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Abstract 

Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand 

the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate 

the market currently, to newly emerging wearable and implantable devices that can provide 

continuous monitoring. Soft and flexible materials are playing a key role in propelling these 

trends towards real-time and remote health monitoring. Affinity biosensors have the capability 

to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic 

diseases by the detection of biomarkers using affinity interactions. This review tracks the 

evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable 

devices enabled by soft and flexible materials. Initially, we highlight conventional affinity 

sensors exploiting membrane and paper materials which have been so successfully applied in 

point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-

based devices. We then turn our attention to the multifarious polymer designs that provide both 

the base materials for sensor designs, such as PDMS, and more advanced functionalised 

materials that are capable of both recognition and transduction, such as conducting and 

molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible 

material-based affinity sensors, classified as flexible and skin-mountable, textile materials-

based and contact lens-based affinity sensors. In the final sections, we explore the possibilities 

for implantable/injectable soft and flexible affinity sensors, including hydrogels, 

microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust 

that this review will help pull together the many technological streams that are contributing to 

the field. 
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1. Introduction  

Predictions from the co-chair of the World Economic Forum’s Future Council, Melanie Walker, 

suggest that hospitals could largely be a thing of the past within little over a decade, replaced 

by mobile and wearable technologies delivering healthcare in decentralised locations in a far 

more cost-effective manner (Walker, 2016). Whether or not we subscribe to the predicted 

timescale, it is clear that such a theranostic revolution would herald a period of far-reaching 

social, economic and political upheaval. The sheer numbers of people affected, structural 

reorganisation and financial implications, present an extremely complex landscape that is 

challenging to navigate. At the heart of all this, however, lies the sensing, processing and 

transducing capabilities of biointerfaced devices, such as biosensors.  

Biosensors, as classically defined, incorporate biological or biologically derived sensing 

elements that harness the exquisite specificity and sensitivity of living systems in conjunction 

with electronic transducers and processors, to either provide data directly or to actuate an 

appropriate response (Turner, 2013). Such devices provide a key element in a frictionless 

approach to health management, which potentially empowers users with the data and 

information they require to efficiently manage their health anywhere and anytime, while 

providing them with confidence in the integrity of data and the security of any automated 

actions. Based on the biorecognition principle, biosensors are categorised as: (i) catalytic 

biosensors, typical examples are enzyme biosensors; and (ii) affinity biosensors, typical 

examples are immunosensors and nucleic acid biosensors. Catalytic biosensors use catalysts as 

biorecognition elements, such as enzymes, biomimetic/synthetic catalysts, cells and 

microorganisms etc., where the sensing principle is based on the detection of biocatalytic 

reactions in the presence of an analyte. In contrast, affinity biosensors use affinity molecules as 

biorecognition elements, such as antibodies, nucleic acids, receptors, and synthetic affinity 

polymers, where the sensing principle is based on detection of affinity interactions between the 

biorecognition element and the analyte. Affinity sensors are highly important for the detection 

of the majority of biomarkers in disease diagnosis and continuous monitoring and offer some 

advantages over catalytic biosensors, most notably the lack of consumption of the analyte. The 

addition of affinity elements enables selective and specific binding for their target species at 

low concentrations of analyte in complex samples, and the binding interactions can be 

monitored in real time (Turner, 2013).  

Advances in material science, manufacturing and device integration are propelling the 

development of new affinity sensors. A major trend is the move from conventional invasive 

point-of-care tests towards minimally-invasive and non-invasive wearable and implantable 
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devices for continuous, real-time and remote monitoring. The development of wearable and 

implantable devices for long-term monitoring is now a key goal. The recent boom in wearable 

sensors has highlighted the potential of continuous measurement and the appetite amongst users 

for personalised information, such as biosensor patches and printed electronics, is now well 

established. Arguably, the major bottleneck at the current time is the availability of reliable 

sensors that directly measure key biochemical parameters consistently in real situations. Most 

current wearable devices have ingeniously exploited physical sensors that were already readily 

available and used these to infer relevant secondary information. Chemical sensors and 

biosensors, affinity sensors in particular, present greater challenges, but the direct molecular 

information that they can deliver is essential to higher level algorithms for personalised 

management of health, artificial intelligence and control of biochemical systems. 

   Recently, several excellent review articles have been published on flexible and wearable 

sensing devices (Huang et al., 2014; Liu et al., 2017; Ray et al., 2019; Trung and Lee, 2016; 

Wang et al., 2016a; Xu et al., 2018a). However, these reviews mainly focused on power 

supplies (Li et al., 2018), electronic design (Liu et al., 2017; Zhao et al., 2017), physical sensors 

for measurements of temperature, heart rate, body motion and strain (Huang et al., 2014; Trung 

and Lee, 2016), chemical sensors (pH, ions and humidity) and catalytic biosensor (glucose, 

lactate and dopamine etc.) (Ray et al., 2019; Wang et al., 2016a; Xu et al., 2018a). Most of 

these review articles focus on catalytic biosensors or chemical sensors, while there is little 

coverage of soft and flexible material-based wearable and implantable affinity sensors. In this 

review, we aim to cover the research & development trends from convention to advanced soft 

and flexible materials utilised for the development of state-of-the-art affinity biosensors 

towards emerging wearable and implantable affinity biosensors. Hence, the review commences 

with membrane-based lateral-flow affinity test strips and microfluidic paper-based tests. We 

then move to the multifarious polymer designs that form a key component of affinity sensors 

(i.e. PDMS polymers for microfluidics and flexible affinity sensing platforms, functional 

conducting polymers as bio-affinity transducer interfaces, and molecularly imprinted polymers 

(MIPs) used as advanced synthetic affinity biorecognition elements) and their role in portable 

in vitro diagnostic (IVD) devices. Finally, we review the emerging field of wearable and 

implantable affinity sensors (that go beyond IVD devices). We aim to provide a comprehensive 

review covering the concept of using soft and flexible materials for the development of IVD 

affinity sensors, and chart the route towards wearable sensors and other advanced applications 

of implantable affinity sensors. We present a multidisciplinary approach that we hope will 

inspire and benefit a broad scientific audience working on various formats of affinity sensors. 
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Figure 1 summarises some examples of soft and flexible materials that we use to illustrate the 

potential development of affinity biosensors. 

Figure 1 Schematic illustration summarising applications of various soft and flexible materials 

used for the development of affinity biosensors ranging from point-of-care (PoC) tests, 

wearable biosensors and implantable affinity biosensors.

2 Conventional soft and flexible material-based affinity sensors for PoC tests

2.1 Membrane and paper-based affinity devices 

The recent rise in popularity of flexible, stretchable biosensors and sensing devices, is 

driven by the emergence of multifarious wearable sensors for fitness and health monitoring. 

Previously, the principal market drivers for flexible-material based sensors were dominated by 

membrane and paper based analytical devices such as the lateral-flow membrane-based strip 

tests and microfluidic paper-based analytical devices (µPADs). The attractive features of using 

paper and membranes as soft and flexible materials for the construction of biosensors include 

their light-weight, low cost, portability, compatibility for immobilisation of biological 
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recognition molecules and inherent capillary forces, which facilitate operation without 

requiring an external pump. This makes them cost-effective and highly suitable for disposable 

point-of-care (PoC) diagnostic applications. However, the water adsorption properties and 

mechanically instability of membrane and paper make them less useful for wearable sensors. 

This review will look at recent advances in lateral-flow affinity tests and µPADs from a soft-

material prospective and focus on additive manufacturing, paper and membrane engineering 

and their biosensing applications.  

2.1.1 Lateral-flow membrane-based strip tests 

Lateral-flow membrane-based strip tests, also known as lateral-flow immuno-

chormatographic tests and lateral-flow immunoassays (LFIA), first appeared commercially in 

1984, developed by Unilever and its subsidiary, Unipath, at Colworth in the UK. Lateral-flow 

strip tests subsequently became one of the most important platforms for Point-of-Care (PoC) 

diagnostics, with the market being worth around USD 5.14 billion in 2016 and potential for 

further rapid growth driven by the combination of LFIA with mobile-phone optical sensing 

technology (marketsandmarkets.com, 2017). The design of the lateral-flow test is based on 

integration of various membrane components in a serial order to enable different assay tasks 

for the realisation of single-step diagnostics. In general, a lateral-flow test comprises a sample 

membrane (cellulose), a conjugation membrane (glass fibre), an assay membrane 

(nitrocellulose) and an adsorption membrane (cellulose). The sample membrane allows the 

collection of sample fluid by adsorption. The collected sample is then driven to the conjugation 

membrane which contains the specific labelled secondary antibodies for the target analytes. The 

mixture then enters the nitrocellulose assay membrane with immobilised primary antibodies at 

the test zone, where an immunocomplex forms upon binding of the target analyte and the 

labelled secondary antibodies. Finally, the absorption membrane serves as a reservoir to collect 

the excess fluids. Various labelling strategies for optical and electrochemical transducers in 

lateral-flow tests can be found in our recent review article (Mak et al., 2016). From an 

engineering perspective, the high flexibility provided by the combination of various membrane 

components make lateral-flow tests a cost-effective analytical platform for applications in the 

areas of clinical diagnostics (Chan et al., 2013a), pathogen detection (Ngom et al., 2010), 

environmental monitoring (Cheng et al., 2017), food safety (Sajid et al., 2015), pharmaceutical 

analysis and drug testing (Taranova et al., 2013).  

The analytical performance of lateral-flow tests has limitations due to the unidirectional 

fluidic flow and its optimisation is mainly restricted to the development of bioassay chemistry, 

membrane porosity and the biolabel system. These bottle necks have been around for many 
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years and have limited more advanced biosensor applications. Recently, a new research 

direction focusing on engineering the soft membrane materials via the fabrication of 

micropatterns within the lateral-flow test membrane could open up the micro-fluidic features 

of these strip tests and enable us to employ many of the classical fluidic concepts developed for 

lab-on-a-chip devices without the necessity of using micro-pumps. Two research groups, 

Spicar-Mihalic et al. (Spicar-Mihalic et al., 2013) and Nie et al. (Nie et al., 2013), reported 

almost simultaneously the use of a CO2-laser to create channels on nitrocellulose membranes. 

The laser etching method is reagentless, simple and fast, and allows precise cutting of 

nitrocellulose membranes, used in lateral-flow tests. The effect of laser power on the 

nitrocellulose ablation processes was further studied by Hecht et al. (Hecht et al., 2016). They 

introduced a “cold ablation” method to reduce the heat exposure to the nitrocellulose membrane. 

The technique is based on focusing short laser pulses of femtosecond duration to etch the 

nitrocellulose membrane to reduce the time explore of laser onto the membrane. By reducing 

the heat exposure and optimising the procedure, local deformation of the cellulose material was 

improved. 

The sensing principle of conventional lateral flow tests is mostly based on optical 

transduction coupled with external optical readers. Recently, the integration of electrochemical 

transducers onto the lateral-flow membrane has become popular in the research literature to 

realise the benefits associated with the integration of miniaturised electrochemical transducer 

and rapid signal response provide by an electrochemical readout. Akanda et al. (Akanda et al., 

2014) first reported the integration of nitrocellulose membrane on the surface of a 

micropatterned ITO glass electrode to develop an integrated electrochemical lateral-flow test 

for detection of troponin I with a detection limit of 0.1 pg mL-1. Sinawang et al. (Sinawang et 

al., 2016) later demonstrated the lamination of lateral-flow membrane on the surface of a 

commercial screen-printed gold electrode for the detection of dengue NS1 protein with a 

detection limit of 0.5 ng mL-1. However, these configurations are based on the integration of 

hard-electrode materials with a soft nitrocellulose membrane, thus negating the flexible 

properties of the lateral-flow membranes. To overcome this limitation, Wicaksono et al. 

(Wicaksono and Putri, 2014) reported the integration of a soft carbon-based working electrode 

that was placed underneath the nitrocellulose membrane to construct electrochemical lateral-

flow tests for melamine in milk sample. In addition, a platinised carbon paper electrode was 

integrated with a lateral-flow membrane for the construction of electrochemical fuel cells to 

create self-powered autonomous lateral flow tests (Esquivel et al., 2014). Other advanced soft-

material electrodes, such as carbon nanotube (CNT) paper electrodes and micropatterned 
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polyaniline (PANI) graphene oxide (GO) composite electrodes have been used for the 

construction of electrochemical lateral-flow tests using a similar lamination process (Shi et al., 

2015; Zhu et al., 2014). Nevertheless, all the above fabrication techniques are based on placing 

the electrodes on the surface or underneath the lateral-flow membrane. Ruiz-Vega et al. (Ruiz‐

Vega et al., 2017) recently demonstrated the direct integration of micropatterned electrodes 

printed onto a lateral-flow membrane for the fabrication of a fully integrated electrochemical 

lateral-flow test for the detection of myeloperoxidase. A three-electrode system, composed of a 

silver reference electrode and graphite working/counter electrodes, was screen printed directly 

on the lateral-flow membrane. This approach provides an innovative solution for the seamless 

integration of the electrochemical transducer with the lateral-flow membrane, while preserving 

the advantageous soft-material properties of the membrane. 

