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In this paper, we are interested in the development of efficient first-order methods for convex 
optimization problems in the simultaneous presence of smoothness of the objective function and 
stochasticity in the first-order information. First, we consider the Stochastic Primal Gradient method, 
which is nothing else but the Mirror Descent SA method applied to a smooth function and we develop 
new practical and efficient stepsizes policies. Based on the machinery of estimates sequences functions, 
we develop also two new methods, a Stochastic Dual Gradient Method and an accelerated Stochastic Fast 
Gradient Method. Convergence rates on average, probabilities of large deviations and accuracy 
certificates are studied. All of these methods are designed in order to decrease the effect of the stochastic 
noise at an unimprovable rate and to be easily implementable in practice (the practical efficiency of our 
method is confirmed by numerical experiments). Furthermore, the biased case, when the oracle is not 
only stochastic but also affected by a bias is considered for the first time in the literature. 
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1 Introduction

This paper is devoted to the development of efficient first-order methods for convex op-
timization problems of the form minx∈Q f(x) where f is a smooth convex function but
endowed with a stochastic first-order oracle.

In the deterministic convex case, smoothness is a highly desirable property. Indeed, for
a non-smooth Lipschitz-continuous function (with constant M), the best convergence rate
for f(yk)−f∗ (where k is the iteration counter and yk the approximate solution generated

after k iterations) that we can expect , using a first-order method, has the form O
(
MR√
k

)
where R represents the distance between the initial iterate and the optimal solution. This
slow rate is achieved for example by subgradient type methods (see for example [14, 6]).

On the other hand, when the objective function is smooth with a Lipschitz-continuous
gradient (with constant L), the convergence rate of the (sub)gradient method becomes

O
(
LR2

k

)
and it is even possible to obtain a convergence rate O

(
LR2

k2

)
(optimal for deter-

ministic smooth problem) using the fast gradient methods developed in various variants
by Nesterov since 1983 ([12, 13, 14, 15]).

In the stochastic convex case, when the first-order information is affected by a ran-
dom noise, the most classical first order methods are the Stochastic Approximation (SA)
methods that mimic the subgradient method, replacing the exact gradient by the stochas-
tic one. In the modern SA methods, like the Mirror Descent SA method (see [11]), the
function endowed with a stochastic oracle is typically assumed to be non-smooth and the

obtained convergence rate is O
(
MR√
k

+ σR√
k

)
where σ is the level of the stochastic noise.

This rate has an optimal dependence in M (since the problem is non-smooth) but also
an optimal dependence in σ. Indeed, it has been proved in [10] that the effect of the
stochastic noise cannot be decreased, by a first-order method, with a better rate than 1√

k
and this limitation is also valid when the function is smooth. This result has led to the
common belief that in the presence of a stochastic oracle, the smoothness of the objective
function is useless. It does not matter that the function is smooth or not, in any case we

come back to a slow convergence rate O
(

1√
k

)
like in the deterministic non-smooth case.

However when the Lipschitz constant of the gradient L is big as compare to the stochastic
noise σ, and when we are interested in solution with moderate accuracy, a convergence

rate of the form O
(
LR2

k + σR√
k

)
or O

(
LR2

k2 + σR√
k

)
, exploiting the smoothness of f in its

first term, can be significantly better than O
(
MR√
k

+ σR√
k

)
.

First-order methods in the stochastic smooth case has been considered for the first
time by Lan in [7]. In this paper, he adapts the Mirror descent SA method, designed
initially for non smooth problem, to the smooth case, obtaining a convergence rate of the

form O
(
LR2

k + σR√
k

)
and adapts one variant of the fast gradient methods, initially de-

signed for deterministic smooth problems to the stochastic case, obtaining a convergence

rate of the form O
(
LR2

k2 + σR√
k

)
. The development of fast gradient methods in the smooth

stochastic case with applications in machine learning problems has also been considered
recently in [3, 9].

The new first-order methods that we develop in this paper exhibit the same kind of
convergence rates but our methods are characterized by some common properties that
extend their applicability in practice:

1. Our methods can be used with a general norm (not especially the Euclidean norm)
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and can be adapted to the problem geometry, using a good setup and therefore
auxiliary subproblems as easy as possible. This desirable property is not satisfied
by the methods developed in [3, 9]. In these papers, the methods use auxiliary
subproblems based on the squared norm and such quadratic function is sometimes
difficult to minimize on the feasible set. We answer the question of the setup choice
in the Section 2.2.

2. Our methods use stepsizes that does not need to know a priori the performed number
of iterations. This property is highly desirable when we want to run a method for a
given time and not for a given number of iterations (for example when we compare
methods with different iteration costs). On the contrary, the methods developed in
[7, 9] assume an a priori knowledge of the performed number of iterations N and
use stepsizes based on this number. We discuss in details the stepsizes choice for
each method in the Sections 3, 5, 6 and show in the Section 9, on the numerical
experiments, the advantage of stepsizes policies not based on N .

3. Our methods can be applied, without modification of the convergence rate, to the
composite case where we add to the smooth objective function f , an easy convex
function h (potentially non-smooth) that can be kept in the auxiliary subproblems
used by the first-order methods. This composite case, when f is endowed with a
stochastic oracle and h is easy, has been already considered in [9] but not in [7, 3].

Remark 1 Lan in [7] considers a different composite case where the non-smooth
part of the function is also endowed with a stochastic black-box oracle. In our case,
we use the explicit structure of the (possibly) non-smooth component, avoiding in
this way that h slows down the convergence rate.

Furthermore, to the best of our knowledge, this paper considers for the first time,
the biased case i.e. when the smooth function f is endowed with an oracle which is not
only stochastic (with stochastic noise σ) but also biased (with bias δ), meaning that on
average, the stochastic first-order information does not coincide with the exact one.

The paper is organized as follows. In Section 2, we present in a more formal form our
problem class, introduce different possible setups that can be used by the first-order meth-
ods and present three simple examples of smooth convex problems with stochastic oracle.
In some cases, the stochasticity is in the problem since the beginning. In other cases, we
introduce ourself the stochasticity via a randomization of the first-order information in
order to reduce the computational cost of the first-order methods. In Section 3, we de-
velop new practical stepsizes policy for the Stochastic Primal Gradient Method (SPGM)
which is nothing else than the Mirror-Descent SA method (see [11, 7]) but applied to a
smooth convex problem. In Section 4, we introduce the machinery of estimate functions
and generalize it to the stochastic case. Based on this principle, we develop and study
the average behavior of two new methods, a Stochastic Dual Gradient Method (SDGM)

with convergence rate O
(
LR2

k + σR√
k

)
(Section 5) and a Stochastic Fast Gradient Method

(SFGM) with convergence rate O
(
LR2

k2 + σR√
k

)
(Section 6). All these methods decrease

the effect of the stochastic noise at the unimprovable rate O
(
σR√
k

)
where R represents

the distance between the initial iterate x0 and the optimal solution x∗ and k is the itera-
tion counter. In Section 7 and 8, we study the probabilities of large deviations for these
methods and develop accuracy certificates. The last section is devoted to numerical ex-
periments. We consider quadratic problems on the simplex when the gradient is affected
by a stochastic noise and compare our methods (using different possible stepsizes policies)
with the existing methods.
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2 Smooth convex problem with stochastic oracle

2.1 Problem class and biased stochastic oracle

Let E be a finite dimensional vector space endowed with the norm ‖.‖ and E∗, the dual
space of E, with the dual norm ‖g‖∗ = supy∈E{|〈g, y〉| : ‖y‖ ≤ 1} where 〈., .〉 denotes the
dual pairing. We consider the convex optimization problem:

φ∗ = min
x∈Q

φ(x) (2.1)

where Q ⊂ E is a closed convex set, φ = f + h and

• f : Q → R is a convex function, typically smooth but endowed with a stochastic
first-order oracle (possibly biased)

• h : Q→ R is an easy convex function. Easy means that we can easily minimize the
sum of h and a well-chosen model of f on the set Q. This property will be explained
in more details later in the next subsetion.

The stochastic first-order oracle available for f is characterized by two-levels of inexact-
ness:

• The function f is endowed with a (δ, L)-oracle (this notion of oracle with determin-
istic error has been introduced recently in [2]) i.e. that for each x ∈ Q, we could
potentially compute fδ,L(x) ∈ R and gδ,L(x) ∈ E∗ such that:

0 ≤ f(y)− fδ,L(x)− 〈gδ,L(x), y − x〉 ≤ L

2
‖x− y‖2 + δ, ∀y ∈ Q. (2.2)

• We do not use (fδ,L(x), gδ,L(x)) but instead stochastic estimates (Fδ,L(x, ξ), Gδ,L(x, ξ)).
More precisely, at all point x ∈ Q, we associate with x a random variable X whose
probability distribution is supported on Ξ ⊂ Rd and such that:

Eξ∼X [Fδ,L(x, ξ)] = fδ,L(x) (2.3)

Eξ∼X [Gδ,L(x, ξ)] = gδ,L(x) (2.4)

Eξ∼X [‖Gδ,L(x, ξ)− gδ,L(x)‖2∗] ≤ σ
2. (2.5)

When δ = 0, f is necessarily smooth with a Lipschitz-continuous gradient (with con-
stant L i.e. f ∈ F 1,1

L (Q)) and the oracle is stochastic but unbiased: Eξ∼X [Fδ,L(x, ξ)] =
f(x) and Eξ∼X [Gδ,L(x, ξ)] = ∇f(x).
When δ 6= 0, this kind of oracle can be seen as a biased stochastic oracle where σ repre-
sents the stochastic noise and δ the deterministic bias. Indeed, the notion of (δ, L) oracle
(introduced in [2]) allows us to consider different natural notions of bias:

• gδ,L(x) is an approximate gradient of f

If f ∈ F 1,1

L
(Q), ‖∇f(x)− gδ,L(x)‖∗ ≤ ∆ and Q is bounded with diameter

D = maxx∈Q,y∈Q ‖x− y‖ then (fδ,L(x) = f(x)−∆D, gδ,L(x)) is a (δ, L) oracle with
δ = 2∆D and L = L.

• gδ,L(x) is a gradient of f computed at a shifted point x

If f ∈ F 1,1

L
(Q) and gδ,L(x) = ∇f(x) then

(fδ,L(x) = f(x) + 〈∇f(x), x − x〉, gδ,L(x) = ∇f(x)) is a (δ, L) oracle with δ =

L ‖x− x‖2 and L = 2L.

• f is in fact non-smooth and gδ,L(x) is a subgradient of f
If f is non-smooth with bounded variations of subgradients i.e.:

‖g(x)− g(y)‖∗ ≤M, ∀x, y ∈ Q,∀g(x) ∈ ∂f(x), g(y) ∈ ∂f(y)
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then (fδ,L(x) = f(x), gδ,L(x) = g(x)) is a (δ, L) oracle with δ an arbitrary positive

constant and L = M2

2δ . (In this case, the bias δ correspond to the fact that the
function is not as smooth as expected).

Remark 2 We use the denomination smooth convex problem for (2.1) even if the functions
f and h can both be non-smooth. The reason is the fact that the component h does not
play any role in the design and the convergence rate of the first-order methods that we
will consider. Furthermore, the function f is typically a smooth convex function with
Lipschitz-continuous gradient. A non-smooth f can be also considered but the non-
smoothness is seen in this case as a bias with respect to the desired situation (using the
notion of (δ, L) oracle). This generality is not the main goal of this paper, we are mainly
interested in the minimization of a smooth convex function f endowed with stochastic
oracle (augmented eventually by an easy non-smooth convex function h).

