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Abstract. We consider large deviations of the dynamical activity — defined as
the total number of configuration changes within a time interval — for mean-
field and one-dimensional Ising models, in the presence of a magnetic field. We
identify several dynamical phase transitions that appear as singularities in the
scaled cumulant generating function of the activity. In particular, we find low-
activity ferromagnetic states and a novel high-activity phase, with associated
first- and second-order phase transitions. The high-activity phase has a negative
susceptibility to the magnetic field. In the mean-field case, we analyse the
dynamical phase coexistence that occurs on first-order transition lines, including
the optimal-control forces that reproduce the relevant large deviations. In the one-
dimensional model, we use exact diagonalisation and cloning methods to perform
finite-size scaling of the first-order phase transition at non-zero magnetic field.
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1. Introduction

Understanding dynamical fluctuation phenomena is important in many physical
contexts. Building on insights from fluctuation theorems [I], 2], tools of large-deviation
theory [3, 4, [B, [6] are now commonly used to gain insight into non-equilibrium
fluctuations. In particular, large deviations of time-integrated quantities have links to
ergodic behavior and are intrinsically linked with the emergence of long time scales,
as reviewed in [7]. Such methods have been applied to current fluctuations in driven
systems [8, 4l [9], and to the slow relaxation of glassy materials [10] 111 12} 13} [14].

A striking aspect of this theory is the existence of dynamical phase transitions [15]
16, 10, [17] whose physical signature is a qualitative change in the mechanism for
large fluctuations, often accompanied by spontaneous symmetry breaking. Within
the theory, these transitions correspond to singularities in certain large-deviation
functions, which are analogous to the free energy or entropy in equilibrium statistical
mechanics.

This article revisits a prototypical model system where such phase transitions
occur — the Ising model with Glauber dynamics [18, [19, [TT], 6] [20]. We consider
the mean-field version of the model (similar to [16]) and the model in one dimension
(similar to [I§]). The phase transitions that we consider are related to time-integrated
measurements of dynamical activity, defined as the number of times that the system
changes its state over a long time interval [0,7]. This extends previous work in several
ways, the most notable being the existence of new phase transitions (both first-order
and second-order) that occur for systems in magnetic fields, when considering large
fluctuations with high activity.

Since we consider the Ising model at equilibrium, the system is time-reversal
symmetric. The activity is also a time-reversal symmetric quantity, it is related to
the frenesy [21] which is the time-reversal symmetric part of the dynamical action
Hence, the large deviations considered in this work occur by mechanisms that are
time-reversal symmetric. This may be contrasted with the entropy production, which
is the time-reversal antisymmetric part of the action; its large-deviation behaviour
obeys fluctuation theorems [I], 2], 24} 25], which can be used to quantify the difference
in probability between a fluctuation mechanism and its time-reversed counterpart.

Large deviations of the dynamical activity (and other time-reversal symmetric
quantities) have been analysed extensively in models of glasses [10} 1T} 12} 26, 23] [27]
28]. These studies observed first-order dynamical phase transitions, when considering
large deviations where the activity is lower than its typical value. The low-activity
phase consists of low-energy glassy configurations which come from metastable states
with long (but finite) lifetimes [29] [I4]. Dynamical phase transitions have also been
demonstrated in Ising models [T}, [I8 [19], leading to long-ranged ferromagnetic
order, even in one-dimension. In addition, large deviations of the activity are linked
to dynamical phase transitions in exclusion processes [30, [3I], which may be either
second-order or first-order [I7], and are related to slow hydrodynamic modes.

The behaviour in glassy models has links with that of Ising-like models.
Qualitatively, one finds that low-activity dynamical phases are characterised by
enhanced order — which is ferromagnetic in the Ising model but has a more complex
form in glasses [I4) [32 [33]. Also, in cases where dynamical critical points have

1 The activity considered here is that of [10, [1I] which is different from the activity defined in [21].
Nevertheless, these quantities are correlated with each other and have similar physical content, which
is to quantify how much motion is taking place in a given trajectory, see also [22] [23].
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been characterised in glassy models, they are in the Ising universality class [34], [35].
This is consistent with general theoretical arguments: the activity is a scalar order
parameter so one may expect the critical behaviour to be described by a field theory
of ¢* type, defined in (d + 1)-dimensional space-time, leading to Ising-like critical
behaviour. On the other hand, for equilibrium phase transitions, the fact that glassy
materials are disordered can result in critical points with characteristics of random-
field Ising models [36] [37], indicating that caution is required before assuming that
their dynamical phase transitions are Ising-like in all cases.

The present article investigates large deviations of the activity in Ising models,
including regimes that were not studied before. The aim is to understand better what
kinds of dynamical phase transition can occur, what causes them, and what is their
physical interpretation. Such results are valuable as theoretical context, which can be
compared with existing results for glassy systems. We find critical points that occur in
magnetic fields, leading to dynamical phases that are not related by any symmetry of
the model — this is more similar to the glassy case than the zero-field critical point of
the Ising model. We also find dynamical phase transitions at high activities, distinct
from most cases studied so far. These phases also have magnetisations that are anti-
parallel to the applied magnetic field, which is reminiscent of spherical models [38], in
which these phases were identified as anomalous (because of their negative magnetic
susceptibility).

The mean-field model considered here leads to a simpler analysis than the
spherical model of [38], allowing a clearer characterisation of these phases. We
also demonstrate numerically that a similar phase transition also occurs in the
one-dimensional model, using a combination of exact diagonalisation and cloning
methods [39, [40]. We use these transitions to discuss behaviour at (and close to)
dynamical phase coexistence, showing that some results for specific systems [41], 42} [43]
can also be generalised to this case.

Taken together, our results provide further examples of the rich phenomenology
associated with large deviations of the activity, even in simple models. Setting
aside the details, one question that remains is: What physical insight is available
from studying these rare events, and the associated dynamical phases? In
contrast to correlation functions involving the frenesy and activity (for example
the covariances that appear in non-equilibrium linear response theories [21]), large-
deviation properties cannot be measured directly, except by waiting for rare events
to occur and assembling the associated histograms [13], or by measuring high-order
cumulants [44]. However, qualitative features of dynamical phases can be useful
for understanding metastable states and other slow processes. For example, in the
glassy context, the low-activity phase is characterised by long-ranged order in space
and time [12], [34], which can be interpreted as a long-ranged analogue of the (short-
ranged) dynamical heterogeneities that are characteristic of supercooled liquids [45].
The subtle structural order of the low-activity phase also lends insight into their
metastability [14] [32] [33].

For the high-activity phases considered here, we again find structural order, which
we attribute to a competition between two effects. On the one hand, individual
spins should change their state frequently (high activity); on the other hand, large-
deviation events happen by the least unlikely of all possible mechanisms, which is
often associated with states from which relaxation to equilibrium is slow [46]. One
mechanism that is consistent with both effects is to localise the system near a saddle
point of the free energy, leading to a small free-energy gradient (hence slow global
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relaxation) but maintaining high local activity. Our results are generally consistent
with this idea, details are given below. As a general conclusion, our study supports the
view that while properties of dynamical phases may be hard to anticipate (for example,
magnetisation opposite to an applied field), the origins of such effects can be traced
back to systems’ physical properties, particularly their free energy landscapes and
the presence of slow physical processes. Additionally, there are connections between
large-deviation theory and ideas of optimal control [47, [7], which relate large-deviation
behavior to (non-linear) responses, for a particular set of applied (control) forces. Our
hope is that by improving our understanding of these links in simple models, we
become better equipped to interpret the large-deviation behaviour of more complex
systems like glasses [12] and active matter [48].

This article is organised as follows: We introduce in section 2] the main theoretical
ingredients of our analysis. In section we discuss analytically the Mean-Field (Curie-
Weiss) version of the Ising model.

Section [ discusses the one dimensional Ising model and shows that the latter
displays a similar phase diagram as the Mean-Field version. Finally, we summarise
our conclusions in section [5} Some technical results are presented in Appendices.

2. Theory: activity biased dynamics of the Ising model

This section explains how standard methods of large-deviation theory are applied to
the Ising model. Further detail and context for the methods can be found in [49, 47 [7].

2.1. Model

We consider Ising models where the i¢th spin is 0; = +1. There are N spins in total
and the overall configuration of the system is o = (o)~ ;. For the one-dimensional
variant of the model, the energy is

N

E(O’) = Z (_Jaio'i-',-l - hO’i) (1)

i=1
where J is the coupling constant and h the magnetic field. We take periodic boundary
conditions so it is understood that on41 = 01. The magnetisation of the system is

| X
m(o) = N Zoi . (2)

We also consider a mean-field variant of the model for which the energy is

E(o) = NE(m(a)), E(m) = —Jm? —hm . (3)
The inverse temperature is 8 and the associated Boltzmann distribution is

Peq(o) = 2 texp(—-BE(a)) , (4)
where z is the (thermodynamic) partition function.