Much research effort has been focused on the development of advanced labelling 

technologies for lateral-flow tests in the search for improved sensitivity. Examples include 

quantum dots (Taranova et al., 2015), carbon nanaoparticles (Blažková et al., 2010), 

nanocrystals (Mak et al., 2011) and upconverting phosphors (Liang et al., 2017). Some of the 

latest attempts to improve analytical performance have returned to classical metal-based 

nanoparticles. Loynahan et al. (Loynachan et al., 2017) reported using platinum nanoparticles 

(Pt NPs) as an amplification catalyst in lateral-flow tests for the detection of the biomarker p24 

for HIV. The PtNP catalyst-based HIV lateral-flow device delivered a broad linear dynamic 

range across 4 orders of magnitude from 1 to 10000 pg mL-1 and detection limits of 0.8 pg mL-

1, which out-performed both commercial and published membrane and paper-based p24 tests 

for HIV. The strategy of the PtNP catalyst is similar to earlier work reported by Parolo et al. 

using a AuNP-loaded enzyme (horseradish peroxidase) as a biocatalyst to enhance the 

sensitivity of lateral-flow tests (Parolo et al., 2013). However, both reported techniques had a 

limitation that required an additional step of applying substrate molecules for the catalytic 

reaction to achieve improved sensitivities. Zhan et al. (Zhan et al., 2017) reported a rational and 

systematic AuNP strategy by combining diffusion, convection and binding affinity for the 

development of C-reactive protein (CPR) lateral-flow tests, with an improved analytical 

sensitivity of 256 fold. This demonstrated the possibility of optimising just the AuNPs size and 

diffusion kinetics to boost the analytical performance of lateral-flow tests.  

2.1.2 Microfluidic paper-based analytical devices (µPADs) 

Using micro channels patterned on paper to perform chemical assays has a long history , 

but micro paper analytical devices (µPADs) were popularised by Martinez et al., in 2007 and 

have since become a hot topic (Martinez et al., 2007). µPADs make use of microfluidics to 
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create micro-channels on paper and guide the flow of fluid to detection zones containing capture 

biomaterials by capillary force. The micropatterns and microchannels are created using 

hydrophilic and hydrophobic barriers to confine and guide the fluidic flow (Xia et al., 2016). 

Compared with lateral-flow tests, µPADs facilitate advanced multidirectional microfluidic 

features on paper to perform multiple and complex analytical tasks. There are several 

techniques reported for the fabrication of µPADs includes photolithography (Martinez et al., 

2008), wax printing (Chandler, 2000), ink jet printing (Delaney et al., 2011), micro-plotting 

(Bruzewicz et al., 2008), screen printing (Dungchai et al., 2011) and laser etching (Chitnis et 

al., 2011). Among these techniques, wax printing and ink jet printing are the most common and 

benefit from the simplicity of the fabrication process and relatively low material cost. To 

fabricate high density microfluidic partners in paper, workers have demonstrated the creation 

of 3D µPADs by stacking 2D patterned paper (Morbioli et al., 2017). The 3D-µPAD allows 

fluid transport in the x-, y- and z-direction, thus accommodating multiple assays within a 

smaller sized 3D-µPAD. Martinez et al. (Martinez et al., 2008) demonstrated the simultaneous 

handling of four sample solution impregnated into different sample inlets and reaching the 

target outlets without mixing within a 3D-µPAD. This provides an easy way to distribute sample 

solution from a single inlet to multiple test zones to reduce tedious sample addition procedures. 

The 3D-µPAD could potentially be useful for multiplexed analysis and high through-put 

screening with reduced cost and simplified assay procedures. Vellla et al. (Vella et al., 2012) 

demonstrated using a 3D-µPAD with multiple test zones loaded with various enzymatic markers, 

alkaline phosphatase and aspartate aminotransferase, to analyse liver function in a blood sample. 

The applications of µPADs and 3D-µPADs for environmental monitoring (Kim and Yeo, 2016) 

and healthcare diagnostics (Fu and Wang, 2018) are also summarised in these recent review 

articles. 

Fabrication of 3D-μPADs typically requires the tedious assembly of multiple layers of 

2D-µPADs sheets that restricts mass production. To realise the mass production of 3D-µPADs 

in a compatible way with the flexible nature of the paper substrate, the concept of paper origami 

to create folded 3D-µPADs has been introduced (Liu and Crooks, 2011). The origami folded 

3D-µPADs allow facile and large-scale paper device fabrication by printing microchannel 

patterns onto a 2D paper followed by simple paper folding. Scida et al. (Scida et al., 2013) 

reported an origami 3D-µPAD using wax-printed paper immobilised with quencher-labeled 

ssDNA probes for optical detection of DNA. The DNA 3D-µPADs were configured with four 

test zones that allow simultaneous independent detection with no crosstalk between the fluidic 

pathways and a limit of detection of 3.1 ± 0.4 nM. Ge et al. (Ge, L. et al., 2012) developed an 
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origami 3D-µPAD with immobilsed antibodies for multiplexed chemiluminescence 

immunoassay. The 3D-µPAD innunoassy allowed the simultaneous detection of four cancer 

markers, a-fetoprotein (AFP), cancer antigen 153 (CA153), cancer antigen 199 (CA199) and 

carcinoembryonic (CEA), with limit of detection of 1.0 ng mL-1, 0.4 U mL-1, 0.06 U mL-1 and 

0.02 ng mL-1, respectively. As an alternative to optical intensity measurement, Tian et al. (Tian 

et al., 2017) demonstrated a distance-based origami 3D-µPAD for visual detection of invertase 

concentration based on affinity capturing of the coloured polymerised enzymatic product 

generated by the invertase. The amount of coloured product captured along the flow distance 

on the paper channel was proportional to the invertase concentration. The distance-based 3D-

µPAD detected invertase over a concentration range of 22.4 nM to 1.12 μM. The same authors 

further demonstrated the detection of cocaine and adenosine using a similar distance-based 

principle.  

Apart from optical detection, quantitative multiplexed analysis can also be performed with 

electrochemical detection. Ge et al. (Ge, S. et al., 2012) demonstrated using a 3D-µPAD 

consisting of 24 test zones loaded with different target specific antibodies for the simultaneous 

detection of cancer markers (a-fetoprotein, cancer antigen 125, cancer antigen 153 and 

carcinoembryonic) in serum sample. Liu et al. (Liu et al., 2012) reported the development of a 

self-powered electrochemical origami 3D-µPAD functionalised with aptamer for the affinity 

detection of adenosine. Specific aptamer was immobilised onto wax-printed paper via the 

streptavidin-biotin interaction. The “self-power” was generated by a glucose oxidase-based 

half-cells, for the conversion of [Fe(CN)6]
3- to [Fe(CN)6]

4-. The concentration gradients 

between [Fe(CN)6]
3- and [Fe(CN)6]

4- in the sensing half-cell and control half-cell, generated a 

voltage different to power the 3D-µPADs. The electrochemical aptamer 3D-µPAD detected 

adenosine with a sensitivity of 0.48 µA M-1 and limit of detection of 11.8 µM. Yang et al. (Yang 

et al., 2016) developed a simple, scalable, and cost-effective strategy for fabrication of a sensing 

electrode based on waste newspaper. Using parylene C-post-treated waste newspapers (P-

paper), which have a porous structure, as a flexible and disposable substrate, a 200 nm thick 

gold and silver layer was coated on the P-paper to form a three-electrode system. Immobilised 

ssDNA on the working electrode surface acted as an affinity recognition element for highly 

sensitive and specific detection of pathogenic Escherichia coli through DNA hybridisation. The 

P-paper electrodes showed the potential to serve as disposable, flexible sensing platforms for 

point-of-care testing. Besides affinity sensing, the applications of electrochemical 3D-µPADs 

for catalytic detection of various healthcare biomarkers has been summarised in a recent review 

article (Mettakoonpitak et al., 2016).  
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Figure 2. Conventional soft and flexible material-based affinity sensors for point-of care 

applications. (A) Basic design of a lateral-flow membrane-based strip tests for miRNA-21 

detection. Adapted with permission from ref. (Kor et al., 2016). (B) Lateral-flow immunoassays 

(LFIAs) detection of HIV biomarker (p24) with enhanced ultrabroad dynamic range enabled 

by porous platinum core-shell nanocatalysts. Adapted with permission from ref. (Loynachan et 

al., 2017) (C) Fabrication of 2D and 3D μPADs by photolithography-patterning microchannels 

and embossing. Adapted with permission from ref. (Yu and Shi, 2015) (D) Low-cost and 

multiplexed 3D origami-based immunoassay-device and simultaneous detection of four tumour 

markers. Adapted with permission from ref. (Ge, L. et al., 2012)

2.2 Synthetic polymer-based affinity sensors

Synthetic polymers are man-made macromolecules with repeated subunits synthesised 

through polymerisation of monomers. Synthetic polymers have attracted extensive interest in 

variety of fields because of their low-cost, versatility and tailorable physicochemical properties. 
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In this section, we briefly summarise the application of some representative synthetic polymers 

for affinity sensors, ranging from the non-functional polymer polydimethylsiloxane (PDMS), 

to functional conducting polymers (CPs) and molecularly imprinted polymers (MIPs). 

2.2.1 Polydimethylsiloxane (PDMS)-based affinity sensors 

PDMS is a silicon-based hybrid organic/inorganic polymer consisting of an inorganic -Si-

O- backbone and organic component side chain. The special organic/inorganic structure endows 

PDMS with excellent physicochemical properties, such as optical transparency, hydrophobicity, 

chemically inertness, permeability, non-toxicity and good biocompatibility. In addition, PDMS 

is chemically and mechanically robust with good flexibility and ease of prototyping as well as 

having a low cost. Based on these advantages, PDMS has been widely researched and used as 

matrix in variety of fields ranging from microfluidics (Whitesides, 2006) and sensors (pressure, 

strain and tactile sensor) (Chen et al., 2018), to protective coatings (Eduok et al., 2017), energy 

harvesting (Park et al., 2018) and optical ultrasound generation (Noimark et al., 2018).  

Among the various applications, PDMS is one of the key materials employed for mold, 

fabrication and prototyping of microfluidic systems (channels and chambers) due to its good 

flexibility, ease of prototyping and other desirable properties (Whitesides, 2006). The 

application of microfluidic platforms in analysis have many advantages such as miniaturisation 

of instrumentation to reduce the quantity of samples and reagents, minimise time and cost, 

improve reproducibility, automate separations and detections, and provide the integration 

necessary for small wearable and implanted biosensors. Different microfluidic platforms based 

on PDMS have been proposed to provide microchannels or microchambers for affinity sensors 

in recent years. Separation and detection of different analytes with high resolution and 

sensitivity can be achieved by combing these microfluidic platforms and affinity receptors with 

different transducing elements, such as fluorescence and luminescence-based monitoring (Wu 

et al., 2016), cantilever vibration (Wang et al., 2013), micro-ring resonators (De Vos et al., 2009) 

and electrical assays based on impedance (Furniturewalla et al., 2018), conductimetry (Díaz-

González et al., 2015) and amperometry (Jang et al., 2006). For instance, Wu et al. (Wu et al., 

2016) introduced a closed bipolar electrode (BPE)-electrochemiluminescence (ECL) strategy 

for the detection of specific cancer cells (HL-60 cells), in which a two-channel 

polydimethylsiloxane (PDMS) chip (sensing channel and reporting channel) was connected 

through a U-shaped indium tin oxide BPE at a glass surface. A sandwich-type cancer cell 

detection model was developed at the cathode of the BPE with two recognition molecules (folic 

acid and an aptamer). The sensitive detection of HL-60 cells with a limit as low as 18 cells in 

30 mL of cell suspension was achieved. Díaz-González et al. (Díaz-González et al., 2015) 
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proposed an automated electrical readout system consisting of interdigitated electrode 

transducers and a PDMS microfluidic structure. The PDMS microfluidic structure created 

microwells over the transducers, realising the simultaneous conductimetric detection of up to 

36 biorecognition events. The performance of the automated electrical readout system was 

evaluated by measuring a microarray for atrazine based on a competitive enzymatic 

immunoassay. The impedimetric system showed similar sensitivity to that of a fluorescence 

scanner for the analysis of this pesticide.  

In addition to the application of PDMS for microfluidic platforms in affinity sensors, 

PDMS or structured PDMS have also drawn attention as an integrated optical sensing element 

(Charrier et al., 2012; Fan et al., 2015). For instance, Boulart et al. (Boulart et al., 2013) reported 

a sensitive film formed from a PDMS layer incorporating cryptophane-A molecules for in situ, 

real time methane (CH4) measurements in aqueous environments. The system was based on the 

refractive index (RI) modulation of the sensitive film using surface plasmon resonance (SPR). 