Remark 3 The first-order methods developed in this paper will use only stochastic es-
timates of the gradient Gδ,L(xi, ξi) at different search points xi, never the corresponding
estimates of the function value. We need Fδ,L(x, ξ), only when we want to estimate the
quality of a point x ∈ Q for the objective function (see section 8).

2.2 Setup of first-order methods

In order to apply a first-order method to problem (2.1), we need to chose a metric i.e.:

1. a norm ‖.‖ on E

2. a prox-function d(x) i.e. a differentiable and strongly convex function on Q.

Let x0 be the minimizer of d on Q. By translating and scaling d if necessary, we can
always ensure that

d(x0) = 0, d(x) ≥ 1

2
‖x− x0‖2 , ∀x ∈ Q. (2.6)

We define also the corresponding Bregman distance:

V (x, z) = d(x)− d(z)− 〈∇d(z), x− z〉. (2.7)

Due to the strong convexity of d(x) with parameter 1, we have clearly:

V (x, z) ≥ 1

2
‖x− z‖2 , ∀x, z ∈ Q. (2.8)

All the first-order methods that we will consider are based on subproblems of the forms:

min
x∈Q
{〈g, x〉+ βd(x) + h(x)}

with g ∈ E∗, β ∈ R+
0 , or

min
x∈Q
{〈g, x〉+ βV (x, z) + h(x)}

with g ∈ E∗, β ∈ R+
0 and z ∈ Q.

The prox-function must be chosen such that these kinds of auxiliary subproblems can be
solved easily. Of course it is possible to make these subproblems easy by a good choice of
the prox-function only if the function h is itself sufficiently easy.

Example 1 When E = Rn, two classical setups are:

1. The Euclidean setup: ‖.‖ = ‖.‖2 =
√∑n

i=1(xi)2 and d(x) = 1
2 ‖x− x0‖22 with

x0 ∈ Q. In this case, the prox-center is x0 and V (x, z) = 1
2 ‖x− z‖

2
2 .
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2. When Q = ∆n = {x ∈ Rn+,
∑n
i=1 x

i = 1}, the l1 setup: ‖.‖ = ‖.‖1 =
∑n
i=1

∣∣xi∣∣ and
d(x) = ln(n) +

∑n
i=1 x

i ln(xi) (entropy distance). In this case, the prox-center is

x0 =
(

1
n , ...,

1
n

)T
and V (x, z) =

∑n
i=1 x

i ln
(
xi

zi

)
.

For the analysis of our first-order methods, we denote by R, the quantity
√
d(x∗) that

represents in some sense the distance between the initial iterate x0 (which is the minimizer
of the prox-function) and the optimal solution x∗. As d(x0) = 0 and 〈∇d(x0), x∗−x0〉 ≥ 0,
we have:

V (x∗, x0) ≤ d(x∗) = R2.

2.3 Examples

Before developing different stochastic first-order methods, we present some examples of
problems of the form 2.1 with stochastic oracle.

2.3.1 Lasso problem with stochastic gradient

The Lasso problem corresponds to problem (2.1) with f(x) = 1
2 ‖Ax− b‖

2
2, h(x) = λ ‖x‖1

with λ > 0 and Q = Rn. When using the Euclidean setup, the sparsity promoter h(x) =
λ ‖x‖1 can be considered as an easy convex function. Indeed for all g ∈ Rn and λ, β ∈ R+

0 ,
we have:

arg min
x∈Rn
{〈g, x〉+ λ ‖x‖1 +

β

2
‖x− z‖22} = τλ

β
(z − 1

β
g)

where τα(x)i = (
∣∣xi∣∣− α)+sgn(xi) is the shrinkage operator.

We are interested in situations where ∇f(x) is not computed exactly.

• One possible situation is when the computation of ∇f(x) is really affected by a
stochastic noise and a bias. This is the case for example when instead of computing
∇f(x) = ATAx− AT b, we are only able to compute Gδ,L(x, ξ) = ATAx− AT b+ ξ
where:

1. ξ is a stochastic perturbation such that E[ξ] = 0 and E[‖ξ‖22] ≤ σ2

2. x is a shifted point of x such that ‖x− x‖22 ≤
δ

λmax(ATA)
.

• Another situation is when the stochasticity is not present in the problem initially
but we introduce it in order to reduce the computational cost of the first-order
information. In the Lasso problem, introducing a randomization can be interesting
for example when the number of row N of A is very large. In this case, denoting by
ai the ith row of A, the computation of the exact gradient ∇f(x) =

∑N
i=1(xTai −

bi)ai can be very expensive (O(nN) basics operations). It can be interesting to

replace ∇f(x) by an unbiased estimate G0,L(x, ξ) = N
M

∑M
j=1(xTaξj − bξj )aξj where

{ξ1, ..., ξM} is a subset of arrows uniformly chosen from {1, ..., N}. When M is chosen
significantly smaller than N , the computation of this stochastic gradient is of course
cheaper. However replacing the exact gradient by this stochastic estimate introduces
a stochastic noise σ that depends on dissimilarities between different rows of A.

2.3.2 Smooth Expectation function

Let X be a random vector supported on Ξ ⊂ Rd. Assume that f itself is defined by an
expectation:

f(x) = Eη∼X [F (x, η)] =

∫
Ξ

F (x, η)dP (η),

where F (., η) ∈ F 1,1
L(η)(Q) for almost all η ∈ Ξ ⊂ Rd. Then we have∇f(x) = Eη∼X [∇1F (x, η)]

(see [17]) and f ∈ F 1,1
L (Q) where L =

∫
Ξ
L(η)dP (η) (assuming that L(.) is integrable on
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Ξ i.e. that L < ∞). However the computation of ∇f(x) i.e. of a multidimensional
integral is to costly when the dimension d is high. Therefore it is typical to replace
∇f(x) by a stochastic gradient: we sample from the distribution of X, obtaining ξ ∈ Ξ
and compute G0,L(x, ξ) = ∇1F (x, ξ). This stochastic gradient is unbiased (i.e. δ = 0):
Eξ∼X [Gδ,L(x, ξ)] = ∇f(x) and the noise that we introduce can be characterized by

σ2 = Eξ∼X [‖∇f(x)−G0,L(x, ξ)‖2] =

∫
Ξ

∥∥∥∥∫
Ξ

(∇1F (x, η)−∇1F (x, ξ))dP (η)

∥∥∥∥2

dP (ξ).

Of course, we can also add to f an easy convex function h, like a sparsity promoter
h(x) = λ ‖x‖1 .

2.3.3 Randomization of Quadratic Problem

We consider the situation where

1. f(x) = l(x) + xTAx with l ∈ F 1,1
Ll

(Q) and A � 0

2. h(x) = 0

3. Q = ∆n = {x ∈ Rn+ :
∑n
i=1 x

i = 1}.
For such a problem on the simplex, it is natural to use the l1 setup (it does not means
that we add to f the l1 norm, h(x) = λ ‖x‖1, but only that we use ‖.‖ = ‖.‖1 and the
entropy prox-function).

When the problem size is very large and when the computational cost of ∇h is not too
expensive, the matrix vector product Ax becomes the dominant cost in the computation
of ∇f(x). It could be very interesting to replace the costly matrix vector product by a
randomized one. One possibility is to pick up from A the column i with probability xi

and to consider Aei (i.e the ithe column of A) as the stochastic estimate of Ax. This
randomization technique for matrix-vector multiplication on the unit simplex has been
introduced recently in [4]. The obtained oracle is unbiased (i.e. δ = 0) and introduces a
noise of order ‖A‖∞ that can be reasonable when Ll >> ‖A‖∞ .

3 Stochastic Primal Gradient Method

3.1 Scheme

In this method, we use only one sequence of coefficients {βk}k≥0. We assume that βk > L
for all k ≥ 0 and denote γk = 1

βk
(that can be interpreted as the stepsize).

Stochastic Primal Gradient Method (SPGM)

• Initialization
Compute x0 = arg minx∈Q d(x)

• Iteration k ≥ 0

1. Let ξk be a realization of the random variable Xk

2. Compute Gδ,L(xk, ξk)

3. Compute xk+1 = arg minx∈Q[〈Gδ,L(xk, ξk), x− xk〉+ h(x) + βkV (x, xk)]

• Approximate Solution
Compute yk = 1∑k−1

i=0 γi

∑k−1
i=0 γixi+1.

Remark 4 In the litterature, the stochasticity is typically assumed to enter the scheme
via i.i.d. random variables. Here, we consider a more general situation where a random
variable X is associated with each x ∈ Q. It means that:
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1. The distribution of Xi depends only on the current iterate xi, not on the history of
the process ξ[i] = (ξ0, ..., ξi−1) that has led the scheme to the point xi

2. The random variables X0, ..., Xk can have different distributions but must satisfy
the uniform bounds 2.3,2.4 and 2.5 with the same σ and the same δ.

Of course, if we consider the particular case where all the random variables X have the
same distribution, independently of x, we come back to the i.i.d. case. We will only use
this i.i.d. assumption in the Section 7 and 8 in order to develop probabilities of large
deviations.

The Primal Gradient Method is the most natural, classical first-order method.
In the deterministic smooth case, when the Euclidean setup is used and h = 0 we retrieve
the classical gradient method (see [14]):

xk+1 = arg min
x∈Q
{f(xk) + 〈∇f(xk), x− xk〉+

βk
2
‖x− xk‖22} = πQ(xk −

1

βk
∇f(xk))

where πQ denotes the Euclidean projection on Q.
If we choose all the coefficients βi equal to the the Lispchitz constant of the gradient L, we

obtain the famous convergence rate O
(
LR2

k

)
(which is however non-optimal for smooth

convex problems).

This familly of schemes has also attracted a lot of attention in non-smooth convex opti-
mization, it is simply the subgradient method ([18]) if we use the Euclidean setup and
the Mirror Descent method ([10, 1]) with a general setup. With an increasing sequence

of coefficients βi = Θ
(
M
√
i

R

)
, we obtain the optimal convergence rate O

(
MR√
k

)
for de-

terministic non-smooth convex probem where M denotes the Lipschitz-constant of the
function.

In stochastic non-smooth convex optimization, this scheme corresponds to the Stochastic
Approximation (SA) method in the Euclidean case and to the Mirror Descent Stochas-
tic Approximation (MDSA) method ([11]) in the general case. With the same kind of
decreasing stepsizes γi (i.e. of increasing coefficients βi) than in the deterministic case,

these methods reach the unimprovable convergence rate O
(
MR√
k

+ σR√
k

)
where σ denotes

the stochastic noise of the oracle.

In stochastic smooth convex optimization, this scheme has been considered recently by Lan
in [7] under the name of Modified Mirror Descent SA method (MMDSA). He proposes to
construct the approximate solution ( i.e. the point for which we have the convergence rate)

as 1∑k−1
i=0 γi

∑k−1
i=0 γixi+1 (instead of 1∑k

i=0 γi

∑k
i=0 γixi for the usual MDSA method) and a

constant stepsize policy but which is based on the oracle noise σ and on the performed

number of iterations k. This method exhibits the rate of convergence O
(
LR2

k + σR√
k

)
which is optimal whith respect to the stochastic noise σ but not with respect to L, the
Lipschitz-constant of the gradient.

In this section, we generalize the result of Lan in three directions:

• We consider the biased case, when the expectation of the stochastic gradientGδ,L(x, ξ)
is itself affected by a deterministic error δ. In this case, the convergence rate is

O
(
LR2

k + σR√
k

+ δ
)

• We propose a new stepsize policy that does not need anymore the knowledge of
the performed number of iterations and gives the same convergence rate (up to a
logarithmic factor)
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• We consider the composite case when we add to f an easy convex function h (possibly
non-smooth) i.e. that can be kept without modification in the auxiliary subproblems.

