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Abstract: Using the unified transform, also known as the Fokas method, we analyse the modified
Helmholtz equation in the regular hexagon with symmetric Dirichlet boundary conditions; namely,
the boundary value problem where the trace of the solution is given by the same function on each
side of the hexagon. We show that if this function is odd, then this problem can be solved in closed
form; numerical verification is also provided.
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1. Introduction

We analyse the modified Helmholtz equation in a regular hexagon using the unified transform,
also known as the Fokas method. This method was introduced by one of the authors [1], for analysing
integrable nonlinear partial differential equations (PDEs) [2]. Later, it was realized that it also
yields novel results for linear evolution PDEs [3]; results in this direction are obtained by several
authors [4–10]. Furthermore, it yields new integral representations for the solution of linear elliptic
PDEs in polygonal domains [11], which in the case of simple domains can be used to obtain
the analytical solution of several problems which apparently cannot be solved by the standard
methods [12,13]. Recently, researchers utilised the integral representations provided by the Fokas
method for the local and global wellposedness analysis of Korteweg-de Vries and nonlinear
Schrödinger type PDEs [14–18], as well as for studying problems from control theory [19].

The Fokas method is based on two basic ingredients:

(1) a global relation, which is an algebraic equation that involves certain transforms of all (known
and unknown) boundary values.

(2) an integral representation of the solution, which involves transforms of all boundary values.

For linear PDEs, the Fokas method involves the following:

• Given a PDE, define its formal adjoint and construct a one parameter family of solutions of this
equation.

• By employing the given PDE and its adjoint, obtain a one parameter family of equations in
conservation form. This family, together with Green’s theorem, yield the global relation.

• The above family also gives rise to a certain closed differential form. The spectral analysis of
this form gives rise to a scalar Riemann–Hilbert problem, which consequently yields an integral
representation of the solution. This representation involves integral transforms of all the boundary
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values, and since some of them are not prescribed as boundary conditions, this form of solution is
not yet effective.

• The explicit solution of the problem is derived by determining the contribution of the unknown
boundary values to the integral representation. This can be achieved by using the global relation,
as well as equations obtained from the global relation through certain invariant transformations.

The global relation has had important analytical and numerical implications: first, it has led to
novel analytical formulations of a variety of important physical problems from water waves [20–26]
to three-dimensional layer scattering [27]. Second, it has led to the development of new techniques
for the Laplace, modified Helmholtz, Helmholtz, biharmonic equations, both analytical [28–35] and
numerical [36–47].

The above analytical solutions are given in terms of infinite series; this is to be contrasted to other
techniques based on the eigenvalues of the Laplace operator that yield the solution as a bi-infinite
series. The eigenvalues of the Laplace operator for the Dirichlet, Neumann and Robin problems in the
interior of an equilateral triangle were first obtained by Lamé in 1833 [48]; these results have also been
derived using the Fokas method [49]. Completeness for the associated expansions for the Dirichlet and
Neumann problems was obtained in [50–53] using group theoretic techniques. McCartin rederived
these results [54,55] and studied the connection of the eigen-structure of the equilateral triangle with
that of the regular hexagon [56]. The above remarks indicate that the existing literature is based on an
implicit way for deriving the solution of specific BVPs of the regular hexagon in terms of bi-infinite
series. This is to be contrasted with our work which presents a direct approach for deriving explicit
integral representations of the solution of a special BVP on the regular hexagon; the extension of the
current methodology to more general problems is under investigation.

Organisation of the Paper

In Section 2 we implement the four steps discussed above for solving the symmetric Dirichlet
problem of the modified Helmholtz equation in a regular hexagon. The main achievement of this
work is presented in Section 3 and concerns the fourth step: our analysis yields the solution for the
case of odd symmetric Dirichlet data in the closed form (34). We study the case of even symmetric
data in Section 4, where we derive the expression (37); this expression in addition to known terms
also involves an unknown term. In Section 5, Figures 1 and 2 depict the numerical verification of
the main result of Section 3; also, Figures 7 and 8 indicate that the unknown term in the expression
(37) is exponentially small in the high frequency limit, and hence this result provides an excellent
approximation for this physically significant limit.

2. The Basic Elements

The equation investigated here is the modified Helmholtz equation in the interior of the regular
hexagon, D, namely,

qxx + qyy − 4β2q = 0, (x, y) ∈ D, (1)

where q(x, y) is a real valued function and β > 0.
Using complex coordinates,

z = x + iy, z̄ = x− iy,

Equation (1) becomes
qzz̄ − β2q = 0. (2)

2.1. The Global Relation and the Integral Representation of the Solution in the Interior of a Convex Polygon

We first derive the global relation:
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The formal adjoint also satisfies the modified Helmholtz equation

q̃zz̄ − β2q̃ = 0. (3)

Multiplying Equation (2) by q̃, Equation (3) by q and subtracting, we find

q̃qzz̄ − qq̃zz̄ = 0, (4)

or equivalently
∂

∂z
(q̃qz̄ − q̃z̄q) +

∂

∂z̄
(qq̃z − qz q̃) = 0. (5)

Using in (5) the special solution q̃ = e−iβ(kz− z̄
k ) and employing Green’s theorem, we obtain∫

∂Ω
W(z, z̄, k) = 0, k ∈ C, (6)

where W is defined by

W(z, z̄, k) = e−iβ(kz− z̄
k )
[
(qz + ikβq) dz−

(
qz̄ +

β

ik
q
)

dz̄
]

, k ∈ C. (7)

