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Abstract

Multiparametric assays for risk stratification are widely used in the management of breast

cancer, with applications being developed for a number of other cancer settings. Recent

data from multiple sources suggests that different tests may provide different risk esti-

mates at the individual patient level. There is an increasing need for robust methods to

support cost effective comparisons of test performance in multiple settings. The deriva-

tion of similar risk classifications using genes comprising the following multi-parametric

tests Oncotype DX® (Genomic Health.), Prosigna™ (NanoString Technologies, Inc.),

MammaPrint® (Agendia Inc.) was performed using different computational approaches.

Results were compared to the actual test results. Two widely used approaches were

applied, firstly computational “modelling” of test results using published algorithms and

secondly a “training” approach which used reference results from the commercially sup-

plied tests. We demonstrate the potential for errors to arise when using a “modelling”

approach without reference to real world test results. Simultaneously we show that a

“training” approach can provide a highly cost-effective solution to the development of

real-world comparisons between different multigene signatures. Comparisons between

existing multiparametric tests is challenging, and evidence on discordance between tests

in risk stratification presents further dilemmas. We present an approach, modelled in

breast cancer, which can provide health care providers and researchers with the potential

to perform robust and meaningful comparisons between multigene tests in a cost-effec-

tive manner. We demonstrate that whilst viable estimates of gene signatures can be
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derived from modelling approaches, in our study using a training approach allowed a

close approximation to true signature results.

Introduction

Multi-parametric molecular tests are now considered essential to the diagnostic management

of luminal-type (ER+ve HER2-ve) early breast cancer and are included in key guidelines [1]

as a pre-requisite for staging of breast cancer patients, to direct prognostication and to select

patients for chemotherapy treatment [2, 3]. Additionally, applications are rapidly being

extended into other settings (e.g. early prostate cancer). Two crucial challenges remain. Firstly,

the continued appearance of reports highlighting disagreements between tests is disquieting for

physicians, health care providers and patients [4, 5], since they raise the question “did I get the
right test?” Secondly the lack of consistency in the information produced by different tests raises

the question “are two tests better than one?”–followed immediately by “which tests and in which
order?” The pivotal role of molecular signatures has been confirmed by recent results from the

TAILORx study validating their utility to direct use of chemotherapy [2]. In this context, an

error in assigning appropriate risk classifications using molecular signatures could have a signif-

icant impact on patient treatment and outcomes. Previous studies comparing in silico-gener-

ated risk signatures, aimed to recapitulate performance of real-world tests, have been hampered

by: a) incomplete gene coverage from some signatures and b) an inability to confirm the accu-

racy of simulated test results by comparison with data from actual test results [6].

Early reports of disagreements between tests, based on in silico analyses of existing RNA

array data, were frequently attributed to methodological challenges and incomplete gene cov-

erage [7–11]. Two recent and striking strands of evidence raise significant questions about

“what to do when tests disagree”. Firstly data from direct comparisons between tests in large

clinical trial-derived cohorts provide consistent evidence that combining test results generally

improves prognostic value [12, 13], reflecting the relatively modest performance of many cur-

rent multiparametric tests [14]. Secondly a direct comparison of test results, when tests were

performed exactly to standard vendor protocols, demonstrated marked disagreement in both

risk categorization and subtyping of cancers between commonly used multiparameter assays

[4].

We assessed two approaches to the generation of simulated risk scores leading to the gener-

ation of two different simulated results for each of the multi-parametric tests examined. Both

methods used data from all the representative genes (both those used for normalization and

reporting) for each of the relevant tests. Method 1 focused on computational modelling to

allow recapitulation of results using the reported algorithm formulae for the individual assays

of the relevant multi-parametric test following a global normalization procedure. The base

assumption here was that the algorithms generated by the various authors generating these

signatures could be applied across platforms without correction and was specifically chosen

as it recapitulates the approaches taken by previous authors [7–11]. Method 2 used a training

and validation approach based on results obtained from the OPTIMA prelim study [4]. The

method with the best fit to actual results across either the entire OPTIMA prelim cohort

(method 1) or the validation set (method 2) would be selected for the comparisons between

test performance in the future. We predicted better performance for the “training” versus

“modelling” approaches. Our study highlights the importance of ensuring appropriate bench-

marking of modelling approaches if downstream analyses comparing test performance is to be

informative in the clinical setting.
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Materials and methods

