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Summary: Marginal structural models (MSMs) with inverse probability weighted estimators (IPWEs) are widely

used to estimate causal effects of treatment sequences on longitudinal outcomes in the presence of time-varying

confounding and dependent censoring. However, IPWEs for MSMs can be inefficient and unstable if weights are

estimated by maximum likelihood. To improve the performance of IPWEs, covariate balancing weight (CBW) methods

have been proposed and recently extended to MSMs. However, existing CBW methods for MSMs are inflexible

for practical use because they often do not handle dependent censoring, non-binary treatments, and longitudinal

outcomes (instead of eventual outcomes at a study end). In this paper, we propose a joint calibration approach to

CBW estimation for MSMs that can accommodate (1) both time-varying confounding and dependent censoring, (2)

binary and non-binary treatments, (3) eventual outcomes and longitudinal outcomes. We develop novel calibration

restrictions by jointly eliminating covariate associations with both treatment assignment and censoring processes after

weighting the observed data sample (i.e., to optimize covariate balance in finite samples). Two different methods are

proposed to implement the calibration. Simulations show that IPWEs with calibrated weights perform better than

IPWEs with weights from maximum likelihood and the ‘Covariate Balancing Propensity Score’ method. We apply

our method to a natural history study of HIV for estimating the effects of highly active antiretroviral therapy on

CD4 cell counts over time.
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1. Introduction

1.1 Marginal structural models and covariate balancing weights

Marginal structural models (MSMs) (Robins, 1999b; Robins et al., 2000) with inverse proba-

bility of treatment weighting (IPTW) are widely used to estimate causal effects of treatment

sequences on a longitudinal outcome in the presence of time-varying confounders that are

affected by treatment history (i.e., time-varying confounding, Hernán et al., 2001; Daniel

et al., 2013). With dependent censoring (e.g., due to loss of follow-up of patients), MSMs are

estimated by IPTW and inverse probability of censoring weighting (IPCW) that addresses

the additional selection bias from censoring (Hernán et al., 2001).

To implement IPTW and IPCW for MSMs, time-varying weights are commonly estimated

by fitting parametric models for treatment assignment and censoring processes and then

plugging in parameter estimates from maximum likelihood estimation (MLE). However, the

MLE approach to weight estimation can result in inefficient and unstable inverse probability

weighted estimators (IPWEs), especially when the treatment assignment and/or censoring

model is misspecified (Kang and Schafer, 2007; Cole and Hernán, 2008; Lefebvre et al., 2008;

Howe et al., 2011). Because final weights for fitting MSMs are a product of the time-varying

weights for IPTW and IPCW, the efficiency and stability issues of IPWEs can be exacerbated

when both time-varying confounding and dependent censoring are present.

Motivated by improving IPWEs primarily for binary point treatments, covariate balancing

weight (CBW) methods, which directly optimize covariate balance for weight estimation,

have been proposed (Graham et al., 2012; Hainmueller, 2012; Imai and Ratkovic, 2014;

Zubizarreta, 2015; Chan et al., 2016; Fong et al., 2018; Yiu and Su, 2018). In empirical

studies, CBW methods have been shown to dramatically improve the performance of IPWEs

by reducing their mean squared errors (MSEs) under both correct and incorrect model

specification. Recent theoretical investigations by Tan (2020) also reveal that, unlike the MLE

approach, CBW methods can bound the MSEs of IPWEs even under model misspecification.
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Recently, CBW methods have been extended to improve the IPWEs in MSMs. Imai and

Ratkovic (2015) first extended the ‘Covariate Balancing Propensity Score’ (CBPS) method

to MSMs with binary treatments. However, because the number of moment conditions for

weight estimation increases exponentially with the number of follow-up visits, CBPS could

only practically accommodate a small number of visits and covariates, and is computation-

ally intensive. Yiu and Su (2018) demonstrated that their CBW framework for a general

point treatment can be extended to estimate the short-term direct effect of a time-varying

treatment on a longitudinal outcome. Nonetheless, it is often of greater interest to estimate

the total effect of a treatment sequence in MSMs (i.e., both the direct treatment effect and

the indirect treatment effect through time-varying confounders on the longitudinal outcome).

Focusing on MSMs with continuous treatments, Zhou and Wodtke (2020) proposed a different

approach called ‘residual balancing’, where conditional means of time-varying confounders

are modeled, and weights for IPTW are estimated by balancing the residuals of the time-

varying confounder models across future treatments as well as the history of treatments and

confounders. In practice, it is undesirable to model a whole set of time-varying confounders

and to specify the functional form of future treatments for balancing. A notable limitation

of the CBW methods in Imai and Ratkovic (2015), Yiu and Su (2018) and Zhou and Wodtke

(2020) is that they do not address the common problem of dependent censoring in MSMs.

Kallus and Santacatterina (2019) developed ‘Kernel Optimal Weighting’ to handle both time-

varying confounding and dependent censoring in MSMs. However, their approach is restricted

to binary treatments and requires modeling conditional means of potential outcomes given

observed histories of treatments and confounders. With the exception of Yiu and Su (2018),

the aforementioned methods focused on MSMs for an eventual outcome at a study end,

instead of MSMs for a longitudinal outcome over time, which are often of interest in practice.

In summary, more research is required to improve the flexibility and practicality of CBW

methods for their widespread use in longitudinal settings.
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1.2 Joint calibration approach to weight estimation

To enhance the flexibility of CBW methods for practical use in MSMs, we propose a new

calibration approach to CBW estimation that can accommodate (1) both time-varying con-

founding and dependent censoring, (2) binary and non-binary treatment sequences, and (3)

eventual and longitudinal outcomes. Specifically, by building upon the ‘covariate association

eliminating weights’ framework by Yiu and Su (2018) for point treatments, we propose

novel moment conditions (i.e., calibration restrictions) for weight estimation that jointly

remove covariate associations over time with both treatment assignment and censoring

processes after weighting the observed data sample (i.e., to optimize covariate balance for

both treatment assignment and censoring processes in finite samples).