Suppose that Ω is the polygon defined via the points z1, z2, . . . , zn, zn+1 = z1. Then (6) gives the
following global relation for the modified Helmholtz in this polygon:

n

∑
j=1

q̂j(k) = 0, k ∈ C, (8)

where
{

q̂j(k)
}n

1 are defined by

q̂j(k) =
∫ zj+1

zj

e−iβ(kz− z̄
k )
[
(qz + ikβq) dz−

(
qz̄ +

β

ik
q
)

dz̄
]

, k ∈ C, (9)

or equivalently (in local coordinates) by

q̂j(k) =
∫ zj+1

zj

e−iβ(kz− z̄
k )

[
iq(j)

N (s) + iβ
(

1
k

dz̄
ds

+ k
dz
ds

)
q(j)(s)

]
ds, k ∈ C,

j = 1, . . . , n. (10)

In Equation (10) we have used the identity

qzdz− qz̄dz̄ = iqNds,

where s is the arclength on the boundary z(s) = x(s) + iy(s) of the polygon and qN denotes the
derivative in the outward normal direction to the boundary of the polygon.

In order to derive the integral representation of the solution one has to implement the spectral
analysis of the differential form

d
[
e−iβ(kz− z̄

k )µ(z, k)
]
= W(z, z̄, k), k ∈ C. (11)

This procedure yields the following theorem, proven in [6]:

Theorem 1. Let Ω be the interior of a convex closed polygon in the complex z-plane, with corners
z1, . . . , zn, zn+1 ≡ z1. Assume that there exists a solution q(z, z̄) of the modified Helmholtz equation, i.e., of
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Equation (2) with β > 0, valid on Ω, and suppose that this solution has sufficient smoothness on the boundary
of the polygon.

Then, q can be expressed in the form

q(z, z̄) =
1

4πi

n

∑
j=1

∫
lj

eiβ(kz− z̄
k ) q̂j(k)

dk
k

, (12)

where {q̂j(k)}n
1 are defined by (10), and {lj}n

1 are the rays in the complex k-plane

lj = {k ∈ C : arg k = − arg(zj+1 − zj)}, j = 1, . . . , n

oriented from zero to infinity.

Observe that the solution given in (12) is given in terms of {q̂j}n
1 which involve integral transforms

of both q and qN on the boundary, i.e., both known and unknown functions.

2.2. The Dirichlet Problem on a Regular Hexagon

Let D ⊂ C be the interior of a regular hexagon with vertices {zj}6
1,

z1 =
l
√

3
2
− i

l
2
= le

−iπ
6 and zj = ω j−1z1, (13)

where l is the length of the side and ω = e
iπ
3 . The sides {(zj, zj+1)}6

1, z7 ≡ z1 will be referred to as
sides {(j)}6

1.
For the sides {(j)}6

1 the following parametrizations will be used:

z1(s) =
l
√

3
2

+ is, zj(s) =

(
l
√

3
2

+ is

)
ω j−1, s ∈

[
− l

2
,

l
2

]
.

The general Dirichlet problem can be uniquely decomposed to 6 simpler Dirichlet problems,
by employing the decomposition

q(j)(s) =
6

∑
i=1

ω(j−1)(i−1)gi(s), j = 1, . . . , 6, s ∈
[
− l

2
,

l
2

]
;

indeed the determinant of the matrix
[

ω(j−1)(i−1)
∣∣∣
i,j=1,...,6

]
is non-zero (Its value is 216 = 63, and for

the general case Det
[

ω(j−1)(i−1)
∣∣∣
i,j=1,...,n

]
= i

2−n(n+1)
2 nn/2).

The existence and uniqueness of the solution of the modified Helmholtz equation shows that
it is sufficient to solve each one of the above Dirichlet problems. The first of them is the symmetric
Dirichlet problem, where the value g1(s) = d(s) is prescribed on each side. This symmetric problem is
analysed in the next section.

2.3. The Symmetric Dirichlet Problem

The problem analysed in this subsection is the symmetric Dirichlet problem for the modified
Helmholtz equation in the regular hexagon (Ω ≡ D). Let d(s) be a real function with sufficient
smoothness and compatibility at the vertices of the hexagon, i.e., d

(
l
2

)
= d

(
− l

2

)
. We prescribe the

boundary conditions

q(j)(s) = d(s), s ∈
[
− l

2
,

l
2

]
, j = 1, . . . , 6.
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The above ‘symmetry’ property also holds for the Neumann boundary values. This fact is the
consequence of the following three observations:

• The modified Helmholtz operator
(

∂2

∂z∂z̄
− β2Id

)
is invariant under the transformation z→ ωz,

namely under rotation of 2π/3. Since the Dirichlet data are invariant under this rotation, then the
(unique) solution q(z, z̄) of the Helmholtz equation is also invariant under this rotation.

• If q is invariant under this transformation, then the differential form qzdz is also invariant under
the transformation z→ ωz:

∂q(z)
∂z

dz =
∂q(ωz)

∂z
dz =

∂(ωz)
∂z

∂q(ωz)
∂(ωz)

1
ω

d(ωz) =
∂q(ωz)
∂(ωz)

d(ωz).

• Evaluating the above differential form on each side we obtain

qzdz =
1
2

(
q̇(j)(s) + iq(j)

N (s)
)

ds =
1
2

(
d′(s) + iq(j)

N (s)
)

ds,

where the second equality is a direct consequence of the fact that the Dirichlet data are invariant
under this rotation.

Thus,

q(j)
N (s) = u(s), s ∈

[
− l

2
,

l
2

]
, j = 1, . . . , 6.

Applying the parametrization of the regular hexagon on Equation (10) we obtain:

q̂1(k) = q̂(k), q̂j(k) = q̂
(

ω j−1k
)

, j = 1, . . . , 6, (14)

with
q̂(k) = E(−ik)[iU(k) + D(k)], (15)

where E(k), D(k) and U(k) are defined by

E(k) = eβ(k+ 1
k )

l
√

3
2 ,

D(k) = β

(
1
k
− k
) ∫ l

2

− l
2

eβ(k+ 1
k )sd(s)ds, (16)

U(k) =
∫ l

2

− l
2

eβ(k+ 1
k )su(s)ds, k ∈ C.

