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ABSTRACT 

 

This study analyses a software algorithm developed on MATLAB, which can be used to examine fused filament 

fabrication-based 3D printed materials for porosity and other defects that might affect the mechanical property of the 

final component under manufacture or the general aesthetic quality of a product. An in-depth literature review into 

the 3D printed materials reveals a rapidly increasing trend in its application in the industrial sector. Hence the quality 

of manufactured products cannot be compromised. Despite much research found to be done on this subject, there is 

still little or no work reported on porosity or defect detection in 3D printed components during (real-time) or after 

manufacturing operation. The algorithm developed in this study is tested for two different 3-D object geometry and 

the same filament color. The results showed that the algorithm effectively detected the presence or absence of defects 

in a 3D printed part geometry and filament colors.  Hence, this technique can be generalized to a considerable range 

of 3-D printer geometries, which solve material wastages by spotting defects during the workpieces layer-wise 

manufacturing process, thereby improving the economic advantages of additive manufacturing. 
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1. Introduction 

 

Additive manufacturing (AM) is a fast-evolving technology for producing three dimensional (3D) items from 

materials like powder, plastics, rubber [1, 2]. It is no longer in doubt today that the potential of this technology will 

be the next industrial revolution due to its numerous advantages. Some of the advantages include Geometrical 

constraint reduction, Production lead-time reduction due to computer-aided design (CAD), the flexibility of the 

material used depending on the application of the manufactured item, labor cost reduction, waste reduction, and 

flexibility of customization. This manufacturing method has attracted increasing attention over the years, and 

advancement in this technology has seen a positive shift from just rapid prototyping of parts, which is mostly known 

for the production of complex components parts. Although 3D printing has been widely used for the development of 

materials and structures with complex geometry, the employment of this manufacturing method is still limited in 

attaining or ensuring uniformity of workpieces mechanical properties and shapes, especially in mass production [3-

5]. Presently, Components are manufactured one after the other to avoid mistakes. The 3D printer is stopped 

intermittently to check the quality of printed materials. Materials are wasted if they do not meet design requirements. 

Time is wasted executing a fresh print in the outcome of mistakes discovered (Time to do the materials all over again 

if it does not meet design requirements) and many more undesirable tendencies.  Hence, this necessitates the need for 
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an in situ and real-time quality monitoring system currently sparsely available that can breach this deficiency in the 

3D printing process. The main challenge in coming up with such a system that ensures real-time investigation to make 

the manufacturing process more efficient stems from the wide range of time-scaled events and their complexities. The 

3D printing process does not entirely entail material heating, melting, and solidification as it can be observed 

physically during the component production operation. Also, thermodynamic phase transitions and residual stress 

distributions during the final stage of the formation of a component, which help in cooling and solidification to a large 

extent determines the end shape and quality of the component [5-7]. These parameters above are not alien to engineers. 

Still, a closer study shows they have properties that can be linked to Mechanical, Laser optics, Thermal, electrical 

particle distribution, and material properties. Expert knowledge of these properties can be harnessed to explain the 

quality of components characterized by cracks, porosity, residual stress distribution, built-up edges. The table below 

gives a brief description of different defects encountered during the printing of parts on a 3D printer, which 

compromises the quality and reliability of parts produced using this technology [7-9]. 

Table 1. Types of defects in 3D printing and their corresponding causes [13]. 

 

PRINT (PLA) TYPE OF DEFECT CAUSES 

 

Poor Bridging Lack of support provided for larger bridging regions of printed 

parts. 

 

Dimensional 

Accuracy 

Many common factors can cause this defect: thermal contraction, 

under or over-extrusion, filament quality, and first layer nozzle 

misalignment. 

 

Gaps Between Infill 

and Outline 

Many common factors can cause this defect: thermal contraction, 

under or over-extrusion, filament quality, and first layer nozzle 

misalignment. 

 

Layer Separation and 

Splitting 

In this case, the infill is printed too fast, making it not to have 

enough time to bond to the outline perimeters. 

 

Elastic Deformation This defect occurs when the Layer height preselected is too large 

or when the Printing temperature is too low. This is mostly 

caused by Insufficient Cooling or Printing at too high of a 

temperature. 

 

Misalignments This type of situation occurs when there is over extrusion of 

printing material. 