The joint calibration of CBWs based on our proposed moment conditions can be im-

plemented by three types of methods, as pointed out by a referee. These include: Type

(1), calibrating an initial set of estimated weights (e.g., from MLE) with an exponential

tilting term containing a parameter vector with dimension equal to the number of moment

conditions (see Han (2016) for an example in handling dependent censoring); Type (2),

estimating model-based parameters of inverse probability weights by solving estimating

equations based on the proposed moment conditions (e.g., Imai and Ratkovic, 2015); Type

(3), estimating weights non-parametrically by solving a constrained optimization problem

that incorporates the proposed moment conditions in the constraints (e.g., Zubizarreta, 2015;

Chan et al., 2016; Yiu and Su, 2018; Kallus and Santacatterina, 2019; Zhou and Wodtke,

2020). We discuss the pros and cons of all three methods in the MSMs settings and develop

both Types (1) and (2) methods for implementing the joint calibration in Section 4.3.

Besides flexibility, an important feature of our approach is its computational efficiency. This

is because, (I) unlike the methods in Zhou and Wodtke (2020) and Kallus and Santacatterina

(2019), it does not require models for the conditional means of time-varying confounders or
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potential outcomes, (II) unlike the CBPS method in Imai and Ratkovic (2015), it allows for

parsimony in deriving moment conditions when there exist many time-varying confounders

and visits, therefore the number of proposed moment conditions does not have to increase

exponentially with the number of visits. For example, the moment conditions can increase

linearly even if separate treatment assignment models are specified at each visit. Together

the flexibility and computational efficiency of our approach can encourage more widespread

and practical use of MSMs in complex longitudinal settings. Further details of the related

literature and our contributions are provided in Web Appendix A.

As we focus on the main idea of the proposed calibration approach to CBWs, its imple-

mentation and empirical evaluation in this paper, we leave the theoretical investigation of

the robustness and efficiency of the proposed IPWEs for future work. In Section 7, we briefly

discuss the robustness and efficiency issues regarding the proposed IPWEs in light of the

recent theoretical development in the CBW literature (Wang and Zubizarreta, 2020).

1.3 Motivating example

This research is motivated by data from the HIV Epidemiology Research Study (HERS),

a natural history study of 1310 women with, or at high risk of, HIV infection at four sites

(Baltimore, Detroit, New York, Providence) from 1993 to 2000 (Ko et al., 2003). During the

study 12 visits were scheduled, where a variety of clinical, behavioral and sociological out-

comes as well as self-reported information on antiretroviral therapies (ARTs) were recorded

approximately every 6 months.

Our objective is to quantify the effect of highly active antiretroviral therapy (HAART),

which contains three or more ART regimens, on the CD4 cell counts over time in the HERS

cohort. Because the HERS was an observational study, where therapies were not randomly

assigned and varying over time, this leads to the potential for time-varying confounding

between treatment and outcome. Moreover, estimation of the treatment effect is further
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complicated by dependent censoring due to dropout: more than half of the 871 HIV-infected

women at enrollment did not complete the study. We provide further details about these

problems in the HERS cohort in Web Appendix G.

In the previous analysis by Ko et al. (2003), weights for IPTW and IPCW were estimated

by MLE to fit several MSMs and address the time-varying confounding and dependent

censoring problems in the HERS data. However, Ko et al. (2003) considered the time-

varying treatments to be binary (i.e., with and without HAART). Because patients on ART

other than HAART (i.e., less than 3 ARTs) were combined with patients not receiving

any treatment, the therapeutic effect of HAART relative to no treatment was likely to be

underestimated. In this paper, we consider the time-varying treatment as ordinal with 3

levels—‘no treatment’, ‘ART other than HAART’ and ‘HAART’, which therefore allows

more precise quantification of the effect of HAART. However, the probability of each level

of the ordinal treatment can depend on many baseline and time-varying covariates and their

interactions (as reflected in the treatment guidelines when the HERS was conducted), which

not only makes model misspecification likely but also makes it more challenging to balance

the covariates across treatment levels. These issues thus motivated us to develop a new

calibration approach to CBW estimation in MSMs.

2. Notation, setting and assumptions

We consider a study in which n independent patients are enrolled at baseline (denoted by

visit 0) and then followed up over time at visits j = 1, . . . , T . For the ith patient, baseline

covariates V i (e.g., demographics) are recorded. At each follow-up visit j, we assume that

this patient’s treatment assignment Aij, time-varying covariate vector X ij, and longitudinal

outcome Yij are measurable, and are recorded only if the patient makes the visit. We further

assume that the variables follow the temporal ordering where Yij, X ij and Aij are only

affected by {Aij, X ij, Y i,j−1,V i}, {Aij, X i,j−1, Y i,j−1,V i} and {Ai,j−1, X i,j−1, Y i,j−1,V i}, re-
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spectively, for j = 1, . . . , T . Here an overbar is used to represent the history of a process,

for example, X ij = {X i1, . . . ,X ij}. For ease of exposition in what follows, we absorb Y i,j−1,

Ai,j−1 and V i into the covariate history X i,j−1 (j = 1, . . . , T ), unless stated otherwise.

Let Y
aj
ij be the potential outcome that would have arisen at visit j had the ith patient

been assigned the potential treatment sequence aj from the first visit after baseline up to

visit j. We assume that the causal effect of aj on Y
aj
ij can be encoded in a MSM of the

form E(Y
aj
ij ) = µ(aj,γ) = g{h(aj),γ}, where h(·) is a function satisfying h(aj = 0) = 0,

0 is the vector of zeros, aj = 0 is the potential treatment sequence where no treatment is

administered at every visit up to visit j, and g(·) is a function that relates the mean of

the potential outcome to h(aj) through a finite-dimensional parameter vector γ. Note that

baseline covariates V i can also be included in the MSM.

To identify and estimate γ from the observed data, we make the stable unit treatment value

(SUTVA) assumption, i.e., the distribution of potential outcomes for one patient is assumed

to be independent of potential treatment sequence of another patient, and the potential

outcomes are well defined. Additionally, we make the sequential ignorability of treatment

assignment assumption, i.e., pr(Aij | Y
aj
ij , X i,j−1) = pr(Aij | X i,j−1) for j = 1, . . . , T , and the

positivity assumption, i.e., pr(Aij ∈ A | X i,j−1) > 0 for all X i,j−1 and for any set A with

positive measure. Note that Aij can have arbitrary distributions (e.g., ordinal, continuous).