The function D(k) is known, whereas the unknown function U(k) contains the unknown
Neumann boundary value u(s) = qN .

Using (15), the global relation (8) takes the form

E(−ik)U(k) + E(−iωk)U(ωk) + E(−iω2k)U(ω2k)

+ E(ik)U(−k) + E(iωk)U(−ωk) + E(iω2k)U(−ω2k) = iG(k), k ∈ C, (17)

where the known function G(k) is defined by

G(k) =
6

∑
j=1

E
(
−iω j−1k

)
D
(

ω j−1k
)

, k ∈ C. (18)
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The integral representation (12) of the solution takes the form

q(z, z̄) =
1

4πi

6

∑
j=1

∫
lj

eiβ(kz− z̄
k )E(−iω j−1k)

[
D
(

ω j−1k
)
+ iU

(
ω j−1k

) ]dk
k

, (19)

where {lj}6
1 are the rays defined by

lj =

{
k ∈ C : arg k =

11− 2j
6

π

}
, j = 1, . . . , 6, (20)

oriented from zero to infinity. The principal arguments of {l1, l2, l3, l4, l5, l6} are{
3π

2
,

7π

6
,

5π

6
,

π

2
,

π

6
,

11π

6

}
, respectively.

Since the function d(s) can be uniquely written as a sum of an odd and an even function, we will
only consider two particular cases:

(i) the odd case, d(−s) = −d(s);
(ii) the even case d(−s) = d(s).

The solution and the Neumann boundary values inherit the analogous properties:

(i) in the odd case, u(−s) = −u(s), which yields U(−k) = −U(k);
(ii) in the even case, u(−s) = u(s), which yields U(−k) = U(k) for all k ∈ C.

3. Derivation of the Solution for the Symmetric Odd Case

In what follows we will show that the contribution of the unknown functions
{

U
(
ω j−1k

)}6
1 to

the solution representation (19) can be computed explicitly.
Applying the condition U(−k) = −U(k) in (17) we obtain the equation

∆(ik)U(k) + ∆(iωk)U(ωk) + ∆(iω2k)U(ω2k) = −iG(k), k ∈ C, (21)

where G(k) is given in (18) and ∆(k) is defined by

∆(k) = E(k)− E(−k).

Solving (21) for U(k) and substituting the resulting expression in (15) we find

q̂(k) = E(−ik)D(k) +
E(−ik)G(k)

∆(ik)

+ i[E(−ik)E(−iωk)− E(−ik)E(iωk)]
U(ωk)
∆(ik)

+ i[E(−ik)E(−iω2k)− E(−ik)E(iω2k)]
U(ω2k)

∆(ik)
. (22)

The functions q̂j(k) can be obtained from (22) by replacing k with ω j−1k for j = 1, . . . , 6.
Regarding the integral representation of the solution, we restrict our attention to the first integral

of (19), namely the integral along l1 (the negative imaginary axis).
Let

P = eiβ(kz− z̄
k ).

Solving (21) for U(k) and substituting the resulting expression in the first integral of (19) we find that
the known part of this integral is given by the expression

F1 =
1

4πi

∫
l1
PE(−ik)

[
D(k) +

G(k)
∆(ik)

]
dk
k

. (23)
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The unknown part involves the functions U(ωk) and U(ω2k) and is given by

C1 =
1

4π

∫
l1
P
[

E(−ik)E(−iωk)
U(ωk)
∆(ik)

+ E(−ik)E(−iω2k)
U(ω2k)

∆(ik)

]
dk
k

− 1
4π

∫
l1
P
[

E(−ik)E(iωk)
U(ωk)
∆(ik)

+ E(−ik)E(iω2k)
U(ω2k)

∆(ik)

]
dk
k

.

In what follows we will show that the contribution of the unknown functions, namely of the sum
∑6

1 Cj, can be computed in terms of the given boundary conditions.
The first integral in the rhs of C1 can be deformed from l1 to l′1, where l′1 is a ray with 7π

6 ≤ arg k ≤
3π
2 ; choosing l′1 ≡ l2 we obtain

C1 = Ĉ1 + Č1, (24)

where

Ĉ1 =
1

4π

∫
l2
P
[

E(−ik)E(−iωk)
U(ωk)
∆(ik)

+ E(−ik)E(−iω2k)
U(ω2k)

∆(ik)

]
dk
k

and

Č1 = − 1
4π

∫
l1
P
[

E(−ik)E(iωk)
U(ωk)
∆(ik)

+ E(−ik)E(iω2k)
U(ω2k)

∆(ik)

]
dk
k

.

The above deformation is justified, since it can be shown that the integrand of Ĉ1 is bounded
and analytic in the region where arg k ∈

[ 7π
6 , 3π

2
]
: letting a = ei π

6 , we can rewrite the first term of the
integrand of Ĉ1 in the form

PE−
2√
3 (iak)

E
2√
3 (iak)E(−ik)E(−iωk)E

1√
3 (ωk)

∆(ik)
E−

1√
3 (ωk)U(ωk).

We observe the following:

• The zeros of ∆(ik) occur when ik + 1
ik ∈ e−i π

2 R, thus k ∈ R.

• The function PE−
2√
3 (iak) = eiβk(z−z2)+

β
ik (z̄−z̄2) is bounded and analytic for arg k ∈ [ 7π

6 , 3π
2 ].

