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Task episodes consist of sequences of steps that are performed to achieve a goal. We used fMRI to examine neural represen-
tation of task identity, component items, and sequential position, focusing on two major cortical systems—the multiple-
demand (MD) and default mode networks (DMN). Human participants (20 males, 22 females) learned six tasks each consist-
ing of four steps. Inside the scanner, participants were cued which task to perform and then sequentially identified the target
item of each step in the correct order. Univariate time course analyses indicated that intra-episode progress was tracked by a
tonically increasing global response, plus an increasing phasic step response specific to MD regions. Inter-episode boundaries
evoked a widespread response at episode onset, plus a marked offset response specific to DMN regions. Representational sim-
ilarity analysis (RSA) was used to examine representation of task identity and component steps. Both networks represented
the content and position of individual steps, however the DMN preferentially represented task identity while the MD network
preferentially represented step-level information. Thus, although both MD and DMN networks are sensitive to step-level and
episode-level information in the context of hierarchical task performance, they exhibit dissociable profiles in terms of both
temporal dynamics and representational content. The results suggest collaboration of multiple brain regions in control of
multistep behavior, with MD regions particularly involved in processing the detail of individual steps, and DMN adding rep-
resentation of broad task context.

Key words: default mode network; fMRI; hierarchy; multiple-demand network; representational similarity analysis; task
episodes

Significance Statement

Achieving one’s goals requires knowing what to do and when. Tasks are typically hierarchical, with smaller steps nested
within overarching goals. For effective, flexible behavior, the brain must represent both levels. We contrast response time
courses and information content of two major cortical systems—the multiple-demand (MD) and default mode networks
(DMN)—during multistep task episodes. Both networks are sensitive to step-level and episode-level information, but with dis-
sociable profiles. Intra-episode progress is tracked by tonically increasing global responses, plus MD-specific increasing phasic
step responses. Inter-episode boundaries evoke widespread responses at episode onset, plus DMN-specific offset responses.
Both networks represent content and position of individual steps; however, the DMN and MD networks favor task identity
and step-level information, respectively.

Introduction
Purposeful behavior requires retrieval of memorized sequences
(Hsieh and Ranganath, 2015) to guide current actions, with over-
arching goals or “task episodes” (e.g., “make stew”) decomposed
into achievable steps (“wash vegetables” . . . “chop” . . . “cook”;
Cooper and Shallice, 2000; Schneider and Logan, 2006; Duncan,
2010). As each step is completed, its specific content loses rele-
vance, while higher-level representations of the full task remain
in behavioral control. This raises the question of how brain
regions cooperate to execute a current step while keeping an
overall goal in mind.

Previous literature highlights the importance of a frontoparie-
tal multiple-demand (MD) network in controlling complex
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mental programs (Dosenbach et al., 2006; Duncan, 2010, 2013).
MD regions are recruited during many cognitively demanding
tasks (Duncan and Owen, 2000), are sensitive to hierarchical task
structure (Farooqui et al., 2012; Desrochers et al., 2015; Badre
and Nee, 2018), and necessary for effective problem-solving
(Woolgar et al., 2010). They preferentially represent task-relevant
information (Asaad et al., 2000; Everling et al., 2002; Li et al.,
2007), and radically change activity patterns across successive
task steps (Sigala et al., 2008).

The “default mode” network (DMN; Raichle et al., 2001) is often
anti-correlated with MD activity (Fox et al., 2005b). Many findings
suggest a role in attention to internal representations, uncoupled
from external stimuli (Golland et al., 2006; Buckner et al., 2008),
including when memories guide behavior (Konishi et al., 2015;
Murphy et al., 2019) and especially when sematic associations are
available (Murphy et al., 2018). Thus, DMN involvement is also
expected when behavior requires recall of learned task sequences.

Steps within a task plan resemble events within episodic
memory (Ezzyat and Davachi, 2011). Humans are proposed to
segment episodes into temporally meaningful chunks, separated
by event boundaries (Zacks and Tversky, 2001; Radvansky and
Zacks, 2017). Event boundaries may activate MD-like regions
(Zacks et al., 2001; Sridharan et al., 2007), but also areas associ-
ated with episodic memory, including hippocampus (Ben-Yakov
et al., 2013; Ben-Yakov and Henson, 2018) and DMN (Speer et
al., 2007), or both (Ezzyat and Davachi, 2011). The DMN is
implicated in high-level cognition at a temporally and conceptu-
ally broad scale, including representation of schemas (Robin and
Moscovitch, 2017), situation models (Reagh and Ranganath,
2018), and task-sets (Crittenden et al., 2015), and responds espe-
cially to boundaries rated as separating long, meaningful events
(Speer et al., 2007). Temporal scrambling of narrative stimuli
suggests a cortical hierarchy of temporal receptive windows
(Lerner et al., 2011), with short-timescale processing in sensory
regions, through intermediate timescales in MD regions, to lon-
gest-timescale processing in DMN regions (Chen et al., 2016),
consistent with a gradient from sensorimotor to transmodal cor-
tex (Margulies et al., 2016). Investigation of multivoxel pattern
transitions during narrative perception (Baldassano et al., 2018)
found the longest-timescale event representations in posterior
medial cortex and the intraparietal sulcus (IPS), within the DMN
and MD network, respectively, while neural event structure was
abstracted from sensory modality around the temporoparietal
junction and in lateral frontal cortex (LFC), again within DMN
and MD networks, respectively. Overall, the literature suggests
that both DMN and MD networks are potentially well-suited to
representing temporally extended task episodes.

The distinct roles of the DMN and MD networks in repre-
senting different aspects of task episodes remain unclear. We
therefore examined how these networks represent information at
multiple levels of abstraction within a task: individual steps,
including content and position within an episode, whole tasks,
and groups of related tasks. Participants learned four-step tasks
associated with different rooms, and then sequentially identified
target items corresponding to each step of cued tasks. Thus, we
could quantify neural representation of rooms (e.g., kitchen),
tasks (e.g., “make stew”), step position (e.g., third) and items
associated with steps (e.g., “wash vegetables”). We used univari-
ate analyses to characterize temporally evolving activity across
episodes, and representational similarity analysis (RSA) to inves-
tigate representations of task structure and content. We hypothe-
sized that the MD and DMN networks would be preferentially
sensitive to different levels of the temporal task hierarchy.

Materials and Methods
Participants
42 participants (20 males, 22 females; ages 18–39, mean=26.79,
SD=4.77) were included in the experiment at the MRC Cognition and
Brain Sciences Unit. An additional 19 participants were excluded [two
were discovered to have cysts, one lost several slices because of poor
bounding box positioning, 10 were excluded because of having no cor-
rect episodes for at least one combination of cued task � distractor task
(see later), and a further six were excluded because of excessive head
motion.5 mm]. Of the 10 participants that were excluded because of
insufficient correct episodes, most self-reported that they had trouble
concentrating and were falling asleep in the scanner, and displayed
lapses in responding. This may have been a consequence of using rela-
tively long blocks (;28min). All participants were neurologically
healthy, right-handed, with normal or corrected-to-normal vision.
Procedures were conducted in accordance with ethical approval
obtained from the Cambridge Psychology Research Ethics Committee,
and participants provided written, informed consent before the start of
the experiment.