In the presence of dependent censoring, the objective is to estimate the causal effect of

the treatment sequence in MSMs without censoring, therefore further assumptions about

the censoring process need to be made. Let Rij be the indicator of whether the ith patient

remains in the study up to visit j. We assume that Ri0 = 1 (i.e., baseline visit assessments

are complete for all patients) and Ri,j−1 = 0 ⇒ Rij = 0 (monotone missingness due to

dropout). Our interest is to estimate the parameters of the MSM for E(Y
aj ,rj=1
ij ), where rj

is the potential sequence of the indicator of the ith patient being in the study by visit j
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and 1 is the vector of ones. To achieve this, we make an assumption that the censoring is

sequentially ignorable, i.e., pr(Rij | Y
aj
ij , H i,j−1, Ri,j−1 = 1) = pr(Rij | H i,j−1, Ri,j−1 = 1)

for j = 1, . . . , T , where H i,j−1 denotes the observable history of the ith patient up to visit

j − 1 that can include X i,j−1 and any other relevant covariate information. In addition, we

assume that pr(Rij | H i,j−1, Ri,j−1 = 1) > 0 for all H i,j−1, which is similar to the positivity

assumption made for the treatment process.

Throughout the paper, we make the above assumptions; otherwise our method may result

in severely biased estimates for parameters in the MSM, possibly even compared to an

analysis without addressing time-varying confounding and dependent censoring.

3. Inverse probability of treatment and censoring weighting for MSMs

To identify and consistently estimate γ using observed data under the assumptions described

in Section 2, the following inverse probability of treatment and censoring weighted (IPTCW)

estimating equations

n∑
i=1

T∑
j=1

RijSW
A
ijW

C
ijD(Aij,γ)

{
Yij − µ(Aij,γ)

}
= 0 (1)

can be solved, where SWA
ij =

∏j
k=1 pr(Aik | Ai,k−1)/

∏j
k=1 pr(Aik | X i,k−1) are the stabilized

inverse probability of treatment weights, WC
ij =

∏j
k=1 1/pr(Rik = 1 | H i,k−1, Ri,k−1 = 1) are

the inverse probability of censoring weights, D(Aij,γ) = {∂µ(Aij,γ)/∂γ}V −1ij and Vij =

var(Yij) (e.g., see Robins (1999b); Hernán et al. (2001); Ko et al. (2003) for proof). Other

commonly used versions of (1) include replacingWC
ij with the stabilized weights for censoring,

SWC
ij = WC

ij

∏j
k=1 pr(Rik = 1 | Ai,k−1, Ri,k−1 = 1), and incorporating baseline covariates V i

in the numerator of SWA
ij (and SWC

ij ) when they are included in the MSM. For simplicity,

we do not consider these alternatives here, but our proposed method described in Section 4

easily extends to these scenarios (e.g., see Web Appendix C for more details).

The purpose behind weighting the uncensored observation for the ith patient at visit j

by WC
ij is to create a representative sample of the target population (in the absence of
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censoring) at visit j. This is achieved because the
∑n

i=1Rij(W
C
ij −1) copies of the uncensored

observations at visit j are representative of the censored observations up to and including

visit j in terms of H i,j−1, and the remaining
∑n

i=1Rij copies of the uncensored observations

represent themselves (in total there are
∑n

i=1RijW
C
ij copies). That is, if ∗ denotes the pseudo-

population after weighting the uncensored observations at visit j by WC
ij −1, it can be shown

that pr∗(Rij = 1 | H i,j−1, Ri0 = 1) = 1/2 (see Web Appendix C for proof). Subsequently,

the purpose of weighting the uncensored observations further by SWA
ij is to create a pseudo-

population where Aij is conditionally independent of X i,j−1 given Ai,j−1, and the causal effect

of aj on E(Y
aj
ij ) is the same as in the original population. Under the sequential ignorability,

positivity and SUTVA assumptions described in Section 2, the treatment process up to visit

j after weighting by SWA
ij will then be causally exogenous (Robins, 1999b), i.e., pr∗(Aij |

Y
aj
ij , X i,j−1) = pr∗(Aij | X i,j−1) = pr(Aij | Ai,j−1), where ∗ denotes the pseudo-population

after weighting by SWA
ijW

C
ij . Then standard regression methods can be used to consistently

estimate γ in the MSM if the weights in (1) are known.

Because the weights in (1) are unknown in observational studies, their estimates based

on MLE, SWA
ij (α̂, β̂) =

∏j
k=1 pr(Aik | Ai,k−1; α̂)/

∏j
k=1 pr(Aik | X i,k−1; β̂) and WC

ij (θ̂) =∏j
k=1 1/pr(Rik = 1 | H i,k−1, Ri,k−1 = 1; θ̂) are usually used to implement IPTCW, where α̂,

β̂ and θ̂ are the maximum likelihood estimates of α, β and θ in parametric models pr(Aik |

Ai,k−1;α), pr(Aik | X i,k−1;β) and pr(Rik = 1 | H i,k−1, Ri,k−1 = 1;θ), respectively. However,

as discussed in Section 1.1, this MLE approach to weight estimation can be problematic,

which motivated CBW methods as an alternative.

4. Joint calibrated weight estimation for MSMs

In this section, we describe our joint calibration approach to CBW estimation in MSMs. It

is important to note that the goal for calibration is to improve IPWEs of MSM parameters,

and not to improve estimation of the treatment and censoring processes.
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Specifically, we propose to calibrate SWA
ij (α̂, β̂)WC

ij (θ̂) by jointly imposing calibration re-

strictions (i.e., moment conditions) implying that, after weighting the observed data sample,

at each study visit (I) treatment assignments are unassociated with the history of time-

varying covariates, and (II) we have a representative sample of the target population in the

absence of censoring. For the simpler setting of IPTW, SWA
ij (α̂, β̂) can be calibrated by only

imposing the restrictions for the treatment assignment process.

Let WAC?
ij (λ) be the calibrated weights with parameter vector λ. Note that we use ? in

superscript to highlight that the weights are calibrated. After obtaining an estimate of λ, λ̂,

we propose to replace SWA
ijW

C
ij by WAC?

ij (λ̂) in (1) to estimate γ.

