embedding of distributions in a Reproducing Kernel
Hilbert Space and a result of identifiability for the parameters of the mean embeddings of
P(H) and P(X|H) is proved.

Another related field of study is multi-view clustering, which considers a multiview setting
and aims at performing clustering on a given dataset, see e.g. De Sa, 2005 and Kumar et
al., 2011. This line of work differs from the setting considered here in two key ways. First,

clustering can be thought of as assigning a discrete latent label per observation. In contrast,
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the setting considered here is concerned with recovery of a continuous latent vector for each
observation. Second, since no underlying generative model with discrete latent variables is

assumed, identifiability results are not given.

Half-sibling regression

Half-sibling regression (Scholkopf et al., 2016) is a method to reconstruct a source from noisy
observations by exploiting observations of other sources that are affected by the same noise
process. In contrast to the multi-view ICA setting, in which the sources to be reconstructed
are common to the multiple views, in half-sibling regression it is the noise that is common to

both views, with the desired sources being separate for each observation.

Scholkopf et al., 2016 study this problem under an additive noise assumption. By regressing
one observation against the other, this common noise can be identified and hence subtracted,

recovering the desired sources.

4.3 Nonlinear ICA with multiple views

This section presents the main contribution of this chapter, in which identifiability results for

variations on the following setting are given:

Z ~p(z) = [ pit=1). (15)

Xlzfl(Z)a (46)
X2 = f2(Z)7 (47)

where X1, X9, Z € RP and fi, f, are arbitrary smooth and invertible transformations of the
latent variable Z = (Zy,..., Zp) with smooth inverse. X; and Xy are referred to as different
views of the sources Z. Since each f; is invertible, X7, X9 and Z are of the same dimension.
Given observations of X; and Xs, the goal is to recover Z, undoing the mixing induced by
the f;.

The two problems defined by separately considering the pairs of Equations 4.5, 4.6 and 4.5,
4.7 are instances of the usual single-view nonlinear ICA setting. As previously discussed,
unless strong assumptions are made on the f; or the distribution of Z, these problems are

separately unidentifiable.

The key contribution of this chapter is the derivation of identifiability results with relaxed

assumptions by exploiting the fact that the two views are connected through the shared
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latent variable Z. That is, observing X; and Xs together provides sufficient information to

remove the ambiguities present in the vanilla nonlinear ICA setting.

This section considers three instances of the general setting described above, providing

identifiability results for each. Specifically:

e Section 4.3.1 considers the case that only one of the observations, Xs, is corrupted with
noise, showing that it is possible to fully reconstruct Z using the noiseless variable. This
corresponds to a setting in which one accurate measurement device is supplemented

with a second noisy device.

e Section 4.3.2 considers the case that both variables are corrupted with noise, showing
that it is possible to recover Z up to the corruptions. Furthermore, it is shown that Z

can be recovered with arbitrary precision in the limit that the corruptions go to zero.

e Section 4.3.3 considers the case of M simultaneous views of the source Z rather than
just two. When considering the limit M — oo, sufficient conditions are provided under

which it is possible to reconstruct Z even if each observation is corrupted by noise.

The setting considered in this work is related to that of Hyvérinen et al., 2019, discussed in
Section 4.2.3, and the approach to proving the identifiability results presented here builds on
the technique presented in that work. This approach is to classify between pairs (X7, X2)
corresponding to the same Z and (Xi,X3) corresponding to different realisations of Z.
This classification problem can only be solved by employing the information shared by the
simultaneous views in order to distinguish the two classes. By placing constraints on the
regression function used in such a classifier, it can be shown that the representation obtained

by taking an intermediate layer of this classifier recovers Z up to tolerable ambiguities.

In contrast to the complete setting considered by Hyvérinen et al., 2019, the model considered
here is undercomplete by a factor of two. That is, the number of observed dimensions is
twice that of the number of latent dimensions. As such, one may expect identifiability under

more general conditions due to the increased number of constraints.

For technical reasons discussed in Section 4.4.2, the results require some stochasticity in the
relationship between Z and at least one of the X;. This is not a significant constraint in
practice; in most real settings observations are corrupted by noise, and a truly deterministic
relationship between Z and the X; would be unrealistic. Component-wise independent
corruptions of the sources are considered, i.e. RP-valued noise vectors N; and N are
introduced, and X; = f1 0 ¢1(Z, N1) with ¢1;,(Z, N1) = ¢1:(Z;, N1;), where the components of
N1 are mutually independent, and similar for Ny and X5. The noise variables Ny, N> and
the sources Z are assumed to be mutually independent. This constrains the way the source
is corrupted by noise, namely the g;, and not the mixing functions f;. In the the vanilla ICA

setting, inversion of the mixing function and recovery of the sources Z are equivalent; in the
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Figure 4.2 The setting considered in Section 4.3.1. Two views of the sources are available,
one of which, X1, is not corrupted by noise. In this and all subsequent figures in this chapter,
each node is a deterministic function of its parents in the graph.

setting considered here, inversion of the mixing f; only implies recovering the sources up to
the effect of the corrupter g;.

Such g; as described in the previous paragraph are referred to as component-wise corrupters
throughout, and the corresponding output as corruptions. All identifiability results hold only
up to component-wise invertible transformations, meaning that the components of Z are

recovered, but possibly reparametrised and in a permuted order.

4.3.1 One noiseless view

Consider the following model in which one noiseless and one noisy view of the sources are

given, represented in Figure 4.2,
7 ~ () = [ pl) (18)
N ~ p(n) = [T oo,
X1 = fi(Z), (4.9)

Xa = fa(9(Z, N)), (4.10)

where f1 and fy are invertible, ¢ is a component-wise corrupter, N 1 Z and X; and X5 are
observed. The following theorem demonstrates assumptions under which identifiability in

this model holds. This result is quite involved; it will first be stated, then discussed.

Theorem 4.1. The difference between the log joint probability and log product of marginals

of the observed wvariables in the model given in Equations 4.8-4.10 admits the following



4.3 Nonlinear ICA with multiple views 59

factorisation:

log p(x1,22) — log p(x1)p(x2)
= log p(z2|x1) — log p(x2)

= <Z Oéi(Zi,gi(Zi, nz)) + 10g det J)

)

- (Z 9i(gi(zi,ns)) + log det J)

= Zaz Zz’gz Zunz 26 gl Zunz (411)

where z; = fl_il(:cl), 9i(zi,m;) = f2_i1(£€2), and J is the Jacobian of the transformation f2_1

(note that the introduced Jacobians cancel'). Suppose that
1. « satisfies the Sufficiently Distinct Views assumption (see after this theorem).

2. A classifier is trained to discriminate between
(Xl, X2) vS. (X17X5> s

where (X1, X2) correspond to the same realisation of Z and (X1,X5) correspond to

different realisations of Z.

3. The classifier minimises the logistic regression loss, and is constrained to use a regression

function of the form

.7,'1,.',132 Z¢Z )

where h = (hq,...,hy) is invertible, smooth and has smooth inverse.

Then, in the limit of infinite data and with universal approximation capacity, h inverts fy
in the sense that the h;(X1) recover the independent components of Z up to component-wise

invertible transformations.

An outline of the proof for this result is provided below after discussing some of the assump-

tions; full proof can be found in Appendix B.1.1.

The assumption of invertibility for A could be satisfied by, e.g., the use of normalizing
flows (Rezende and Mohamed, 2015; Chen et al., 2018c) or deep invertible networks (Jacobsen
et al., 2018).

!Several subsequent results in this section consider the difference between two log-probabilities. In all of
these cases, the Jacobians introduced by the change of variables cancel out. For brevity these Jacobians are
omitted henceforth.
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If X1 and Xy were always equal, the multiple view setting would reduce to the normal
nonlinear ICA setting. The Sufficiently Distinct Views (SDV) assumption formalises a sense
in which the two views must be sufficiently different from one another, resulting in more
information being available in totality than from each view individually. In the context of
Theorem 4.1, it is an assumption about the log-probability of the corruption conditioned on
the source. Informally, it demands that the probability distribution of the corruption should

vary significantly as a result of conditioning on different values of the source.

Definition 4.2 (Sufficiently Distinct Views). Let o;(yi, ti), i =1,..., D be functions of two

arguments. Denote by « the vector of functions and define

ol (yi, ti) = 0 (yi, ;) /Oy, (4.12)
o (yi, ti) = OPevi(yi, t:) ) 0y2, (4.13)
wa(y,t) = (af,....dh,al,...,ap). (4.14)

« satisfies the assumption of Sufficiently Distinct Views (SDV) if for any value of y, there ex-
ist 2D distinct values t/, j = 1,...,2D such that the vectors wa(y,t?) are linearly independent.

This is closely related to the Assumption of Variability in Hyvérinen et al., 2019. The SDV
assumption is discussed in further detail in Section 4.4.1, where simple cases of conditional

log-probability density functions satisfying and violating the assumption are presented.

Sketch proof of Theorem 4.1. The first observation to be made is that for logistic regression,
the optimal regression function for the logit (1, x2) is equal to the log density-ratio between
the two distributions being distinguished, namely log (p(z1,x2)/p(x1)p(z2)) = log p(x1, x2) —
log p(z1)p(x2) (as discussed in Section 2.5). Thus, in the limit of infinite data and with

universal approximation capacity, the following equality holds:
> i(hi(zr), @ Zaz zi, 9i(2i, i) 25 gi(zi,ni))
i

By performing the change of variables y = h(z;), t = f;l(xg), and defining v(y) =
fr(h~Y(y)) = 2, this equation can be rewritten

Zd)z yzan Zaz Uz 25 (4.15)

The goal is to show that v;(y) depends on exactly one coordinate of y, so that v;(y) = v;(y;)
for some j. Since z = v(y), this implies that z; = v;(y;) is a function only of y;, which in
turn implies that z; is a function only of hj(z1). Since v = fl_1 o h~! is the composition of

two invertible functions, it is itself invertible, and since each component of v depends only
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one component of its input, each of the components are also invertible. It follows that z; is
an invertible function of h;(x1), and so h(z1) recovers z up to permutations and coordinate-

wise invertible transformations.

Showing that v;(y) = v;(y;) for some j is somewhat technically involved, and it is here that
the SDV assumption is required. It is proved by taking partial derivatives of Equation 4.15
with respect to y; and y;s for j # j’. This results in an expression involving first- and second-
order derivatives of a; and v; in which the expressions in the SDV assumption appear. If the
SDV assumption holds, it follows that the derivative of v; with respect to y; is non-zero for

at most one one value of j, meaning that v; does not depend on all other y;. 0

See the full proof in Appendix B.1.1 for further details; proofs of subsequent results Corollary
4.3 and Theorems 4.4 and 4.5 proceed similarly to this, and thus sketches of these results
will be omitted.

Theorem 4.1 shows that by jointly considering the two views, it is possible to recover Z, in
contrast to the single-view setting. This result can be extended to learn the inverse of fo up

to component-wise invertible functions.

Corollary 4.3. Consider the setting of Theorem 4.1 with the alternative factorisation of the
log joint probability

logp(z1, z2) — log p(x1)p(z2)
= log p(z1|z2) — logp(x1)
= Z'Vz Zz,gz Zunz ZBZ Zz . (416)

Suppose that v satisfies the SDV assumption. Replacing the regression function with

r(z1,x2) Zl/h (21, hi(z2))

results in h inverting fo in the sense that the h;(Xs) recover the independent components of

the g(Z, N) up to component-wise invertible transformations.

The proof can be found in Appendix B.1.2. Theorem 4.1 and Corollary 4.3 together mean
that it is possible to learn inverses h; and hg of fi and fo, and therefore to recover Z and
g9(Z,N), up to component-wise intertible functions. Note, however, that doing so requires
running two separate algorithms. Furthermore, there is no guarantee that the learned inverses
hi and hy are ‘aligned’ in the sense that for each i the components hy;(X1) and hg;(X32)

correspond to the same components of Z.

This problem of misalignment can be resolved by changing the form of the regression

function.
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Figure 4.3 Setting with two views of the sources Z, both corrupted by noise.

Theorem 4.4. Consider the settings of Theorem 4.1 and Corollary 4.3. Suppose that both

a and v satisfy the SDV assumption. Replacing the regression function with
r(z1,2) =Y i(h (@), hai(22)) (4.17)
i

results in hy, ho inverting f1, fa in the sense that the hi;(X1) and he;(X2) recover the
independent components of Z and g(Z,N) up to two different component-wise invertible

transformations. Furthermore, the two representations are aligned, i.e. for i # j,

hii(X1) L ho j(X2).

The proof can be found in Appendix B.2.1. Note that Theorem 4.4 is not a generalisation
of Theorem 4.1 or Corollary 4.3, since it makes stricter assumptions by imposing the SDV
assumption on both a and ~. In contrast, Theorem 4.1 and Corollary 4.3 require that only
one is valid for each. For cases in which finding aligned representations for Z and g(Z, N) are
desired, Theorem 4.4 should be applied. If the only goal is recovery of Z, the assumptions of

Theorem 4.1 are easier to satisfy.

In practical applications, the multi-view scenario is useful in multimodal datasets where
one of the two acquisition modalities has much higher signal to noise ratio than the other
one (e.g., in neuroimaging, when simultaneous fMRI and Optical Imaging recordings are
compared). In such cases, these results show that jointly exploiting the multiple modalities
can lead to identification of the true underlying sources in a manner not attainable through

use of the more reliable modality alone.
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4.3.2 'Two noisy views

Consider next the setting in which both variables are corrupted by noise, depicted in Figure

4.3 and described by the following model:

X1 = fl(gl(ZaNl))a
X3 = f2(92(Z, N2)),

where all variables take value in R”, f; and fo are nonlinear, invertible, deterministic
functions, g; and g are component-wise corrupters, and Z and the INV; are independent with
independent components. This class of models generalises the setting of Section 4.3.1, since

by taking g1(Z, N1) = Z it reduces to the case of one noiseless observation.

The log density-ratio log p(z1, z2) —log p(z1)p(x2) admits similar factorisations to those given
in Equations 4.11 and 4.16:

log p(z1, w2) — log p(z1)p(w2)
= log p(x1]x2) — log p(x1)
= an g1 Zunzl) 921 szn21 Ze glz anlz (418)

7
= log p(z2|z1) — log p(z2)
= Ailg2i(zin2), gi(zin1s)) — Y palgailzi, nai)).- (4.19)
i i
Since access is only given to corrupted observations, exact recovery of Z is not possible.
Nonetheless, a generalisation of Theorem 4.4 holds showing that the f; can be inverted and

Z recovered up to the corruptions induced by the N; via the g;.

Theorem 4.5. Suppose that n and A satisfy the SDV assumption. The algorithm described in
Theorem 4.1 with regression function specified in Equation 4.17 results in hy and ho inverting
fi and fa in the sense that the hy;(X1) and ho;(X2) recover the independent components
of g1(Z, N1) and g2(Z, N2) up to two different component-wise invertible transformations.

Furthermore, the two representations are aligned, i.e. for i # j,

hii(X1) L he j(X2).

The proof can be found in Appendix B.2.1.

The common source Z can thus be recovered up to the corruptions g;(Z, N;). In the limit of
the magnitude of one of the noise variables going to zero, the reconstruction of the sources
Z attained through the corresponding view is exact up to the component-wise invertible

functions, as stated in the following corollary.
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Corollary 4.6. Let Nl(k) = % N for k € N, where N € RP is a fized random variable with
finite variance, and let No be a random variable that does not depend on k. Let hgk), hgk) be

the output of the algorithm specified by Theorem 4.5 with noise variables ka) and Na.
Suppose that the corrupters g; satisfy the following two criteria:

1. Ja€REy st |22 <
a € R, s.t o nzoiaforallz,

2. 3beRY) st 0< 220 <p

Then, denoting by & the set of all component-wise, invertible functions, it holds that

inf HZ - e(h(lk)(Xl))H )

ec& k—o0

where p denotes convergence in probability.

Proof sketch; see Appendiz B.2.2 for full proof. The key idea of the proof is to rewrite e(hgk) (X1))
as €0 g1(Z, Nl(k)) for some € € &, and to Taylor expand ¢;(Z, Nl(k)) in its second argument.
Together with the assumptions on g1, it is proved that the random variable converges to 0 in

mean, which implies that it converges to 0 in probability. 0

Corollary 4.6 implies that in the limit of small noise, the sources Z can be recovered exactly.
Condition 1 upper bounds the influence of N7 on the corruption: one cannot not hope to
recover Z if g1(Z, N1) contains too little signal. Condition 2 ensures that the function ¢y is
invertible with respect to z when n; is equal to zero. If this were not satisfied, some information
about Z would be washed out by g; even in the absence of noise, which would make recovery

of Z trivially impossible. These conditions are satisfied, for example, by additive noise.

4.3.3 Multiple noisy views

The results of Section 4.3.2 state that in the two noisy views setting, Z can be recovered up to
the corruptions. In the limit that the magnitude of the noises goes to zero, the uncorrupted
Z can be recovered. The intuition is that the less noise there is, the more information each

observation provides about Z.

This section considers the multi-view setting, where M distinct noisy views of Z are avail-
able,
Xi= fi(gi(Z,N:)), i=1,...., M,

and the noise variables N; are mutually independent, as represented in Figure 4.4. Since each
view provides additional information about Z, the question naturally arises: in the limit as

M — o0, is it possible to reconstruct Z exactly?



4.3 Nonlinear ICA with multiple views 65

Figure 4.4 The setting of Section 4.3.3 with M corrupted views of the sources.

By applying Theorem 4.5 to the pair (X1, X;) it is possible to recover (¢1(Z, N1), g:(Z, N;))
such that the components are aligned, but up to different component-wise invertible functions
k1 and k;. Running the algorithm on a different pair (X, X;) will result in recovery up to

different component-wise invertible functions &} and k;

Note that these will not necessarily result in k;0g;(Z, N;) and k;; 0g;(Z, N;) being aligned with
each other. However, the components of k1 o g1(Z, N1) and k] o g1(Z, N1) are the same, up
to permutation and component-wise invertible functions. This permutation can therefore be
undone by performing independence testing between each pair of components. Components
that are ‘different’ will be independent; those that are the same will be deterministically
related. Therefore, they can be used as a reference to permute the components of ké and

make it aligned with k;.

The problem is then how to combine the information from each aligned k; o g;(Z, N;) to
more precisely identify Z. The fact that the components are recovered up to different scalar

invertible functions makes combining information from different views non-trivial.

As a first step in this direction, consider the special case that each g; acts additively, each INV;

is zero mean and each of Z and the IN; are independent with independent components:

Xi=filZ+N) |- (4.20)
E[N;] = 0, ' |

Suppose to begin with that it is possible to recover each Z 4+ N; without the usual component-
wise invertible functions. Then, writing N to denote all of the NN;, it is possible to estimate
Z as

1
Z~0M(Z N)=

M

17 2 (Z+Ni)

z:l

Subject to mild conditions on the rate of growth of the variances Var(N;) as i — oo,
Kolmogorov’s strong law implies that QM (Z,N) is a good approximation to Z as M — oo in

the sense that QM (Z, N) ©% Z. This implies moreover that it is possible to reconstruct the
N; by considering the residue RN (Z,N) = (Z + N;) — QM(Z,N) &> N;.
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In the presence of the unknown functions k;, we would be able to reconstruct Z and the N; if
we were able to identify the inverses e; = k; ! for each i. For any component-wise invertible

functions e;, define

1 M
OM(z,N) = 7 > eioki(Z+Ny),
=1

RM(Z,N) = e; o ki(Z + N;) — QM (Z,N).

e; is something we can choose and k;(Z + N;) = h;(X;) is the output of the algorithm, and
hence QM (Z, N) and R%(Z, N) are random variables with known distributions. Subject
to mild conditions, the dependence of these quantities on most or all of the N; becomes

increasingly small as M grows and disappears in the limit M — oo.

Lemma 4.7. Suppose that the sequence Ex[QM(Z, N)| = ﬁzij\il En,[ei o ki(Z + N;)]

converges as M — oo for almost all Z, and write this limit as

Q(Z) = lim Ex[Q(Z,N)).

Suppose further that there exists K such that Ve, = Var (e; o ki(Z + N;)) < K for all i. Then

oMz, N) 25 Q.(2),

e

RY(Z,N) “5 Rei(Z,N;) = e; 0 ki(Z + N;) — Qe(2).

Proof sketch; see Appendiz B.3.1 for full proof. The result follows by applying Kolmogorov’s
strong law to QM (Z, N) for each value of Z. Kolmogorov’s strong law states that the average
of a sequence of independent, but not necessarily identically distributed, random variables
converges to the expectation of the average, provided that the variances of the random

variables do not grow too quickly. This is ensured by the assumption on the V.. O

Given some choice of e, the quantities Q¢(Z) and R, ;(Z, N;) can be thought of as putative
candidates for Z and N; respectively. As discussed earlier, if it were possible to identify
e; = k:[l, then it would be the case that Q.(Z) = Z and R.;(Z,N;) = N;, and thus Q.
and R.; would satisfy the same independences and other statistical properties as Z and N;

respectively. Can these properties be used as criteria to identify good choices of e;?

The following theorem provides sufficient conditions which, if satisfied by a putative choice

for the e;, implies that they invert the k; up to some affine ambiguity for all i.
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Theorem 4.8. Suppose there exists C > 0 such that Var(N;) < C for all i and let Gi be
the set of {e;}]M s.t.