Patient samples

The OPTIMA (Optimal Personalized Treatment of Early Breast Cancer Using Multiparameter

Analysis) trial (ISRCTN 42400492) seeks to identify a method of selection that reduces chemo-

therapy use for patients with hormone sensitive primary breast cancer without detriment to

recurrence and survival, thereby allowing people unlikely to benefit from chemotherapy to

avoid unnecessary side effects. OPTIMA is a randomised trial comparing the outcome of

patients with high-risk ER+ve HER2-ve disease managed using test-directed assignment

to chemotherapy with standard management (chemotherapy) in a non-inferiority design.

OPTIMA prelim was the feasibility phase of the study which selected the testing technology to

be used in the main trial and demonstrated that the main trial is feasible [15]. Between October

2012 and June 2014, 313 patients were randomly assigned from 35 UK hospitals of whom 302

had samples available for multiparameter testing [4]. Results from multiple molecular tests

were available for 274 (87.5%) patients [4]. Ethical approval for the OPTIMA trial was pro-

vided by the NHS Health Research Authority, NRES Committee South East Coast—Surrey,

reference 12/LO/0515 this specific study was approved by the University of Toronto Research

Ethics Board, reference 29510 & 38369.

RNA extraction and expression profiling using NanoString

Profiling of available samples from the OPTIMA prelim cohort (n = 274) for this study was

performed using mRNA previously extracted [4] for the trial, and analysed using the Nano-

String codeset as described by Bayani et al. [14].

Derivation of “signature-like” and “signature-trained” risk stratification

scores from candidate assays

We assessed two different approaches to the generation of simulated risk scores leading to the

generation of two different simulated results for each test examined. Both methods used data

from all the representative genes (both those used for normalization and reporting) for each

of the relevant tests. For all comparisons we either used all risk scores as continuous values

(regression analyses) or categorized risk scores using accepted approaches defined by each

assay [16–18] with one modification as follows: For Oncotype DX scores we used the cut-off

of 25 to discriminate between intermediate and high risk scores as previously in the OPTIMA

prelim study [4] and as applied to the TAILORx study [2]. Therefore for Prosigna, (ROR-PT)

we used the following categories low risk 0–40, intermediate risk 40–60 and high risk >60; for

Oncotype DX we used low risk 0–18, intermediate risk 18–25 and high risk>25. These catego-

ries apply only to the cross tabulations in Supplementary S1-S6 in S1 File.

Modelling approach: “Signature-like” risk stratification scores. The method previ-

ously reported by us in Bayani et al. [14] used a derivation of risk classifications using all

genes comprising the following multi-parametric tests Oncotype DX1 (Oncotype DX1

(Genomic Health Inc.) [16, 17], Prosigna™(NanoString Technologies, Inc.) [19, 20], Mam-

maPrint1 (Agendia Inc.) [18]. To generate the “Oncotype DX-like” Recurrence Score,

NanoString gene expression intensity values were normalized and transformed to fit the

measurement range as described previously [14]. Individual recurrence scores were calcu-

lated and patients were then classified into high, intermediate or low risk groups based the

derived recurrence scores. For the “Prosigna-like-Risk of Recurrence Score” (“Prosigna-like
ROR-PT”), samples were processed based on the method outlined by Parker et al. [21]. For

the MammaPrint-like Risk Score, samples were scored based on the gene70 function of the
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genefu R package (v1.14.0). Derivation of low and high-risk categories were modelled accord-

ing to van de Vijver et al. [19].

This approach (Method 1), resulting in scores we describe as “signature-like”, focused on

computational recapitulation of risk stratification scores using the published algorithms for

the individual assays of the relevant multi-parametric tests following a single global normaliza-

tion procedure. The base assumption was that the algorithms for generating these signatures

could be applied across normalised data from different platforms without correction and

was specifically chosen as it recapitulates the approaches taken by previous authors [7–11]

who sought to perform between test comparisons. For all tests we used the suffix “-like” to dis-

criminate the computationally derived assays scores from the actual assay derived scores, e.g.

“Oncotype DX-like” vs Oncotype DX™.