Stimuli and task procedures
The study consisted of a learning session outside the scanner and an exe-
cution session in the scanner. During the learning session, participants
learned six everyday task sequences, each based in one of two locations
(“rooms”; three kitchen and three bathroom). Each task consisted of
four ordered “steps.” For example, the task “make a stew” consisted of
the steps “take food from fridge,” “wash vegetables,” “chop vegetables,”
“cook on stove.” Each step was associated with a unique image (“item”).
The complete set of stimuli is shown in Figure 1A.

In the learning session, participants viewed the names and images of
the steps of each task episode in sequential order. The step images were
presented simultaneously with a background image corresponding to
the room in which they occur (kitchen or bathroom). The learning was
self-paced, in separate runs for each room. Within each room, each task
sequence was presented three times, and each item within the sequence
was presented until the participant decided to move on to the next item.
There was a 1.5 s interstimulus interval between items. After viewing all
six sequences, participants were tested for their memory of the task epi-
sodes by (1) sorting picture cards representing all steps of the six task
episodes into the correct sequences, and (2) completing a pen-and-paper
test in which they were asked to write down the names of the steps in the
correct order for each task episode. Most participants performed both
tests without error. A few participants made a mistake on one to two
items but were able to correct their answers after this was pointed out.
The tests ensured participants had memorized the specific step sequence
of each task. Before entering the scanner, participants practiced a short-
ened version of the main experiment, containing one episode of each
task. During scanning, participants performed two runs of the experi-
ment, interleaved with shorter runs (;5min) of a localizer task that was
not analyzed and is not described further.

Figure 1B illustrates the structure of the task episodes paradigm. At
the start of each 45 s episode, participants were presented with a cue
(e.g., “make a stew”) for 1 s, indicating which task to complete. This was
followed by a fixation period lasting between 1.5 and 7.5 s, selected ran-
domly from a uniform distribution, before the onset of the first step. On
each step, participants had to perform three visual searches. On each
search, an array of four images was presented in a horizontal row (total
left to right visual angle ;12.6°). These included (randomly ordered
from left to right): (1) the correct image (“target”) corresponding to the
current task step; (2) a distractor image representing a random incorrect
step from the correct task; (3) a distractor representing the correct step
but from an incorrect task (“distractor task”); and (4) an additional dis-
tractor representing the same incorrect step as (2), from the same incor-
rect task as (3). To ensure that each display contained two images from
each room, distractor tasks were selected at random from the alternative
room to the cued task. The array remained for 2 s, and within this time,
the participant had to indicate the position of the target image using a 4-
choice button box with their right hand. A 1 s fixation interval preceded
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Figure 1. A, Illustration of the six task episodes (three kitchen and three bathroom tasks) memorized before going into the scanner. Each task consisted of four steps to be completed in se-
rial order (e.g., the task “make a stew” consisted of “take food from fridge,” “wash vegetables,” “chop vegetables,” “cook on stove”). B, Structure of an example task episode. Episodes began
with a cue indicating which task to perform (e.g., “make a stew”). After a short delay, the first search array of four items appeared, and participants were asked to select the item corresponding
to the first step of that task (here, “take food from fridge”). Participants selected this same target in three search arrays (total step duration = 9 s), then were given a brief indicator that the
step had been completed, and moved on to the next step (here “wash vegetables”). Completion of all four steps completed the entire task episode.
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onset of the next search array. Each step thus lasted for 9 s, with the
participant selecting the same target in each of three search events,
to allow separation of the hemodynamic response to successive task
steps, while ensuring sustained focus on the relevant item within
each step. At the end of the third search event, a 0.2 s presentation
of the words “STEP COMPLETED” indicated the completion of that
step, followed by a 0.8 s fixation interval. Without further cueing,
the participant then moved on to the next task step. After complet-
ing the last step, a fixation interval of 0.5–6.5 s was presented before
the onset of the cue for the next task. The total interval between the
last step of the previous task and the first step of the next task was
fixed at 9 s. Participants were not given feedback on their accuracy.
Each run consisted of 36 task episodes (with an additional dummy
episode to start), constructed so that each task appeared following
each possible preceding task once. Task ordering was chosen before
the start of each run to maximize the design efficiency (Dale, 1999)
of all pairwise contrasts between tasks. A total of 1000 task orders
were simulated, and the most efficient one was chosen. Each of the
two runs lasted ;28min.

fMRI data acquisition and preprocessing
Scanning took place in a 3T Siemens Prisma scanner. Functional images
were acquired using a multiband gradient-echo echoplanar imaging
(EPI) pulse sequence (TR= 1373ms, TE=33.4ms, flip angle = 74°,
96� 96 matrices, slice thickness = 2 mm, no gap, voxel size 2� 2 � 2
mm, 72 axial slices covering the entire brain, four slices acquired at
once). The first five volumes served as dummy scans and were discarded
to avoid T1 equilibrium effects. Field maps were collected at the end of
the experiment (TR=400ms, TE=5.19ms/7.65ms, flip angle = 60°,
64� 64 matrices, slice thickness = 3 mm, 25% gap, resolution 3 mm iso-
tropic, 32 axial slices). High-resolution anatomical T1-weighted images
were acquired for each participant using a 3D MPRAGE sequence (192
axial slices, TR= 2250ms, TI= 900ms, TE=2.99ms, flip angle = 9°, field
of view=256� 240� 160 mm, matrix dimensions = 256� 240� 160, 1-
mm isotropic resolution).

The data were preprocessed and analyzed using automatic analysis
(aa) pipelines and modules (Cusack et al., 2014), which called relevant
functions from Statistical Parametric Mapping software (SPM 12; http://
www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB (The MathWorks).
EPI images were realigned to correct for head motion using rigid-body
transformation, unwarped based on the field maps to correct for voxel dis-
placement because of magnetic-field inhomogeneity, and slice time cor-
rected. The T1 image was coregistered to the mean EPI, and then
coregistered and normalized to the MNI template. The normalization pa-
rameters of the T1 image were applied to all functional volumes. The data
and models (see below) were temporally high-pass filtered with a cutoff at
1/128Hz. Spatial smoothing of 10-mm full width at half maximum
(FWHM) was applied for the univariate whole-brain analysis, but not for
the univariate region of interest (ROI) analysis or before multivariate
analysis.

ROIs
For the primary analysis, we focused on the MD and DMN networks
(Fig. 4). The MD network was based on data from Fedorenko et al.
(2013, their Fig. 2), selecting frontoparietal regions responsive to cogni-
tive demands across seven diverse tasks (http://imaging.mrc-cbu.cam.ac.
uk/imaging/MDsystem). The DMN network was taken from Yeo et al.
(2011), combining three subnetworks from the 17 network parcellation
(numbers 15, 16, and 17; Andrews-Hanna, 2012). The left and right
hemispheres were averaged and projected back to both hemispheres to
create a symmetrical volume (similar to Fedorenko et al., 2013). The
combined networks were then smoothed at 4-mm FWHM to eliminate
isolated voxels.

