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ABSTRACT In this work, we map the transcriptional targets of 107 previously identified Drosophila genes
whose loss caused the strongest cell-cycle phenotypes in a genome-wide RNA interference screen and mine
the resulting data computationally. Besides confirming existing knowledge, the analysis revealed several
regulatory systems, among which were two highly-specific and interconnected feedback circuits, one be-
tween the ribosome and the proteasome that controls overall protein homeostasis, and the other between
the ribosome and Myc/Max that regulates the protein synthesis capacity of cells. We also identified a set of
genes that alter the timing of mitosis without affecting gene expression, indicating that the cyclic transcrip-
tional program that produces the components required for cell division can be partially uncoupled from the
cell division process itself. These genes all have a function in a pathway that regulates the phosphorylation
state of Cdk1. We provide evidence showing that this pathway is involved in regulation of cell size, in-
dicating that a Cdk1-regulated cell size checkpoint exists in metazoans.

In organisms ranging from yeast to humans, differences in transcrip-
tion factor activity during the cell cycle cause a significant fraction of
all genes to be regulated periodically (Whitfield et al. 2002; Rustici
et al. 2004). This cyclic transcription ensures that proteins required
for different cell-cycle phases are produced at the appropriate time
(Jensen et al. 2006). Proteins that regulated the previous phase are, in
turn, often selectively targeted for degradation by the proteasome. The
genes that are cyclically expressed encode proteins directly involved in
DNA replication and cell division, and master regulators of the cell
division process, such as the cyclins. The cyclins bind to and regulate
the activity of cyclin-dependent kinases (Cdks) that control cell-cycle
processes and activate transcription factors, which subsequently mod-
ulate expression of genes needed for the next phase of the cell cycle. In
animal cells, this process is at least in part driven by the transcription

factors E2f and Myb, whose activities are in turn regulated by Cdks
(reviewed in Koepp et al. 1999; Kastan and Bartek 2004; Murray 2004).

The progression through the cell cycle can be halted at several
checkpoints where completion of cell-cycle processes is monitored.
The DNA damage checkpoint (Kastan and Bartek 2004) arrests the cell
cycle in cells that have incurred DNA damage or have failed to rep-
licate DNA completely. The spindle assembly checkpoint in turn pre-
vents premature separation of sister chromatids in mitosis (Musacchio
and Salmon 2007; Pesin and Orr-Weaver 2008). In addition, it has
been suggested that the correct segregation of subcellular organelles,
such as the Golgi apparatus, is also monitored by checkpoints (Colanzi
and Corda 2007). Triggering of checkpoints results in the activation
of repair and/or apoptotic processes and associated transcriptional
responses that are not part of the normal cell cycle.

In somatic cells, progression through the cell cycle also requires
cell growth. At the transcriptional level, cell growth is controlled by
the transcription factor Myc (dm), which heterodimerizes with Max
and regulates a large number of genes, including genes involved in
ribosome biogenesis (Greasley et al. 2000; van Riggelen et al. 2010).
Mutations in Myc or ribosomal genes lead to small body size in
Drosophila (Kongsuwan et al. 1985; Marygold et al. 2007), indicating
that cellular ribosome levels are rate limiting for growth.

Although cell division requires growth, the inverse is not true as
cell growth does not require cell division. Classical analysis of cell
division cycle yeast mutants revealed that cells prevented to undergo
cell division due to loss of cyclin-dependent kinase activity continue to
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synthesize proteins and grow to a larger size (Hartwell et al. 1973;
Nurse et al. 1976; Reed 1980; Dickinson 1981; Goranov et al. 2009).
Similarly, arrested Drosophila imaginal disc cells grow to a very large
size, but pattern relatively normally (Weigmann et al. 1997), which
indicates that cell size is controlled independently of tissue size. The
mechanisms that control cell size in the unicellular organism S. pombe
are relatively well understood (Martin and Berthelot-Grosjean 2009;
Moseley et al. 2009; Hachet et al. 2011). However, the mechanisms
that regulate metazoan cell size under physiological conditions remain
unknown. Some experiments in mammalian cells support a model in
which cell division is controlled independently of cell size, and that
cell size is maintained by a passive mechanism (Conlon and Raff
2003). In this model, the rate of cell growth is independent of cell
size, and the linear increase in cell size is counteracted by exponential
decrease of size caused by division. Other experiments, however, in-
dicate that large cells grow faster, suggesting that cell size must be
controlled actively (Dolznig et al. 2004; Tzur et al. 2009; Park et al.
2010). Furthermore, recent research shows a close link between cell
size, cell growth, and the cell cycle in mammalian cells (Son et al.
2012), indicating that a cell-size control mechanism is indeed present.
The mechanism by which such an active cell size control mechanism
would operate is completely unknown. We believe our data have now
uncovered at least part of this checkpoint.

We used Drosophila Schneider cell line 2 [S2; (Schneider 1972)] in
our analysis because Drosophila is the simplest widely used model
organism whose cell-cycle regulation is similar to that of vertebrates.
Also, its genome is relatively small and lacks much of the redundancy
observed in higher organisms. Although the cell-cycle regulation dur-
ing early embryogenesis differs significantly between Drosophila and
mammals, regulation of cell growth and the cell cycle of somatic cells
is very similar [reviewed in (Koepp et al. 1999; Kastan and Bartek
2004; Murray 2004)]. The availability of genome-wide expression arrays
together with the very high efficiency of RNA interference (RNAi)
makes Drosophila a good model to map transcriptional regulatory
interactions during the cell cycle.

We previously identified ~80% of the genes required for normal
cell-cycle progression in Drosophila (Bjorklund et al. 2006). In this
work, we map the transcriptional targets of the genes whose loss in-
duced the strongest effects by using RNAi followed by whole-genome
expression profiling. By treating the resulting expression profiles as
phenotypes (see Holstege et al. 1998; Hughes et al. 2000), we were able
to identify genes that act upstream of or at the level of the direct
transcriptional regulators, and genes that are coregulated across RNAi
treatments. Our results reveal several regulatory circuits, including
a feedback circuit that includes Myc/Max, the ribosome, and the
proteasome. Furthermore, we find that the cell-division process and
the cyclic transcriptional program, controlled by the cyclin-dependent
kinases and by E2f and Myb, respectively, can be disconnected from
each other by treatments that positively affect Cdk1 (cdc2) activity. All
such treatments resulted in decrease in cell size, whereas negatively
affecting Cdk1 activity by knocking down its phosphatase Cdc25
(string) has the opposite effect. We also find that cellular levels of
unphosphorylated Cdk1 increase exponentially in relation to cell size,
suggesting a role for this mechanism in the regulation of cell size.

MATERIALS AND METHODS

Cell culture, double-stranded RNA (dsRNA) generation,
and transfection
Drosophila S2 cells (Schneider 1972) were cultured at controlled tem-
perature (+23.5�; Binder KB cooling incubator) in Invitrogen SFM

medium supplemented with 10% fetal bovine serum, 10% IMS
(insect medium supplement; Sigma-Aldrich), 2 mM glutamine,
and antibiotics.

The templates for the dsRNAs were generated by polymerase chain
reaction (PCR) from either specific Drosophila gene collection clones,
or from full-length, sequence-verified cDNA templates derived from
SD Schneider cell cDNA library (Berkeley Drosophila Genome Pro-
ject) that were cloned into pMAGIC1 [(Li and Elledge 2005) see
Supporting Information, Table S10 for primer sequences). Standard
oligos containing the 59 T7 RNA polymerase recognition sequence
were designed for these vectors and used with the Megascript kit
(Ambion) according to manufacturer’s instructions to generate the
dsRNAs used for the transfections.

For transfections in 6-well plates, 106 S2 cells were seeded per well
in 2 mL of medium. The following day, cells were transfected with
dsRNAs using Effectene (QIAGEN) according to the manufacturer’s
instructions, except that per well, 1.1 mg of dsRNA, 8.8 mL of en-
hancer, and 5 mL of Effectene in EC buffer (125 mL of final volume)
was used. Experiments were performed in quadruplicate (four biolog-
ical replicates) for genes that are expected to have direct impact on
transcription (the transcription factors), and in singlicate for genes
whose effect on transcription is expected to be indirect via the TFs.
To counter the batch effect, each set of transfections also contained
four control transfections with dsRNA targeting the green fluorescent
protein (GFP) gene. Human U2OS osteosarcoma cells were cultured
in GlutaMax media (Gibco) supplemented with 10% fetal bovine
serum and antibiotics.

RNA-sequencing (RNA-seq)
RNA-seq libraries were prepared as previously described (Kivioja et al.
2011) with the following changes: 1.8 mg of each RNA sample was
used for cDNA synthesis with a modified template switch oligo (59-
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-(5 base barcode)-
rGrGrG-39; Eurofins MWG Operon) and libraries were amplified
using Advantage 2 PCR system (Clonetech) with 16 cycles of a
two-step program. Sequences were obtained with Illumina GA IIx
and HiSeq sequencers and mapped to transcripts as described in
Kivioja et al. (Kivioja et al. 2011). Samples containing more than
one million reads were used in the clustering analyses. The original
data are submitted to ArrayExpress and will be made available
(E-MTAB-1364).