The sensor showed detection limits down to 3 nM, a sensitivity of 6 to 7 ×10-6 RIU nM-1, and 

response times of 1 to 2 min.  

As material science and microelectromechanical (MEMS) technology has developed, 

many methods have become available for fabricating PDMS substrates, such as lithography 

(photo-, soft- and X-ray-), printing technology (3D), mechanical microcutting, micromilling, 

direct laser plotting etc. (Faustino et al., 2016). However, the application of PDMS in affinity 

sensors is limited by some inherent properties including high hydrophobicity, chemically 

inertness and non-conductivity, which is not conducive to the attachment and immobilisation 

of molecules for affinity recognition and some transducing techniques. In order to overcome 

these limitations, many techniques have been developed to tailor the surface and electrical 

properties, which can be classified into PDMS surface modification and PDMS composite 

modification. For PDMS surface modification, plasma treatment is the most commonly used 

method (Wolf et al., 2018). In addition to plasma treatment, deposition of surfactants, 

functionalised reagents and electrically conductive layers have been widely used as modifiers 

to create functional PDMS (Wolf et al., 2018). For instance, Jang et al. (Jang et al., 2006) 

adopted plasma treatment for the internal surface of PDMS channels and then chemically 

modified them with vinyl group-terminated silane monolayer. After converting the tailored 

vinyl group into a carboxylic group, the surface-functionalised PDMS channel facilitated 

immobilisation of biotin molecules and was used in an electrochemical enzyme immunoassay 

for capturing target antibody via the avidin-biotin linkage. In addition, a variety of fillers have 

been doped into PDMS matrices to provide PDMS with corresponding functionalised properties 
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by physical blending, solution mixing, chemical crosslinking, in-situ polymerisation etc., 

including carbonaceous materials (graphene, graphite, carbon black and carbon nanotubes etc.), 

metallic materials (gold nanoparticles, silver nanowires, nickel etc.), magnetic materials (iron 

balls, carbonyl iron) and fluorescent probes (dye, quantum dots) (Khan and Lorenzelli, 2017; 

Noimark et al., 2018; Wolf et al., 2018).  

Similarly to PDMS, a group of other organic polymers showed the potential to be 

applied in the field of affinity sensors as substrates independently or combined together with 

PDMS, such as poly(methyl methacrylate) (PMMA) (Díaz-González et al., 2015), polystyrene 

(PS) (Ungerböck et al., 2013), poly(perfluoroether) (PFPE) (Zhao et al., 2018a), polyethylene 

terephthalate (PET) (Yaqoob et al., 2015) and polyurethane (PU) (Hong et al., 2017). The 

application of PDMS and other organic polymers in flexible and stretchable affinity sensors are 

discussed in detail in Section 3.    

2.2.2 Conducting polymers (CPs) 

Conducting polymers, or intrinsically conducting polymers (ICPs), are organic 

polymers with -conjugated double bonds, that are electrically conductive in a similar way to 

metals or semiconductors. Research in the area of organic CPs can be traced back to middle of 

19th century, but only since Shirakawa et al. discovered the metallic conductivity of crystalline 

polyacetylene doped with halogen (p-type dopants) in 1977, has the field of CPs developed 

rapidly in both the academic and industrial communities(Yang et al., 2017). In the past four 

decades, over 25 kinds of conducting polymer systems have been established and applied in 

various fields. Desirable organic polymer properties such as flexibility and structural diversity 

were maintained, while optical, electrochemical and electrical/electronic properties were 

introduced to make them well suited for applications in energy, electrochromic devices, sensors 

and actuators, transistors, drug delivery and bioengineering.(Ibanez et al., 2018; Li et al., 2009)

Here, we focus mainly on polypyrrole (PPy), polyaniline (PANI), and poly(3,4-

ethylenedioxythiophene) (PEDOT) and their application in affinity sensors, because they are 

the most commonly studied CPs.  

The synthesis of CPs is achieved mainly by chemical and electrochemical oxidative 

polymerisation, i.e. radical cations generated from aromatic monomer, coupling and eliminating 

protons reactions resulting in elongation of oligomers. A doping process is necessary to render 

them conductive by introducing positive (p-doping) or negative (n-doping) charge carriers and 

counter ions with opposite charges as dopant into the CPs matrix for charge compensation. In 

addition to rendering them conductive, the utilisation of different dopants can not only affect 

the structure, morphology, wettability and solution processability properties, but also endow the 
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CPs with new functionalities with increased affinity in biological applications when doped with 

specifically functionalised biomolecules. For instance, poly(styrene sulfonic acid) (PSS) is 

commonly used as a counterion for commercially available PEDOT:PSS with water 

processability, since PSS can balance the positive charges on the PEDOT backbone and keep 

the PEDOT segments dispersed in water, due to its high hydrophilicity (Kirchmeyer and Reuter, 

2005).  

On the other hand, the CPs can be further functionalised with specific properties to expand 

their application, especially for use in affinity sensors with enhanced sensitivity and selectivity. 

The first step is to synthesis CPs containing active groups covalently bonded to the -

conjugated backbones by monomer derivatives. This strategy for functionality can solve the 

limitations inherently suffered by the doping process i.e.: 1) lack of control in the amount of 

dopant, 2) doping of large biomolecular composites affecting the surface and bulk properties of 

CPs, 3) dopant leakage from and incorporation into bulk CPs during operation. In addition, 

researchers have the freedom to design monomer derivatives bearing target capturing elements 

for specific recognition during detection. In recent years, a lot of monomer derivatives bearing 

functionalised groups have been synthesised, such as hydroxymethyl (Daprà et al., 2013), 

carboxyl (Sheikhzadeh et al., 2016), ester (Miodek et al., 2014), etc., and these have been 

utilised in affinity sensors for detection of cells (Sekine et al., 2011), viruses (Hai et al., 2017), 

proteins (Xie et al., 2009) and DNA (Luo et al., 2009; Tansil et al., 2011). For instance, Hai et 

al. (Hai et al., 2017) synthesised a 3,4-ethylenedioxythiophene (EDOT) derivative containing 

an oxylamine moiety (EDOTOA). The EDOTOA was electrochemically copolymerised with 

EDOT and then 2,6-sialyllactose was covalently immobilised as a recognition element for 

hemagglutinin in the envelope of the human influenza A virus (H1N1). Specific interaction and 

detection of H1N1 were performed using a quartz crystal microbalance (QCM) and 

potentiometry which enhanced sensitivity by 2 orders of magnitude compared to commercially 

available assay kits. However, in this strategy the compact structure of CPs is somewhat 

difficult to achieve due to the steric hindrance of the side chains on the backbone during 

polymerisation process.  

Another strategy to achieve desirable characteristics of CPs for practical applications in 

affinity sensors is the creation of conducting polymer composites (CPCs). Conducting polymer 

composites can be classified according to the choice of compositing components, such as 

surfactants, carbon nanomaterials, metal and metal complexes, and especially bioactive 

molecules. The effective immobilisation of bioactive molecules as recognition elements in CPs 

and CPCs plays a crucial role in achieving affinity sensors with high sensitivity and selectivity. 
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The immobilisation of bioactive molecules (such as nucleotides, aptamers, antigens and 

antibodies) can be achieved by physical adsorption, physical entrapment, covalent bonding and 

affinity bonding techniques. These immobilisation procedures, together with the advantages 

and disadvantages for each technique, have been extensively researched and reviewed in detail 

(Balint et al., 2014). It should be noted that immobilisation can be achieved simultaneously 

with the polymerisation and doping process or by post-treatment of the prepared CPs substrates, 

by pre-treatment of the monomers (monomer derivatives). For instance, Goda et al. (Goda et 

al., 2015) developed a new EDOT derivative bearing a zwitterionic phosphorylcholine group 

(EDOTPC) through pre-treatment via Michael-type addition thiol-ene “click” reaction. Then 

the EDOTPC was copolymerised with EDOT via electropolymerisation and used as affinity 

protein sensor for human C-reactive protein (CRP), with detection limit of 37 nM and a dynamic 

range of 10-160 nM, which covered the clinically relevant CRP levels. Wang et al. (Wang et al., 

1999) described a label-free approach for in situ electrochemical detection of DNA 

hybridisation, relying on the doping of oligonucleotide probes as the sole counter anion within 

PPy films by entrapment during the electropolymerisation and doping process. The 

oligonucleotide probes maintained their hybridisation activity within the host polymer network 

and label-free monitoring of DNA hybridisation was realised. Bo et al. (Bo et al., 2011) 

modified novel and biocompatible polyaniline nanowires (PANIw) with oxidised graphene 

composite layers at an electrode (PANIw/graphene/GCE). The immobilisation of the DNA 

probe on the surface of electrode was performed through post-treatment of the electrode 

resulting in increased immobilisation efficiency due to the unique synergetic effect of graphene 

and PANIw. The resulting graphene/PANIw with immobilised DNA exhibited a good 

differential pulse voltammetry (DPV) current response for the complementary DNA sequences. 

CPs have been extensively utilised in immunosensors because they can be readily 

functionalised for antibody immobilisation as described above. The specific antigen-antibody 

interactions then are transduced into corresponding electrochemical and optical signals through 

either a direct approach (label-free methods) or indirect approach (labeling of antibody or the 

antigen followed by sandwich, competition or capture immunoassay). Conducting polymer 

composite immunosensors mainly use electrochemical detection because their unique electrical 

properties provides a direct electrical readout with high sensitivity and selectivity, using 

techniques such as potentiometry (Zhang et al., 2015), amperometry (Shan and Ma, 2017), 

voltammetry (Wang  et al., 2016b) and impedimetry (Wang et al., 2015). For instance, Liu et al. 

(Liu et al., 2018) constructed three-dimensional (3D) macroporous polyaniline (PANI) doped 

with poly(sodium4-styrene sulfonate) (PSS) by using a hard-template method. The 3D 
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macroporous PANI acted as a large surface area substrate for the immobilisation of alpha-

fetoprotein (AFP) antibodies and it exhibited good affinity sensing performance toward its 

target AFP with differential pulse voltammetry (DPV). Another important example is 

conducting polymer composite-based impedimetric immunosensors, which are label-free and 

offer fast assay responses. Wang et al. (Wang et al., 2015) synthesised reduced graphene oxide 

(rGO), polypyrrole (PPy) and pyrrole propylic acid (PPa) nanocomposites for sensitive 

impedimetric immunosensors to measure Aflatoxin B1 (AFB1). The rGO improved the 

conductivity and stability, and PPa provided covalent linkers for probe immobilisation (anti-

AFB1 monoclonal antibody) through EDC/NHS chemistry, while PPy endowed the film with 

electroactivity from its inherent electrochemical doping/dedoping properties for impedance 

measurements. This protocol solved the limitation of low sensitivity, due to AFB1 being a small 

molecule resulting in low impedance change during detection, with enhanced sensitivity by the 

synergistic effect of the three combined components. A detection limit of 10 fg mL-1 and a wide 

dynamic range of 10 fg mL-1 to 10 pg mL-1 with excellent specificity were achieved.  

CP-based DNA sensors play an ever-increasing role for a wide range of applications in the 

food industry, environmental monitoring, DNA diagnostics, drug discovery and forensics. CP-

based DNA sensors rely on three key steps: immobilisation of DNA probes onto a CP-based 

sensing surface; complementary DNA target recognition by hybridisation; and signal 

transduction. Here, the signal transduction can be classified into direct assay and indirect 

detection approaches. In the direct assay, the specific recognition of target molecules by the 

probe without label can be detected by the changing electrical properties of the conducting 

polymer composites directly through amperometry (Ionescu et al., 2006), coulometry (Song 

and Jin, 2015), voltammetry (Galán et al., 2015) and impedimetry (Tran et al., 2014). For 

instance, Galán et al. (Galán et al., 2015) developed a label-free electrochemical DNA sensor 

for a specific “Hepatitis C” virus sequence based on azido-derivatised PEDOT modified 

electrode. By using “click” chemistry, the acetylene-terminated DNA probe was successfully 

immobilised onto the PEDOT electrode. DNA hybridisation caused changes in the 

electrochemical properties of the PEDOT and was detected by differential pulse voltammetry 

with a detection limit of 0.13 nM, showing the promise of the approach for label-free and 

reagentless DNA hybridisation sensor development. In contrast, indirect detection assay using 

a label usually involves end-point detection of a marker through fluorescence, colorimetry or 

electrochemistry. The commonly used labels are enzymes (Wang et al., 2014a), fluorophores 

(Zhang et al., 2012) and redox markers (Booth et al., 2012).  
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Besides the use of CPs in immunosensors and DNA sensors, work has focused on the 

application of CPs containing chemical receptors such as phenylboronic acid (PBA) for the 

affinity sensing of glucose. Compared with glucose oxidase and lectin concanavalin A, that are 

intolerant to long-term use and storage due to denaturation and their antigenic nature, PBA, as 

an artificial mimic of lectin, can strongly bind to 1,2-or 1,3-diols through reversible ester 

formation (Andreyev et al., 2014). Although it lacks specificity for glucose (also binding 

fructose, galactose, lactate etc.), PBA shows considerable promise for glucose-sensing, 

especially for continuous glucose monitoring (CGM) and for smart insulin-regulatory systems. 