Indeed, if z ∈ D, then 5π
6 ≤ arg(z − z2) ≤ 3π

2 . Thus, if 7π
6 ≤ arg k ≤ 3π

2 , it follows that
2π ≤ arg[k(z− z2)] ≤ 3π. Hence, Re

{
ik(z− z2)

}
≤ 0.

Therefore, the exponentials eiβk(z−z2) and e
β
ik (z̄−z̄2) are bounded.

• The function E−
1√
3 (ωk)U(ωk) is bounded and analytic for arg k ∈ [ 7π

6 , 13π
6 ], namely in the region

where Re(ωk) ≥ 0.

Indeed, this expression involves the exponentials eβωk(s− l
2 ) and eβ 1

ωk (s−
l
2 ), which are bounded in

this region, since s ≤ l
2 .

• The function
E

2√
3 (iak)E(−ik)E(−iωk)E

1√
3 (ωk)

∆(ik)
=

E
1√
3 (k)

∆(ik)
,

is bounded and analytic for arg k ∈ [ 7π
6 , 3π

2 ].

Indeed, since k is at the lower half plane, then

E
1√
3 (k)

∆(ik)
∼ E

1√
3 (k)

E(ik)
= E−

2√
3 (ω2k), k→ ∞,

which is bounded if Re
(
ω2k

)
≥ 0.

If arg k ∈ [ 7π
6 , 3π

2 ], then arg
(
ω2k

)
∈ [ 11π

6 , 13π
6 ], which yields Re

(
ω2k

)
> 0.
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Similar considerations apply to the second term of the integrand of Ĉ1; this term can be rewritten
in the form

PE−
2√
3 (iak)

E
2√
3 (iak)E(−ik)E(−iω2k)E

1√
3 (ω2k)

∆(ik)
E−

1√
3 (ω2k)U(ω2k).

We observe the following:

• The function PE−
2√
3 (iak) = eiβk(z−z2)+

β
ik (z̄−z̄2) is bounded and analytic for arg k ∈ [ 7π

6 , 3π
2 ].

• The function E−
1√
3 (ω2k)U(ω2k) is bounded and analytic for arg k ∈ [ 5π

6 , 11π
6 ], namely in the

region where Re(ω2k) ≥ 0.
• In the lower half plane

E
2√
3 (iak)E(−ik)E(−iω2k)E

1√
3 (ω2k)

∆(ik)
∼ 1, k→ ∞.

Thus, it is bounded and analytic for arg k ∈ [ 7π
6 , 3π

2 ].

Using the underlined symmetries, we can express the integral representation of the solution in
the form

q =
6

∑
j=1

Fj +
6

∑
j=1

Cj =
6

∑
j=1

Fj +
6

∑
j=1

(
Ĉj + Čj

)
, (25)

where Fj and Cj are given by applying in (23) and (24) the following rotations:

k→ ω j−1k, l1 → lj, l2 → lj+1, j = 2, . . . , 6; l7 := l1.

We define C̃j = Ĉj−1 + Čj, j = 1, . . . , 6, where we employ the notation Ĉ0 = Ĉ6. Then, we rewrite
the expression in (25) in the form

q =
6

∑
j=1

Fj +
5

∑
j=0

Ĉj +
6

∑
j=1

Čj =
6

∑
j=1

Fj +
6

∑
j=1

(
Ĉj−1 + Čj

)
=

6

∑
j=1

Fj +
6

∑
j=1

C̃j. (26)

Thus, it is sufficient to compute the contribution {C̃j}6
1. In this direction we find (via rotation) that

Č2 = − 1
4π

∫
l2
P
[

E(−iωk)E(iω2k)
U(ω2k)
∆(iωk)

+ E(−iωk)E(iω3k)
U(ω3k)
∆(iωk)

]
dk
k

.

Thus

C̃2 = Ĉ1 + Č2

=
1

4π

∫
l2
P
[

E(−ik)E(−iωk)
U(ωk)
∆(ik)

+ E(−ik)E(−iω2k)
U(ω2k)

∆(ik)

]
dk
k

− 1
4π

∫
l2
P
[

E(−iωk)E(iω2k)
U(ω2k)
∆(iωk)

+ E(−iωk)E(iω3k)
U(ω3k)
∆(iωk)

]
dk
k

.

Using that ω3 = −1 and U(−k) = −U(k) the above expression is simplified to

C̃2 =
1

4π

∫
l2
PE(−ik)E(−iωk)

∆(ik)U(k) + ∆(iωk)U(ωk) + ∆(iω2k)U(ω2k)
∆(ik)∆(iωk)

dk
k

. (27)

Employing the global relation (21) we obtain

C̃2 =
1

4πi

∫
l2
PE(−ik)E(−iωk)

G(k)
∆(ik)∆(iωk)

dk
k

. (28)
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In summary, the solution takes the form

q =
6

∑
j=1

Fj +
6

∑
j=1

C̃j, (29)

where Fj is defined by

Fj =
1

4πi

∫
lj

PE(−iω j−1k)
[

D(ω j−1k) +
G(ω j−1k)
∆(iω j−1k)

]
dk
k

(30)

and C̃j is defined by

C̃j =
1

4πi

∫
lj

PE(−iω j−2k)E(−iω j−1k)
G(ω j−2k)

∆(iω j−1k)∆(iω j−2k)
dk
k

. (31)

Note also that the integrals of C̃j can be deformed on a sector of angle 2π
3 . For example, in C̃2 the ray l2

can be deformed in a ray l′2 in the sector arg k ∈ (π, 5π
3 ); analogous results are valid for the remaining

{C̃j}6
1.
Observing that G(ωk) = G(k), Equation (29) can be further simplified to

q =
1

4πi

6

∑
j=1

∫
lj

P
[

E(−iω j−1k)D(ω j−1k) +
E(−iω jk)G(ω j−1k)
∆(iω j−1k)∆(iω j−2k)

]
dk
k

. (32)

In order to write the integral representation in a more compact form we make the change of
variables k→ ω1−jk in the integrals in Fj and C̃j. In this procedure:

1. the fraction dk
k remains invariant;

2. the rays lj become l1;

3. the exponent P = eiβ(kz− z̄
k ) becomes e

iβ
(

ω1−jkz− z̄
ω1−j k

)
;

4. the remaining integrands are equal to the corresponding integrands in F1 and C̃1.