We consider Markov jump dynamics in continuous time. The jump rates respect

detailed balance with respect to Peq, so the transition rate from state o to o’ takes
the form

wle'lo) = afo.a'yexp { -3 [E(e") - (@) | )
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where the function a is symmetric, that is a(o,0’) = a(o’, o). It may be interpreted
as a mobility [50, [6I]. We focus here on Glauber dynamics, which corresponds to

1
cosh [g (E(o") — E(0))

(6)

a(o,0') =

Define also the escape rate from state o as

r(o) = Z w(o'|o) . (7)
o' (#0)
Given a system in state o, the time until the next spin flip is exponentially distributed
with mean r(o) 1.
A trajectory of the system on the time interval [0,7] is denoted by ©p =
{o(t)}tco,m)- Let K[O7] denote the number of jumps (spin flips) in this trajectory,
and the empirical (average) jump rate is

N(Or] = £K[er] . (8)

(We emphasise that 7" denotes the duration of the dynamical trajectory, there should
be no confusion with the temperature of the system, which is 1/8.) The empirical
jump rate reflects the amount of dynamical activity in a trajectory. An alternative
characterisation of the activity is given by the time-averaged escape rate

R[O7] = %/O r(o(t))dt. (9)

Note that these observables are of different types, in that R is an integral of a one-
time quantity, while N depends on jumps between states. However, the statistical
properties of these observables are intimately connected, because of the underlying
Poisson dynamics of the jumps (see [11, App. B]).

2.2. Conditioned and biased ensembles: large-deviation analysis

Let A denote a generic measure of dynamical activity, for example N or R as defined
above. We consider the physical behaviour of a system, under the condition that
A[O7] takes a non-typical value, for large T'. The theory of large deviations can then
be used to analyse the behaviour T' — oo, see for example [16] [T} [l [47]. We briefly
summarise the relevant theory.
Since the system is a finite Markov chain, the activity obeys a large-deviation
principle, namely
P(A®Or]~a) ~ e T, (10)

T—o0

where I(a) is the large-deviation function (or rate function). Denote the typical value
of A by a*. At equilibrium, most of the observed trajectories have A = a*, so
that I(a*) = 0 and I'(a*) = 0. Other values of a involve large fluctuations whose
probabilities are quantified by I(a).

In addition to the probability of such events, it is also possible to characterise their
mechanism — that is, the behaviour of the (very unlikely) trajectories O that realise
the non-typical activity a. To this end, define a conditional probability distribution

for trajectories as

P(Or|AlOr] = a) x P(O7)i(A[Or] —a) . (11)
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where the constant of proportionality is fixed by normalisation. In practice, such
conditioned distributions may not be convenient to handle, so one introduces a
corresponding biased ensemble — sometimes called the s-ensemble — defined as

_ P(Or) _irae.
PS(@T) = Z(S,T)e s (12)
where the normalisation constant
Z(s,T) = (exp(—sT'A[Or])) (13)

is similar to the partition function in equilibrium statistical mechanics. The
distributions , are related to each other, just as microcanonical and canonical
ensembles are related in thermodynamics [II, 49]. We focus here on the biased
ensemble. Note that Z(s,T) is the moment generating function for A[Or]. It behaves
for large T as

Z(s,T) ~ €T (14)

T—o0
where ¥(s) is analogous to the (negative of the) free-energy in the canonical ensemble.
This quantity also depends (implicitly) on the system size N, we sometimes make this
explicit by writing ¥. We will be interested below in dynamical phase transitions
that appear in the limit where N and T are both very large. We therefore define

. . 1
0(s) = Jim_lim o7 log 2(s.T) 1)

The function ¥ is guaranteed to be analytic (because N is finite) but ) may have
singularities, which correspond to dynamical phase transitions. As discussed in [7, [43],
one expects quite generally that the two limits commute in , but other properties
of the biased ensemble can depend strongly on the relative size of N and T

2.8. Dynamical free energy and optimally controlled process

To analyse the biased ensemble, we define an operator (or matrix) whose largest
eigenvalue coincides with ¥(s). This matrix is denoted by W;. For the case where the
dynamical activity A = A/ (the number of spin flips), the matrix elements of W are

Ws)or.o = e *w(o'|o) —1(0)d0 o - (16)

where o, 0’ are configurations of the model. (The size of the matrix is 2 x 2V, where
N is the number of spins. It can be interpreted as an operator that acts on vectors p
with elements p,. Then p corresponds to an (unnormalised) probability distribution.)

The largest eigenvalue of Wy can be alternatively characterised by a variational
formula, which is also related to optimal control theory. To this end, define a new
Markov jump process (controlled process) where the transition rates w are modified
as

o’
(o)’
where p is a function that assigns a positive number to each state o. It is useful
to normalize these numbers as ) _ p(o) = 1. Then p is a probability distributions
over the configurations of the model, and the controlled transition rates respect
detailed balance with respect to this distribution. Then one has [I1l Eq. (27)]

U(s) = meax [e_s (reem = (| - (18)

o'lo) =a(o,0’)

wCOIl(

(17)
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Here, (f), = >_, f(o)u(o) indicates the average of the o-dependent observable f
with respect to the distribution p; the escape rate r is given by , and similarly

’I“COH(O') _ Z wcon(a_l‘o_) (19)
o' (#0o)
is the escape rate for the controlled process.

Let u* be the distribution that achieves the maximum in . Then the right
eigenvector of W, has elements [u*(0) Pog()]'/? and its left eigenvector has elements
[1*(0)/Peg(a)]*/?. Using this p* in yields transition rates for the optimally
controlled process. This is a Markov jump process that generates trajectories from a
distribution that is very close to the biased ensemble , see [I8][49] [47]. As such, it
captures the mechanism of large-deviation events with non-typical values of N [O7].

In this sense, the large-deviation events that we consider can also be interpreted
as (nonlinear) responses to the optimal control forces. The required modification to
the natural dynamics follows from as

w (o' |o) = w(a"|O')e_(ﬁ/2)[Ucon(”/)_Ucon(”)] , (20)
where
-1 p (o)
U (o) = — log . 21
(o) 5 18 B (o) (21)

is the (optimal) control potential, whose gradients are the control forces. We emphasise
that these optimal forces are not typically realisable in experiments and may not
correspond to physically natural perturbations. However, the controlled system is
Markovian; in the cases considered here it is also time-reversal symmetric.

As will become clearer in the detailed study of the Mean-Field model, the
dynamical free energy is determined by a variational principle that involves two
contributions. For s >> 1, one expects that ¥(s) is determined by states that minimise
the average escape rate (r),. On the other hand, when s < —1, ¥(s) is mostly
determined by states that maximise the escape rate for the controlled process (r°°™) u
Therefore, one may adopt the analogy with the equilibrium statistical mechanics and
interpret the escape rate r as an energy, the escape rate of the controlled system rc™
as an entropy and e~ ° as an effective temperature controlling the balance between
both terms.

3. Mean-Field Ising Model: analytical study

We consider the mean-field variant of the Ising model, whose energy function was given
in . We set the inverse temperature 5 = 1 throughout this Section, without any loss
of generality. Flipping spin 4 involves an energy change AE = 20;(2Jm + h) —4J/N,
where o; is the state of the spin just before the flip. As expected for a Mean-Field
model, all the spins behave as if they were independent entities interacting with an
effective external field 2Jm + h. Hence, the probability to flip a spin depends only
on its own value and the dynamical evolution can be simplified into a Markov chain
for the total magnetisation. It is convenient to introduce a function 7 to encapsulate
effects of the microscopic mobility a. Then the transition rates for the magnetisation
are
2J
Ny (20m+h+ %)“Tme[”’““ﬂ if m’ = m + 2/N
1+ me[—QJm—h—&-%}
2

wy (m/'|m) = ,(22)

N’y(?Jm—ﬁ-h—%) itm'=m—-2/N
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[for other values of m,m’ then wy(m|m’) = 0. If the microscopic dynamics are
Glauber as in (6) then the function y(z) = 1/ cosh(z).]

We are primarily interested in the large-NN limit, for which it is useful to define
two physical quantities that depend on the magnetisation m: the mobility a and the
free energy foq which are

1
alm) = 57(2Jm +h)V1—m?

(23)
1+m 1+m 1-m 1—-m
feq(m) = —(Jm? + hm) + 5 log 5 + 5 log 5
We identify a(m) = limy oo [N " wn (m + 2|m)wy (m|m + 2)]'/2 consistent with the

interpretation as a mobility, and the free energy f.q is such that the equilibrium state
has a limiting magnetisation distribution Peq(m) oc eV Fea(m),

3.1. Dynamical free energy

From (22), one derives the analogue of W, which is a matrix of size (N +1) x (N +1).
The largest eigenvalue of this matrix is WUy (s). Moreover, the function (s) that
characterises the large-N limit can be obtained by a simple variational approach. We
take a controlled process analogous to , in which p depends only on m. Due to
the mean-field structure of the model, fluctuations are very small and it is sufficient

[for the determination of v(s)] to restrict to u(m) ~ e~ V2™ Using this ansatz in
and taking the large-N limit as in yields
—(s) = min ¢(m,s). (24)
me[—1,1]
with
¢(m, s) = 2a(m) [cosh (fl,(m)) —e*] (25)

Here, the prime on f,, indicates a derivative. Recalling that —1) is a dynamical free
energy, we identify ¢ as a Landau-like free-energy density whose minimum gives the
true free energy [11] I7]. Note however that ¢ does not determine the probability to
find a configuration with magnetisation m within the biased ensemble.