Pringsheim et al. (Pringsheim et al., 1999) demonstrated a film co-polymerised from aniline 

and 3-aminophenylboronic, showing absorption spectra changes on addition of saccharides at 

pH 7.2, which is useful for sensing saccharides and considered to be advantageous over other 

sugar-sensitive materials. The same effect was also found by Huh et al. (Huh et al., 2007). More 

recently, Aytac et al. (Aytaç et al., 2011) synthesised 3-(1H-pyrrol-1-yl)phenylboronic acid 

monomer and used for electrochemical polymerisation to fabricate a layer of boronic acid 

containing CP sensing surface on a supporting platinum (Pt) electrode by cyclic voltammetry 

(CV). Different kinds of saccharides (D-glucose, D -fructose, D -galactose, D -lactose and D -

sucrose) were examined by potentiometric detection and it was found that the binding 

interaction between polypyrrole-phenylboronic acid and saccharides followed the order of D-

fructose > D-glucose > D-galactose > D-lactose > D-sucrose. Selected publications for CP-

based affinity sensors are summarised in Table 1. 
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Table 1  Summarisation of selected publications for CPs based affinity sensors. 

Sensing assay  CPs  Analyte Technique Linear range LOD Reference 

Immunosensor Poly(EDOT-

EDOTPC) 

C-reactive protein DPV 10-160 nM 37 nM (Goda et al., 

2015) 

PEDOT Ampicillin and 

kanamycin A 

Impedance 100 pM-1 for ampicillin, 

10 nM-1 mM for kanamycin A

- (Daprà et al., 

2013) 

PPy-COOH S. Typhimurium Impedance 102-108 CFU mL-1 3 CFU mL-1 (Sheikhzadeh 

et al., 2016) 

PEDOT CEA antibodies DPV 1 pg mL-1
-0.1 mg mL-1 0.3 pg mL-1 (Wang, W. et 

al., 2016) 

PPy Cellular prions PrPC DPV 1 pM-1 M 0.8 pM (Miodek et 

al., 2014) 

PANI Cardiac troponin Potentiometry - 56 fM (Zhang et al., 

2015) 

DNA PEDOT DNA SWV - 100 pM (Tansil et al., 

2011) 

PPy DNA Amperometry 1-7 g - (Wang et al., 

1999) 

PPy tDNA Conductivity 0.4-1.0 M - (Song and 

Jin, 2015) 
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PANI DNA DPV 2.12×10-6-2.12×10-12 mol L-1 3.25×10-13

mol L-1

(Bo et al., 

2011) 

PANI Fusion gene DPV 10 pM-1000 pM 2.11 pM (Wang, L. et 

al., 2014) 

Glucose PANI- 3-

aminophenylboronic 

acid 

Glucose Absorbance -100 mM 45 mM (Pringsheim 

et al., 1999) 

Poly(3-

aminophenylboronic 

acid) 

Glucose Conductivity -3.1×10-2 mg L-1 3.46 mM (Badhulika et 

al., 2014) 

Poly(aniline-co-AB) Glucose Absorbance -1 mM - (Huh et al., 

2007) 

PPy-phenylboronic 

acid 

Glucose Potentiometry 0.05-0.52 mM 0.008 mM (Aytaç et al., 

2011) 

Note: EDOTPC - 3,4-ethylenedioxythiophene bearing phosphorylcholine group; DPV - differential pulse voltammetry; HAU - hemagglutinating 

units; QCM - quartz crystal microbalance; SWV - square wave voltammetry; PAA - 3-pyrrolylacrylic acid; AB - 3-aminobenzeneboronic acid.
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2.2.3 Molecularly imprinted polymers (MIPs) 

Molecularly imprinted polymers (MIPs) are synthetic polymeric materials designed 

with specific and selective recognition capabilities by virtue of cavities inside the polymer 

network. Molecularly imprinting involves the use of a suitable crosslinking reagent to 

polymerise functional monomers, which have self-assembled around a target template 

(imprinting) molecule via covalent or noncovalent bonding, followed by the subsequent 

removal of the template molecule to leave cavities that can be used for re-recognition of the 

target template by the shape, size and complementary bonding groups of the cavities (Uzun and 

Turner, 2016). Template imprinting results in “artificial receptors” with excellent chemical 

stability and robustness under harsh conditions, that are inexpensive and easy to produce to 

natural receptors, including for targets where no natural receptors are available. MIPs have been 

used for separation and adsorption science (Boysen et al., 2017), catalysis (Mirata and Resmini, 

2015), drug delivery (Wackerlig and Schirhagl, 2015), sensing and biosensing (Uzun and Turner, 

2016) etc. Among these applications, the use of MIPs in sensors is the one of the most 

interesting topics because of their high specificity, selectivity and stability. Hence, we discuss 

here MIP synthesis, sensitivity enhancement, sensing readout techniques and limitations.  

Several basic elements are generally necessary for the synthesis of MIPs: 1) template; 

2) functional monomers; 3) cross-linkers; 4) porogenic solvents; and 5) initiator. A diverse 

range of molecules have been used as templates to prepare MIPs for affinity sensing, in which 

small organic or biological molecules are widely used while large molecules such as 

macromolecules, proteins, cells and viruses still present challenges since they are less rigid and 

are difficult templates to remove. With any particular target template (analyte), corresponding 

functional monomers are selected to provide complementary binding sites by covalent or non-

covalent interaction. Wulff et al. (Wulff et al., 1973) first established the molecular imprinting 

concept by covalently bonding the functional groups (polymerisable vinyl derivatives) to 

template molecules (D-glyceric acid and D-mannitol), polymerisation, splitting-off templates 

and finally D-glyceric acid and D-mannitol uptake. Mosbach (Arshady and Mosbach, 1981) 

subsequently established the alternative of non-covalent imprinting using as hydrogen bonding, 
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ionic interactions, π-π interactions and Van der Walls forces, and these are now the dominant 

interactions due to their simplicity, and the quick removal and rebinding of the template (Gupta 

et al., 2016). Cross-linkers and porogenic solvents are essential during the molecule imprinting 

process for morphology formation, mechanical stability, flexibility and porous structure, 

respectively. The polymerisation reaction is then triggered by initiators through free radical 

polymerisation, photopolymerisation or electropolymerisation. After completion of 

polymerisation, the template is removed by ether solvent extraction or chemical cleavage 

according to the binding approach, resulting in recognition sites within the polymer matrix 

possessing high specificity. Several kinds of functional materials can be introduced into MIP 

composites for signal transducing, increased sensitivity and signal amplification in affinity 

sensing, such as quantum dots (Zhou et al., 2014), metal and metallic oxides (Zamora-Gálvez 

et al., 2016), conducting polymers(Tan et al., 2016) and carbon materials (Zhu et al., 2018). For 

example, Zhou et al. (Zhou et al., 2014) developed a fluorescent sensor based on a graphene 

quantum dot (GQD)/MIP composite by anchoring the MIP layer outside the silica coated GQDs 

using 3-aminopropyltriethoxysilane (APTS) as the functional monomer and tetraethoxysilane 

(TEOS) as a crosslinker in the presence of paranitrophenol (4-NP). The combination of GQDs 

and MIP endows the composite with stable fluorescent properties and template selectivity. Due 

to resonance energy transfer from GQDs (donor) to 4-NP (acceptor), the fluorescence of the 

MIP-coated GQDs composite can be efficiently quenched when 4-NP molecules rebind to the 

binding sites. The sensor exhibited a good linear range from 0.02 to 3.00 g mL-1, with a 

detection limit of 9.00 ng mL-1 (S/N=3).  

   Due to their superior characteristics of stability, specificity and signal amplification, MIP-

based composites have been extensively used in affinity sensors by in combination with a 

variety of transducing techniques, such as electrochemical (Zhong et al., 2018), optical (Yan et 

al., 2018), thermal (Athikomrattanakul et al., 2011), and gravimetric methods (Fang et al., 2016). 

Table 2 summaries selected publications of MIP-based affinity sensors utilising different 

transducing techniques.  
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Electrochemical MIP sensors were first reported in 2002 and combine the advantages 

of MIPs and electrochemical transducers (Piletsky and Turner, 2002). Electrochemical 

transducers can transform the specific bonding between MIPs and analytes into an 

electrochemical readable signal by voltammetry (Tan et al., 2015), impedance (Bakas et al., 

2014), and amperometry (Zhang et al., 2014). However, molecularly imprinted electrochemical 

sensors exhibit several limitations, such as low electro-conductivity, diffusion kinetics and 

integration with electrochemical transducers. To solve these problems, several strategies have 

been developed to improve the structure and properties of MIP composites. Incorporating 

conducting nanomaterials provides advantages of excellent mass transport, highly effective 

surface area, superior catalysis, improved conductivity and electron transfer, and thus 

contributes to the improvement of sensitivity, detection limit and binding capacity. Several 

examples of nanomaterials incorporating MIPs for affinity sensors are summarised in Table 2. 

Creation of structured MIPs, such as ultrathin MIP films, core-shell structures, nanoparticles 

and meso/micro/macro-porous structures improve sensitivity, detection limits and kinetics. For 

instance, Yang et al. (Yang et al., 2015b) presented a three-dimensional (3D) molecularly 

imprinted electrochemical sensor by using ordered mesoporous carbon material (CMK-3). The 

3D structure delivered a highly porous surface structure, speedy responses and ultra-high 

sensitivity due to facilitated mass and electron transport.  

MIPs also show much promise as recognition elements in optical affinity sensors. The 

commonly researched molecularly imprinted optical sensors can be classified into fluorimetry, 

surface plasmon resonance (SPR) and colorimetry according to the introduced additional 

functional features. In the case of optical MIP affinity sensors, fluorescent MIP sensors have 

been widely developed by incorporating fluorescent organic dyes, inorganic quantum dots, up-

converters and fluorescent functional monomers. For instance, Xu and Lu (Xu and Lu, 2016) 

synthesised mesoporous structured molecularly imprinted polymers capped carbon dots (M-

MIPs@CDs) by using amino-CDs as “functional monomers” for imprinting with a simplified 

imprinting process. The fluorescence sensor showed more rapid response and higher sensitivity 

for determination of TNT with more accessible recognition sites compared to non-mesoporous 
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structured fluorescence MIPs (MIPs@CDs). MIP-based SPR techniques have also attracted 

extensive attention for sensing of various targets based on the variation of refractive index with 

label free sensing, fast response and high sensitivity (Verma and Gupta, 2013). Moreover, 

colorimetric MIP-based sensors are capable of portable and rapid analysis especially for point-

of-care testing, because of the megascopic signal and lack of need for expensive or sophisticated 

instruments. For instance, Li et al. (Li et al., 2011) deposited molecularly imprinted photonic 

hydrogel (MIPH) film with a highly ordered three-dimensional macroporous structure by a non-

covalent approach using cholesterol as a template molecule. After binding cholesterol, the 

MIPH film showed a significantly readable optical signal directly self-reporting within less than 

2 min. The colorimetric measurement of cholesterol concentration is based on the cholesterol 

enlarged blue shift effect of the Bragg diffraction peak of the MIPH film. The easy to operate 

colorimetric sensor possessed high selectivity, high sensitivity, high stability and was label-free.  

In addition to electrochemical and optical transducing platforms for MIP sensors, some 

other readout techniques are also available to combine with the specific recognition properties 

of MIPs, such as mass-sensitive devices (e.g. quartz crystal microbalance) (Fang et al., 2016), 

thermal readouts (isothermal titration calorimetry (Zhao et al., 2011), thermistor 

(Athikomrattanakul et al., 2011) and heat transfer (Peeters et al., 2016) ), and Raman (Hu et al., 

2015). For instance, Fang et al. (Fang et al., 2016) developed a three-dimensional (3D) 

molecularly imprinted QCM sensor by modification of a gold electrode with gold 

nanoparticles/mesoporous carbon CMK-3 composites and subsequent electropolymerisation of 

o-aminothiophenol on the modified electrode surface. The AuNPs@CMK-3 acted as signal 

amplifier because the 3D structure produced a large surface area that could increase the amount 

of effective imprinted sites. The QCM sensor exhibited a linear frequency shift to target CIT in 

the dynamic range from 6.0 × 10-9 to 2.0 × 10-7 mol L-1 with a low detection limit of 1.8 × 10-9

mol L-1 (S/N = 3). Some selected thermal readout and Raman MIP sensors are summarised in 

Table 2.  