Thus, we obtain

q =
1

4πi

∫
l1
T
[

E(−ik)D(k)− E(−iωk)
∆(ik)∆(iω2k)

G(k)
]

dk
k

. (33)

where

T =
6

∑
j=1

e
iβ
(

ω1−jkz− z̄
ω1−jk

)
.

We make the change of variables k→ −ik in the integrand of (33), so that the contour of integration
transforms from the negative imaginary axis l1 to the real imaginary axis, and we summarize the above
result in the form of a proposition.

Proposition 1. Let q satisfy the modified Helmholtz Equation (2) in the interior of a regular hexagon defined in
(13). Assume that on each side of this hexagon an odd symmetric Dirichlet boundary condition is prescribed,
namely,

q(j)(s) = d(s), s ∈
[
− l

2
,

l
2

]
, j = 1, . . . , 6,

with d(−s) = −d(s) and d
(
− l

2

)
= d

(
l
2

)
= 0.
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The solution q can be computed in closed form:

q (z, z̄) =
1

4πi

∫ ∞

0
R(k, z, z̄)

[
E(−k)D(−ik)− E(−ωk)

∆(k)∆(ω2k)
G(−ik)

]
dk
k

, (34)

where R(k, z, z̄), D(k), E(k), G(k), ∆(k) are defined as follows:

R(k, z, z̄) =
6

∑
j=1

e
β
(

ω1−jkz+ z̄
ω1−jk

)

E(k) = eβ(k+ 1
k )

l
√

3
2 , D(k) = β

(
1
k
− k
) ∫ l

2

− l
2

eβ(k+ 1
k )sd(s)ds,

G(k) =
6

∑
j=1

E
(
−iω j−1k

)
D
(

ω j−1k
)

, ∆(k) = E(k)− E(−k), k ∈ C.

4. The Symmetric Even Case

Applying the condition U(−k) = U(k) in (17) we obtain the following equation

∆+(ik)U(k) + ∆+(iωk)U(ωk) + ∆+(iω2k)U(ω2k) = iG(k), k ∈ C, (35)

where
∆+(k) = E(k) + E(−k)

and G(k) is known and given in (18).
Following the same stems used in Section 3 we derive the analogue of (28), which yields the

following formula for C̃2:

C̃2 =
1

4iπ

∫
l2
PE(−ik)E(−iωk)

G(k)
∆+(ik)∆+(iωk)

dk
k

+
1

2π

∫
l2
P U(ω2k)

∆+(ik)∆+(iωk)
dk
k

, (36)

where in addition to the known part which involves G(k), there now exists an unknown part which
involves U(ω2k).

Thus, the analogue of (29) now takes the form

q =
6

∑
j=1

Fj +
6

∑
j=1

Aj +
6

∑
j=1

Bj, (37)

where Fj is known function defined by

Fj =
1

4πi

∫
lj

PE(−iω j−1k)
[

D(ω j−1k) +
G(ω j−1k)

∆+(iω j−1k)

]
dk
k

, (38)

Aj is also known and defined by

Aj =
1

4πi

∫
lj

PE(−iω j−2k)E(−iω j−1k)
G(ω j−2k)

∆+(iω j−1k)∆+(iω j−2k)
dk
k

, (39)

whereas Bj is the unknown function defined by

Bj =
1

2π

∫
lj

P U(ω jk)
∆+(iω j−1k)∆+(iω j−2k)

dk
k

. (40)
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It can be shown that each of Bj decays exponentially fast as β → ∞. The rigorous proof of this
statement will be presented elsewhere. In the next section, this fact will be indicated via the numerical
evaluation of each of the terms appearing in Equation (37).

5. Illustration of the Results

5.1. Odd Case

Below we depict the solution obtained by (34) for various choices of the Dirichlet datum d(s) and
of the parameter β. At all the examples we have fixed the length of the side of the hexagon l = 2.

For the first example we employ the Dirichlet datum d(s) = sin(πs) and the parameter β = 1;
see Figure 1.

Figure 1. The solution q given by (34) for d(s) = sin(πs), l = 2 and β = 1.

We also depict the deviation of d(s) from the function obtained by the integral representation
(34) evaluated at the side of the hexagon, namely at x = l

√
3

2 =
√

3 and y = s ∈
[
− l

2 , l
2

]
≡ [−1, 1];

see Figure 2.
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-6.×10-7

-4.×10-7

-2.×10-7

2.×10-7

4.×10-7

6.×10-7

Figure 2. The deviation of q (given by (34)) from the actual Dirichlet datum d(s) evaluated at the side
of the hexagon; here we employ d(s) = sin(πs), l = 2 and β = 1.

For the second example we employ the Dirichlet datum d(s) = sin(πs) and the parameter
β = 1/5; see Figure 3.

Figure 3. The solution q given by (34) for d(s) = sin(πs), l = 2 and β = 1/5.

For the third example we employ the Dirichlet datum d(s) = sin(2πs) and the parameter β = 1;
see Figure 4.
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Figure 4. The solution q given by (34) for d(s) = sin(2πs), l = 2 and β = 1.