In the next sections, we derive calibration restrictions for the treatment assignment and

censoring processes before developing the implementation procedures for the joint calibration.

4.1 Calibration restrictions for treatment assignment

We derive calibration restrictions for treatment assignment by building on the framework

proposed in Yiu and Su (2018) for point treatments. Let pr(Aij | X i,j−1;βw) be a parametric

model for the treatment assignment. Here we use the subscript ‘w’ in βw to highlight that

this is the parametric model used to derive restrictions. Following Yiu and Su (2018), we use

the partition βw = {βwb,βwd}, where βwd are the unique parameters that characterize the

dependence of Aij onX i,j−1 excluding the treatment history Ai,j−1 (i.e., regression coefficients

of baseline and time-varying covariates and their interactions with Ai,j−1), and βwb include

the intercept terms and parameters that characterize the dependence on treatment history

(i.e., regression coefficients of Ai,j−1). Here the subscripts ‘d’ and ‘b’ stand for dependence

and baseline, respectively. Without loss of generality, let pr(Aij | X i,j−1;βwb = α,βwd =

0) = pr(Aij | Ai,j−1;α), i.e., setting {βwb = α,βwd = 0} results in a treatment process

model that only depends on treatment history and is parameterized by α.

Now suppose that λ is fixed and we have known weights WAC?
ij (λ), it is possible to examine
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whether βwd = 0 in the weighted sample with WAC?
ij (λ), by finding the value of βw, i.e., β̂w,

that maximizes

T∏
j=1

n∏
i=1

{
j∏

k=1

pr(Aik | X i,k−1;βw)

}RijW
AC?
ij (λ)

, (2)

or equivalently solves the score equations

T∑
j=1

n∑
i=1

RijW
AC?
ij (λ)

j∑
k=1

∂

∂βw

log{pr(Aik | X i,k−1;βw)} = 0. (3)

The terms in the curly brackets in (2) make it explicit that WAC?
ij (λ) is used to weight the

likelihood of the observed treatment sequence for the ith patient up to visit j.

We propose to derive calibration restrictions by inverting (3) and finding the value of λ

implying that {β̂wb = α̂, β̂wd = 0} are the values that maximize (2). That is, we solve for λ

T∑
j=1

n∑
i=1

RijW
AC?
ij (λ)

j∑
k=1

∂

∂βw

log{pr(Aik | X i,k−1;βw)}
∣∣∣
{βwb=α̂,βwd=0}

= 0. (4)

Satisfaction of the restrictions in (4) means that, after weighting by WAC?
ij (λ̂), the treatment

assignments up to visit j are unassociated with the covariate histories conditional on the

treatment histories in the observed data sample (i.e., β̂wd = 0). Note that the structure of the

covariate associations is characterized by the specified parametric treatment process model.

More discussion about this general framework for weight estimation for point treatments can

be found in Yiu and Su (2018). In addition, Web Appendix B provides details of deriving

calibration restrictions for the eventual outcome setting.

4.1.1 Application to ordinal treatments. We consider the following model for the ordinal

treatment variable in the HERS data,

logit{pr(A0
ij = 1 | X i,j−1)} = X̃

0>
i,j−1β

0,

logit{pr(A1
ij = 1 | X i,j−1, A

0
ij = 1)} = X̃

1>
i,j−1β

1,

(5)

where A0
ij is the indicator of whether at least one ART was administered, A1

ij is the indicator

of whether HAART was administered, X̃
0

i,j−1 and X̃
1

i,j−1 are functionals of X i,j−1 (e.g.,

transformations and interactions) including 1, and β0 and β1 are corresponding regression
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coefficients. Applying (4), restrictions based on (5) can be derived as,

T∑
j=1

n∑
i=1

RijW
AC?
ij (λ)

j∑
k=1

(
A0
ik − ê0ik

)
X̃

0

i,k−1 = 0,

T∑
j=1

n∑
i=1

RijW
AC?
ij (λ)

j∑
k=1

A0
ik

(
A1
ik − ê1ik

)
X̃

1

i,k−1 = 0,

(6)

where ê0ik and ê1ik are the predicted probabilities of receiving treatment at visit k from fitting

the model (5) but with treatment history as the only covariates. The restrictions in (6) are in

spirit similar to the covariate balancing restrictions/conditions for binary point treatments

(Imai and Ratkovic, 2014; Yiu and Su, 2018), but they are aggregated over time. Examining

these restrictions carefully, we can see that they aim to remove the associations of the

covariates, X̃
0

i,j−1 and X̃
1

i,j−1, with the residuals of the treatment variables (after fitting (5)

with treatment history as the only covariates) over time.

4.1.2 Application to continuous treatments. We assume that a time-varying continuous

treatment at visit j for the ith patient follows a heteroscedastic normal linear model Aij ∼

N{X̃
µ>
i,j−1β

µ, exp(X̃
σ>
i,j−1β

σ)}, where X̃
µ

i,j−1 and X̃
σ

i,j−1 include 1 and functionals of X i,j−1

(e.g., interactions), and βµ and βσ are corresponding regression coefficients. After applying

(4) to this model for treatment assignment, we obtain the following restrictions

T∑
j=1

n∑
i=1

RiTW
AC?
ij (λ)

j∑
k=1

(Aik − µ̂ik)
σ̂2
ik

X̃
µ

i,k−1 = 0,

T∑
j=1

n∑
i=1

RiTW
AC?
ij (λ)

j∑
k=1

{
−1 +

(Aik − µ̂ik)2

σ̂2
ik

}
X̃

σ

i,k−1 = 0,

where µ̂ik and σ̂2
ik are the estimated mean and variance of the continuous treatments from

fitting the same normal linear model but with treatment history as the only covariates. It

is easy to see that these restrictions are designed to remove the associations between the

covariates X̃
µ

i,k−1, X̃
σ

i,k−1 and the standardized residuals of a treatment model that depends

only on treatment history.
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4.1.3 Additional restrictions for IPTW when implementing with the Type (1) method.