The next step is to minimise ¢(m,s) over m. Before analysing the complete
behavior of ¢(m,s) with respect to the parameters (s, J,h), we shall discuss the
equilibrium situation (s = 0) and the asymptotic regimes (s < —1, s > 1). For
s =0, ¢(m,s) > 0 and the latter is minimized when the thermodynamic force fi,(m)
vanishes, as expected. For s > 1, ¢(m, s) ~ 2a(m) cosh(f;,(m)) = r(m) which is the
escape rate associated with the transition rates . Minimising ¢ thus reverts
to minimizing the escape rate which indeed leads to states with low activity. One
should note as well that this low activity state results from a balance between the
mobility a(m) and the force f;,(m) which should both be small. On the other hand,
for s <« =1, ¢(m,s) ~ —2a(m)e *. Minimising ¢ thus reverts to maximising the
mobility a(m) (hence high activity state). These states do not a priori display low
forces.

To investigate phase transitions in the model, we observe that the Landau free
energy ¢(m,s) may be convex in m (with a single minimum) or it can be non-
convex, depending on the parameters (J, h, s). In particular, if ¢(m, s) displays two
(degenerate) global minima for a certain value of s, one expects to observe phase
coexistence and a first-order phase transition. We now analyse the behaviour of ¢ and
1 in some illustrative cases, for the model with Glauber dynamics. In section we
summarise this information by constructing phase diagrams.
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Figure 1. Landau free energy ¢(m,s) for different s and h. [a] (J =
0.45 < J*, h = 0): typical Landau scenario of a second order phase transition at
s = s* >~ 0.0148. [c] (J = 0.45 < J*, h = 0.3): crossover scenario from m < 0
tom >0at s~0.1. [b] (J=0.7>J*% h=0): first order transition at s = 0
through a triple point. [d] (J = 0.7 > J*, h = 1): typical Landau scenario of a
first order phase transition at s = s* ~ —0.338.

3.1.1. No magnetic field, h =0 In the absence of a magnetic field, the symmetry of
the system under spin-reversal means that ¢(m,s) = ¢(—m,s). One also sees from
the equilibrium free energy in that the system has a classical (thermodynamic)
phase transition at J = J* = 0.5. This requires that we separate several sub-cases
when considering the behavior of ¢.

For J < J*, the equilibrium behaviour of the model is paramagnetic, so ¢(m, 0) is
convex with a minimum at s = 0. The behaviour on increasing s is shown in ﬁgure[a}.
There is a critical point at some s = s* where 9%¢/dm? = 0. For s > s* then ¢(m, s)
has two degenerate minima (as a function of m) corresponding to coexisting states
with positive and negative magnetisation. This is exactly the second-order phase
transition scenario of Landau [52] for a critical point at s = s* > 0 (dependent on J).
The physical interpretation is that biasing the system to low activity stabilises the
ordered (ferromagnetic) state where the activity is lower. See also [16] for a similar
scenario in mean-field, and [I8] for the corresponding situation in the one-dimensional
Ising model.

For J > J*, the situation is more complex, see figure [b} The equilibrium state
has two coexisting phases, but ¢(m,0) has three minima at m = 0,+m*, which all
have ¢(m,0) = 0. For s > 0, the ferromagnetic states minimise ¢ so the behaviour is
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qualitatively the same as for equilibrium. However, for s < 0 the global minimum of ¢
is the paramagnetic state m = 0. The physical interpretation of this fact is that while
m = 0 corresponds to a local mazimum of the free energy foq (and is therefore unlikely
at equilibrium), the thermodynamic force féq vanishes there. For small negative s,
one can minimise ¢ in by taking the zero of féq with largest mobility a. This
corresponds to m = 0 (because the mobility is maximal there). In other words, m =0
is an unstable fixed point of the (deterministic) mean-field dynamics, and trajectories
localised near unstable fixed points can occur with relatively high probability because
there are no forces pushing the system away from the fixed point. See also [53].

For J = J* we identify a tricritical point at (s, h) = (0,0) which means in this
case that the coefficients of m? and m? both vanish in the Taylor expansion of ¢, that
is ¢(m, 0) oc m® 4+ O(m?®). In this case, small changes in either J or s can lead to large
(singular) changes in the energy and/or activity. We return to this case below.

3.1.2. Non-zero magnetic field, h # 0 In the presence of a magnetic field h, the spin-
reversal symmetry is broken so ¢ is no longer an even function of m. One also finds
that feq has a unique zero in all cases (there is no equilibrium phase coexistence). The
behaviour of the Landau free energy is shown in figure [I[c,d] for two representative
cases.

For J < J*, there are several sub-cases, these are discussed in more detail below.
In figure [c} one observes a case where the minimum of ¢ crosses over smoothly from
positive m to negative m, as s is reduced from zero. As anticipated above, this leads
to states where the sign of m is opposite to that of h, this is the anomalous regime (see
also [38]). Since we consider Glauber dynamics we have from that the mobility is

(m) = -
nm) = 2cosh(2Jm +h)

For h > 0 we observe that the state of maximal mobility has m < 0. The reason is
that spins tend to flip more often when the magnetisation is opposite to the magnetic
field. From one sees that for large negative s then the minimum of ¢ is close to
the maximum of a. Hence, the physical origin of the anomalous phase is the fact that
a is maximal for some m that is anti-parallel to h. Note that if we had taken dynamics
with an exponential rule instead of Glauber rates (leading to v = 1 in (22)), see [16]),
then this effect would be absent and the behaviour would be qualitatively different.
In this sense, the phase diagram can depend on details of the model dynamics.

Figure [d] shows a case with J > J*, which illustrates a classical first-order
phase transition scenario. The field is positive (h > 0) so the equilibrium state (s = 0)
corresponds to a global minimum of ¢(m,0) with m > 0. There is a secondary (local)
minimum at m < 0. For positive values of s, the large-m state is maintained as the
global minimum of ¢. However, on reducing s from zero, the height of the secondary
minimum in ¢ is reduced. Eventually a first-order phase transition is reached for some
s = s* < 0, and the the state with m < 0 becomes the global minimum.

From [with J > J*, h # 0, see Fig. [[[d]], the secondary minimum in ¢(m, 0)
is associated with a minimum in the thermodynamic force, due to the non-convex
free energy foq. The secondary minimum is also associated with a large value of the
mobility a(m), compared to the highly-magnetised equilibrium state. As anticipated in
the introduction, these two physical characteristics are expected to be associated with
large deviations of high activity, in particular the small thermodynamic force leads

(26)
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to slow relaxation away from this state, which enhances the probability that large-
deviation trajectories will be localised there. For small h, the secondary minimum
of ¢ is located close to the mazimum of the thermodynamic free-energy foq. This
exemplifies a generic mechanism by which large deviations with high activity can be
localised near maxima or saddles of the free-energy. (Note this reasoning is based on
¢(m,0) so it applies only when |s| is not too large, so that the (global) minimum of
¢(m, s) is still close to the local minimum of ¢(m,0). As |s| gets larger, reasoning
based on the natural (unbiased) dynamics of the model becomes less applicable.)

To rationalise the first-order transition in this case, note that states between the
minimum and the maximum of f., have large values of | f;,| and hence large ¢. This
suppresses the probability that large-deviation trajectories will visit these states. As
a result, the value of m that minimises ¢ changes discontinuously as a function of s.

3.2. Phase diagrams

We now use the form of ¢(m, s) to analyse the phase diagram as a function of (J, h, s).
Results are shown in figure

We consider the behaviour of ¢ as a function of m (at constant s). If ¢(m, s) has
a unique global minimum with 92¢/dm? > 0 then the system has a single phase. If
there is a unique global minimum with 92¢/dm? = 0 then the system is at a critical
point. (There may also be tricritical points where higher derivatives of ¢ also vanish.)
If the global minimum is not unique then the system lies on a first-order transition
line. On varying (h,s), we find three kinds of behaviour, depending on the value
of J. We already identified J* = 0.5 as the ferromagnetic critical coupling for the
equilibrium model. We also identify a crossover at J = Jx =~ 0.402964 [see
for its derivation|, whose meaning is discussed below. Regions of the phase diagram
where ¢ has multiple local minima are shaded in figure [2l To the extent that ¢ is a
Landau free energy, local minima can be interpreted as metastable phases. However,
we will see in section [3.3] that this interpretation requires some care.