Both the MD network (Dosenbach et al., 2006, 2007; Crittenden et
al., 2016) and the DMN (Andrews-Hanna et al., 2010; Andrews-Hanna,
2012; Wen et al., 2020) can be divided into finer components or subsys-
tems, and following whole-network analysis, we examined separate sub-
regions within each network. MD component ROIs were separated as
described in Mitchell et al. (2016), based on proximity to local maxima

in the data of Fedorenko et al. (2013, their Fig. 2); they included three
clusters along the anterior, middle, and posterior middle frontal gyrus
(aMFG, mMFG, and pMFG), a posterior-dorsal region of LFC (pdLFC)
in the superior precentral sulcus, and clusters in the IPS, anterior insula
(AI), and anterior cingulate cortex (ACC). DMN component ROIs were
defined as spatially separate clusters within the overall network, consist-
ing of the medial prefrontal cortex (MPFC) and posterior cingulate cor-
tex (PCC) along the midline, as well as the inferior frontal gyrus (IFG),
inferior parietal lobule (IPL), parahippocampal cortex (PHC), and parts
of the lateral temporal cortex extending to the temporal pole (Temp).
Overlapping voxels of the AI and IFG were excluded from each ROI and
their corresponding networks. Analyses were first performed using each
network as a single large ROI, and then within each component ROI to
examine more fine scale differences within each network. We controlled
the false discovery rate (FDR) to correct for multiple comparisons across
the number of networks (2) and component ROIs (13), respectively
(Benjamini and Yekutieli, 2001).

Univariate analysis
Finite impulse response (FIR) model
Statistical analyses were performed first at the individual level, using a
general linear model (GLM). To capture the BOLD time course through-
out each task episode, as well as transitions between episodes, we mod-
eled each consecutive pair of episodes. The first (dummy) episode of
each run was separately modeled and not analyzed. For the remaining
data, a 90 s period starting from the onset of the first search array of ev-
ery even number episode to the first search array of the next even num-
ber episode was modeled using an FIR basis set of 60 1.5 s boxcar
regressors. In this way, the response throughout task episodes could be
modeled without making assumptions about the shape of the hemody-
namic response. Episodes with a high proportion of errors (episodes that
had.25% errors) were defined as error episodes, with the total number
of error episodes per participant ranging from 0 to 6 (mean= 0.95,
SD=1.43). Episode pairs that contained at least one error episode were
removed from the analysis using a similar but separate set of regressors.
Effects of cues, and errors on individual search arrays, were also modeled
separately, by convolving the duration of their respective events (1 s for
cues and 2 s for error events) with a canonical hemodynamic response
function. The six motion parameters and block means were included as
regressors of no interest. Across the 90 s period, estimates for each FIR
time bin were extracted from each whole network or component ROI,
averaged over voxels within the region and across the six tasks. These av-
erage b estimates for individual participants were entered into a random
effects group analysis.

Event-based GLM analysis. To complement the FIR model, an
event-based GLM analysis was performed. The 9 s duration of each step
allows for some separation of substep response dynamics, despite the
sluggishness of the BOLD response. Previous work has separated
increasing from decreasing responses on a similar timescale (Krueger et
al., 2017); here we separate brief, phasic activity linked to the onset of
each step, from sustained, tonic activity across the whole duration of
each step. To control for the degree of visual difference between the
search arrays of pairs of episodes, each combination of cued task � dis-
tractor task was modeled separately. For each combination, each step
was modeled using two regressors, an onset regressor modeled with
0 s duration and an epoch regressor modeled with 9 s duration.
Additionally, an offset regressor modeled with 0 s duration was placed at
the end of the episode. Thus, the first onset regressor and the final offset
regressor captured transient responses to episode boundaries, while the
regressors modeling the onset of steps 2–4 captured phasic responses to
transitions between steps within an episode; epoch regressors captured
more sustained responses associated with each step. Each regressor was
convolved with the canonical hemodynamic response function. There
were accordingly 162 regressors of interest, two (onset and epoch) for
each of the four steps and one for the offset of the entire episode in each
combination of six tasks � three possible distractor tasks from the other
room (for example, the target task “make a stew” could be paired with
distractor tasks “wash face,” “scrub toilet,” or “clean teeth”). The maxi-
mum absolute correlation between any pair of regressors was 0.5. Error
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episodes (defined as episodes that had.25% errors) were removed from
the analysis using a similar but separate set of regressors. The cue was
modeled separately using a similar combination of onset (0 s duration)
and epoch (duration from cue onset to the onset of the first task step)
regressors. Motion parameters and block mean regressors were included
as before. Beta estimates were averaged across the 18 cued task� distrac-
tor task combinations for individual participants, and entered into ran-
dom effects group analyses. We first examined the mean effect of onset/
offset and epoch regressors versus implicit baseline (with FDR correction
across ROIs). Repeated measures ANOVAs were then used to examine
changes across steps, including linear and quadratic trends. To comple-
ment the ROI analyses, contrasts were also conducted at the whole-brain
level, using a voxel-wise FDR-corrected threshold of p, 0.025 per tail.
Results were rendered using MRIcroGL (www.nitrc.org/projects/
mricrogl).

RSA analysis
We performed RSA using the linear discriminant contrast (LDC) to
quantify dissimilarities between activation patterns. The analysis used
the RSA toolbox (Nili et al., 2014), in conjunction with in-house soft-
ware. The LDC was chosen because it is multivariate noise-normalized,
potentially increasing sensitivity, and is a cross-validated measure which
is distributed around zero when the true distance is zero (Walther et al.,
2016). The LDC also allows inference on contrasts of dissimilarities
across multiple pairs of task events. A pattern for each step of each com-
bination of cued task and distractor task was obtained, by averaging the
onset and epoch responses from the event-based GLM described above.
This resulted in 72 patterns in total in each run. For each pair of pat-
terns, the patterns from run 1 were projected onto a Fisher discriminant
fitted for run 2, with the difference between the projected patterns pro-
viding a cross-validated estimate of a squared Mahalanobis distance.
This was repeated projecting run 2 onto run 1, and we took the average
as the dissimilarity measure between the two patterns. All pairs of pat-
tern dissimilarities therefore formed a symmetrical representational dis-
similarity matrix (RDM) with zeros on the diagonal by definition. To
compare dissimilarity magnitude across ROIs of different sizes, the LDC
values were normalized by dividing by the number of voxels within each
ROI.

Representation of information within ROIs
As for univariate analyses, we first performed RSA analysis using activa-
tion patterns from the DMN and MD networks treated as single large
ROIs, and then repeated it on component ROIs. To introduce measures
for room, task, step, and item representation, Figure 2A shows a simpli-
fied version of the full 72� 72 RDM, collapsing across distractor task to
produce just a 24� 24 matrix. In this matrix, each cell represents a
cross-validated LDC dissimilarity between the corresponding two task
events. These included event pairs that shared the same cued task (red
cells; e.g., “take food from fridge” and “wash vegetables”); events that
shared the same room but different cued tasks (purple cells; e.g., “take
food from fridge” and “hand mix batter”); and events that differed in
both cued task and room (orange cells; e.g., “take food from fridge” and
“use facial wash”). All event pairs additionally differed in item.
Saturation of the colors is used to indicate the difference in steps
between event pairs. The cells on the diagonal (white) are zero by defini-
tion as they do not reflect a comparison between different task events.

To extract measures for room, task, step and item representation, we
fit values in the matrix with the regression model illustrated in Figure
2B. In this model, the LDC estimate for any entry in the matrix is the lin-
ear sum of components from differences in target item (contributing
equally to all cells; major diagonal of the matrix ignored), room, task,
and step. As a measure of step representation, we used the slope of the
function relating LDC estimate to step difference. For example, steps 1
and 2 have a step difference of 1, while steps 1 and four have a step dif-
ference of 3. As a measure of room representation, we used the differ-
ence in LDC estimate for different room and same room/different task
cases (Fig. 2B, orange vs purple). As a measure of task representation, we
used the difference in LDC dissimilarity for same room/different task

and same task cases (Fig. 2B, purple vs red). As item difference contrib-
uted similarly to all cells, it was estimated as the intercept of the full
model (Fig. 2B, black dot).