Training approach “Signature-trained” risk stratification scores. A second approach

(Method 2), resulting in scores termed “signature-trained”, used a training and validation

approach based on results obtained from the OPTIMA prelim study [4]. Performing analysis

of the OPTIMA prelim samples using both commercial assays (OncotypeDX1 (Genomic

Health Inc.) [16, 17], Prosigna1NanoString Technologies, Inc.) [19, 20], MammaPrint1

(Agendia Inc.) [18], and our own RNA profiling results [14] allowed us to use the OPTIMA

prelim cohort to train results for these multi-parametric assays. For this approach the

OPTIMA prelim data set was split 50:50 into a training and validation set. Results from the

training set were used to optimize the fit between signature-trained scores and actual signature

results from the OPTIMA prelim study. Once solutions were locked (i.e. the optimal fit was

achieved), results were validated using the validation cohort from the OPTIMA prelim study.

These results (validation set only) were used assess the goodness of fit between the “signature-

trained” scores and the true scores for each individual assay/score although all results were

used in cross tab comparisons (Supplementary Tables in S1 File).

a) Generation of Prosigna-trained scores. The Prosigna algorithm is complex and gener-

ates multiple linked risk of recurrence (ROR) scores. The baseline ROR is derived from sub-

types alone, ROR-P adds proliferation weighting to the subtype score whilst the ROR-PT

score (applied in the clinical setting) uses tumour size weighting in addition to subtype and

proliferation [6, 21]. For each given sample the algorithm, as described in the Prosigna patent

(US20130337444A1), follows a series of steps: 1) Normalization of raw data to 8 housekeeping

genes and log2-transformation. 2) Reference-sample-normalization of the data by dividing

each gene by its values in the reference samples. (This reference sample is shipped as part of

the Prosigna kit and was not relevant to code sets used for this study.) 3) Application of distinct

centering and scaling factors to the normalized data from each of the 46 genes in the Prosigna

algorithm resulting in each sample’s “row-scaled” data. These centering and scaling factors are

not published and required estimation. 5) Calculation of the Pearson correlation between the

sample’s row-scaled expression and the Prosigna centroids for the four subtypes. These cen-

troids have been published, and were used verbatim. 6) Calculation of the proliferation score

as the average row-scaled expression of the 18 proliferation genes. The identity of these 18

genes are published. 7) Calculation of the ROR-PT score as a linear combination of the 4

subtype’s Pearson correlations, proliferation score, and an indicator variable for tumor

size > 2cm. The weights for this linear combination are also publicly available. 8) Linearly

adjust ROR-PT to fall on roughly a 0–100 scale, and truncate any values falling outside this

scale. The centering and scaling constants used for this rescaling are not publicly reported, and

were estimated.

“Prosigna-trained” results (“ROR”, “ROR-P” & “ROR-PT”) were therefore calculated via

recapitulation of the Prosigna algorithm with the following important deviations: 1) The refer-

ence sample normalization was not performed (step 2), 2) Centering factors for “row-scaling”
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are not published and were estimated, 3) Centering and scaling constants used for final rescal-

ing for ROR-PT into a 0–100 range are not published and were estimated.

The derivation of the “Prosigna-trained” algorithm followed a two-step process:

Firstly we implemented the closest approximation to the Prosigna algorithm without train-

ing, following each step described above as follows. This differs from the approach in method

1 above in that it does not apply a global normalization to the data prior to applying the Pro-

signa algorithm but relies instead on normalization specific to the Prosigna algorithm. We

normalized to the 8 housekeeping genes and for “row-scaling” making the assumption that

each gene’s centering factor was its mean in our dataset, and each gene’s scaling factor was its

SD in our dataset. Using the resulting row-scaled data, we performed the rest of the Prosigna

algorithm consistent with the published approach (through step 6 in the above Prosigna sum-

mary, omitting the final mapping to a 0–100 scale).

Next we sought to improve on the above “untrained” fit by seeking centering and scaling

factors that optimize the fit to true Prosigna ROR scores using the training dataset provided.

Procedure for optimizing centering and scaling factors given a training dataset. Start-

ing with initial values of the centering and scaling factors equal to those used in the untrained

algorithm we iterated between optimizing the scaling factors and optimizing the centering

factors. Specifically, holding the centering factors constant, we took the scaling factors that

achieve the best concordance between the true Prosigna-ROR-PT score and “Prosigna-trained
ROR-PT” score. Then holding the scaling factors constant, we took the centering factors that

optimized the Prosigna-ROR-PT vs. “Prosigna-trained ROR-PT” goodness of fit. As part of

each optimization, we used linear regression to map “ROR-trained” scores to the 0–100 scale.