But first, let us start with the general convergence rate of this Stochastic Primal
Gradient Method (SPGM):

3.2 General Convergence Rate

Theorem 1 For all k ≥ 0, we have:

φ(yk)− φ∗ ≤

1∑k−1
i=0 γi

(
V (x∗, x0) +

k−1∑
i=0

γi
βi − L

‖Gδ,L(xi)− gδ,L(xi)‖2∗ +

k−1∑
i=0

γi〈Gδ,L(xi)− gδ,L(xi), x
∗ − xi〉

)
+δ.

Proof. For simplicity, in all proofs of this paper, we denote fi = fδ,L(xi), Fi = Fδ,L(xi, ξi),
gi = gδ,L(xi) and Gi = Gδ,L(xi, ξi).
Let gh(xk+1) ∈ ∂h(xk+1), from the definition of xk+1, we have:

〈γkGk + γkgh(xk+1) +∇d(xk+1)−∇d(xk), u− xk+1〉 ≥ 0, ∀u ∈ Q.

When rearranging terms, this inequality can be written as:

γk〈Gk, xk − u〉 ≤ V (u, xk)− V (u, xk+1) + γk〈Gk, xk − xk+1〉 − V (xk+1, xk)

+γk〈gh(xk+1), u− xk+1〉.

Denoting dk = γk〈Gk, xk − xk+1〉 − V (xk+1, xk), we obtain:

dk
(2.8)

≤ γk〈Gk, xk − xk+1〉 −
1

2
‖xk − xk+1‖2

= γk[〈gk, xk − xk+1〉 −
L

2
‖xk − xk+1‖2] + γk[〈Gk − gk, xk − xk+1〉 −

βk − L
2

‖xk − xk+1‖2]

(2.2)

≤ γk[fk − f(xk+1) + δ] +
γk

βk − L
‖Gk − gk‖2∗ .

where we use in the last inequality the fact that for all g ∈ E∗, x ∈ E, γ > 0:

〈g, x〉 − ζ

2
‖x‖2 ≤ 1

ζ
‖g‖2∗ . (3.1)

Therefore, we obtain:

γk〈Gk, xk − u〉 ≤ V (u, xk)− V (u, xk+1) + γk[fk − f(xk+1) + δ] +
γk

βk − L
‖Gk − gk‖2∗

+γk〈gh(xk+1), u− xk+1〉

≤ V (u, xk)− V (u, xk+1) + γk[fk − f(xk+1) + δ] +
γk

βk − L
‖Gk − gk‖2∗

+γk(h(u)− h(xk+1)).

i.e:

γk[f(xk+1) + h(xk+1)] ≤ V (u, xk)− V (u, xk+1) + γk[fk + 〈gk, u− xk〉] + γk〈Gk − gk, u− xk〉

+γkδ +
γk

βk − L
‖Gk − gk‖2∗ + γkh(u)

(2.2)

≤ V (u, xk)− V (u, xk+1) + γkφ(u) + γk[〈Gk − gk, u− xk〉]

+γkδ +
γk

βk − L
‖Gk − gk‖2∗ .
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In particular, choosing u = x∗:

γkφ(xk+1) ≤ V (x∗, xk)− V (x∗, xk+1) + γkφ
∗ + γk[〈Gk − gk, x∗ − xk〉]

+γkδ +
γk

βk − L
‖Gk − gk‖2∗ .

Summing these inequalities, we obtain:

k−1∑
i=0

γi(φ(xi+1)− φ∗) ≤ V (x∗, x0) +

k−1∑
i=0

γi〈Gi − gi, x∗ − xi〉

+

k−1∑
i=0

γiδ +

k−1∑
i=0

γi
βi − L

‖Gi − gi‖2∗

and therefore:

φ(yk)− φ∗ ≤ 1∑k−1
i=0 γi

(
V (x∗, x0) +

k−1∑
i=0

γi〈Gi − gi, x∗ − xi〉

)

+
1∑k−1
i=0 γi

k−1∑
i=0

γi
βi − L

‖Gi − gi‖2∗ + δ.

Remark 5 We observe that the convergence rate does not depend on the difference
(Fδ,L(xi, ξi)− fδ,L(xi)). This is natural since the scheme itself does not use Fδ,L(xi, ξi),
the stochastic estimate of the function value. This property is shared by all methods
considered in this paper.

Taking now the expectation with respect to the history of the random process ξ[i] =
(ξ0, ..., ξi), we obtain the following result:

Theorem 2 For all k ≥ 0:

Eξ1∼X1,...ξk∼Xk [φ(yk)− φ∗] ≤ V (x∗, x0)∑k−1
i=0 γi

+
1∑k−1
i=0 γi

k−1∑
i=0

γi
βi − L

σ2 + δ.

Proof. As Eξi∼Xi [Gi|ξ[i−1]] = gi and as xi is a deterministic function of (ξ1, ..., ξi−1), the
expectation of 〈Gi − gi, x∗ − xi〉, conditional on ξ[i−1] = (ξ1, ..., ξi−1), is zero. Therefore,

we have Eξ1∼X1,...,ξk∼Xk [
∑k−1
i=0 γi〈Gi − gi, x∗ − xi〉] = 0. Furthermore, by assumption,

Eξi∼Xi [‖Gi − gi‖
2
∗ |ξ[i−1]] ≤ σ2 and we obtain: Eξ1∼X1,...,ξk∼Xk [

∑k−1
i=0

γi
βi−L ‖Gi − gi‖

2
∗] ≤∑k−1

i=0
γi

βi−Lσ
2.

3.3 Choice of Stepsizes

3.3.1 Why do we need new stepsizes rules ?

In the deterministic smooth case (i.e. when the function f is smooth with a Lipschitz
continuous gradient and the oracle is exact), the optimal stepsize (see [14]) is constant
and equal to the inverse of the Lipschitz-constant of the gradient: γi = 1

L , ∀i ≥ 0. If we
keep this stepsizes rule in the stochastic case, we cannot apply Theorem 1 (that assumes
γi <

1
L ) but with an easy modification in the proof of this theorem, we can obtain the

following upper-bound:

φ(yk)− φ∗ ≤ 1∑k−1
i=0 γi

(
V (x∗, x0) +

k−1∑
i=0

γi[〈Gδ,L(xi, ξi)− gδ,L(xi), x
∗ − xi+1〉]

)
+ δ.
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But as xi+1 depends on Gδ,L(xi, ξi), we cannot say that E[〈Gδ,L(xi, ξi) − gδ,L(xi), x
∗ −

xi+1〉|ξ[i−1]] = 0 but only that:

E[〈Gδ,L(xi, ξi)−gδ,L(xi), x
∗−xi+1〉|ξ[i−1]] ≤

√
E[‖Gδ,L(xi, ξi)− gδ,L(xi)‖2∗ |ξ[i−1]]D ≤ σD

where D = maxx∈Q,y∈Q ‖x− y‖ is the diameter of the feasible set. Therefore we obtain:

E[φ(yk)− φ∗] ≤ LR2

k
+ δ + σD.

We see that with the classical stepsize policy, the effect of the stochastic noise does not
decrease with the iterations. This is a behavior that we want to avoid, it would be prefer-
able to obtain a method that could converge to the optimal value of our problem φ∗ (or
at least to φ∗ + δ in the biased case).

If we consider γi = 1
CL with C > 1, in this case we can apply the Theorems 1 and 2

and obtain:

E[φ(yk)− φ∗] ≤ CLR2

k
+ δ +

σ2

(C − 1)L

but here also we obtain the same kind of behavior with a method that cannot decrease
the stochastic noise effect when we increase the number of iterations. If we want to be
able to converge to φ∗ in the unbiased case or to φ∗ + δ in the biased case, a decresing
stepsize policy must be used.

Remark 6 For non-smooth problems, the same kind of decreasing stepsize γi = O
(

R
M
√
i

)
can be used both in the deterministic and the stochastic case. For smooth problem, the
more aggressive constant stepsize γi = O

(
1
L

)
(that leads to the improvement of the

convergence rate in the deterministic case from O
(

1√
k

)
to O

(
1
k

)
) is too large and not

able to decrease the stochastic noise. In some sense, the gradient method is faster than
the subgradient method but more sensible with respect to the stochastic error σ. When
stochasticity is presents, we need to consider decreasing stepsize also in the smooth case

(but decreasing only in term of σ not of L, i.e of the form O
(

1
L+ σ

R

√
i

)
).

3.3.2 A new stepsize rule

By the complexity theory of first-order methods (see [10, 11, 7]), the best what we can
expect in the stochastic case is a method that reduces the noise effect σ by a quantity
Θ(σR√

k
) after k iterations. This result gives us possibility to expect a better behavior for

the SPGM that what we have obtained using the classical constant stepsize in the last
section. In the same time, there is no hope to obtain a method with convergence rate

Θ(LR
2+σR
k + δ). If we assume that the number of iterations N is known in advance, we

can obtain the rate Θ
(
LR2

k + σR√
k

+ δ
)

relatively easily. A constant stepsize (but that

depends on the performed number of iterations) can be chosen. In [7], Lan has proposed

the rule γi = min

(
1

2L ,
√

R2

2Nσ2

)
, ∀i ≥ 0 and obtained this desired rate of convergence.

Another possible choice is γi = 1
L+ σ

R

√
N

that leads to

E[φ(yN )− φ∗] ≤ LR2

N
+

2σR√
N

+ δ.

Remark 7 For a first-order method with convergence rate O
(
LR2

k

)
in the deterministic

exact case, the effect of the deterministic bias δ cannot be better than an additional term
δ (see [2]). Therefore, this convergence rate has an optimal dependance in δ and σ.
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Remark 8 It is possible to obtain a better dependance in L using an accelerated method,
like the Stochastic Fast Gradient Method (SFGM) (see section 6) with convergence rate

O
(
LR2

k2 + σR√
k

+ kδ
)

but, in this case, we pay this acceleration by a unavoidable worst

dependance in δ.

However, the need of fixing in advance the number of iterations is not really a desirable
property. Often in practice, we want to run a method for a given time and not for a given
number of iterations. For this reason, it is interesting to develop a practical stepsizes
rule which is not based on an a priori knowledge of the performed number of iterations

and at the same times that keeps the convergence rate Θ(LR
2

k + σR√
k

+ δ). This is not

trivial. Indeed, contrarily to more sophisticated methods of the latter sections, there is
few degrees of freedom in the SPGM: we have only one sequence of coefficients βi (= 1

γi
).

Consider the choice:

γi =
L+ σ

2R

√
i+ 1

(L+ σ
R

√
i+ 1)2

.

This stepsize decreases with rate Θ
(

1
L+ σ

R

√
i

)
and we retrieve the optimal stepsize γi = 1

L

in the deterministic case. We have for all k ≥ 1:

k−1∑
i=0

γi =

k∑
i=1

L+ σ
2R

√
i

(L+ σ
R

√
i)2

≥
∫ k+1

1

L+ σ
2R

√
x

(L+ σ
R

√
x)2

dx =

[
x

L+ σ
R

√
x

]k+1

1

=
Lk + σ

R (k + 1−
√
k + 1)

(L+ σ
R )(L+ σ

R

√
k + 1)

≥
(2−

√
2) σRk + Lk

(L+ σ
R )(L+ σ

R

√
k + 1)

≥ (2−
√

2)k

L+ σ
R

√
k + 1

and therefore 1∑k−1
i=0 γi

≤ L+ σ
R

√
k+1

(2−
√

2)k
. On the other hand, we have:

γi
βi − L

=
(L+ σ

2R

√
i+ 1)2

(L+ σ
R

√
i+ 1)2( σ

2

R2 (i+ 1) + 3
2
Lσ
R

√
i+ 1)

≤ 1
σ2

R2 (i+ 1) + 3
2
Lσ
R

√
i+ 1

≤ 1
σ2

R2 (i+ 1)
.

and therefore
∑k−1
i=0

γi
βi−L ≤

R2

σ2 Har(k) where Har(k) =
∑k
i=1

1
i ≤ 1 + ln(k).