Flow cytometry and RNA extraction
After transfection, the S2 cells were cultured for 4 d and subsequently
collected by agitation and centrifugation. The culture media was
removed, and the cells resuspended in 1 mL of ice-cold phosphate-
buffered saline (PBS). A 25-mL sample was then taken and fixed
overnight with 70% ethanol at 220�. The remainder of the cell sus-
pension was centrifuged again, the PBS removed, and the cell pellet
stored at 280� until RNA extraction was performed. After overnight
fixation, the ethanol of the 25-mL aliquot was replaced with PBS con-
taining 30 mg/mL propidium iodide (Molecular Probes P1304MP)
and 30 mg/mL RNAse A (Sigma R5125). The cells were stained for
30 min at +37�, after which flow cytometry analysis was performed
using a FACSArray flow cytometer (Beckton Dickinson). Flow cytom-
etry graphs were then analyzed using FACSDiva software (Beckton
Dickinson, FACSArray). RNA extraction was performed with
QIAGEN RNeasy kits according to manufacturer’s instructions
and included the optional DNase treatment.

For flow cytometric analysis of total Cdk1 and Y15-phospho-Cdk1
in U2OS cells, a mouse2rabbit and rabbit2mouse antibody pairs
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were used in such a way that fluorescence channels and secondary
antibodies were reversed between the experiments to rule out artifac-
tual signals. Cells were fixed with cold 70% ethanol and left at 220�
overnight. The cells were then washed with 1% bovine serum albumin
(BSA) in PBS and blocked in 1% BSA in PBS for 30 min. Cells were
incubated with the phospho-specific Cdk1 antibody (CellSignaling
#9111 rabbit polyclonal Ab and ECM Biosciences CM2311 mouse
monoclonal in Exp#1 and Exp#2, respectively) overnight, washed three
times, and then incubated with the total Cdk1 antibody (CellSignaling
#9116 mouse monoclonal and Santa Cruz Biotechnology sc-53 rab-
bit polyclonal antibody for Exp#1 and Exp#2, respectively) for 2 hr.
After washing three times, the cells were incubated with secondary
antibodies (antirabbit Alexa647 and anti-mouse Alexa488, Invitro-
gen) for 1 hr, washed three times, and stained for DNA content
using 405cellcycle (Invitrogen) and RNaseA for 30 min. Experiment
in Drosophila S2 cells was performed similarly, but only using the
antibodies of Exp#2 (CellSignaling #9116 antibody used in Exp#1
does not recognize Drosophila Cdk1). Flow cytometry was per-
formed using MACSQuant Analyzer (Miltenyi Biotec, U2OS cells)
and FACSAria (Beckton Dickinson, S2 cells), and data analyzed
using Bioconductor package flowCore. To assess the amount of
unphosphorylated Cdk1 in cells in the G2 phase, G2 cells were gated
using DNA content (blue channel), after which normalized Cdk1-P
signal (red or green channel in Exp#1 or Exp#2, respectively) of was
subtracted from normalized Cdk1 signal (green or red channel in
Exp#1 or Exp#2, respectively) for each cell separately. U2OS and S2
cells in G2 phase were binned to 12 and 8 bins based on cell size
(FSC-A), respectively, and the average and standard error calculated.
P values for the bins were determined using Kolmogorov-Smirnov
test against a center bin (7 and 4 for U2OS and S2, respectively).

Microarray data analysis
RNA samples were obtained in several batches; all samples in a given
batch were hybridized on Affymetrix Drosophila Genome 2.0 arrays at
the same time using standard Affymetrix one cycle labeling and hy-
bridization protocol. The raw CEL data were first reannotated accord-
ing to custom CDF 12.1.0 (ENSG) described in Dai et al. [(Dai et al.
2005) http://brainarray.mbni.med.umich.edu/Brainarray/Database/
CustomCDF/CDF_download.asp], and the expression values of the
data corrected for background noise using RMA (Robust Multiple-
array Average) normalization (Irizarry et al. 2003) using the Biocon-
ductor R package. Differential expression from each experiment in
each batch was assessed using a Bayesian linear model [R, LIMMA
package, version 3.2.2 (Smyth 2004)]. For clustering analysis, the
background corrected expression data were subjected to quantile nor-
malization. Then, the average expression values of each experiment
were subtracted from the average GFP values of their corresponding
control experiments to obtain a log-fold difference value. Using
LIMMA, we generated a shortlist consisting of 2792 significant genes
in at least five experiments (absolute log fold change . 0.5, adjusted
P value , 0.01). The dendrograms shown in Figure 2 and Figure S1
were generated using COSA distance clustering (Version 2, scaling
factor l = 0.6; http://www-stat.stanford.edu/~jhf/COSA.html). Other
packages used in the analyses were GOstats (v 1.7.4) and Drosophila2.
db for GO overrepresentation analyses, and proxy (0.4-5) for Euclid-
ean and Manhattan distance measurements. Correlation between
gene expression and cell-cycle phenotypes was analyzed from log-
transformed data using Spearman correlation. Because G1 decrease
is commonly associated with abnormal cell-cycle phenotypes (death
or polyploidy), the correlation coefficient was calculated from the
samples in which G1 was increased. Significance was assessed by

permutating the cell cycle phenotypes by batch, thus establishing
a P-value cutoff that is expected to result in less than one correlated
gene being identified by random for each phenotype. Scripts are
available upon request. The original data and annotations were sub-
mitted to ArrayExpress in MIAME compliant form and are available
(E-MTAB-453).

Analysis of target gene overlap
and network representations
For the percentage of overlap calculations in Figure S3B, experiments
were selected with 50 or more significantly regulated genes (absolute
log fold change . 0.3 at adjusted P value , 0.01; Benjamini and
Hochberg). The significantly regulated gene lists of each of these
experiments were then matched to the lists of all other experiments
in this analysis and the percentage of overlap calculated in both direc-
tions. These percentages were then hierarchically clustered based on
cosine angle distance metric. In the analysis of target gene overlap in
Figure S4 and Figure S5A, we used an approach that is similar to that
described in Goh et al. 2007, except that in our analysis the edges can
be either positive (same effect on same genes) or negative (opposite
effect on same genes), and their weight is not based directly on num-
ber of common target genes but on the overlap above that expected by
random. To summarize in brief, for each experiment the significantly
regulated genes were listed (over 0.3 absolute log fold regulated at
P , 0.01) and then those genes were selected that were regulated in
at least five experiments. Each experiment was paired to all other
experiments, and the overlap expected by random was then compared
with the observed overlap in both opposite and the same direction.
The direction displaying larger overlap was taken, and the obtained
overlap value normalized between 0 (less than or equal to random
overlap) and 1 (complete overlap; scripts available on request).

The networks were constructed using in-house Perl scripts. Nodes
with fewer than five adjacent edges were excluded from the networks
(Figure 3, Figure 4, and Figure S6) except for the target overlap
network (Figure S5A) from which only nodes without any adjacent
edges where excluded. Networks were uploaded into Cytoscape net-
work visualization software (Shannon et al. 2003) in xgmml format.
Network layouts were generated using yFiles organic algorithm, which
is one variant of the force-directed layout paradigm intended to show
the clustered structure of the graph.

Chromatin immunoprecipitation-sequencing (ChIP-seq)
ChIP-seq was performed essentially as described in (Tuupanen et al.
2009) with the following modifications.

ChIP for Myc and Max: S2 cells were formaldehyde crosslinked,
sonicated, and immunoprecipitated with the following set of anti-
bodies (Santa Cruz Biotechnology, Inc.): Myc: dN-20 and d1-717,
sc-15832 and sc-28207. Max: d1-160, sc-28209. IgG controls sc-2027
and sc-2028.

ChIP for E2f and Myb: S2 cells were transiently transfected with
plasmids (backbone pRmHa-1) containing metallothionein promoter
driven Cterminally His-streptavidin binding peptide-3xV5 tagged
Drosophila open reading frames. Expression of the genes was induced
24 hr after transfection by 0.5 mM CuSO4, and the incubation con-
tinued for 48 hr until formaldehyde crosslinking was done. Immuno-
precipitations were made with 7.5 mg of monoclonal anti-V5 antibody
(46-1157; Invitrogen) or IgG control antibody (sc-2025; Santa Cruz
Biotechnology, Inc.).
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Library preparations were done by repairing the immunoprecipi-
tated DNA using Klenow and T4 DNA polymerase and T4 poly-
nucleotide kinase (MBI Fermentas, Vilnius, Latvia), and ligating the
Illumina sequencing adapters according to manufacturer’s instruc-
tions. Subsequently, PCR-amplified fragments of approximately
1802350 bp were sequenced using Illumina Genome Analyzer.
Complexity of the sequencing libraries was estimated, fragments
mapped to the genome, and peaks called as described in Wei et al.
(2008). Genes that contained a significant (P , 0.01) peak within 2
kb of their transcription start sites were then identified and used in
the validation of the microarray data.

Gain of function fluorescence-activated cell
sorting (FACS)
For the gene overexpression analysis 0.25 · 106 S2 cells were seeded
into 24-well format ~16 hr before transfection. Cells were then trans-
fected with 1.5 mg of plasmid DNA (gene open reading frame fused
with C terminal AGT-2xproteinG tag under the control of opIE2
promoter) together with 5 mL of Fugene HD. After 72 hr, the cells
were washed once with [1% BSA in Tris-buffered saline (TBS)] and
fixed for 48 hr with ice-cold 70% ethanol. Fixed cells were washed
three times (1% BSA in TBS) followed by overnight incubation with
Alexa Fluor 488goat anti-mouse IgG (Invitrogen). Next day cells were
washed four times (1% BSA in TBS) and incubated overnight with
Draq5 DNA-dye (Cell Signaling Technology). Flow cytometry analysis
was performed using a FACSArray flow cytometer (Beckton Dickinson).
Flow cytometry graphs were then analyzed using FACSDiva soft-
ware (Beckton Dickinson, FACSArray). The separation between pos-
itive and negative cells was adjusted with nonexpressing ORFs.