5.2. Even Case

In this case we employ the Dirichlet datum d(s) = cos
(

π
2 s
)

and the parameter β = 1 at the
known part of the rhs of the formula (37), namely the expression

6

∑
j=1

Fj +
6

∑
j=1

Aj, (41)

where Fj and Aj are given by (38) and (39), respectively; see Figure 5.
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Figure 5. The known part of the solution q given by (41) for d(s) = cos
(

π
2 s
)

, l = 2 and β = 1.

We also depict the deviation of d(s) from the above expression evaluated at the side of the hexagon,
namely at x =

√
3 and y = s ∈ [−1, 1]. This is equal to the contribution ∑6

j=1 Bj, with Bj given by (40);
see Figure 6.

-1.0 -0.5 0.5 1.0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 6. The deviation of the known part of the solution q given by (41) from the actual Dirichlet
datum d(s) = cos

(
π
2 s
)
, l = 2 and β = 1, evaluated at the side of the hexagon.

Furthermore, we depict the latter contribution for the different values of β = 1
4 , 1

2 , 1, 2, 4, where it
is clearly shown that the error decreases drastically with the increase of β; see Figure 7. We observe
exponential decay for z 6= zj, j = 1, . . . , 6: in Figure 8 we depict the deviation from the actual Dirichlet

data for three points on side (1) of the hexagon, namely α1 =
(√

3, 0
)

, α2 =
(√

3, 3
10

)
, α3 =

(√
3, 9

10

)
,

with β in the intervals I1 = [1, 8], I2 = [1, 10], I3 = [1, 58], respectively.
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-1.0 -0.5 0.5 1.0

0.05

0.10

0.15

Figure 7. The deviation of the known part of the solution q given by (41) from the actual Dirichlet
datum d(s) = cos

(
π
2 s
)

and l = 2, evaluated at the side of the hexagon. This deviation is depicted for
the different values of β = 1

4 , 1
2 , 1, 2, 4, and it decreases drastically with the increase of β.

10 20 30 40 50

10-6

10-4

0.01

Figure 8. The deviation of the known part of the solution q given by (41) from the actual Dirichlet datum

d(s), evaluated at three points of side (1) of the hexagon, namely α1 =
(√

3, 0
)

in red, α2 =
(√

3, 3
10

)
in blue, α3 =

(√
3, 9

10

)
in black. The deviation is depicted against β and it displays exponential decay.

6. Conclusions

In this work we have presented the explicit solution of a particular boundary value problem
for the modified Helmholtz equation in a regular hexagon: we have solved the case where the same
Dirichlet datum d(s) is prescribed in all sides of the hexagon, and this function is odd. This explicit
solution is described in Proposition 1. We have also obtained an approximate analytical representation
for the solution for the case that d(s) is even. The exact representation is given by Equation (37),
where the terms Fj and Aj are given in terms of d(s), but the terms Bj involve the unknown Neumann
boundary value. However, these terms are exponentially small as β→ ∞. Thus, for the case of large
β, Equation (37) provides the solution to this problem with an exponentially small error. The above
analytical results were verified numerically in Section 5. The rigorous investigation on the analytical
and numerical accuracy of the latter approximate formula will be presented in future work.
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It should be noted that the arbitrary Dirichlet problem can be decomposed into 6 separate and
simpler Dirichlet BVPs, which are defined in Section 2.3; the first of these BVPs is the symmetric
Dirichlet problem. The analysis of the remaining problems is a work in progress.
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Funding: A.S.F. was supported by EPSRC, UK, via a senior fellowship.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fokas, A.S. A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. A
Math. Phys. Eng. Sci. 1997, 453, 1411–1443. [CrossRef]

2. Fokas, A.S. On the integrability of linear and nonlinear partial differential equations. J. Math. Phys. 2000, 41,
4188–4237. [CrossRef]

3. Fokas, A.S. A new transform method for evolution partial differential equations. IMA J. Appl. Math. 2002, 67,
559–590. [CrossRef]

4. Biondini, G.; Wang, D. Initial-boundary-value problems for discrete linear evolution equations. IMA J. Appl.
Math. 2010, 75, 968–997. [CrossRef]

5. Deconinck, B.; Trogdon, T.; Vasan, V. The method of Fokas for solving linear partial differential equations.
SIAM Rev. 2014, 56, 159–186. [CrossRef]

6. Fokas, A.S. A Unified Approach to Boundary Value Problems; SIAM: Garden Grove, CA, USA, 2008.
7. Pelloni, B. The spectral representation of two-point boundary-value problems for third-order linear evolution

partial differential equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2005, 461, 2965–2984. [CrossRef]
8. Pelloni, B.; Smith, D.A. Spectral theory of some non-selfadjoint linear differential operators. Proc. R. Soc. A

Math. Phys. Eng. Sci. 2013, 469, 20130019. [CrossRef]
9. Pelloni, B.; Smith, D.A. Evolution PDEs and augmented eigenfunctions. Half-line. J. Spectr. Theory 2016, 6,

185–213. [CrossRef]
10. Smith, D.A. Well-posed two-point initial-boundary value problems with arbitrary boundary conditions.

In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge,
UK, 2012; Volume 152, pp. 473–496.

11. Fokas, A.S. Two-dimensional linear partial differential equations in a convex polygon. Proc. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci. 2001, 457, 371–393. [CrossRef]

12. Kalimeris, K. INITIAL and Boundary Value Problems in Two and Three Dimensions. Ph.D. Thesis, University
of Cambridge, Cambridge, UK, 2010.

13. Spence, E.A. Boundary Value Problems for Linear Elliptic PDEs. Ph.D. Thesis, University of Cambridge,
Cambridge, UK, 2011.