Ve, < K Vi, (4.21)
Qe(Z) < 00 for almost all Z, (4.22)
Re,i 41 Re,j Vi 7& j7 (423)
ERc; =0 Vi, (4.24)
Rei(Z,N;) = Rei(N;) Vi. (4.25)

Then,
Gk C {{ak]'+ 8} : acRYy, BeRP}

where aki_l denotes the element-wise product with the scalar elements of a. If K > Var(Z)+C,
then {k;l} € Gk, and so Gi is non-empty for K sufficiently large.

Proof sketch; see Appendix B.3.2 for full proof. The fact that {k;l} € Gk can be shown
using Lemma 4.7. The fact that Gx C {{ak{l +8} : ae ]RQO, g e RD} is proved by
showing that for any e; such that {e;} € Gi, the composition e; o k; is affine. It follows that
e; = Ak, 14 B; for some matrix A; and vector f;. Finally, it is shown that A; and §; are
equal for all choices of i, and A is a diagonal matrix, and thus Ak, ! can be written as an

elementwise product with a vector a. O

It follows that it is possible recover Z and N; up to a and § via Q.(Z) = aZ +  and
R57¢(Ni) = OzNi.

Each of the conditions 4.21-4.24 can be verified from known information. We conjecture that
condition 4.25 can be relaxed to assuming the verifiable condition of independence between
Qc(Z) and R.;(Z, N;) for all i along with additional regularity assumptions on the functional

form of R.; (e.g. smoothness).

To conclude, Theorem 4.8 provides sufficient conditions under which it is possible to fully
reconstruct Z with corrupted views. In contrast to previous results in Sections 4.3.1 and
4.3.2, this result leverages infinitely many corrupted views rather than vanishingly small

corruption of finitely many views.
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4.4 Discussion about assumptions

This section discusses in further detail the Sufficiently Distinct Views (SDV) assumption and

the necessity for source-level noise for at least one of the views.

Typically, noise is a nuisance variable that would preferably not exist. In the setting
considered here however, the presence of some source-level noise is necessary, since without
this the classification based approach cannot be applied. Furthermore, the SDV assumption
is ultimately an assumption about how the corrupted sources corresponding to each view are

related, and is by implication an assumption about the source corruptions themselves.

4.4.1 The Sufficiently Distinct Views assumption

Recall that the SDV assumption is a demand on how much the conditional probability
distribution of the source of one view given another varies, e.g. how much p(s1|s2) changes
as a function of so where s; = fi_l(:ri). To provide intuition, this section gives examples of

cases in which the SDV assumption does and does not hold.

The SDV assumption is closely related to the Assumption of Variability of Hyvérinen et al.,
2019, an analogous assumption that occurs in the context a different graphical model from

the multi-view setting considered here; see that paper for further details.

An example violating SDV

Suppose that the conditional distribution of one corrupted source given the other is Gaussian,
so that

logp(si|s2) = —> (st — s2:)°/(207) + C, (4.26)

i
where C' is a constant. Since taking second derivatives of the log-probability with respect to
s; results in constants, there is no way to find 2D vectors t;, j = 1,...,2D, such that the

corresponding w(s1,t;) in Definition 4.2 are linearly independent.

This rules out the case in which one or both views correspond to the source being corrupted
by additive Gaussian noise. Note that this result is distinct from the non-identifiability
result in the case of Gaussian sources for ICA. The problem here is not that the conditional
distribution is rotationally invariant, but that the connection it implies between the two
variables is ‘too simple’. In fact, the identifiability results presented here do not demand that

the marginal distribution over the uncorrupted source be non-Gaussian.
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An example satisfying SDV

By choosing a conditional distribution that is more complex, the SDV assumption can be

satisfied. Consider

log p(s1]s2) = — Z( 1:53; + s1is3;) + C(s2) (4.27)

7

where C(s3) is a normalisation constant that depends only on sy. Proof that this conditional
distribution satisfies the SDV assumption requires a few lines of computation: since this
polynomial expression is of order strictly greater than 2, the second derivatives are not
constant. w(si, s2) can be written as the product of a matrix and vector which are functions
only of s1 and s respectively. The columns of this matrix are linearly independent for almost
all values of s; and 2D linearly independent vectors can be realised by different choices of so,

and hence the assumption is satisfied.

4.4.2 Source noise

Noise on the sources is required for at least one of the views. This is a consequence of training
a classifier as a way retrieve the the unmixed signals. The reasons for this are explained

briefly here.

Recall from the discussion on density ratio estimation in Section 2.5 that if a classifier is

trained with the logistic loss to classify between samples from two distributions P (class 1) and

— _ p(@)
— p(e)+a(x)
that a sample is drawn from P. When the classifier is parametrised as c¢(x) =

Q (class 0), the optimal classifier should output c(z) as the estimated probability

1
I+exp(—r(x))’
the corresponding optimal regression function r is r(x) = log(p(z)/q(z)).

In the setting considered here, P and @ are the joint distribution p(z1,z2) and product of
marginals p(x1)p(z2) of the views. Thus, at optimality

r(z1,72) = log (p(z1, 22)/p(21)p(72))
= log p(x1|x2) — log p(x1)
= log p(x2|21) — log p(z2).

If the variables x1 and x9 are deterministically related, this log-ratio is everywhere either 0
or co. To see why this is the case, suppose that z1, and xo are each N-dimensional vectors.

If they are deterministically related, p(x1,x2) puts mass on an N-dimensional submanifold of
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a 2N-dimensional space. On the other hand, p(z1)p(z2) will put mass on a 2/N-dimensional

manifold since it is the product of two distributions each of which are N-dimensional.

In this case, the distributions p(x1, z2) and p(z1)p(z2) are therefore not absolutely continuous
with respect to one another and thus the log-ratio is ill-defined: p(z1,z2)/p(z1)p(x2) = 00
at any point (z1,2z2) at which p(x1,x2) puts mass and zero at points where p(z1)p(x2) puts

mass and p(z1,z2) does not.

It follows that the method of classification used in the results considered in this chapter can
only be applied when the different views X; and X5 are not deterministically related. For

this technical reason, the corruptions are necessary.

Contrast with observation-level noise

A more typical noise model across the machine learning literature would involve noise at the
level of the observations, e.g. X = f(Z) + € where € could be a Gaussian random variable.
The reader should be clear that the source noise model used in this work is fundamentally

different to this more typical observation noise model.

The assumption in the observational noise model is that the observed variables are not
measured with perfect accuracy. In contrast, in the source noise model, the assumption is that
the two views share closely related, but non-identical sources. This could hold, for example,
when the two views correspond to the same source at slightly different times, or if the two
views correspond to measurements of different subjects that have similar state, in which
case the source noise may account for inter-subject variability. Nonetheless, Corollary 4.6
demonstrates that the results hold for even infinitesimally small amounts of noise, and
therefore it is conceivable that practical methods for ICA based on the setting of this work

may still function even if the source noise assumption is violated.

The source noise model is in some sense orthogonal to the observation noise model, in that
it is possible for both to be used simultaneously. The absence of observation noise in this
work is unrealistic in the sense that it requires observations to be made in a truly noise-free
way, something that is clearly not possible in practical settings, though it is possible that the

results presented in this chapter could be extended to this setting.

4.5 Conclusion

The main contribution of this chapter was to present identifiability results in a novel multi-
view nonlinear ICA setting. These results are an important contribution to the field since

they extend the scarce literature on identifiability results for nonlinear ICA models.
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Theorems 4.1 and 4.4 state that in contrast to the single-view setting, the two-view setting is
identifiable when the mixing functions are arbitrary smooth, invertible nonlinear functions with
smooth inverse, provided that one of the views is corrupted at the source level by sufficiently

‘complex’ noise such that the Sufficiently Distinct Views assumption is satisfied.

Identifiability results are also obtained in the case of corruptions on both views. Theorem 4.5
states that the sources can be recovered up to the corruptions, and Corollary 4.6 demonstrates
that in the limit as one of the corruptions becomes small, the uncorrupted sources can be

recovered.

Finally, initial results are presented in Theorem 4.8 providing conditions under which the
uncorrupted sources are identifiable when a large number of views are available, even if these

views are all corrupted by source noise.

The multi-view setting is relevant in a number of real-world applications, namely in all
datasets that include multiple distinct measurements of related phenomena. In practice, it
may be better to think of the noise variables as intrinsic sources of variability specific to each
view, rather than as noise per se. In most practical applications this would probably not be

a significant limitation due to the prevalence of stochasticity in real-world systems.

A specific example application of the work presented here can be found in the field of
neuroimaging. Consider a study involving a cohort of subjects whose response to the
presentation of the same stimulus is measured. One of the key problems in this field is how to
extract a shared response from all subjects despite high inter-subject variability and complex
nonlinear mappings between latent source and observation (Haxby et al., 2011; Chen et
al., 2015). The results presented here provide principled approaches to the extraction and
decomposition of the components of the shared response, by considering the measurements
to be different views of an underlying shared response that is corrupted by inter-subject

variability.

There are further directions to explore. Observe that Theorem 4.8 builds on the setting
of Theorem 4.5, which only makes use of pairwise information from the observations. A
natural extension of this work would be to investigate algorithms that explicitly make use of
N > 2 views, which may allow relaxation of the additivity assumption on the corruptions.
Furthermore, Theorem 4.8 provides results that only hold for the asymptotic limit as the
number of views becomes large. Other extensions to this result could include analysis of
the case of finitely many views. In the direction of application, the results here prove that
recovery of the latent sources is possible in a multi-view setting, but there may be many
ways to actually perform this recovery in practice. The development of algorithms exploiting

this setting are a natural direction to explore.






Chapter 5

Causal Modelling

This chapter introduces the notion of exact transformations between Structural Equation
Models (SEMs). This provides a framework to evaluate whether two SEMs are consistent with
one another as causal models, meaning that a correspondence can be established between them
such that reasoning about the effects of interventions in both models agree. In particular, this
framework can be used to understand whether two models of the same system at different levels
of detail are consistent, and whether measured variables derived from a lower-level causal
model admit interpretation as causal variables themselves. This work has broad implications
to the causal modelling process, as there is often a mismatch between the level at which
measurements are made and the level at which the underlying ‘true’ causal structure exists,
yet causal inference algorithms generally seek to discover causal structure at the level of

measurements.
The main technical content of this chapter has been published in paper:

Paul K Rubenstein®, Sebastian Weichwald*, Stephan Bongers, Joris M Mooij,
Dominik Janzing, Moritz Grosse-Wentrup and Bernhard Schélkopf. “Causal
consistency of structural equation models”. Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence (UAI). *Joint first authorship.
2017.

5.1 Introduction

Much of machine learning concerns the statistical relationships between random variables.
In this context, the word statistical refers to the assumptions that a fixed but unknown
probability distribution exists from which observed data are sampled i.i.d., and that new

data at ‘test time’ will similarly be drawn i.i.d. from this distribution. Classification is the
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canonical example of this, where given a set of i.i.d. samples from a joint distribution Pxy
over input X and discrete target Y, the goal is to learn the conditional distribution Py |x
giving the probability distribution over targets for each possible input. Other problems such

as density estimation can be phrased similarly.

Despite the great empirical successes of machine learning in practical and applied settings in
recent years, there remain problems of interest that cannot be cast directly into the framework
described above. The framework is limited in that it presupposes the existence of a single
fixed joint distribution over all of the random variables of interest, with the operations of
marginalisation and conditioning then providing the relationships connecting any subset of
variables. But there are many examples of problems for which a single fixed joint distribution
over all variables does not suffice. For many questions of scientific interest, this is because
the problem either implicitly or explicitly concerns an intervention or action in the world

that changes the joint distribution over the observable variables.

For example, we may be interested to understand the influence of diet on longevity, with the
aim of improving public health by encouraging people to eat healthily. One might find the
consumption of expensive imported fruits to be correlated with a longer life. This may well
be due to the nutritiousness of such fruits; it could equally well be due to the fact that only
wealthy people can afford such a diet, and that such wealth entails better access to medical
treatment, sports facilities for exercise and so on. In the former case, intervening in the
world by reducing tariffs on imported fruits to make them cheaper and thus encourage their
consumption would have a positive effect on public health; in the latter, not. Similarly, we
may observe in the population that taking over-the-counter painkillers is associated with an
elevated risk of heart disease. This might be because such painkillers have a negative effect
on the cardiovascular system, in which case acting to reduce access to such painkillers might
have a positive impact on health outcomes. But if instead the association is because people
who have poor health, and thus heightened risk of heart disease, tend to take more painkillers,

then such a policy might have little effect other than to increase overall suffering.

These questions are concerned with understanding causal, not statistical, relationships in
the world. The aim of causality is to study causal influence through the lens of a formal
mathematical language, in much the same way that statistical machine learning uses the
language of probability. Causal inference or causal discovery, a large part of the causality
literature, concerns the identification of causal relationships using data. As the examples above
demonstrate, this can be highly non-trivial, with the well-known phrase “correlation does
not imply causation” standing testament to the simultaneous difficulty and ubiquity of this
problem. Since correlation (or statistical dependence more generally) is a symmetric relation,
an asymmetric causal relationship between two variables can never be inferred without other

prior knowledge or assumptions. Moreover, simply identifying that two quantities tend to
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co-occur does not itself imply a causal relation between the two, since both could be causally

influenced by a third.

While causal inference is an important problem with a wide variety of applications ranging
from astronomy to neuroscience and economics (Scholkopf et al., 2016; Ding et al., 2006;
Hicks et al., 1980), the main contribution of this chapter is to extend and provide greater
understanding of Structural Equation Models (SEMs), one of the popular mathematical
frameworks for formalising causal relationships between random variables and interventions,

along with the variety of probability distributions these entail.

In particular, this work seeks to understand the implications of modelling causal structure at
a different level of abstraction compared to the ‘truth’. For instance, causal influence between
variables of interest may be mediated by irrelevant variables that are ignored; interactions
between low-level variables may instead be modelled at a macroscopic level, similar to the
manner in which temperature and pressure arise as macroscopic properties of a large number
of gaseous particles; and though time invariably plays a role in any causal influence in the real

world, mathematical models of causal structure may often omit explicit reference to it.

This chapter is structured as follows. Sections 5.2 and 5.3 are an overview of the causality
literature, providing context for this chapter. Section 5.4 discusses issues involved in defining
causal variables in practice, as well as modelling the same system at different levels of details,
followed by Section 5.5 which extends the definition of SEMs and provides a framework to
analyse when two causal models at different levels of detail are consistent with one another.
Section 5.6 provides examples of consistent models in a variety of settings. Section 5.7
discusses the implications of this work to the literature, as well as papers that have built on

this since its original publication.

5.2 Structural Equation Models: A Language for Causality

This section introduces Structural Equations Models (SEMs), a mathematical formalism used
to model causal influence. In Section 5.5, an extension to this definition will be presented.
We will avoid going into measure-theoretic detail, and point the reader to Bongers et al.,

2016 for a more rigorous measure theoretic introduction to SEMs.

An SEM over a tuple of random variables X = (X7i,..., Xx) consists of equations so that
each X; is written as a function of a subset of the other X; and an exogenous noise variable

E;. More formally:

Definition 5.1 (Structural Equation Model (SEM)). Let X = (Xi,...,Xy) and E =
(E1,...EN) with each X;, E; taking value in R. An SEM Mx over X is a tuple (Sx, Pg)

where
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e Sx is a set of structural equations of the form X; = fi(Xpa), £i) fori=1,...,N,
where pa(i) C {1,..., N} and Xy, is the corresponding subset of the variables X.

e The variables E = (Ex, ..., EN) have distribution Pg which factorises, i.e. the E; are

independent.

e The causal graph G is acyclic, where G is the directed graph with nodes X; and edges
X; — Xj if and only if i € pa(j).

The requirement that G be acyclic ensures that the SEM implies a well-defined distribution

Px over the variables X. This is known as the observational distribution.

Lemma 5.2 (Well defined observational distribution). An SEM implies a well-defined

observational distribution Px over X.

Proof. For any particular value e of the noise variables F, there is a unique vector x. so that
(xe,e) solves the structural equations Sx. To see this, observe that acyclicity of G means
that the structural equations can be solved recursively, beginning with variables with no
parents. It follows that each x; can be written as a function of e€,;(;), where anc(i) are the
indices of the ancestors of X; in G, that is the X; for which there exists a path X; — X;
using the edges in G. Denote by g(e) = z, the function mapping from values of e to the
unique solution x.. Then g in combination with Pg induces the push-forward distribution
Py := g4 Pg over the X-variables, i.e. Py is the distribution of the random variable g(E), a

function of the random variables E. O

As discussed in the introduction, an important part of causal relationships is a notion of
behaviour under interventions. SEMs are equipped with a formal notion of such interventions
which are termed perfect interventions. Intervening on a variable makes a change to the
structural equation determining its value in the observational setting. Although there may
be an effect on the distributions over variables downstream of the intervened variable, the
structural equations determining those variables are unchanged. Such an intervention is
realised by altering the structural equation of the intervened variable. This notion is easily
generalised to interventions on multiple variables by replacing all of the corresponding

equations.

Definition 5.3 (Perfect interventions and the do-operator). Let Mx be a SEM, i €
{1,...,N} and z; € R. The perfect intervention setting X; to take value x; is denoted
do(X; = ;) and is implemented by replacing the ith equation with X; = x;. The result-
ing set of structural equations is denoted S;O(Xi:xi) and the resulting SEM Mio(xi:xi) =
(S;O(Xi:zi), Pg). Perfect interventions over two or more variables are also valid, which are

denoted for instance as do(X; = x;, Xy = xp).
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We note in passing that the notion of a perfect intervention may also be extended to imperfect
or stochastic interventions in which the intervened variable is set equal to some random variable
rather than a constant. Formally, this is no different from the case of perfect interventions other

than needing to additionally introduce distributions over the new random variables.

An intervened SEM is still just a SEM, since it has structural equations and a distribution
over exogenous variables. The only difference is that the functions corresponding to an
intervened variable X; = f;(Xpa(;), £i) will have pa(i) = & and f; will be a constant function.
Moreover, the causal graph Gq,(.) has the same nodes but a subset of edges compared to G,

and thus inherits acyclicity. This implies the following lemma.

Lemma 5.4 (Well defined interventional distribution for any perfect intervention). Any
perfect intervention do(-) on a SEM (i.e. any subset of variables set to any particular values)
()

implies a well-defined interventional distribution P;O over X.

Proof. As discussed in the remark above, /\/lio(') is a valid SEM. Thus, Lemma 5.2 applies to

M;i(?(') and so it has a well-defined observational distribution. The interventional distribution
P;O(') of Mx is equal to the observational distribution of ./\/lgl(o('). O

SEMs can thus be thought of as a way to model not just a single distribution over the
variables of interest, but an entire family of related distributions, one for each possible perfect

intervention. This is illustrated in the following simple example.

Example 5.5. Consider the SEM Mx = {Sx, Pr} where

Sx ={X1 = E1, X2 = X1+ Ey},

(o) 1)

Then the observational distribution is given by

m=((o) ()

while the interventional distributions corresponding to do(X; = x1) and do(Xe = z2) are

given by the degenerate Gaussians

() )
() 6)
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5.2.1 Connections to Bayesian networks

SEMs are closely related to Bayesian networks, a class of graphical models. There is a long
debate between certain members of the causality community and the Bayesian and statistics
communities as to whether there is in fact any difference between these two classes of models.
Discussion of this is somewhat tangential to the main contribution of this chapter, but for
completeness it is nonetheless important to give a brief outline of this debate. In the following,
I attempt to give a neutral overview of the similarities and differences between them, followed

by my personal opinion.

Definition 5.6. A Bayesian network over variables X = (Xy,..., Xn) with directed acyclic

graph G specifies a joint distribution over X as a product of conditional distributions

N
p(X1,. ... XN) = [[ p(Xil Xpai))
i=1
where the nodes of G correspond to the variables X and there is an edge X; — X; in G if
and only if j € pa(i).

Since any product distribution can always be decomposed as p(X1, ..., Xy) = Hij\il P(Xi| Xj<i),

it is the absence of edges in G that imposes structure on the probability distribution.

Bayesian networks can be endowed with a similar notion of perfect intervention as SEMs. To
model the effect of the perfect intervention do(X; = z;), in the resulting joint distribution
the factor p(X;|Xpa(;) is replaced with a Dirac delta distribution dx,—.,. Bayesian networks
equipped with such notions are sometimes referred to as causal Bayesian networks. In the

following, we will simply refer to them as Bayesian networks.

Note that it is also possible instead to introduce additional ‘treatment’ or ‘indicator’ vari-
ables representing the application of interventions. This may in general replace the factor
P(Xi| Xpa(i)) with a Dirac delta distribution or indeed any other distribution. A theory of
such models, termed decision theoretic statistical causality is developed in Dawid, 2020 and

the references therein.

Correspondence between SEMs and Bayesian networks

SEMs and Bayesian networks exist in correspondence with one another. For any SEM, there
exists a Bayesian network over the same variables that induces the same observational and

interventional distributions, and vice versa. We briefly explain this correspondence.

Any SEM induces a Bayesian network with the same graph G. To see this, observe that for
any fixed value of X,,;), the equation X; = f(Xp,(;), Fi) in combination with the distribution
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over E; induces a distribution over X; which corresponds to p(X;|Xp,(;))- The observational
distributions of the SEM and Bayesian network are then equal. Further, since the equation
X, = x; associated with the intervention do(X; = z;) corresponds to the distribution dx,—,,,
and similar for interventions or arbitrary subsets of variables, the interventional distributions

also agree.