For J < Jx and varying (h,s), there is a single critical point at (0, s*) with
s* > 0, see figure 2h. This critical point is the one identified in Sec. where
positive s (low activity) acts to promote ferromagnetic order, as in [16].

For J > J*, the equilibrium behaviour is ferromagnetic and (s, h) = (0,0) is a
triple point where ¢ has three degenerate minima. The (s,h) plane contains three
first-order transition lines, which all meet at the triple point: see figure 2p. For
s > 0 there is a first-order transition line at h = 0 and the magnetisation of the
system is discontinuous across this line, with m having the same sign as h. In
this sense the behaviour for s > 0 is the same as that for s = 0. For s < 0 one
observes the first-order phase transition discussed in section [3.1.2] which separates the
equilibrium ferromagnetic phase from an anomalous phase where the magnetisation
has the opposite sign to h.

For the intermediate case Jx < J < J* the equilibrium behaviour is paramagnetic
but the system has three critical points and three first-order lines where phase
coexistence takes place. For s > 0 (low activity), the behaviour is similar to J < Jx
with a single critical point at s, > 0. However, for s < 0 (high activity) one again
observes of anomalous phases which may coexist with regular (paramagnetic) phases.
The coupling Jx is the value that separates whether the system has three critical
points as in figure 2[b] or only one as in figure 2[a]. More precisely, Jx is the coupling
at which the critical point is sent to (s, h) — (—00, 00) such that A = s+ h stays finite
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Figure 2. Phase diagrams in the (s, h) plane of the Mean-Field Ising
model. Left: average magnetisation (m), (color) with respect to (s,h). Right:
non-convex Landau-like free energy regions (grey regions), first order coexistence
lines (black lines) and critical points (red dots). [a]: for J < Jx, the only critical
point occurs for s > 0 (red dot), the behaviour for s < 0 shows a crossover; [b]:
intermediate regime Jx < J < J* for which each coexistence line ends at a second
order critical point (red dots). Non-convex regions for s < 0 do exist but are very
thin (presently hidden by the coexistence black lines). The critical point at h =0
is located at s* ~ 0.0148 (J = 0.45). [c]: for J > J*, all the coexistence lines
meet at (s,h) = (0,0) (red dot) which forms a triple point.
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(see for more details). On the other hand, as J — J* (from below), the
three critical points all approach the point (s,h) = (0,0), this becomes a tricritical
point for J = J*. This concludes our analysis of the dynamical phase behaviour of
the mean-field Ising model.

3.3. Effective dynamics in the large system size: effective force and quasi-potential

We have computed the dynamical phase diagram of the mean-field Ising model
using a variational characterisation of the largest eigenvalue of the operator W;.
This amounts to minimising the function ¢, which determines the dominant value
of the magnetisation m, within the biased ensemble. However, the mean-field
aspect of the model allows a more detailed characterisation of trajectories within
the biased ensemble. In particular, it is possible to compute the distribution of m,
and the dominant paths by which rare values are visited. These considerations are
particularly relevant at points of dynamical phase coexistence, as we now discuss (see
also [41, [42] [43]).

3.8.1. Path integral formulation It is useful to consider a path-integral formulation
of the dynamics, following Martin-Siggia-Rose-De Dominicis-Jensen (MSRJD) [54} [55]
50, 57]. For large N, this amounts to writing the path probability density Ps(Or) of
the biased ensemble as [58], 59, [60} 611, [62)

PAOr) v B [ Do NSin, (27)
where
T
Ss[m,m]:/o dt {ru(t)rin(t) — Hs (m(t), m(t))} (28)

and po(myg) is the probability of the initial condition. The Hamiltonian Hy may be

derived as
<emN[m(t+dt)—m(t)]—sA(t,t+dt) ’m(t) — m> -1

1
Hi(m,m)= lim — lim (29)

N—oo N dt—0 dt
where the notation (-|-) indicates a conditional average and A(t,t + dt) is the
contribution to the dynamical activity for the time interval [t,t + dt] (for example,
the number of spin flips in this interval). Note that involves a limit of large-IN at
fixed T. Also

Z(s,T) ~ / Dm Diinv po(mg)e Vs [mml (30)

From the dynamical rules of the model and taking A = A/, one finds

= 2a(m {e S cosh [27?1 — féq(m)] — cosh féq(m)} ) (31)
This path—mtegral formalism is convenient because integrals such as can be
computed by saddle-point methods, thanks to the large parameter N appearing in the
exponent. Moreover, the action has an Hamiltonian structure which means that given
two times tg,¢; and two points (mg, my), the most likely path (instanton) connecting
these points has a constant value of the Hamiltonian Hs. This is easily verified via
the Euler-Lagrange equations for the action Sg which are
. OH, .
m(t) = m(t), m(t
(1) = S22 (m(#), (1)

At) = -%fi (m(t), m(t))

(32)
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Figure 3. Sketches of paths that contribute to the integrals in , for systems
away from phase coexistence. The dotted line shows the stationary path that
dominates the partition function Z. (Transient regimes near t = 0,7 are not
shown.) The solid line illustrates the instanton path that dominates the numerator
of . It makes an excursion from 7 to m before relaxing back to m. Its
derivative is discontinuous at ¢1 but its Hamiltonian is constant throughout.

It follows that the most likely path with m(tg) = moe and m(t;) = m; has
H,(m(t),m(t)) independent of ¢ (for to <t < ty).

As a first consequence of this observation, we describe an alternative derivation
of . Consider stationary trajectories where both m and m are independent of
t. The action depends only on H,(m, ) and the stationary trajectory with maximal
probability is obtained by maximising this quantity over m. The maximum occurs at

- 1

i (m) = 5 flq(m) (33)
Hence, comparing with one sees that

H(m,m"(m)) = —¢(m,s) (34)

so that the action for such a path is S = —NT¢(m,s). Hence, assuming that the
integral in is dominated by such trajectories and using recovers

3.83.2. Quasi-potential and instanton paths — systems away from phase coexistence
Recall from section [3.1] that the stationary probability distribution within the biased
ensemble is p*(m) ~ e N2(m)  The quantity Q(m) is called the quasi-potential
[6 [63], by analogy with a Boltzmann distribution based on a potential energy (indeed
for s = 0 then Q; = foq — min foq).

The variational principle allows computation of p* and hence of {25. Here
we compute ), from the path integral, as

o =1 [ DmDinpo(mo)d(m(ty) — m)e NSslmaml
o) = i 5, 108 Z(.7)

(35)

where 1 <« t; < T (the result is independent of ¢1, in that regime). Note that the
limit of large-T is taken before the limit of large N, we return to this point below.
Let us first restrict to situations away from phase coexistence, so ¢(m, s) has a
unique (global) minimum at m = 7. This is the typical magnetisation in the biased
ensemble so Q,(7M) = 0. The key insight is that the probability to find magnetisation

& We have only sketched the relevant argument here. The assumption that a single trajectory
dominates in is justified by the large-N limit. (There are exceptions at points of phase coexistence
but 1 is continuous so these isolated points do not pose a problem.) The assumption that the
dominant trajectory is stationary is an approximation. To evaluate one should consider non-
stationary trajectories with transient behaviour close to t = 0 and t = T'. However, the large-T" limit
in means that these transient regimes can be neglected for the computation of .
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[a] s> s* (b] s=3s" 04 [c] s < s*

Qs(m)

Figure 4. Quasi-potential of the Mean-Field Ising Model. Parameters are:
J=05,h=0.5. [a]: s=—0.1>s*; [b]: s =5~ —0.16742; [c]: s = —0.2 < s*.
One can observe at s = s* the two branches Qs,mi* and {25 mx associated with
the active and inactive phases (grey dashed lines).

m within the biased ensemble is controlled by an instanton that begins at m = 7,
makes an excursion to m, and then relaxes back to m, see figure [3] The instanton
minimises the action Ss, subject to this constraint. The integral in the numerator of
is dominated by the instanton path and the partition function in the denominator
is controlled by the stationary path described above. Hence ); depends only on the
difference in action between these paths. To ensure that the action is minimal as
T — o0, the two paths must have the same value of the Hamiltonian which is

H(m(t),m(t)) = —¢~ (36)
From , the instanton can be characterised by finding m parameterically as a
function of m. One finds that m(t) = A (m(t)) with

S

A ) = | fgm) £ anccost (14 55 lom < 1) | o1

2
such that AF(m) = 0. We have also
1 = 4a(m)e”* sinh(2rm — fi,(m)) . (38)

Eqgs. are sufficient to construct the instanton. From , the sign in A
indicates whether m is increasing or decreasing as a function of time. The instanton
then requires that we combine the two solutions AY and A . For m > m, one takes
m(t) = AT (m(t)) for t < t; and m(t) = A (m(t)) for t > 1. The opposite case holds
for m < m.