RESULTS

Identification of target genes using RNAi followed
by expression profiling
Despite the central importance of cell growth and division in de-
velopmental biology and cancer, the transcriptional networks that
control these processes have not been mapped in a genome-wide scale.
To gain systematic understanding of the transcriptional control of cell
growth and cell cycle, we determined the effect on expression of all
genes in cultured Drosophila S2 cells after individual loss of 23 tran-
scription factors and 84 other genes with strong cell cycle or cell size
phenotypes [(Bjorklund et al. 2006) see Table S1]. For each knock-
down, double-stranded RNA-transfected cells of the same cultures
were analyzed in parallel for DNA content and cell size using flow
cytometry (FACS), and for steady-state mRNA levels using Affymetrix
Drosophila genome 2.0 arrays (Figure 1A). We also analyzed the
mRNA expression levels of these knockdowns using RNA seq to serve
as internal controls of the Affymetrix results (Figure S1, Table S2).

In a large majority of the experiments (89%), the targeted gene was
among the top 1% of down-regulated genes (Figure 1B, Figure S2,
Table S3). In addition, targeting genes with similar biological func-
tions (e.g., proteasome components), or targeting the same gene with
multiple nonoverlapping dsRNA constructs resulted in similar expres-
sion profiles (Figure 2). Our results also were consistent with earlier
data in the limited number of cases in which published array results
using the same platform were available [see Materials and Methods
and Table S4 (Reddy et al. 2010)].

Clustering analysis of the samples
We next used the generated compendium of expression profiles to
identify which of the knocked down genes act in pathways of the

direct transcriptional regulators. This approach is similar to delin-
eating signaling pathways using classical forward genetics, except that
here the perturbations are known, the quantitative expression profile
replaces the morphological phenotype, and formal computational
methods replace the visual inspection (Holstege et al. 1998; Hughes
et al. 2000). Potential pathways were then identified as groups of genes
whose loss resulted in a similar or inverse expression profiles.

The similarity of expression profiles was assessed using hi-
erarchical clustering (Hughes et al. 2000; Sherlock 2000) based on
similarity scores determined by the COSA algorithm [v2; (Friedman
and Meulman 2004)]. Clustering analysis of the expression profiles
yielded very similar patterns for both the array hybridization and the
RNA seq, indicating that the analysis was robust to the method used
to generate the expression profiles (Figure 2, Figure S1). Further-
more, the experiments in the expression profiling clusters also often
showed similar cell cycle FACS profiles, confirming that the expres-
sion dataset is relevant to the regulation of the cell cycle (Figure 2,
bottom). Targeting genes that participate in similar cellular pro-
cesses such as Myc and Max (Gallant et al. 1996) yielded expression
profiles that clustered together (Figure 2). Other easily identified
clusters in Figure 2 are genes of the Proteasome (Pros35, pros45,
Prosalpha7, Prosbeta2, Prosbeta4, Pros26.4, and Rpt4), the dREAM
complex (Myb, mip120, and mip130), and translation initiation fac-
tors (eIF-4a, eIF3-S10, and eIF3-S4). Interestingly, the translation
cluster also contained the gene Tango7, which has previously been
linked to a very large number of RNAi phenotypes (Boutros et al.
2004; Friedman and Meulman 2004; Bard et al. 2006; Bjorklund
et al. 2006; Beller et al. 2008; Guo et al. 2008; Chew et al. 2009;
Doumanis et al. 2009). Here we also found a potential role for the
COP9 signalosome in regulation of the Cdk/E2f pathway in S2 cells
as the expression profiles of Cdk1, Cdk2, CyclinA, and E2f clustered
together with those of components of the COP9 signalosome (Csn1b,
Csn4, and Csn7).

Analysis of target gene overlap
Hierarchical clustering imposes a tree-like structure on the data,
even if the underlying structure is better represented by a network.
It thus commonly fails to identify similarity between a treatment
that affects a number of target genes, and other treatments that
affect mutually exclusive subsets of this same set of genes. Such
cases can be biologically relevant and to identify these, we used
several methods to determine the overlap of the significantly
regulated target genes between all samples (Figure S3B, Figure S4,
Figure S5A). For clarity, we refer to all genes regulated in response
to loss of a gene as targets of that gene, irrespective of whether the
effect is direct or indirect.

For each pair of expression analyses, we calculated the excess gene
overlap over that expected by random (see Materials and Methods for
details). We then used a deterministic force-directed layout algorithm
(y-files organic) to generate a network representation of the matrix,
where nodes—representing RNAi treatments—repel each other un-
less they are connected by an edge representing overlap in their target
gene sets.

Using this approach, we classified several interactions of samples
that displayed partial overlap with two or more other samples that did
not necessarily have common target genes. For example, Mip130
targets overlapped with those of Myb and E2f2, whereas Myb and
E2f2 targets did not overlap with each other (Figure S3B, Figure S4,
Figure S5A; File S2). This finding suggests that Drosophila Mip130
participates in two separate complexes, one containing E2f2 and the
other Myb. The presence of Mip130 in distinct E2f2 and Myb
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Figure 1 Targeting cell cycle regulators by RNAi. (A) Schematic representation of the experimental setup. (B) Effect of RNAi-mediated
knockdown (RNAi experiments; columns) of 107 cell-cycle regulatory genes on the expression of the same set of genes (rows). The three genes
not present on the array are indicated by gray bars. Samples and genes were ordered on the basis of similarity of the effect of the RNAi treatment
on the expression of the target genes shown (hierarchical clustering, Euclidian distance metric). Inset indicates the color scale (log2 fold change of
gene expression compared with GFP RNAi control, green represents decrease and red increase). Note that the vast majority of the RNAi
treatments strongly decrease expression of the intended target gene (Self, arrow), and replicate samples targeting different regions of the same
genes (Myb, Trx, constructs F1, F2, and F3) cluster together and have similar effects on gene expression. Note also that RNAi-induced decrease in
expression of all analyzed components of the proteasome result in increase in expression of all the other proteasome components (red box with
green diagonal line, gene names on pink background). For some genes human ortholog names are used, see Table S11 for details.

Volume 3 January 2013 | Transcriptional Networks Controlling the Cell Cycle | 79

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.004283/-/DC1/TableS11.xlsx


Figure 2 Two-dimensional clustering of the expression profiling data. Samples and target genes were clustered using the COSA algorithm (l = 0.6,
average linkage) based on expression of genes that were significantly regulated in five or more samples. Sample subclusters that contain multiple
members of the same protein complex or signaling pathway are named according to the known function of the genes (top), and indicated by color.
Heatmap below the dendrogram indicates the number of significant genes (top row; 0 genes, bright green; more than 1500 genes, red; see also Table
S2), the batch in which the sample was processed (second row), and the cell-cycle phenotypes (bottom rows of heatmap). Note that samples with similar
cell-cycle phenotypes cluster together even when the clustering is based solely on gene expression, and that sample batch does not strongly influence
clustering of samples in which moderate to high number of genes are regulated. The gene clustering analysis revealed multiple sets of genes that
clustered together based on the similarity of their expression across the samples. Fourteen such clusters (indicated by numbers on the left) were selected
for further analysis. Red lines in left and right sidebars indicate GO terms and cell cycle or cell size regulators (Bjorklund et al. 2006), respectively. Gene
clusters enriched in the GO terms mitosis, DNA replication, ribosome biogenesis, and the protein degradation are indicated by a gray background.
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containing complexes is consistent with what has been observed
in human cells (Pilkinton et al. 2007) but contrary to previous
reports that claimed that Myb-MuvB/dREAM in Drosophila con-
tains both E2f2 and Myb (Korenjak et al. 2004; Lewis et al. 2004;
Lipsick 2004). Further analysis at the protein level by tandem-affinity
purification followed by mass spectrometry supports our expres-
sion data on the separation of the E2f2 and Myb complexes in
Drosophila (Turunen et al., in preparation 2012). The overlap anal-
ysis (Figure S3B, Table S5) also indicated that there is cell-cycle
regulation control at the lipid level. Two proteins linked to mem-
brane trafficking and synthesis, coatomer I (alphaCop) and Dro-
sophila stearoyl-CoA 9-desaturase (Desat1), regulate the cell cycle
via the transcription factor Sterol regulatory element binding pro-
tein [SREBP/HLH106 (Bjorklund et al. 2006)].

In addition, the overlap analysis allows the identification of in-
teractions between samples that affect a relatively small number of
target genes and which thus get “buried” in the hierarchical clustering
analysis. For example, we found that knockdown of Lolal and the
C2H2 Zinc finger protein Ken resulted in overlapping expression
profiles (Figure S3B, Figure S4, Figure S5A). This finding is supported
by data from the high-throughput yeast two-hybrid screen of Giot
et al. (2003). We were also able to validate this interaction by using
tandem-affinity purification followed by mass spectrometry and yeast
two-hybrid analysis (Figure S5B and not shown).