Optimization was performed using the R function “optim” to minimize the mean squared

error (MSE) between the Prosigna-ROR-PT and “Prosigna-trained ROR-PT” scores. Each

iteration of the above process is expected to improve training set performance, but after a cer-

tain point these iterations may begin overfitting noise in the data and producing less accurate

estimates.

To avoid overfitting noise in the data due to overtraining, we sought to restrict the number

of rounds of iteration performed. We performed 5-fold cross-validation as follows: To choose

the number of iterations of optimization to perform (the “tuning parameter”), we employed a

cross-validation approach. We split the training data into 5 subsets and used each 1/5 subset as

an independent test set, and used the 4/5 complement of each test set as a training set. We ran

20 iterations of optimization on each training set, and recorded algorithm performance on the

corresponding test set. Based on the results of this cross-validation exercise, to train the final

“Prosigna-trained ROR-PT” algorithms, we applied the same alternating optimization proce-

dure to the complete training dataset, stopping after four iterations (Fig 1). The optimal perfor-

mance across the 5 test sets occurred after the fourth iteration. Note that substantial test set

performance improvements were gained over the untrained version (iteration 0). Fig 2 shows

the test set performance in more detail at the chosen iteration for ROR-P and ROR-PT results.

b) Oncotype DX-trained scores. The Oncotype DX algorithm for calculating recurrence

scores (RS) represents a simple linear combination of score calculated for metagenes (5 genes

for proliferation, 2 forHER2, 4 for ER, 2 for invasion and individual scores for CD68, GSTM1,
and BAG1; Fig 3). In this setting we implemented the closest possible recapitulation of the

Oncotype DX algorithm with the following departures. No sample provided Cathepsin-L2
expression levels above background so this gene was excluded from algorithmic modelling.

GSTM1 showed a bimodal distribution with approximately half of all cases with expression lev-

els below background, therefore this gene was thresholded at background. Finally the optimal

fit for the metagenes in our training cohort was achieved by a slight modification of the meta-

gene coefficient, predominantly with an increased weight of the ER metagene score.
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c) MammaPrint-trained scores. We attempted to recapitulate the same approach used

for the original MammaPrint algorithm but were unable to extract sufficient information from

the description of the algorithm provided in relevant publications for us to achieve our objec-

tive. We therefore used the “ridge regression” machine learning technique to predict Mamma-

Print risk categories from the 70 genes used in the original algorithm. This approach was

further compromised by the dichotomous nature of the MammaPrint results. We arrived at

this method and chose a tuning parameter bases on a 5-fold cross validation approach within

the OPTIMA prelim training set; the OPTIMA validation set was retained for an independent

validation of the “MammaPrint-trained” scores against true MammaPrint scores.

Results

“Signature-like” versus “Signature-trained”: Accuracy and concordance

versus true assay results

For each of the computationally derived assay results from the modelling method (“signature-

like”, e.g. “Oncotype DX-like” etc) and the training method (“signature-trained” e.g. “Mamma-

Print-trained” etc.) we performed simple regression analyses against either the full OPTIMA

prelim cohort (“signature-like” risk scores) or the validation sets (“signature-trained” risk

scores). The regression curves are provided in Figs 4–7 and data summarised in Table 1 and

S1-S6 Tables in S1 File.

Fig 1. Training and test set performance over iterations of optimizing centering and scaling factors. Thin red lines

track the 5 test sets’ performance; thick red line shows the average test set performance. Blue lines show training set

performance. Performance is measured with Mean Squared Error (MSE) between ROR-trained scores and true ROR.