Returning to , the integral is done by the saddle-point method and one uses
that both paths in figure [3| have the same value of the Hamiltonian to write

T
0.m) = [ A% ittt (39)

where the integral is evaluated along the instanton. For ¢ < t¢; the relevant
path goes monotonically from 7 to m, after which it returns monotonically to 7.
Assuming m > ™ and changing the integration variable in yields Qg(m) =
JEAF (m)dm + [" A (m)dm with a similar expression for m < m. Finally one
obtains an explicit formula for the quasipotential

/ " arccosh (1 + %[qu, 5 — ¢*]) dm

Qs (’ﬁ”&) = - m)

(40)
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Note, for s = 0 one has ¢* = 0 and one recovers Qs(m) = feq(Mm) — feq(T), as it must
be. The behaviour of the quasipotential is shown in Fig. [a,c], for points in the active
and inactive phases. The case of phase coexistence is different and will be discussed
in the next section.

We observe that the integrand is non-negative in , which means that the
derivative of g is non-negative for m > T, and non-positive for m < m (excluding
systems at phase coexistence). In particular, this means that 4 has exactly one
minimum (at 77). This contrasts with the variational free energy ¢ which can have local
minima. This has consequences for metastability in biased ensembles, see section [3.3.4

3.3.3.  Quasi-potential and instanton paths for systems at phase coezistence For
systems at dynamical phase coexistence, the variational free energy ¢ has two (or
more) minima, which are the coexisting phases. This introduces several subtle aspects
when evaluating the integral in . We restrict to the case where two phases coexist,
with magnetisations 721 2. (The extension to multiple phases is straightforward.) In
, the limit of large-T is taken before the limit of large-N, which means that
there are many paths contributing to the partition function Z(s,T") — a typical path
visits both phases, making many transitions between them. The structure of typical
paths is shown in figure [5| with dotted lines. The time spent between transitions is of
order eV | the determination of the barrier height Q* will be discussed below. The
important observation is that we take T'— oo at finite N so the number of transitions
in a typical path is of order Te~ V" which diverges in the limit. All these paths have
the same value for the Hamiltonian, which is (b*m]

To evaluate the quasipotential, observe from figure |5|that the instanton can make
its excursion to m from either phase, after which it returns to the same phase. (Cases
where the instanton starts its excursion from one phase and ends in the other will
be discussed below.) One may then repeat the analysis leading to , noting that
while there are many paths contributing to both the numerator and denominator of
, these paths are in one-to-one correspondence. For each corresponding pair, the
difference in action is given by an integral similar to the right hand side of . Since
paths of minimal action dominate the integrals in one then finds
(41)

Qq(m) = an:1111712 L arccosh (1 + %[qﬁ(m, s) — ¢*]> dm

Ma

That is, the quasipotential is obtained by minimising the action over instantons that
may start in either phase. Fig. [b} shows an example of a quasipotential that is
obtained in this way. This construction leads naturally to a quasipotential whose
derivative is discontinuous at some m = m? between 7, and . This m* corresponds
to a transition state and we identify the barrier height (defined above) as Q* = Q,(m?).
For s = 0, ¢* = 0 and ¢(m, 0) = 2a(m) (cosh(f},(m)) — 1) [see (25)]. Hence the quasi-
potential becomes Qo (M) = feq() — min feoq (M) as expected.

Having characterised the barrier, it is natural to consider instantons which start
at m; and end at 5. Assuming that these pass through m? at time ¢;, the relevant
paths can be obtained by combining the instanton from 7; to m* (taking the part
with ¢ < 1) and the instanton from 7, (taking the part with ¢ > ¢;). These two

|| Since trajectories visit both phases, we find that properties of the biased ensemble are independent
of the initial conditions pp used in its definition. This might not be the case if one took the large-N
limit before the large-T" limit in , because the probability to reach m by an excursion from m;
would depend on the probability that the initial condition comes from that metastable state.



Dynamical phase transitions for the activity biased Ising model 17

Figure 5. Sketches of paths that contribute to the integrals in , for a system
at phase coexistence, with very large T and finite N. The dotted lines show
typical paths within the biased ensemble. Each path visits both phases. For
every such path in the biased ensemble, there is a corresponding instanton path
that makes an excursion to m at time t1. The excursions are shown with solid
lines; the instantons coincide with the dotted lines for other values of t. The two
possible instantons that lead to m correspond to the two branches in fig. @, the
quasipotential is determined by the branch with the smaller action.

instantons have the same value of the Hamiltonian. The physical consequence of the
discontinuity in €2, at m* is that the top of the barrier does not correspond to a fixed
point of Hamilton’s equations, which means that the instanton passes through the
barrier with finite velocity . This is distinct from the equilibrium (zero-bias, s = 0)
case where Qf(m*) = 0.

We make one further comment about dynamical phase coexistence. We have
emphasised that the rate for transitions between the coexisting phases in the biased
ensemble scales as wg = e N%=(mh)  Ag in [43], the trajectories dominating the
path integral can then be described by a Poisson process where the system hops
between the phases with this rate. Since these two phases have different values of the
dynamical activity (recalling that the activity is proportional to N, we denote these
by Naj, Nas), the dominant contribution to fluctuations of the time-averaged activity
can be captured by this Poisson process. In particular (see , this simple
model leads to a crossover function for the dynamical free energy (valid for s very
close to s*) is

N N2
Uy (s) ~ —(s—s*)W—w0+\/4(s—s*)2(a1 — a5)? + w2 (42)
and hence
2
\I’K](S*) ~ N(al 4“2) eNQS*(mi)_ (43)

That is, the curvature of the free energy (and hence the derivative of the order
parameter) diverges exponentially with system size. In fact, this mapping of systems
at phase coexistence to a Poisson process is very general [42] 43|, we will come back
to these results when considering the one-dimensional Ising model in section
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3.8.4. Discussion — quasi-potential and variational free energy We have computed
two functions ¢ and 25 which quantify probabilities in the biased ensemble. That is,
¢(m, s) corresponds to the log-probability of a long trajectory where the magnetisation
is m for (almost) all times ¢. On the other hand, Q,(m) corresponds to the log-
probability that m(t) = m at a single time ¢ (far from initial and final times).

Note also that the optimally-controlled dynamics that reproduces the trajectories
of the biased ensemble can be obtained (for large N) by adding a control potential
U™ (m) = [Qs(m) — feq(m)], as in Eq. . The control force is the gradient of the
potential, [f,(m)—Q(m)]. In the stationary state m of the controlled dynamics, one
has Q{(m) = 0 so the control force is simply fi,(m). For high-activity phases when
|s| is not too large, we have explained that the optimal-control forces act to localise
the system near a maximum of the free energy. The thermodynamic force f;, is small
there, so relatively weak control forces are enough to accomplish this. (It is a general
result that large-deviation mechanisms tend to have weak control forces [47 [7].)

The functions ¢ and €, are both minimal at m = T and both have features
that resembles a Landau free-energy in equilibrium phase transitions. However, we
emphasise that the relevant probabilities are qualitatively different, and the functions
have different forms. For example, in systems away from phase coexistence then ¢
may have local minima, but 4 has a single minimum. At phase coexistence, both ¢
and €, have two minima, but ¢ is a smooth function while 25 has a discontinuity in
its derivative at m = m?*.

Physically, the important point is that local minima of Qg would correspond
to metastable states of the optimally-controlled system (these would be states for
which equilibrating the optimally-controlled system would require a time that diverges
exponentially with N). However, such states do not appear in our analysis: Phase
coexistence may occur at some s = s* but there are no metastable states that
survive on perturbing s away from s*. On the other hand, local minima of ¢
do survive for s # s*, but these have a different physical interpretation — they
correspond to stationary trajectories at magnetisation m for which the probability
decreases on perturbing m away from . This can be interpreted as a kind of
metastability in trajectory space, in that homogeneous perturbations to the trajectory
act to increase the dynamical free energy [II]. This behaviour is quite different
from classical (thermodynamic) metastability which occurs in configuration space,
and describes the local stability of configurations (or thermodynamic states) to
homogeneous perturbation. Of course, thermodynamic metastability has dynamical
implications; the point here is that metastability in trajectory space is distinct from
thermodynamic metastability, and has a different set of implications for dynamical
behaviour. The biased ensemble of trajectories may exhibit metastability in trajectory
space but there is no thermodynamic metastability in the optimally-controlled system
(because 5 does not have local minima).

4. 1D Ising model in a magnetic field

We now consider the Ising model in d = 1. This model does not have any equilibrium
phase transitions, but dynamical phase transitions are still present [I8] [19] 20]. We
will find that the behaviour of the 1D model (for positive J) resembles that of the
mean-field model for J < 0.5.

For h = 0, exact results are available, based on a mapping of a quantum-Ising

chain [T} 18]. Details are given in [Appendix C| which also corrects two small errors
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Figure 6. Phase diagrams of the 1D Ising model (N = 12). [a]: J = 0.45;
average magnetisation (m) (left), average escape rate (r), /N (right). [b]: J = 1;
average magnetisation (m) (left), average escape rate (r), /N (right).