 

Layer Shifting This kind of case arises when the Tool head is moving too fast, or 

there is a Mechanical or Electrical Issue associated with the 

printer itself. 
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Blobs and Zits This occurs due to the retraction and coasting of the extruder or 

error in the start point setting. 

 

Incoherence This can be caused by several issues, which include Filament 

getting stuck or tangled, Clogged Extruder, Very low layer 

height, Incorrect extrusion width, Poor quality filament, and 

Mechanical extruder issues. 

 

Stringing or Oozing This situation arises due to one of the following; Retraction 

distance, Retraction speed, Temperature too high, Long 

movements over open spaces, or inappropriate Movement Speed. 

 

Quite a several types of research has been done, and a lot are ongoing regarding optimization and defect 

detection/control in the field of additive manufacturing. The primary reason for this is to improve the quality of 

products emanating from this form of production [9-11]. A wide variety of in-situ methods developed by different 

researchers had implemented different in-situ sensors and other data capture devices, which include RGB cameras, 

Laser Scanners, Thermal imaging cameras, Piezoceramic, RGB cameras, CCD cameras, Pyrometers, Micro 

bolometers and acoustic sensors. The work of these devices in the research they were utilized is to provide real-time 

information of process parameters during the build process to halt the printing process and scrap the faulty component 

or make necessary adjustments and continue the build. In the light of a review conducted on this subject matter, this 

research builds upon these existing works. Still, it focuses on harnessing a simple Microscopic camera and its acquired 

data in describing ongoing work on the in-situ monitoring and control operations in additive manufacturing [11-13]. 

 

Much of the early work focusing on in-situ inspection has adopted an in-line camera-based set up which includes that 

of the more recent work of Shevchik et al. work, which investigates the feasibility of using acoustic emission for real-

time quality monitoring [14-16]. Here, a sensitive acoustic emission sensor was used to obtain data from the heat zone. 

A fiber Bragg grating sensor was used to record the acoustic signals during the powder bed additive manufacturing 

processing [16-18]. The process parameters were strategically manipulated to create different processing regimes that 

led to the generation of different concentrations and types of pores and contours that aid in the classification process. 

The classifier utilized was trained to distinguish between the acoustic features of dissimilar quality, based on spectral 

convolutional neural network. However, this method was restricted to the melt pool region; hence other parts of the 

printed component cannot be analyzed for defect detection. Furomoto et al. investigated the consolidation mechanism 

of metal powders during additive manufacturing operations by assembling a high-speed camera as part of the set up 

to monitor the consolidation of the powder during irradiation [19-21]. The effect of altering the thickness in this work 

was further investigated by interpreting camera images captured at the different frame rate and sampling time. 

Although this work was carried out with the view of controlling the melt pool behavior during the printing process 

through active monitoring of the Temperature on the surface, real-time interpretation of the data generated was not 

possible. Some researchers investigated the limits for detecting pores and irregularity in the manufactured surface 

using an IR camera at a long-wave infrared wavelength band and a specific sampling rate [21-23]. In this work, pores 

and irregularities in surfaces were caused by insufficient heat dissipation during the processing of laser-PBF. This 
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study was aimed at the identification of deviations encountered during the build process, mainly caused by a shift in 

process parameters or random errors introduced in the process. In their work, the additional camera approach 

implemented did not allow for inspection across the entire build area. A lot of shielding of the IR camera has to be 

done to prevent contaminations from high-level specks of dust and smoke, thereby reducing the accuracy of the data 

collected. High-speed cameras were also utilized by Craeghs et al. to check for inconsistency mainly caused by curling 

up of parts due to induced stresses with the build-in course of monitoring the powder bed [23-25]. The camera was 

mounted at an angle to the build area axis, and a simple algorithm was implemented to avoid perspective distortion.  

 
Some researchers, in their work, equipped an electron beam-PBF system with an IR camera with a processing 

resolution up to 320 x 240 pixels [26-28]. The camera, in this case, was also placed at an angle of 15 degrees to the 

bed and shielded by a zinc-selenide (ZnSe) to protect equipment from metallization [29-31]. A snapshot of each layer 

was taken after meeting before the next powder layer was raked across. This image is then compared with the model 

of a ground sample. Areas of materials with higher heat radiation corresponds to flaws or irregularities. An automated 

process would be required to progress from just detecting to implementing a closed-loop structure that assures repairs 

of errors detected [30-33].  