Showing that any Bayesian network induces a SEM is somewhat more technical, and is
outlined here based on the proof of Proposition 7.1 from Peters et al., 2017. For each Xj;
with parents X, (;), define the function

- R — [0, 1]

FXi|Xpa(i

to be the cumulative distribution function of p(X;| X, (;)) as given by the Bayesian network.
Define the exogenous variables of the SEM Fj, ..., Ex to be uniformly distributed on the
interval [0, 1], and let the structural equations be defined by

X = fi(X

. —1
pa(i) Ei) = Fy x

(Ei).

pa(i)

To see that this SEM induces the same observational distribution over the variables X as
the Bayesian network, it suffices to note that the conditional distributions X;|X,,(;) are
the same for both the Bayesian network and the SEM, by definition of the cumulative
distribution function. Similarly, replacing any equation with X; = x; corresponds to the
cumulative distribution function associated to dx,—,, and so any interventional distributions

also agree.

Differences between SEMs and Bayesian networks

In an SEM the noise variables E are explicitly modelled, while in a Bayesian network they
are generally not. Pearl, 2009 considers this to correspond to a ‘quasi-deterministic’ view
of the world in which any observed randomness is a consequence of a lack of knowledge. In
contrast, modelling with implicit noise in a Bayesian network corresponds to a view that the

world is inherently stochastic.

As a consequence of the noise variables being explicitly modelled, SEMs are equipped with
counterfactual reasoning. That is, once the variables X have been observed, the values for the
exogenous variables F can generally be inferred. This means that one can answer questions
such as “what would have happened had the intervention do(X; = x;) been performed?”
Whether or not this is useful in practice is debatable, since different SEMs may imply the
same set of observational and interventional distributions, but nonetheless be counterfactually

non-equivalent. That is, they may produce different answers to the same counterfactual
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question, despite implying the same observational and interventional distributions. This
means that such models cannot be distinguished based on data, be that from observational
or interventional settings. Therefore one cannot hope to be able to answer counterfactual
questions based on data without prior knowledge to distinguish between counterfactually

non-equivalent models.

It can be easier to express assumptions on the mechanisms of causal influence within the SEM
framework, for instance by assuming that the distribution P and the functions f; belong
to some restricted sets, though this is also possible in the Bayesian network setting. The
main consequential difference between SEMs and Bayesian networks is that it is conceptually
simple to extend the SEM framework to express cyclic dependencies as a result of the explicit

modelling of the noise variables.

Personal opinion

Acyclic SEMs and Bayesian networks are fundamentally equivalent as mathematical models.
By convention, Bayesian networks usually do not explicitly specify the noise variables, though
there is no reason why they cannot do so. Indeed, the reparameterisation trick, also known
as a disturbance representation, involves explicit use of noise variables rather than an implicit

representation.

This equivalence breaks down in the case of cycles: while SEMs can be easily generalised to
allow cyclic causal graphs, it is not clear how to do so for Bayesian networks unless the noise
variables are explicitly specified, in which case they are essentially the same as SEMs. That
said, most of the debate around SEMs and Bayesian networks has considered the acyclic case.
The substance of this debate seems to revolve largely around differences of philosophy or

culture, rather than formal mathematics. This can be summarised in two key differences.

First, the causality community thinks of the structural equations as physical mechanisms
representing some fundamental, invariant truth about how the universe operates. The
Bayesian and statistics communities are more accustomed to thinking of them as abstract

descriptions that are not necessarily grounded in physical reality to the same degree.

Second, the causality community places a strong emphasis on the role of interventions or
‘action’. As such, to do-operator is considered as a central feature of SEMs, while the statistics
and Bayesian communities often see the do-operator as a feature that has been post-hoc

tacked onto Bayesian networks.

In summary, my personal belief is that Bayesian networks and SEMs are essentialy equivalent,
with some subtleties in the cyclic case. The fact that debate on this topic continues to exist

despite the formal relation between the two model classes being fairly clear and well understood
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is, in my opinion, caused largely by cultural differences leading to misunderstandings as well

as academic politics.

5.2.2 Cyclic Structural Equation Models

Most causal systems in the real world involve some degree of feedback. Examples can be found
in a wide variety of settings: molecular biology (e.g. gene-gene or gene-protein interactions
in a cell), ecology (e.g. population dynamics), climate science (e.g. methane release from
thawing permafrost) and public policy and economics (e.g. poverty traps). Studying the
mathematical modelling of these cases is interesting in part because their treatment requires

consideration of issues that are not present in the acyclic, feedback-free case.

In reality, any cyclic causal system will correspond to an acyclic system when ‘unravelled’ in
time. Nonetheless, explicitly modelling systems as cyclic may be useful in scenarios in which
it is not possible to make measurements or observations at the level of the acyclic structure.
For instance, in many biological settings, it may not be possible to generate temporal data if
making a measurement involves destroying the system being measured (e.g. sequencing the

mRNA in a cell).

Recall that Lemmas 5.2 and 5.4 relied on acyclicity of the causal graph G to prove that an
SEM induces well-defined observational and interventional distributions over the variables X.
When generalising to cyclic SEMs by relaxing this acyclicity constraint, one must be careful
to understand under which conditions the observational and interventional distributions are
well-defined. The implied observational distribution is well-defined if and only if there is a
unique solution X (E) to the structural equations for Pg-almost all values of E. Similarly, an
interventional distribution is well-defined if and only if the intervened structural equations

have unique solution Pg-almost surely.

That is, one generates from a cyclic SEM in exactly the same way that one generates from
an acyclic one. First, sample the values for the exogenous noise variables. Then, solve the
structural equations to find the (unique) values of X satisfying the equations. This value of
X is the generated value. Therefore, a cyclic SEM only implies well-defined observational
and interventional distributions if, with probability 1 over the distribution of the exogenous
noise variables E, a unique solution X (F) exists to the (possibly intervened) structural

equations.

The following example shows a simple case of an SEM with well-defined observational
distribution for which some interventional distributions are well-defined but others are ill-

defined.
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Example 5.7. Consider the cyclic SEM Mx = {Sx, Pg} where

Sx ={X1 =Xo+ X3+ Ei,
Xo = X1 + X3+ Eo,
X3 =X1+ X2+ E3}

and Pg is any distribution. In the observational setting, the values

E>y+FEys E1+FE3 E1+ E
(X17X27X3):( 2; 37 1; 37 1; 2>

uniquely solve the structural equations, and hence the observational distribution Py is well-
defined.

Under the intervention do(Xy = x1), the equations have either infinitely many solution, in the

case that Ey + Ez = —2x1, or zero solutions, if By + Ez #+ —2x1. Hence the interventional
distribution P;O(Xlzm) 1s ill-defined, and similarly for other interventions on a single variable.

Under the intervention do(X, = z1, X2 = x2), the equations have unique solution

(X1, X2, X3) = (21,22, 21 + 22 + E3).

do(X1=xz1,Xo=x2)

Thus the interventional distribution Py is well defined, similarly for any inter-

vention on two variables.

The literature has not settled on a set of criteria for determining which cyclic SEMs should
be considered ‘valid’. All agree on the fact that observational distributions must be well-
defined, but there is significant disagreement on interventional distributions. Notable works
include Hyttinen et al., 2010, which requires well-defined distributions after any intervention,
and Mooij et al., 2011, which state that for any cyclic SEM, any intervention leading to a
well-defined interventional distribution may be given a causal interpretation. Other works in

this area such as Lacerda et al., 2008 avoid discussion of this issue.

It will be argued in Sections 5.4 and 5.5 that it should be considered an integral part of the
modelling process to choose a set of interventions being modelled. As such, it should be
guaranteed that interventional distributions be well-defined for those that are part of the
modelled intervention set; the behaviour outside of this set being considered outside of the

modelled universe and thus irrelevant.
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5.3 Methods of Causal Inference

The problem that is typically of greatest interest to practitioners in the context of causality
is that of causal inference, sometimes referred to as causal discovery. The goal of a causal
inference algorithm is to learn the causal graph G, either with only observational data, or
with a mixture of observational and interventional data. In the case of no latent confounders?',
once G has been identified, learning the functional relationships between parents and children
reduces to solving independent regression problems. Although the main contribution of this
chapter is to improve theoretical understanding and extend the mathematical framework of
SEMs, some discussion of approaches to causal inference will provide important context. All

methods focus on the acyclic case unless otherwise stated.

The problem is usually formalised thus: Given i.i.d. draws from a distribution Px induced by
an SEM with causal graph G, estimate G. Broadly speaking, there are two main categories of
approaches: those which exploit a correspondence between statistical properties of Px and
properties of G; and those that make additional assumptions on the noise variable distribution

Pr and structural equation functions f;. These are briefly outlined next.

5.3.1 Conditional independence based methods

The key idea of this family of approaches is to relate conditional independences of the joint
distribution Px to graphical properties of the (acyclic) causal graph G known as d-separation.
This line of work is historically important, but only tangentially related to the topic of this
chapter. As such, only a brief outline follows; see Pearl, 2009 or Peters et al., 2017 for an

in-depth explanation.

In a directed acyclic graph, d-separation is a relation between triples of disjoint subsets of
nodes. Informally, if a subset of nodes A d-separates subsets B and C, then A blocks any
information flow between B and C'. Graphs exhibiting the same set of d-separations form an
equivalence relation, the classes of which are known as Markov equivalence classes. Subject
to mild assumptions, there is a one-one correspondence between possible sets of conditional
independences present in Px, and Markov equivalence classes of G. It is thus possible to
identify G up to its Markov equivalence class by inferring the conditional independences

present in Px.

In practice, one may have access only to a finite number of samples from Py, and so conditional
independence tests must be performed to identify the list of conditional independences which

are subsequently used to infer the Markov equivalence class of G.

1A confounder is an unobserved variable that causally influences two or more observed variables, leading
to those observed variables exhibiting statistical dependence without directly influencing one another.
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Methods for causal inference using conditional independences have the advantage that they
make few assumptions on the underlying distribution. This comes at the cost of needing
to perform conditional independence tests, a hard problem in the general case (Shah and
Peters, 2018), as well only being able to identify G up to an equivalence class of graphs.
In particular, it is impossible to distinguish between the two models X — Y and ¥ — X
using only conditional independences since both exhibit the same (trivial) set of conditional
independences. The fact that even this simple case cannot be solved using conditional

independences has led to other approaches in which further assumptions are made.

5.3.2 Structural Equation based methods

One way in which further assumptions can be specified is to use the language of SEMs. Placing
suitable restrictions on the functional forms of the structural equations or the distribution over
the exogenous variables can lead to identifiability results: unambiguous recovery of the SEM
from the observational distribution, in contrast to recovery only up to an equivalence class.
Of course, such identifiability results usually hold in the limit of infinite data, and so practical
performance in realistic cases will differ even between methods for which identifiability holds
under the same assumptions. In the following, some methods for inferring SEMs and the
assumptions they require for identifiability are outlined. The main restricted model class

that has been studied are additive noise models.

Definition 5.8. An SEM is an additive noise model if the structural equations are deter-

ministic functions of the parent variables with additive noise,
Xi = fil Xpag)s Bi) = 9i(Xpa@)) + Ei, (5.1)

for some functions g;.

Linear additive noise models
If the functions g; in Equation 5.1 are linear, the model can be written as
X=AX+FE, (5.2)

where A is a strictly upper triangular matrix? for an acyclic SEM. The distribution over F

induces a density on the observable variables X via

X=(UI-A)"E,

2The diagonal and anything below or left of it is 0.
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where [ is the identity matrix. This is an instance of linear Independent Component Analysis
(ICA), discussed in detail in Chapter 4. Recall that identification of A and the distribution
of E is possible if at most one of the components of £ has Gaussian distribution. The Linear
Non-Gaussian Acyclic causal Model method (LINGAM) of Shimizu et al., 2006 uses ICA
to recover the both the matrix I — A and the distribution over E from only observational
data. Peters and Biihlmann, 2013 instead consider linear additive noise models under the
assumption that all noise variables are independent Gaussians with equal (unknown) variance

and prove identifiability from observational data in this case.

Nonlinear additive noise models

If the ¢; in Equation 5.1 are allowed to be nonlinear, the possible model complexity grows
enormously compared to the linear case. As such, much of the literature on nonlinear additive
noise models has considered the bivariate case, as this is the simplest non-trivial problem.
Causal inference in this case is often referred to as the problem of distinguishing between

cause and effect.

A common approach to this case is to assume that the g; belong to some restricted class of
functions and that the noise variables satisfy some statistical properties such as independence.
For example, Hoyer et al., 2009; Peters et al., 2010; Mooij et al., 2010 and Peters et al., 2014
perform regression under both X — Y and Y — X and choose between these using one of
a variety of independence scores to test that the ‘regressor’ or ‘parent’ variable is independent
of the residuals. Zhang and Hyvérinen, 2008 and Zhang and Hyvérinen, 2009 extend the
additive noise model by considering the post-nonlinear (PNL) model where x = fo(f1(y +¢))

and fo is invertible.

Other approaches include using information theory (Janzing et al., 2012; Janzing and
Scholkopf, 2010; Janzing et al., 2009a) and treating the problem as one of binary classification
between X — Y and Y — X, for which a classifier is trained using artificial data
(Lopez-Paz et al., 2015). This problem is more challenging in the presence of confounders,
corresponding to the noise variables being dependent, see Hoyer et al., 2008; Janzing et al.,
2009b for more details.

Cyclic additive noise models

Linear cyclic additive noise models, corresponding to Equation 5.2 in which the matrix A
need not be strictly upper diagonal, may be learned using ICA methods provided that I — A
is invertible. This is done by Lacerda et al., 2008, generalising the LINGAM method, though
identifiability holds here only up to SEMs that induce the same observational distribution.
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LDL _
diet HD diet — TC === HD
1€ — HDL ? 1€ +>
(a) (b)

Figure 5.1 Effects of cholesterol on risk of heart disease. As illustrated by (a), the current
consensus is that low-density lipoprotein (LDL) has a negative effect on heart disease (HD),
while high-density lipoprotein (HDL) has a positive effect on heart disease. Considering total
blood cholesterol (TC = LDL + HDL) to be a causal variable as in (b) leads to problems:
two diets promoting raised LDL levels and raised HDL levels respectively have the same
effect on TC but opposite effects on heart disease. Hence different studies may come to
contradictory conclusions about the effect of TC on heart disease.

Scheines et al., 2010; Hyttinen et al., 2010; Hyttinen et al., 2012 and Hyttinen et al., 2013
extend this setting to consider dependent noise variables, additionally assuming access to

interventional data.

Another line of research tries to relax the linearity assumption. As is the case for acyclic
SEMs, removing this assumption leads to significant increase in possible model complexity,
with the challenge of causal inference growing correspondingly. Mooij et al., 2011 and Mooij
and Heskes, 2013 consider Gaussian distributed noise variables and use Gaussian processes

to model the functions g;.

5.4 What are causal variables?

The approaches to causal inference discussed in the previous section all make a crucial
assumption that we have not yet discussed: we are presented with a vector of random variables
which are individually ‘causally meaningful’ in the sense that causal relations between them
exist and can thus be discovered. Clearly not all random variables are meaningful in this
way, and thus cannot be endowed with a causal interpretation. A simple intuitive example of
this can be found in images, where individual pixels are not meaningful, though higher level

features such as the presence of an object may be.

It will be argued that for macro-variables that are functions of underlying causal micro-
variables to be themselves considered causal entities, it is important to consider the set of

interventions being modelled and the structure exhibited by these interventions.

The issue is best illustrated concretely by an example previously used by Spirtes and Scheines,

2004 to demonstrate problems in the causal modelling process.

Historically, the level of total blood cholesterol (TC) in a human subject was thought to be an

important variable in determining their risk of developing heart disease (HD). To investigate
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this, many experiments were carried out in which patients were assigned to different diets in
order to raise or lower TC. Conflicting evidence was found by these experiments: some found
that higher TC had the effect of lowering HD, while others found the opposite (Truswell,
2010; Steinberg, 2011).

The reason for this apparent contradiction is understood with hindsight, but serves to
illustrate the care that must be taken when seeking causal relations. The current scientific
consensus is that there are two types of blood cholesterol, low-density lipoprotein (LDL) and
high-density lipoprotein (HDL), which have a negative and positive effect on HD respectively
(Figure 5.1a). A measurement of TC is in fact a measurement of the sum of LDL and HDL.
Therefore two experiments, one raising LDL levels and the other raising HDL levels, would
have the same effect on TC but opposite effects on HD (Figure 5.1b).

In this example, total blood cholesterol is too ‘coarse’ a variable to have a well-defined causal
relation with risk of heart disease. However, if it had been possible to affect only one of LDL
and HDL through diet, this issue may never have been discovered: if only HDL could be
influenced by diet, the scientific consensus would be that total blood cholesterol is protective

against heart disease and no contradictions would have been found.

Similarly, it is conceivable that there are in fact two different types of HDL: a more prevalent
form which is protective against heart disease and one present in smaller quantities that
has a detrimental impact. If the ratio of these two types is constant under any intervention
through diet, the negative impact will always be outweighed by the positive impact and so
we might never discover the detrimental subtype. If this were true, would the statement
‘increased HDL levels cause reduced risk of heart disease’ be rendered false? Arguably it
would be an oversimplification of the more complicated truth, but it would not be false in

that it would correctly predict the outcome of any diet-based intervention.

This example raises two main points. The first is that in the real world, measurements or
observations are always made at some level of detail or coarseness that is somewhat arbitrary.
The second is that whether or not a variable is ‘causally meaningful’ is intricately connected
to the interventions being considered. If we consider a coarse variable such as TC, we can
consistently model causal relations if the interventions considered are sufficiently restricted,

but this breaks down if the interventions are too rich.

We elaborate on each of these points next, setting the stage to tackle our overarching goal of
trying to answer the following questions: If the true causal mechanisms of the world operate
at a very low level of detail (e.g. atoms), under what conditions can we speak of causal
relations at higher levels (e.g. objects)? How can we formalise such a notion of consistent

modelling at different levels of abstraction in the framework of SEMs?
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5.4.1 Modelling at different levels of detail

All physical systems or processes in the real world are complex and can be understood at
various levels of detail. We previously discussed the example of cholesterol levels and risk of
heart disease. Although the true mechanisms by which cholesterol affects heart disease are
surely very complicated — for instance, it may be important how cholesterol is distributed
throughout the body — we sought to summarise the micro-level details into a small number
of macro-level variables, the total levels of HDL and LDL.

Another example of micro-macro abstraction can be found in statistical physics. A gas in
a volume consists of a large number of molecules, but instead of modelling the motions of
each particle individually, we may choose to consider macroscopic properties of their motions
such as temperature and pressure. As in the case of cholesterol, the decision to use such
macroscopic properties may be necessitated primarily by practical considerations. Indeed,
for all but extremely simple cases, making a measurement of all the individual molecules
is practically impossible and computational resources insufficient for modelling the ~1022
particles present per litre of ideal gas. Furthermore, the decision for a macroscopic description
level is also a pragmatic one: if we only wish to reason about temperature and pressure, a

model of 10?2 particles is ill-suited.

Statistical physics is a rigorous theory that explains how higher-level concepts such as
temperature and pressure arise as statistical properties of a system of a large number of
particles, justifying the use of a macro-level model as a useful transformation of the micro-
level model (Balian, 1992). However, in many other cases where aggregate or indirect
measurements of a complex system form the basis of a macroscopic description of the system
(such as the cholesterol example) there is little theory to explain whether this is justified or
how the micro- and macro-descriptions stand in relation to one another. As we saw, this lack

of theory occasionally leads to apparent contradictions.

Due to deliberate modelling choice or the limited ability to observe a system, differing levels
of model descriptions are ubiquitous and occur, amongst possibly others, in the following

three settings:

(a) Models with large numbers of variables versus models in which the ‘irrelevant’ or
unobservable variables have been marginalised out (Bongers et al., 2016); e. g. modelling
blood cholesterol levels and risk of heart disease while ignoring other blood chemicals

or external factors such as stress.

(b) Micro-level models versus macro-level models in which the macro-variables are aggregate
features of the micro-variables (Simon and Ando, 1961; Iwasaki and Simon, 1994; Hoel
et al., 2013; Chalupka et al., 2015; Chalupka et al., 2016); e. g. instead of modelling
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the brain as consisting of 100 billion neurons it can be modelled as averaged neuronal

activity in distinct functional brain regions.

(c) Dynamical time series models versus models of their stationary behaviour (Fisher, 1970;
Iwasaki and Simon, 1994; Dash and Druzdzel, 2001; Lacerda et al., 2008; Mooij et al.,
2013; Mooij and Heskes, 2013); e. g. modelling only the final ratios of reactants and

products of a time evolving chemical reaction.

In each of these cases, the fine-grained model may be considered the ‘truth’ while the coarse-
grained model is a convenient abstraction.? In the context of causal modelling, an intervention
in the coarse-grained model must correspond in reality to some intervention in the fine-
grained model. Such differing model levels should be consistent with one another in the sense

that they agree in their predictions of the effects of corresponding interventions.

5.4.2 The importance of interventions

Recall the two models in Figure 5.1 in the cholesterol and heart disease example. Here, the
micro-level model with variables HDL and LDL is inconsistent with the macro-level model
with only the TC variable. The inconsistency arose because two different interventions in the
mirco-level (raise HDL and raise LDL) have different effects on risk of heart disease yet map
to the same intervention at the micro-level (raise TC). This would not have been noticed had
it been possible to intervene only on one of HDL and LDL through dietary means, and in
this case the TC model would have been considered valid. In other words, whether or not the
two models are consistent with one another is in large part a question of which interventions

in the micro-model are to be represented in the macro-model.

This is illustrative of a more general case in which the same system is modelled at two different
levels of complexity: if the two models are to be considered consistent, the set of interventions
modelled at the micro-level may need to be restricted, since a macro-model will generally
have the capacity to express fewer interventions than a micro-model with a larger number of
variables. This point cannot be formally expressed within the framework of classical SEMs

as given by Definition 5.1, since these does not specify which interventions are valid.