We obtain finally the convergence rate:

E[φ(yk)− φ∗] ≤ LR2

(2−
√

2)k
(Har(k) + 1) +

σ
√
k + 1R

(2−
√

2)k
(Har(k) + 1) + δ.

As Har(k) ≤ 1 + ln(k), we retrieve, up to a logarithmic factor, a rate of the form

Θ
(
LR2

k + σR√
k

+ δ
)

but now using varying stepsizes that does not assume the knowledge

of the performed number of iterations.

Remark 9 If we want to avoid the logarithmic factor in the convergence rate and if
the set Q is bounded with diameter D, we can define the approximate solution as:
yN : 1∑N−1

i=N/2−1
γi

∑N−1
i=N/2−1 γixi+1 averaging only the last N

2 search points xi (for sim-

plicity, we assume here that N is even). In this case we obtain: E[φ(yN ) − φ∗] ≤
2
√

2
2−
√

2

(
1 + 2

N + ln(2)
) (

LD2

N + σD√
N

)
. However this choice of averaging assumes the storage

of all test points in memory, when N is not known a priori.
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4 The machinery of estimate functions

The most recent and efficient first-order methods in deterministic smooth convex opti-
mization are based on the machinery of estimate functions (see [14, 15, 16]).
The principle is to construct progressively:

1. A model Ψk(x) of the function using typically all the previously accumulated first-
order information,

2. A sequence of approximate solutions yk ( for which we obtain the convergence rate),

using two sequences of coefficients {αi}i≥0 and {βi}i≥0, such that the two following in-
equalities are satisfied:

Akφ(yk) ≤ Ψ∗k = min
x∈Q

Ψk(x) and Ψk(x) ≤ Akφ(x) + βkd(x), ∀x ∈ Q

where Ak =
∑k
i=0 αi and d(x) is the prox-function chosen in the setup.

The convergence rate depends directly on the two sequences of coefficients. Indeed,

Akφ(yk) ≤ Ψ∗k ≤ Ψk(x∗) ≤ Akφ∗ + βkd(x∗), and therefore: φ(yk)− φ∗ ≤ βkd(x∗)
Ak

.

Remark 10 In the deterministic case, βk is often chosen equal to L, at least when this
Lipschitz-constant of the gradient is known. We will see that this constant coefficient
policy is not anymore the best choice in the stochastic case.

Remark 11 The fact that the model Ψk(x) is based on all the previously accumulated
first-order information during the k first steps of the scheme does not mean that we have
to store all these datas in memory (like what is needed for classical bundle methods in
non-smooth optimization). We have typically only to store and update a weighted sum
of the accumulated gradients.

The methods based on this principle typically update different sequences of iterates:

• a sequence xk, where we compute the first-order information,

• the sequence vk = arg minx∈Q Ψk(x) of minimizers of the estimate functions Ψk(x),

• a sequence of approximate solutions yk, for which we obtain the convergence rate,

• sometimes, one or more additional sequences often obtained using gradient steps.

The easiest way to implement the idea of sequence of estimate functions is the Dual
Gradient Method (DGM) introduced by Nesterov in [16]. In this method, xk is exactly
equal to vk and the approximate solutions yk are constructed using gradient steps from

the points xk. However the rate of convergence of this method is O
(
LR2

k

)
, not better

than using the classical gradient method. A more sophisticated implementation of this
machinery leads to the Fast Gradient Method (FGM), developed by Nesterov in different
versions [14, 15, 16] and that can reach the optimal convergence rate for deterministic

smooth convex problems O
(
LR2

k2

)
.

In this paper, we generalize the concept of estimate functions sequence assuming now
that the model of the function Ψk(x) is constructed using stochastic first-order informa-
tion (possibly with bias) and the sequences {yk}k≥0 and {Ψk(x)}k≥0 satisfies the two
inequalities:

Akφ(yk) ≤ Ψ∗k + Ek and Ψk(x) ≤ Akφ(yk) + βkd(x) + Ek(x), ∀x ∈ Q

where Ek and Ek(x) represent random errors coming from the stochastic noise σ and the
bias δ.
With this notion of stochastic estimate functions, we obtain the convergence rate:

φ(yk)− φ∗ ≤ βkd(x∗)

Ak
+
Ek + Ek(x∗)

Ak
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and therefore:

E[φ(yk)− φ∗] ≤ βkd(x∗)

Ak
+
E[Ek + Ek(x∗)]

Ak

since the coefficients {αi} and {βi} are deterministic (they will be based on the noise level
σ but not on the realizations of the random variables X1, ..., Xk).

Using this framework, we will develop in Section 5 a stochastic dual gradient method

with convergence rate O
(
LR2

k + σR√
k

+ δ
)

and in Section 6, a stochastic fast gradient

method with convergence rate O
(
LR2

k2 + σR√
k

+ kδ
)

.

Remark 12 In the deterministic case, the model Ψk(x) is typically chosen of the form:

Ψk(x) = βkd(x) +
∑k
i=0 αi[f(xi) + 〈∇f(xi), x−xi〉+h(x)]. In the stochastic case, we will

simply modify this model using the stochastic first-order information instead of the exact
one: Ψk(x) = βkd(x) +

∑k
i=0 αi[Fδ,L(xi, ξi) + 〈Gδ,L(xi, ξi), x− xi〉+ h(x)].

Remark 13 Compared to classical gradient method, the methods based on this principle
of estimate functions are more sophisticated and often less intuitive.

However, they provides us typically with more degrees of freedom (multiple sequences
of coefficients, multiple sequences of iterates), that make these methods more flexible to
new situations ( we will see that adaptation of the DGM and FGM to the stochastic case
is in some sense easier than for the PGM) and well-suited for acceleration (cfr the optimal
rate of the Fast gradient method.)

5 Stochastic Dual Gradient Method

5.1 Scheme

In this method we use two sequences of coefficients:

{αk}k≥0 with α0 ∈]0, 1] and {βk}k≥0 with βk+1 ≥ βk > L ∀k ≥ 0.

Furthermore the two sequences must satisfy the coupling condition:

βk ≥ αk+1βk+1, ∀k ≥ 0. (5.1)

We define also Ak =
∑k
i=0 αi.

Stochastic Dual Gradient Method (SDGM)

• Initialization

1. Compute x0 = arg minx∈Q d(x)

2. Let ξ0 be a realization of the random variable X0

3. Compute Gδ,L(x0, ξ0)

4. Compute

w0 = arg min
x∈Q
{β0d(x) + α0〈Gδ,L(x0, ξ0), x− x0〉+ α0h(x)} (5.2)

• Iteration k ≥ 0

1. Compute

xk+1 = arg min
x∈Q
{βkd(x) +

k∑
i=0

αi〈Gδ,L(xi, ξi), x− xi〉+Akh(x)} (5.3)
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2. Let ξk+1 be a realization of the random variable Xk+1

3. Compute Gδ,L(xk+1, ξk+1)

4. Compute

wk+1 = arg min
x∈Q
{βk+1V (x, xk+1) + 〈Gδ,L(xk+1), x− xk+1〉+ h(x)} (5.4)

• Approximate Solution yk = 1∑k
i=0 αi

∑k
i=0 αiwi.

The dual gradient method has been introduced in [16] by Nesterov in the deterministic
(composite) case and using the Euclidean setup.
We generalize this method in two directions:

• We generalize the method to the non-Euclidean setting, using auxiliary subproblems
based only on the prox-function d(x)

• We adapt the method to the stochastic case (possible with bias). We will see that the
classical choice βi = L is not anymore a good idea when stochasticity is present and
we propose an increasing policy for the sequence {βi} that leads to a convergence

rate of the form O
(
LR2

k + σR√
k

)
(or O

(
LR2

k + σR√
k

+ δ
)

when the oracle is biased).

But first, we start with the general convergence rate of this stochastic dual gradient
method:

5.2 General Convergence rate

Denote by Ψk(x) = βkd(x)+
∑k
i=0 αi[Fδ,L(xi, ξi)+〈Gδ,L(xi, ξi), x−xi〉+h(x)], our model

of the objective function, Ψ∗k = minx∈Q Ψk(x) its minimal value on the feasible set and
ξ[k] = (ξ0, ..., ξk) the history of the random process after k iterations.

Let us show that the two sequences {yk}k≥0 and {Ψk(x)}k≥0 define a sequence of
estimate functions.

Lemma 1 For all k ≥ 0, we have:

1.
Akφ(yk) ≤ Ψ∗k + Ek (5.5)

where Ek =
∑k
i=0 αiδ+

∑k
i=0 αi[fδ,L(xi)−Fδ,L(xi, ξi)]+

∑k
i=0

αi
βi−L ‖Gδ,L(xi, ξi)− gδ,L(xi)‖2∗

2.
Ψk(x) ≤ Akφ(x) + βkd(x) + Ek(x), ∀x ∈ Q (5.6)

where Ek(x) =
∑k
i=0 αi[Fδ,L(xi, ξi)− fδ,L(xi) + 〈Gδ,L(xi, ξi)− gδ,L(xi), x− xi〉]

Proof. 1. First, we will show by recurrence that the inequality:
∑k
i=0 αiφ(wi) ≤ Ψ∗k +

Ek is satisfied for all k ≥ 0.

• For k = 0, we have:

φ(w0)
(2.2)

≤ f0 + 〈g0, w0 − x0〉+
L

2
‖w0 − x0‖2 + δ + h(w0)

= F0 + 〈G0, w0 − x0〉+
β0

2
‖w0 − x0‖2 + δ + h(w0)

+(f0 − F0) + 〈g0 −G0, w0 − x0〉 −
β0 − L

2
‖w0 − x0‖2
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and we obtain, using 2.6, 3.1 and the fact 0 < α0 ≤ 1:

α0φ(w0) ≤ α0[F0 + 〈G0, w0 − x0〉+ h(w0)] + β0d(w0)

+
α0

β0 − L
‖G0 − g0‖2∗ + α0(f0 − F0)

(5.2)
= Ψ∗0 +

α0

β0 − L
‖G0 − g0‖2∗ + α0(f0 − F0).

• Now assume that this inequality is satisfied for k ≥ 0 i.e. that we have:

k∑
i=0

αiφ(wi) ≤ Ψ∗k + Ek.

Then as βk+1 ≥ βk and by definition of V we have:

Ψ∗k+1 = min
x∈Q
{βk+1d(x) +

k+1∑
i=0

αi[Fi + 〈Gi, x− xi〉+ h(x)]}

≥ min
x∈Q
{βkV (x, xk+1) + βkd(xk+1) + βk〈∇d(xk+1), x− xk+1〉

+

k+1∑
i=0

αi[Fi + 〈Gi, x− xi〉]}+Ak+1h(x).