For the actual fitting, we used a more complex model based on the
full 72� 72 RDM, used to remove a potential visual confound (Fig. 2C).
For any cell in the full RDM, search arrays could share items from zero,
one, or two tasks. For example, consider an episode with cued task
“make a stew” and distractor items coming from the distractor task
“wash face.” Search arrays from this episode would share no items with
search arrays from an episode of “bake cupcakes” with distractors from
“scrub toilet”; arrays would share items from one task when compared
with the episode “make a stew” with distractors from “wash face”; arrays
would share items from both tasks when compared with the episode
“wash face” with distractors from “make a stew.” In the full model, we
added an additional regressor to remove this potential visual confound.
This was defined as “visual difference,” with values of 1 for no shared
tasks, 0.5 for one shared task, and 0 for two shared tasks. The mean
model coefficients across subjects were tested against zero using 1-tailed
t tests, and multiple comparisons across ROIs were corrected using FDR
, 0.05 per measure.

To account for the possibility that differences in reaction time (RT)
between conditions might contribute to the neural pattern differences, a
subsequent control analysis added RT difference as an extra covariate in
the model. For each participant, the matrix of signed RT differences
between all pairs of task steps from one run were multiplied element-
wise by the signed differences from the other run. This resulted in an
RDM containing a cross-validated measure of RT differences per partici-
pant, calculated in a way analogous to the brain-derived LDC RDM,
again with an expected value of zero if there is no true RT difference.
The regression model for LDC values was then re-calculated, covarying
these cross-validated RT differences.

Searchlight analyses
To test for representation of task information outside the predefined
networks, we implemented a whole-brain searchlight procedure
(Kriegeskorte et al., 2006) to perform pattern analyses in spherical ROIs
(radius = 10 mm) centered on every voxel of the brain in turn. The pro-
cedure was identical to that described in the ROI analysis. Pairwise dis-
similarities were derived from the 72� 72 RDM in each sphere, and
modeled as a linear combination of differences in room, cued task, step
and visual search array items. Model coefficients were assigned to the
central voxel of each sphere, resulting in whole-brain maps of informa-
tion representation for each participant. These maps were smoothed
with a 10-mm FWHM Gaussian filter before performing second-level
random effects analyses across participants.

Experimental design and statistical analysis
All statistical tests were performed across 42 participants (20 males, 22
females), with no between-subject factors. Behavioral analyses used
repeated measures ANOVA to compare conditions. Univariate fMRI
analyses used one-sample (paired-sample) two-tailed t tests to compare
responses against baseline, between conditions, or linear contrasts of
regression coefficients, and repeated measures ANOVA to compare
multiple conditions. RSA fMRI analyses used one-sample one-tailed t
tests to test for greater-than-chance representation of each information
type, paired-sample two-tailed t tests to compare networks, and repeated
measures ANOVA to test the interaction of information type and net-
work. Within-subject factors are detailed in the relevant Results sections.
For each analysis, multiple comparisons (across networks, component
ROIs, or brain voxels) were accounted for by controlling the FDR at
0.05, unless noted otherwise. Effect sizes were calculated using partial
h -squared for ANOVAs and Cohen’s d for t tests. Analyses were per-
formed using MATLAB (The MathWorks), SPM 12 (http://www.fil.ion.
ucl.ac.uk/spm), and SPSS (version 25). In repeated measures ANOVA,
Greenhouse–Geisser correction was used to adjust for non-sphericity.
Data are available on request.
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Results
Behavioral results
Overall accuracy was 97.5 6 0.4% (mean 6 SEM) and overall
reaction time was 8496 23ms. To match the fMRI analysis, the
behavioral analysis discarded occasional episodes with.25%
errors, where it was likely that the correct cue was not being fol-
lowed (see Materials and Methods; zero to six discarded episodes
across participants). For the remaining episodes, we calculated
percentages of response errors, and mean reaction times on cor-
rect trials only.

Error responses were broken into four error types (Fig. 3,
left): choosing an item from the correct task but wrong step,
wrong task but correct step, wrong task and step, and missed
response. Results show poorest performance for the first search
array of each step, when participants were required to switch
from one step to the next. A step (steps 1–4)� search array (first,
second, third within each step) � task ANOVA was performed

for each type of error. All error types showed a main effect of
step (all F(3,123). 3.35, all ps, 0.04, all hp

2 . 0.08), and linear
trend analyses indicated an overall increase in error across steps
(all F(1,41). 4.25, all ps , 0.05, all hp

2 . 0.09). A main effect of
search array was found for all error types except for wrong task
and step (all F(2,82). 3.72; ps , 0.04, hp

2 . 0.08), reflecting
higher errors on the first search array of each step. Finally, cor-
rect task wrong step errors showed a significant step � array
interaction (F(6,246) = 5.89, p, 0.001, hp

2 = 0.16). There were no
main effects of task, or interactions with task, for any error type
(all ps. 0.08, all hp

2 , 0.05).
A similar ANOVA for reaction time (Fig. 3, right) also

showed a significant main effect for step (F(3,123) = 15.14,
p, 0.001, hp

2 = 0.27), a significant main effect for search array
(F(2,82) = 215.42, p, 0.001, hp

2 = 0.84), and a significant step �
array interaction (F(6,246) = 9.13, p, 0.001, hp

2 = 0.18). In this
analysis, there was also a significant main effect of task

B

CA

Figure 2. Illustration of RSA. A, Simplified conceptual RDM. LDC dissimilarities are computed between every possible pair of events (six cued tasks� four steps), generating a 24� 24 RDM.
Diagonal cells are zero by definition as they reflect dissimilarity between identical events. Off-diagonal cells reflect pattern dissimilarity between events that always differ in search item, with
varying additional differences in room, cued task, and step. These included event pairs that shared the same cued task (red cells), shared the same room but different cued task (purple cells),
or differed in both room and cued task (orange cells). Saturation indicates the difference in steps between event pairs. B, Hypothetical pattern dissimilarities resulting from room, task, and
item representation across step differences. Item representation can be estimated as the intercept, i.e., estimated LDC dissimilarity in in the absence of room, task, or step differences. C, Full
model RDM. LDC dissimilarities were computed between every possible pair of event types (six cued tasks � four steps � three distractor tasks), generating a 72� 72 RDM. Colors as in A.
Saturation indicates the difference in steps between event pairs, and brightness indicates the difference in the possible stimuli presented in the visual search arrays (see main text). The six tasks
are labeled K1, K2, K3, B1, B2, B3 (with K indicating a kitchen task and B indicating a bathroom task). The asterisk indicates the only case where item is matched; this was excluded from the
model fit, so that the intercept could be interpreted as item representation.
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(F(5,205) = 23.36, p, 0.001, hp
2 = 0.36), as well

as an interaction with step (F(15,615) = 15.14,
p, 0.001, hp

2 = 0.27) but not with search
array (F(10,410) = 1.63, p= 0.13, hp

2 = 0.04);
the 3-way interaction was also significant
(F(30,1230) = 7.48, p, 0.001, hp

2 = 0.15). RT
varied idiosyncratically across tasks and steps,
but in every case the first response was slow-
est. Across tasks and steps, the mean RT for
the first response ranged from 0.88 to 1.14 s;
for the second and third responses, mean RT
ranged from 0.69 to 0.86 s.