 
An IR camera was also incorporated by Rodriguez into an electron-PBF machine to do a surface temperature analysis 

for each build layer processed. The information obtained during the analysis is then incorporated into the dictate of 

the build settings for the subsequent layer. This research was carried out mainly to analyze captured images manually, 

and measuring the emitted radiation from the surface of the component being printed, reflected emission from sources 

at ambient Temperature and atmospheric emission. The cumulative Temperature was then converted to a relative 

temperature reading. The idea of the cumulative Temperature helped in the identification of material discontinuities 

caused by "over melting' as observed from IR generated images [33-35]. Incorporation of a thermal imaging camera 

is an effective way of monitoring each layer printed during additive manufacturing operation, as described in the work 

of other researchers highlighted in the literature. Still, it compromises on its ability to distinguish between objects of 

interest due to its dependence on heat concentrations in components. 

 
Like previous work, this research attempted to identify key parameters of interest of the objects under manufacture to 

modify printer behavior in real-time. Engineers out there in different disciplines utilizing hardware for design synthesis 

requires component not only with good aesthetic quality but with optimum mechanical properties to meet quality 

assurance demand. Nowadays, 3D printed materials are finding its way into core engineering applications that were 

meant for steel and other metallic alloys with desired properties; hence a grave necessity is laid on additive 

manufacturers to improve on the quality of the manufactured components. One of the many ways to achieve this is 

the institution of a system that analyses the quality of the printed parts for defects that may affect their overall 

workability in the areas of application, hence the primary objectives of this research study. This research is an ongoing 

work that seeks to develop a software algorithm that can determine the locations of pores and crack concentration on 

each layer of a 3D printed product. With the image processing algorithm developed in this paper, the extraction of 

porosity information from raw quality inspection data, such as tomography data sets of cross-sectional images, can be 

automated. 
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2. Methodology 

 

An experiment is carried out by printing a model shape using a 3D printer to identify layers have pores as well as 

other deformation that goes beyond an acceptable range. Base on the 3D printer settings, each layer that represents a 

specified thickness is completely printed before proceeding to a new layer. The moment a layer is completely printed, 

the CCD camera takes the image of the print and send the result to the image processing system. The image processing 

system processes the sent image from the camera using a developed algorithm and compares it with the design model 

image. Layers captured during intermittent layer prints are compared with layers without defect. Those layers were 

noted and analyzed to give a command to the 3D printer to continue or stop printing to avoid material wastage if the 

defect is not within acceptable limits. The following methodological approach was adopted in aiding this research. 

The object to be printed using the 3D printer was designed and modeled using solid works software [34-37]. This 

modeled design serves as the input variable and setpoint for which the printer is meant to replicate during production. 

An experimental setup was arranged using the in-situ configuration with one CCD camera at the top view of the 

printed object to obtain real-time images of each layer once printer and send an image to the monitoring system to 

analyze using the developed algorithm. The 3D printer was set to print a total of 10 layers for the object due to the 

design dimension (thickness) of the model design of which should reflect the actual 3D printed object. Each image 

layer was analyzed and compared with the designed solid works model using an algorithm. At layers having defects, 

the defective layers were compared with the layers without defects. Result obtained was evaluated and discussed to 

obtain a conclusion and suggest areas for further research. 

 

2.1. Model Design and Experimental setup 

 

Solid works software was used to design an object model for use in experimenting. The object shape, as seen in Fig 

2. shows the CAD design and its corresponding dimensions. Based on the thickness of the modeled object, a total of 

ten layers was created from it of which these serve as a reference for the 3D printer when executing the printing 

command [30-32]. Due to the uniformity of the object being printed, each layer has the same dimensions and shape. 