Moreover, for a collection of macro-variables to be considered a causal model consistent with
a micro-level model, we must also consider compositionality, an often-overlooked natural
structure present in interventions. Given an SEM M x over variables X,..., Xy, the two
interventions do(X; = x;) and do(X; = x;) for i # j can be combined to form the intervention
do(X; = x;, X; = ;). This corresponds to the intuitive notion that interventions on distinct
causal variables can be combined, and will be formalised by imposing a partial ordering on

the set of interventions modelled.

30f coure, the fine-grained model may itself be a coarsening of an even more detailed model.
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In summary, for macro-variables that are functions of underlying causal micro-variables to
be themselves considered causal entities, it is important to consider the set of interventions

being modelled and the structure exhibited by these interventions.

5.5 Transformations between Structural Equation Models

This section will first introduce an extended definition for SEMs that can capture restricted sets
of interventions and the structure they exhibit, after which a notion of exact transformations
between two SEMs will be formalised. The idea is that if one SEM can be viewed as an exact
transformation of another, they can both be viewed as consistent causal models of the same
underlying system at different levels of detail. Elementary transformations satisfying this
definition will be examined, and the main result (Theorem 5.14), which states that causal
reasoning is preserved under exact transformations, is presented and discussed in detail.
Section 5.6 presents practical examples of exact transformations covering each of the three
categories of modelling abstractions discussed in Section 5.4.1: marginalisation in systems of
many variables, macro-variables derived from underlying micro-variables, and descriptions of

the time-invariant behaviour of a dynamical system.

5.5.1 An extended definition for SEMs

The following definition extends that of the classical definition for SEMs. The main difference
is the explicit introduction of the intervention set being modelled, as well as bringing to
attention the structure of a partial ordering it exhibits. Additionally, for generality it is
not assumed that the distribution Pg factorises. For convenience later on, the variables are
labelled with an arbitrary index set Ix rather than {1,..., N}, though this slight notational
change has no formal impact on subsequent results. All mentions of SEMs henceforth refer

to the following definition, rather than the classical definition.

Definition 5.9 (Updated definition for SEMs). Let Ix be an index set. An SEM Mx over
variables X = (X; : i € Ix) taking value in X is a triple (Sx,Zx, Pr) where

e Sx is a set of structural equations X; = f; (Xpa(i), EZ) forielx;

o (Ix,<x) is a subset of all perfect interventions equipped with a natural partial ordering
(see below), i. e. it is an index set where each index corresponds to a particular perfect
intervention on some of the X wvariables;

e Pg is a (not necessarily factorised) distribution over E = (E; :i € Ix);

o with Pg-probability one, under any intervention ¢ € Lx there is a unique solution x € X

to the intervened structural equations.
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As before, a perfect intervention on a single variable do(X; = x;) is realised by replacing
the structural equation for variable X; in Sx with X; = z;, while perfect interventions on
multiple variables, e.g. do(X; = x;, X; = x;), are similarly realised by replacing the structural
equations for each variable individually. Elements of Zx correspond to perfectly intervening

on a subset of the X variables, setting them to some particular combination of values.

Tx is equipped with the natural partial ordering <x in which, for interventions i,j € Zx,
1 <x j if and only if 7 intervenes on a subset of the variables that j intervenes on and sets them
equal to the same values as j. For example, do(X; = ;) <x do(X; = z;, Xj = z;). Informally,
this means that j can be performed after ¢ without having to change or undo any of the
changes to the structural equations made by 7. Not all pairs of elements must be comparable:
for instance, if i = do(X; = x1) and j = do(X3 = x2), then neither ¢ <x j nor j <x ¢. This

structure is important and crucial use of it will be made use of in the next sections.

Aside from the treatment of interventions, Definition 5.9 additionally relaxes the usual
assumption of acyclicity of the causal graph, Instead, the final condition in the definition
ensures that for any intervention i € Zx, Mx induces a well-defined distribution over X.
This is always satisfied if the SEM is acyclic, but must be explicity included to also allow

consideration of the cyclic case.

The following example illustrates how SEMs are written in this notation and provides an

example of a restricted set of interventions Zx.

Example 5.10. Consider the following SEM defined over the variables { By, B2, L}

Sx = {B1 = Ei1, By = Ey, L =0R(By, B, E3)},
Ix = {@, dO(Bl = 0), dO(B2 = 0),dO(B1 =0,B, = 0)},
{E1, B3, E3} g Bernoulli(0.5),

where by the element @ € T we denote the null- or empty-intervention corresponding to the
unintervened SEM.

The SEM in Example 5.10 could be thought of as a simple causal model of two light bulbs
By and B and the presence of light L in a room with a window. Suppose that we have no
access to the light switch and there are no curtains in the room but that we can intervene by
removing the light bulbs. We can model this restricted set of interventions by Zx, i.e. the do-
intervention on the SEM side do(Bj = 0) corresponds to removing the light bulb Bj.

The partial ordering of Zx corresponds to the ability to compose physical implementations
of interventions. The fact that we can first remove light bulb B; (do(B; = 0)) and then
afterwards remove light bulb By (resulting in the combined intervention do(B; = 0, By = 0))
is reflected in the partial ordering via the relation do(B; = 0) <x do(B; = 0, By = 0).
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5.5.2 Partially ordered sets of distributions

For each intervention ¢ € Zx, the SEM M x induces a distribution over the observable variables
X that we denote by P;O(Z). Throughout, we will denote the empty- or null-intervention
corresponding to the unintervened setting by @ € Zx. For notational convenience, we will

use Py and P;O(i) interchangeably for the observational distribution.

M x induces a set of joint distributions over X, one for each intervention in Zx, which moreover

inherits the partial ordering from Zx. This poset of distributions can be written as
Px = ({P;O(Z) NS Ix} s SX) ,

where <x is the partial ordering inherited from Zx, i.e. P;O(i) <x P;O(j) — i <x J.

Note that Px contains all of the information in M x about the different distributions implied
by the SEM and, importantly, how they are related via the interventions. For example, the
distribution over the variables X in the observational setting, P, changes to P;O(i) under the
intervention do(), and the partial ordering contains all information about which distributions

are subsequently attainable by composing with other interventions.

5.5.3 Exact transformations of SEMs

Suppose the function 7: X — ) maps the variables of the SEM M x to another space ).
Since X is a random variable, 7(X) is also a random variable. For any distribution Px on X
we thus obtain the distribution of the variable 7(X) on Y as P,(x) = 74Px via the push-

forward measure.

In particular, any intervention i € Zx induces the distribution Pf;( X) = T#P?(O(i). We can
write the poset of distributions on ) that are induced by the original SEM M x and the

transformation 7 as
PT(X) = ({Pi(X) RS Ix} , Sx) ,

where <x is the partial ordering inherited from Px (in turn inherited from Zx). P(x) is
just a structured collection of distributions over ), indexed by interventions Zx on the X-

level; importantly, the indices are not interventions on the )-level.

Although P, (x) is a poset of distributions over ), there does not necessarily exist an SEM
My over Y that implies it. For instance, if there is some intervention i € Zx \ {@} such
that none of the variables Y; is constant under the distribution Pj( X)) then PTi( X) could not
possibly be expressed as arising from a do-intervention j € Zy \ {@} in any SEM over ), an
issue that is studied in detail by Eberhardt, 2016.
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The case in which there does exist an SEM My that implies P, (x is special, motivating our

main definition.

Definition 5.11 (Exact Transformations between SEMs). Let Mx and My be SEMs and
T:X = Y be a function. We say My 1is an exact T-transformation of Mx if there exists a

surjective order-preserving map w : IZx — Zy such that
Py, = PP vieTy,

where PTi(X) is the distribution of the YV-valued random variable T(X) with X ~ P;O(i).

Order-preserving means that i <x j = w(i) <y w(j). It is important that the converse
need not in general hold as this would imply that w is injective,* and hence also bijective.
This would constrain the ways in which My can be ‘simpler’ than M .2 That w is surjective
ensures that for any do-intervention j € 7y on My there is at least one corresponding

intervention on the Mx level, namely an element of w=!({j}) C Zx.

The following two results give elementary properties of exact transformations following

immediately from the definition.

Lemma 5.12. The identity mapping and permuting the labels of variables are both exact
transformations. That is, if Mx is an SEM and © : Ix — lx is a bijection then the

transformation

T: X =),

(.%'i NS Hx) — (xw(l) NS ]IX),

naturally gives rise to an SEM My that is an exact T-transformation of M x, corresponding

to relabelling the variables.

Proof. Consider the SEM My obtained from M x by replacing, for all ¢ € Ix, any occurrence
of X; in the structural equations Sx and interventions Zx by Y7 (;) and leaving the distribution
over the exogenous variables unchanged. Denote by w the corresponding mapping on

interventions obtained by replacing X; with Yr;). O

This is a good sanity check; it would be problematic if this were not the case and the labelling of

the variables mattered. Similarly, compositions of exact transformations are also exact.

“Since w(i) = w(j) <= (W) <y w(j)) A (W(j) <y w(3)), which, if the converse held, would imply that
(1 <x j) A (j <x 1), which is equivalent to i = j.
SFor instance, if it were necessary for w to be bijective, Theorems 5.17 and 5.19 would not hold.
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Lemma 5.13 (Transitivity of exact transformations). If My is an exact Tzy -transformation
of My and My is an exact Ty x -transformation of Mx, then Mz is an exact (Tzy o Ty x)-

transformation of Mx .

Proof. Let wzy : Iy — Iz and wyx : Zx — Zy be the mappings between interventions
corresponding to the exact transformations 77y and Ty x respectively and define wyx =
wzyowyx : Lx — ZLz. Then wyx is surjective and order-preserving since both wzy and wy x

are surjective and order-preserving. Since 7zy and Ty x are exact it follows that for all ¢ € Tx.

i _ pwzy(wyx (@) _ PdO(wZX(i))
Tzx(X) T T rzy(ryx (X)) T T Z ’
That is, Mz is an 7z x-exact transformation of M x. O

5.5.4 Causal interpretation of exact transformations

The notion of an exact transformation between SEMs was motivated by the desire to analyse
the correspondence between two causal models describing the same system at different levels
of detail. The purpose of this section is to show that if one SEM can be viewed as an exact
transformation of the other, then both can sensibly be thought of as causal models of the

same system. The main technical result is the following theorem.

Theorem 5.14 (Causal consistency under exact transformations). Suppose that My is an
exact T-transformation of Mx and w is a corresponding surjective order-preserving mapping
between interventions. Let i,j € Tx be interventions such that i <x j. Then the following

diagram commutes:

do(2) do(j)

Py ——» pll 5 pdoli)

: | . | -

do(w(i)) _do(w(5)) |
Py ——» plolel) " pofwly)

Proof. Let i,7 € ITx be interventions with ¢ <x j. The commutativity of the left square
of the diagram follows immediately from the definition of an exact transformation. It
remains to be shown that the right square of the diagram commutes. By definition we
have that T#P;}O(i) = Pgo(w(i)) and T#Pio(j ) = Pgo(w(j D, Thus, we only have to show that
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exists.

Pgo(w(i)) <y PSO(WU)) as elements of Py, i.e. that the arrow Pgo(w(i)) M PSO(WU))

This follows from the order-preservingness of w. O

Suppose now that M x is a causal model that is taken to be in some sense ‘true’. We will
examine the implications of another SEM My being an exact T-transformation of M x with

corresponding intervention map w.

Surjectivity of w ensures that any intervention in Zy can be viewed as an My-level represen-
tative of some intervention on the M x-level. Consequently, if do-interventions on the M x-
level are in correspondence with physical implementations, then surjectivity of w ensures that
do-interventions on the My-level have at least one corresponding physical implementation.

Thus, if M x is physically grounded, so is My-.

Commutativity of the left hand part of the diagram ensures that the effects of interventions
are consistently modelled by M x and My . Suppose we want to reason about the effects on
the My-level caused by the intervention j € Zy. For example, we may wish to reason about
how the temperature and pressure of a volume of gaseous particles is affected by being heated.
We could perform this reasoning by considering any corresponding M x-level intervention
i € w 1({j}) and considering the distribution this implies over ) via 7. In our example, this
would correspond to considering how heating the volume of gas could be modelled by changing
the motions of all the gaseous particles and then computing the temperature and pressure of the
volume of particles. Commutativity of the left hand part of the diagram implies that M x and
My are consistent in the sense that My allows us to immediately reason about the effect of
the intervention j € Zy while being equivalent to performing the steps above. That is, we can
reason directly about temperature and pressure when heating a volume of gas without having

to perform the intermediate steps that involve the microscopic description of the system.

Commutativity of the right hand side of the diagram ensures that once an intervention that
fixes a subset of the variables has been performed, we can still consistently reason about the
effects of further interventions on the remaining variables in M x and My . Furthermore, it
ensures that compositionality of do-interventions on the M x-level carries over to the My
level. That is, if the intervention j on the M x-level can be performed additionally to the

intervention ¢ in My (i.e. i <x j), then the same is true of their representations in My .

If Mx and My are models of the same system and it has been established that My is an
exact T-transformation of M x for some mapping 7, then the commutativity of the whole
diagram in Theorem 5.14 ensures that they are causally consistent with one another in
the sense described in the preceding paragraphs. If we wish to reason about the effects of
interventions on the Y-variables then it suffices to use the model My, rather than the possibly
more complex model Mx. In particular, this means that we can view the )-variables as

causal entities, rather than only functions of underlying ‘truly’ causal entities. Only if this is
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X1 i \ Xo i=X1+Xo
NS I
X3 }/2 = X3
(a) SEM My (b) SEM My

Figure 5.2 Graphical illustration of parent-child relationships for the examples in Section 5.5.5.
The micro-level model M x depicted in (a) is to be transformed into the macro-level model
My depicted in (b) which is a coarser descriptions as in it only considers the sum of X; and
Xo. In Section 5.5.5 we give examples of what can go wrong if the transformation is not exact.

the case, causal statements such as ‘raising temperature increases pressure’ or ‘LDL causes

heart disease’ are meaningful.

5.5.5 What can go wrong when a transformation is not exact?

In the previous section it was argued that Definition 5.11 of exact transformations between
SEMs is a sensible formalisation of causal consistency. This section provides intuition for why
weakening the conditions of the definition would be problematic. Particular focus is paid to

the requirement that w be order-preserving, which is one of the core ideas of this work.

The requirement that w be surjective is, as discussed above, required so that all interventions
on the My-level have a corresponding intervention on the M x-level. If it were only required
that w be surjective (but not order-preserving), the observational distribution of M x might
be mapped to an interventional distribution of My, as illustrated by the following example,

illustrated in Figure 5.2.
Example 5.15. Consider the SEM Mx = {Sx,Ix, Pg} over X = R3 where

Sx ={X1=FE1, Xo=FE;, X3=X1+ X+ E3},
Ix = {@, dO(Xg = 0), dO(Xl =0, Xy = 0)},
EINPEN EQZ_Eh E3NPE37

where Pg, and Pg, are arbitrary distributions. Let T : X — Y = R? be the mapping such that

T (1‘1,962,563) = (yl:y?) = <I1 +$2,953)-
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Let My ={Sy,Zy, Pr} be an SEM over ) with

Sy ={V1=F, Yo=Y + F},
Iy = {@, dO(Y1 = 0)},
Fi ~ Pp,, Fy~ Pp,.

Let w:Zx — Iy be defined by

Then it is true that PTi(X) = Pgo(w(i)) for all i € Tx, while w is not order-preserving and
w() # @.

If the SEMs in the above example were used to model the same system, it would be
problematic that the observational setting of M x—a description of the system when not
having physically performed any intervention—would correspond to an interventional setting

in My, conversely suggesting that the system had been intervened upon.

To avoid the above conflict, it could be demanded in addition to surjectivity that w map the
null intervention of M x to the null intervention of My . This additional assumption would
ensure commutativity of the left-hand part of the diagram in Theorem 5.14. However, as
the following example shows, this would not ensure that the right-hand part of the diagram

commutes for all pairs of interventions ¢ <x 7, since in this case the arrow from P;}O(w(i)) to

P&O(w(j ) may not exist.%

Example 5.16. Let X,)Y and 7 be as in Fxample 5.15. Consider the SEM Mx =
{S8x,Zx,Pg} where

Sx ={X1=E, Xo=Es, X3=X+ X+ E3},
Ix = {@, dO(X2 = 0), dO(Xl =0, Xy = 0)},
E1:17 EQNPEza E3NPE37

5By definition of the poset Py, this arrow exists if and only if w(i) <y w(j).
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where Pg, and Pg, are arbitrary distributions. Let My = {Sy,Zy, Pr} be the SEM over )
with

Sy={Y1=1+F, Yo=Y + F},
Iy = {@, dO(Yi = 0), dO(Y1 = 1)},
Fi ~ Pg,, Fs~ Pp,

Let w:Zx — Iy be defined by

16} — J,
w:qdo(Xe=0) — do(Y; = 1),
dO(Xl = 0, X2 = 0) — dO(Yi = O).

Then it is true that qu;(x) = Pgo(w(i)) for alli € ITx and w(@) = &, although w is not order-

preserving.

If the above SEMs were used as models of the same system, they would not suffer from the
problem illustrated in Example 5.15. Suppose now, however, that we have performed the
intervention do(Xy = 0) in M, corresponding to the intervention do(Y; = 1) in My. If we
wish to reason about the effect of the intervention do(X; = 0, X3 = 0) in Mx, we run into a
problem. M x suggests that do(X; = 0, X3 = 0) could be implemented by performing an
additional action on top of do(X2 = 0). In contrast, My suggests that implementing the
corresponding intervention do(Y; = 0) would conflict with the already performed intervention

do(Y7; = 1). The requirement that w be order-preserving rules this pathology out.

5.5.6 Exact transformations as marginalisations in a larger model

This section provides an alternative intuition for how to think about exact transformations.
Rather than thinking of them as transforming one SEM M x into another My, it is possible
to think of them as corresponding to marginalisation in a larger model containing both micro-

and macro-variables X and Y, with some caveats.

Start with the base micro-level SEM M x. It is possible to add the macro-variables to this
as deterministic functions of the micro-variables via the function 7. That is, one obtains an
SEM Mx y over the variables X and Y, where the structural equations for the variables X;
are the same as in Mx and those for the variables Y; are given by Y; = 7;(X) (note that
these structural equations are deterministic and do not have exogenous variables). The model
Mx y has the same interventions as M x, which induce distributions over all of the variables
(X,Y).
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Now, take the model Mx y and marginalise out the X variables, yielding the model M\y.
Note that this may not be an SEM (hence that ‘hat’), and the non-trivial part of this process
is that there is in general no canonical way to write down the ‘marginalised’ structural
equations—one could always simply write each Y; as a function of the X-level exogenous

noise variables, but then the structure between the Y;s would not be present.

Each intervention in M x y will induce a distribution over the variables Y in the model M\y.
This is analogous to the partially ordered set of distributions discussed in Section 5.5.2. If
this set of distributions can be faithfully represented by some set of structural equations and
interventions on these equations that respects the partial ordering on the original intervention

set, then this model My would be an exact transformation of M x.

In general, one could relax the notion of perfect interventions to allow probabilistic interven-
tions, which would make it easier for the distributions of the marginalised model M\y to be
expressible in a single SEM. One could also use the framework of Dawid, 2020 to include the
interventions as part of the set of variables being marginalised over, to make it clearer that in-

terventions originally made on X propagate to interventions on Y after marginalisation.

However, the challenge would still remain that without further thought, marginalisation
would result in a graph in which there are no direct arrows between the Y variables, and all
dependence between them is due to confounders. E.g. in Theorem 5.19 and Figure 5.4 in the
next section, marginalising naively would result in no arrow W27 , but rather a confounder
between the two variables. Such a representation would miss the point of the whole exercise,
which is to identify structure between variables at the macro-level. This is not a necessary
outcome of the marginalisation view; this issue is raised only to bring attention to the fact
that the representation of the relationships between the remaining variables would need to
be carefully considered, in much the same way that it would in the view previously discussed

in this chapter.

5.6 Examples of exact transformations

The problem of modelling at multiple levels of complexity was motivated in Section 5.4.1
by listing three settings in which differing model levels naturally occur: marginalisation of
unobserved variables; macro-level models of underlying micro-variables; and time-invariant
descriptions of dynamical systems. Having introduced the notion of an exact transformation
between SEMs, this section provides examples of exact transformations falling into each of

the categories.

Observe that in each example, the particular set of interventions considered is important. If

one were to allow larger sets of interventions Zx in the SEM M x, the transformations given
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subsystem My

o ® @
- e

Mx

Figure 5.3 Suppose that a complex model M x is given but that only the subsystem X7, Xs, X3
is of interest. By Theorem 5.17, downstream effects (© ) can be ignored after grouping
them together as one multivariate variable. By Theorem 5.18 intermediate steps of complex
mechanisms (@) can be ignored and upstream causes (@) treated as exogenous noise.
That is, the complex SEM M x can be exactly transformed into a simpler model My by
marginalisation of the irrelevant variables.

would not be exact, highlighting the importance to the causal modelling process of carefully

considering the set of interventions. All proofs can be found in Appendix C.

5.6.1 Marginalisation of variables

In the following two theorems it is shown that the marginalisation of childless or non-
intervened variables is an exact transformation, illustrated in Figure 5.3. That is, an SEM
can be simplified by marginalising out variables of either of these types without losing any

causal content concerning the remaining variables.

Thus if the SEM My can be obtained from another SEM M x by successively performing
the operations in the following theorems, then My is an exact transformation of Mx and
hence the two models are causally consistent. This formally explains why we can sensibly

consider causal models that focus on a subsystem My of a more complex system M x.