When the Type (1) method is used to implement IPTW only (e.g., when censoring is assumed

to depend on treatment history only), we propose to estimate calibrated weights WA?
ij (λ) for

IPTW (instead of WAC?
ij (λ) for IPTCW) by jointly imposing (4) and additional restrictions

n∑
i=1

RijW
A?
ij (λ) =

n∑
i=1

Rij (7)

for j = 1, . . . , T , in the same spirit as in Cao et al. (2009). That is, we also constrain

the average of the calibrated weights to equal one at each visit. The purpose of these

restrictions is to avoid the trivial solution of zeros for the weights in (4), and to improve the

stability of the IPWE by prohibiting extremely large weights. As we shall see in Section 4.2,

the calibration restrictions for IPCW already impose constraints on the sample size after

weighting. Therefore, restrictions in (7) are redundant when calibrating weights for IPTCW.

4.2 Calibration restrictions for censoring

To derive calibration restrictions for IPCW, we utilize the proposition that at visit j (j =

1, . . . , T ), IPCW creates a representative sample of the target population (in the absence of

censoring) at visit j after weighting the uncensored observations by WC
ij . This proposition

can be proved by induction (see Web Appendix C). An important step in the proof is to

validate the inductive steps up to visit j, i.e., weighting the uncensored observations at

visit k = 1, . . . , j by 1/πik − 1, where πik = pr(Rik = 1 | H i,k−1, Ri,k−1 = 1), creates a

representative sample of the censored observations at visit k, assuming that the proposition

holds at visit k − 1 and the uncensored observations at visit k − 1 have been weighted by

WC
i,k−1. Therefore we derive calibration restrictions for censoring by inverting weighted score

equations of a parametric model evaluated at the point implying no evidence against the

inductive steps.

Specifically, suppose that λ is fixed and the calibrated weights WAC?
i1 (λ), . . . ,WAC?

ij (λ) are

known. We can assess the validity of the proposition at visit j by specifying a parametric
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model πik(θw) = pr(Rik = 1 | H i,k−1, Ri,k−1 = 1;θw) (k = 1, . . . , j) and estimating its

parameter θw by maximizing

Lj(θw) =
n∏
i=1

j∏
k=1

[
πik(θw)Rik{1/π?

ik(λ)−1} {1− πik(θw)}1−Rik

]WAC?
i,k−1(λ)Ri,k−1

, (8)

where 1/π?ik(λ) = WAC?
ik (λ)/WAC?

i,k−1(λ) (k = 1, . . . , j), WAC?
i0 (λ) = 1 and by convention

00 = 1. The terms in (8) are used to assess the validity of the inductive steps at visits

k = 1, . . . , j in the observed data sample, given that weighting by WAC?
i,k−1 has been applied

at visit k−1. In particular, if πik(θw = 0) = 1/2 ∀k, deviations from θ̂w = 0 in the observed

data sample would provide evidence against the inductive step at one or more visits up to

and including visit j, and thus evidence against the proposition at visit j. Similarly, we can

simultaneously assess the validity of the proposition at all visits by maximizing

T∏
j=1

Lj(θw) =
T∏
j=1

n∏
i=1

[
πij(θw)Rij{1/π?

ij(λ)−1} {1− πij(θw)}1−Rij

](T−j+1)WAC?
i,j−1(λ)Ri,j−1

(9)

with the score equations
T∑
j=1

n∑
i=1

(T − j + 1)

[
Rij

{
WAC?
ij (λ)−WAC?

i,j−1(λ)
} ∂

∂θw
log {πij(θw)}

+ WAC?
i,j−1(λ)(Ri,j−1 −Rij)

∂

∂θw
log{1− πij(θw)}

]
= 0.

(10)

The terms in square brackets in (9) are weighted by T − j + 1 because they are required for

assessing whether the proposition holds at visits j, . . . , T . We derive restrictions by finding

λ such that θ̂w = 0 are the values that solve (10). That is, we solve for λ such that

T∑
j=1

n∑
i=1

(T − j + 1)

[
Rij

{
WAC?
ij (λ)−WAC?

i,j−1(λ)
} ∂

∂θw
log {πij(θw)}

+ WAC?
i,j−1(λ)(Ri,j−1 −Rij)

∂

∂θw
log{1− πij(θw)}

] ∣∣∣
θw=0

= 0.

(11)

In this paper, we assume a logistic model logit{πij(θw)} = H̃
>
i,j−1θw, where H̃ i,j−1 is a

vector of functionals of H i,j−1 including 1. Then the restrictions based on (11) are

T∑
j=1

(T − j + 1)
n∑
i=1

[
RijW

AC?
ij (λ)−Ri,j−1W

AC?
i,j−1(λ)

]
H̃ i,j−1 = 0. (12)

The term
∑n

i=1

[
RijW

AC?
ij (λ)−Ri,j−1W

AC?
i,j−1(λ)

]
H̃ i,j−1 in (12) can be interpreted as the
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covariate balance summary of H̃ i,j−1 between the weighted uncensored observations at visit

j and the weighted uncensored observations at visit j − 1. Equation in (12) is equivalent to

T∑
j=1

n∑
i=1

RijW
AC?
ij (λ)

{
(T − j + 1)H̃ i,j−1 − (T − j)H̃ ij

}
= T

n∑
i=1

H̃ i0 (13)

(see details in Web Appendix C). Since H̃ i,j−1 (j = 1, . . . , T ) includes 1, (13) implies∑T
j=1

∑n
i=1RijW

AC?
ij (λ) = nT, which means that the total number of ‘observations’ after

weighting is equal to nT , the total number of observations of the target population without

censoring. If H̃ i,j−1 includes baseline covariates V i, (13) implies
∑T

j=1

∑n
i=1RijW

AC?
ij (λ)V i =

T
∑n

i=1 V i, i.e., the weighted average of V i over all visits is equal to the sample average of

V i. If H̃ i,j−1 includes an indicator for visit, I(j = k) (k = 1, . . . , T ), and an interaction

between this visit indicator and V i, I(j = k)V i, then (13) implies
∑n

i=1RikW
AC?
ik (λ) = n

and
∑n

i=1RikW
AC?
ik (λ)V i =

∑n
i=1 V i for k = 1, . . . , T . That is, at each visit the sample size

after weighting is n and the weighted average of V i is equal to the sample average of V i.

Note that interactions between visits and time-varying covariates can also be included in

H̃ i,j−1, therefore time-varying covariates at different visits can be balanced separately.