Let gh(xk+1) ∈ ∂h(xk+1), by optimality condition defining xk+1:

〈βk∇d(xk+1) +

k∑
i=0

αiGi +Akgh(xk+1), x− xk+1〉 ≥ 0, ∀x ∈ Q

and therefore:

Ψ∗k+1 ≥ βkd(xk+1) +

k∑
i=0

αi[Fi + 〈Gi, xk+1 − xi〉]

+ min
x∈Q
{βkV (x, xk+1) + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉]}

+Ak+1h(x) +Ak〈gh(xk+1), xk+1 − x〉

≥ βkd(xk+1) +

k∑
i=0

αi[Fi + 〈Gi, xk+1 − xi〉]

+ min
x∈Q
{βkV (x, xk+1) + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉]}

+Akh(xk+1) + αk+1h(x)

= Ψ∗k + αk+1 min
x∈Q
{Fk+1 + 〈Gk+1, x− xk+1〉+ h(x) +

βk
αk+1

V (x, xk+1)}.

As βk
αk+1

≥ βk+1, by definition of wk+1 and as V (wk+1, xk+1) ≥ 1
2 ‖xk+1 − wk+1‖2,
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we obtain:

Ψ∗k+1

(5.1)

≥ Ψ∗k + αk+1 min
x∈Q
{Fk+1 + 〈Gk+1, x− xk+1〉+ h(x) + βk+1V (x, xk+1)}

(5.4)
= Ψ∗k + αk+1[Fk+1 + 〈Gk+1, wk+1 − xk+1〉+ h(wk+1) + βk+1V (wk+1, xk+1)]

(2.8)

≥ Ψ∗k + αk+1[Fk+1 + 〈Gk+1, wk+1 − xk+1〉+ h(wk+1) +
βk+1

2
‖xk+1 − wk+1‖2]

= Ψ∗k + αk+1[fk+1 + 〈gk+1, wk+1 − xk+1〉+ h(wk+1) +
L

2
‖wk+1 − xk+1‖2]

+αk+1[Fk+1 − fk+1 + 〈Gk+1 − gk+1, wk+1 − xk+1〉+
βk+1 − L

2
‖wk+1 − xk+1‖2]

(2.2),(3.1)

≥ Ψ∗k + αk+1(f(wk+1)− δ + h(wk+1))

+αk+1[Fk+1 − fk+1]− αk+1

βk+1 − L
‖Gk+1 − gk+1‖2∗

≥
k+1∑
i=0

αi(f(wi) + h(wi))− Ek − αk+1δ

+αk+1[Fk+1 − fk+1]− αk+1

βk+1 − L
‖Gk+1 − gk+1‖2∗

and therefore:
∑k+1
i=0 αiφ(wi) ≤ Ψ∗k+1 + Ek+1 where Ek+1 = Ek + αk+1δ +

αk+1[fk+1 − Fk+1] + αk+1

βk+1−L ‖Gk+1 − gk+1‖2∗ .

We have proved that
∑k
i=0 αiφ(wi) ≤ Ψ∗k + Ek and using the definition of yk =

1∑k
i=0 αi

∑k
i=0 αiwi, Ak =

∑k
i=0 αi and the convexity of φ, we obtain now: Akφ(yk) ≤

Ψ∗k + Ek for all k ≥ 0.

2. On the other hand, for all x ∈ Q, we have also:

Ψk(x)
(2.2)

≤ βkd(x) +

k∑
i=0

αi(f(x) + h(x)) +

k∑
i=0

αi[Fi − fi + 〈Gi − gi, x− xi〉]

= βkd(x) +Akφ(x) + Ek(x).

As we have proved that we are in the framework of estimate functions, we can now
obtain directly the convergence rate for the SDGM:

Theorem 3 For all k ≥ 0, we have:

φ(yk)− φ∗ ≤ βkd(x∗)

Ak
+ δ

+
1

Ak

(
k∑
i=0

αi
βi − L

‖Gδ,L(xi)− gδ,L(xi)‖2∗ +

k∑
i=0

αi〈Gδ,L(xi)− gδ,L(xi), x
∗ − xi〉

)
.

Taking now the expectation with respect to the random process history ξ[k], we obtain
the following result:

Theorem 4 For all k ≥ 0:

Eξ0∼X0,...ξk∼Xk [φ(x̂k)− φ∗] ≤ βkd(x∗)

Ak
+

1

Ak

k∑
i=0

αi
βi − L

σ2 + δ.

Proof. Completely similar to the proof of theorem 2.
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5.3 Choice of the Coefficients

In the deterministic smooth case, the coefficients of the dual gradient method developed
in [16] are chosen constant: βi = L and αi = 1 for all i ≥ 0.

If we keep these coefficients in the stochastic case, we cannot apply Theorem 3 (that
assumes βi > L ) but with an easy modification in the proof of this theorem, we can
obtain the following upper-bound:

φ(yk)− φ∗ ≤ LR2

k
+ δ +

1

k

k∑
i=0

αi〈Gδ,L(xi)− gδ,L(xi), x
∗ − wi〉.

As wi depends on Gδ,L(xi), we cannot say that E[〈Gδ,L(xi)−gδ,L(xi), x
∗−wi〉|ξ[i−1]] =

0 but only E[〈Gδ,L(xi)−gδ,L(xi), x
∗−wi〉|ξ[i−1]] ≤

√
E[‖Gδ,L(xi)− gδ,L(xi)‖2∗ |ξ[i−1]]D ≤

σD where D = maxx∈Q,y∈Q ‖x− y‖ is the diameter of the feasible set. Therefore we have:

E[φ(yk)− φ∗] ≤ LR2

k
+ δ +Dσ.

We see that with the classical choice of the coefficients, the effect of the stochastic noise
does not decrease with the iterations.
If we consider βi = CL with C > 1, in this case we can apply the Theorems 3 and 4

and obtain E[φ(yk)− φ∗] ≤ CLR2

k + δ + σ2

(C−1)L but here also we obtain the same kind of

behavior with a method that cannot decrease the stochastic noise effect when we increase
the number of iterations. If we want to be able to converge to φ∗ in the unbiased case or
to φ∗ + δ in the biased case, an increasing sequence of coefficients βi must be used.

On the other hand, often in practice, we want to run a method for a given time and
not for a given number of iterations. For this reason, it is interesting to develop a practi-
cal stepsizes rule for the stochastic dual gradient method which is not based on a a priori
knowledge of the performed number of iterations and at the same times that can reach

the convergence rate Θ(LR
2

k + σR√
k

+ δ).

Consider the choice αi = a with 0 < a ≤ 1 and βi = L+ b σR (i+ 1)c.
We have:

•
βkR

2

Ak
=

LR2

a(k + 1)
+

bσR

a(k + 1)1−c

•
1

Ak

k∑
i=0

αi
βi − L

σ2 =
σR

(k + 1)b

k+1∑
i=1

i−c ≤ σR

(k + 1)b

∫ k+1

0

x−cdx ≤ σR

b(k + 1)c
.

We obtain therefore using the theorem 4 :

E[φ(yk)− φ∗] ≤ LR2

a(k + 1)
+

bσR

a(k + 1)1−c +
σR

b(k + 1)c
.

Optimizing the rate of convergence of the term depending on σ, we choose c = 1
2 . The

optimal choice for c is clearly 1/2 for which we obtain a convergence rate of the form

Θ
(
LR2

k + σR√
k

)
. For the choice of a and b, we need to ensure the condition (5.1) i.e.

(L+ b σR (k+ 1)1/2) ≥ a(L+ σ
R (k+ 2)1/2) for all k ≥ 0. A sufficient condition is a ≤

√
k+1
k+2

for all k ≥ 0 and we obtain the condition a ≤ 1√
2
. We take αi = a = 1√

2
, for all i ≥ 0 and

therefore:

E[φ(yk)− φ∗] ≤
√

2LR2

(k + 1)
+

√
2bσR√
k + 1

+
σR

b
√
k + 1

+ δ.
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The optimal choice for b is 2−1/4 and we obtain:

Theorem 5 If the sequences {αi}i≥0 and {βi}i≥0 are chosen for all i ≥ 0 as αi = 1√
2

and

βi = L+ σ
21/4R

(i+ 1)1/2 then the sequence generated by the SDGM satisfies:

E[φ(yk)− φ∗] ≤
√

2LR2

(k + 1)
+

25/4σR√
k + 1

+ δ = Θ

(
LR2

k
+
σR√
k

+ δ

)
.

6 Stochastic Fast Gradient Method

6.1 Scheme

In this method we use also two sequences of coefficients:

{αi}i≥0 with α0 ∈]0, 1] and {βi}i≥0 with βk+1 ≥ βk > L, ∀k ≥ 0.

But now the two sequences must satisfy another coupling condition:

α2
kβk ≤ (

k∑
i=0

αi)βk−1, ∀k ≥ 1. (6.1)

We define also Ak =
∑k
i=0 αi and τk = αk+1

Ak+1
.

SFGM (Stochastic Fast Gradient Method):

• Initialization

1. Compute x0 = arg minx∈Q d(x)

2. Let ξ0 be a realization of the random variable X0

3. Compute Gδ,L(x0, ξ0)

4. Compute

y0 = arg min
x∈Q
{β0d(x) + α0〈Gδ,L(x0, ξ0), x− x0〉+ h(x)} (6.2)

• Iteration k ≥ 0

1. Compute

zk = arg min
x∈Q
{βkd(x) +

k∑
i=0

αi〈Gδ,L(xi, ξi), x− xi〉+Akh(x)} (6.3)

2.
xk+1 = τkzk + (1− τk)yk (6.4)

3. Let ξk+1 be a realization of the random variable Xk+1

4. Compute Gδ,L(xk+1, ξk+1)

5. Compute

x̂k+1 = arg min
x∈Q
{βkV (x, zk)+αk+1〈Gδ,L(xk+1, ξk+1), x−zk〉+αk+1h(x)} (6.5)

6. Let
yk+1 = τkx̂k+1 + (1− τk)yk. (6.6)
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This method is a generalization to the stochastic case of one of the newest variants
of the famous fast gradient methods or Nesterov optimal methods for smooth convex

optimization (the methods that reach the optimal convergence rate O
(
LR2

k2

)
in the de-

terministic case). This variant has been introduced in [15] by Nesterov. It is based on
the machinery of estimates functions (providing a more flexible method) and can be used
easily with a non-Euclidean setup since it is based only on subproblems in terms of the
prox-function d(x).

In this work, we adapt the fast gradient method to the stochastic case, develop a new prac-
tical policy for the sequences {αi} and {βi} and prove that with this choice the method can

reach the unimprovale rate of convergence O
(
LR2

k2 + σR√
k

)
in unbiased stochastic smooth

convex optimization.

The optimal rate O
(
LR2

k2 + σR√
k

)
has been obtained for the first time by Lan in [7] using

an accelerated version of the Mirror Descent SA method with fixed stepsize based on the
performed number of iterations. However, our method based on the estimates sequence
principle does not assume the a priori knowledge of the number of iterations and does not
assume the boundnesses of the feasible set. Furthermore, our analysis consider also the
composite case when we add to f an easy convex function h(x) and the situation when the
oracle is not only stochastic but also affected by a bias δ. We obtain a convergence rate of

the form O
(
LR2

k2 + σR√
k

+ kδ
)
. There is a phenomenon of errors accumulation with rate

Θ(kδ). It has been established in [2] that this is in fact unavoidable for any fast first-order
method that reach the optimal dependance with respect to L in the convergence rate (i.e.

O
(
LR2

k2

)
).

6.2 General convergence rate

Denote by Ψk(x) = βkd(x)+
∑k
i=0 αi[Fδ,L(xi, ξi)+〈Gδ,L(xi, ξi), x−xi〉+h(x)], our model

of the objective function, Ψ∗k = minx∈Q Ψk(x) its minimal value on the feasible set and
ξ[k] = (ξ0, ..., ξk) the history of the random process after k iterations.