Analysis of the target genes
To further assess the relevance of this dataset to the cell cycle, we
combined all target gene data into a network (Figure S6, File S2),
which revealed that the target gene sets of the RNAi treatments were
highly interconnected. More than 4.9 · 105 instances of a shared gene
target were observed between RNAi treatments, compared with 8.0 ·
104 expected by random. Furthermore, many target gene sets were
enriched in genes belonging to the same gene ontology (GO) catego-
ries; the GO terms “chromosome segregation,” “mitotic cell cycle,”
“cell cycle,” and “chromosome organization” were among the ten
most commonly overrepresented, with at least one of these terms
being found overrepresented (P , 0.001) in 17 of the 107 target gene
sets (Table S6).

For 20 of the dsRNAs knockdowns, the target gene sets were
significantly enriched with genes whose loss affects the cell cycle as
identified by Bjorklund et al. 2006 (P , 0.01, hypergeometric test;
Table S6). On the array, 541 genes of these genes were represented
and 392 of them were significantly regulated in at least one sample
(P , 0.001). The major transcription factor controlling the cell cycle,
E2f, and the most important Cdk, Cdk1 (Santamaria et al. 2007;
Coudreuse and Nurse 2011), were located at the center of the network
describing regulation of identified cell cycle genes by the RNAi treat-
ments (Figure S6). Taken together, these data show that an unbiased
RNAi screen of the whole genome, followed by whole-genome tran-
scriptional analysis of genes identified in the screen allows discovery of
central aspects of the cell cycle regulatory network.

Clustering of target genes based on coexpression
across RNAi treatments
Of special interest within the compendium of expression profiles
are genes that are coregulated across all or a subset of the RNAi
treatments. Analysis of such genes should be particularly powerful in
identifying genes that control cyclical processes. For example, RNAi
treatments causing cell-cycle arrest at either G1 or G2 would be
expected to result in loss of expression of genes involved in S-phase of

the cell cycle (e.g., DNA replication). Two-dimensional clustering
using the COSA method resulted in identification of 14 clear clusters
of genes that were coexpressed across RNAi treatments (Figure 2,
boxes). To see whether these clusters contained biologically relevant
data concerning the cell cycle, we analyzed the associated GO terms of
the gene sets contained in the identified clusters and checked whether
any of them were significantly overrepresented. This revealed that
clusters 4, 5, 6, and 13 were highly enriched in genes linked to mitosis
(M; P, 3.8 · 10230), DNA replication (S; P, 2.1 · 10249), ribosome
biogenesis (P , 2.3 · 10225), and protein degradation (P , 7.6 ·
10225), respectively (Figure 2, clusters in gray background; Table S7).
Thus, knockdown of genes that affect the cell cycle followed by clus-
tering of genes based on coexpression very effectively classified genes
according to biological subprocesses that are central to regulation of
the cell cycle.

To further analyze these results and identify the main regulators of
these gene sets, we generated network representations of the target-
gene relationships within gene clusters 4, 5, 6, and 13, and laid them
out using the deterministic force-directed layout algorithm described
previously. This unsupervised analysis identified the genes E2f, Dp,
and Rb as key regulators of DNA replication (Figure 3, bottom;
File S4). For the mitosis cluster, the genes coding for the central
transcription factors are SREBP, E2f, Myb, and cropped (crp; Figure
3, top; File S3). This cluster consists almost exclusively of genes im-
portant for mitosis and/or cytokinesis. The ribosome biogenesis clus-
ter in turn is heavily enriched in genes that are strongly up-regulated
by loss of translation initiation factors (Figure 4, top; File S5). This
feedback response appears to be mediated by the Myc/Max transcrip-
tion factor because Myc expression is strongly induced by loss of the
translation initiation factors (Table S2), and the same set of target
genes is down-regulated by loss of expression of either Myc or Max
(Figure 4, top). A subset of the genes in the ribosome biogenesis
cluster were also down-regulated by loss of the proteasome (purple),
indicating that there is feedback between Myc/Max, the ribosome, and
the proteasome (Figure 4, inset). Interestingly, the target genes in the
protein degradation cluster were also down-regulated by loss of the
translation initiation factors and strongly up-regulated by loss of
the proteasome (Figure 4, bottom; File S6). Taken together, the ex-
pression data from clusters shown in Figure 4 indicates that a complex
homeostatic circuit exists to balance cellular protein synthetic and
catabolic capacity (Figure 4, inset).

Validation of target genes using ChIP-seq
To examine the identified target gene relationships and establish
which interactions were direct or indirect, we performed ChIP-seq
experiments for the transcription factors E2f, Dp, Myb, Myc, and
Max that, according to the expression data, targeted many of the
genes in DNA replication, mitosis and ribosome biogenesis clusters,
respectively.

Genes showing a significant peak within 2 kb of their transcrip-
tion start sites were classified as likely to be direct targets of the
respective transcription factors (ChIP-seq targets, see Materials and
Methods for details). In the DNA-replication cluster, the majority of
the genes were E2f ChIP-seq targets (peak enrichment P , 2.7 ·
10233, hypergeometric test). In the mitosis cluster, both ChIP-seq
targets of Myb and E2f were overrepresented (1.1 · 10212 and 6.0 ·
1026, respectively). The ribosome biogenesis cluster, in turn, showed
strong enrichment in Myc and Max ChIP-seq targets (P , 5.7 ·
10270). Thus, in each case, we were able to validate the major tran-
scription factor regulating the clusters using an independent method
(Figures 3 and 4).
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Figure 3 Subnetworks regulating mitosis (top) and DNA replication (bottom). Nodes are connected by an edge if an RNAi-treated gene (circle)
results in regulation of a target gene (box). Thickness of the edge represents the magnitude of the effect, and its color indicates up-regulation
(red) or down-regulation (blue) of a target gene after RNAi. Size of the circles indicates the number of target genes regulated. Nodes are colored
according to GO annotations indicated in the inset (see Table S12 for details). Only target genes that show similar gene expression across the
samples (clusters from Figure 2) are included in the subnetworks. Target genes from ChIP-seq experiments are also indicated. Key: E2f (red
typeface), Myb (bold italic). Note that Myb, SREBP, E2f, and Crp transcription factors, (thick borders) are located at the center of the subnetwork of
the mitosis cluster.

82 | M. Bonke et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.112.004283/-/DC1/TableS12.xlsx


Figure 4 Subnetworks regulating ribosome biogenesis (top) and protein degradation (bottom). Nodes are connected by an edge if an RNAi-treated
gene (circle) results in regulation of a target gene (box). Thickness of the edge represents the magnitude of the effect, and its color indicates up-
regulation (red) or down-regulation (blue) of a target gene after RNAi. Size of the circles indicates the number of target genes regulated. Nodes are
colored according to GO annotations indicated in the inset (see Table S9 for details). Only target genes that show similar gene expression across the
samples (clusters from Figure 2) are included in the subnetworks. Also, knockdown of the proteasome subunits results in strong up-regulation of
a large number of proteasome components (red) and loss of translation initiation factors results in downregulation of a subset of proteasome subunits
(yellow, bottom-left). Target genes from ChIP-seq experiments are also indicated. Key: Myc and Max (bold). Note that Drosophila Myc/Max and
translational regulators localize to the center of network in the top panel and target the same genes involved in ribosomal biogenesis, but with
opposite effects. Inset shows the feedback between ribosome and Myc/Max, and the homeostatic feedback between ribosome and proteasome.
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Correlation between expression profiling
and cell-cycle phenotypes
The main benefit of this dataset is that it directly links expression profiles
to specific cell-cycle phenotypes. Therefore, we looked for correlation
between gene expression and cell-cycle FACS phenotype. First, we
identified individual genes whose expression correlated with the cell
cycle phenotypes across all the RNAi treatments. This analysis revealed

that although the expression of some genes does correlate with
phenotype, the correlation was relatively weak (Figure 5A, Table S8).
For the identified genes with the greatest correlation coefficients with G1
phenotype, we did not find enriched associated GO categories (see
Materials and Methods for details). Genes whose expression correlated
with G2 were weakly enriched for GO annotations involved in spindle
assembly. Strongest enrichment of GO categories was observed for genes

Figure 5 Correlation between
gene expression and G1 con-
tent. (A) Density plot of correla-
tion coefficients between gene
expressions and G1 content
(black line) shows that expres-
sion of a subset genes correlate
with G1 phenotype better than
expected by random. Colored
lines represent randomized data,
permutated globally (red) or
according to treatment batch
(blue). Note that maximum cor-
relation is relatively weak (less
than 0.6 in either direction). (B)
G1 phenotype strength plotted
as a function of total effect
(Manhattan distance) of the same
RNAi treatment on gene ex-
pression (effect of GFP dsRNA
normalized to 0). Although there
is overall correlation between
G1 and gene expression, sev-
eral genes have much stronger
effect on either G1 (red type-
face) or gene expression (blue
typeface). (C) Flow cytometric
phenotypes of the four experi-
ments showing a strong G1
phenotype with little effect on
gene expression.
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whose expression correlated with cell size at G1; these were enriched in
cell cycle regulators, and RNA polymerase II complex components and
adaptor proteins [Table S9; see also (Bjorklund et al. 2006)].