Theorem 5.17 (Marginalisation of childless variables). Let Mx = (Sx,Zx, Pg) be an SEM
and suppose that 1z C Ix is a set of indices of variables with no children, 1. e. if i € Iz then
X, does not appear in the right-hand side of any structural equation in Sx. Let Y be the set
in which Y = (X; : 1 € Ix \ Iz) takes value. Then the transformation 7 : X — Y mapping

Ti(riiely)=x—y=(x;:i€lx\Iz)

naturally gives rise to an SEM My that is an exact T-transformation of Mx, corresponding

to marginalising out the childless variables X; for i € 1.

Theorem 5.18 (Marginalisation of non-intervened variables). Let Mx = (Sx,Zx, Pg) be an

acyclic SEM and suppose that Iz C lx is a set of indices of variables that are not intervened
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Figure 5.4 An illustration of the setting considered in Theorem 5.19. The micro-variables
Wi,...,Wy and Z1,...,Z, in the SEM Mx can be averaged to derive macro-variables W
and Z in such a way that the resulting macro-level SEM My is an exact transformation of
the micro-level SEM M.

upon by any intervention i € Ix. Let Y be the set in which Y = (X; : 1 € Ix \ 1z) takes value.
Then the transformation T : X — Y mapping

Ti(ziri€ely)=ac—y=(z;:ie€lx\ly)

naturally gives rise to an SEM My that is an exact T-transformation of Mx, corresponding

to marginalising out the never-intervened-upon variables X; for i € l.

The assumption of acyclicity made in Theorem 5.18 can be relaxed to allow marginalisation
of non-intervened variables in cyclic SEMs, at the expense of extra technical conditions; see
Section 3 of Bongers et al., 2016.

Recall that Definition 5.9 does not require that the exogenous E-variables of a SEM be
independent. Theorem 5.18 would not hold if this restriction were made (which is usually
the case in the literature); marginalising out a common parent node will in general result in

its children having dependent exogenous variables.

5.6.2 Micro- to macro-level

Transformations from micro- to macro-levels may arise in situations in which the micro-level
variables can be observed via a ‘coarse’ measurement device, represented by the function 7. For
instance, we can use a thermometer to measure the temperature of a gas, but not the motions
of the individual particles. They may also arise due to deliberate modelling choice when we
wish to describe a system using higher level features, such as viewing the motor cortex as a

single entity responsible for movements, rather than as a collection of individual neurons.

In such situations, the framework of exact transformations allows the investigation of whether
such a macro-level model admits a causal interpretation. The following theorem, illustrated

in Figure 5.4, provides an exact transformation between a micro-level model Myx and a
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macro-level model My in which the variables are aggregate features of variables in M x

obtained by averaging.

Theorem 5.19 (Micro- to macro-level). Let Mx = (Sx,Zx, Pr,r) be a linear SEM over
the variables W = (W; : 1 <i<n)and Z = (Z; : 1 <i<m) with

j=1

Ix ={9, do(W =w), do(Z =z2), do(W =w,Z=2):weR", z€ R"}.

and (E, F) ~ P where P is any distribution over R"*™ and A is a matriz.

Assume that there exists a scalar a € R such that each column of A sums to a. Consider the

following transformation that averages the W and Z variables:

T:X =Y =R

7z 7 1 " Z;

—~

Further, let My = (Sy,Iy, P 13) over the variables {W, 2} be an SEM with

sv={W=5 2=2W+F},
m
Ty = {@, do(W =), do(Z =2), do(W = @,Z =2) : & € R, Z€ R},

n

~ 1 ~
E~=>E, F~
s
Then My is an exact T-transformation of Mx.

5.6.3 Stationary behaviour of dynamical processes

This section provides an example of an exact transformation between an SEM M x describing
a time-evolving system and another SEM My describing the system after it has equilibrated,
illustrated in Figure 5.5. In this setting, 7 could be thought of as representing our ability to
measure the time-evolving system at only a single point in time, after the transient dynamics

have taken place.

In particular, we consider a discrete-time linear dynamical system with identical noise and
provide the explicit form of an SEM that models the distribution of the equilibria under each

intervention. The assumption that the transition dynamics are linear could be relaxed to
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Xt X7

r=" r=-=

—

@ do(w(i)

Figure 5.5 An illustration of the setting considered in Theorem 5.20. The discrete-time
dynamical process is exactly transformed into a model describing its equilibria.

more general non-linear mappings. In this case, however, the structural equations of My
can only be written in terms of implicit solutions to the structural equations of M x. For

purposes of exposition, the simpler case of linear dynamics suffices.

Theorem 5.20 (Discrete-time linear dynamical process with identical noise). Let Mx =
(Sx,Zx,Pg) over the variables {X} : t € Z, i € {1,...,n}} be a linear SEM with

n
Sx =X\ => AyX{+El :ie{l,....n}teZy,
j=1

1. €. Xt+1 = AXt —|—Et
Ix = {do(Xg —axj VteZNVje )z eRV JC {1,...,n}},

E,=FE VvVt eZ where E ~ P,

where P is any distribution over R"™ and A is a matrix.
Assume that the linear mapping v — Av is a contraction.” Then the following transformation

is well-defined under any intervention i € Ix:

T:X =),

(@i)tez =y = lim z;.

"In Appendix C.3 it is shown that A being a contraction mapping ensures that the sequence (Xt)tez
defined by Mx converges everywhere under any intervention ¢ € Zx. That is, for any realisation (z¢):ez of
this sequence, its limit lim;—, ., x+ as a sequence of elements of R™ exists.
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Let My = (Sy,Zy, Pr) be the (potentially cyclic) SEM over the variables {Y* : i € {1,...,n}}
with

1— Ay 1— Ay
Iy:{dO(Yj:yj VjieJ):yeRY Jg{1,...,n}},

, - AYI i
SY:{YZ:Z]¢Z J + F ZG{].,,TL}},

F~P.

Then My is an exact T-transformation of Mx.

5.7 Discussion

This section discusses the implications of this work to the causality literature, future directions
for extending this work as well as outlining other papers have already built directly upon
it since the publication of the paper on which this chapter is in part based (Rubenstein,
Weichwald et al., 2017).

5.7.1 Implications to causality literature
Ambiguous manipulations and causal variable definition

The example of cholesterol and heart disease discussed in Section 5.4 was adapted from Spirtes
and Scheines, 2004, who illustrate the problem of ambiguous manipulations of variables that
are functions of underlying causal entities (e.g. TC = HDL + LDL). Although their work was
primarily concerned with causal discovery in such a context, Eberhardt, 2016 demonstrated
broader problematic implications to the idea of causal variable definition: in general, functions

of causal variables cannot be considered to be themselves causal.

The framework of exact transformations between SEMs provides a partial solution to this
issue, as it has been argued that if a higher level SEM My is an exact transformation of a
SEM M x of causal variables, then the variables in M7y can also be considered causal entities.
The key idea missing in previous work was to consider not simply individual variables in
isolation, but the entire SEM along with the interventions being modelled as the object being

transformed.
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Cyclic causal models

As previously discussed, there is no settled consensus within the causality literature on what
constitutes a ‘valid’ cyclic SEM. Acyclic SEMs are usually interpreted as corresponding to a
temporally ordered series of mechanisms by which data are generated; this is not possible
for cyclic SEMs since there is no partial ordering on the variables. The most common
interpretation is that they correspond to a dynamical system that converges quickly relative
to its environment, represented by the exogenous noise variables (Mooij et al., 2013). This is

supported by Theorem 5.20.

However, most real physical systems exhibit feedback, and many of these do not satisfy
this assumption. This work provides a framework to also consider such cases. Since all
physical systems evolve in time, they can be represented as an acyclic model M x. In general
our ability to make measurements is imperfect, and can be represented by the function 7.
Whether or not the observed variables 7(X) admit a causal interpretation is equivalent to
asking whether there exists an My that is an exact 7-transformation of M x. The framework
of exact transformations between SEMs thus provides a way to think about cyclic SEMs,
showing more generally how cyclicity can arise as a result of imperfect measurements of

underlying acyclic models.

5.7.2 Extensions

A high-level model need not be a perfectly accurate and faithful representation of a low-level
model in order to be useful. Indeed, all models are an approximation to some degree. In this
regard, the theory of exact transformations is perhaps too strict because of the requirement
that T#P;—O(i) = P;}O(w(i)) should hold for all interventions 7 € Zx.

In the original publication from which this chapter is in part based (Rubenstein, Weichwald
et al., 2017), one of the proposals for future directions of enquiry was to generalise the notion
of an exact transformation to an approrimate transformation in which the requirement of
equality is relaxed to hold only approximately, something that could be rigorously formalised

in a variety of ways.

Since publication of this work, Beckers et al., 2019 have investigated precisely this question,
exploring several subtleties. For instance, divergences between pairs of distributions can
be defined in multiple ways and a notion of nearness must hold in some sense over a set of
interventions. They propose two ways of defining approximate abstractions and show how
they are related, providing a way to quantify the trade-off between accuracy and abstraction.
These ideas are illustrate in practice with application to climate models, showing how the El

Nino event arises as a macroscopic property of wind and sea temperatures.
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In a second paper, Beckers and Halpern, 2019 consider in great detail the notion of casual
consistency proposed in this work. They argue that there exist examples of exact transforma-
tions that would nonetheless generally be considered to be inconsistent (or even unrelated)
causal models. In essence, the issue is that it is possible to use arbitrary distributions Pg
over the exogenous noise variables in order to construct pairs of SEMs for which an exact
transformation can be established, even though the models have little in common. In the
paper they propose a sequence of increasingly restrictive definitions for transformations be-
tween SEMs, the weakest of which corresponds to the exact transformations of this chapter,

and the strongest of which rules out the aforementioned pathologies.

5.7.3 Future directions

In this work and that of Beckers et al., 2019 and Beckers and Halpern, 2019, no criteria to
choose from amongst the set of all possible exact transformations of an SEM is provided.
Foundational work by Chalupka et al., 2015; Chalupka et al., 2016 considered the construction
of higher-level causal variables in a particular discrete setting, providing algorithms to learn
a transformation of a micro-level model to a macro-level model with desirable information-
theoretic properties. The framework proposed here may lead to extensions of their work, for

example to the continuous setting.

Finally, suppose that observations of an underlying system M x have been made via a
measurement device 7, and that an SEM My is fit from a restricted model class to the
collected data. The framework proposed here, and extended by the aforementioned works,
provides a method to ask whether My admits a causal interpretation consistent with M x.
Although verifying that a transformation is exact (or approximate) may be impossible in
practical scenarios where M x and 7 may be very complex (e.g. measuring the brain with
EEG), it may be possible to identify general cases in which this does or does not hold. This

may lead to the practical use of SEMs being more theoretically grounded.



Chapter 6

Conclusion

This thesis presented theoretical advances in three niches of the machine learning literature
related to the modelling of structured data. This chapter summarises the main contributions

and discusses future directions of research.

6.1 Summary of contributions

Chapter 3 presented an estimator for f-divergences between pairs of distributions satisfying
certain structural assumptions that are naturally satisfied in the setting of autoencoders. These
assumptions enabled the derivation of fast rates for the decay of the bias and concentration
of this estimator without additional strong assumptions on the distributions. This is in
contrast to much of the existing f-divergence estimation literature, where fast rates are only

attainable with strong assumptions that would be difficult to verify in practice.

Chapter 4 presented identifiability results for a novel multi-view nonlinear ICA setting,
extending the few identifiability results known for nonlinear ICA. These results required at
least one of the views to exhibit source-side noise, termed corruptions. In particular, if one
noiseless view of the sources is supplemented by a second view that is appropriately corrupted
by source-level noise, it was proved that the sources can be fully reconstructed from the
observations up to tolerable ambiguities. This setting has application to practical scenarios

in which multiple distinct data modalities are available, such as in neuroimaging.

Chapter 5 introduced the notion of exact transformations between Structural Equations
Models (SEMs), providing a framework to understand when two SEMs can be viewed as
consistent causal models of the same system at different levels of detail. This provides
a way to formally understand when higher-level variables can be considered to be causal

variables, and encompasses a wide range of settings in which such higher-level models arise.
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Practically all measurements are made at a level of detail different to that at which ‘true’
causal structure exists, yet causal discovery algorithms typically seek causal relations at the
level of measurements. Thus, this work has broad implications to the causality community in
general and in particular to the problem of causal variable definition. It furthermore brings
to attention the importance of the specification of interventions of interest as a part of the

causal modelling process.

6.2 Future directions

Chapter 3 was fundamentally a learning theoretic study of f-divergence estimation under
particular structural assumptions. One direction for future enquiry would be the use of
the proposed RAM-MC estimator for optimisation, instead of pure estimation. A clear
application of this would be to the training of Wasserstein Autoencoders, the regularisation
term of which is any divergence between the prior and aggregate posterior, and naturally

satisfies the structural assumptions considered in this chapter.

This work has broader implications as it demonstrates that there is interesting work to be
done at the intersection of deep learning and learning theory. While the learning theory
literature has tended to focus on settings in which as few assumptions are made as possible,
this work shows that in some cases strong assumptions that naturally apply to modern
deep learning settings can yield superior results. To give one specific example, it is known
that in the general case, estimation of mutual information is a hard problem (McAllester
and Stratos, 2018). Yet in many practical cases where mutual information is used, such as
in representation learning (Hjelm et al., 2018; Oord et al., 2018; Tschannen et al., 2020),
stronger assumptions may hold than in the general case. One such setting was encountered

in Chapter 3, though others may exist.

The identifiability results presented in Chapter 4 show that ICA in the multi-view setting is
in principle possible, and natural next steps would be the development of practical algorithms

that actually work in application.

An emerging area within deep learning is disentangled representation learning. This empirically
driven community shares similar goals to the ICA community but with a strong emphasis
on image datasets. Despite this, few bridges have been built between the two communities,
though recent work in disentanglement has begun to consider multi-view settings similar to
that considered here (Shu et al., 2019).

One barrier to connecting the ICA and disentanglement communities is the pervasive assump-
tion in ICA that the source and observation dimensions be the same. In high dimensional

data such as images, this is clearly unrealistic as usually dozens of latent dimensions are
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sufficient to explain the majority of variation in images with hundreds or thousands of pix-
els. Thus, attempting to relax this assumption would seem to be a possible way to give ICA

wider applicability across the modern machine learning community.

Similarly, gaps exist between the causality literature and modern advances in deep learning.
The fundamental assumption to almost all causal learning algorithms is that the individual
components of the data are meaningful entities. In contrast, deep learning algorithms can be
applied to data such as images and audio for which the components of raw data, i.e. individual
pixels or amplitudes at a particular point in time, are themselves not meaningful, but where
higher-level features such as objects, textures or syllables are. Causality is nonetheless gaining
increasing attention outside of the traditional community, with authors such as Bengio et al.,

2019 attempting to blend ideas from causality with deep learning.

The framework introduced in Chapter 5 allows one to reason about whether higher-level
causal variables are consistent with the ‘raw’ variables from which they are derived, but
it is not clear how such coarsenings can be learned automatically from data. My hope is
that others may build on this work, leading to ‘causal’ feature learning. However, given the
central importance of interventions in the causal setting, I have reservations about whether
this is possible given the current paradigm of i.i.d. machine learning with large datasets.
Reinforcement learning, however, could be a fruitful area in which to apply ideas from

causality, given the centrality of action there.
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Appendix A

Additional Materials for Chapter

3

A.1 Proof of Proposition 1

Proposition 1. Let M < N be integers. Then
Df<Q27PZ) < EXNNQ)I\{’Df(QA]ZVvPZ) < EXJWNQé\(fo(Q%/[7PZ>-

Proof. Observe that ]ExNQg = @z. Thus,

Dy(Qz, Pz) = /f (Exgg(z)) dPz(z)

< Exx / f ("ﬁ?) dPy(z)

= ExnqyDs(Q7, Pz),

where the inequality follows from convexity of f.

To see that ExNNQng(QJZV,PZ) < ExAINQ%D‘f(Ql\Z/j,Pz) for N > M, let I C {1,...

|I| = M and write

N,
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Letting I be a random subset chosen uniformly without replacement, observe that for any
fixed I, X! ~ QY (with the randomness coming from X" ~ Q). Thus

. 1 Y
QY ==Y Qzx,
N
1
= EIM Z Qzx,
el
=E/QY

and so again by convexity of f we have that

EXNNQng(Qg7 Pz) < Ex~vE;Df(QY%, Py)
= Exu D (QY, Py)

with the last line following from the observation that X! ~ QY. O

A.2 Proof of Theorem 3.11

Theorem 3.11 (Rates of the bias). If Ex~qy [x*(Qzx,Qz)] and KL (Qz, Pz) are finite
then the bias Exn [Df(Qg, Pz)| — Dy (Qz, Pz) decays with rate as given in the first row of
Table 3.1 (see Page 31).

Proof. To begin, observe that

R 2
Exv [X*(QF,Q7)] = ExxEq, [(?(i? - 1) ]
~ g, Vargy | L3 q<len>]
= Eq, Varxy lN; q(z)
1 q(2]X)
= yyBeVorx 105

= %EX [X2 (Qzx, QZ)}

where the introduction of the variance operator follows from the fact that Ex {Aq(z)
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For the KL-divergence, using the fact that KL < x? (Lemma 3.3) yields
Exv [KL (Q%, Pz)| = KL (Qz, Ps) = Ex~ [KL(Q},Qz)]|
< Exw [XQ(QA]ZV,QZ)}

— %EX [Xz (Qzx, QZ)}

1
pu— O —_—
(%)
where the first equality can be verified by using the definition of KL and the fact that
Qz = Ex~Q}.
For Total Variation, we have
Ex~ [TV (QF, Pz)| = TV (Qz, Pz) < Exn [TV (QF, Q)]
1 A
< \/i\/]EXN [KL< ]ZVaQZﬂ
1
-o(7x)
VN

where the first inequality holds since TV is a metric and thus obeys the triangle inequality,

and the second inequality follows by Pinsker’s inequality combined with concavity of /x
(Lemma 3.2).

For Dy, (including Jenson-Shannon) using the fact that D}/ ? satisfies the triangular inequality,

s
we apply the second part of Lemma 3.5 in combination with the fact that Dy, (Qg ,Q Z) <

Y(p) TV (Qg, QZ) for some scalar () (Lemma 3.4) to obtain B
Exw [ng (anpz)} — Dy, (Qz,Pz) <0 (]\71/4) .

Although the squared Hellinger divergence is a member of the fg-divergence family, we
can use the tighter bound H? ( A]ZV, QZ) <KL (Qg, QZ) (Lemma 3.1) in combination with

Lemma 3.5 to obtain

Ex~ [H? (QF, P7)| = H2(Qz, P2) <O (\/1N> .

A.3 Upper bounds of f

We will make use of the following lemmas in the proofs of Theorem 3.12 and 3.13.
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Lemma A.1. Let fo(z) = zlogz—x+1, corresponding to Dy, = KL. Write g(z) = f(x) =

log?(x). For any 0 < § < 1, the function

is an upper bound of g(xz) on [0,00), and is concave and non-negative on [0, 00).

Proof. First observe that hs is concave. It has continuous first and second derivatives:
/
gd(e) x€]0,€ 0 xz € 0,¢€]
() = { , W) =

Note that ¢"(z) = % — 21(;7%(36) < 0 for > e and ¢”(e) = 0. Therefore hj(x) has non-positive

second derivative on [0,00) and is thus concave on this set.

To see that hs(z) is an upper bound of g(x) for x € [d, 00), use the fact that ¢'(x) = 2log(2)

xT

and observe that

hs(z) — g(x) =

log?(8) + 2 —log*(z) z € [0, €]
log?(8) +1 x € [e, 00)

To see that hs(x) is non-negative on [0, 00), note that hs(xz) > g(z) > 0 on [, 00). Moreover,
g'(e) =2/e >0, and so for x € [0, §] we have that hs(x) = g(d) + 2z/e > g(6) > 0. O

Lemma A.2. Let fo(x) = 2(1 — \/z) corresponding to the squared-Hellinger divergence.
Write g(z) = f(z) = (1 — )2, For any 0 < § < 1, the function

xT

S

ho() = (0 = 1)?

is an upper bound of g(x) on [0, 00).
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If z € [6,1) then

1
-1 =V
* i I\/E\c >z > Ve
1-7 Vi

If x € (1,00) then

1 _

1-— 7z 1 =
Thus g(z) < hs(z) for x € [, 00). O
Lemma A.3. Let fo(z) = —25 (1 — ) 2(56__1) corresponding to the a-divergence with

l1-a a—1

a 2
a € (=1,1). Write g(z) = f(x) = (a_41)2 (:rTl — 1) . For any 0 < § < 1, the function
a1 2
ey = 0T )y
B O O VL

is an upper bound of g(x) on [0, 00).

Proof. For x = 1, we have ¢g(1) = hs(1). Consider now the case that x > ¢ and x # 1.
Since 0 < § < 1, we have that 1 —J > 0. And because (o —1)/2 € (—1,0), we have that
5% —1> 0. It follows by taking square roots that

g(w) < hs(z)
le —1 0z —1
<

— d(x) = o ST1 s

Now, d(x) is non-increasing for z > 0. Indeed,

—1 3—a a-1 l—a a3
/ a=1 a=3
d(x):(1_$)2 1-— 5 %7 +

and it can be shown by differentiating that the term inside the square brackets attains its
minimum at z = 1 and is therefore non-negative. Since (1 — z)2 > 0 it follows that d’(x) < 0
and so d(x) is non-increasing. From this fact it follows that d(z) attains its maximum on

x € [0,00) at z = §, and thus the desired inequality holds. O

Lemma A.4. Let fo(x) = (1 +x)log2 + xlogx — (1 + x)log (1

+
Jensen-Shannon divergence. Write g(x) = f#(x) = log®2 + log? (ﬁ) + 2log2log (ﬁ)

x) corresponding to the
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For 0 < § < 1, the function
hs(z) = g(5) + 4log®2
is an upper bound of g(x) on [0, 00).