One-layer dimension was used for all layer model reference during the production process. To bring the aim of this 

study into actualization, an experimental set has been realized to aid the investigation. As shown in fig.1, the set up 

incorporates a CCD camera which acquires the data of each layer of a part printed at regular intervals. Two light 

sources are placed at strategic locations in the printing chamber to enable the defocused and homogeneous illumination 

of partly printed. The setup is extended by a memory drive that saves all the images acquired by the CCD camera, and 

then it is accessed directly by the software in the computer used for the processing. The table above gives information 

regarding the specification of the camera, software used, and the additive manufacturing machine utilized for the 

experiment. 
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Fig. 1 Experimental setup of the cameral process to detect the defect in the printing object 
 
 

Table 2. Details Datasheet of Support Devices 
 

DATA SHEET OF CAMERA 

Designation of Microscopic camera Frame rate Lens Mount Sensor Type Camera Resolution 

AV GC -D1380CH 30 C-MOUNT CCD 1360 (H) x 1024 (V) pixel 

DATA SHEET OF 3D PRINTER 

Type of Material Nozzle Temperature File Format printing Machine weight Structure 

PEEK 220OC STL, G-code 8.5kg Aluminium Profile 

DATA SHEET OF SOFTWARE PROGRAM 

Type Version Bits  Execution time 

MATLAB R2020a 64  0.48s 

 

2.2. Porosity Measurement. 

 

This is a software-based comparative study of printed scaffolds of 3D printed material with visible defects and those 

without visible defects. An exhaustive literature review and experimental examinations were done to achieve the 

objectives of this research. A MATLAB model porosity identifier algorithm was further developed, which can be 

implemented in real-time to give an idea of the porosity gradient of a printed component. Before employing a 

technique to construct the porosity in-situ monitoring model, the image of parts printed on the bed of the 3D printer 

collected by an appropriate sensor camera needs to be compared with the porosity data collected from the component 

that is analyzed. A set of image processing algorithms has been developed in MATLAB to generate porosity 

information from the raw images of cross-sections under investigation, as discussed in fig.5. The cross-sectional 

images acquired consecutively are not concatenated or post-processed like some other research carried out. Here, the 

images captured are diagnosed by the developed algorithm in its raw state. The image is then cropped from during the 

processing to exclude areas of the sample holder and other accessories captured during the operation, which are not 

parts of the region of interest. After the cropping, the image is binarized using Otsu's thresholding algorithm, and the 

dark patches represent pointers of porosities on the image's cross-section. In the cause of this study, two types of dark 
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patches were observed. One was due to contour cracks, and the other is due to pores spaces of different magnitude. 

The sequential steps of processing the image are discussed below and illustrated in Fig. 7 and 8. 

3. Evaluation of Defect detection 

 

In this study, a sample test CAD model was created, as shown in fig.2 below. The G-code of the model was then 

generated, and a total of ten layers were printed using the 3D printer to determine the layer at which the defect could 

no longer be acceptable. Each printed layer samples were suitable for the analysis intended. These samples were 

selected to be used to test the validity of the software program algorithm. The Fig. 2a below represents one of the 

layered sample printed on the 3D printer with some defects on it, while fig.2b represents another layer sample without 

defect as recorded by the CCD camera during the experiment. 

Fig. 2 Measurement object (a) CAD Design of Sample. (b) Image of Additive manufactured Sample with defects (c) 

Image of Additive manufactured Sample without defect. 

 
When these samples were analyzed using the software algorithm developed, the following operational sequence shown 

in fig.3 were carried out at different stages of the simulation. Each of the operation represented on the flow chart 

yielded specific results which are collectively used to make a final loop in the identifications of pores/defect/contours 

in printed components. The image results (fig.5 and 6) in the succeeding page shows the series of operation as 

explained in the flow chart that was done on the digital input image before a final result is generated stating the 

existence or non-existence of pores/defect/contours in the additively manufactured component.  

 
Fig. 3. Method of pores/contour/defect detection algorithm 

 

Where; 𝜷𝟏 Converts the Grey Scale Image to Binary Image. 𝜷𝟐 Complement the Binary Image. 𝜷𝟑   Fill holes 

identified in the image. 𝜷𝟒 Calculates the boundary area of the image. 𝜷𝟓 Draws a boundary line on the image. 𝜷𝟔 

Displays holes and numbered too. 𝜷𝟕 Calculate boundaries of regions with pores in the image. 𝜷𝟖  Displays the image 

with pores and contours represented in random colours.  
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Fig. 4. Flowchart of the model detection process. 