Next, to have a more global view of the correlation between gene
expression and the cell cycle, we plotted for each RNAi treatment the
change in G1 phenotype—which displays the largest shifts—as a func-
tion of the total magnitude of change in expression level of all genes
that were used in the clustering analysis. This analysis revealed that
there was a general correlation between the cell cycle and gene ex-
pression phenotypes (r = 0.51; Figure 5B). However, some RNAi
treatments stood out clearly and resulted in very strong G1 increase
FACS phenotypes while having a very limited effect on gene expres-
sion (Figure 5, B and C), effectively uncoupling transcription from
cell-cycle progression. Knockdown of expression of these genes—
Myt1, MAPk-Ak2, licorne/MEK3, and Pangolin—significantly affected
only 1, 2, 6, and 64 genes, respectively, and none of these target genes
was shared between all of them (Figure S7A). Interestingly, we found
that all of these genes directly or indirectly regulate mitosis via mod-
ulation of Cdk1 activity. The kinase Myt1 negatively regulates Cdk1
by phosphorylation at threonine 14 and tyrosine 15 (Edgar and
O’Farrell et al. 1989, 1990; Mueller et al. 1995; Jin et al. 2008), and
the genes licorne/MEK3 and MAPk-Ak2 belong to the p38b mitogen-
activated protein kinase pathway that has been reported to negatively
control the phosphatase string/Cdc25, which dephosphorylates these
Cdk1 residues (Manke et al. 2005). Our results also show that the Wnt
pathway regulated transcription factor Pangolin (pan; Table S2)
strongly represses CDC25/string in S2 cells—string is the third-highest
up-regulated gene in response to loss of pan. Conversely, knockdown

of string expression through RNAi results in larger cells that arrest in
G2 and show DNA re-replication (data not shown), a phenotype that
closely resembles that of Cdk1 RNAi2treated cells. Indeed, transcrip-
tional analysis of cells treated with String dsRNA revealed that more
than 64% of the significantly affected genes are also significantly af-
fected in Cdk1 knockdown experiments.

A potential role for the uncoupling of transcription and cell cycle
progression would be in controlling cell size because both large and
small cells need similar amounts of DNA-replication proteins and
nucleotides for cell division. This hypothesis predicts that (1) increased
Cdk1 activity would be associated with decreased cell size; (2) down-
regulation of the genes that showed strong G1 increase phenotype and
weak effect on gene expression would result in decreased cell size; and
(3) Cdk1 phosphorylation would be a function of cell size.

In metazoans, Cdk1 activity is primarily controlled by three
mechanisms, mRNA expression, binding of B-type cyclins, and in-
hibitory phosphorylation (Lee et al. 1988; Lehner and O’Farrell 1990).
We first analyzed correlation of Cdk1 and CyclinB mRNA expression
with cell size in G1. The Cdk1 and CyclinB genes were among those
that showed the strongest negative correlation with G1 cell size
(Figure 6, B and C), indicating that increased Cdk1 and CyclinB
mRNA levels are associated with decreased cell size (P , 3.3 ·
1026 and 2.0 · 1025, respectively). The effect of Cdk1 expression
levels on cell size was causative and not merely correlative, as in-
dicated by the fact that targeting of Cdk1 by RNAi also resulted in
increased G2 cell size (Figure 6D; string and Cdk1 knockdown
arrests cells strongly in G2, and almost no cells remain in G1).
Furthermore, analysis of the G1 and G2 cell-size phenotypes

Figure 6 Cdk1 activity is asso-
ciated with cell size. (A) All
genes that increase G1 and
have little effect on gene ex-
pression are regulating the Cdk1
pathway. Blue indicates regula-
tion at the expression level, black
at the protein level. (B and C)
Correlation between cell size
and expression of Cdk1 and
its activator cyclinB. Samples
where G1 size was increased
or decreased are in black or
red, respectively. As G1 de-
crease was commonly associ-
ated with abnormal cell cycle
phenotypes (death or poly-
ploidy), the correlation coeffi-
cient was calculated from the
G1 increased samples using a
linear model. (D) Cell size is af-
fected by RNAi of cell-cycle
regulators. Percent increase/de-
crease of the cell size in G1
(blue) and G2, (red) is plotted
for cells treated with the indi-
cated RNAi constructs compared
to the GFP control experiments.
Error bars indicate the margin
of error at 95% confidence.
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revealed that all treatments affecting G1 content without effect on
gene expression also decreased average cell size (Figure 6D).

Finally, we tested whether Cdk1 phosphorylation is a function of
cell size. For this, we analyzed cell size together with levels of both
total Cdk1 and phosphorylated Cdk1 in the same cells by using flow
cytometry. To eliminate artifacts, such experiments are best per-
formed by using two different pairs of antibodies because this controls
for antibody cross-reactivity and also allows switching of the fluo-
rescence channels. We were unable to find two sets of antibodies
binding to phosphorylated and unphosphorylated Drosophila Cdk1;
therefore, we also performed these experiments in the commonly used
cell-cycle model, human U2OS cells. We found that consistently with
the hypothesis, the amount of unphosphorylated Cdk1 increases as
a function of cell size in the G2 phase of the cell cycle in both human
and Drosophila (Figure 7A, Figure S7B). The results in Drosophila S2
cells were found with the single antibody pair available (Figure S7B).
Altogether, these results confirm our hypothesis and suggest that
regulation of Cdk1 activity contributes to a mechanism that regulates
cell size in animal cells.

DISCUSSION
Our results represent the first genome-scale loss-of-function study of
a transcriptional network controlling cell division in any metazoan
organism. We show that cellular pathways can be identified by simple
clustering of the expression profiles and that a combination of these
data with cell-cycle phenotypes allows the identification of genes
specific for the regulation of different stages of the cell cycle. The
experiments were conducted in batches under similar growth con-
ditions, and each batch had its own control experiment as a reference.
The inclusion of controls into each batch allowed us to largely elim-
inate batch variation, permitting direct comparison of the expression
profiles over different sets of experiments. The entire set of data con-
sisting of more than 3.48 million individual measurements will be
made available both as primary data in ArrayExpress (accession
E-MTAB-453) and as machine readable tables and networks (File S1;
File S2; File S3; File S4; File S5; File S6; File S7), providing a rich
resource for analysis of individual interactions that regulate cell cycle
processes.

Network controlling growth and protein homeostasis
By clustering of the expression profiles, we identified several processes
that control the cell cycle, some of which have been previously
described, and some of which were unknown. Many genes that are
required for cell-cycle progression are components of three large and
ancient macromolecular machines, the ribosome, the proteasome
and the COP9 signalosome (Wei et al. 2008; Besche et al. 2009; Frank
and Gonzalez 2010). Of these, we find that the ribosome and protea-
some are regulated at the level of gene expression and form a positive
feedback loop that maintains overall protein homeostasis. That is, loss
of protein synthetic capacity results in decrease of proteasome mRNA
expression, and conversely loss of proteasome activity results in a de-
crease of mRNAs for genes involved in ribosome biogenesis. Such
process-level feedback has been described earlier in yeast (Xie and
Varshavsky 2001; Jorgensen et al. 2004), but the functions of the
transcription factors involved are not conserved in Drosophila.

Interestingly, profiles generated by RNAi targeting the eukaryotic
initiation factors (eIF-4a, eIF3-s10, CG8636/eIF3-S4) are also highly
similar to the profiles resulting from loss of either component of the
dimeric transcription factor Myc/Max. This relation is inverse, that is,
genes that are down-regulated by loss of Myc/Max are up-regulated by
loss of the eIFs and vice versa. Loss of translational regulators

increases Myc mRNA, and conversely loss of Myc or Max strongly
down-regulates genes involved in ribosome biogenesis. Validation of
this target gene set by ChIP-seq revealed that almost all of these genes
are direct targets of both Myc and Max. Combined with the results of
the proteasome subunits, this suggests that the highly specific feedback
circuit involving Myc/Max connects to the protein synthesis/degrada-
tion network. This feedback loop would maintain cellular protein
synthetic capacity, and also allows for external growth stimulatory
pathways to act through Myc to control the protein synthetic activity
of cells [see also (Grandori et al. 1996; Zaffran et al. 1998; Greasley
et al. 2000; Xie and Varshavsky 2001; Grewal et al. 2005; Lundgren
et al. 2005)]. The entire homeostatic circuit is of particular importance
due to the central role of cellular protein homeostasis (proteostasis)
in aging and disease (for review, see Balch et al. 2008; Rajalingam
and Dikic 2011). Our results highlight the specificity of the Myc/
Max2ribosome feedback circuit (Figure 4), and suggest that tumor-
igenesis due to loss of ribosomal subunits (Amsterdam et al. 2004;
Narla and Ebert 2010) may result from aberrant feedback that in-
creases Myc/Max activity. Interestingly, this system is also coupled
to the cell cycle. Loss of translational activity leads to arrest at G1,
whereas loss of the proteasome arrests cells at G2.