Univariate results
ROI analysis
The FIR model provided estimates of the
observed BOLD response time course across
a pair of task episodes, in successive 1.5 s
windows starting from the onset of the first
step. In the main analysis, we extracted these FIR responses from
a priori networks (Fig. 4A,B, left). The MD network exhibited
positive activity throughout each episode, along with four peaks
corresponding to the four steps (Fig. 4A, left). These results
suggest involvement in setting up and executing individual task
steps. Additionally, overall MD activity gradually increased
throughout the task episode, suggesting that the MD network is
also sensitive to progress through the episode. For DMN regions,
in contrast, tonic activation began below baseline, but also gradu-
ally increased through the episode, culminating in a large phasic
response at episode completion (Fig. 4B, left). For both networks,
the signal clearly resets between episodes.

To quantify the phasic and tonic components contributing to
the BOLD response at each task step, we performed a comple-
mentary event-related GLM analysis with onset and epoch
regressors modeling each task step (Fig. 4A,B, right). The
regressors are illustrated in Figure 4C for a single episode.
Four onset regressors were designed to reflect phasic activity
at the onset of each task step. The final offset regressor was
included to capture phasic activity at the end of the episode.
Thus, the first onset regressor and the final offset regressor
captured transient responses to episode boundaries, while
the remaining onset regressors captured responses to step
transitions within an episode. Finally, four epoch regressors
were designed to reflect tonic activity throughout each step.
Note that the activation values associated with the FIR, onset,
and epoch regressors are in arbitrary units as their scale
depends on the height of the regressors.

Within the MD network (Fig. 4A, right), there were strong
onset responses, in line with FIR results. Contrasts with baseline
showed that all four step onsets were significantly greater than
baseline (all ts. 10.91, all ps , 0.001, all ds. 1.68) and there
was a smaller yet significant offset response (t= 2.48, p= 0.02,
d= 0.38). A one-way repeated measures ANOVA showed a sig-
nificant difference across the four step onsets (F(3,123) = 5.60,
p, 0.01, hp

2 = 0.12), with a quadratic (F(1,41) = 21.61, p, 0.001,
hp

2 = 0.35) but not linear (F(1,41) = 0.22, p= 0.64, hp
2 , 0.01)

trend across steps, reflecting an increasing response across steps
2–4, but a disproportionate response to the onset of the first step,
i.e., the onset of the entire episode. Looking at epoch regres-
sors, all four epoch responses were greater than baseline (all
ts. 3.96, all ps, 0.001, all ds . 0.61). ANOVA showed a sig-
nificant main effect of step (F(3,123) = 7.73, p = 0.01, hp

2 =
0.16), as well as a significant linear (F(1,41) = 9.48, p, 0.01,

hp
2 = 0.19) and quadratic trend (F(1,41) = 5.08, p = 0.03, hp

2 =
0.11), reflecting an increasing but saturating response.

The DMN network showed a different profile (Fig. 4B,
right). Only the onset of the first step (t = 3.22, p, 0.01,
d = 0.50) and the offset response at the end of the episode
(t = 4.38, p, 0.001, d = 0.68) were greater than baseline. Step
onsets 2–4 were not significantly different from baseline (all
|t|s, 2.09, all ps. 0.07, all |d|s, 0.33). ANOVA of the four
step onsets showed a significant main effect of step
(F(3,123) = 9.87, p, 0.001, hp

2 = 0.19), as well as significant
linear (F(1,41) = 9.70, p, 0.01, hp

2 = 0.19) and quadratic
(F(1,41) = 7.16, p = 0.01, hp

2 = 0.15) trends, consistent with
the larger response to the first onset. Among the epoch
responses, the first step was significantly lower than baseline
(t = �3.21, p = 0.01, d = �0.49; for steps 2–4 all |t|s, 1.60, all
ps . 0.23, all |d|s, 0.19). ANOVA showed a significant
main effect of step (F(3,123) = 18.42, p, 0.001, hp

2 = 0.31), as
well as a significant linear trend (F(1,41) = 38.89, p, 0.001,
hp

2 = 0.49), suggesting an increase in activation across steps.
As seen in the FIR time course, this implies a gradual
release of tonic deactivation across the duration of the task
episode.

To compare the response profile of the two networks directly,
we performed a series of ANOVAs with network as an additional
factor. A first ANOVA examined tonic responses, with factors of
epoch response (steps 1–4) and network. There was a significant
main effect of step (F(3,123) = 15.25, p, 0.001) and network
(F(1,41) = 83.86, p, 0.001), but no interaction (F(3,123) = 2.28,
p= 0.08), suggesting the tonic increase was similar for both
networks. A second ANOVA focused on sensitivity to epi-
sode boundaries, with factors of boundary response (step 1
onset, step 4 offset) and network. There were significant
main effects for step (F(1,41) = 29.84, p, 0.001) and network
(F(1,41) = 88.58, p, 0.001), and a significant interaction
(F(1,41) = 128.91, p, 0.001) that reflected strongest responses
to episode onset in the MD network (Dosenbach et al.,
2006), and strongest responses to episode offset in the
DMN. A final ANOVA examined responses to step transi-
tions within an episode, with factors of step onset (steps 2–
4) and network. There were significant main effects of step
(F(2,82) = 4.23, p = 0.02) and network (F(1,41) = 235.53, p,
0.001), as well as a significant interaction (F(2,82) = 7.36,
p = 0.001), reflecting stepwise increases in the MD network
but not the DMN.

To examine whether the profiles of different regions within
each network showed unique responses, we performed similar

Figure 3. Behavioral performance summarized according to four possible error types (choosing an item from correct
task but wrong step, wrong task but correct step, wrong task and step, and missed response), as well as reaction time
for correct responses. For each step, the three bars indicate performance on each of the three successive search arrays.
Error bars indicate SEM.
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Figure 4. Univariate ROI analysis of MD network (A) and DMN (B) BOLD response across task episodes. For each network, the left plot shows results of the FIR analysis, with BOLD response
as a function of time as participants progressed across two consecutive episodes. The upper right plot shows b estimates associated with step onset regressors (bars 1–4), and with the end of
the episode (bar “off”). The lower right plot shows b estimates for epoch regressors per step. Error bars indicate SEM. C, Example regressors modeling the transient onset/offset responses (or-
ange) and the sustained epoch responses (purple) to each step within an episode. Vertical gray lines mark the beginning/end of each step. Thicker gray lines indicate episode boundaries;
thicker orange lines indicate responses to these episode-boundary transitions. D, FIR time-courses and activation profiles of onset and epoch responses in individual ROIs within the MD network
(red) and DMN (yellow). The layout is the same as panel A. aMFG/mMFG/pMFG: anterior, middle, and posterior middle frontal gyrus; pdLFC: posterior-dorsal lateral frontal cortex; IPS: intrapar-
ietal sulcus; AI: anterior insula; ACC: anterior cingulate cortex; IPL: inferior parietal lobule; PCC: posterior cingulate cortex; MPFC: medial prefrontal cortex; IFG: inferior frontal gyrus; Temp: lat-
eral/anterior temporal cortex; PHC: parahippocampal cortex. For all panels, note that activation values associated with the FIR, onset, and epoch regressors are in arbitrary units as their scale
depends on the regressor height.
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analyses on individual ROIs (Fig. 4D). Trends of activation
across the four steps for individual ROIs were largely similar to
the network in which they belong, although there were some dif-
ferences between ROIs. Within the MD network, aMFG and
AI showed negative epoch responses, in contrast to other
regions. The episode offset response was also especially high
in aMPFC and especially small in pdLFC and IPS. Within the
DMN, PHC showed positive epoch responses, in contrast to
other regions.