Let us show that {yk}k≥0 and {Ψk(x)}k≥0 define a sequence of estimate functions.

Lemma 2 For all k ≥ 0, we have:

1.
Akφ(yk) ≤ Ψ∗k + Ek (6.7)

where Ek =
∑k
i=0Aiδ +

∑k
i=0

Ai
(βi−L) ‖G(xi, ξi)− gδ,L(xi)‖2∗ +

∑k
i=0 αi(fδ,L(xi) −

Fδ,L(xi, ξi)) +
∑k
i=1Ai−1〈gδ,L(xi)−Gδ,L(xi, ξi), xi − yi−1〉.

2.
Ψk(x) ≤ Akφ(x) + βkd(x) + Ek(x), ∀x ∈ Q (6.8)

where Ek(x) =
∑k
i=0 αi[Fδ,L(xi, ξi)− fδ,L(xi) + 〈Gδ,L(xi, ξi)− gδ,L(xi), x− xi〉]

Proof. 1. First, we want to prove by recurrence that the inequality Akφ(yk) ≤ Ψ∗k+Ek
is satisfied for all k ≥ 0.
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• It is true for k = 0. Indeed:

Ψ∗0
(6.2)
= β0d(y0) + α0[F0 + 〈G0, y0 − x0〉+ h(y0)]

(2.6)

≥ β0

2
‖y0 − x0‖2 + α0[F0 + 〈G0, y0 − x0〉+ h(y0)]

≥ α0[F0 + 〈G0, y0 − x0〉+ h(y0) +
β0

2
‖y0 − x0‖2]

= α0[f0 + 〈g0, y0 − x0〉+ h(y0) +
L

2
‖y0 − x0‖2]

+α0[F0 − f0 + 〈G0 − g0, y0 − x0〉+
β0 − L

2
‖y0 − x0‖2]

(2.2),(3.1)

≥ α0[f(y0) + h(y0)− δ] + α0[F0 − f0]− α0

β0 − L
‖G0 − g0‖2∗ .

• Assume that it is true for k ≥ 0 i.e that we have Akφ(yk) ≤ Ψ∗k + Ek.
Let gh(zk) ∈ ∂h(zk), by the optimality condition of the problem defining zk:

〈βk∇d(zk) +

k∑
i=0

Gi +Akgh(zk), x− zk〉 ≥ 0, ∀x ∈ Q.

Therefore as βk+1 ≥ βk:

Ψk+1(x) = βk+1d(x) +

k+1∑
i=0

αi[Fi + 〈Gi, x− xi〉] +Ak+1h(x)

≥ βkV (x, zk) + βkd(zk) + βk〈∇d(zk), x− zk〉

+

k+1∑
i=0

αi[Fi + 〈Gi, x− xi〉] +Ak+1h(x)

≥ βkV (x, zk) + βkd(zk) +

k∑
i=0

αi[Fi + 〈Gi, zk − xi〉]

+Ak+1h(x) + 〈Akgh(zk), zk − x〉+ αk+1[Fk+1 + 〈Gk+1, x− xk+1〉].

But as Ak+1h(x) + 〈Akgh(zk), zk − x〉 ≥ Akh(zk) + αk+1h(x), we have:

Ψk+1(x) ≥ βkd(zk) +

k∑
i=0

αi[Fi + 〈Gi, zk − xi〉+ h(zk)]

+βkV (x, zk) + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉+ h(x)]

(6.3)
= Ψ∗k + βkV (x, zk) + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉+ h(x)].
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On the other hand:

Ψ∗k + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉+ h(x)]

≥ Akφ(yk)− Ek + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉+ h(x)]

(2.2)

≥ Ak[fk+1 + 〈gk+1, yk − xk+1〉]− Ek + αk+1[Fk+1 + 〈Gk+1, x− xk+1〉]
+Akh(yk) + αk+1h(x)

= Ak+1Fk+1 + 〈Gk+1, Ak(yk − xk+1) + αk+1(x− xk+1)〉 − Ek
+Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉]
+Akh(yk) + αk+1h(x)

(6.4)
= Ak+1Fk+1 + αk+1〈Gk+1, x− zk〉 − Ek

+Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉]
+Akh(yk) + αk+1h(x).

We obtain:

Ψ∗k+1 ≥ Ak+1Fk+1 + min
x∈Q
{βkV (x, zk) + αk+1〈Gk+1, x− zk〉+ αk+1h(x)} − Ek

+Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉] +Akh(yk)

(6.5)
= Ak+1Fk+1 + βkV (x̂k+1, zk) + αk+1〈Gk+1, x̂k+1 − zk〉+ αk+1h(x̂k+1)− Ek

+Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉] +Akh(yk)

(2.8)

≥ Ak+1[Fk+1 + τk〈Gk+1, x̂k+1 − zk〉+
βk

2Ak+1
‖x̂k+1 − zk‖2]− Ek

+Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉]
+Ak+1[τkh(x̂k+1) + (1− τk)h(yk)]

(6.1),(6.6)

≥ Ak+1[Fk+1 + τk〈Gk+1, x̂k+1 − zk〉+
βk+1τ

2
k

2
‖x̂k+1 − zk‖2]

−Ek +Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉]
+Ak+1h(yk+1)

(6.4),(6.6)

≥ Ak+1[Fk+1 + 〈Gk+1, yk+1 − xk+1〉+
βk+1

2
‖yk+1 − xk+1‖2]

−Ek +Ak[fk+1 − Fk+1 + 〈gk+1 −Gk+1, yk − xk+1〉]
+Ak+1h(yk+1)

and therefore:

Ψ∗k+1 = Ak+1[fk+1 + 〈gk+1, yk+1 − xk+1〉+
L

2
‖yk+1 − xk+1‖2]

−Ek + αk+1[Fk+1 − fk+1] +Ak〈gk+1 −Gk+1, yk − xk+1〉

+Ak+1[〈Gk+1 − gk+1, yk+1 − xk+1〉+
βk+1 − L

2
‖yk+1 − xk+1‖2]

+Ak+1h(yk+1)

(2.2),(3.1)

≥ Ak+1(f(yk+1) + h(yk+1)− δ)− Ek + αk+1[Fk+1 − fk+1]

+Ak〈gk+1 −Gk+1, yk − xk+1〉 −
Ak+1

βk+1 − L
‖Gk+1 − gk+1‖2∗ .

The inequality is therefore also satisfied for k + 1 and we have proved our
recurrence.
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2. Now let us prove that (6.8) is satisfied for all x ∈ Q and k ≥ 0. Indeed:

Ψk(x) = βkd(x) +

k∑
i=0

αi[fi + 〈gi, x− xi〉] +

k∑
i=0

αi[Fi − fi] +

k∑
i=0

αi[〈Gi − gi, x− xi〉]

+Akh(x)

(2.2)

≤ βkd(x) +Ak(f(x) + h(x)) +

k∑
i=0

αi[Fi − fi] +

k∑
i=0

αi[〈Gi − g,x− xi〉].

As we have proved that we are in the framework of estimate functions, we can now
obtain directly the convergence rate for the SFGM:

Theorem 6 For all k ≥ 0, we have:

φ(yk)− φ∗ ≤ 1

Ak

(
βkd(x∗) +

k∑
i=0

Aiδ +

k∑
i=0

Ai
βi − L

‖Gδ,L(xi, ξi)− gδ,L(xi)‖2∗

)

+
1

Ak

(
k∑
i=1

Ai−1〈Gδ,L(xi, ξi)− gδ,L(xi), yi−1 − xi〉+

k∑
i=0

αi〈Gδ,L(xi, ξi)− gδ,L(xi), x
∗ − xi〉

)
.

Taking the expectation with respect to ξ[k], the history of the random process, we
obtain the following result:

Theorem 7 For all k ≥ 0, we have:

Eξ1∼X1,...ξk∼Xk [φ(yk)− φ∗] ≤ βkd(x∗)

Ak
+

∑k
i=0Aiδ

Ak
+

1

Ak

k∑
i=0

Ai
βi − L

σ2.

Proof. Same proof that for the Theorem 2 but now using the fact that yi−1 is also a
deterministic function of ξ[i−1].

6.3 Choice of the Coefficients

In the deterministic smooth case, the coefficients of the fast gradient method are chosen
as βi = L and αi = i+1

2 for all i ≥ 0.
If we keep these coefficients in the stochastic case, we cannot apply the Theorem 6

(that assumes βi > L ) but with an easy modification in the proof of this theorem, we

can simply replace the term:
∑k
i=0

Ai
βi−L ‖Gδ,L(xi, ξi)− gδ,L(xi)‖2∗ by

∑k
i=0Ai〈Gδ,L(xi)−

gδ,L(xi), xi − yi〉 in the upper-bound given by this theorem.
But as yi depends onGδ,L(xi), we cannot say that E[〈Gδ,L(xi)−gδ,L(xi), x

∗−yi〉|ξ[i−1]] =

0 but only: E[〈Gδ,L(xi)−gδ,L(xi), x
∗−yi〉|ξ[i−1]] ≤

√
E[‖Gδ,L(xi)− gδ,L(xi)‖2∗ |ξ[i−1]]D ≤

σD where D = maxx∈Q,y∈Q ‖x− y‖ is the diameter of the feasible set. Therefore we have:

E[φ(x̂k)− φ∗] ≤ 4Ld(x∗)

(k + 1)(k + 2)
+

1

3
(k + 3)δ +

1

3
(k + 3)Dσ.

We see that with the classical choice of the coefficients, the effect of the stochastic noise σ
does not decrease with the iterations like what we want to obtain. But in fact, it does not
even stay constant like what we have obtained for the SPGM and SDGM with classical
coefficients. Here the situation is even worse, the effect of the noise is increasing with the
number of iterations, there is a phenomenon of error accumulation. This higher sensitivity
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of the fast gradient method with respect to the noise has been already observed in [2, 19]
when the error is deterministic. In [2], it has been established that it is an intrinsic

property of any fast first-order method with optimal convergence rate Θ
(
LR2

k2

)
. In our

case, it means that a dependence in the bias δ of the form Θ(kδ) is unavoidable. However,
concerning the stochastic noise σ, the situation is better, we can modify the sequence of
coefficients βi in order to avoid this increasing dependence in σ in the convergence rate.
If we consider βi = CL with C > 1, we can apply Theorems 6, 7 and obtain:

E[φ(ŷk)− φ∗] ≤ 4CLR2

(k + 1)(k + 2)
+

1

3
(k + 3)δ +

1

3(C − 1)L
(k + 3)σ2.

But we obtain the same kind of bad behavior with an accumulation of errors both for the
stochastic part σ and the deterministic bias δ.

In this subsection, we want to develop a practical stepsizes rule for the stochastic fast
gradient method which is not based on a a priori knowledge of the performed number of

iterations and at the same times that can reach the convergence rate Θ(LR
2

k2 + σR√
k

+ kδ).

Consider the choice αi = i+1
a and βi = L + b σR (i + 2)c. Then we have Ak =

∑k
i=0 αi =

1
2a (k+ 1)(k+ 2) and the condition 6.1 becomes: (k+1)2

a2 (L+ σ
Rb(k+ 2)c) ≤ (k+1)(k+2)

2a (L+
σ
Rb(k + 1)c). A sufficient condition is to have:

1. (k+1)2

a2 ≤ (k+1)(k+2)
2a for all k ≥ 0 i.e. a ≥ 2

2. (k+1)2

a2
σ
Rb(k + 2)c ≤ (k+1)(k+2)

2a
σ
Rb(k + 1)c for all k ≥ 0 i.e. a ≥ 2c.