MSE is calculated as the average MSE of ROR-PT and ROR-P scores, both of which are calculated with the same

centering and scaling factors.

https://doi.org/10.1371/journal.pone.0238593.g001
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Both “signature-like” (Pearsons R range 0.837–0.913) and “signature-trained” (0.870–0.940)

scores showed highly significant correlations with the true results obtained from OPTIMA

prelim. Overall, “signature-trained” scores showed closer agreement to true results both in

terms of correlation and the slope (0.851–0.926) and intercept (2.15–4.86) of the regression

equations comparing “true” versus “trained” results (Table 1; Figs 4–7; S1-S6 Tables in S1

File). Regression equations for “signature-like” results showed evidence of potential scaling

Fig 2. Prosigna ROR-P and ROR-PT training: Test set performance at selected iteration. For each of the 5 test sets, true ROR-PT and

ROR-P is plotted against the corresponding “ROR-trained” score. Lines show the identity. Without any attempt at optimization, we achieve very

high correlation (r> 0.98) between “ROR-trained” and true ROR scores. It appears that by taking centering and scaling factors from genes’

means and SDs in our data we get very close to the correct values.

https://doi.org/10.1371/journal.pone.0238593.g002

Fig 3. Oncotype DX training. Oncotype DX Recurrence Score metagenes and metagene weights (A) for Recurrence score calculation. (B) Oncotype DX metagene

weights (x-axis) versus “Oncotype DX-trained” weights (y-axis) used to calculate “Oncotype DX-trained recurrence scores”.

https://doi.org/10.1371/journal.pone.0238593.g003
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effects, which compromised the ability of these results to provide the best estimate of real-

world comparisons between tests (Table 1).

Method 1: Comparison of true signature risk scores with “signature-like”

risk scores

Comparison of Oncotype DX recurrence scores with Oncotype DX-like recurrence

scores. Using a simple linear regression, we compared the true Oncotype DX Recurrence

Score with the Oncotype DX-like Recurrence Scores (n = 274) generated as described in the

methods above (Fig 4). The results showed a modest correlation (R = 0.837) with a regression

equation suggesting the relationship between Oncotype DX-like recurrence scores and true

Oncotype DX Recurrence scores is as follows:

“Oncotype DX-like” Recurrence Score ¼ 1:26þ 1:95 �Oncotype DX Recurrence Score:

When grouped either into 3 (low, intermediate, high) or 2 (low vs high) risk groups based

on the original and modified clinical groupings [2, 16] “Oncotype DX-like” scores correctly

classified 42.3% and 54.7% of cases for ternary (as per OPTIMA prelim) and binary risk classi-

fication respectively. Only 2 cases were classified as lower risk using “Oncotype DX-like” scores

versus true scores (using the ternary classification; S1a Table in S1 File), 56.9% and 45.2% of

cases were assigned to higher risk groups when using ternary (S1a Table in S1 File) or binary

(S1b Table in S1 File) groupings.

Fig 4. Comparison of “Oncotype-DX-Like” and true Oncotype-DX scores. Pearsons Correlation between “Oncotype DX-Like” scores calculated as

described in method 1 (y-axis) and true Oncotype DX scores (x-axis) from the OPTIMA prelim study.

https://doi.org/10.1371/journal.pone.0238593.g004
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Comparison of true Prosigna ROR & ROR-P scores with Prosigna-like ROR & ROR-P

scores. We applied a similar simple linear regression to compare the true Prosigna ROR-P

scores with the Prosigna-like ROR-P scores (N = 274) generated as described above (Fig 5).

The results showed a good correlation for ROR (R = 0.8996) and ROR-P (0.913) with regres-

sions equation suggesting the relationships between Prosigna-like ROR-P scores and true

ROR-P scores are as follows:

ROR-P : Prosigna-like ROR-P like score ¼ � 32:19þ 1:5 � Prosigna ROR-P true scores:

“Prosigna-like” scores correctly classified 86.1% & 86.9% of cases for ternary versus binary

classification (S2a, S2b Tables in S1 File). Only 4 cases were classified as lower risk using “Pro-

signa-like” scores versus true scores (using ternary classification; S2 Table in S1 File), 27.0%

and 11.7% of cases were assigned to higher risk groups when using ternary (S2a Table in S1

File) or binary (S2b Table in S1 File) groupings.

Comparison of MammaPrint scores with “MammaPrint-like” scores. No regression

analysis could be performed using MammaPrint scores which are reported as a binary “Low”

vs “High” risk. “MammaPrint-like” scores correctly classified 83.2% of cases when compared

to true MammaPrint scores (S3 Table in S1 File). Roughly equal proportions of cases where

scored lower (3.6%) or higher (4.4%) risk using “MammaPrint-like” versus true scores (S3

Table in S1 File).