Whole-brain analysis
Results from the whole-brain analysis, again separating onset
and epoch regressors, are presented in Figure 5. Figure 5A shows
responses within an episode, with the left-hand side showing
contrasts of the mean onset (Fig. 5Ai) and epoch (Fig. 5Aii)
response against baseline, and the right-hand side showing
increasing trends across steps for the onset response (Fig.
5Aiii) and the epoch response (Fig. 5Aiv). The onset of step 1
and the offset of step 4 are special, since these correspond to
the onset and offset of a whole episode, and it is evident from
the ROI analysis that their neural response also differs from
step onsets within an episode. Therefore, these episode-
boundary responses were not included in the within-episode
contrasts, but were instead examined separately. Figure 5B
shows transient responses at episode onset (Fig. 5B, left) and
offset (Fig. 5B, right), contrasted against both between-task
baseline (Fig. 5Bi,Biii) and against the adjacent step onset
response (Fig. 5Bii,Biv).

In comparison to baseline, the mean step onset response (Fig.
5Ai) was significantly positive throughout the MD network, as

well as visual cortex, motor cortex, and subcortical structures
including the cerebellum. The mean step onset response was sig-
nificantly negative throughout the DMN. Mean epoch responses
greater than baseline (Fig. 5Aii) were also extensive, including
parietal and frontal regions overlapping with the MD ROIs, as
well as expected regions of visual and motor cortex. Again,
we saw negative epoch responses in much of the DMN. We
next examined activity changes across steps within an epi-
sode. An increase in the amplitude of the step onset
response was restricted to MD regions (Fig. 5Aiii). In con-
trast, a linear increase in the tonic epoch response was
widespread across most of the brain (Fig. 5Aiv). The only
exception was areas of visual cortex, where both onset and
epoch responses decreased across an episode. Finally, we
were interested in the response at episode boundaries, i.e.,
the onset of the first step (initiation of an episode) and the
offset of the fourth step (completion of an episode). The
response to step 1 onset was substantial across much of
the brain, whether compared with baseline or to step 2
onset (Fig. 5Bi,Bii), including visual cortex and parts of
DMN and MD networks. The episode completion response
was also significantly greater than baseline in many brain
regions (Fig. 5Biii), including parts of both MD and DMN
networks, while deactivations were mainly observed in vis-
ual cortex. Interestingly, this response exceeded the previ-
ous (step 4) onset response in the DMN but not the MD
network (Fig. 5Biv).

The results may be summarized as follows. Most MD regions,
along with visual cortex, showed positive onset and epoch
responses to all steps, suggesting direct involvement in setting up
and executing task steps. DMN regions, in contrast, showed
largely negative step and epoch responses. In much of the brain,

B

A

Figure 5. Whole-brain univariate analysis. A, Responses within an episode, including (i) mean phasic responses to the onset of each step; (ii) mean tonic responses across the duration of
each step; (iii) increases in the phasic response across step onsets; (iv) increases in the tonic response across step epochs. B, Transient responses at episode boundaries, including (i) episode
onset versus baseline; (ii) episode onset versus step 2 onset; (iii) episode offset versus baseline; (iv) episode offset versus step 4 onset. Colors indicate t values, with warm and cool scales indi-
cating positive and negative tails, respectively. All activation maps are thresholded at FDR, 0.025 per tail.
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sensitivity to the large-scale structure of the task episode was evi-
dent in gradually increasing activity as the episode progressed,
along with phasic responses at onset and offset of the whole epi-
sode. Interestingly, increasing amplitude of phasic intra-episode
step responses was highly specific to the MD network, and an
episode offset response exceeding the preceding step onset was
largely specific to the DMN.

RSA results
Results of the RSA analysis are shown in Figure 6. In Figure 6A,
LDC representational distance estimates are plotted for various
comparisons of events (see also Fig. 2), based on activation pat-
terns across the DMN and MD networks. The coefficients of the
linear model fit to these data are plotted in Figure 6B, quantifying
representation of different types of information: room (greater

C

BA

Figure 6. A, LDC representational distance estimates, modeled as in Figure 2B. Data points are plotted separately for different levels of visual difference (Fig. 2C) and are offset fractionally
along the x-axis for visibility. Lines represent the mean linear model fit, estimated using all data (except matched-item comparisons). Visual difference = 0: displays based on items from same
two tasks; difference = 0.5, one shared task; difference = 1, no shared tasks. Note that pairs from the same cued task (red) necessarily shared display items from at least one task (no data in
top row), while different-task same-room pairs (purple) never shared items from two tasks (no data in bottom row). B, top, LDC contrasts representing strength of room, cued task, step, and
item representation in DMN and MD network-level ROIs. Asterisks above each bar indicate significance of one-tailed t tests against zero, after controlling FDR,0.05 across ROIs; horizontal lines
indicate a significant two-tailed paired t test between networks. Bottom, Task representation broken down by step difference in the DMN network ROI. C, Representation of room, task, step,
and item information in individual ROIs in the MD network (red) and DMN (yellow). Asterisks indicate significance of 1-tailed t tests against zero, controlling FDR, 0.05 across ROIs, separately
for each information type. All panels: error bars represent61 SEM across subjects; *p, 0.05, **p, 0.01, ***p, 0.001.
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LDC for different room than same room), cued task (greater
LDC for different task then same task), step (the slope as a func-
tion of step difference), and item (measured by the intercept of
the full model). Analyses of individual ROIs within the two net-
works are shown in Figure 6C. Results of a whole-brain search-
light analysis are shown in Figure 7.

Network comparison
First, we asked whether activity patterns in the MD and DMN
networks differentially carried information about distinct aspects
of task episodes. A 2 (network)� 4 (type of information)
repeated measures ANOVA showed a significant interaction
(F(3,123) = 5.01, p=0.006), as well as a main effect of information
type (F(3,123) = 4.90, p=0.008) but not network (F(1,41) = 0.36,
p=0.55). The interaction was driven by the DMN having a rela-
tive preference for representing the identity of the cued task,
while the MD network had a relative preference for step-level
representation (step position, and item identity). We next
assessed representation of each information type in turn.

Room representation
Room representation would appear as a separation between the
orange and purple lines in Figure 6A. Neither the DMN nor MD
network ROIs showed significant room representation (both
ts, 0.25, both ps. 0.39, both ds, 0.04), and there was no dif-
ference between the networks (t(41) = 0.023, p= 0.98). Similarly,
none of the individual ROIs showed significant room representa-
tion (all ts, 1.70, all ps. 0.11, ds, 0.27), although it was
numerically strongest in the MPFC. No voxels survived FDR cor-
rection in the whole-brain searchlight analysis.