. There is a crltlcal point at (h,s) = (0,s.) with s, = —Intanh(25J), see
- ) from For h # 0 we are not aware of any exact solution so we use
instead numerlcal methods based on exact diagonalisation (for small systems) and the
cloning algorithm [39, [40]. At this point we also recall that [I9] considered similar
large deviations to those discussed here, including the case of h # 0. However, their
analysis was restricted to s > 0 so they did not consider the anomalous regime where
m is antiparallel to h.

4.1. Ezact diagonalisation

The exact diagonalisation method is based on the operator Wy defined in . This
is matrix of size 2V x 2V. It can be symmetrised [I8] by a similarity transform (which
leaves its eigenvalues invariant) so it is sufficient to compute the largest eigenvalue of

the symmetric matrix YWy whose elements are
(VT;S) = PEE2 (W) @2 (44)
oo ’

One-time observables in the biased ensemble can also be computed from the
eigenvector b that corresponds to this largest eigenvalue, in particular the stationary
distribution of the biased ensemble is

p* (o) o b(a)? (45)
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Figure 7. Dynamical free energy ¥y (s)/N (N =20, J =1 and h = 1.15).

space
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Figure 8. Typical trajectories obtained from Monte-Carlo simulations of the
optimally-controlled dynamics (N = 20, J = 1, h = 1.15). From top to bottom:
[a] s = —0.4 (inactive phase), [b] s = —0.4557575 ~ s* (coexistence), [c]
s = —0.47 (active phase). The displayed time span is 7' = 2.1 x 103 (17068 Monte-
Carlo steps). At coexistence, the trajectory visits both phases, recall ﬁgure

where the constant of proportionality is fixed by normalisation. We have obtained the
eigenvalues and eigenvectors of W, up to N = 20. For numerical work, we again set
=1

As noted above, the existence of a critical point at s > 0 and A = 0 has already
been established analytically. We focus here on the behaviour for s < 0, to understand
if there are critical points in this regime (analogous to those in figure 2b). Fig. [6]
summarises the behaviour as a function of (h,s) for two different values of J, in a
small system (N = 12). The situation resembles that of the mean-field case (figure[2)),
in particular there is an anomalous regime for s < 0 where the magnetisation is
antiparallel to h. Taking A > 0 and decreasing s from zero, there is an abrupt
crossover from positive to negative m, reminiscent of the first-order phase transitions
in the mean-field case.

Figure [7]shows the maximum eigenvalue ¥ as a function of s, for J =1, h = 1.15.
The system is finite so the function W is necessarily analytic, but it does have an
abrupt change in slope at s &~ —0.456, which is again consistent with the existence of
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Figure 9. Histograms of the magnetisation m(t) for the 1D Ising model (for
1« t <« T). Parameters are: N =20, J =1, h =1.15.
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Figure 10. logxn(s*) versus N at J = 1 for different magnetic fields h.
From bottom to top: h =1, 1.1, 1.15, 1.2, 1.5, 2.

a first-order phase transition.

The exact diagonalisation also allows exact construction of the optimally-
controlled dynamics of section[2-3] This dynamics was simulated by a continuous-time
Monte Carlo method, to generate representative trajectories with non-typical values
of the activity. Figure [8] shows examples from the ferromagnetic phase and from the
anomalous phase, as well as an example at phase coexistence. In this last case, the
system visits both phases, with rare transitions between them, recall figure The
anomalous phase also has a non-trivial structure, we return to this point in section [£:2-]
below. Finally, figure [0] shows histograms of the magnetisation m(t). At the putative
point of phase coexistence, this has a bimodal structure, from the two phases.

To establish the existence of a phase transition requires a finite-size scaling
analysis. We concentrate here on the second derivative of the free energy,

Xn(s) = UK (s) . (46)
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We recall from that xn(s*) is predicted to diverge exponentially with N in
systems at dynamical phase coexistence. This hypothesis is tested in figure [I0] Even
at these moderate system sizes an exponential scaling of x y(s*) seems well established
for N > 14. In the next section, we use a cloning method to access larger system sizes
and confirm this scaling. We observe that the derivative of log x n(s*) with respect to
N appears to vanish as h approaches 1. This indicates that the system is approaching
the critical point at the end of the first-order line. Beyond this point, the first-order
transition becomes a smooth crossover.

4.2. Results — cloning algorithm with controlled dynamics

The cloning algorithm introduced in [39, [40] is a numerical method for sampling
trajectories from biased ensembles, and for computing dynamical free energies such as
Un(s). We use the implementation described in [64], with a fixed population of N,
clones, with N, up to 8 x 106.

The algorithm consists of running the unbiased dynamics independently for each
clone, for a time period At.. This is followed by a cloning step which resamples the
population, to account for the biasing factor e~ sAtt+AL),

We aim here to sample biased ensembles in relatively large systems, where s is
of order unity. Since the cloning method generates paths according to the original
model dynamics, it can be inefficient for sampling ensembles that differ strongly
from the model’s natural (s = 0) dynamics. In order to make the cloning method
efficient in such cases, we exploit an alternative formulation of the biased ensemble
of trajectories. We introduce a controlled model with new dynamical rates as in
section The probability distribution for trajectories of this model is P°"(Or)
which may be written in the form

Pcon(@T) — P(@T)G_Q(QT) (47)

where @ is the log-ratio of the trajectory probabilities for the controlled model and
the original (Ising) model, for which exact formulae are available [42] [47]. Then
Py(Or) = Z(5,T) "1 P (O7)e2(O1)=5AO1) which has the interpretation of a biased
ensemble for the controlled model, which can be sampled by cloning [65], 42}, 66].

In the Markov jump framework considered here, the controlled dynamics is defined
through its transition rates w®"(o’|o"). We take

w(o'lo) = a(o, a’)e_(B/Q)[Ecm'(C”)—Ecm'(")] . (48)

where E°" is the energy of the controlled model, but we emphasise that the mobility a
is unchanged from the original model (it depends on E(o) but not on E"(¢)). This
is consistent with , we identify E°°" = E + U". For the energy of the controlled
model, we take a functional form with 4 free parameters (J5, J§, K5, h°), see also [27]:

N
ECOH(O') = — Z [JfO’Z‘O'iJrl + J§Ui0i+2 + K§0i0i+10i+2 + hCO'i] . (49)

i=1
so that the energy change on flipping spin i depends on its second neighbours in
addition to the nearest neighbour interaction of the Ising model. (We adopt ony4+1 = 01

and o129 = 09 in order to satisfy the periodic boundary conditions.)

The accuracy of the cloning method requires that the clone population A, is large,
otherwise the model suffers from both systematic and random errors [67, 68, 69, [70].
In principle, the method can yield accurate results whatever the values of the
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s Jy JS K h¢
—0.44 (inactive phase) | 0.6969 | 0.1986 | 0.0813 | 0.1998
—0.455 (~ coexistence) | 0.5548 | 0.3012 | 0.1672 | —0.1128
—0.47 (active phase) | 0.4721 | 0.0899 | 0.0281 | —0.2191

Table 1. Values of the optimised controlled parameters (J§, JS, K§, h¢) for J = 1,
h =1.15 and N = 15.

control parameters (Jf,JS, KS,h%), but in practice one requires a good choice of
these parameters, otherwise the number of clones required for accurate results may
be prohibitively large. Several methods for optimisation of the control parameters
have been proposed [65] [42] 66 [69, 48, [7T]. Here we use information from exact
diagonalisation of small systems to estimate control parameters for larger systems.

Specifically, recall that p*(o) is the (s-dependent) distribution for configurations
in the biased ensemble and let P°*(o) oc e #F*"(?) be the Boltzmann distribution
associated with (49). Also let KL(P||Q) be the Kullback-Leibler (KL) divergence
between two distributions P, Q. Then we maximise the symmetrised KL divergence
KL(Pe"||u) + KL(p||P™) over the control parameters and we use these parameters
in our controlled model. The symmetrised KL divergence is small when the two
distributions are similar, so this is a practical method for estimation of the control
parameters.

4.2.1. Structure of the anomalous phase Table [1| gives the resulting parameters at
several state points. These reveal useful information about the phases that coexist
at s = s*. Even for the paramagnetic phase the h° and Ji are substantially reduced
with respect to the natural dynamics, the J§ and K§ are acting to stabilise domains
of size 2 and greater. As one passes through s* then h° changes its sign (consistent
with the anomalous phase which has a negative response to h = 1.15). The couplings
promote ferromagnetic order in the system closest to s*, consistent with the fact that
there are coexisting phases with opposite magnetisation.

One also observes from figure |§| that the anomalous phase (s < 0) experiences
a crossover at h ~ J from a magnetisation m close to 0 to an anomalous (negative)
magnetisation when h increases. This can be rationalised by the fact that the mobility
(6] is large when the local field |.J (0,1 +0441)+h| experienced by a spin i is the closest
to 0. Its three possible values are 2J + h, h and —2.J + h. For h small (|h| < 2.J), the
preferred local field is minimal when o;_1 4+ ;41 is zero. The dominant configuration

that maximises the mobility thus should beoe=(... ++——++—-—++——...)
which has a magnetisation 0. For h > J instead, the local field may not be close to 0
but local configurations for which o;_1 4+ ;41 = —2 display a larger activity than the

others. Hence, configurations for which spins are locally surrounded by adjacent spins
pointing in the opposite direction than the external field are thus promoted, and the
overall magnetisation tends to be negative.