14. Batal, A.; Fokas, A.S.; Özsari, T. Uniform transform method for boundary value problems involving mixed
derivatives. arXiv 2020, arXiv:2002.01057.

15. Fokas, A.S.; Himonas, A.A.; Mantzavinos, D. The nonlinear Schrödinger equation on the half-line. Trans. Am.
Math. Soc. 2017, 369, 681–709. [CrossRef]

16. Himonas, A.A.; Mantzavinos, D. On the Initial-Boundary Value Problem for the Linearized Boussinesq
Equation. Stud. Appl. Math. 2015, 134, 62–100. [CrossRef]

17. Himonas, A.A.; Mantzavinos, D.; Yan, F. Initial-boundary value problems for a reaction-diffusion equation.
J. Math. Phys. 2019, 60, 081509. [CrossRef]

18. Özsari, T.; Yolcu, N. The initial-boundary value problem for the biharmonic Schrödinger equation on the
half-line. Commun. Pure Appl. Anal. 2019, 18, 3285–3316. [CrossRef]

19. Kalimeris, K.; Özsarı, T. An elementary proof of the lack of null controllability for the heat equation on the
half line. Appl. Math. Lett. 2020, 104, 106241. [CrossRef]

20. Crowdy, D.G.; Davis, A.M. Stokes flow singularities in a two-dimensional channel: A novel transform
approach with application to microswimming. Proc. R. Soc. A 2013, 469, 20130198.

http://dx.doi.org/10.1098/rspa.1997.0077
http://dx.doi.org/10.1063/1.533339
http://dx.doi.org/10.1093/imamat/67.6.559
http://dx.doi.org/10.1093/imamat/hxq014
http://dx.doi.org/10.1137/110821871
http://dx.doi.org/10.1098/rspa.2005.1474
http://dx.doi.org/10.1098/rspa.2013.0019
http://dx.doi.org/10.4171/JST/123
http://dx.doi.org/10.1098/rspa.2000.0671
http://dx.doi.org/10.1090/tran/6734
http://dx.doi.org/10.1111/sapm.12055
http://dx.doi.org/10.1063/1.5118767
http://dx.doi.org/10.3934/cpaa.2019148
http://dx.doi.org/10.1016/j.aml.2020.106241


Axioms 2020, 9, 89 17 of 18

21. Deconinck, B.; Oliveras, K. The instability of periodic surface gravity waves. J. Fluid Mech. 2011, 675, 141–167.
[CrossRef]

22. Fokas, A.S.; Kalimeris, K. Water waves with moving boundaries. J. Fluid Mech. 2017, 832, 641–665. [CrossRef]
23. Oliveras, K. Stability of Periodic Surface Gravity Water Waves. Ph.D. Thesis, University of Washington,

Seattle, WA, USA, 2009.
24. Plümacher, D.; Oberlack, M.; Wang, Y.; Smuda, M. On a non-linear droplet oscillation theory via the unified

method. Phys. Fluids 2020, 32, 067104. [CrossRef]
25. Vasan, V.; Deconinck, B. The inverse water wave problem of bathymetry detection. J. Fluid Mech. 2013, 714,

562–590. [CrossRef]
26. Ablowitz, M.J.; Fokas, A.S.; Musslimani, Z.H. On a new non-local formulation of water waves. J. Fluid Mech.

2006, 562, 313–343. [CrossRef]
27. Nicholls, D. A high-order perturbation of surfaces (HOPS) approach to Fokas integral equations:

Three-dimensional layered-media scattering. Q. Appl. Math. 2016, 74, 61–87. [CrossRef]
28. Ashton, A.C.L. Laplace’s equation on convex polyhedra via the unified method. Proc. R. Soc. A Math. Phys.

Eng. Sci. 2015, 471, 20140884. [CrossRef]
29. Crowdy, D. A transform method for Laplace’s equation in multiply connected circular domains. IMA J. Appl.

Math. 2015, 80, 1902–1931. [CrossRef]
30. Dassios, G.; Fokas, A.S. The basic elliptic equations in an equilateral triangle. Proc. R. Soc. A Math. Phys. Eng.

Sci. 2005, 461, 2721–2748. [CrossRef]
31. Fokas, A.S.; Kapaev, A.A. A Riemann-Hilbert approach to the Laplace equation. J. Math. Anal. Appl. 2000,

251, 770–804. [CrossRef]
32. Fokas, A.S.; Kapaev, A.A. On a transform method for the Laplace equation in a polygon. IMA J. Appl. Math.

2003, 68, 355–408. [CrossRef]
33. Luca, E.; Crowdy, D.G. A transform method for the biharmonic equation in multiply connected circular

domains. IMA J. Appl. Math. 2018, 83, 942–976. [CrossRef]
34. Antipov, Y.A.; Fokas, A.S. The modified Helmholtz equation in a semi-strip. In Mathematical Proceedings of the

Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 2005; Volume 138, pp. 339–365.
35. Ashton, A.C.L. On the rigorous foundations of the Fokas method for linear elliptic partial differential

equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 1325–1331. [CrossRef]
36. Ashton, A.C.L. The Spectral Dirichlet–Neumann Map for Laplace’s Equation in a Convex Polygon. SIAM J.

Math. Anal. 2013, 45, 3575–3591. [CrossRef]
37. Colbrook, M.J. Extending the unified transform: Curvilinear polygons and variable coefficient PDEs. IMA J.

Numer. Anal. 2020, 40, 976–1004. [CrossRef]
38. Colbrook, M.J.; Flyer, N.; Fornberg, B. On the Fokas method for the solution of elliptic problems in both

convex and non-convex polygonal domains. J. Comput. Phys. 2018, 374, 996–1016. [CrossRef]
39. Colbrook, M.J.; Fokas, A.S. Computing eigenvalues and eigenfunctions of the Laplacian for convex polygons.