Assuming that c ≥ 1, we choose a = 2c. Then the condition α2
kβk ≤ Akβk−1 is satisfied,

independently of the precise choice of b and c. With the choice of the sequences αi = i+1
2c

and βi = L+ σ
Rb(i+ 2)c, we obtain βkR

2

Ak
=

2c+1(L+ σ
R b(k+2)c)R2

(k+1)(k+2) ,
∑k
i=0 Ai
Ak

= 1
3 (k + 3)δ and

1

Ak

k∑
i=0

Ai
βi − L

σ2 =
σR

(k + 1)(k + 2)b

k∑
i=0

(i+ 1)

(i+ 2)c−1

≤ σR

(k + 1)(k + 2)b

∫
1

k + 1(x+ 2)2−cdx ≤ σR

b(3− c)
(k + 3)3−c

(k + 1)(k + 2)
.

The bound given by Theorem 7 becomes as follows;

E(φ(yk)− φ∗] ≤ 2c+1LR2

(k + 1)(k + 2)
+

2c+1bσR

(k + 1)(k + 2)
+

σR

b(3− c)
(k + 3)3−c

(k + 1)(k + 2)

Now if we choose c = 3/2, the two terms depending on b and c are of order Θ( σR
k1/2

) and
we obtain:

Eξ1∼X1,...ξk∼Xk [φ(yk)− φ∗] ≤ 25/2LR2

(k + 1)(k + 2)
+

(25/2b+ 2
3b )(k + 3)3/2σR

(k + 1)(k + 2)
+

1

3
(k + 3)δ.

The optimal choice of b is 1
23/4
√

3
and we obtain in this case the final result:

Theorem 8 If the sequences {αi}i≥0 and {βi}i≥0 are chosen in the following way: αi =
i+1
2
√

2
and βi = L + σ

23/4
√

3R
(i + 2)3/2 for all i ≥ 0 then the sequence generated by the

SFGM satisfies:

E[φ(yk)− φ∗] ≤ 25/2LR2

(k + 1)(k + 2)
+

211/4(k + 3)3/2σR√
3(k + 1)(k + 2)

+
1

3
(k + 3)δ

= Θ

(
LR2

k2
+
σR√
k

+ kδ

)
.
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Remark 14 Due to the higher sensitivity of the FGM with respect to the stochastic
noise σ, we need to increase the sequences of coefficients βi at a fast rate Θ(L + σ

R i
3/2)

in order to decrase the stochastic noise at an optimal rate O
(
σR√
k

)
. For the DGM which

is more robust with respect to the errors, the increase of βi can be limited to the rate
Θ(L+ σ

R i
1/2).

7 Probability of large deviation

In the previous sections, we have obtained for different stochastic first-order methods, an
upper bound on the expected value of the non-optimality gap φ(yk)− φ∗. Now we want
also to obtain an upper bound on the probability of large deviation for the same gap. The
approach presented in this section is strongly linked with has been done in [11] for the
mirror descent SA method in the non-smooth stochastic case.
In this section, we need the following assumption:
Assumption H7

1. For all x ∈ E, the random variables X have the same distribution such that
X0, ..., Xk can be seen as i.i.d. random variables.

2. The stochastic approximate gradient Gδ,L(x, ξ) satisfies the condition

Eξ∼X

[
exp

(
‖Gδ,L(x,ξ)−gδ,L(x)‖2∗

σ2

)]
≤ exp(1), ∀x ∈ Q. Due to the Jensen inequal-

ity, this assumption is stronger that the assumption that we have done previously:
Eξ∼X [‖Gδ,L(x, ξ)− gδ,L(x)‖2∗] ≤ σ

2, ∀x ∈ Q.
3. The set Q is bounded with diameter D = maxx∈Q,y∈Q ‖x− y‖.

First of all, we establish two lemmas that will be useful in order to derive probability of
large deviations for different first-order methods.

Lemma 3 Let ξ0, ..., ξk be a sequence of realizations of the i.i.d. random variables
X0, ..., Xk and let ∆i = ∆i(ξ[i]) be a deterministic function of ξ[i] such that for all i ≥ 0:

E[exp

(
∆2
i

σ2

)
|ξ[i−1]] ≤ exp(1)

and c0, ..., ck is a sequence of positive coefficients. Then we have for any k ≥ 0 and any
Ω ≥ 0:

Prob

(
k∑
i=0

ci∆
2
i ≥ (1 + Ω)

k∑
i=0

ciσ
2

)
≤ exp(−Ω).

Proof. Using the convexity of the exponent and the linearity of the expectation, we obtain:

E

[
exp

(∑k
i=0 ci∆

2
i∑k

i=0 ciσ
2

)]
≤

∑k
i=0 ciσ

2E
[
exp

(
∆2
i

σ2

)]
∑k
i=0 ciσ

2

=

∑k
i=0 ciσ

2Eξ0∼X0,...,ξi∼Xi

[
Eξi∼Xi

[
exp

(
∆2
i

σ2

)
|ξ[i−1]

]]
∑k
i=0 ciσ

2

≤ exp(1).

Therefore by the Markov inequality, for any Ω̃ > 0 we obtain: Prob
(

exp
(∑k

i=0 ci∆
2
i∑k

i=0 ciσ
2

)
≥ Ω̃

)
≤

exp(1)

Ω̃
. Equivalently for any Ω ∈ R, we obtain: Prob

(
exp

(∑k
i=0 ci∆

2
i∑k

i=0 ciσ
2

)
≥ exp(1 + Ω)

)
≤

exp(−Ω).
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Lemma 4 Let ξ0, ...ξ0 be a sequence of realizations of the i.i.d. random variablesX0, ..., Xk

and let Γk and ηk be deterministic functions of ξ[k] such that:

1. E[Γi|ξ[i−1]] = 0

2. |Γi| ≤ ciηi where ci is a positive deterministic constant

3. E[exp
(
η2i
σ2

)
|ξ[i−1]] ≤ exp(1).

Then Prob

(∑k
i=0 Γi ≥

√
3
√

Ωσ
√∑k

i=0 c
2
i

)
≤ exp(−Ω) for all k ≥ 0 and all Ω ≥ 0.

Proof. This result is a particular case of Lemma 2 in [8].

Now we are able using these two lemmas to establish easily probability of large devi-
ation for the SDGM and the SFGM.

7.1 Probability of large deviation for SDGM

In the SDGM, the non-optimality gap φ(yk) − φ∗ can be bounded by the sum of three
terms (see Theorem 3) :

1. H1(k) = 1
Ak
βkd(x∗) + δ

2. H2(k, ξ[k]) = 1
Ak

∑k
i=0

αi
βi−L ‖Gδ,L(xi, ξi)− gδ,L(xi)‖2∗

3. H3(k, ξ[k]) = 1
Ak

∑k
i=0 αi〈Gδ,L(xi)− gδ,L(xi), x

∗ − xi〉.
The first term is deterministic but the two others are random. Therefore in order to
obtain a probability of large deviation for φ(yk) − φ∗, a natural approach is to obtain
probability of large deviation for H2(k, ξ[k]) and H3(k, ξ[k]) separatly.

For H2(k, ξ[k]), using the lemma 3 with ∆i = ‖Gδ,L(xi, ξi)− gδ,L(xi)‖∗ and ci =
αi

Ak(βi−L) , we obtain that for any k ≥ 0 and for any Ω ≥ 0:

Prob

(
H2(k, ξ[k]) ≥

1 + Ω

Ak

k∑
i=0

αi
βi − L

σ2

)
≤ exp(−Ω).

For H3(k, ξ[k]), using the lemma 4 with Γi = αi
Ak
〈Gδ,L(xi, ξi) − gδ,L(xi), x

∗ − xi〉, ηi =

‖Gδ,L(xi, ξi)− gδ,L(xi)‖∗ and ci = αiD
Ak

, we obtain that for any k ≥ 0 and for any Ω ≥ 0:

Prob

H3(k, ξ[k]) ≥
√

3
√

ΩDσ

Ak

√√√√ k∑
i=0

α2
i

 ≤ exp(−Ω).

In conclusion, we obtain the following probability of large deviation for the SDGM:

Theorem 9 If the assumption H7 is satisfied, then for all k ≥ 0 and all Ω ≥ 0:

Prob

φ(yk)− φ∗ ≥ βkd(x∗)

Ak
+ δ +

(1 + Ω)

Ak

k∑
i=0

αi
βi − L

σ2 +

√
3ΩDσ

Ak

√√√√ k∑
i=0

α2
i


≤ 2 exp(−Ω).

Using in particular the optimal coefficients policy αi = 1√
2

and βi = L+ σ
21/4R

(i+1)1/2

for all i ≥ 0, we obtain that for all k ≥ 0 and all Ω ≥ 0:

Prob (φ(yk)− φ∗ ≥ Γ0(k) + Γ1(k) + Γ2(k) + Γ3(k)) ≤ 2 exp(−Ω)

where Γ0(k) =
√

2LR2

k+1 , Γ1(k) = δ, Γ2(k) = 25/4σR√
k+1

and Γ3(k) = 21/4ΩσR√
k+1

+
√

3ΩDσ√
k

.
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Remark 15 By theorem 5, we have E[φ(yk) − φ∗] ≤ Γ0(k) + Γ1(k) + Γ2(k) and Γ3(k)
represents therefore the deviation from the expected non-optimality gap.

Therefore a sufficient condtion for ensuring Prob(φ(yk) − φ∗ ≥ ε) ≤ 1 − γ with 0 <
γ < 1, is to perform

k = max

(
8LR2

ε
,

142σ2R2

ε2
,

36σ2R2

ε2
ln2

(
2

1− γ

)
,

75σ2D2

ε2
ln

(
2

1− γ

))
iterations with δ ≤ ε

5 .

Remark 16 Exactly the same kind of analysis can be done for SPGM using Theorem 1
and Lemma 3 and 4. For this method, the probability of large deviation is given by :

Prob

φ(yk)− φ∗ ≥ V (x∗, x0)∑k−1
i=0 γi

+ δ +
(1 + Ω)∑k−1
i=0 γi

k−1∑
i=0

γi
βi − L

σ2 +

√
3
√

ΩDσ∑k−1
i=0 γi

√√√√k−1∑
i=0

γ2
i


≤ 2 exp(−Ω)

for all k ≥ 0 and all Ω ≥ 0.

7.2 Probability of large deviation for the SFGM

In Theorem 6, we have obtained that for the SFGM, the gap φ(yk)− φ∗ can be bounded
by the sum of four quantities:

1. I1(k) = 1
Ak

(
βkd(x∗) +

∑k
i=0Aiδ

)
2. I2(k, ξ[k]) = 1

Ak

∑k
i=0

Ai
βi−L ‖Gδ,L(xi, ξi)− gδ,L(xi, ξi)‖2∗

3. I3(k, ξ[k]) = 1
Ak

∑k
i=1Ai−1〈Gδ,L(xi, ξ)−gδ,L(xi), yi−1−xi〉 = 1

Ak

∑k
i=1 αi−1〈Gδ,L(xi, ξi)−

gδ,L(xi), yi−1 − zi−1〉

4. I4(k, ξ[k]) = 1
Ak

∑k
i=0 αi〈Gδ,L(xi, ξi)− gδ,L(xi), x

∗ − xi〉.

The first term I1(k) is deterministic but the three others are random.

For I2(k, ξ[k]), we use Lemma 3 with ∆i = ‖Gδ,L(xi, ξi)− gδ,L(xi)‖∗ and ci = Ai
Ak(βi−L) ,

we obtain:

Prob

(
I2(k, ξ[k]) ≥

1 + Ω

Ak

k∑
i=0

Ai
βi − L

σ2

)
≤ exp(−Ω)

for any k ≥ 0 and for any Ω ≥ 0.