Proof. For x > 1, 275 € [0.5,1) and so log (H%) € [—log2,0). Therefore g(x) € (0,410g2 2}
for > 1. It follows that for any value of §, hs(z) > g(x) for x > 1. fi(1) = 0 and by
differentiating again it can be shown that f{(z) > 0 for € (0,1). Thus fj(z) < 0 and is
increasing on (0,1) and so g(z) > 0 and is decreasing on (0,1). Thus hs(z) > g(d) > g(x) for
xz € [4,1). O

S 1
Lemma A.5. Let fo(x) = 1,1; {(1 + xﬁ) F_ 25_1(1 + :U)} corresponding to the fg-divergence
B

introduced in Osterreicher and Vajda, 2003. We assume [ € (%,oo) \ {1}. Write g(x) =

P = () (1 +x‘5)% - 25112.

If g € (%, 1), then limy, o0 g() exists and is finite and for any 0 < § < 1, we have that

hs(z) := g(9) + limy—y00 g(x) > g(x) for all x € [§, 00).

If B € (1,00), then lim,_0g(x) and lim,_ o g(x) both exist and are finite, and g(x) <

max{lim, 0 g(x),limy o g(z)} for all x € [0, 00).

1-28

Proof. For any /3 € (%, oo) \ {1}, we have that f§(z) = ﬁ [zﬁlﬂ (1 + x*ﬁ) 7| >0 for

x> 0. Since fj(1) = 0, it follows that f{(x) is increasing everywhere, negative on (0,1) and
positive on (1,00). It follows that g(z) is decreasing on (0, 1) and increasing on (1,00). 5 >0
means that 1+ 277 — 1 as  — co. Hence g(x) is bounded above and increasing in z, thus

lim, 0 g(x) exists and is finite.

1-8
For g € (%, 1), % > 0. It follows that (1 + x_ﬂ) ? grows unboundedly as  — 0, and hence

so does g(x). Since g(x) is decreasing on (0, 1), for any 0 < 6 < 1 we have that hs(z) > g(x) on
(0,1). Since g(x) is increasing on (1, 00) we have that hs(z) > lim,_,o g(x) > g(z) on (1, 00).

18
For g € (1, 00), % < 0. Tt follows that (1 + x_ﬁ) ? —0asz — 0, and hence lim,_,q g(x)
exists and is finite. Since g(z) is decreasing on (0, 1) and increasing on (1, 00), it follows that

g(z) < max{lim, ¢ g(x),lim; o g(z)} for all x € [0, 00). O
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A.4 Proof of Theorem 3.12

Theorem 3.12 (Rates of the bias). If Ex.qy.z~p, [¢*(Z|X)/p*(Z)] is finite then the bias
Exn~ [Df(Qg, Pz)| — Dy (Qz, Pz) decays with rate as given in the second row of Table 3.1
(see Page 31).

Proof. For each f-divergence we will work with the function fp which is decreasing on (0, 1)

and increasing on (1,00) with Dy = Dy, (see Section 2.4.2).

For shorthand we will sometimes use the notation Hq(z|X)/p(z)H%2(PZ qgf(‘zx p(2)dz and
121X /PP 1y = L2 (22,

We will denote C := Ex~gy.z~r,[¢*(Z|X)/p*(Z)] which is finite by assumption. This
implies that the second moment B := Ex.qy z~p, [¢*(Z]|X)/p*(Z)] is also finite due to

E[Y? = E[VY4] < \/E[Y4].

Jensen’s inequality:

The case that Dy is the x2-divergence: In this case, using f(z) = 2% — 1, it can be

seen that the bias is equal to

Bxv [Df (Y. P2)] - Dr @2, P2) = Ex» [ /| (W}zdmz)] SN

Indeed, expanding the right hand side and using the fact that Ex~{n(z) = ¢(z) yields

- [ [ Ble)=20nC)ate) ) dp(z)]

p*(2)
_ [ a%(z) - ¢*(2)
=Exn /Z sz(z)dp(z)]

[ (& 2(2)
=Exn /Z <p12V(Z) - 1) dP(z)] —/Z <p2(z) - 1) dP(z)

= Ex~ :Df (anPZH — Dy (Qz, Pz).

Again using the fact that Ex~gn(2) = q(2), observe that taking expectations over XV in
the right hand size of Equation A.1 above (after changing the order of integration) can be
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viewed as taking the variance of §n(2)/p(2), the average of N i.i.d. random variables, and so

o [ (550 0]« (355

_ % /Z - KQ(Z');)@ q(2) )2] 1P(2)

1 1
= Exx* (Qzix. Pz) = 35x* (Qz. P2)

B-1
< .
- N

The case that Dy is the Total Variation distance or Dy, with § > 1: For these
divergences, we only need the condition that the second moment Ex ||¢(z]|X)/p(2) ][%2( pyy < 00

is bounded.
Ex~ Dy, (QF. Pz)] = Dy, (Qz, P2)
o(589) - n(42)
(CIN(;)(;)Q(Z)) I (q;v((ZZ))ﬂ
< JEXNEPZ ng(z—)q(z))?] » wEXNEPZ 7 (2])

= EXNEPZ

where the first inequality holds due to convexity of fy and the second inequality follows by
Cauchy-Schwartz. Then,

La(Pz)



A .4 Proof of Theorem 3.12 131

For Dy, with 8 > 1, Lemma A.5 shows that fi*(z) < max{lim, 0 fg*(z), limy 00 fiZ(2)} <

oo and so

Thus, for both cases considered,

Exn~ [Df (anpz)} — D¢ (Qz,Pz) <0 (\/1N> .

All other divergences. We start by writing the difference as the sum of integrals over

mutually exclusive events that partition Z. Denoting by vn and dn scalars depending on N,

write

Ex~ [Df (QF, Pz)] - Dy (Qz, P2

“5x0 [0 (553) -0 (5 zi))dpz @)

[0 (55 -0 (55) e
o | [10(B) -5 0 (37 {320 0, 072
+Er | [0 (557) -0 (555) e

Consider each of the terms @, and @ separately.

Later on, we will pick 5 < vn to be decreasing in N. In the worst case, N > 8 will be sufficient

— Exn
a(=)
) SIN

}dPZ(z)

® &

1 dPZ(z)

©

to ensure that vy < 1, so in the remainder of this proof we will assume that oy, vy < 1.

@: Recall that fy(x) is decreasing on the interval [0, 1]. Since yn,dn < 1, the integrand is
at most fo(0) — fo(yn), and so

@ < fo(0) = folyn)-

: The integrand is bounded above by fy(0) since dy < 1, and so
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We will upper bound IP’ZXN@: observe that if vy > dy, then @ — ‘% >
N — On. It thus follows that

PZ,XN® < Pzxw {‘@v(z)(z—)q(z) >IN — 5N}
)

In(2) —q(2)

p
=z [P {‘qN(?o(z)

Varxn [q},‘zg)}

(Y~ —d0n)?

ZWN—5N|ZH

<Egz

The second inequality follows by Chebyshev’s inequality, noting that Ex~ q;f(g) = gg‘z; The

penultimate inequality is due to dropping a negative term. The final inequality is due to the

2
*(z|X) ’ . We thus have that

boundedness assumption C' = Ex P2(2) |lLy(Py)
2 Z

\/7
a < fo(0 Neow — o)

@: Bounding this term will involve two computations, one of which (f) will be treated

separately for each divergence we consider.
= Exn~ / fo (CZV(Z)) — fo (222) ]l{ﬁﬁg>>5N}dPZ(Z)
= By / (5 5) 5 (55) g0

iv(z) _a(2))
< \IEXNEZ l( p(Z) - pZ)) ] X ExNEZ

() (1)

I\

St

(Convexity of f)

p(z)

o ((AN(2)
e (q;\f(z) ) ]1{qN(Z)>5 }] (Cauchy-Schwartz)
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2)

), we have that

: a=X) _ ¢
Noting that Ex FONREE

(1)2 = B Vargx [ e }

SN

N
1o [lgzX) |
= NEX H p(2) Ly(Pz)
VB
= (1) < il

is finite by assumption.
L2 (Pz)

where VB = \/ H Z|X

p(2)

Term (1) will be bounded differently for each divergence, though using a similar pattern. The
idea is to use the results of Lemmas A.1-A.5 in order to upper bound f§?(x) with something

that can be easily integrated.

KL. By Lemma A.1, there exists a function hs, (z) that is positive and concave on [0, o)

and is an upper bound of f§?(z) on [0y, 00) with hs, (1) = log?(dy) + 2

< Exw~ hsy ED Liivi p(2)dz| (hs, upper bounds f" on (Jy,0o0))
(1)

i p(2) e
< By | [ s, (‘ZV(S)) p(z)dz] (hs mon-negative on [0, 00))
o ( / ‘j;V(S) p(z)dz)} (hs, concave)
= hsy (1)
= log?(6n) + =

— (1) = |/ log2(ow) + -

Therefore,
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Putting everything together,
Ex~ [D; (QF. Pz)] - Dy (Qz, P2)
<@W+®+(©)
VC VB log?(dn) + 2

< fo(0) — folyw) + fo(O)m N

VC [log?(5n) + 2
=N —nlogyw + ———— 4+ VB —=—~ L e,
N (v — 6n)? N

Taking dny = ﬁ and vy = ﬁi

2(_1 2

2 2 2 VC log te

:1/3_1/310g< 1/3>+ T +VB$ (NI/S)
N N N N - 273 N

2 —-92log2 2log N Log? (N) + 2
_2-2log2 2logN VO s [slog (V) + ¢
Nl/S 3N1/3 N1/3 N
log N
:0<N1/3).

Squared-Hellinger. Lemma A.2 provides a function hs that upper bounds f”(z) for

x €€ [0,00).

(11)? = Exn /f62 <qﬁi§)> ]l{qN<z>>5N}P(Z)dZ]

I p(2) P(2)
< Exw~ / hsy (A;V(;;)> p(z)dz] (hs, non-negative on [0, 00))
1 in (%) ’
= gy Ex e quf(a -1) ]
< —Ex~Ep, l(i]j(g)f +1
_ L e |2
Y ! 6N]EXN l p(2) L2(PZ)]
B+1
S Ton
vB+1
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and thus
Ex~ [Df (Q%PZ)} — Dy (Qz, Pz)

<®W+®+©
V& VBVBFT

< fo(0) = fo(yw) + fO(O)N(’}/N N * VNon

_ 2VC VBVB +1
BRI (v —on) | VNow

Setting vy = # and §y = ﬁ yields
2 2/C  VBYB+1
T ON1/5 N1/5 + N3/10
1
=0 (1)

a-divergence with «a € (—1,1). Lemma A.3 provides a function hs that upper bounds
f?(x) for x €€ [6,00).

(t1)? = Exw /f62 (iﬁ;i?) ]l{wﬁjv}p(z)dz]
< Exn _ / hsy (;V(S)) 1 {20,

< | [ s (;j(())) p(:)d
2

hs, upper bounds f? on (dx, 0
N 0

(hs, non-negative on [0, 00))

(i)
= 1+Exn
(a—1)2(on —1)? ( l
4(1+ B) (5N _ 1)2
(a—1)*(0n — 1)

a—1
2V1+ B <5N2 - 1)

= =Dy
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and thus

Exn [Df (QQ,PZ” — Dy (Qz, Pz)
<W)+®)+(©)

e 2vBV1+B <5:,21 - 1)

< fo(0) —fo(’YN)JrfO(O)N(VN_(SN)Q + (@—1)(6y — 1)VN
o 5

where each k; is a positive constant independent of N.

Setting vy = —2%— and 0y = —5— yields
N a+5 N a+5
k k k k
:S a1+1 + 22 + a3+l + 74—a
Nais Nats Nots  N3ars

1
o L)
Na+5
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Jensen-Shannon. Lemma A.4 provides a function hs that upper bounds f"?(x) for x €
[, 00).

(112 =Bxv | [ 57 (2 1 {4N<z>>5N}p<z>dz]

< Exw~ /h(;N ( () ) ]l{qN<z)>6N}p(Z)dZ] (hsy upper bounds f§# on (§x,00))

< Exw~ / hs ((‘?N(Z)> p(z)dz] (hs, non-negative on [0, 00))
2

— () < VBlog (14 5 ) - V5log2
< 5log ((5\[) —V/5log 2 (since oy < 1)
= —V/5log(6).

and thus

Ex~ | Dy (QF. Pz)| = Ds (Qz, P2)

<@+®+©

VGO V5V Blogén

< fo(0) = fo(yw) + fo(O)N(W T N
< nlog (1;;\/) +log(1 +yn) + Néi?ﬁ)? B ﬁ%g&v.

Using the fact that vy log(1l 4+ yn) < ynlog2 for vy < 1 and log(1 4+ yn) < N, we can
upper bound the last line with

log 2\/C _ \/5\/§log oN
N (v = on)? VN

<N (log2 +1) —ynylogyn +
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Setting yv = -2+ and §y = — yields
N3 N3

k ko log N k k4l
1+20g+3+40%

N3 N3 N3 N3
log N

=0 (%)
N3

where the k; are positive constants independent of N.

fs-divergence with 3 ¢ (%, 1). Lemma A.5 provides a function hs that upper bounds
f"?(z) for = €[5, 00).

07| [ (55) 1y o]

<Exn | [ hay ( ;V(())

o ()

2
B\ B\ o5t
§2<1—B> (1+037) 7 +275
3 \2 1-872
<2 1—6) [2 (25&5) # ] (since oy < 1 and 8 > 0 implies (5;,[3 > 1)
L (B 2512V(ﬁ—1)
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2
(noting that % (2%71) = limy 00 i3 () as defined in Lemma A.5). Thus

Ex~ [Df (Q% Pz)} - Dy (Qz, Pz)
<@W+®+(©)
Ve VB W( B )65—1
5) 0N

< fo(0) = fo(yn) + fO(O)N('YN —on)? + \/NQ ’

6{ 5\1/8 15] Ve \/EHB(B)BI
< J1— (1496 +27F on| + fo(0 + =27 b
g L (1) N O T TR TR 1o 5
p VGO VB W( B ) 51
< P o s+ + =27 ()¢
1— /6 N fO( )N(’}/N—(SN)Q \/N 1_5 N
ko ksd !
=kion + +
YT NGy —on)E T UN
where the k; are positive constants independent of V.
Setting vy = —2r and 0y = — yields
N3 N3
k1 ko ks
=+ T+ e
Ns Nz2t73

N
=0

A.5 Proof of Theorem 3.13

We will make use of McDiarmid’s inequality (Theorem 3.10) in our proof of Theorem 3.13.
In our setting we will consider ¢(X™) = Dy (Q]ZV, PZ).

Theorem 3.13 (Tail bounds for RAM). Suppose that x? (QZ|;u PZ) < C < oo forall x and
for some constant C. Then, the RAM estimator Df(QAg, Py) concentrates to its mean in the
following sense. For N > 8 and for any § > 0, with probability at least 1 — § it holds that

D4(QY. Pz) — Excv [DH(QY . P2)]| < K -w(N) \/log(2/9),
where K is a constant and ¥(N) is given in Table 3.2.

Proof. We will show that Dy (Qg , PZ) exhibits the bounded difference property as in the
statement of McDiarmid’s theorem. Since §y(z) is symmetric in the indices of X*, we can

without loss of generality consider only the case i = 1. Henceforth, suppose XV, XV " are
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two batches of data with XV # XV /1 and XY = XV ; for all 7 > 1. For the remainder of this
proof we will write explicitly the dependence of Qg on XV, We will write Qg (XN) for the

probability measure and gy (z; X?) for its density.

We will show that ’Df (Q]ZV(XN), PZ> — Dy (Qg(XN/), PZ)‘ < ¢y where ¢y is a constant
depending only on N. From this fact, McDiarmid’s theorem and the union bound, it follows
that:

B (|Df (QY¥(XY), Pz) — Exv Dy (QF (XM). P2)| = 1)

- IP(Df (QQ(XN),PZ) — Exn Dy (Q]ZV(XN),PZ) >t or

<P (Df (Q]ZV(XN),PZ) — Exn Dy (@g(XN),PZ) > t) T
P (Df QQ(XN),PZ) — Exn~ Dy (QJZV(XN),PZ) < —t)

<2 2t
ex .
- P\ Ve
2
Observe that by setting ¢ = NSN log (%),

the above inequality is equivalent to the statement that for any § > 0, with probability at
least 1 —

\Df (Q?(XN),PZ) — Ex~ Dy (Q]ZV(XN),PZ)‘ < \/@m

We will show that ¢y < kN~1/24(N) for k and (N) depending on f. The statement of
Theorem 3.13 is of this form. Note that in order to show that

Dy (QF(XM), Pz) = Dy (QF(XN), P2)| < ew, (A.2)
it is sufficient to prove that

Dy (Q¥(XM), Pz) - D (Q¥(XN'), Pz) < ew, (A.3)
since the symmetry in XV < XV ' implies that

—Ds (Q¥(XM), Pz) + Dy (Q (XN'), Pz) < e, (A.4)

and thus implies Inequality A.2. The remainder of this proof is therefore devoted to showing

that Inequality A.3 holds for each divergence.



A.5 Proof of Theorem 3.13 141

<C+1

We will make use of the fact that (Qz‘x, PZ> <(C = ||q<z‘x ||L2 (P2)

The case that Dy is the x?-divergence, Total Variation or Dy, with > 1:
N A /
Dy (QY(XY), Py) — Dy (QF (XM, Py)

N AN (N’
- [ (ML @) - o (ML) arste
in (2 XY — Gy (2 XN 5o (n XN
(=) f X0
/ QN(Z;XN)
fo( p(2) )

z
5 (czN(z; XN)
0

(Cauchy-Schwartz)

La(Pz)

H |X1 ( [ X1)

v (HW‘X” |
NI p(2) lypy

(0+1> P (qw;XN))
"\ p(2)

By similar arguments as made in the proof of Theorem 3.12 considering the term (i),

dn (z:XN) _ 2 ((Gn(XN)\ : ; _
(7:0(2) )‘ La(Pa) — \/EZ 0 ( 02) ) = O(1) thus we have the difference is upper

bounded by cy = % for some constant k. The only modification needed to the proof in

p(2)
) »
L2(Pz)

La(Pz)

L2(Pgz)
q(z|X1)

) La(Py)
(QN(Z; XV )
z)

(

L2(Pyz)
)

f/

La(Pz)

Theorem 3.12 is the omission of all occurrences of Exn.

This holds for any N > 0.

All other divergences. Similar to the proof of Theorem 3.12, we write the difference as

the sum of integrals over different mutually exclusive events that partition Z. Denoting by
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vn and 0y scalars depending on N, we have that
Dy (QY(XY), P7) — Dy (QF (XM, Pz)
dQY (XN dQY (X'
- [ (") - 0 (5 ) arats

_ Q3 ( XN> dQy (XN")
/f < (Z)> — Jfo (M(z) ]l{dc@fg(xN)(z)SéN and dég(xN/)(z)SW}dPZ(z)

dP, dP,

©

dQ XN> dQN(XN/)
+ /fO ( ZPZ ( )> - fO (Z]DZ(Z)> ]l{ng(xN>(Z)<6N ind ng(XN/) }dPZ(Z)

dPy ar, — (2)>N

@ @

dPy

We will consider each of the terms @, and @ separately.

Later on, we will pick vn and dn to be decreasing in N such that éy < yny. We will require

+/f0 (dQN XN)( )> — f (‘@%g:v)(z)) ]l{dczg(xm( - }sz(z).

N sufficiently large so that vx < 1, so in the rest of this proof we will assume this to be the

case and later on provide lower bounds on how large N must be to ensure this.

@: Recall that fy(x) is decreasing on the interval [0, 1]. Since yy,dny < 1, the integrand is
at most fo(0) — fo(yn), and so

: Since 0y < 1, the integrand is at most fy(0) and so
d AN XN d AN XN’
Q < fo(0) x Pz {QZ()(z) < 6y and M(z) >N p.

dPZ dPZ
O,

We will bound IP’Z® = 0 using Chebyshev’s inequality. Noting that

in(zXYN)  an(mXN) 1 gzlXD) 1 g(alXy)

p(z) — pz) N p(z) N pz)
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and using the fact that < az (| j ) > 0 it follows that

© -8 <

a:1X1) _ a(:1X)

< (v —6n)N +

p(2) p(2)
— s < 21D
= (yw—90n)N—-1< GRS )—1

p(2) ’

where the penultimate line follows from the fact that ¢(z|X1)/p(z) > 0. It follows that

PZ@ <Pz { ) (Y~ —6n)N 1}

80 s

IN

Denote by 0?(X) = Vary {qgi‘z))()} =Egz qj)(zz(‘z))() — 1 < C. We have by Chebyshev that for any
t>0,

and so setting t = (yn — dy)N — 1 yields

X) C
PZ@ B ~1)° = (9w — On)N = 1)*

((vw — 5N

It follow that

c
§f0(0)(< N—l)Q.