Specificity of RNAi screens

dsRNAs targeting one gene that has previously not been linked to
translation in Drosophila, Tango7, also resulted in expression profile
that was very similar to that induced by loss of the translational
initiation factors eIF-4a, eIF3-S10, and CG8636/eIF3-S4 (Figure 4).
The gene Tango7 has previously been identified in different Drosphila
RNAi screens as a regulator of cell viability (Boutros et al. 2004), as
a protein involved in ERK signaling (Friedman and Perrimon 2006),
Golgi function (Bard et al. 2006), apoptosis (Chew et al. 2009), lipid
storage (Beller et al. 2008; Guo et al. 2008), huntingtin protein aggre-
gation (Doumanis et al. 2009), and as a cell-cycle regulator (Bjorklund
et al. 2006). Our expression profiling analysis strongly suggests that
the primary function of the protein Tango7 is as a component of the
Drosophila eIF3/4 translation initiation complex and sequence analy-
sis shows that Tango7 is the ortholog of human eIF3m. We propose
that this gene be re-named eIF3m.

Our results indicate that in RNAi screens that analyze a particular
phenotype, genes that have a general role in cellular functions such as
Tango7 can easily be mistaken for specific regulators of the analyzed
pathways or processes. In classical genetic screens, such genes are not
identified as the specific phenotype is masked by the more general effect.
In many cases this is desirable, as the specific phenotype is often caused
by the general effect, and is therefore of little interest. We find that
a combination of an RNAi screen with the analysis of a broad cellular
phenotype such as an expression profile can be used to classify genes to
specific and broad phenotypic classes. In addition, expression profiling
allows one to control for the magnitude and specificity of the RNAi
effect, thus alleviating several major weaknesses of the RNAi technology.

Transcriptional network controlling the cell cycle

Analysis of target genes of the 23 transcription factors (based on
FlyTF.org) in our screen revealed that most of the TFs had quite
distinct transcriptional targets. Notable exceptions were the targets of
the dimeric TFs Myc/Max and E2f/Dp, which were clearly and strongly
overlapping. Loss of many TFs had a comparatively weak impact on the
cell cycle, which may reflect their peripheral role in controlling cell
division. The strongest effects were found for knockdown of the genes
coding for E2f/Dp, Myb, Myc/Max, and SREBP.
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Based on the clustering analysis, the COP9 signalosome appears to
regulate the activity of the E2f transcription factors. However, only
a subset of E2f targets were coregulated by COP9 signalosome
components, and these genes also were regulated by loss of Cyclin
A and/or Myb. Cyclin A is needed for inactivation of E2f and
completion of DNA replication and S-phase (Krek et al. 1995),

suggesting that this target gene set may be indirectly regulated by
E2f. Consistently, only weak enrichment of direct E2f targets were
seen in this set, and instead the genes were highly enriched in
direct Myb targets (P , 1.1 · 10212), and regulators of mitosis
and cytokinesis (GO P , 3.8 · 10230; Figure 3, top).

A GO overrepresentation analysis of the significant E2f regulated
genes in our data set shows that DNA replication processes are clear
E2f targets [GO P, 2.1 · 10249; see also (van den Heuvel and Dyson
2008)]. The genes involved in DNA-replication cluster together based
on their expression across all RNAi treatments (Figure 3, bottom), and
as expected, are also regulated by loss of Rb and Dp. Validation of this
target gene set using ChIP-seq against E2f and Dp indicated that
significant fraction of the target genes are indeed directly regulated
by the E2f/Dp complex (P , 2.7 · 10233).

Taken together, our results indicate that the cell cycle has two
major waves of transcription: First, the E2f/Dp-mediated regulation
of genes required for DNA replication, and then a dREAM/Myb-
mediated regulation of genes that are involved in mitosis and
cytokinesis. The transcription factor cropped also appears to act
on the latter target gene set (Figure 3, top). The two waves of tran-
scription are in turn modulated by the Myc/Max-mediated growth
response (Figure 4, top) and SREBP-mediated lipid homeostasis
pathway (Figure 3, top).

We previously identified several coatomer I (COPI) components,
a Drosophila stearoyl-CoA 9-desaturase (Desat1) and Sterol regulatory
element binding protein (SREBP/HLH106) as regulators of the cell
cycle (Bjorklund et al. 2006). In Drosophila, the SREBP activity is
inhibited by palmitate (Seegmiller et al. 2002), the substrate of Desat1
(de Renobales and Blomquist 1984). Desat1, in turn, is retained in the
ER by COPI proteins (Jackson et al. 1993; Dancourt and Barlowe
2010). Given the similarity of the expression profiles following loss
of all these genes and key mitosis regulators (e.g., PP1-87B, microtu-
bule star), we propose that these proteins are components of a pathway
that regulates mitosis. Targets of SREBP include Myb, which controls
expression of a large set of mitotic and cytokinetic regulators that
includes Cdk1, polo, fzy, pav, feo, and Klp67A.

Two cycles make two cells out of one
Perhaps the most interesting finding is that by correlating the
overall effect of different RNAi treatments on cell cycle and ex-
pression levels, we found that although transcription controls the
cell cycle, the progression of the cell cycle itself does not feed back
to control transcription. Loss of multiple genes resulted in strong
cell-cycle phenotypes without much impact on gene expression.
These included dTCF/Pangolin, MEK3/Licorne, MAPk-Ak2, and
Myt1, which are known or shown here to regulate the Myt1/
Cdc25 Axis, decreasing tyrosine phosphorylation of Cdk1 and in-
creasing its activity.

Treatments that caused decreased phosphorylation of Cdk1 re-
sulted in increased G1 and decreased G2 content, without appreciable
effect on transcription. This uncoupling of transcription from the cell
cycle distribution of cells is surprising, particularly given the extensive
literature on cell-cycle phase specific gene expression (see, for example
Jensen et al. 2006). However, the fact that cell-cycle phase correlates
with gene expression pattern does not imply that the phase itself
causes the pattern. In this work, we performed an extensive set of
perturbation experiments that clearly indicate that cell-cycle phase
and gene expression pattern can be uncoupled from each other. We
could not identify a single gene whose steady-state mRNA expression
correlates highly with presence of cells in the G1 or G2 cell-cycle
phases. We propose that this is due to the fact that transcription of

Figure 7 Regulation of cell size by Cdk1. (A) Relative amount of
unphosphorylated Cdk1 (Cdk1-Cdk1P) in human U2OS osteosarcoma
cells as a function of cell size (FSC-A). Two experiments using different
sets of antibodies are shown. Note that unphosphorylated Cdk1
rapidly increases after the G2 cells reach a certain size. This non-linear
increase is consistent with the fact that the Cdk1 inhibitory kinases
Myt1 and Wee1 are localized in membranes and nucleus, respectively,
whereas Cdk1 is soluble. Error bars indicate one standard error, and
asterisks indicate P , 0.01 (Kolmogorov-Smirnov test). (B) Model of
regulation of cell size. Different cells in a multicellular organism vary
greatly in size, but sizes within a cell type are more constant. We pro-
pose that the constant cell size is maintained by the following mech-
anism: In small cells, Myt1 and Wee1 phosphorylate Cdk1 and convert
it to Cdk1-P (green). When cells become larger, membrane bound
Myt1 and nuclear Wee1 are unable to efficiently phosphorylate
Cdk1, leading to cell size-dependent increase in Cdk1 activity (red)
and entry into mitosis. In this model, setting the target size for different
cell types requires an additional mechanism that regulates the con-
centrations of the soluble reactants (Cdk1, B-type cyclins and the
string/Cdc25 phosphatase). Regulation of mRNA expression of both
string/Cdc25 (Lehman et al. 1999; Grosshans and Wieschaus 2000)
and Cdk1 (Lee et al. 1988; Lehner and O’Farrell 1990) has been de-
scribed, and we show here that mRNA levels of Cdk1 and cyclinB
correlate with cell size (see Figure 6, B and C).
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genes is associated with transitions between cell cycle phases, not the
phases themselves.

Our results suggest that the cell cycle represents two distinct but
overlapping cycles, the transcriptional cycle that is responsible for
production of the cellular components, and a separate assembly cycle
in which the components are assembled to make two cells out of the
old and new components. The mechanism we uncovered is separate
from the one previously described in yeast, where it was shown that
genes continue to be periodically expressed in cells where Cdk1
activity is decreased by deleting S- and M-phase2specific cyclins
(Orlando et al. 2008). On the contrary, in Drosophila we found that
loss of Cdk1 activity induced by RNAi treatments results in very
strong transcriptional downregulation of mitotic genes (Figure 2;
Figure 3), whereas gain of Cdk1 activity does not affect transcription
but acts directly at protein level to effect earlier than normal entry into
mitosis.

Our evidence suggests that the identified mechanism operates in
the regulation of cell size; all RNAi treatments that increase G1 with
limited effect on gene expression directly or indirectly regulated Cdk1
activity and resulted in decreased cell size, whereas targeting Cdk1
itself increased cell size in G2 (Figure 6D). Increased Cdk1 activity
results in smaller cells, much like what has been shown previously in
yeast (Fantes and Nurse 1978; Cross 1988; Nash et al. 1988; Kellogg
2003). These results are consistent with a model (Figure 7B) where cell
size is regulated by Cdk1 activity through the two kinases that inhibit
Cdk1, the membrane bound Myt1 and the nuclear Wee1. In small
cells, membrane surface and nuclear volume to cell volume ratios are
high, resulting in high inhibitory kinase activity toward soluble Cdk1.
When the cell grows, its cytoplasm becomes larger compared with its
nucleus, and its surface to volume ratio decreases. This results in
Wee1 and Myt1 becoming increasingly less effective in phosphorylat-
ing soluble Cdk1 and the amount of active Cdk1 increases, leading to
mitotic entry. Possibly, levels of nuclear String are part of this regu-
latory system, as increased amounts of String result in smaller cells
and shorter G2, whereas RNAi knockdown of string lead to cell cycle-
and transcriptional phenotypes that are very similar to Cdk1 knock-
down. This mechanism allows for simple management of cell size in
different tissues by adjusting of the amount of cellular protein of any
of the units in this pathway.