Appl. Numer. Math. 2018, 126, 1–17. [CrossRef]
40. Colbrook, M.J.; Fokas, A.S.; Hashemzadeh, P. A Hybrid Analytical-Numerical Technique for Elliptic PDEs.

SIAM J. Sci. Comput. 2019, 41, A1066–A1090. [CrossRef]
41. de Barros, F.P.J.; Colbrook, M.J.; Fokas, A.S. A hybrid analytical-numerical method for solving

advection-dispersion problems on a half-line. Int. J. Heat Mass Transf. 2019, 139, 482–491. [CrossRef]
42. Davis, C.I.R.; Fornberg, B. A spectrally accurate numerical implementation of the Fokas transform method

for Helmholtz-type PDEs. Complex Var. Elliptic Equ. 2014, 59, 564–577. [CrossRef]
43. Fokas, A.S.; Nachbin, A. Water waves over a variable bottom: A non-local formulation and conformal

mappings. J. Fluid Mech. 2012, 695, 288–309. [CrossRef]
44. Fornberg, B.; Flyer, N. A numerical implementation of Fokas boundary integral approach: Laplace’s equation

on a polygonal domain. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 2983–3003. [CrossRef]
45. Grylonakis, E.N.G.; Filelis-Papadopoulos, C.K.; Gravvanis, G.A. A class of unified transform techniques for

solving linear elliptic PDEs in convex polygons. Appl. Numer. Math. 2018, 129, 159–180. [CrossRef]
46. Hashemzadeh, P.; Fokas, A.S.; Smitheman, S.A. A numerical technique for linear elliptic partial differential

equations in polygonal domains. Proc. Math. Phys. Eng. Sci. 2015, 471, 20140747. [CrossRef]
47. Trogdon, T.; Biondini, G. Evolution partial differential equations with discontinuous data. Q. Appl. Math.

2019, 77, 689–726. [CrossRef]

http://dx.doi.org/10.1017/S0022112011000073
http://dx.doi.org/10.1017/jfm.2017.681
http://dx.doi.org/10.1063/5.0007341
http://dx.doi.org/10.1017/jfm.2012.497
http://dx.doi.org/10.1017/S0022112006001091
http://dx.doi.org/10.1090/qam/1411
http://dx.doi.org/10.1098/rspa.2014.0884
http://dx.doi.org/10.1093/imamat/hxv019
http://dx.doi.org/10.1098/rspa.2005.1466
http://dx.doi.org/10.1006/jmaa.2000.7052
http://dx.doi.org/10.1093/imamat/68.4.355
http://dx.doi.org/10.1093/imamat/hxy030
http://dx.doi.org/10.1098/rspa.2011.0478
http://dx.doi.org/10.1137/13090523X
http://dx.doi.org/10.1093/imanum/dry085
http://dx.doi.org/10.1016/j.jcp.2018.08.005
http://dx.doi.org/10.1016/j.apnum.2017.12.001
http://dx.doi.org/10.1137/18M1217309
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.018
http://dx.doi.org/10.1080/17476933.2013.766883
http://dx.doi.org/10.1017/jfm.2012.19
http://dx.doi.org/10.1098/rspa.2011.0032
http://dx.doi.org/10.1016/j.apnum.2018.03.007
http://dx.doi.org/10.1098/rspa.2014.0747
http://dx.doi.org/10.1090/qam/1526


Axioms 2020, 9, 89 18 of 18

48. Lamé, G. Mémoire sur la propagation de la chaleur dans les polyèdres, et principalement dans le prisme
triangulaire régulier. J. I’Ecole Poly Tech. 1833, 22, 194–251.

49. Fokas, A.S.; Kalimeris, K. Eigenvalues for the Laplace operator in the interior of an equilateral triangle.
Comput. Methods Funct. Theory 2014, 14, 1–33. [CrossRef]

50. Pinsky, M.A. The eigenvalues of an equilateral triangle. SIAM J. Math. Anal. 1980, 11, 819–827. [CrossRef]
51. Pinsky, M.A. Completeness of the eigenfunctions of the equilateral triangle. SIAM J. Math. Anal. 1985, 16,

848–851. [CrossRef]
52. Práger, M. Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math.

1998, 43, 311–320. [CrossRef]
53. Terras, R.; Swanson, R. Image methods for constructing Green’s functions and eigenfunctions for domains

with plane boundaries. J. Math. Phys. 1980, 21, 2140–2153. [CrossRef]
54. McCartin, B.J. Eigenstructure of the equilateral triangle, Part I: The Dirichlet problem. Siam Rev. 2003, 45,

267–287. [CrossRef]
55. McCartin, B.J. Eigenstructure of the equilateral triangle, Part II: The Neumann problem. Math. Probl. Eng.

2002, 8, doi:10.1080/1024123021000053664. [CrossRef]
56. McCartin, B.J. Laplacian Eigenstructure of the Equilateral Triangle; Hikari Limited: Rousse, Bulgaria, 2011.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40315-013-0038-7
http://dx.doi.org/10.1137/0511073
http://dx.doi.org/10.1137/0516063
http://dx.doi.org/10.1023/A:1023269922178
http://dx.doi.org/10.1063/1.524723
http://dx.doi.org/10.1137/S003614450238720
http://dx.doi.org/10.1080/1024123021000053664
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 The Basic Elements
	The Global Relation and the Integral Representation of the Solution in the Interior of a Convex Polygon
	The Dirichlet Problem on a Regular Hexagon
	The Symmetric Dirichlet Problem

	Derivation of the Solution for the Symmetric Odd Case
	The Symmetric Even Case
	Illustration of the Results
	Odd Case
	Even Case

	Conclusions
	References