YN —ON)

@: Similar to the proof of Theorem 3.12, we can upper bound this term by the product of

two terms, one of which is independent of the choice of divergence. The other term will be
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treated separately for each divergence considered.
(2 XN) an(z XN
= = | = = ) 1/,. dP
@ /fo ( p(Z) fo p(Z) {qN(z;XN)>6N} Z(Z)

p(2)
in=XY) av(=XN)Y
</ ( 8 p(e) )fO
1 g(21X1) —q(21X7) ., [dn(zXY) .
N p(2) fO( p(z )ﬂ{tmww>5N}dPZ()
fo

p(z)
SRECEORIELS

z p(2)

dn(z; XN) |
(Np()> ]l{qN(z;xzv>>6N}dPZ(z) (Convexity of fo)
N
)
)
p(2)

(Cauchy-Schwartz)

/ (qN(z;XN ) 'O
aN (zX7Y)
{QNP(Z) >6N}

2(C+1) o (v (2 XN)
< N J/fo ( (2) ) 1{4N<ZQXN)>6N}p(z)dz (Boundedness of

p(z)

The term @ will be treated separately for each divergence.

LQ(PZ) LQ(Pz)

a(z|z)
p(z)

)

}L2(Pz)

KL: By Lemma A.1, there exists a function hs, (z) that is positive and concave on [0, c0)
and is an upper bound of f{*(z) on [0y, 00) with hsy (1) = log?(dn) + 2.

@ /h (WZX )>1{4N<Z;XN>

}p(z)dz (hsy upper bounds f? on (6, 00))

o ON
in(2: N
< /th (qN(p(j)()> p(z)dz (hsy non-negative on [0, 00))
Aar (2 N
< hsy (/ qN(p(’;)()p(z)dz> (hsy concave)
= hsy (1)

2
= log*(dn) + p

= @S Q(CNH) log?(dn) + =
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Putting together the separate integrals and setting oy = ﬁ and vy = we have that

Dy (QF(X™), Pz) = Dy (QF (X", P2)
-@+®+©

< fo(0) — fo (yw) + fol0)C AC+1)

)
(w-omN 12T N logtom) +
(O)C 2(C +1) 2
(v 6N 12T N W% ‘
2 2 f( ) 1
T N2B T N2/3 log (N2/3) + (N10/3 ) \/

2(C +
22 2\, 9%(0)C C+1VF
= N2/3  N2/3 log (N2/3> + N2/
_ k1 ko log N k3\/m
=Nen T T Nes T ~

log N
< (k1 + ko + 27?3)%7

=N — v logyn +

where k1, ks and ks are constants depending on C. The second inequality holds if NV/3 —1 >

3
N;/S <~ N > (%) < 4 and the third inequality holds if N > 4

The assumption that dx,vx < 1 holds if N > 23/2 and so holds if N > 3.

This leads to Nc3, = 1‘])\%1/]3\[ for N > 3.

Squared Hellinger. In this case similar reasoning to the other divergences leads to a

bound that is worse than O (\/LN) and thus Nc% is bigger than O(1) leading to a trivial
concentration result.

a-divergence with o € (%, 1). Following similar reasoning to the proof of Theorem 3.12
for the a-divergence case, we use the function hs, (z) provided by Lemma A.3 to derive the

following upper bound:

2 1+(C+1)2(5;2_1—1)
@§2(0+1) .

N (a—1)(0y — 1)
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2
and yv = —5—,

Na+s Na+5
Dy (QY(XN), Pz) — Dy (Q¥ (X™), P7)

-@+®+©

< fo(0) = fo (yw) +

Setting oy =

HO)C 2C 4 1) 2VIF(CF I <5N5—1>

((yw — 65)N — 1) N 1—a)(1—ox)
S O o Ep— O S At )
; (t - 1)2('YN - 5N)2N2 N (1 _ a)(l _ 5N)
£2fo(0)C 2C+1)4/TF(C T2y
< fo(0) = fo (vw) + SV o s N
< kw;TH + koyn + o _IZ\,)QNQ n k4(;<fvz
k1 ko ks k4

= 5tz T 4 + =5 t s
N a-+5 N&+o N a+5 N a+5
/ﬁ + ko + ks +ky

2a+2 bl

N a+5

242
where ¢ is any positive number and where the second inequality holds if N+ — 1 >
2a+2

N TFS — N> (& )2a+21 For « € ( , 1) we have 20;‘:52 € (3,2). If we take t = 100 then

N > 1 suffices for any a.

The third inequality holds if 1 — oy > % = N> 2" and so holds if N > 3.
The assumption that dn,vny < 1 holds if N > 455 < 8 and so holds if N > 8.

Thus, this leads to NC?V =k for N > 8.

N a+5

Jensen-Shannon. Following similar reasoning to the proof of Theorem 3.12 for the a-
divergence case, we use the function hs, (x) provided by Lemma A.4 to derive the following

upper bound:

O i (L)
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Setting oy = ﬁ and Yy = #7

Dy (QF(X™), Pz) = Dy (QF (X", P2)

-W+®+©

fo(0)C 2(C+1) 1
< fo(0) = fo(vn) + + -log ()
((yw —n)N —1)° N o
1+7N) fo(0)C 2(C +1) < 1 )
< lo ( + log(1 + + + log (| — .
INIBN Ton g+ m) (v — On)N — 1) N &\ on
Using the fact that log(1 + vn) < N, we obtain the following upper bound:
fo(0)C 2(C+1) ( 1 )
<~%+ 1—log2)—ynlo + -log | —
< v + (1 —log2) — v log vy (o — 33N — 1) I 5y
. /‘Jl /‘JQ k3 log N k4 /‘J5 log N
T ON4/3 + N2/3 N2/3 (Nl/s _ 1)2 N2/3
o kl k?g k3 log N ]C4 k5 log N
TON4/3 + N2/3 N2/3 (N1/3 _ 1)2 N2/3
< k‘l k‘g k‘3 log N 10016‘4 k5 log N
- N4/3 + N2/3 N2/3 81N2/3 N2/3

log N

< (k1+k2+k3+kf;+/€5)ma

N1/3

3
where the penultimate inequality holds if N /31> o — N> (%) which is satisfied

if N > 1 and the last inequality is true if N > 1.

The assumption that dy, vy < 1 holds if N > 23/2 and so holds if N > 3.

This leads to Nci = 1‘])\%12/2\[ for N > 2.

fs-divergence, (3 € (%, 1). Following similar reasoning to the proof of Theorem 3.12 for
the a-divergence case, we use the function hs, () provided by Lemma A.5 to derive the

following upper bound:
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Setting oy = ﬁ and vy = #,

Dy (QF(X™), Pz) = Dy (QF (XY, P2)

-W+®+(©
fo(0)C B o HE §—1

< fo(0) = fo (aw) + (o — o)V — 1 +

B e fo(0)C L P 2400 0771
(v = dn)N =1)*  1-8 N
kl kz k3
(VA1 N

ko 100ky kg
T N2/3 0 8IN?%3 - EH
ki + kb + k3

3 3
where the penultimate inequality holds if N1/3 —1 > % <~ N> (%) which is satisfied
it N> 1.

The assumption that dnx, vy < 1 holds if N > 23/2 and so holds if N > 3.

This leads to Nc?v = ﬁ for N > 2. O

A.6 Proof of Theorem 3.14

Theorem 3.14 (RAM-MC is unbiased and consistent). For any proposal distribution ,
RAM-MC is unbiased:
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If the hypothesis of Theorem 3.13 holds and moreover either of the following conditions are
satisfied:

m(2XY) = 4w (2),

i | Bax [ 1 (CE) (1D Y e < o,
Eo, / <qé&)>2q(z|X)dz < o0,

then denoting by () the rate given in Table 3.2, the variance of RAM-MC decays as

Vargw xx [D}(QY, Pz)| = 0 (M71) + 0 ((N)?) .

In proving Theorem 3.14 we will make use of the following lemma.

Lemma A.6. For any fo(x), the functions fo(x)? and %ZE)Q are convez on (0,00).

Proof. To see that fo()? is convex, observe that

d2
da?

fol@)? = 2 (fo(@)f§ (@) + fi(2)?)

All of these terms are postive for x > 0. Indeed, since fo(z) is convex for z > 0, f{/(x) > 0.
By construction of fy, fo(z) > 0 for > 0. Thus fo(x)? has non-negative second derivative

and is thus convex on (0, 00).

To see that %33)2 is convex, observe that

2 )2 2)\ 2
iﬂ“)—2(mm3m+(mw—h(5>.

T T T

fo(z)

2
By the same arguments above, this is positive for x > 0 and thus <~ is convex for x > 0. [
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Proof. (Theorem 3.14) For the expectation, observe that

Ezn xnv DY (QY, Pz) = Exn |E

- M
I ZMZ'}\?d'ﬂ(z|XN (

Q. >}
= Exn :Ezw(z|x ( > |XN }

= Ex~ Dy (QF, P7)].

For the variance, by the law of total variance we have that

Va/rz]kfo |:Df Qz,PZ ]
= ExN Var A (Qg ) + VarxNE

ZMLerdw(z|XN)
= %EXNV&LI'W(de) [f ( p(i))> (Z(];)N)} + Varyxw~ {Df (Q]ZV,PZH )

(@) (@)

AAM ( AN
ZMi'f\'zd'W(z|XN)Df (QZ»PZ)

Consider term (iz). The concentration results of Theorem 3.13 imply bounds on (i), since

for a random variable X,

VarX = E(X — EX)?

- OOOP (X —EX)* >t)dt

=/ P((|X —EX| > Vi) dr.

It follows therefore that

Varxn {Df QZ,PZ / 2exp< f\f) t) dt

=0 (v(N)?),

where ¢(N) is given by Table 3.2.
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Next we consider (i) and show that it is bounded independent of N, and so the component
of the variance due to this term is O (ﬁ) In the case that 7(z|X") = p(2),

r A 2
(1) < ExvEy) | f (ﬁg) ]

et (8 (22) 1) (22 1))

< ExnvEpy) :fo (CjN(z)f + f'(1)*ExvE,() [(QN(Z) - 1)1

p(2) p(2)

A 2 ~ 2
+2f/(1)\lEXNEp(Z) [fO (qév(ij)> ‘| X \JEXNEP(Z) l(tﬁf)) - 1) ‘|

g\ L e a(z1X) )
p(z) > I ExE ) l( p(2) _1) ]

2 2
R e ) A R e

The penultimate inequality follows by application of Cauchy-Schwartz. The last inequality

<ExE,.) [fo <

follows by Proposition 1 applied to ng and D(,_1)2, using the fact that the functions

f3(z) and (x — 1)? are convex and are zero at ¥ = 1 (see Lemma A.6). By assumption,

2
ExE, ) [(qMX) - 1) } < 00. Consider the other term:

p(z)

st [ (552 - (1 (55) -0 (557 -0)
)

2
e (855

2 2
+2f/(1)\lEXEp(z) lf <q§f(|j)()> 1 X JEXEp(z) l(qﬁ(j(f)() o 1) 1
< 0.

The inequality follows by Cauchy-Schwartz. All terms are finite by assumption. Thus
(1) < K < oo for some K independent of N.
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Now consider the case that 7(z|X") = gy (2). Then, following similar (but algebraically

more tedious) reasoning to the previous case, it can be shown that

+ f(1)’ExE, )

| g(21X)\* pl2) X)) )

(i) < BxE,.) [fo( ) - W re ‘ﬁ(zm”
X) V
%)

p(2) (2[X)
2 2
mJ 0 (S0 Ko ] s | (00 [2) ]

p(z) (2[X)
where Proposition 1 is applied to D 12(2) and D( V- % )2 using the fact that the functions

fé(z)/x and (V& — ﬁ)z are convex and are zero at x = 1 (see Lemma A.6). Noting that

X))\
Extre W p(2) ‘\/ q(er>)

_ q(1X) | pl»)
‘ExEW)[ oz a(IX) 2]
st [ <=

where the inequality holds by assumption, it follows that
a(z1X)\* p(2)
ExEpe) lfo( p(2) ) q(zX)]
AN 2 | wzm_ ¢ o(2) )
< ExByty lf (55 q<zwx>] I xR [( bV aGx)

, a1\ p(2) X)) )
w2 (1)JExEP<Z> lf (357 q(zm] e W p(e) ‘\/ q(zm)]

< Q.

where the first inequality holds by the definition of fy and Cauchy-Schwartz.

Thus (i) < K < oo for some K independent of N in both cases of 7. O
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B.1 Proofs for one noiseless view results (Section 4.3.1)

B.1.1 Proof of Theorem 4.1

Theorem 4.1. The difference between the log joint probability and log product of marginals
of the observed wvariables in the model given in Equations 4.8-4.9 admits the following

factorisation:
log p(x1,22) — log p(z1)p(z2)
= log p(x2|z1) — log p(x2)

= (Z a;i(zi,9i(zi,n;)) + log det J)

)

- <Z 9i(9i(zi,m;)) + log det J)
= Zaz zzagz Zlanl 25 g’L Zunl (Bl)

where z; = f1;" (1), gi = [ (x2), and J is the Jacobian of the transformation fy ' (note

that the introduced Jacobians cancel). Suppose that

1. « satisfies the Sufficiently Distinct Views assumption.
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2. A classifier is trained to discriminate between
(Xl,XQ) vS. (Xl,Xék) 5

where (X1, X2) correspond to the same realisation of Z and (X1, X5) correspond to

different realisations of Z.

3. The classifier minimises the logistic regression loss, and is constrained to use a regression

1/‘1’132 Zd’z )

where h = (hq, ..., hy) is invertible, smooth and has smooth inverse.

function of the form

Then, in the limit of infinite data and with universal approximation capacity, h inverts fi
in the sense that the h;(X1) recover the independent components of Z up to component-wise

invertible transformations.

This proof is inspired by the techniques employed by Hyvérinen et al., 2019.

Proof. The goal is to show that for the optimal classifier, h;(X1) depends on exactly one

component of Z.

We begin by writing the difference in log-densities of the two classes
i

Making the change of variables

y = h(z1),
v(y) = fi ' (' (),
t=fy ' (x2)),

means that the first equation can be rewritten in the following form:

Zwi(yi,iﬂz) :Zai(vi(y),ti) - Z5¢(tz‘)- (B.2)
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Take derivatives with respect to y;, v/, j # j', of each side of this equation. Adopting the
Yjr Yjirs J

notation from the SDV assumption definition

o (yi, ti) = Ocvi(yi, i)/ Oys,
of (yi t;) = 0%ai(yi, t:) /Oy,

wa(y,t) = (af,...,ah,al, ..., ap),

and furthermore defining

ol (y) = i) /Dy;0uy.

we have
0= o (uily), 1)l (o) (9) + iy )07 (1)

The left-hand side of this equation is 0 because each term ; in Equation B.2 depends on

exactly one y;, and partial derivatives are taken with respect to two different y; and y;.

If we now rearrange our variables by defining vectors a;(y) collecting all entries v} (y)vf /(y),

j=1,...,n,5'=1,...,7 — 1, and vectors b;(y with the variables v/ yvj, y),j=1,...,n,
] (2 (2

j'=1,...,7—1, the above equality can be rewritten as

> i (wiy), ti)as(y) + i (viy), £:))bily) = 0.

This can in turn be rewritten in matrix form,

M(y)w(y,t) =0,

/

where M(y) = (a1(y),...,ap(y),b1(y),...,bp(y)) and w(y,t) = (f,..., a5, ), ..., ap).
M (y) is therefore a D(D — 1)/2 x 2D matrix, and w(y,t) is a 2D dimensional vector.

To show that M (y) is equal to zero, we invoke the SDV assumption. This implies the existence

of 2D linearly independent w(y,t;). It follows that

M(y)w(y,t1),...,w(y,tap)] =0,

and hence M (y) is zero by elementary linear algebraic results. It follows that Uf (y) # 0 for
at most one value of j, since otherwise the product of two non-zero terms would appear in

one of the entries of M (y), thus rendering it non-zero. Thus v; is a function only of one y;.
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Observe that v(y) = 2. We have just proven that v;(y.(;) = z; where 7 is some permutation.
Since v; is invertible, it follows that hrg;)(21) = Yy = v; !(2;) and hence the components of
h(z1) recover the components of z up to the invertible component-wise ambiguity given by v,

and the permutation ambiguity.

B.1.2 Proof of Corollary 4.3

Corollary 4.3. Consider the setting of Theorem 4.1 with the alternative factorisation of the
log joint probability

log p(w1, x2) — log p(x1)p(w2)
= log p(z1|z2) — log p(z1)
= Z% zi, gi(zi,ns)) ZBZ zi)) .- (B-3)

Suppose that v satisfies the SDV assumption. Replacing the regression function with

r(z1,22) Z% z1,h

results in h inverting fo in the sense that the h;(X2) recover the independent components of

the g(Z, N) up to component-wise invertible transformations.

Proof. This follows exactly by repeating the proof of Theorem 4.1 where the roles of 1 and

xo are exchanged and the regression function in the statement of the corollary is used. [

B.2 Proofs for two noisy view results (Section 4.3.2)

B.2.1 Proof of Theorems 4.4 and 4.5

Theorem 4.4 is a special case of Theorem 4.5 by considering the case g1(z,n1) = z. We

therefore prove only the more general Theorem 4.5.

Theorem 4.5. Suppose that n and A satisfy the SDV assumption. The algorithm described in
Theorem 4.1 with regression function specified in Equation 4.17 results in hy and ho inverting
fi and fa in the sense that the hy;(X1) and ho;(X2) recover the independent components

of g1(Z,N1) and g2(Z, Na) up to two different component-wise invertible transformations.
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Furthermore, the two representations are aligned, i.e. for i # j,
h1,i(X1) L h;(Xa).

Proof. This proof is similar to that of Theorem 4.1.

The goal is to show that for the optimal classifier, h1;(X1) and hg;(X2) each depend on
exactly one component of Z. Moreover, in order to show that the representations are aligned,

we will show that

h172‘($1) 1 h27]'(:1:2),v7; 75 ] (B.4)

We start by exploiting Equations 4.18 and 4.19 to write the difference in log-densities of the

two classes
Z%Dz hii(21), hai(z2)) Zm (fii (@), 2 (z2)) 29 (fii (1)) (B.5)
_ZA f21 .’172 flz xl ZMZ f21 1132 (B6)

and make the change of variables

y = hi(z1),
t = hg(.%‘g),

o(y) = fi (W),
u(t) = fy '(hy ' (t)).

Equation B.5 can thus be rewritten as

S il ts) = Yo miwi(a)s (1) — 3 0i(wi (). (B.7)

To show that hy;(X1) depends on exactly one component of Z, we will show that

vi(y) = Ui(yﬂ(i)) (B.8)

for some permutation of the indices m with respect to the indexing of the sources z =

(21,.-.,2D)-

Taking derivatives with respect to y;, v/, j # j, of equation B.7 yields

0= S (0 us ) w)e] () + B 0D, o)
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Define vectors a;(y) collecting all entries vzj (y)vzj/

vectors b;(y) with the variables vf(y)vj-,(y), j=1,...,n,7 =1,...,7 — 1, the above equality

(2

(y),j=1,....,n, 7 =1,...,7—1, and

can be rewritten as
0= an’(vi(y), ui(t))ai(y) + m;(vi(y), wi(t))bi(y)-
As in the proof of Theorem 4.1, this can be rewritten in matrix form as
where M(y) = (a1(y),---,ap(y),b1(y),-..,bp(y)) and w(y,t) = (f,..., 1), M1, 7p)-
M (y) is therefore a D(D — 1)/2 x 2D matrix, and w(y,t) is a 2D dimensional vector.
To show that M(y) is equal to zero, we invoke the SDV assumption on n. This implies the

existence of 2D linearly independent w(y, t;). It follows that

M(y)w(y,t1),...,w(y,t2p)] =0,

and hence M (y) is zero by elementary linear algebraic results. It follows that vf (y) # 0 for at
most one value of j, since otherwise the product of two non-zero terms would appear in one of

the entries of M(y), thus rendering it non-zero. Thus v; is a function only of one y; = y, ;).

Observe that v(y) = z. We have just proven that v;(y.(;)) = 2;. Since v; is invertible, it follows
that hr)(21) = Yr) = v 1(2;) and hence the components of h(z;) recover the components of

z up to the invertible component-wise ambiguity given by v, and the permutation ambiguity.

To prove that ho;(X2) depends on exactly one component of Z, exactly the same argument
can be applied, replacing (v,y,n,0) with (u,t, \, 1), noting that the SDV assumption is also
assumed for A\. We thus see that

ui(t) = uiltz @) » (B.10)

where the permutation © may be different from .

We have shown that y = hi(z1) and t = ho(z2) estimate g1(2z,n1) and g2(z,n2) up to two

different gauges of all possible scalar invertible functions.

A remaining ambiguity could be that the two representations might be misaligned; that is,

defining s; = g1(z,n1) and sy = g2(z, n2), while
S1,4 1 SQVle- 75 j (B.ll)

we might have
Yn(i) L tz(nVi # 7,
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where 7(7), 7(i) are two different permutations of the indices i = 1,...,n. To show that this

ambiguity is also resolved, we will show that

yi Ltj, Vi#j. (B.12)

We recall that, by definition, we have v;(yx(;)) = s1,; and u;(tz(;)) = s2;. Then, due to
equation B.11,

Vi(Yr(i)) L wj(tzy) Vi#J (B.13)
— Yr(i) A tﬁ-(j) Vi 75 ] (B.14)
= Yi Litzor—1(j) Vi#J, (B.15)

where the implication B.13-B.14 follows from invertibility of v; and u;, and the implication
B.14-B.15 follows from considering that, given that we know B.14, we can define | = 7 ()

and k = 7(i) and have
Yk L tron—10) VE# L

Define

r=fom !

and note that it is a permutation. Then

yi Lt ;\Vi # j. (B.16)

Fix any particular i. Our goal is to show that for any j # i the independence relation in

Equation B.12 holds. There are two possibilities:
1. 7(i) =1,
2. 7(i) # 1.