In this section, we have derived restrictions for calibrating unstabilized weights for censor-

ing; restrictions for stabilized weights for censoring can be found in Web Appendix C.

4.3 Implementation of the joint calibration

4.3.1 Pros and cons of implementation methods. We discuss the pros and cons of the three

types of implementation methods for calibration introduced in Section 1.2. The advantage

of Type (1) methods is that they almost always result in a unique solution and they

are computationally efficient. This is explained in Section 4.3.3 by showing that Type (1)

methods are equivalent to solving a convex minimization problem. The disadvantage of Type

(1) methods is that they can inherit the poor performance of the initial weights, e.g., when

the initial weights are generated by a severely misspecified model. Type (2) methods do not

have this problem because no initial weights are required. However, they are not guaranteed
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to produce weights that satisfy the calibration restrictions exactly, not to mention a unique

set of weights if such a set exists. This problem is especially prominent for long treatment

sequences and complex models involving non-binary treatments. For example, in our first

simulation study in Section 5, the Type (2) method in Section 4.3.4 worked well when

only IPTW was required, but failed to converge (i.e., did not find weights that satisfied

our proposed moment conditions) for the majority of simulated datasets when IPTCW was

applied. Furthermore, in our HERS data example, the same Type (2) method produced

several sets of weights that differed by more than a constant of proportionality, i.e., there

existed multiple solutions.

Type (3) methods look promising because they seem not to suffer from the disadvantages of

Type (1) and (2) methods. Nevertheless, we discourage using Type (3) methods to implement

our calibration approach because (a) they may not result in a consistent estimator of

treatment effects in MSMs even when the models for deriving calibration restrictions are

correctly specified, and (b) they can be computationally intensive. Issue (a) arises because

in longitudinal settings, unlike Type (1) and (2) methods, Type (3) methods do not impose

enough structure on the weights to ensure that they converge to the true weights for IPTCW.

One way to address issue (a) is to impose more calibration restrictions by either specifying

and/or modeling conditional means of the time-varying confounders given observed histories

(Zhou and Wodtke, 2020), or conditional means of the potential outcomes given observed

histories (Kallus and Santacatterina, 2019). However, in practice, it would be cumbersome

and undesirable to conduct additional complex modeling, apart from specifying the treatment

and censoring models for IPTCW in MSMs.

4.3.2 Generic estimation procedure for joint calibration. For ease of exposition, we collect

all standard IPTCW weights by MLE SWA
ij (α̂, β̂)WC

ij (θ̂) and calibrated weights WAC?
ij (λ)

into two m × 1 vectors W (α̂, β̂, θ̂) and W ?(λ), respectively, where m is the number of

weights. If no censoring occurs, then m = nT . Here, α̂, β̂ and θ̂ denote parameter estimates
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by MLE without weighting. The implementation of joint calibration requires solving a system

of linear equations in terms of W ?(λ) since the restrictions (4), (7) and (13) are linear in the

calibrated weights. Let K be the known m×r matrix and l be the known r×1 vector, where

r is the numbers of restrictions. For example, for IPTCW, r would be the combined size of

βw and θw. Both K and l are determined by the calibration restrictions (4), (7) and (13).

For obtaining the calibrated weights, we need to solve

K>W ?(λ)− l = 0, (14)

which can be performed in R (R Development Core Team, 2014) by using the package nleqslv

(Hasselman, 2016), once the form of the calibrated weights W ?(λ) has been specified. The

forms of the calibrated weights in the Type (1) and (2) methods differ and are now specified

in the following sections.

4.3.3 Calibrated weights in the Type (1) method. We consider calibrated weights of the

form W ?(λ) = W (α̂, β̂, θ̂) ◦ exp(Kλ) for the Type (1) method, where exp(·) is performed

element-wise, ◦ denotes element-wise product, and λ is a r × 1 vector of parameters. Al-

though other forms of calibration are possible (e.g., see Han (2016)), this particular choice

is appealing because solving (14) is equivalent to minimizing the convex function for λ,

1>{W (α̂, β̂, θ̂) ◦ exp(Kλ)} − l>λ, (15)

where 1 is an m× 1 vector of ones. The convexity of (15) ensures that the solution to (14) is

unique and can be found efficiently. For the HERS analysis in Section 6, it took approximately

two seconds to obtain the calibrated weights by imposing 84 restrictions for 2581 observations

on a Linux machine with 2.40GHz CPU (four processors) and 128 GB memory.

4.3.4 Calibrated weights in the Type (2) method. For the Type (2) method, we consider

calibrated weights of the formW ?(λ) = W (α̂,β,θ). That is, the calibrated weights take the

form of the standard IPTCW weights. However, the parameters characterizing these weights

λ = {β,θ} are estimated by solving (14) once α has been estimated by MLE. Recall that if
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only IPTW is to be applied using the Type (2) method, (14) will only include restrictions (4)

(not additional restrictions (7)) in order to ensure that the number of parameters to be

estimated is equal to the number of moment conditions. Unlike the Type (1) method, this

Type (2) method resulted in multiple solutions in the HERS data example, and failed to

converge when IPTCW was applied in both the HERS data example and simulation studies.

4.3.5 Other practical guidelines. It can be shown that the true inverse probability weights

must satisfy the proposed moment conditions asymptotically, i.e., the calibration/exponential

tilting function in the Type (1) method should converge to 0 if the initial weights are

estimated from a correctly specified model (see Web Appendix F for proof). Thus the

proposed moment conditions can also be used for model checking. For example, in the HERS

data analysis, we calculated the variance of the estimated calibration function since, if the

treatment and censoring models for the initial weights are correctly specified, this variance

should be close to zero (see Section 7.4 in Web Appendix G). Alternatively, one could detect

whether a particular set of weights approximate the true IPTCW weights by assessing how

close these weights are satisfying the proposed moment conditions.

We distinguish between covariate histories that are predictive of E(Y
aj ,rj=1
ij ), denoted as

X
Y

i,j−1, and those that are predictive of Aij, denoted as X
A

i,j−1. Some elements of X
Y

i,j−1

and X
A

i,j−1 overlap which leads to confounding bias. We recommend prioritizing X̃
Y

i,j−1, i.e.,

functionals of X
Y

i,j−1, for inclusion in the models of the treatment and censoring processes for

deriving restrictions at visit j (Zhao and Percival, 2017). In Web Appendix D, we provide

further discussion on model choices for deriving calibration restrictions.