ACKNOWLEDGMENTS
We thank Stephen Elledge for reagents, Sini Miettinen and Ritva Nurmi
for technical assistance, and Päivi Ojala and Sampsa Hautaniemi
for their critical review of the manuscript. We also thank Biome-
dicum Genomics, Precision Biomarkers Inc., and Karolinska Insti-
tutet Bioinformatics and Expression Analysis core facility for help
with massively parallel sequencing and microarray hybridizations.
This work was supported by the University of Helsinki, EU Euro-
pean Research Council Advanced Grant, the Finnish Academy
Translational Genome-Scale Biology Center of Excellence, Biocen-
trum Helsinki, the Sigrid Juselius Foundation, and Center for Bio-
sciences, Huddinge.

LITERATURE CITED
Amsterdam, A., K. C. Sadler, K. Lai, S. Farrington, R. T. Bronson et al.,

2004 Many ribosomal protein genes are cancer genes in zebrafish. PLoS
Biol. 2: E139.

Balch, W. E., R. I. Morimoto, A. Dillin, and J. W. Kelly, 2008 Adapting
proteostasis for disease intervention. Science 319: 916–919.

Bard, F., L. Casano, A. Mallabiabarrena, E. Wallace, K. Saito et al., 2006 Fun-
ctional genomics reveals genes involved in protein secretion and Golgi or-
ganization. Nature 439: 604–607.

Beller, M., C. Sztalryd, N. Southall, M. Bell, H. Jackle et al., 2008 COPI
complex is a regulator of lipid homeostasis. PLoS Biol. 6: e292.

Besche, H. C., A. Peth, and A. L. Goldberg, 2009 Getting to first base in
proteasome assembly. Cell 138: 25–28.

Bjorklund, M., M. Taipale, M. Varjosalo, J. Saharinen, J. Lahdenpera et al.,
2006 Identification of pathways regulating cell size and cell-cycle pro-
gression by RNAi. Nature 439: 1009–1013.

Boutros, M., A. A. Kiger, S. Armknecht, K. Kerr, M. Hild et al., 2004 Genome-
wide RNAi analysis of growth and viability in Drosophila cells. Science 303:
832–835.

Chew, S. K., P. Chen, N. Link, K. A. Galindo, K. Pogue et al., 2009 Genome-
wide silencing in Drosophila captures conserved apoptotic effectors.
Nature 460: 123–127.

Colanzi, A., and D. Corda, 2007 Mitosis controls the Golgi and the Golgi
controls mitosis. Curr. Opin. Cell Biol. 19: 386–393.

Conlon, I., and M. Raff, 2003 Differences in the way a mammalian cell and
yeast cells coordinate cell growth and cell-cycle progression. J. Biol. 2: 7.

Coudreuse, D., and P. Nurse, 2011 Driving the cell cycle with a minimal
CDK control network. Nature 468: 1074–1079.

Cross, F. R., 1988 DAF1, a mutant gene affecting size control, pheromone
arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol.
8: 4675–4684.

Dai, M., P. Wang, A. D. Boyd, G. Kostov, B. Athey et al., 2005 Evolving
gene/transcript definitions significantly alter the interpretation of Gene-
Chip data. Nucleic Acids Res. 33: e175.

Dancourt, J., and C. Barlowe, 2010 Protein sorting receptors in the early
secretory pathway. Annu. Rev. Biochem. 79: 777–802.

de Renobales, M., and G. J. Blomquist, 1984 Biosynthesis of medium chain
fatty acids in Drosophila melanogaster. Arch. Biochem. Biophys. 228:
407–414.

Dickinson, J. R., 1981 The cdc 22 mutation by Schizosaccharomyces pombe
is a temperature-sensitive defect in nucleoside diphosphokinase. Eur. J.
Biochem. 119: 341–345.

Dolznig, H., F. Grebien, T. Sauer, H. Beug, and E. W. Mullner,
2004 Evidence for a size-sensing mechanism in animal cells. Nat. Cell
Biol. 6: 899–905.

Doumanis, J., K. Wada, Y. Kino, A. W. Moore, and N. Nukina, 2009 RNAi
screening in Drosophila cells identifies new modifiers of mutant hun-
tingtin aggregation. PLoS ONE 4: e7275.

Edgar, B. A., and P. H. O’Farrell, 1989 Genetic control of cell division
patterns in the Drosophila embryo. Cell 57: 177–187.

Edgar, B. A., and P. H. O’Farrell, 1990 The three postblastoderm cell cycles
of Drosophila embryogenesis are regulated in G2 by string. Cell 62: 469–
480.

Fantes, P. A., and P. Nurse, 1978 Control of the timing of cell division in
fission yeast. Cell size mutants reveal a second control pathway. Exp. Cell
Res. 115: 317–329.

Frank, J. Jr., and R. L. Gonzalez, 2010 Structure and dynamics of a proc-
essive Brownian motor: the translating ribosome. Annu. Rev. Biochem.
79: 381–412.

Friedman, J. H., and J. J. Meulman, 2004 Clustering objects on subsets of
attributes. J. R. Stat. Soc., B 66: 815–849.

Friedman, A., and N. Perrimon, 2006 A functional RNAi screen for regu-
lators of receptor tyrosine kinase and ERK signalling. Nature 444: 230–
234.

Gallant, P., Y. Shiio, P. F. Cheng, S. M. Parkhurst, and R. N. Eisenman,
1996 Myc and Max homologs in Drosophila. Science 274: 1523–1527.

Giot, L., J. S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang et al., 2003 A protein
interaction map of Drosophila melanogaster. Science 302: 1727–1736.

Goh, K. I., M. E. Cusick, D. Valle, B. Childs, M. Vidal et al., 2007 The
human disease network. Proc. Natl. Acad. Sci. USA 104: 8685–8690.

Goranov, A. I., M. Cook, M. Ricicova, G. Ben-Ari, C. Gonzalez et al.,
2009 The rate of cell growth is governed by cell cycle stage. Genes Dev.
23: 1408–1422.

Grandori, C., J. Mac, F. Siebelt, D. E. Ayer, and R. N. Eisenman, 1996 Myc-
Max heterodimers activate a DEAD box gene and interact with multiple E
box-related sites in vivo. EMBO J. 15: 4344–4357.

88 | M. Bonke et al.

http://flybase.org/reports/FBgn0003525.html


Greasley, P. J., C. Bonnard, and B. Amati, 2000 Myc induces the nucleolin
and BN51 genes: possible implications in ribosome biogenesis. Nucleic
Acids Res. 28: 446–453.

Grewal, S. S., L. Li, A. Orian, R. N. Eisenman, and B. A. Edgar, 2005 Myc-
dependent regulation of ribosomal RNA synthesis during Drosophila
development. Nat. Cell Biol. 7: 295–302.

Grosshans, J., and E. Wieschaus, 2000 A genetic link between morpho-
genesis and cell division during formation of the ventral furrow in Dro-
sophila. Cell 101: 523–531.

Guo, Y., T. C. Walther, M. Rao, N. Stuurman, G. Goshima et al.,
2008 Functional genomic screen reveals genes involved in lipid-droplet
formation and utilization. Nature 453: 657–661.

Hachet, O., M. Berthelot-Grosjean, K. Kokkoris, V. Vincenzetti, J. Moosbrugger
et al., 2011 A phosphorylation cycle shapes gradients of the DYRK
family kinase Pom1 at the plasma membrane. Cell 145: 1116–1128.

Hartwell, L. H., R. K. Mortimer, J. Culotti, and M. Culotti, 1973 Genetic
control of the cell division cycle in yeast: V. Genetic analysis of cdc
mutants. Genetics 74: 267–286.

Holstege, F. C., E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner et al.,
1998 Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:
717–728.

Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton et al.,
2000 Functional discovery via a compendium of expression profiles.
Cell 102: 109–126.

Irizarry, R. A., B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis et al.,
2003 Exploration, normalization, and summaries of high density oli-
gonucleotide array probe level data. Biostatistics 4: 249–264.

Jackson, M. R., T. Nilsson, and P. A. Peterson, 1993 Retrieval of trans-
membrane proteins to the endoplasmic reticulum. J. Cell Biol. 121: 317–
333.

Jensen, L. J., T. S. Jensen, U. de Lichtenberg, S. Brunak, and P. Bork,
2006 Co-evolution of transcriptional and post-translational cell-cycle
regulation. Nature 443: 594–597.

Jin, Z., E. Homola, S. Tiong, and S. D. Campbell, 2008 Drosophila myt1 is
the major cdk1 inhibitory kinase for wing imaginal disc development.
Genetics 180: 2123–2133.

Jorgensen, P., I. Rupes, J. R. Sharom, L. Schneper, J. R. Broach et al., 2004 A
dynamic transcriptional network communicates growth potential to ri-
bosome synthesis and critical cell size. Genes Dev. 18: 2491–2505.

Kastan, M. B., and J. Bartek, 2004 Cell-cycle checkpoints and cancer. Na-
ture 432: 316–323.