In the first case, 7 restricted to the set {1,...,D} \ {i} is still a permutation, and thus
considering the independences of Equation B.16 for all j # ¢ implies each of the independences

of Equation B.12 and we are done.

Let us consider the second case. Then,
AN ed{l,....D}\{i} st. L =7(7).

We then need to prove
yi L, (B.17)
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which is the only independence implied by Equation B.12 which is not implied by Equation
B.16.

In order to do so, we rewrite equation B.7, yielding

> U Wmstm) =D 1 (Vm Yn(m))s U Erm))) = D 05 (Vm Yn(m)))-

We now take derivative with respect to y; and t; in B.17; noting that #=1(1) = 7=1(i), we get

82
- 8’Uﬂ—1 (i)auﬂ_l (7,)

0 0
0 M1 () (V=100 (¥3), U133 (1)) X 3y V) (yz‘)aftlurl(i) (t;).  (B.18)

Since vr-1(;) (y;) is a smooth and invertible function of its argument, the set of y; such that

%vﬂ_l(i) (yi;) = 0 has measure zero. Similarly, %Uﬂ.—l(i)(tl) = 0 on a set of measure zero.
It therefore follows that

0 0
yyvrl(i) <yi)871url(i) (t1) #0

7
almost everywhere and hence that

82
8’1)”71(2-)811,”71(1-)

N1y (Va=1(3) (Yi)s Ur—133) (t1)) = 0 (B.19)
almost everywhere. It thus follows that
=13y (Ur =13y (Y5 =103y (80)) = 110y (V=13 (40)) + 13y (13 (8)),
which in turn implies that, for some functions A and B, we can write
log p(s1 7-1(33)lS2,7-1(5)) —10gP(81 7-133)) = A(vr—1(3y(¥i)) + B(ur—10(t1))
and therefore
log p(s1,x-13i), S2,0-1(3)) = C(Vr133)(¥i)) + D(ur—10y(t1))

for some functions C' and D. This decomposition of the log-pdf implies

S1,n-1() L S2x-1)
= S1a-1() L S2.7-1()
= Up-1)(¥i) L uz—1(y(th)
= yi Lt,
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where the last implication holds due to invertibility of v -1(;) and uz-1().

This concludes the proof.

B.2.2 Proof of Corollary 4.6

Corollary 4.6. Let Nl(k) = % N for k € N, where N € R is a fized random variable with

finite variance, and let No be a random variable that does not depend on k. Let hgk), hék) be

the output of the algorithm specified by Theorem 4.5 with noise variables Nl(k) and No.
Suppose that the corrupters g; satisfy the following two criteria:

<a forall z,

on n=0

1. Ja e R, s.t. ‘M

2. 3b e RD) s.t. 0 < 2820 <

Then, denoting by £ the set of all component-wise, invertible functions, it holds that

0,

k—o0

1nf HZ— e h(k (X1)) H
where p denotes convergence in probability.
Proof. To show that the random variable
1nf HZ— e h( )(Xl))H

converges to 0 in probability, we will prove the stronger statement that it converges in mean
to 0. Denoting by dgk) the component-wise invertible ambiguity up to which g(Z, Nl(k)) is

recovered, we have that

Ezx, |inf |2 = e (Xl))H’ (B.20)
=Ezx inf HZ - e(hgk)(Xl))H (B.21)
< infEzx, |2 = e(h” (00))| (B.22)
= {E, Z—cod? ogi(z,N")| (B.23)
= infE, \o ]Z —éog(z,N* ))H (B.24)
<E,yw|Z-eon(z NI, (B.25)

where the first upper bound holds by concavity, and the second holds for any e* € £ by

definition of infimum and in particular for e* = gl‘n o, the existence of which is guaranteed
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(k)

by the assumptions on g;. Taking a Taylor expansion of €* o g;(z,n;"’) around ngk) = 0 yields

|

%agl(za 0)

E
o7} 8ngk)

NP 4 o(INPP)

where the last equality follows from fact that e* = g\;io and the convergence follows from the

[HZ —e"0g1(Z,0) +

(z,N®)

_E 0e* 0g1(Z,0)
— YN g1 angk)

—> 0 as k — o0,

NP 1 o(INPP)

fact that IV l(k) = 1N} where Ny has finite variance (and thus mean) and from the boundedness

conditions on the partial derivatives of g;. O

B.3 Proofs for multiple noisy views results (Section 4.3.3)

B.3.1 Proof of Lemma 4.7

Lemma 4.7. Suppose that the sequence Ex[QM(Z,N)] = ﬁzf\il En,[ei o ki(Z + N;)]

converges as M — oo for almost all Z, and write this limit as

Q(2) = lim En[Q(Z,N)).

Suppose further that there exists K such that Ve, = Var (e; o ki(Z + N;)) < K for all i. Then

oMz, N) £5 Q.(2)

€

RY(Z,N) “3 Rei(Z,N;) = e; 0 ki(Z + N;) — Qe(Z).

In proving this, we will make crucial use of Kolmogorov’s strong law:

Theorem B.1. Suppose that X,, is a sequence of independent (but not necessarily identically
distributed) random variables with
<1
Z — Var[Xp,| < oc.
m

m=1

Then,
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Proof of Lemma 4.7. Fix z and consider QM (z,n) as a random variable with randomness
induced by n = (n1,na,...). We will show that for almost all z this converges n-almost surely

to a constant, and hence QM (z,n) converges almost surely to a function of z.

The law of total expectation says that

Var, n,[ei o ki(z + n;)]
=E. [Vi(2)] + Var, [Ey, [e; o ki(z + ny)]]
> E. [Vi(2)].-

Since by assumption Var, ,,[e; o ki(z + n;)] < K, we have that

= Vi(2) Kr?
= Zp] <75
i=1

and therefore > 72, @ < oo with probability 1 over z, else the expectation above would be

unbounded since V;(z) > 0.

We have further that for almost all z,

exists. Therefore, for almost all s the conditions of Kolmogorov’s strong law are met by
QM (z,n) and so

Qéw(z, n) — En[Qé\/l(z,n)] "ZES .

Since E,[QM (z,n)] "= Q.(2), it follows that

OM(z,n) "% Q. (2).
Since this holds with probability 1 over z, we have that
It follows that we can write

RM(z,n) = e; 0 ki(z + ni) — QM (z,n)
= Re,i(za nz) ‘=€ 0 kz(z + nl) — Qe(z)
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B.3.2 Proof of Theorem 4.8

Theorem 4.8. Suppose there exists C > 0 such that Var(N;) < C for alli and let Gx = {{e;}
s.t.

V., < K Vi (4.21)
Qe(Z) < 0o for almost all Z (4.22)
Rei L Rej Vi# j, (4.23)
ER.; =0 Vi (4.24)
Rei(Z,Ni) = Rei(N;) Vi } (4.25)

Then,
Gk C {{oki'+ 8} : acRY, BeRP}

where ak[l denotes the element-wise product with the scalar elements of a. If K > Var(Z)+C,
then {k:z_l} € Gk, and so Gk is non-empty for K sufficiently large.

We will begin by showing that if K > Var(z) + C then {k; '} € Gk.

For e; = k;” 1 we have that

1 Y as
Qy(Z,n):M;erm%ZZQy(Z),
M

RM =z +4+n; — Qe(z,n) &5 ny = Rei(ny),
where the convergences follow from application of Kolmogorov’s strong law, using the
fact that Var(n;) < C for all i. Satisfaction of condition 4.21 follows from the fact that
Var, n,(z +n;) < C + Var(z) < K. Since z is a well-defined random variable, Q.(z) < oo
with probability 1, satisfying condition 4.22. It follows from the mutual independence of n;
and n; that R.; and R, ; satisfy condition 4.23. Condition 4.24 follows from the fact that

E[n;] = 0 Condition 4.25 follows from R, ; being constant as a function of z.
It therefore follows that {k; '} € Gx for K sufficiently large.

We will next show that if {e;} € Gx then there exist a matrix o and vector  such that e; =

ak;” L4 B for all i. Since e; acts coordinate-wise, it moreover follows that « is diagonal.

First, we will show that each e; o k; is affine, i.e. there exist potentially different oy, 5; such
that e; = aik‘fl + B; for each 1.
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Then we will show that we must have o; = o; and 8; = 3; for all 4, 5.

To see that e; is affine, we make use of that fact that R.; is constant as a function of z. It

follows that for any x and y

eioki(z +y) = Re;i(x) + Qe(y)
= e,z(fb) ( )+R€’L( )+Qe(y)

— (Be.i(0) + ©(0))
o ki(x) + e; o ki(y) — e; o ki(0).

It therefore follows that e; o k; is affine, since if we define
L(II? -+ y) =e€; 0 kz(x + y) —€; 0 ]{ZZ(O)
= (672 (e} kl(SU) —€; O kl(O))
+ (ei o kl(y) — €; O kIZ(O))
= L(z) + L(y),

then L is linear and we can write e;ok;(z) as the sum of a linear function and a constant:

Thus e; o k; is affine, and we have some (diagonal) matrix a; and vector (; such that for any

X

€ o ki(z) = iz + B
— ¢, (z) = aik; o + B

Next we show that for the set of {e; = aik‘fl + f3;}, it must be the case that each a; = «;
and ﬁl = ﬁj.

Observe that

M

1
MZazz"i‘aznz"i_ﬁz
=1

1 ¥ 1 ¥ 1 Y
:<Mzai>Z+MZﬁi+Mizlaini,
E,[QM (2, n)] ( ZaJZ-ﬁ-ZﬁZ

QM (z,n)

| |
E

g,_.
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Define
1 M
o= fim 57 2o
1 M
B = m 5p 2P

which exist by the assumption that Q2 (z,n) converges as M — co. Thus

Qe(2) = az + 8,
Rei(z,mi) = (i — @)z + aimi + B — .

Now, suppose that there exist ¢ and j such that such that o; # «;. It follows that

Re,i( n;) = (o — @)z + a;n; + B — B,

2,
ReJ('ZanJ) = (aj - a)z +a;n; +5j - 5

There are two cases. If oy # «, then R, ;(z,n;) is not a constant function of z. But if oy = «,
then a; # o and so R j(z,n;) is not a constant function of z. This is a contradiction, and

so a; = «  for all 4, 7.

Suppose similarly that there exist 8; # ;. If 5; # 8, then E[R, ;(n;)] = 8; — 8 which is non-
zero. If 5; = B, then §; # B and so E[R, j(n;j)] = f; — B is non-zero. This is a contradiction,
and so 3; = 3; for all 4, j.

We have thus proven that set {e;} € G is of the form e; = ak; Ly B for all 1.
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This appendix provides proofs for the results in Section 5.6 in which examples of exact

transformations are stated.

C.1 Marginalisation of variables (Section 5.6.1)

Theorem 5.17 (Marginalisation of childless variables). Let Mx = (Sx,Zx, Pg) be an SEM
and suppose that 1y C Ix is a set of indices of variables with no children, i. e. if i € Iz then
X; does not appear in the right-hand side of any structural equation in Sx. Let ) be the set
in which Y = (X; 11 € Ix \ Iz) takes value. Then the transformation T : X — Y mapping

Ti(xi3i€ﬂx):$*—)y:($iii€]lx\ﬂz)

naturally gives rise to an SEM My that is an exact T-transformation of Mx, corresponding

to marginalising out the childless variables X; fori € 5.

Proof. By Lemma 5.13, compositions of exact transformations are exact and so it suffices
to prove this result for the marginalisation of a single childless variable. Without loss of

generality, let X; be the childless variable to be marginalised out.
Let My = (Sy,Zy, PF) be the SEM where

e the structural equations Sy are obtained from Sx by removing the structural equation

corresponding to the childless variable X7;
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e Ty is the image of the map w : Zx — Zy that drops any reference to the variable X
(e.g. do(X1 = z1, X2 = x2) € Zx is mapped to do(Xa2 = z2) € Zy);

o F=(E;: i€lx)\{l}) are the remaining noise variables distributed according to their

marginal distribution under Pg.

By construction, w is surjective and order-preserving. Let ¢ € Zx be any intervention.
The variable X; being childless ensures that the distribution of the remaining variables
Xk, k € Ix \ {1} that is obtained by marginalisation of the childless variable, i.e. Pj(X), is
equivalent to the distribution obtained by simply dropping the childless variable, which is
exactly what the distribution under My amounts to, i.e. P;U(do(i)). O

Theorem 5.18 (Marginalisation of non-intervened variables). Let Mx = (Sx,Zx, Pr) be an
acyclic SEM and suppose that Iz C Ix is a set of indices of variables that are not intervened
upon by any intervention i € Ix. Let Y be the set in which Y = (X; : 1 € Ix \ Iz) takes value.
Then the transformation 7 : X — Y mapping

Ti(riri€ly)=ax—y=(x;:i€lx\1z)

naturally gives rise to an SEM My that is an exact T-transformation of Mx, corresponding

to marginalising out the never-intervened-upon variables X; for i € 5.

Proof. By Lemma 5.13, compositions of exact transformations are exact and so it suffices to
prove this result for the marginalisation of a single never-intervened-upon variable. Without
loss of generality, let X7 be the never-intervened-upon variable to be marginalised out. By
acyclicity of the SEM M x, the structural equation corresponding to variable X; is of the
form X; = fi (Xpa(l), E1> and X7 does not appear in the structural equation for any of its

ancestors.
Now let My = (Sy,Zy, Pr) be the SEM where
o Iy =1x;
o F,=((Ei,Er): i €lx\{1}) are the noise variables distributed as implied by Pg;

o the structural equations Sy are obtained from Sx by removing the structural equation of

X1 and replacing any occurrence of X7 in the right-hand side of the structural equations
of children of X1 by f1 (Xpa(1)7E1)7 yielding Xz' = fz (fl (Xpa(1)7 El) y Xpa(i)7 Ez)

Note that the structural equations of the resulting SEM are still acyclic and are all of the

Then My is, by construction, an m-exact transformation of M x for w = id. O
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C.2 Micro- to macro-level (Section 5.6.2)

Theorem 5.19 (Micro- to macro-level). Let Mx = (Sx,Zx, Pg,r) be a linear SEM over
the variables W = (W; : 1 <i<n)and Z = (Z; : 1 <i<m) with

n
j=1

Ix = {2, do(W =w), do(Z = z), do(W = w,Z = z): w € R", 2 € R"},

and (E,F) ~ P where P is any distribution over R"*™ and A is a matriz.

Assume that there exists an a € R such that each column of A sums to a. Consider the

following transformation that averages the W and Z wvariables:

T: X =Y =R?
— s1=11 m .

Further, let My = (Sy,Iy, P A) over the variables {W, 2} be an SEM with

Then My is an exact T-transformation of Mx.

Proof. We begin by defining a mapping between interventions

UJ:IX_>Iy,
o — o,
— 1
do(W = do| W =— i |,
of w) o( n;w>
do(Z=2)—do(Z 1%
(0] =z (0] = — Zi |
mi
do(W = w,Z = 2) > do (W lzn: Z li
(0] = w =z (0} = — w;, = — 2
' n m -

@
Il
—
.
Il
—
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Note that w is surjective and order-preserving. Therefore, it only remains to show that the
distributions implied by 7(X) under any intervention i € Zx agree with the corresponding

distributions implied by My . That is, we have to show that
Pl = PP viey.

In the observational setting, the distribution over ) is implied by the following equations:

—~ 1 1 &
n < n <
i=1 i=1
~ 1™ 1™ n a4 —~ 1 Mm
Z== Zi==> (Y AW+ F|=—W+=->F
miz mi= \j=1 m miz
Since the distributions of the exogenous variables in My are given by E ~ s B

F o~ % m F;, it follows that PTd(O )((?) and P{io(g) agree. Similarly, the push-forward measure

on Y induced by the intervention do(W = w) € Zx is given by

— 1 1 &
W= ﬁzwi: ﬁzwiy
=1 =1
~ 1™ 1 ™ n a4 —~ 1M
Z==7Zi==> (Y AW+ F|=—-W+=-> F
mi4 miz \j=1 m mi4
which is the same as the distribution induced by the w-corresponding intervention do (I//[\/ = % Yo wi>

in My.

Similar reasoning shows that this also holds for the interventions do(Z = z) and do(W =
w,Z = z).
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C.3 Stationary behaviour of dynamical processes (Section 5.6.3)

Theorem 5.20 (Discrete-time linear dynamical process with identical noise). Let Mx =
(Sx,Zx, Pg) over the variables {X} : t € Z, i € {1,...,n}} be a linear SEM with

n
Sy = {XZH:ZAZ-J-X,{+E§ : iE{l,...,n},tEZ},
j=1

1. €. Xt+1 = AXt +Et
Ix = {do(Xg —az; VtezZNje ) :xeRV JC {1,...,n}},

E,=FE VvVt €Z where E ~ P,

where P is any distribution over R"™ and A is a matrix.
Assume that the linear mapping v — Av is a contraction. Then the following transformation

is well-defined under any intervention i € Ix:

T: X =),
(t)tez =y = tliglo Tt.
Let My = (Sy, Iy, Pr) be the (potentially cyclic) SEM over the variables {Y*® : i € {1,...,n}}
with

A Z.#.Aijyj Jad .
={y==12 : 1,...
SY { 1_Aii +1_Aii ZG{, 7”} )

Iy:{do(Yj:yj VjeJ):yeRV Jg{1,...,n}},

F~ P
Then My is an exact T-transformation of Mx.

Before proving the above theorem, the following lemmata show that A being a contraction
mapping ensures that the sequence (X;)icz defined by Mx in Theorem 5.20 converges
everywhere under any intervention i € Zx. That is, for any realisation (x;)¢cyz of this sequence,

its limit lim;_,o x¢ as a sequence of elements of R™ exists.

Lemma C.1. Suppose that the function

fiR® 5 R™,

v f()
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is a contraction mapping. Then, for any e € R™, so is the function

fFiR" - R™,
z— f(z)+e.

Proof. By definition, there exists ¢ < 1 such that for any z,y € R”,

1) = FF W = 1(f(2) +e) = (fy) + e)ll = [If(x) = fFW)] < cllz—yll,
and hence f* is a contraction mapping. O

Lemma C.2. Suppose that the function

f:R" = R",
T fi(z)
r=1: | :

is a contraction mapping. Then for any m <n, and x7 € R, i € [m], so is the function

ffiR" - R,
7
T N
x = — Om
Jm1(x)
Tn .
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Proof. By definition, there exists ¢ < 1 such that for any z,y € R",

T T
* *
xm xm

115 (@) = W)l = -

frn1(2) = fns1(y)

fn(w) - fn(y)
fi(z) = fi(y)

< :
= £ (=) = F)l
< cllz -yl
and hence f* is a contraction mapping. O

Lemma C.3. Consider the SEM Mx in Theorem 5.20, and suppose that the linear map
A:R"™ = R" is a contraction mapping. Then, for any intervention i € Tx, the sequence of

X converges everywhere.

Proof. Consider, without loss of generality, the intervention
do(X] = z; Vt € Z,¥j <m <n) € Ix

for m € [n] (for m = 0 this amounts to the null-intervention). The structural equations under

this intervention are

Xbo =Y, A X] + EY ifm <k <n,
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and thus the sequence X; can be seen to transition according to the function f = go h, where

h:R"™ — R",
v w=Av+ E,

g:R" - R",

€1
w1

Tm

w= —
Wm+1

Wn,

Wn,

By Lemma C.1 and Lemma C.2, f is a contraction mapping for any fixed E. Thus, by the
contraction mapping theorem, the sequence of X; converges everywhere to a unique fixed

point. O

Proof of Theorem 5.20. We begin by defining a mapping between interventions

w:IX—>Iy,

do(X] =x; Vt € Z,Vj € J) — do(Y! = z; Vj € J).

Note that w is surjective and order-preserving. Therefore, it only remains to show that the
distributions implied by 7(X) under any intervention i € Zx agree with the corresponding

distributions implied by My . That is, we have to show that
Py, = PP vie 1y,

For this we consider, without loss of generality, the distribution arising from performing the

M x-level intervention

i=do(X] =x; Vt € Z,Vj <m <n)€Ix

for m € [n] (for m = 0 this amounts to the null-intervention).

Since A is a contraction mapping, it follows from Lemma C.3 that for any intervention in Zx,

the sequence of random variables X; defined by M x converges everywhere. That is, there

. . h . . .
exists a random variable X, such that X; everywaere X.. In the case of the intervention %

— 00



C.3 Stationary behaviour of dynamical processes (Section 5.6.3) 175

above, the random variable X, satisfies:

XF =g, if k <m,
(C.1)

XE=Y, AXi+BX ifm<k<n

Since 7(X) = limy_00 X, it follows from the definition of X, that 7(X) = X,, and hence
7(X) also satisfies the equations above. It follows (rewriting the second line in Equation
C.1 above) that under the push-forward measure PTi( x) =T (P;O(Z)) the distribution of the

random variable 7(X) = X, is given by:

Z#k Ay X Ek

k .
Xy = 1—Ars T—Arr ifm <k <n.

We need to compare this to the distribution of Y as implied by My under the intervention

w(i), i.e. Pso(w(i)). The My-level intervention w(i) corresponding to 7 is

w(i) = do(Y? =x; ¥j <m <n) €Ty
and so the structural equations of My under the intervention w(do(i)) are

Zj;ék Ak Y7 Fk

k _
Ye= 1—Agg 1—Agg

ifm<k<n.

Since F ~ E it indeed follows that 7(X) ~ Y, i.e. Py = Py,

Thus My is an exact T-transformation of M x. O
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