Although MIP sensors have already shown several potential applications with good 

performance, some important factors or limitations should be taken into consideration for 
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improvements when designing MIP affinity sensors: 1) MIPs have been successfully applied 

for small molecules, while large molecules and biological molecules and compounds remain 

challenging, such as proteins, cells; 2) sensitivity and the detection limit need further 

improvement by incorporation with other functional materials; 3) there is a need to avoid high 

levels of non-specific binding due to the rich complementary functionalities inside the cavities.  
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Table 2 Selected publications of MIP-based affinity sensors with different transducing techniques  

Transducer Techniques Probe-Receptor Analyte LOD Reference 

Electrochemical CV Ferrocene-labeled MIPs Vancomycin 83 M (Mazzotta et al., 

2016) 

DPV rGO@Au-MIPs Carbofuran 2.0 × 10-8 mg L-1 (Tan et al., 2015) 

LSV MIP/PB-CMK-3 Metolcarb 9.3 ×10-11 M (Yang et al., 2015b)

EIS MIP/sol–gel MOI 5.14 g L-1 (Bakas et al., 2014) 

CA Au-MIPs p-Aminothiophenol 1.28 × 10-12 mg 

mL-1

(Zhang et al., 2014)

Optical  Fluorescence Carbon dots/Mesoporous MIPs Trinitrotoluene 17 nM (Xu and Lu, 2016) 

Ratiometric 

fluorescence 

Core-shell structured MIPs@QDs Trinitrotoluene 15 nM (Xu and Lu, 2015) 

Up-conversion NaYF4: Er, Yb/MIPs Enrofloxacin 8 ng L-1

SPR Molecularly imprinted hydrogel Vitamin B3 - (Verma and Gupta, 

2013) 

Colorimetry ZnFe2O4 @MIP membrane Bisphenol A 6.18 nM (Kong et al., 2017) 

Mass QCM MIPs Lovastatin 0.03 nM (Eren et al., 2015) 

Thermal Isothermal titration 

calorimetry 

MIPs Patulin - (Zhao et al., 2011) 
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Thermistors MIPs Nitrofurantoin 2.99 M (Athikomrattanakul 

et al., 2011) 

Heat‐transfer MIPs-SPEs Dopamine 4 × 10-6 M (Peeters et al., 

2016) 

Raman Surface-enhanced 

Raman 

MIPs Melamine 0.015 mM (Hu et al., 2015) 

Note: MWCNTs - multi-walled carbon nanotubes; rGO - reduced graphene oxide; CV - cyclic voltammetry; DPV - differential pulse voltammetry; 

LSV - linear sweep voltammetry; EIS - electrochemical impedance spectroscopy; MOI - Methidathion organophosphorous insecticide; SWV – 

square wave voltammetry; CA – chronoamperometry; QDs – quantum dots; SPR - surface plasmon resonance; QCM - quartz crystal microbalance; 

SPEs - screen-printed electrodes. 
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3. Wearable soft and flexible material-based affinity sensors 

Daily health monitoring for significant physiological signals is of particular importance 

for disease prediction and treatment. Over the past several decades, the development of material 

science and engineering has promoted the advent of house-hold miniaturised devices and paper-

based sensing tools based on electronic, piezoelectric, optical and electrochemical transducers 

for detecting a large range of physiological signals, ranging from heart rate and temperature, to 

pH, metabolites, ions and pathogens. For example, the most commonly used sensor for point-

of-care in our daily life is portable glucometers with disposable electrode strips. However, 

continuous analyte monitoring to provide real-time information has been more difficult to 

achieve, especially for affinity sensors. In recent years, flexible and wearable sensors have 

received tremendous attention for personalised monitoring and management, due to their low-

cost, lightweight, high flexibility and stretchability, and potential for non-invasive continuous 

monitoring (Zhao et al., 2017). Various configurations of wearable sensors have been developed 

and demonstrated for daily health monitoring based on the development of flexible and 

stretchable electronics and optoelectronics (Bauer, 2013; Ruh et al., 2014). In this section, 

flexible and wearable affinity sensors based on soft and flexible materials are summarised, 

including skin-mountable, textile material-based and contact lens-based affinity sensors. The 

application of membrane, paper, polymer described above are also discussed here as substrates 

or functional components for flexible and stretchable affinity sensors. 

3.1 Flexible, stretchable and skin-mountable affinity sensors 

Conventional chemical and biological sensors are miniaturised or integrated on non-

transparent and rigid substrates, such as metal, glass or silicon, thus limiting their utility for 

wearable devices. Skin-mountable sensors built on flexible and stretchable substrates allow the 

possibility of wearable sensing devices that can be laminated softly and non-invasively onto the 

skin. Sometimes, skin-mountable sensors refer to electronic skins (E-skins) (Hammock et al., 

2013a). In recent years, tremendous effort has been devoted to skin-mountable sensors based 

on electronics and optoelectronics that offer flexibility, stretchability, transparency, 

multimodularity and compatibility with the skin, by pioneers such as Rogers and Bao’s groups 
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(Xu et al., 2014; Yeo et al., 2013). Although a variety of physiological parameters can be 

detected by various skin-mountable sensors, most of them focus on physical phenomena, 

including temperature, strain and pressure sensing for body movement, touch, heart beat and 

humidity and their combining multi-sensing (Kim et al., 2014; Lee et al., 2016; Xu et al., 2014). 

The application of wearable sensors in chemical and biochemical sensing is much more 

challenging with a more complex mode of operation compared to physical sensing due to the 

requirement for specific molecular recognition and by implication, often a need for molecular 

contact. Even so, metabolic parameter detection has been realised by skin-mountable sensors 

in sweat, saliva or tears, with intended applications such as diabetes monitoring and therapy 

(Lee et al., 2017), hormones (Parlak et al., 2018), pH (Lee et al., 2016), lactate (Gao et al., 2016) 

and alcohol measurement (Kim et al., 2016a).  

For the key metabolites such as glucose, lactate and uric acid etc., catalytic reactions driven 

by corresponding enzymes and catalytic materials have been applied in the skin-mountable 

sensors. Lee et al. (Lee et al., 2016) developed a stretchable device composed of a serpentine 

bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface 

for the stable transfer of electrical signals. The heater, temperature, humidity, glucose and pH 

sensors and polymeric microneedles that can be thermally activated to deliver drugs were 

integrated into skin-mounted device for diabetes monitoring and therapy. In this device, the 

glucose was measured through electrochemical signal by reduction of H2O2 generated from the 

glucose oxidase in conjunction with the solid-state Ag/AgCl counter electrode. The same group 

presented another wearable/disposable sweat-based glucose monitoring device integrated with 

a feedback transdermal drug delivery module. The glucose monitoring is based on a Prussian 

blue catalyst and glucose oxidase deposited porous gold electrode (Lee et al., 2017). Gao et al. 

(Gao et al., 2016) presented a mechanically flexible and fully integrated wearable sensor array 

for multiplexed in situ perspiration analysis, which simultaneously and selectively measured 

sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium 

ions), as well as the skin temperature (to calibrate the response of the sensors). The glucose and 

lactate sensors were based on the catalytic effect of glucose oxidase and lactate oxidase 



29 

immobilised with Prussian blue on Au electrode. Wang’s group developed several kinds of 

wearable Tattoo-based biosensing system, in which catalytic systems such as alcohol-

oxidase/Prussian blue, lactate oxidase/Prussian blue, and uricase/Prussian blue, were applied 

for non-invasive alcohol, lactate and uric acid monitoring in sweat or saliva, respectively (Kim 

et al., 2015b; Kim et al., 2016a). In these applications, pH sensors and temperature sensors are 

commonly incorporated to eliminate the influence of pH and temperature variation on the 

readings due to variation in the catalytic activity of the enzyme. The longevity and storage 

conditions of such sensors should also be carefully considered. Wearable and implantable 

affinity sensors offering high sensitivity, selectivity and stability are less well developed. In the 

light of these recent advances, we summarise below some flexible affinity sensors that can be 

potentially used for wearable and implantable sensing applications. 

Flexible thin-film transistors (TFTs) are a category of field effect transistors (FETs) and 

consist of an active semiconductor thin film layer, metallic contacts (typically Au for source 

and drain electrode) and dielectric layer over a flexible supporting substrate, replacing the 

conventional solid substrate while maintaining good electrical performance. Flexible TFTs have 

attracted extensive attention for chemical and biological sensors with many advantages, such 

as low-cost, flexibility, high sensitivity and feasibility. The commonly used substrates for TFTs 

in sensors are polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate 

(PEN), polydimethoxysilane (PDMS) and polyethersulfone (PES) to provide the flexibility. The 

active semiconductor thin-film layers are the critical element for sensing performance. The 

active semiconductor used in flexible sensors can be classified into single-wall carbon nanotube 

(SWCNT) (Lee and Cui, 2010), graphene (Kwon et al., 2012), small molecules (Hammock et 

al., 2013b), metal oxide (Rim et al., 2015), organic polymers (Kim et al., 2012) and conducting 

polymers (Zhao et al, 2018b). In addition to chemical sensors (humidity , ions and pH ) and 

catalytic biosensors (glucose and lactate ) realised with flexible TFTs, DNA (Jung et al., 2014; 

Lin et al., 2011), proteins (Hammock et al., 2013b; Lu et al., 2009) and some other biomarkers 

(Kwon et al., 2012; Spanu et al., 2015) have also been measured with flexible TFT-based 

affinity sensors . Kim et al. (Kim et al., 2012) fabricated a flexible and disposable DNA 
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hybridisation sensor using pentacene thin-film transistors (TFTs) on an indium tin oxide (ITO) 

coated PES substrate. The ss-DAN (poly A) was immobilised on the pentacene surface and the 

complementary ss-DNA (poly A+T) hybridisation with different lengths and concentrations 

could influence the field-effect mobility because the phosphate group imparted a negative 

charge on the DNA backbone and attracts holes from the channel region thus decreasing the IDS

and field-effect mobility. Most recently, Parlak et al. (Parlak et al., 2018) developed a 

molecularly selective nanoporous membrane-based, wearable organic electrochemical device 

for non-invasive cortisol sensing. The biorecognition of cortisol was based on an artificial MIP 

nanoporous membrane (MS) with a laser-patterned microcapillary channel array for sample 

acquisition. PEDOT:PSS-based organic electrochemical transistors (OECTs) including a planar 

Ag/AgCl gate, act as the transducer and the device delivered a dynamic range of 0.01 to 10.0 

M. The MS-OECTs were fabricated on a styrene-ethylene-butylene-styrene (SEBS) elastomer 

substrate to allow the flexibility and stretchability of the wearable sensor. Finally, the integrated 

devices were successfully used with both ex situ methods using skin-like microfluidics, and on 

human subjects with on-body real-sample analysis using the wearable sweat diagnostics 

platform. 

Flexible electrochemical electrodes using soft electroactive materials play a very 

important role for the construction of wearable architectures and devices due to the increasing 

demand for portable, flexible, and wearable electronic devices. The application of flexible 

electrochemical electrodes in several fields, such as lithium ion batteries (LIBs) (Gwon et al., 

2014), electrochemical capacitors (Kim et al., 2015) and sensing/biosensing platforms 

(Windmiller and Wang, 2013) enables the miniaturisation of monitoring systems into wearable 

devices. Among the flexible sensing/biosensing platforms, physical sensors (temperature, body 

motion etc.) and catalytic chemical/biological sensors (glucose etc.) have been extensively 

researched (Foster et al., 2013; Manjakkal et al., 2018). Apart from these, several kinds of 

flexible affinity sensing platforms have been developed for immunosensors and DNA sensors, 

such as cancer biomarkers (Kamakoti et al., 2016), cardiac biomarkers (Kumar et al., 2016), 

cytokines (Garcia-Cruz et al., 2015), hormones (Munje et al., 2017) and DNA hybridisation 
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(Kokkinos et al., 2014; Li and Lee, 2015). Different electroactive materials with structured 

morphology including metals (films, nanorods, nanoparticles) (Kamakoti et al., 2016), metallic 

compounds (nanosheets, nanoparticles, quantum dots) (Kinnamon et al., 2017; Shanmugam et 

al., 2016), conducting polymers (nanowires, films) (Garcia-Cruz et al., 2015), carbonaceous 

materials (CNTs, graphene,) have been deposited on flexible substrate (such as PI, PET and 

paper) and combined with specific immobilised recognition elements for affinity sensing. The 

specific recognition can be transduced with techniques such as voltammetry, impedance and 

amperometry. For instance, Liu et al. (Liu et al., 2014) reported a electrochemical multiplexed 

immunosensor on a flexible polydimethylsiloxane (PDMS) slice deposited with 8 × 8 nano-Au 

film electrodes. The PDMS slice was combined with predesigned hollowed-out PMMA plate 

to create spatial separation between every electrode for multiplexed microchips. Three kinds of 

primary antibodies linked with magnetic beads (Ab1-MBs) were coupled onto the electrodes 

via magnet force and then horse radish peroxidase (HRP) labelled antibody-conjugated gold 

nanorods (HRP-Ab2-gold NRs) were immobilised on the surface of the electrodes using the 

corresponding antigen. The detection of three cancer biomarkers in prostate cancer patients, 

prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and interleukin-

6 (IL-6) were realised using the flexible microchip array with electrochemical detection of H2O2. 