Fig 5. Comparison of Prosigna ROR true scores with “Prosigna-like”. Pearsons Correlation between “Prosigna-like” (ROR-P) scores calculated

as described in method 1 (y-axis) and true Prosigna scores (x-axis) from the OPTIMA prelim study.

https://doi.org/10.1371/journal.pone.0238593.g005
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Method 2: Comparison of true signature risk scores with “signature-

trained” risk scores

Comparison of Oncotype DX recurrence scores with “Oncotype DX-trained” recur-

rence scores. The “Oncotype DX-trained” recurrence scores achieved a high correlation with

the true Oncotype DX recurrence scores from the validation cohort of the OPTIMA prelim

study (Fig 6; right hand panel; S4 Table in S1 File). The relationship between “Oncotype DX-

trained” recurrence scores and true Oncotype DX recurrence scores is represented by the

equation:

“Oncotype DX-trained” RS ¼ 0:915 x Oncotype DX True RSþ 2:15

The correlation coefficient in the validation cohort was 0.8700, marginally lower than in the

training cohort (R = 0.9175).

When grouped into either 3 (low, intermediate, high) or 2 (low vs high) risk groups based

on the original and modified clinical groupings [2, 16] “Oncotype DX-trained” scores correctly

classified 75.2% of cases for the ternary and 90.1% for the binary classifications. Fewer cases

(1.8% and 1.5%) were classified as lower risk using “Oncotype DX-trained” scores versus true

scores whilst 19.0% and 8.0% of cases were assigned to higher risk groups when using ternary

(S4a Table in S1 File) or binary (S4b Table in S1 File) groupings.

Comparison of Prosigna ROR-PT scores with “Prosigna-trained” ROR-PT scores. The

“Prosigna-trained” ROR-PT algorithms scores were compared to true Prosigna scores in the

reserved validation set of the OPTIMA prelim data. Most true scores were predicted with very

Fig 6. “Oncotype DX-trained” scores versus true Oncotype DX scores in the validation set only. Pearsons Correlation between “Oncotype DX-

trained” scores calculated as described in method 1 (y-axis) and true Oncotype DX scores (x-axis) from the OPTIMA prelim study.

https://doi.org/10.1371/journal.pone.0238593.g006
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high accuracy, with a small number of samples returning discordant scores (Fig 7; S5 Table in

S1 File). The results showed excellent correlation (0.9472) with a regression equation suggest-

ing the relationships between Prosigna-trained ROR-PT scores and true ROR-PT scores are as

follows:

Prosigna-trained ROR-PT score ¼ 4:10þ 0:9261 � Prosigna ROR P true scores:

“Prosigna-trained” ROR-PT scores correctly classified 89.8% and 95.3% of cases for ternary

versus binary classification (S5 Table in S1 File). Roughly equal proportions of cases were

Fig 7. Comparison of “Prosigna-Trained” ROR-PT with true Prosigna ROR-PT in the validation set only. Pearsons Correlation between

“Prosigna-trained” scores calculated as described in method 1 (y-axis) and true Prosigna scores (x-axis) from the OPTIMA prelim study.

https://doi.org/10.1371/journal.pone.0238593.g007

Table 1. Pearsons correlation or concordance between “true” risk signature results and “signature-like” or “signature-trained” results in the OPTIMA prelim

dataset.

Table 1a “signature like All cases

Correlation coefficient Slope Intercept Concordance

Oncotype DX 0.873 1.95 1.26

Prosigna 0.913 1.55 -31.19

MammaPrint NA NA NA 83.2%

1B “signature trained” Training set Validation set

Correlation coefficient Slope Intercept Correlation coefficient Slope Intercept Concordance

Oncotype DX 0.90 0.851 3.1521 0.87 0.9165 2.1496

Prosigna 0.993 0.9929 0.3943 0.93 0.9261 4.86

MammaPrint NA NA NA NA NA NA 81.7%

Correlations between true versus computed (“like” or “trained”) test results.

NA = not applicable.

https://doi.org/10.1371/journal.pone.0238593.t001
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scored lower (5.5% & 1.8%) or higher (4.7% & 2.9%) risk using ternary or binary “Prosigna-

trained” ROR-PT versus true scores (S5 Table in S1 File).