Task representation
Representation of the cued task appears as a separation between
the red and purple lines in the middle row of Figure 6A. Given
no effect of room, converging evidence comes from the separa-
tion of red and orange lines in the bottom row. The DMN net-
work ROI showed significant representation of the cued task
(t(41) = 2.18, p=0.02, d= 0.33), while the MD network ROI did
not (t(41) = 0.26, p=0.40, d= 0.04); the difference between net-
works was also significant (t(41) = 2.52, p= 0.02, d= 0.39). None
of the individual ROIs showed significant task representation af-
ter FDR correction for multiple comparisons across ROIs. PCC
and ACC showed task representation before correction (both
ts. 1.74, both ps , 0.044, both ds . 0.27). Task representation
was positive in all six DMN ROIs, but only four of seven MD
ROIs. No voxels survived FDR correction in the whole-brain
searchlight analysis.

It is possible that the response to regressors modeling adja-
cent steps could be similar because of imperfect temporal

separation of the signal, such that pairs of steps within the same
task appear more similar than those from different tasks because
of differences in temporal separation in addition to differences in
task identity. We examined this possibility by fitting four sepa-
rate linear regression models using subsets of cells, chosen to dif-
fer in separation of one, two, or three steps. That is, we extracted
LDC values from cells of the DMN network RDM that repre-
sented one step apart (1 vs 2, 2 vs 3, and 3 vs 4), two steps apart
(1 vs 3 and 2 vs 4), or three steps apart (1 vs 4), and, in each case,
fitted a model with room, cued task, and visual difference regres-
sors. If temporal proximity were contributing to activity pattern
similarity, and hence to apparent task representation in the
DMN, we should expect a stronger effect for steps closer together
in time. However, we found no evidence of any difference in task
representation across these three conditions (F(2,82) = 0.39,
p= 0.61, hp

2 = 0.01), nor a linear trend as a function of step
(F(1,41) = 0.44, p=0.51, hp

2 = 0.01). Task representation within
the DMN is shown broken down by step difference in Figure 6B.

Step representation
Step representation, visible as the linear slopes in Figure 6A, was
significant in both the DMN (t(41) = 6.34, p, 0.001, d=0.98) and
MD (t(41) = 7.25, p, 0.001, d=1.12) network ROIs. The MD net-
work showed significantly greater step representation than the
DMN (t(41) = 2.38, p=0.02, d=0.37). Step representation was
also significant in all the individual ROIs (all ts. 2.02, all ps
, 0.03, all ds . 0.31). This was not surprising, as in our univari-
ate analysis we observed strong linear trends across the episode
for most of the brain (Fig. 5Aiv). Similarly, in the whole-brain
searchlight analysis (Fig. 7), step representation was significant
across most of the brain, although strongest in visual cortex and
with local peaks in MD regions.

Item representation
Both DMN (t(41) = 3.15, p=0.002, d= 0.49) and MD (t(41) = 4.00,
p, 0.001, d=0.62) networks showed significant representation
of item, visible as a positive intercept in the lower row of Figure
6A. The two networks did not significantly differ in item repre-
sentation (t(41) = 1.88, p=0.07, d=0.29). In the individual ROIs,
item representation was especially strong in parietal regions,
with only IPS (t(41) = 4.58, p, 0.001, d= 0.71) and IPL (t(41) =
2.89, p, 0.01, d= 0.44) showing significant item representation
after FDR correction for multiple comparisons [before correc-
tion, item representation was also present in ACC (t(41) = 2.05,
p= 0.02, d=0.32) and PCC (t(41) = 1.90, p= 0.03, d=0.29)]. Item
representation was positive in all six DMN ROIs and six of seven
MD ROIs. In the whole-brain searchlight analysis (Fig. 7), item
representation was strongest in visual cortex, extending into the
parietal lobe, especially along the IPS, and with scattered foci in
lateral frontal regions.

Results are not explained by differences in reaction time
Since RTs were faster for some tasks and items than others, RT
differences could conceivably contribute to neural pattern differ-
ences between conditions. To test this, we performed a control
analysis that added cross-validated RT difference as a covariate
when modeling neural pattern difference between conditions.
RT difference did not explain unique variance in neural pattern
difference for either network (MD: t(41) = �1.04, p=0.85, d =
�0.16; DMN: t(41) = �1.39; p= 0.91, d = �0.21), and, impor-
tantly, its inclusion in the model did not change the main find-
ings. Specifically, the interaction between network and type of
represented information remained (F(3,123) = 3.75, p= 0.02, hp

2 =

Figure 7. Representation of step and item across the whole brain, calculated using local
spherical searchlights, and thresholded at FDR, 0.05. No voxels survived this threshold for
room or task representation.
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0.08); task was represented in the DMN (t(41) = 2.08, p= 0.02,
d= 0.32) but not the MD network (t(41) = 0.26, p=0.40, d= 0.04),
with a significant difference between networks (t(41) = 2.29,
p=0.03, d= 0.35), and the DMN task representation not differ-
ing with step distance (F(2,82) = 0.59, p=0.53, hp

2 = 0.01); step
was represented in the DMN (t(41) = 7.32, p, 0.001, d=1.13)
and the MD network (t(41) = 8.03, p, 0.001, d= 1.24), but more
strongly in the MD network (t(41) = 2.84, p=0.007, d= 0.44);
item was represented in the DMN (t(41) = 2.88, p=0.003,
d= 0.44) and the MD network (t(41) = 3.39, p=0.001, d= 0.52),
with no difference between them (t(41) = 1.26, p=0.22, d= 0.19).
Thus, we find no evidence that the difficulty of particular condi-
tions, as indexed by RT, explains the observed pattern differen-
ces, or representation of step, item, or task.

To summarize, we found that both networks represent the con-
tent (item) and sequential position (step) of individual subgoals,
but the MD network favors this step-level information, while the
hierarchically higher level of task identity is preferentially repre-
sented in the DMN.We found no reliable evidence for representa-
tion of task groupings (room) at the highest hierarchical level.

Discussion
The DMN and MD networks are expected to jointly support
memory-guided cognitive control (Margulies and Smallwood,
2017). Using fMRI, we examined how they respond to and repre-
sent different aspects of multistep task episodes. MD regions
responded positively throughout an episode, with separate peaks
for successive steps. The DMN instead showed overall deactiva-
tion, and minimal response to intra-episode step transitions.
Both networks, with widespread other regions, were sensitive to
large-scale episode structure, exhibiting phasic responses to epi-
sode onset, and gradually increasing tonic activity across an epi-
sode. MD regions uniquely showed progressively increasing
phasic step responses, while an episode offset response exceeding
the final step response was characteristic of the DMN. RSA
revealed distinct information profiles within the networks. The
MD system represented individual items but not cued tasks,
while the DMN represented both items and tasks. Step was rep-
resented by both networks, but more strongly by the MD
network.

We consider a temporal hierarchy of task goals, with lower-
level items/steps nested within higher-level tasks/episodes. Thus,
multivariate item representation, plus phasic univariate responses
per step, imply sensitivity to the lower level; task representation,
plus univariate responses to episode boundaries and intra-episode
trends, indicate sensitivity to the higher level. Step representation
is more ambiguous, implying multilevel information by indexing
a step’s position within an episode. Thus, we do not find an exclu-
sive mapping between networks and levels of the task hierarchy;
rather, both networks are sensitive to both levels. Similarly, both
networks exhibit slow dynamics (ramping epoch responses) and
fast dynamics (transient responses to episode boundaries, plus
steps in MD regions). Nonetheless, whenever networks differed, in
either univariate response or multivariate representation, it sug-
gested preferential step-level and episode-level sensitivity in MD
and DMN regions, respectively. This is consistent with closer cou-
pling of MD regions to moment-by-moment perception and
action, while the DMN is maximally distant from sensorimotor
cortex (Margulies et al., 2016). Although we do not attempt to
map the task hierarchy onto a neural hierarchy, such relationships
may exist both at scales more global (Vidaurre et al., 2017) and

more local (Badre and Nee, 2018) than the networks considered
here.