The development of flexible electrochemical electrodes underpins the foundation and potential 

application in wearable affinity sensing devices. However, several limitations yet to be solved 

and developed for the realisation of routinely used wearable sensors, such as the integration of 

sensing platforms with wireless transmitters, analyte collection and transportation.  

In addition to the electronic-based flexible thin-film transistors and electrochemical 

electrodes, optoelectronics using optical, fluorometric and colorimetric assays from 

conventional benchtop biofluid analyses also show potential to be integrated and miniaturised 

into wearable devices. Wearable optical assays are based on the light scattering/absorption on 

special targets, in which light sources (ranging from UV to deep infrared) and detectors are 

needed. The most widely used wearable optical sensors focused on the determination the key 

physiological parameters of temperature, blood pressure, heart/beat rate and oximetry by 
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haemoglobin (Kim et al., 2017; Kim et al., 2016b). The integration and miniaturisation of chip-

level optoelectronics assembled onto flexible and stretchable substrates including light sources, 

detectors and optoelectronic circuits are suitable for continuous measurement (Kim et al., 2016b; 

Ruh et al., 2014). The optical detection of glucose in interstitial fluid based on thermal emission, 

light absorption spectroscopy and photo acoustic spectroscopy have been explored for non-

invasive continuous glucose detection.(Newman and Turner, 2005) By combing a specific 

recognition element into the system, these optical assays could be used for affinity sensing 

(Bajgrowicz-Cieslak et al., 2017; Daikuzono et al., 2017; Jiang et al., 2018). For instance, 

Bajgrowicz-Cieslak et al. (Bajgrowicz-Cieslak et al., 2017) developed an optical glucose sensor 

based on a hexagonal diffraction grating imprinted on a flexible hydrogel. The covalently 

incorporated boronic acids in the 2.5D-copolymer matrix could bind to glucose, resulting the 

polymer network swelling and altering its physical and optical properties. Illumination of the 

2.5D structure with a monochromatic light source in transmission mode allowed reversible and 

quantitative measurements of variation in the glucose (1-200 mM) concentration by first order 

lattice interspace tracking.  

Fluorometric and colorimetric assays have already shown utility in wearable chemical 

and biological sensing without affinity, such as a wearable glove sensor for pesticide (Xu et al., 

2018b), wearable platform for sweat Cl- (Xu and Yan, 2018), ions (Anzenbacher Jr et al., 2012), 

pH (Yao et al., 2018) and glucose sensing (Yao et al., 2018) and so on. The most representative 

colorimetric assay for wearable sensors is the soft, wearable microfluidic device for the capture, 

storage, and colorimetric sensing of sweat developed by Rogers’s group (Koh et al., 2016). His 

team reported a soft epidermal microfluidic device that can directly and reliably harvest sweat 

from skin to different channels and reservoirs. Four different paper-based colorimetric chemical 

assays resided in the central reservoirs for multiparametric sensing of markers, including 

chloride and hydronium ions, glucose and lactate, through either enzymatic or chromogenic 

reactions. Fluorometric and colorimetric affinity sensors can be realised by combing affinity 

recognition with such flexible platforms for DNA, protein and cancer markers sensing (Basu et 

al., 2017; He et al., 2018). He et al. (He et al., 2018) reported a flexible and wearable biosensor
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for affinity diagnosis of neurodegenerative disease by detecting the biomarker IgG and ADc-

NTP based on nanostructure of Morpho menelaus butterfly wings. The butterfly wings were 

peeled off into the bright blue up layer with a hierarchical scaly micro/nanostructure with 

aligned microgroove and brown under layer with an ordered structure. The upper layer was 

used to fabricate microfluidic chips with immobilised antibody (goat anti-human IgG and rabbit 

anti-AD7c-NTP) onto the detection zone for fluorescent affinity sensing of IgG and AD7c-NTP 

biomarker, simultaneously. The under layer was utilised to produce the flexible electronic 

sensor with blade-coated conductive ink to obtain an electrical signal through measuring the 

frequency of static tremors of neurodegenerative patients. The integrated wearable sensors 

comprising the microfluidic chip and electronic sensor demonstrated good sensing performance 

by combing the smartphone-based device and could be effective for the tentative diagnosis of 

neurodegenerative disease.  

Despite the popularity of the area, the application of flexible affinity sensors still faces 

several limitations. The majority of biomarkers are not measurable without direct chemical 

detection, since affinity sensors are based on the specific recognition between affinity binding 

receptor and analyte. Affinity sensors have been extensively researched for routine samples 

such as blood and urine, but they have not yet found wide-spread use in non-invasive wearable 

sensors. Non-invasively extracting biomarker analytes from the body exudates such as sweat, 

saliva and tears, is difficult and there are uncertainties about the correlation of their 

concentration with biofluids.  
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Figure 3. Wearable soft and flexible material-based affinity sensor. (A) Patch-type wearable 

cortisol sensor consisting of microcapillary channel arrays, sample reservoir and OECT sensor 

layers. Adapted with permission from ref.(Parlak et al., 2018) (B) Morpho menelaus butterfly 

wings based wearable sensor integrating fluorescent immunoassay and electronic sensing for 

neurodegenerative disease. Adapted with permission from ref.(He et al., 2018) (C) Graphene-

silk based wireless nanosensors with antimicrobial peptides sensing elements for bio-selective 

detection of bacteria at single-cell levels. Adapted with permission from ref.(Mannoor et al., 

2012) (D) Flexible screen-printed electrodes on textile for inexpensive and wearable detection 
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of influenza. Adapted with permission from ref.(Kinnamon et al., 2018) (E) Contact lens 

(theranostic lens) with a dual-functional hybrid surface to modulate and detect a pathogenic 

attack (HSV serotype-1). Adapted with permission from ref.(Mak et al., 2015) (F) Portable 

noninvasive contact lens with smartphone imaging program for an ideal tear fluid glucose 

detection for diabetes patients based on phenylboronic acid-HEMA hydrogel. Adapted with 

permission from ref.(Lin et al., 2018) 

3.2 Textile-based affinity sensors 

Fabrics and textiles are ideal materials as functional base substrates for flexible and 

wearable devices, because of their daily routine utilisation, safety, low-cost, light-weight, 

flexibility, large surface area and good mechanical stability. Fabrics and textiles represent an 

excellent class of substrates and examples used include cotton (Guinovart et al., 2013), silk 

(Zhu et al., 2016), polyester/Lycra (Morris et al., 2009), nylon (Kokkinos et al., 2016), 

wounding dressing bandages (Kassal et al., 2015) etc. In general, suitable fabrics and textiles 

as a platform for integrating sensing elements are chemically inert. Active materials should be 

integrated into the textile structure through printing and coating , ranging from carbon materials 

(carbon ink (Choudhary et al., 2015), CNTs (Guinovart et al., 2013) and graphene (Mannoor et 

al., 2012)) and metallic materials (Ag ink (Nomura et al., 2018), copper (Stefan-van Staden et 

al., 2015)) to conducting polymers (PEDOT:PSS) (Pal et al., 2016), to endow electrical 

conductivity, transducing and transmission capabilities (Diamond et al., 2008). Besides the 

post-treatment of fabric with active materials, intrinsic conducting fabric and thread (Liu and 

Lillehoj, 2016), conducting polymer fibre and nanotubes (Eom et al., 2017) and metallic fibres 

(Cho et al., 2011) can also be used to form textiles with woven, non-woven or knitted structures. 

The combination of flexible and wearable textiles with electronics added either intrinsically or 

extrinsically provide sensor platforms for diagnostic and monitoring applications.  

In common with the flexible stretchable and skin-mountable sensors described in section 

3.1, textile-based sensors are currently mainly used for physical monitoring, such as strain and 

pressure (Wang et al., 2014b), electrocardiogram heart rate (Yang et al., 2015a), temperature 
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and humidity (Mattana et al., 2013) and body motion (Li et al., 2017). Some efforts have been 

devoted to chemical sensing, including pH (Morris et al., 2009), ions (Guinovart et al., 2013) 

and catalytic detection of lactate (Malon et al., 2014), glucose (Liu and Lillehoj, 2016) and 

other biomarkers (Kassal et al., 2015) in body fluids such as tears, sweat, urine and blood. 

Recent progress in the application of smart fabrics or electronic textile-based materials for these 

physical and chemical sensors have been reviewed in detail recently (Castano and Flatau, 2014; 

Heo et al., 2018). Despite the successful realisation of physical and chemical sensors based on 

flexible and wearable textile materials, relatively few textile-based affinity sensing platforms 

have been described to date for the routine monitoring of important analytes.  

Mannoor et al. (Mannoor et al., 2012) described a graphene-based wireless bacteria 

detector on tooth enamel using water-soluble silk fibroin. A monolayer graphene-based sensing 

element with wireless readout coil was printed on silk fibroin. Then the ultra-thin nanosensors 

were transferred to tooth enamel via the dissolution of supporting silk film. Specific biological 

recognition of pathogenic bacteria was achieved by self-assembling of bifunctional 

antimicrobial peptides onto the graphene. The graphene was contacted by interdigitated 

electrodes patterned with an inductive coil antenna, achieving remote powering and readout. 

The fabricated device showed bio-selective detection of pathogenic bacteria with detection limit 

down to single-cell levels. The silk films here act as an efficient transient medium for 

transferring materials onto tissues via intimate contact and dissolution due to the elasticity and 

biodegradability imparted by the unique molecular structure of silk.  

Some textile-based flexible, disposable and portable affinity sensors have been developed 

for environmental determinations. Kinnamon et al. (Kinnamon et al., 2018) demonstrated a 

textile screen-printed biosensor coupled with affinity assay for the detection of environmentally 

exposed influenza A virus. A consumer utility textile was printed with conductive silver ink as 

base electrode array for electrochemical impedance spectroscopy (EIS), and graphene oxide 

transduction layer was printed on as framework for assembling the biorecognition elements 

(influenza A-specific antibody) on the sensor. The textile sensor was utilised for influenza A 

detection in biofluid analog buffer with the dynamic range from 10 ng mL-1 to 10 μg mL-1 and 
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a detection limit of 10 ng mL-1. The sensor shows the potential to be integrated into common 

textiles and worn by at-risk populations to detect exposure to the virus before symptoms 

manifest. Similarly, Kokkinos et al. (Kokkinos et al., 2016) described a new type of integrated 

lab-on-a-membrane foldable device for duplex determination of biomolecules (Bovine CN and 

Bovine IgG) in milk samples with quantum dot labels on a nylon membrane. Two assay zones 

were located symmetrically on either side of a three-electrode system. In the assay zones, 

labeled quantum dots (Pb and Cd) could be released by competitive immunoassay and were 

determined simultaneously by anodic stripping voltammetry after folding the assay zones over 

a voltammetric cell. These new membrane devices enable duplex biosensing with low-cost and 

portability. Although these platforms showed the flexibility and portability required, application 

in wearable sensor technologies as diagnostic and external environment monitoring tools still 

needs further development.  

Shim et al. (Shim et al., 2008) demonstrated the transformation of general commodity 

cotton threads into electronic textiles using a polyelectrolyte-based coating with carbon 

nanotubes (CNTs). The resulting CNT-cotton yarns possessed high electrical conductivity and 

some functionality due to biological modification of inter-nanotube tunneling junctions. The 

incorporated anti-albumin antibody acted as specific recognition element for albumin detection. 

Stefan-van Staden et al. (Stefan-van Staden et al., 2015) designed several stochastic sensors 

using Cu thin film, Ni thin film and Au nanostructured microspheres deposited on a textile 

material (veil). A panel of biomarkers could be detected simultaneously including epidermal 

growth factor receptor, neuron specific enolase, and carcinoembryonic antigen. Despite the 

successful affinity detection of biomarkers from whole blood samples using the textile materials, 

these proof-of-concepts are still some distance away from practical wearable monitoring. 

3.3 Contact lens-based affinity sensors 

Ocular fluid is an extracellular fluid excreted from the tear gland. A dense network of 

blood capillaries infiltrates the tear gland, facilitating the transport and exchange of molecules 

from serum to the tear gland. Thus, a bridge can be built between ocular fluid research and 



38 

systemic disease diagnostics. With the recent advance of proteomic technology, several 

important biomarkers in ocular fluid have been identified as having significant clinical 

diagnostic value for various diseases (Azkargorta et al., 2017). The contact lens is disposable, 

relatively cheap and serves as a platform to obtain direct intimate contact with ocular fluid and 

is therefore an attractive and a promising platform for point-of-care diagnostic tests.  