For the mean-field model, we recall that the anomalous phase is close to a local
mazimum of the free energy, when |s| and |h| are small. Since the argument is based
on the fact that f;, vanishes, one may expect in general large-deviation events may
alternatively be localised near saddle points of the free energy. The character of the
anomalous phase in 1d is different: this is partly because our numerical results are
not able to access anomalous phases at small |s|. (To analyse such phases would likely
require larger J, and in this case larger system sizes would be required.) In such
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systems, our expectation is that the anomalous phase would be close to a saddle point
of the free energy.

For example, consider a 1d system with many domains that all have equal sizes (as
distinct from an equilibrium state where domain sizes are exponentially distributed).
To relax towards equilibrium requires some domain walls to be removed, which
happens by diffusion followed by pair-annihilation. However, the thermodynamic force
driving this effect is weak in a system with equally-sized domains, because there are no
domain walls that can immediately annihilate, and the motion of individual domain
walls is not biased in any particular direction. Hence, we can interpret this state as a
saddle point.

High-activity states with a sharp distribution of domain sizes have been previously
observed in the East model [27]: some similar considerations apply in that case, but
domain relaxation times depends very strongly on their sizes in that model, which
tend to sharpen the domain-size distribution. Independent of these details, when
comparing the 1d case with mean-field, the key message is that identifying saddles
or maxima of the free energy is no longer a simple task, but it can still be expected
that large deviations with high-activity should be correlated (for small |s|) with weak
thermodynamic forces.

4.2.2. Finite-size scaling Using the cloning algorithm with this controlled dynamics,
we have obtained results for system sizes up to N = 30 by using up to N, ~ 8 x 10°
clones and T ~ 6 x 103. Results are shown in figure [a]. We performed five
independent runs (with different random seeds) which we use to estimate error bars.
The error bars are significant close to s*, partly because the fluctuations in the
biased ensemble are very large at this point, and also because the optimised control
parameters depend strongly on s in this regime, so our method for determining these
parameters may not yield the optimal choice for numerical sampling. The results close
to s* are fitted to the theoretical form which corresponds to the first derivative of

, see [Appendix B|for details. This allows estimation of the maximal susceptibility
x* which is plotted in figure [b] One sees clear evidence for an exponential growth

of this susceptibility, consistent with and the arguments of [Appendix B

5. Conclusion

We have considered the activity-biased ensemble of the Ising model evolving with
Glauber dynamics. The Mean-Field version of the model has been presented in
section In addition to what was already known in the absence of magnetic field
h = 0 [I6], we find a first order phase transition that occurs for s < 0 and h # 0.
The transition separates an inactive ferromagnetic phase (s > s*) from an anomalous
active one (s < s*). The quasi-potential associated with the stationary probability
distribution of the biased ensemble has been characterised analytically. For the one
dimensional Ising model, we have used exact diagonalisation and a cloning algorithm
to show that the phase diagram is similar to the mean-field model for J < J*. In
particular, finite size scaling analysis has confirmed, in accordance with [42] 4T, [43],
an exponential divergence of the correlation function of the time-integrated activity.
For general implications of our results, we note that large deviations with low
activity tend to be associated with ordered states (ferromagnetic in this case). In the
mean-field model for J > J*, this leads to a symmetry-breaking transition at s* > 0,
and a similar effect is observed in one dimension. The mechanisms of large deviations
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Figure 11. [a]: Escape rate per spin vs s from the cloning algorithm.
The magnetic field is h = 1.15; system sizes are (from the smoothest curve to
the steepest one): N = 10,20, 25,30. Continuous lines are the fit obtained from

(B.5) (Appendix BJ). [b]: log xn(s*) versus N at J =1, h = 1.15. Blue crosses
are obtained from exact diagonalisation. Red diamonds are obtained from the
cloning algorithm. The dashed line is a linear fit over 5 larger N values.

with high activity are more subtle. In mean-field and for small |s|, we find that the
system tends to be localised close to a free-energy maximum where the thermodynamic
force fi, is weak. We have explained that this is likely to be generic in mean-field
models, with localisation close to either maxima or saddle points — one way to see this
is that weak control forces are sufficient to localise the system near such states. In
one dimension, it is not so simple to identify the analogs of saddle points, and we are
also limited by our numerical methods to phase transitions that occur at relatively
large |s|. However, we have explained (in Sec. that localisation of the system in
states with weak thermodynamic forces can still be expected in 1d settings.

As a final remark on context, we note that these models support Ising-
like critical points and associated first-order transitions, with associated phase
coexistence. This situation is widespread in models where large deviations have
been studied [16] 18 B8], 34, 35, 28]. In atomistic models of glasses, the situation
is less clear but results are also consistent with first-order transition lines and Ising
critical points [12] [72] 26] [14], 23, [73]. The general picture demonstrated here for the
one-dimensional Ising model is also expected to apply in those (finite-dimensional)
cases — exponentially diverging susceptibility x(s*) and long trajectories consisting
of many domains of each of the coexisting phases [42] [43] [7]. This reinforces the
conclusion of [42], [43] that this phenomenology is rather general in systems with first-
order dynamical phase transitions. The extent of this generality — for example its
robustness to disorder (as in random-field Ising models and spin glasses [38, [46]) —
is one possible direction for future work. We note however that while models with
slow hydrodynamic modes may exhibit some similar phase transitions [74] [I7], the
results of this work are likely not applicable [7]. For example it is notable that Ising
models with conserved (Kawasaki) dynamics behave quite differently to models with
non-conserved dynamics as considered here: the slow hydrodynamic relaxation of large
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clusters leads to a diverging time scale and there are singularities in SCGFs already
at s =0 [19].
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Appendix A. Computation of Jx in the mean-field Ising model for
Glauber transition rates

Fig. [b] shows a critical point for s < 0 and A > 0. Let the position of this critical
point be (s.+,h.+). This appendix explains that as J — Jx (from above) then
Se+ = —oo and h.+ — 400, with a fixed value of (s.+ + h.+). We also derive the
value of Jx.

To do so, we analyse the minima of the Landau-like free energy ¢(m, s) in
the asymptotic limit A — oco. For the Glauber transition rates (22) [y(x) = 1/cosh(z)]
we have

V1 —m?

=1—mtanh(2 h)—e ' ——— . Al
¢(m, s) m tanh(2Jm +h) —e cosh(2Jm + h) (A1)
For large h > 1, ¢(m, s) can be expanded in ¢ = e~ " as
p(m,s) = (1—m)—e [2e e 2/™\/1 —m?2
h>2J [ } (A.2)

+? [2me_4‘]m +2ee V1 — er_ﬁ‘Im} +0(e3, e %) .

Taking € — 0 at fixed s gives ¢(m,s) =~ 1 — m in which case m = 1 is the global
minimum (low activity phase). To obtain the behaviour of (s.+,h.+) we define
A = s+ h (hence ee™® = e™?) and consider the limit ¢ — 0 at fixed A, leading
to

p(m,s) = (1 —m) +e 2e(m) + k(m,A) + O (%) . (A.3)

with c¢(m) = —2e727"/1 —m?2 and k(m, A) = 2me=47™ 4 2e=2/1 — m2e =6/,
At leading order then ¢(m,s) — (1 —m) + e “c(m). If c¢(m) is strictly convex
then the limiting ¢ has a single minimum. We observe that

26—Ae—2Jm

Analysing this expression numerically indicates that it is indeed strictly convex for
small J. However for J = Jx ~ 0.402964 we have ¢’ (m*) = 0 (for some point m*),
and ¢’ (m) > 0 elsewhere. In addition, taking e® = ¢/(m*) and ¢ — 0 in ensures
that 9¢/0m = 0 at m*. That is, there is a stationary point of ¢ with vanishing
curvature. This is a critical point with (formally) h.y = oo and s.+ + her = A, as
asserted above.

For J < Jx the convexity of ¢ means that 9%¢/0m? > 0 and there are no phase
transitions at these large values of h. For J > Jx then c is not convex and it follows
that ¢ has two (local) minima (as ¢ — 0, for A in some suitable range). Moreover,

d'(m) = [—4*m* +8°m* + 4Jm® — 4J* —4Jm + 1] . (A.4)
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there is a choice of A for which these minima are degenerate, which corresponds to
dynamical phase coexistence as h — oo (with fixed A). For finite h (that is, € # 0)
the line of first-order coexistence can be traced in the (s,h) plane until it ends at a
critical point at (s.+, het ).

This establishes the picture advertised above: the crossover between the situations
shown in Figs. 2[a,b] occurs by the critical points for s < 0 (in panel [b]) moving away
from (s,h) = (0,0); as J — Jx (from above) then they diverge as (s.+,he+) —
(—00, +00). Hence they are absent in panel [a].