Relative sensitivity of MD regions to step transitions, identity,
and item content, aligns with prior research. Many experiments
demonstrate representation of task-relevant items in MD regions
(Freedman et al., 2001; Li et al., 2007; Woolgar et al., 2011), with
radical reorganization between task steps (Sigala et al., 2008),
and MD activity at transitions between events and subgoals
(Sridharan et al., 2007; Farooqui et al., 2012). Together with these
previous findings, our results suggest that, as a task episode pro-
gresses, MD representations in particular are in constant flux,
reorganizing to represent the detailed contents of each step.
Representational content includes the step’s position within the
episode and the identity of the associated item, which in our task
may serve as an attentional template for visual search decisions
(Desimone and Duncan, 1995), consistent with strong item rep-
resentation also in occipital regions.

In contrast, the DMN responded strongly at episode bounda-
ries, without significant responses to intermediate step transi-
tions. This echoes reports of DMN activation at boundaries
between extended events (Speer et al., 2007), and at transitions to
new tasks (Smith et al., 2018). Our data showed, however, that
episode onset and offset responses were both widespread in the
brain (Fox et al., 2005a), while the relative magnitude of the offset
response was most specific to the DMN. Possibly, the DMN, along
with other brain regions, is involved in long-term memory re-
trieval of an entire task sequence at episode initiation, and consoli-
dation at episode completion (Schneider and Logan, 2006;
Farooqui and Manly, 2019). Whether these findings depend on
sematic knowledge associated with our life-like tasks (Humphreys
et al., 2015; Murphy et al., 2018) requires further experimentation.
Marked DMN responses to episode boundaries but not step tran-
sitions, along with representation of task identity, support pro-
posals that the DMN represents information that remains stable
over long timescales (Lerner et al., 2011; Chen et al., 2016).

The DMN also represented items, i.e., specific elements within
an episode as well as broader task context. Joint representation of
both hierarchical levels aligns with the concept of a “situation
model,” a cognitive representation of relationships between ele-
ments of an episode (Ranganath and Ritchey, 2012). More anterior
DMN subregions are implicated in schema representation, captur-
ing similarities across multiple episodes (Preston and Eichenbaum,
2013; Ghosh and Gilboa, 2014; Robin and Moscovitch, 2017), so
might have been expected to represent task groupings by room.
Room representation was numerically strongest in the MPFC, but
not significant. Stronger room representation might require group-
ing of tasks to be behaviorally relevant rather than incidental.
Despite item and task representations coexisting in the DMN, con-
sistent with a compositional code, this experiment cannot deter-
mine whether they are bound into conjunctive representations, or
maintained as independent factorized components (Behrens et al.,
2018): because items were task-unique, item-task conjunctions are
indistinguishable from item representation. Disentangling these
different forms of co-representation requires the same item to
appear in different contexts. Such designs have identified item-con-
text conjunctions in the hippocampus (Hsieh et al., 2014), item-
order associations in frontal and temporal regions (Reverberi et al.,
2012; Kalm and Norris, 2014), rule-rule compositionality in lateral
frontal cortex (Cole et al., 2011), and factorized sequence and posi-
tion codes in mid-cingulate cortex (Holroyd et al., 2018) and in
electrophysiological signals during learning and replay (Liu et al.,
2019).
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Both networks, along with most brain regions, tracked intra-
episode progress, shown by ramping univariate responses. This
is consistent with reports of increasing activity across task epi-
sodes in specific MD (Farooqui et al., 2012; Desrochers et al.,
2015, 2019) and DMN regions (Vatansever et al., 2017) but sug-
gests a very global property of brain function (Farooqui and
Manly, 2018). While some visual areas showed decreasing activ-
ity, perhaps reflecting adaptation to sensory input (Grill-Spector
et al., 2006), most regions showed gradually increasing activity,
which reset between episodes. As this effect was so widespread, it
is difficult to offer a precise interpretation, and different areas
may increase for different reasons (Kalm and Norris, 2017). For
example, ramping responses could variously reflect monitoring
or reconfiguration of control representations that may increase
in demand as an episode unfolds (Farooqui et al., 2012;
Desrochers et al., 2015, 2019); a transition from effortful rule re-
trieval to more automatic responding (Vatansever et al., 2017);
reducing prospective memory load (Momennejad and Haynes,
2012) as steps are completed; increasing expectation of episode
completion (Shidara and Richmond, 2002); or integration of in-
formation into an episode representation (Hasson et al., 2008;
Dumontheil et al., 2011; Lerner et al., 2011). A global ramping
response is also reminiscent of models of multistep decision-
making, in which evidence accumulation is massively parallel,
within serially-chained temporal chunks (Zylberberg et al., 2011;
Dehaene and Sigman, 2012). In rats, anticipation of distant goals
has been associated with slowly ramping dopamine release
(Howe et al., 2013), suggesting a potential mechanism for such
widespread cortical effects. Contrasting with the global nature of
the tonically increasing response, progressive increases in the
phasic step response appeared highly specific to MD regions.
Speculatively, phasic MD responses may track progress in dis-
crete steps, whereas global ramping signals reflect a more contin-
uous measure of progress. A similar distinction between neural
signals that track progress in smooth versus action-linked man-
ners has also been observed in the rat (Ma et al., 2014).

Since opposing sensitivity to task difficulty is characteristic of
both networks, cognitive demand could potentially influence the
current findings. Behavioral results confirm that difficulty varies
across an episode. Multiple cognitive factors undoubtedly con-
tribute, as discussed above, requiring additional experiments to
distinguish. However, while some univariate findings match clas-
sical observations of opposing “task-negative” versus “task-posi-
tive” DMN and MD network responses, respectively (e.g., mean
activation/deactivation during the task, vs intertrial baseline)
other results are not easily explained in this way. One example is
the tonically increasing response, which follows the same trend
for both networks. Regarding RSA, modeling cross-validated
between-condition RT differences provided no evidence that dif-
ficulty, as indexed by RT, explained unique variance in pattern
differences, or contributed to step, item, or task representation.
We also note that a simple difficulty-based effect would not obvi-
ously explain the crossed interaction between network and repre-
sented information type.

Hierarchical control structures link task goals, context, spe-
cific actions, and serial position codes, allowing learned rules to
guide ongoing behavior (Rosenbaum et al., 1983; Schneider and
Logan, 2006; Badre, 2008). Our results describe how broad
brain networks collaborate in episodic control of task sequences,
with MD and DMN regions exhibiting distinct time-courses
throughout the episode, and different profiles of information
representation. The DMN may link individual cognitive opera-
tions and their broader context, consistent with a “situation

model” (Ranganath and Ritchey, 2012). The MD system, along
with sensory regions, tracks the detailed content of individual
cognitive operations, locked to discrete events within the epi-
sode. Both networks respond to the broad temporal structure of
task episodes, with phasic activity at episode boundaries, and
gradually increasing activity within an episode. Acting together,
they reflect the hierarchical structure of goal-directed behavior.
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