Non-invasive tear glucose monitoring for diabetes with contact lenses has been of 

significant interest for scientists and industry. Most of the early work on contact lens-based 

glucose monitoring was based on electrochemical catalytic enzyme electrodes printed onto 

contact lenses (Chu et al., 2011; Yao et al., 2011). However, there are challenges in 

electrochemical contact lens-based glucose biosensors such as power supply, transmission of 

readout signal and user acceptance with respect to appearance. Therefore, alternative 

approaches based on optical affinity sensing techniques such as excited state charge transfer 

(Badugu et al., 2004), Förster resonance energy transfer (FRET) (March et al., 2006) and 

holographic materials (Domschke et al., 2006) have been developed for contact lens-based 

glucose monitoring (Farandos et al., 2015). In these configurations, the optical signal responses 

from the contact lens could be detected with an external optical reader, or even the naked eye, 

in a much simpler way (Badugu et al., 2005). User acceptability may again, however, be a 

problem with clearly visible devices. Badugu et al. (Badugu et al., 2004) described the 

incorporation of a boronic acid containing fluorophores (BAFs) into contact lenses for glucose 

sensing. The boronic acid acts as an electron withdrawing group, but upon binding with glucose 

it converts to an anionic form which no longer acts as an electron withdrawing group, and this 

causes a spectral change due to the interruption of the charge transfer properties of excited state. 

The BAF contact lens was employed for continuous detection of tear glucose level in the range 

of 50 to 500 µM. March et al. (March et al., 2006; March et al., 2004) demonstrated a FRET-

based contact lens for glucose detection with immobilised tetramethylrhodamine isothiocyanate 

concanavalin A (TRITC-ConA) and fluorescein isothiocyanate dextran (FITC-dextran). The 

fluorescence signal of the TRITC-ConA/FITC-dextran complex is suppressed by a quenching 

effect due FRET. The presence of tear glucose completes with the ConA binding site and 
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releases the FITC-dextran causing an increase in fluorescence signal. The FRET-based glucose 

contact lenses were applied for clinical measurements in diabetic patients, however, there is a 

delay between the measured tear glucose level and the systematic blood glucose in this and the 

other devices that limits their utility. Domschke et al. (Domschke et al., 2006) reported a 

holographic contact lenses glucose sensor fabricated with 3-acrylamidophenylboronate (3-APB) 

as a reversible binding ligand for tear glucose monitoring in a clinical study. Upon binding with 

glucose, the interference fringes created by the 3-APB swelled that caused changes in the 

reflected light and resulted in a colour charge of the contact lens. A major advantage of the 

holographic glucose contact lens is that it does not require any fluorescence dyes and avoids 

the photobleaching associated with long-term use. Recently, Elsherif et al. (Elsherif et al., 2018a) 

reported the integration of phenylboronic acid functionalised hydrogel-based optical diffuser 

onto contact lens placed over an artificial eye for glucose measurement. The contact lens 

glucose sensor enabled detection with a continuous application of different glucose solution (0-

50 mM) on the sensor surface. In another similar study, Elsherif et al. (Elsherif et al., 2018b) 

reported the combination of a holographic glucose contact lens with a smartphone for 

continuous glucose monitoring. An interference fringe structure was printed onto a glucose 

sensitive hydrogel containing phenylboronic acid as the binding ligand. The holographic 

glucose contact lens detected glucose concentration over the range 0-50 mM with a sensitivity 

of 12 nm mM-1 and a short response time of 3 seconds for continuous monitoring. Nevertheless, 

the above mentioned boronic acid and ConA affinity glucose sensing mechanism has a common 

limitation of non-selectively binding of other sugar molecules and glycoproteins. However, the 

tear glucose concentration is significantly higher compared with other sugar molecules, and 

there it is still promise for reasonably accurate measurement of tear glucose levels. 

Most of the previous work on ocular fluid diagnostics are focused on glucose rather than 

protein biomarker detection. Mak et. al. recently reported the development of a wearable 

theranostic contact lens with a dual functional hybrid surface for the detection of interleukin 1α 

(IL-1α) as biomarker for HSV-1 infection, as well as incorporating an anti-viral coating for 

HSV-1 (Mak et al., 2015). The theranostic lenses were fabricated using a Layer-by-Layer (LbL) 
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surface engineering technique for the immobilisation anti-IL-1α antibodies as the affinity 

molecules. The theranostic contact lenses showed effective anti-HSV-1 activity, good analytical 

performance for the detection of IL-1α (limit of detection of 1.43 pg mL-1) and a wide linear 

range (0.625 to 400 pg mL-1) covering the clinically relevant region. Subsequently, Veli et al. 

(Veli and Ozcan, 2018) applied a similar LbL approach for the construction of contact lens with 

immobilised capture antibodies for the detection of Staphylococcus aureus combined with a 3D 

imaging technique. The 3D imaging allowed high resolution full imaging of the curved contact 

surface and detection of Staphylococcus aureus by direct counting of the bound bacteria 

labelled with a latex microparticle and achieved a detection limit of ~16 bacteria µL-1.  

4. Implantable soft and flexible material-based affinity sensors 

The recent popularity of wearable biosensors is driven by the demand for personalised 

continuous monitoring and health management. Despite the fact that various formats of 

wearable biosensors based on skin patches, textile materials and contact lenses have been 

developed for non-invasive continuous monitoring, there is a common problem concerning the 

accuracy of the measured non-invasive healthcare indicators in excreted body fluids (e.g. sweat 

and tears) using wearable biosensors and concerns about whether these correlate with the 

physiological biomarkers in the systematic blood circulation system within the body. Therefore, 

soft-material based implanted biosensors remain an important field for accurate continuous 

monitoring for clinical applications. For implanted biosensors, soft-materials are highly 

desirable due to their softness, conformity, flexibility and stretchability, which increase comfort 

and minimise damage to tissue around the implanted biosensor and biocompatibility. There is 

intensive research on injectable hydrogel sensors which has already been summarised in recent 

review articles (Jung et al., 2017; Le Goff et al., 2015). Here, we will focus on discussing the 

latest developments in implanted hydrogel affinity sensors, implanted microencapsulated 

sensors and on implanted fibre-based affinity biosensors that have been used for in vivo studies.  

Hydrogels are versatile soft polymer networks and ideal substrates for implantable 

biosensing applications with their three-dimensional cross-linked structure, hydrophilicity, 
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tunable nature and good biocompatibility. Blood glucose detection and continuous monitoring 

remains one of the most important applications of biosensors and comprises about 85% of the 

world market. (Turner, 2013) Despite the existence of several successful in-vivo glucose 

monitoring systems based on invasive detection via catalytic elements (glucose oxidase or 

similar enzymes) and non-invasive wearable detection via spectroscopy, implantable glucose 

monitoring systems combining hydrogels with affinity sensing element (boronic acid) have 

attracted intense research interest. Shibata et al. (Shibata et al., 2010) reported the development 

of injectable fluorescence polyacrylamide hydrogel beads implanted in the skin of mice for in 

vivo glucose measurement. The polyacrylamide hydrogel beads were synthesised with a 

fluorescent diboronic acid monomer that enables reversible binding to glucose molecules. The 

in vivo analytical performance of the implanted glucose responsive hydrogel beads within mice 

were verified with blood glucose measurement using commercial sensors. The implanted 

hydrogel beads showed good correlation with the measured blood glucose concentration over a 

study period of 180 minutes. Moreover, the treated mice remained alive and the implanted 

hydrogel beads at the injection site did not show any abnormalities for over 30 days.  

Mortellaro and DeHennis (Mortellaro and DeHennis, 2014) demonstrated a subcutaneously 

implantable wireless optical glucose sensor developed by Senseonics Inc., USA 

(www.senseonics.com ) - Eversense™ (made available in Europe by Roche) for an in vivo

clinical study in 12 type-1 diabetic patients over a period of 28 days. The implantable sensor 

was composed of a fluorescently conjugated boronic acid-based polymer immobilised onto a 

miniaturised optical detector coupled with a water-resistant transmitter. The sensor antenna 

receives radio frequency energy from a transmitter and the boronic acid-based glucose 

indicating hydrogel and miniaturised optical detection system deliver glucose readings every 5 

minutes. The accuracy of 19 implanted sensors were evaluated during 6 in-clinic sessions by 

comparing with blood glucose measured using commercial glucose sensor. The absolute 

relative difference for all implanted sensors was 11.67 ± 0.7% and Clarke error grid analysis 

showed that 99% of paired data points were in the combined zones. Further clinical studies are 

going on in Sweden that appear to support the clinical utility of these long-lived implantable 
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affinity sensors for monitoring diabetes, although the exactly how the required specificity is 

achieved in these devices is not entirely clear to us given the potential for cross reactivity with 

other sugars. If the reliability of these devices is substantiated, they are a game changer both in 

terms of the technology (optical affinity sensors as opposed to catalytic electrochemical devices) 

and their potential stability for long-term implantation. Tokuda et al. (Tokuda et al., 2014) 

reported the development of CMOS-based implantable glucose sensor composed of glucose 

responsive fluorescent hydrogel for in vivo glucose measurement in rats. The sensors were built 

by integration of a glucose responsive fluorescent phenylboronic acid-based hydrogel and a 

light emitting diodes (LEDs) as the excitation light sources with a CMOS image sensor 

packaged into a miniaturised implantable device. An intraperitoneal injection of glucose 

followed by an injection of insulin 40 minutes after the glucose injection were performed during 

the in vivo study and results were compared with blood glucose measured with commercial 

glucose sensors. The CMOS-based implantable glucose sensor showed a delayed response of 

60 minutes for the measured glucose concentration compared with the standard blood glucose 

measurement. The author suspected that the delay may be caused by the diffusion of the blood 

glucose into the glucose-responsive fluorescence hydrogel and the limited surface area of the 

polyimide-based outer case packaging. 

In addition to the intensive research on implanted hydrogel-based glucose sensors, some 

hydrogel encapsulated sensing systems have been developed for the detection of physical and 

physiologic parameters such as pH (Chan et al., 2013b), ions (Ozaydin-Ince et al., 2011), 

oxygen (Gamsey et al., 2016) and hydrogen peroxide (Kim et al., 2005). In order to extend the 

application of hydrogels to affinity detection of biomarkers, a wide range of biorecognition 

elements (antibody, nucleic acid and cells) and functional compositions (nanomaterials) have 

been explored. Choi et al.(Choi et al., 2013) reported the development of light-guiding 

hydrogels for real-time in vivo cell-based nanotoxicity sensing and light controlled optogenetic 

production of an antidiabetic glucagon-like peptide-1 (GLP-1) in live mice. They demonstrated 

the in vivo detection of cytotoxic effect of cadmium-based quantum dot with the implanted 

light-guiding hydrogels coupled with the heatshock-protein 70 (hsp70) which is activated when 
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cells are under cytotoxic stress and measures the green fluorescent protein (GFP) signal under 

the control of the hsp70 promoter. The light-guiding hydrogels showed a significant increase in 

green fluorescence in the CdTe-treated mice group compared with control at days 1 and 2 after 

treatment. These results demonstrated the first real-time in vivo measurement of systemic 

cellular nanotoxicity by cadmium-based quantum dots in mice animal model. Wang et al. (Wang 

et al., 2018) developed an in vivo nucleic acid qualitative detection system based on surface-

enhanced Raman scattering (SERS) nanosensor implanted in the skin of a large animal model. 

The nanosensor embedded in agar gel matrix is composed of a stem-loop DNA probe labeled 

with plasmonic active nanosat for generation of Raman signal and complementary DNA probe 

for capturing the target nucleic acid analyte. Ex vivo and in vivo SERS detection for nucleic 

acid target provides a foundation for the future development of implanted hydrogen-based 

SERS affinity biosensors. Recently, magnetic hydrogels consisting of mirco and/or 

nanomagnetic particles in hydrogel matrices (ferrogels) have been widely researched for 

biomedical applications, such as tissue engineering, drug delivery, regenerative medicine and 

biosensing (Kurlyandskaya et al., 2017; Li et al., 2013). Among them, ferrogels hold great 

potential as implantable magnetic biosensors, combing biocompatible hydrogels, biological 

sensing elements and magnetic nanoparticle labels that respond to an external magnetic field. 