5. Simulation

We conduct two simulation studies to assess the finite sample performance of IPWEs for

MSMs based on our calibration approach. The set-up of the first simulation study is mo-

tivated by the HERS data, where ordinal time-varying treatments are observed over long
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follow-up periods and dependent censoring is present. Because the CBPS approach of Imai

and Ratkovic (2015) can only handle binary treatments with a small number of visits, we are

only able to compare the performance of our calibration approach with the MLE approach

in the first simulation study. To include the CBPS approach for comparison, we design a

second simulation study for binary treatments at five follow-up visits and with no censoring.

The computing time for the CBPS approach implemented by the CBPS package in R is 800 or

more times than those for the calibration and MLE approaches. Full details of the simulation

studies can be found in Web Appendix E. The R code for the simulation study is also available

in the Supporting Information.

Overall, the simulation results confirm that both IPWEs for MSMs with weights from

MLE and our calibration approach (implemented by both Type (1) and Type (2) methods)

have negligible bias when the treatment and censoring models are correctly specified. IPWEs

from the CBPS approach have small amounts of biases when the treatment model is cor-

rectly specified. However, with model misspecification for weight estimation, IPWEs from

all approaches may have large biases that do not disappear with increasing sample sizes.

Notably, the IPWEs with calibrated weights are considerably less variable and have much

smaller MSEs than their MLE counterparts, especially when the treatment assignment and

censoring models are misspecified. In particular, when model misspecification is induced by

functional form misspecification of the covariates, the IPWEs with weights from MLE have

large variances and MSEs that even increase with sample size. In contrast, the IPWEs with

our calibrated weights are more stable and have smaller MSEs that decrease with sample

size. The IPWEs with calibrated weights also have smaller median absolute errors (MAEs)

and MSEs than their CBPS counterparts. The MAE, which is more robust to extreme values

than the MSE, indicates that, after throwing away the worst half of the simulations results,

our calibration approach still performs better than the CBPS approach.
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6. Application

In this section, we apply the proposed method to the HERS data. Since HAART was not

available at enrollment in the HERS cohort, we follow Ko et al. (2003) and treat visit 7, when

HAART was more widely used in the HERS, as the ‘baseline’ and estimate the causal effects

of HAART over the two-year period between visit 8 and visit 12. Besides attrition, there

were secondary sources of missing data which resulted in intermittent missing data (before

being lost to follow-up), missing data at enrollment for CD4 counts, and left-censored HIV

viral load at the lower detection limit. We deal with these by following the approaches in Ko

et al. (2003); see Web Appendix G for details. In total, there are 610 patients at visit 7 who

had at least one CD4 count measured between visit 8 and 12 and sufficient information for

covariates to estimate the weights for IPTW and IPTCW. The total number of CD4 count

observations for analysis is 2581.

6.1 Model parameterizations and estimation

As discussed in Section 1.3, in order to provide a more precise estimate of the causal effect

of HAART relative to no treatment, we consider the time-varying antiretroviral treatment

assignment as an ordinal variable, which is represented by the indicator of whether at least

one ART was administered, A0
ij (with a potential value a0j), and the indicator of whether

HAART was administered, A1
ij (with a potential value a1j), for j = 8, . . . , 12. Let Di = 0 if

Yi7 < 200, Di = 1 if 200 6 Yi7 6 500 and Di = 2 if Yi7 > 500, where Yi7 is the CD4 count at

visit 7. We specify the following MSM for the potential CD4 count outcome Y
aj
ij ,

E(Y
aj
ij ) = δ0j +

2∑
k=1

δkI(Di = k) + δ>v V i +
2∑

k=0

I(Di = k)

{
γ1k

j∑
l=8

(a0l − a1l ) + γ2k

j∑
l=8

a1l

}
for j = 8, . . . , 12, where δ0j are visit-specific intercept terms, V i are baseline covariates

evaluated at visit 7 (see the full list in Web Appendix G) and δv are their corresponding

regression coefficients. This MSM encodes the cumulative effect of HAART and 1-2 ARTs

relative to no treatment stratified by the CD4 count at visit 7. If γ1k and γ2k are constrained
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to be constant across k (k = 0, 1, 2 for the strata), then an overall cumulative treatment

effect can be obtained. In addition, we assume a different MSM for evaluating short-term

treatment effects in Web Appendix G.

The parameters in the MSMs were estimated by applying IPTW and IPTCW, with weights

estimated by MLE and our calibration approach with the Type (1) method. As mentioned

previously, we consider the Type (2) method as an unreliable option for weight estimation

in the HERS data because it produced multiple solutions for IPTW and did not converge

for IPTCW. For IPTW, we assume the model in (5) for the MLE approach and for deriving

restrictions for calibration. In Web Appendix G, we provide the full list of covariates in (5).

For IPTCW, a logistic model with the same covariates as those in the treatment assignment

model was used for estimating the inverse probability of censoring weights by MLE and for

deriving calibration restrictions (12). To prevent extreme weights as in Cao et al. (2009), the

weights in IPTW by the MLE approach were scaled to sum to the number of observations in

the HERS data (i.e., 2581); and the weights from MLE for IPTCW were scaled to sum

to 5 times the sample size at visit 7 (i.e., the number of outcome measurements that

would have been observed had nobody been censored from visit 7 onwards). Finally, we

estimated standard errors with 2500 non-parametric bootstrap samples by treating patients

as resampling units.

6.2 Results

In Web Appendix G, we provide details of the estimated weights and discuss the extent

to which they suggest that confounding bias from observed covariates is present and the

positivity assumption is satisfied.

Table 1 presents the estimates and standard errors of the parameters in the specified MSMs

with no weighting, IPTW and IPTCW. The results of the näıve analysis with no weighting

applied, as shown in the first two rows of Table 1, strongly suggest that, compared with
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no treatment, HAART was effective at increasing the CD4 counts over time for those with

CD4 6 500 at visit 7, and 1-2 ARTs were effective for those with 200 6 CD4 6 500 at visit

7. However, point estimates for the group with CD4 > 500 at visit 7 showed detrimental

effects of both HAART and 1-2 ARTs.