4. Result and discussions 

 

Thresholding of the image acquired is necessary to aid the subtraction of foreground components from the background 

as the first step before implementing other classification to facilitate defect detector computations. This section shows 

the result of the images analyzed by the algorithm to detect the presence of pores. In Fig. 5 and 6 below, a, b, c, d, e 

represents the intermediate image processing results obtained during analysis. The end product of this analysis, which 

is, of course, the porosity information image, is one that depends on other processes for it to be successfully achieved. 

Fig.5 and 6 shows a vivid comparison between the image results of the layer generated by the simulation of the 

algorithm developed on a component with defect/contours/pores and another without a defect. This will aid in 
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examining the efficacy of the algorithm for further investigations and approval for general use. In this simulation, 

some errors were accounted for that were mainly due to the image quality obtained, component sacrificial scaffold 

support finishing, and illumination. These sources of errors can be neglected in this study as the aim is just towards 

defect identification on a photographic scale. In the case where a feedback system will be implemented for information 

regarding defects detected, these errors will be filtered or ignored as the support is only a component which is usually 

discarded when the actual component is successfully manufactured. Fig 7 shows the nature of the histogram 

distribution of the pixels in the image. 

 

Fig. 5   Processing steps of Pore's detection for an image with defect (a) Input image; (b) Complemented image of a 

sample; (c) Binary image of sample exposing every defect (d) Complemented Images of Samples with all holes/defect 

filled. (e) Outline of the boundaries of samples traced by code (f) Result of local pores detection 

 
 

Fig.6    Processing steps of Pores detection for an image without defect (a) Input image; (b) Complemented 

image of a sample; (c) Binary image of sample exposing every defect (d) Complemented Images of Samples 

with all holes/defect filled. (e) Outline of the boundaries of samples traced by code (f) Result of local pores 

detection 

4.1. Pixel Distribution and Segmentation. 

 

The captured images of both specimens (The layer with defect fig 5. (a) and the layer without defect fig 6. (a)) were 

then normalized into a greyscale pixel intensity map which ranges from 0 (dark patches on image) to 1 (white) for 

image segmentation. This step taken allowed us to identify the pattern of pixel intensity mapping within each frame 

of interest for spatial and layer variation analysis rather than acquiring pixel values using a point-wise approach.  
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Fig.7.   Histogram distribution of Grey level images of samples pixels (a) Grey level image of a sample without 

defect (b) Grey level image of sample with defects (c) Histogram distribution of the grey level image of a sample 

without defect (d) Histogram distribution of the grey level image of a sample with defects. 

 

The image processing was done using the MATLAB image toolbox viz-a-viz, a specially designed algorithm. The 

pores detection of this additive manufactured sample poses some challenges arising from Foreground objects around 

the sample been evaluated, the image quality of the captured sample, a shadow cast on any side of the sample due to 

Light position. In general, in-situ detection of sintered contours is easier than a post-process analysis of a molten and 

solidified workpiece because of its higher contrast between the molten area and the unmolten powder. Consequently, 

the following optical analysis may be transferred directly to comparable in-situ edge detection measurements.  

For optical measurements and evaluation to be carried out, three basic steps are undertaken during the process, which 

involves utilizing both hardware and software, respectively. Firstly, the object layers being manufactured on the 3D 

printer are captured with an appropriate camera in a well-illuminated condition after completing each successive layer. 

Secondly, the image is transferred to the workstation via the adapted camera. Lastly, the acquired data in the form of 

a digital image is then processed with the software algorithm developed for quality assessment and measurement. In 

this study, the software algorithm developed performed series of operations on the digital image, as shown above, 

before the desired result is reached. To suitably track the edges of any image analyzed by the algorithm, the grey 

sample is first generated. The grey values obtained are then binarized, complemented, and filled with revealing the 

entire area covered by the image to aid in dimension extraction. During the printing process and from an image 

captured by the CCD camera, it was discovered that layers from 1 to 7 had no defect, but layers from 8 to 10 had 

defects in them, which have been analyzed and compared with layers without defects. The equation below represents 

the Spatial objective function for Pores Identification of a Squared error function 

 

𝑭(𝑼) =  ∑   ∑ (‖𝒙𝒊 −  𝒖𝒋‖)𝟐𝑲𝒊
𝒋=𝟏

𝑲
𝒊=𝟏             (1) 

 

Where; 

  x = {x1, x2, x3, …., xn} is the set of defect points and u = {u1, u2, …., uc} be the set of centres of defect clusters. 