Comparison of MammaPrint scores with “MammaPrint-trained” scores. No regres-

sion analysis could be performed using MammaPrint scores which are reported as a binary

“Low” vs “High” risk. “MammaPrint-trained” scores correctly classified 90.5% of cases when

compared to true MammaPrint scores (S6 Table in S1 File).

Discussion

The goal of the current study was to explore the potential to use surrogate gene signatures

to provide robust information on the impact of discordant risk classification by different

molecular prognostic signatures in early breast cancer. Since the implementation of prognostic

assays, using gene expression profiling, multiple studies have demonstrated the benefit of this

approach particularly for ER+ve breast cancers treated with curative intent [3, 6, 12, 13, 16,

20–25]. However, as demonstrated by us, and others, there are a number of challenges relating

to these prognostic assays and in particular for patients, clinicians and health care providers

who are seeking to gain the maximum potential information from the plethora of such assays

now available.

With multiple potential tests available, there is a significant lack of real world data which

allows comparison between such tests at the individual patient level. Such data requires either

analysis of large cohorts of patients with commercial assays, an approach which is both cost

prohibitive and unlikely to secure support from multiple commercial entities, or an analysis

using surrogate methods to estimate the impact of “real world” assays. Such approaches have

been reported previously, by us [4] and others [20, 24–26], but interpretation of these results

has been hampered by concerns as to the accuracy of such methods in recapitulating true assay

results.

A second challenge is clear evidence that combining prognostic assays, particularly adding

conventional histopathology information to assay readout, provide additional prognostic

information over and above any assay applied in isolation [12]. Moreover, the prognostic

information provided by any individual assay may, in fact, be relatively modest [14]. To

address this challenge, several studies have sought to either directly compare different com-

mercial tests [12] or to recapitulate test results from global transcriptome data [26]. By using a

curated data set from the OPTIMA prelim study we have been able to demonstrate the accu-

racy with which two different informatics approaches can mirror real world assay results

across 3 commonly used prognostic tests in breast cancer.

Both approaches achieved highly significant correlations between estimated and true results

with Pearson coefficients between 0.837–0.913 for “signature-like” and 0.870–0.940 for “signa-

ture-trained” results. However, regression equations for “signature-like” scores showed evi-

dence of potential scaling effects, whilst those from “signature-trained” scores were more

closely fitted to the true results, when the slope and intercept of the regression lines were

taken into consideration. Overall, estimating assay results solely using the published algo-

rithms from each assay resulted in lower concordance between “signature-like” and true assay

results (42.3–86.1%) than comparisons between “signature-trained” and true assay results

(75.2–90.5%) when ternary groupings were used for each assay. For binary categorization, as

now used for chemotherapy selection and based on the cutpoints used for the TAILORx trial

[2], concordance rates were 54.7–86.9% for “signature-like” and 90.1–95.3% for “signature-

trained” results. There is therefore clear evidence, across multiple metrics, that the training

approach, as would be expected, is superior to methods using assay algorithms alone without

reference to true assay results.
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Overall, “signature-like” results lead to an over-estimation of risk more often than true

results for the majority of cases with discordant results for both the Oncotype DX and Prosigna

assays (S1 and S2 Tables in S1 File), whilst for MammaPrint this effect was less obvious (S3

Table in S1 File). Training produced markedly fewer discordant cases, as predicted, but whilst

the effect for the Prosigna assay appeared more balanced (S4 Table in S1 File), for the Onco-

type DX assay the majority of misclassified cases after training still appeared to reflect an over-

estimation of risk (S5 Table in S1 File).

In summary, we provide perhaps for the first time, a comparison between prognostic risk

scores estimated by computational analysis of expression profiles and true assay results. As

predicted, using a “training and validation” approach to compute risk scores provides a closer

fit to true results than the more widely used approach where results are calculated based on

published test algorithms. High degrees of concordance between “trained” and actual assay

scores, both as continuous variables and as a categorical readout, suggest that this approach

can be applied to large cohorts and provide information estimating “real world” performances

of different assays. Untrained models (i.e. “signature-like”) may, as seen in this case, be more

challenging to interpret. We conclude that our “signature-trained” results provided results that

closely reflect the performance of the true assays and provide the basis for further examination

of large-scale gene expression datasets in which it would not be feasible to perform multipara-

metric testing using original methodology.
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