Kellogg, D. R., 2003 Wee1-dependent mechanisms required for coordina-
tion of cell growth and cell division. J. Cell Sci. 116: 4883–4890.

Kivioja, T., A. Vähärautio, K. Karlsson, M. Bonke, S. Linnarsson et al.,
2011 Counting absolute number of molecules using unique molecular
identifiers. Nat. Preced. 20: 72–74.

Koepp, D. M., J. W. Harper, and S. J. Elledge, 1999 How the cyclin became
a cyclin: regulated proteolysis in the cell cycle. Cell 97: 431–434.

Kongsuwan, K., Q. Yu, A. Vincent, M. C. Frisardi, M. Rosbash et al.,
1985 A Drosophila Minute gene encodes a ribosomal protein. Nature
317: 555–558.

Korenjak, M., B. Taylor-Harding, U. K. Binne, J. S. Satterlee, O. Stevaux et al.,
2004 Native E2F/RBF complexes contain Myb-interacting proteins and
repress transcription of developmentally controlled E2F target genes. Cell
119: 181–193.

Krek, W., G. Xu, and D. M. Livingston, 1995 Cyclin A-kinase regulation of
E2F–1 DNA binding function underlies suppression of an S phase
checkpoint. Cell 83: 1149–1158.

Lee, M. G., C. J. Norbury, N. K. Spurr, and P. Nurse, 1988 Regulated
expression and phosphorylation of a possible mammalian cell-cycle
control protein. Nature 333: 676–679.

Lehman, D. A., B. Patterson, L. A. Johnston, T. Balzer, J. S. Britton et al.,
1999 Cis-regulatory elements of the mitotic regulator, string/Cdc25.
Development 126: 1793–1803.

Lehner, C. F., and P. H. O’Farrell, 1990 Drosophila cdc2 homologs:
a functional homolog is coexpressed with a cognate variant. EMBO J. 9:
3573–3581.

Lewis, P. W., E. L. Beall, T. C. Fleischer, D. Georlette, A. J. Link et al.,
2004 Identification of a Drosophila Myb-E2F2/RBF transcriptional re-
pressor complex. Genes Dev. 18: 2929–2940.

Li, M. Z., and S. J. Elledge, 2005 MAGIC, an in vivo genetic method for the
rapid construction of recombinant DNA molecules. Nat. Genet. 37: 311–
319.

Lipsick, J. S., 2004 synMuv verite–Myb comes into focus. Genes Dev. 18:
2837–2844.

Lundgren, J., P. Masson, Z. Mirzaei, and P. Young, 2005 Identification and
characterization of a Drosophila proteasome regulatory network. Mol.
Cell. Biol. 25: 4662–4675.

Manke, I. A., A. Nguyen, D. Lim, M. Q. Stewart, A. E. Elia et al.,
2005 MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates
the G2/M transition and S phase progression in response to UV irradi-
ation. Mol. Cell 17: 37–48.

Martin, S. G., and M. Berthelot-Grosjean, 2009 Polar gradients of the
DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature
459: 852–856.

Marygold, S. J., J. Roote, G. Reuter, A. Lambertsson, M. Ashburner et al.,
2007 The ribosomal protein genes and Minute loci of Drosophila mel-
anogaster. Genome Biol. 8: R216.

Moseley, J. B., A. Mayeux, A. Paoletti, and P. Nurse, 2009 A spatial gradient
coordinates cell size and mitotic entry in fission yeast. Nature 459: 857–
860.

Mueller, P. R., T. R. Coleman, A. Kumagai, and W. G. Dunphy, 1995 Myt1:
a membrane-associated inhibitory kinase that phosphorylates Cdc2 on
both threonine-14 and tyrosine-15. Science 270: 86–90.

Murray, A. W., 2004 Recycling the cell cycle: cyclins revisited. Cell 116:
221–234.

Musacchio, A., and E. D. Salmon, 2007 The spindle-assembly checkpoint in
space and time. Nat. Rev. Mol. Cell Biol. 8: 379–393.

Narla, A., and B. L. Ebert, 2010 Ribosomopathies: human disorders of
ribosome dysfunction. Blood 115: 3196–3205.

Nash, R., G. Tokiwa, S. Anand, K. Erickson, and A. B. Futcher, 1988 The
WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size
and is a cyclin homolog. EMBO J. 7: 4335–4346.

Nurse, P., P. Thuriaux, and K. Nasmyth, 1976 Genetic control of the cell
division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen.
Genet. 146: 167–178.

Orlando, D. A., C. Y. Lin, A. Bernard, J. Y. Wang, J. E. Socolar et al.,
2008 Global control of cell-cycle transcription by coupled CDK and
network oscillators. Nature 453: 944–947.

Park, K., L. J. Millet, N. Kim, H. Li, X. Jin et al., 2010 Measurement of
adherent cell mass and growth. Proc. Natl. Acad. Sci. USA 107: 20691–
20696.

Pesin, J. A., and T. L. Orr-Weaver, 2008 Regulation of APC/C activators in
mitosis and meiosis. Annu. Rev. Cell Dev. Biol. 24: 475–499.

Pilkinton, M., R. Sandoval, and O. R. Colamonici, 2007 Mammalian Mip/
LIN-9 interacts with either the p107, p130/E2F4 repressor complex or
B-Myb in a cell cycle-phase-dependent context distinct from the Dro-
sophila dREAM complex. Oncogene 26: 7535–7543.

Rajalingam, K., and I. Dikic, 2011 Healthy ageing through regulated pro-
teostasis. EMBO J. 30: 2983–2985.

Reddy, B. A., P. K. Bajpe, A. Bassett, Y. M. Moshkin, E. Kozhevnikova
et al., 2010 Drosophila transcription factor Tramtrack69 binds
MEP1 to recruit the chromatin remodeler NuRD. Mol. Cell. Biol. 30:
5234–5244.

Reed, S. I., 1980 The selection of S. cerevisiae mutants defective in the start
event of cell division. Genetics 95: 561–577.

Rustici, G., J. Mata, K. Kivinen, P. Lio, C. J. Penkett et al., 2004 Periodic
gene expression program of the fission yeast cell cycle. Nat. Genet. 36:
809–817.

Santamaria, D., C. Barriere, A. Cerqueira, S. Hunt, C. Tardy et al.,
2007 Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:
811–815.

Schneider, I., 1972 Cell lines derived from late embryonic stages of Dro-
sophila melanogaster. J. Embryol. Exp. Morphol. 27: 353–365.

Volume 3 January 2013 | Transcriptional Networks Controlling the Cell Cycle | 89



Seegmiller, A. C., I. Dobrosotskaya, J. L. Goldstein, Y. K. Ho, M. S. Brown
et al., 2002 The SREBP pathway in Drosophila: regulation by palmitate,
not sterols. Dev. Cell 2: 229–238.

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al.,
2003 Cytoscape: a software environment for integrated models of bio-
molecular interaction networks. Genome Res. 13: 2498–2504.

Sherlock, G., 2000 Analysis of large-scale gene expression data. Curr. Opin.
Immunol. 12: 201–205.

Smyth, G. K., 2004 Linear models and empirical bayes methods for as-
sessing differential expression in microarray experiments. Stat. Appl.
Genet. Mol. Biol. 3: Article3.

Son, S., A. Tzur, Y. Weng, P. Jorgensen, J. Kim et al., 2012 Direct obser-
vation of mammalian cell growth and size regulation. Nat. Methods 9:
910–912.

Tuupanen, S., M. Turunen, R. Lehtonen, O. Hallikas, S. Vanharanta et al.,
2009 The common colorectal cancer predisposition SNP rs6983267 at
chromosome 8q24 confers potential to enhanced Wnt signaling. Nat.
Genet. 41: 885–890.

Tzur, A., R. Kafri, V. S. LeBleu, G. Lahav, and M. W. Kirschner, 2009 Cell
growth and size homeostasis in proliferating animal cells. Science 325:
167–171.

van den Heuvel, S., and N. J. Dyson, 2008 Conserved functions of the pRB
and E2F families. Nat. Rev. Mol. Cell Biol. 9: 713–724.

van Riggelen, J., A. Yetil, and D. W. Felsher, 2010 MYC as a regulator of
ribosome biogenesis and protein synthesis. Nat. Rev. Cancer 10: 301–309.

Wei, N., G. Serino, and X. W. Deng, 2008 The COP9 signalosome: more
than a protease. Trends Biochem. Sci. 33: 592–600.

Weigmann, K., S. M. Cohen, and C. F. Lehner, 1997 Cell cycle progression,
growth and patterning in imaginal discs despite inhibition of cell division
after inactivation of Drosophila Cdc2 kinase. Development 124: 3555–
3563.

Whitfield, M. L., G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball et al.,
2002 Identification of genes periodically expressed in the human cell
cycle and their expression in tumors. Mol. Biol. Cell 13: 1977–2000.

Xie, Y., and A. Varshavsky, 2001 RPN4 is a ligand, substrate, and tran-
scriptional regulator of the 26S proteasome: a negative feedback circuit.
Proc. Natl. Acad. Sci. USA 98: 3056–3061.

Zaffran, S., A. Chartier, P. Gallant, M. Astier, N. Arquier et al., 1998 A
Drosophila RNA helicase gene, pitchoune, is required for cell growth and
proliferation and is a potential target of d-Myc. Development 125: 3571–
3584.

Communicating editor: T. R. Hughes

90 | M. Bonke et al.