Despite limited research on these materials, some researchers used ferrogels as a model material 

to mimic natural biological tissues, laying the foundation for potentially implantable magnetic 

biosensors. Buznikov et al. (Buznikov et al., 2018) developed a magnetoimpedance (MI) 

biosensor prototype with a multilayered FeNi/Ni as sensitive element and ferrogels as mimic 

tissue. Giant magnetoimpedance sensor prototype responses were measured through effective 

stray field of magnetic nanoparticles and the corresponding model for MI was proposed. In vivo

monitoring using the hydrogel encapsulated systems has not been realized to a substantial extent 

yet. A number of challenges still need to be solved such as insufficient stability of the 

bioreceptors (protein, nucleic acid, antibody), biocompatibility and biofouling of the implanted 

devices, and the development of wireless technology and power sources.  
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Optical fibres have been widely used for implanted biomedical and sensing (Nazempour et 

al., 2018). There are several advantages of using optical fibres for implanted biosensors 

compared with injectable hydrogels and microparticle sensing systems. An implanted fibre can 

be retained at the implanted site for a longer period of time compared with an injectable 

dispersion such as hydrogel or microparticles, which could diffuse from the implanted site. Also, 

the implanted fibre can be easily removed, which reduces the risk of harmful effects from the 

hydrogel inside the body. Miniaturised hollow fibre-based ConA biosensors have been available 

for some time as implanted biosensors for continuous glucose monitoring (Heo and Takeuchi, 

2013). Typically, a hollow fibre is loaded with a dye conjugated ConA that is bound with 

quencher conjugated dextran molecules resulting in Förster resonance energy transfer (FRET) 

suppressing the fluorescence signal. The diffusion of glucose molecules into the implanted 

hollow fibre sensor will cause the dissociation of the dextran from the ConA complex and 

generate a fluorescence signal. Ballerstadt et al. (Ballerstadt et al., 2006) demonstrated the 

subcutaneous implantation of the hollow fibre-based ConA biosensors in rats. Cellulose hollow 

fibres were loaded with Cy7-ConA and Alexa 647-dextran. The fluorescence signal was read 

through the skin with an optical fibre used for both excitation and fluorescence detection. The 

implanted glucose biosensor used for in vivo glucose monitoring in rats was stable for up to 16 

days and followed the blood glucose concentrations with a delay of less than 5 min. However, 

there was a time lag for glucose responses after 2 weeks implantation due to fouling around the 

implanted biosensor. In a subsequent study, Ballerstadt et al. (Ballerstadt et al., 2007) 

demonstrated using the hollow-fibre ConA biosensors for in vivo glucose concentration in pigs 

for up to 3 days. Despite some success with ConA-based implanted glucose sensors, the 

instability and leakage of immoblised ConA remain a hurdle towards long-term in vivo glucose 

monitoring. Moreover, the broad selectivity of ConA towards other saccharides and 

polysaccharides limited the specificity of the ConA-based affinity sensors. Cheung et al. 

(Cheung et al., 2008) demonstrated the incorporation of polyelectrolyte multi-layers onto a 

ConA-based hydrogel with permeability control to eliminate the high molecular weight 

polysaccharides diffused into the ConA-based hydrogel and improve the selectivity of ConA 
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detection system. Heo et al. (Heo et al., 2011) reported the development of a fluorescent 

hydrogel fibre for in vivo glucose monitoring in mice. Glucose-responsive monomers were co-

polymerised with polyethylene glycol (PEG) and polyacrylamide (PAM) forming the glucose 

sensitive hydrogel fibres. This approach avoids the leakage of glucose sensing elements from 

the hydrogel fibre. The PEG-PAM hydrogel fibres also reduced inflammation responses 

compared with the PAM hydrogel fibres. The fluorescent hydrogel fibre was stable for in vivo

glucose measurement up to 140 days and the responses were well correlated with the blood 

glucose concentration, demonstrating their potential application for long-term in vivo

continuous glucose monitoring. Siegrist et al. (Siegrist et al., 2010) reported the use of a 

fluorescently labeled glucose recognition polypeptide immobilised in a polyacrylamide 

hydrogel matrix and placed on the tip of an optical fibre used for continuous glucose 

measurements. This demonstrated the possibility of coupling rationally engineered glucose 

binding proteins as biorecognition elements with optical fibres for real-time fluorescence-based 

glucose detection.  

However, fluorescence detection may suffer from photobleaching and requires illumination. 

In another study, Yetisen et al. (Yetisen et al., 2017) demonstrated the development of 

phenylboronic acid-functionalised glucose sensitive hydrogel optical fibres for glucose 

monitoring. Hydrogel optical fibers were fabricated with poly(acrylamide-co-poly(ethylene 

glycol) diacrylate) p(AMco-PEGDA) core and a calcium alginate cladding that covalently 

coupled to 3-(acrylamido) phenylboronic acid (3-APBA) for sensing glucose. The boronic acid-

based hydrogel glucose sensing mechanism is based on the binding of the glucose molecule to 

the boronic acid hydrogel causing a volume change or swelling of the hydrogel. Different forms 

of boronic acid-based hydrogels are summarised in a recent review article (Guan and Zhang, 

2013). As glucose molecules diffuse into the hydrogel fibre and interact with the phenylboronic 

acid functional group, the Donnan osmotic pressure of the system increases due to swelling of 

the hydrogel. Changes in the osmotic pressure and the hydrogel density causes the change in 

the refractive index that affects light propagation through the hydrogel fibre and changes the 

intensity of output light. Thus, the glucose concentration is measured as a function of time 
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against the output light intensity. This hydrogel optical fibre allows measurement of glucose 

concentrations in real time within the diagnostic concentration range covering both diabetes 

and other health subjects. 

Beside glucose monitoring, implanted optical fibres have also been used for biomarker 

detection in vivo. Zhang et al.(Zhang et al., 2018) developed an optical fibre device for serial 

monitoring of local cytokine release in discrete brain regions. The optical fibre was modified 

and labelled with capture antibody specific for the pro-inflammatory cytokine interleukin-1 beta 

(IL-1β). Based on the sandwich immunoassay, the optical fibre allowed IL-1β detection in the 

range of 3.8 – 500 pg mL-1 in an in-vitro study. Measurement in-vivo was realised by introducing 

the immunocapture device into a perforated guide cannula in rat. Localised detection of IL-1β 

in the rat spinal cord was also realised using a stable immunocapture surface based on a biotin-

streptavidin coupling strategy and fluorescent carboxylated supermagnetic iron oxide (SPIO) 

coupledIL-1β antibody conjugates as the biolabel (Zhang et al., 2019). 
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Figure 4. Implantable and injectable soft and flexible material-based affinity sensors. (A) 

Injectable hydrogel microbeads for fluorescence based in vivo continuous glucose monitoring. 

Adapted with permission from ref.(Shibata et al., 2010) (B) Surface-enhanced Raman scattering 

nanosensors for in vivo detection of nucleic acid targets in a large animal model. Adapted with 

permission from ref.(Wang et al., 2018) (C) Cell-integrated polyethylene glycol-based 

hydrogels for in vivo optical-sensing Adapted with permission from ref (Choi et al., 2013). 

5. Challenges and Future perspectives  

Historically, biomedical diagnostics have been performed by collecting blood, urine, 

wound or genetic samples followed by pretreatments and subsequent analysis using instruments 

in a central laboratory. The challenge now is to provide improved PoC tests, especially via 

wearable and implantable devices, to fulfill the increasingly recognised need for real-time, 

continuous, and even remote monitoring for individuals. The current trend to move away from 

conventional PoC tests towards wearable and implantable affinity biosensing devices, 

underlines the critical demand to improve the long-term reliability and response times of both 

continuous and discrete monitors, to enhance device integration and incorporate real-time data 

acquisition and analysis.  

The primary concern for the PoC, wearable and implantable sensors, is accuracy and 

stability. Affinity biosensors employ bio-recognition molecules, such as antibodies, nucleic acid 

sequences and biological or biomimetic receptors, for affinity detection of analyte molecules, 

which result in the formation and subsequent dissociation of complexes. Understanding the 

functions of bio-recognition molecules and the binding mechanisms between targeted analytes 

and receptors underpins the development of affinity biosensors. The emerging field of MIPs 

offers interesting possibilities for new stable receptors while the incorporation of bio-

recognition molecules into affinity sensing platforms during fabrication, device integration or 

practical operation also brings interesting opportunities. Operation in physiological 

environments, however, brings challenges such as fluctuations of pH, ionic strength and 

temperature. The majority of conventional PoC tests (e.g. lateral-flow membrane-based strips 
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and microfluidic paper-based analytical devices) are used for discrete measurements of analyte 

extracted as biological samples where conditions can be relatively well controlled. However, 

wearable and implantable devices have to deliver continuous detection of analyte in real time 

where conditions may be fluctuating and affecting binding kinetics. Hence, regular manual 

correction or systematic correction by integrated on-board calibrators are currently 

indispensable.  

The response time and utility for continuous monitoring are key parameters to evaluate the 

feasibility of new affinity sensors. Response times can be in the order of several seconds to tens 

of minutes depending on diffusion of the analyte, transport and affinity interaction 

characteristics of the affinity sensor. The response time for PoC affinity sensors is typically 

within tens of minutes which is acceptable for discrete measurements of biomarkers for cancer, 

gene, infection and disease diagnostics. However, the response time for wearable and 

implantable affinity sensors intended for continuous monitoring of biomarkers must be much 

faster and is a challenge given the kinetics of affinity interactions between analyte and 

recognition molecules. Moreover, the implementation of continuous monitoring of many 

analytes remains a significant hurdle, due to irreversible affinity interactions between 

biorecognition elements and analytes resulting in non-reusable platform. Until now, the most 

successful implementation of wearable/implantable affinity sensors has been boronic acid-

based glucose sensing. Building on this comparative success with the exploration of new 

affinity binding systems for biomarkers to expand the range of wearable/implantable sensors is 

a clear future direction for research. Moreover, to avoid adverse reactions to implanted devices, 

complimentary material science and engineering are needed to ensure biocompatibility for the 

extended lifetime of new devices. 

Although conventional lateral-flow strip tests remain dominant in the market for affinity 

sensors, wearable/implantable sensors addressing the integration of complex components with 

multifunction will be the ultimate future goal. Sensors designed to measure different key 

parameters simultaneously for health monitoring, profiling a wide range of biomarkers, and 

detection of disease are required. Intensive research has been devoted to wearable physical 
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sensors based on flexible electronics (temperature, heart rate, body motion and strain), chemical 

sensors (pH, ions and humidity) and catalytic biosensors (glucose via catalyst, lactate and 

dopamine etc.). Attention now needs to focus more on affinity biosensors (such as glucose via 

boronic acid, pathogens, nucleic acid etc.) to establish a solid foundation for the integration of 

multiparameter wearable/implantable devices in the foreseeable future. These systems will need 

to be further integrated with power supplies, wireless data transmission and online back-end 

cloud servers for data analysis, storage and sharing.   

The recent convergence of thinking around the escalating cost of delivering healthcare, the 

opportunities offered by mobile heath and the demand for more personalised medicine has 

stimulated enthusiasm for solutions based on biosensors. In addition, new areas have evolved 

where biosensors are recognised to have a pivotal role, such as in robotic surgery, tissue 

engineering and the production of biologics. These drivers have spurred on innovations in the 

area with exploration of conformable skin patches for non-invasive monitoring of sweat, 

contact lenses modified to monitor biomarkers in tears, sensors incorporated in textiles for both 

clothing and wound dressings and injectable hydrogel-based sensors for in-body sensing. The 

ultimate wide application of wearable/implantable biosensors needs significant improvements 

in size, durability and cost to meet the demand for worldwide distribution of decentralised and 

personalised sensing. Integration and miniaturisation of biosensor devices are an ongoing 

research trend. Advances in microscale engineering are addressing the challenges in the 

integration and miniaturisation of compact analytical devices by scaling down systems. Such 

devices provide distinct benefits compared with traditional approaches, such as simultaneous 

multiple measurements, ease of use and low manufacturing cost, especially where expensive 

biological materials are concerned. Soft and flexible materials will play a key role, but 

development needs to keep pace and materials have to evolve from simple mono-functional 

components to composites and hybrid materials that integrate several of the required 

recognition, transduction and transmission functions to deliver more manufacturable and 

efficient affinity sensor systems. 
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Conclusions 

With the demand for new sensing technology so clearly identified, the challenge is to harness 

the thousands of research reports on advanced materials to hone products that can meet these 

needs. Such new, inexpensive approaches will underpin new digital diagnostics, personalised 

medicine and fundamental biochemical research. Emerging soft and flexible materials are 

providing tools to fabricate systems with improved performance, while areas such as flexible 

electronics can show us the way to mass produce integrated systems at the right cost and with 

form factors that meet the rapidly evolving requirements for sensing interfaced with 

telecommunications and intelligent systems. The future importance of soft and flexible 

materials in affinity sensors for health management, therapy, food quality, environmental 

monitoring and research in the life sciences is clear and we need to bring chemists, engineers, 

users and entrepreneurs together to implement effective ways forward. 
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