Appendix B. Finite size scaling and Poisson process approximation

For completeness, this appendix details the Poisson process approximation for
dynamical phase coexistence already introduced in [42] [43].

As mentioned at the end of section [3.3.2] and in section the effective
dynamics at the coexistence point s = s* can be approximated as a bi-stable process
of parameter (transition rate) wp.

Hence, one can think that the behaviour of the biased ensemble for s very close
to s* can be well approximated by a new biased ensemble obtained from the Poisson
approximation valid at s = s*. For this purpose, one introduces a two states Markov
jump process x(t) € {1,2}.

According to the two states approximation, one can write that

1 1 . T
Un(s) ~ — lim — <e_(5_s N o ”(I(t))dt> B.1
N( ) s~s* N T—oo T Poiss ( )
where ()p. .., is referring to the average with respect to the two states approximation

of the effective dynamics at s = s* and a(x) € {a1,as} is the activity of the system.
In order to compute the right hand side of (B.1]), one can easily solve the tilted
eigenvalue problem for this simple bi-stable system. One can indeed easily see that

<e—(s—s*)f0Ta(x(t))dt> = (eTWJ)  po(x) (B.2)

x',x

Poiss
with po the initial distribution and W} the tilted matrix that reads as
* —(s—s*)Nal—wo wo
Ws = < wo —(s—s*)Nag — wp ’ (B.3)

In the large time limit T — oo, the right hand side of (B.2) is dominated by
exp(NTN: . (s)) where N (s) is referring to the largest eigenvalue of W¥. The

max

eigenvalue per unit system size N thus reads

a2
Amax(s) = —(s — s*) & —gaz ~ N-lwe+ \/(S _ s*)zw + N-2u2 . (B.4)
Hence, U (s) ~= A\ . (s) for s close to s* and one obtains in particular
dA; 1 —5*)(az — a1)®
W?\[(S) %* max (S) _ _a1 + az L (S S )(02 Cll) =, (B5)
svst o ds 2 2/(s —5")2(ag — a1)? + 4N 2w?
and
* d2)‘:nax az — a 2 —
WY (s") =5 (0) = N%wo L (B.6)

Equations thus proves .
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Appendix C. Exact solution for the 1D Ising model in the absence of
external magnetic field (h = 0)

In the absence of any magnetic field h (h = 0), one can diagonalize the tilted operator
Ws by mapping the latter into the Hamiltonian of a quantum Ising chain [18], see
also [TI]. The derivation follows closely those of [I8 1] we also correct two small
errors present in [I§].

We first transform from spin variables ¢ to domain wall variables. In one
dimension, the presence of a domain wall between site ¢ and i+ 1 can be quantified by
defining 7; = %(1 — 0;0;41) such that 7, = 1 if there is a domain wall (c;0,41 = —1)
and 7; = 0 if not (0;0441 = 1). We have h = 0 so the energy £ = —J Zivzl 0i0it1
reads as F = Jzi]il (21, — 1).

In terms of the domain wall variables 7;, flipping one spin (say o;), transforms the

configuration 7 = {Ti}ﬁil intor ={m,...,1—7-1,1 =7, Tiy1,...,7n}. We denote
the associated transition rate by w(7’|T). For Glauber transition rates then
w(r'|r) =1+v[(n—3)+ (1 —3)] (C.1)

where we have introduced v = tanh(28.J).

The second step is to represent the symmetric tilted operator WS 1' in terms
of elementary operators. Since the spin variable on each site is a two state variable
7, = 0,1, we work with Pauli matrices: Let

s-(D0). s=(28).

which are linked to the Pauli matrices SF, SY, S7 through the usual relations
SE = 1(Sr+iSY) and S7 = 2SS, — 1. Note in particular S;"S; |7;) = 7;|7).
The tilted operator thus reads

N
Wo= 30 e SIS+ SuSF + VI (SE,SF +S7,857)]
=1

—v[S S +SFST | +v—1

with the periodic boundary conditions Si = S3.

The third step uses a Jordan-Wigner transformation to map the spin operators

SijE into fermionic creation and annihilation operators f;r and f; respectively. Hence

we arrive at a quadratic Hamiltonian (free fermions) which is easy to diagonalize.

For a system of size N = 1, both spin and fermionic operators would be the same.

However, for N > 1, one must introduce the Jordan-Wigner transformation [77, [78]:
for 1 > 2 we take

fl = emimEini SiSe gt

ic1 gt g (C.4)

fi — e“fzk=1 Sy, S;_ )

Also f{f = Sf‘ and f; = 57 . These f; satisfy the standard fermionic anticommutation
relations. Also, f1f; = S;S; .
Now, for i > 2 we have f]_,fi = S 57 exp(inS},S7,) = S©,S7 [the

second equality can be verified by Taylor expansion of the exponential and using
that (S; )2 = 0]. Similarly S;,S;" = —fi_1f] and S, S;" = 1| ff and S, 57 =
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—fi_1f;- However, the terms that involve hopping across periodic boundaries require
additional care. Write

Flfy = e imWaw=SES0) gt g = _pmimNaw gt g (C.5)

where Ny = ZIJLI S,‘:S’,; is the operator for the total number of domain walls. [We

used that Ny, commutes with S]J(,S;, and that e‘”sfvS;VSX, = —S’X,.] Now observe
that since we consider an Ising model with periodic boundaries, the number of domain
walls in the system is always an even number. Hence all state vectors |¢) in the space
where W, operates have e~ ™Naw 1)) = |1}, so the term S%Sy in W can be identified

with — f;{, f1 after the Jordan-Wigner transformation.
It will be convenient to introduce anti-periodic boundary conditions for the
fermion operators, so we introduce the notation

fi=-1.,  fo=—fn. (C.6)

Within W, we may then identify S¥S; = fgfl and (similarly) Sy Si" = —foflJr and
S§ST = fifl and Sy ST = —fof1. Collecting terms we find

W=y {7 [Fsdi = gt = VI=02 (FLu8] = fima ) (
i=1 .

—2Vf;fi +v— 1}

The next step of the derivation is to diagonalise this quadratic operator, which is
done in two stages. One first makes a Fourier transform

. 1 N 1 o

fom =D hEY . fi= e 3 fpe (C8)
where Q3 = {¢=F@2k+1):ke{-F,1-5, ..., F—-1}}. Odd wavenumbers
have been chosen in order to satisfy the anti-periodic property of f; and fJT
(itself a consequence of the conserved parity of the number of domain walls whic
is always even). One can easily show that fq and fg are fermionic operators (which
satisfy fermionic anti-commutation rules). The symmetrised tilted operator then
reads

W 3 {e [t evfaf + VT (1L = )
qeQHd (C,Q)
_QVf;fq—i—l/— 1} ,
which can be recast as
Ws = Z {2 (e*S cos(q) — 1/) fgfq — iy 1 —v2e ?sin(q) (f;fiq - f_qfq) +v— 1}(0.10)
qeQWr
by using quq’ = _fq/fq and qu;'i‘f;rfq =1land Zq COS(Q)fquq = Zq COS(Q)JEJfAiq =
0, according to the fermionic commutation rules.
Finally, we follow the standard procedure for diagonalising the Hamiltonian of

a 1D quantum-Ising chain in a magnetic field (see for instance [77, section 10.1]) in
which this same operator appears: define

&q = cos(0,) fq — isin(0,) f1, . (C.11)

C.7)
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with 6_, = —0,. Taking 6, such that tan(26,) = v/1 — v2sin(q)/(cos(¢) — v), we find
WS = Z [AS(Q) - 1] - Z 2AS(Q)éqé<§ ) (012)

qeQq qeQydd

with As(q) = v/(e=*cos(q) — v)% + (1 — v2)e~2%sin(g)2. The maximum eigenvalue of
(C.12) is thus associated with the full occupied state ®, |1) and reads

Un(s)= 3 (Adla) - 1) . (C.13)

qeQs
One verifies that ¥(0) = 0 as it must be.
One can also compute the critical value s. for which ¥(s) = limy_ 0 Un(s)

displays a second order singularity. By studying the sum (C.13) that tends toward a
continuous integral in the N — oo limit, it has been shown [I8] that the singularity
happens at s. for which lim, o A, (¢) = 0. This yields

s¢ = —Ilnv = —Intanh(28J) . (C.14)

The results of this section are very similar to those of [II, Sec 4.4.2]:
we have clarified the use of odd wavenumbers when summing ¢ and we have
noted the existence of a transition at s = s.. [Note A may be rearranged
as /(e72s —1)(1 —12) + (1 —ve *cosq)?.] Comparing to [I8, Eq. (3.2)], the
calculation is slightly different because they considered large deviations of the energy
and not the activity. The use of odd wavenumbers was not discussed in that [1§].
Following the method described here as outlined in Appendix B of [7] recovers their
results, which corrects a factor of 2 in [I8].
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