(‖𝑥𝑖 − 𝑣𝑗‖), is the Euclidean distance between 𝑥𝑖  𝑎𝑛𝑑 𝑢𝑗. 
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𝑘𝑖 Is the number of pores/defects in the cluster. 

𝐾 is the number of cluster centers. 

 

The equation can be further experience as a model spatial function for Pore's center Identification. 

𝒖𝒊  = (𝟏
𝒌𝒊

⁄ ) ∑ 𝒙𝒊
𝒌𝒊
𝒋=𝟏                 (2) 

Where, 𝑘𝑖 is the number of pores in the cluster. This formula is used to recalculate the new pores/defect cluster center 

to aid reassignment in the algorithm to achieve a better result during simulation of layers under consideration. The 

pores detection was based on K means clustering algorithm used predominantly for medical imaging in most 

biomedical applications. From the results obtained as shown in Fig. 6, The sample without pores didn't have the 

random colors displayed on its surface, which invariably shows that no visible pores were identified on its surface 

when analyzed by the image process algorithm. Although, it will be observed that there are some colors displayed at 

the side(support) due to the relative roughness of the support. In essence, this algorithm has further proved its validity 

in total agreement with what is observed physically by our eyes. In the sample with pores (fig.5), it will be observed 

that there are random colors scattered around its surface. This simply shows the presence of pores and discontinuities 

on the surface. This was achieved by K means clustering concept, as stated earlier, via the investigation of the pixel 

values of pores and any other discontinuities/defects and their size distributions. 

4.2. Edge Detection and Background Subtraction 

 

This is one of the processes embedded in the software algorithm to mark out the boundary of the sample to aid in the 

measurement of the sample dimensions. This process is most times affected by the presence of shadow in a digital 

image captured. Hence the result obtained tends to be obscured like the sample analyzed in fig.8 below, thereby giving 

a false judgment regarding sample size on the build plate of the 3D printer. This limitation is similar to the first 

limitation, which can be solved by improving the illumination of the sample. Still, in this case, an appropriate angle 

of incidence selected will improve the quality of the sample image greatly. 

 
Fig. 8. Shadow effects on algorithm 

 

This is another challenge as a decisive selection cannot be made regarding what is captured and what is blanked out 

when the camera is placed facing a particular direction. In the capturing of the sample under manufacture, the camera 

also tends to capture other accessories of the 3D printer. It becomes difficult to carry out a foreground (other 

accessories) subtraction when there is a similarity between some of the accessories and the sample underbuild. This, 

however, was solved by thresholding and image segmentation options in the image processing algorithm before 

binarization of the sample image. 
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4.3. Limitation  

 

It was noticed that the presence of shadows around the image or on the digital image to be analyzed caused some 

deviations from the expected results obtained, as observed in fig.8. This was so because the pixel value of the shadow 

interfered with the pixel values of pores included in the algorithm for pores investigation and detection. To cub, this 

anomaly in this research study, pictures of samples were taken in an adapted optical environment. The 

algorithm requires an iterative apriority specification of the number of cluster centers. Since it is highly probable to 

have two overlapping pixel data of defects identified on images, the algorithm simulation result may be tilted slightly 

from accuracy based on this kind of input. This, however, can be solved by intelligent machine learning techniques 

that can identify close matching data sets. Also, the algorithm is not invariant to non-linear representations. The 

measure of Euclidean distance between sets of defect points and cluster centers can unequally weight underlying 

factors like shadows and other noisy data and outliers.  

5. Conclusion  

This algorithm proposed in this research study can aid this material to be effectively utilized in different sectors with 

low to zero risks regarding component mechanical property or quality. In no distant time, 3D printed material has the 

potential of replacing expensive high-quality materials already invoke in the industrial sector. The need is to explore 

the tendency of using 3D printed components that meets mechanical and quality standards for more sophisticated 

applications. This development will undoubtedly increase the usage of 3D printed materials since a material property 

validity test procedure now breaches the gap created by uncertainties. In the future, a video editing of layers printed 

during the additive manufacturing process will give a better result and ensure optimum quality in the process. We 

recommend in this research work for further analysis of the thickness of the printed object for any form of defect. 
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