[Table 1 about here.]

Applying IPTW with weights from MLE provides an upward adjustment of the treatment

effects, as seen in the third and fourth rows of Table 1. The largest adjustments for 1-2 ARTs

and HAART are in the CD4 < 200 and CD4 > 500 strata, respectively. Overall, this results

in a fairly substantial upward adjustment for the treatment effects in the MSM with no

stratification. However, applying IPTW with weights from MLE also increased the standard

errors of the estimated treatment effects.

The fifth and sixth rows in Table 1 present the results from applying IPTW with calibrated

weights from the Type (1) method. It appears that HAART had an even greater effect on

increasing CD4 counts for those with CD4 6 500 at visit 7 and overall without stratification,

compared with the results based on weights from MLE. There were also substantial increases

in the estimated effects of 1-2 ARTs for those with > 200 and overall. As anticipated, the

estimated standard errors with the calibrated weights are much smaller even compared to

the näıve analysis with no weighting applied.

Further adjustment for selection bias due to dependent censoring appears to have largely

minor effects, as seen in the last four rows of Table 1. The most notable modifications occur

in the CD4 > 500 strata. However, there is substantial uncertainty associated with these

estimated treatment effects, therefore the evidence is insufficient to draw a conclusion.

As expected, our estimated treatment effects for HAART are generally much larger (more

than 1 standard error) than those reported in Ko et al. (2003), since we have separated

the group with 1-2 ARTs from the group with no treatment. The slightly larger effect of
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HAART in the CD4 > 500 strata from Ko et al. (2003) is again associated with substantial

uncertainty.

In conclusion, the results in Table 1 indicate that there were clinically substantial and sta-

tistically significant therapeutic effects of cumulative exposure to HAART for those patients

with initial CD4 count 6 500, which is consistent with the findings in Ko et al. (2003) and

the recommended treatment guideline during the study period of the HERS.

7. Conclusion and discussion

In this paper we have proposed a new CBW approach to MSMs that can accommodate

both time-varying and dependent censoring, binary and non-binary time-varying treatments

as well as eventual and longitudinal outcomes. Simulations showed that IPWEs for MSMs

with weights from our calibration approach had smaller variances and MSEs than IPWEs

with weights from the MLE and CBPS approaches, under correct and incorrect model

specification. The flexibility and computational efficiency of our calibration approach makes

it well equipped to deal with common scenarios in fitting MSMs using observational cohort

data from clinical studies such as the HERS. This will hopefully promote more widespread

use of MSMs for various types of treatments/exposure and outcomes in practice.

We emphasize that choosing the correct set of covariates and functionals for balancing

remains important for the performance of IPWEs with the proposed approach. This is

related to the challenging problem of ‘covariate selection’ in causal inference literature

(Shortreed and Ertefaie, 2017). Specifically, imposing exact covariate balance, as done in both

the proposed approach and the CBPS, will limit the number of covariates and functionals

included for balancing, which can reduce the robustness and efficiency of IPWEs if observed

confounders and important predictors of the outcome are omitted (Wang and Zubizarreta,

2020). One possible solution is to allow approximate covariate balance such that more cali-

bration restrictions can be included, as advocated in Wang and Zubizarreta (2020). Second,



Calibrated Weight Estimation for MSMs 23

it would be useful to replace initial weights from MLE with initial weights estimated by data-

adaptive methods. This can provide some protection from severe model misspecification, and

therefore reduce the possibility of large bias for IPWEs with calibrated weights. Third, as

pointed out by the associate editor, it would be useful to construct double robust (DR)

estimators based on the proposed calibration approach. Focusing on binary treatments, a

natural way to construct a DR estimator with our CBWs is to either incorporate them

into the augmented inverse probability weighted estimator, or into the targeted maximum

likelihood approach as a clever covariate. However, it is not clear if such estimators will

perform well even when the treatment assignment and outcome regression models are both

mildly misspecified (Kang and Schafer, 2007). Therefore it would be desirable to extend our

proposed approach by developing new DR estimators that can perform well when either, but

not necessarily both, of the working models for nuisance parameters are mildly misspecified.

Similar to other CBW approaches, it warrants future research to develop sensitivity anal-

ysis strategies for the proposed approach to assess the impact of violations to the ‘no

unmeasured confounders’ assumption. Ko et al. (2003) implemented the sensitivity analysis

approach suggested in Robins (1999a) by introducing a sensitivity parameter defined as the

difference between the means of the potential outcomes given observed treatment/covariate

histories. This approach is relatively straightforward for binary treatments and continuous

outcomes, but less straightforward for other treatment and outcome combinations.
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Table 1
Parameter estimates and bootstrap standard errors of the MSMs by applying no weighting, IPTW and IPTCW with

weights from maximum likelihood (MLE) and from the calibration approach (CMLE) to the HERS data.

Weight Cumulative Strata by CD4 cell count at visit 7 No stratification
Estimation Effect < 200 200-500 > 500

No Weighting
6 2 ARTs 8.57 (9.33) 13.66 (7.86) −27.36 (18.40) 0.51 (8.06)

HAART 26.34 (8.37) 27.40 (8.25) −25.59 (16.45) 14.46 (7.99)

Treatment only
MLE 6 2 ARTs 13.27 (9.84) 16.23 (8.71) −26.44 (23.06) 5.59 (9.58)

HAART 27.78 (9.69) 28.63 (10.24) −2.67 (23.16) 20.89 (10.04)
CMLE 6 2 ARTs 14.35 (9.09) 26.60 (7.60) 5.25 (18.09) 18.59 (7.23)

HAART 36.53 (8.09) 34.73 (7.88) −2.75 (17.87) 28.16 (7.36)

Treatment and dropout
MLE 6 2 ARTs 11.70 (9.29) 17.11 (8.57) −24.75 (22.74) 6.84 (9.07)

HAART 25.79 (9.19) 28.80 (10.49) −2.08 (22.39) 21.19 (9.72)
CMLE 6 2 ARTs 11.92 (8.67) 27.74 (7.66) 8.60 (17.74) 19.26 (7.08)

HAART 33.11 (7.93) 32.75 (8.00) 3.10 (16.94) 27.37 (7.24)