For I3(k, ξ[k]), using Lemma 4 (starting however the sum at i = 1 instead of i = 0)
with Γi = αi−1

Ak
〈Gδ,L(xi, ξi) − gδ,L(xi), yi−1 − zi−1〉, ηi = ‖Gδ,L(xi, ξi)− gδ,L(xi)‖∗ and

ci = αi−1D
Ak

, we obtain:

Prob

I3(k, ξ[k]) ≥
√

3
√

ΩDσ

Ak

√√√√ k∑
i=1

α2
i−1

 ≤ exp(−Ω)

for any k ≥ 1 and for any Ω ≥ 0.
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For I4(k, ξ[k]), using Lemma 4 with Γi = αi
Ak
〈Gδ,L(xi, ξi)− gδ,L(xi), x

∗ − xi〉,
ηi = ‖Gδ,L(xi, ξi)− gδ,L(xi)‖∗ and ci = αiD

Ak
, we obtain:

Prob

I4(k, ξ[k]) ≥
√

3
√

ΩDσ

Ak

√√√√ k∑
i=0

α2
i

 ≤ exp(−Ω)

for any k ≥ 0 and for any Ω ≥ 0.

In conclusion, we obtain the following probability of large deviation for the SFGM:

Theorem 10 Assume that assumption H6 is satisfied, then for all k ≥ 0 and all Ω ≥ 0:

Prob

φ(yk)− φ∗ ≥ βkd(x∗)

Ak
+

∑k
i=0Ai
Ak

δ +
(1 + Ω)

Ak

k∑
i=0

Ai
βi − L

σ2 +
2
√

3ΩDσ

Ak

√√√√ k∑
i=0

α2
i


≤ 3 exp(−Ω).

Using in particular the optimal coefficients policy i.e. αi = i+1
2
√

2
and βi = L +

σ
23/4
√

3R
(i+ 2)3/2 for all i ≥ 0, we obtain:

Prob (φ(yk)− φ∗ > Λ0(k) + Λ1(k) + Λ2(k) + Λ3(k)) ≤ 3 exp(−Ω)

where Λ0(k) = 25/2LR2

(k+1)(k+2) , Λ1(k) = k+3
3 δ, Λ2(k) = 211/4(k+3)3/2σR√

3(k+1)(k+2)
and

Λ3(k) = 27/4ΩσR√
3

(k+3)3/2

(k+1)(k+2) + 2
√

ΩσD√
3

√
2k+3

(k+1)(k+2) .

Remark 17 By Theorem 8, we have E[φ(yk) − φ∗] ≤ Λ0(k) + Λ1(k) + Λ2(k) and Λ3(k)
represents therefore the deviation from the expected non-optimality gap.

Therefore a sufficient condtion for ensuring Prob(φ(yk) − φ∗ ≥ ε) ≤ 1 − γ with 0 <
γ < 1, is to perform

k = max

(
6

√
LR2

ε
,

671σ2R2

ε2
,

168σ2R2

ε2
ln2

(
2

1− γ

)
,

17σ2D2

ε2
ln

(
2

1− γ

))

with δ ≤ ε
5 .

8 Postoptimization: Accuracy certificate

In this section, we do the following assumption:

Assumption H7

1. For all x ∈ E, the random variables X have the same distribution such that
X0, ..., Xk can be seen as i.i.d. random variables.

2. Eξ∼X{exp
(
|Fδ,L(x,ξ)−fδ,L(x)|2

σ2
F

)
} ≤ exp(1)

3. Eξ∼X{exp
(
‖Gδ,L(x,ξ)−fδ,L(x)‖2∗

σ2
G

)
} ≤ exp(1)

4. We have a zero-order oracle for the function h that can compute h(x) for all x ∈ Q.
5. The set Q is bounded with diameter D = maxx∈Q,y∈Q ‖x− y‖.
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After running k iterations of one of the stochastic first-order methods, we obtain a feasible
point yk ∈ Q for the optimization problem 2.1.
We have obtained in the previous sections, theoretical guarantee for the expected non
optimality gap φ(yk) − φ∗ and for the probability of large deviations of this gap from
his expected value. However, we could be also interested to estimate the actual value of
φ(yk) − φ∗ since in practice the quality of yk can be better that what is guaranted by
worst-case oriented theoretical bounds. If we want to estimate φ(yk)− φ∗:

1. We need to compute φ(yk) = f(yk) +h(yk) or at least a stochastic estimate of φ(yk)

2. We need to compute a lower bound on φ∗ or at least a random number Φ∗ which is
on average (and with small probability of large deviation) a lower bound on φ∗.

In the deterministic case:

1. We can compute φ(yk) = f(yk) + h(yk) using the exact oracle

2. we can obtain a lower bound on φ∗, minimizing on Q, the sum of h with the lin-
earization of f at yk:

φ∗ ≥ min
x∈Q
{f(yk) + 〈∇f(yk), x− yk〉+ h(x)}.

In the stochastic case, f(yk) and ∇f(yk) are typically unavailable (or to costly to
compute) and we will try to use accurate estimates of these quantities using our stochastic
oracle. We proceed as follow:

1. We generate N independent samples η1, ..., ηN from the random variable Yk

2. We compute Fδ,L(yk, η1), ..., Fδ,L(yk, ηN ) and Gδ,L(yk, η1), ..., Gδ,L(yk, ηN ) using the
stochastic oracle

3. In order to reduce the noise, we construct better estimates of f(yk) and ∇f(yk)
using averaging:

Fδ,L(yk, η1, ..., ηn) =
1

N

N∑
i=1

Fδ,L(yk, ηi) and Gδ,L(yk, η1, ..., ηn) =
1

N

N∑
i=1

Gδ,L(yk, ηi).

Now we can obtain:

• A good random estimate of φ(yk) : Fδ,L(yk, η1, ..., ηN ) + h(yk)
Indeed, we have:

φ(yk)− δ ≤ Eη1∼Yk,...ηN∼Yk [Fδ,L(yk, η1, ..., ηN ) + h(yk)] = fδ,L(yk) + h(yk) ≤ φ(yk)

and if we increase the number of samples N , we decrease the probability of deviation
of Fδ,L(yk, η1, ..., ηn) from his expected valuefδ,L(yk): Prob (|Fδ,L(yk, η1, ..., ηN )− fδ,L(yk)| ≥ K) ≤

exp

(
− 1

3

(√
NK√
2σF
− 1
)2
)

(using the Theorem 2.1 (ii) in [5]) and therefore:

Prob (|Fδ,L(yk, η1, ..., ηN ) + h(yk)− φ(yk)| ≥ K + δ) ≤ exp

−1

3

(√
NK√
2σF

− 1

)2
 .

• An approximate lower bound for φ∗:

Φ∗ = min
x∈Q
{Fδ,L(yk, η1, ..., ηN ) + 〈Gδ,L(yk, η1, ..., ηN ), x− yk〉+ h(x)}

which on average, provides us with a lower bound on φ∗. The probability of deviation
of Φ∗ from being really a lower bound on φ∗ decreases with the size of the sample.
Indeed, we have:
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Theorem 11 For all β ≥ 0 :

Prob(φ∗ ≥ Φ∗ − β)

≥ 1−max

exp

−1

3

( √
Nβ

2
√

2σF
− 1

)2
 , exp

−1

3

( √
Nβ

2
√

2DσG
−
√
κ

)2


where κ is the constant of regularity of (E, ‖.‖) (see [5]).

Proof. Applying the Theorem 2.1 (ii) in [5] to Fδ,L(yk, η1, ..., ηN ), we obtain for all
β ≥ 0:

Prob

(
|Fδ,L(yk, η1, ..., ηN )− fδ,L(yk)| ≥ β

2

)
≤ exp

−1

3

( √
Nβ

2
√

2σF
− 1

)2
 .

Applying the same theorem to Gδ,L(yk, η1, ..., ηN ), we obtain for all β ≥ 0 :

Prob

(
‖Gδ,L(yk, η1, ..., ηN )− gδ,L(yk)‖∗ ≥

β

2

)

≤ exp

−1

3

( √
Nβ

2
√

2σG
−
√
κ

)2
 .

Now as
f(x) ≥ fδ,L(yk) + 〈gδ,L(yk), x− yk〉, ∀x ∈ Q

we have:

Prob (∃x ∈ Q : φ(x) ≤ Fδ,L(yk, η1, ..., ηN ) + 〈Gδ,L(yk, η1, ..., ηN ), x− yk〉+ h(x)− β)

= Prob (∃x ∈ Q : f(x) ≤ Fδ,L(yk, η1, ..., ηN ) + 〈Gδ,L(yk, η1, ..., ηN ), x− yk〉 − β)

≤ Prob (∃x ∈ Q : Fδ,L(yk, η1, ..., ηN )− fδ,L(yk) + 〈Gδ,L(yk, η1, ..., ηN )− gδ,L(yk), x− yk〉 ≥ β)

≤ max(Prob

(
Fδ,L(yk, η1, ..., ηN )− fδ,L(yk) ≥ β

2

)
,

P rob

(
‖Gδ,L(yk, η1, ..., ηN )− gδ,L(yk)‖∗ ≥

β

2D

)
)

≤ max

exp

−1

3

( √
Nβ

2
√

2σF
− 1

)2
 , exp

−1

3

( √
Nβ

2
√

2DσG
−
√
κ

)2
 ,

and therefore:

Prob (∀x ∈ Q : φ(x) ≥ Fδ,L(yk, η1, ..., ηN ) + 〈Gδ,L(yk, η1, ..., ηN ), x− yk〉+ h(x)− β)

≥ 1−max

exp

−1

3

( √
Nβ

2
√

2σF
− 1

)2
 , exp

−1

3

( √
Nβ

2
√

2DσG
−
√
κ

)2
 .

In particular, we have:

Prob (φ∗ ≥ Φ∗ − β)

= Prob

(
min
x∈Q

φ(x) ≥ min
x∈Q
{Fδ,L(yk, η1, ..., ηN ) + 〈Gδ,L(yk, η1, ..., ηN ), x− yk〉+ h(x)} − β

)

≥ 1−max

exp

−1

3

( √
Nβ

2
√

2σF
− 1

)2
 , exp

−1

3

( √
Nβ

2
√

2DσG
−
√
κ

)2
 .



January 13, 2012 31

Remark 18 When 2 ≤ p ≤ +∞, the constant of regularity of (Rn, ‖.‖p) satisfies:

κ ≤ min(p− 1, 2 ln(n)).

The regularity constants of various other normed spaces can be found in [5].

9 Numerical Experiments: Quadratic Problem with
Stochastic noise

In this section, we want to test the methods developed in this paper (and to compare it
with existing methods) on convex quadratic problems over the simplex:

f∗ = min
x∈∆n

f(x) =
1

2
xTAx (9.1)

where A � 0 and the l1 setup is used.

Remark 19 As SPGM and SDGM share the same theoretical behavior and as the nu-
merical results obtained using both methods are comparable, we do not consider in this
section SPGM but only the methods that are really new in the stochastic context i.e.
SDGM and SFGM.

In the exact case i.e. when the exact gradient ∇f(x) = Ax is available, the Fast
Gradient Method (used with exact gradients and constant coefficients βi = L = ‖A‖∞)
ouperforms significantly the Dual Gradient Method ( used with exact gradient and con-
stant coefficients βi = L = ‖A‖∞). Performing 10 000 iterations, we obtain for f(yk)−f∗:

Num. Iter. 10 100 1000 10000
DGM 0.478796 0.329690 0.0720594 0.0066759
FGM 0.427691 0.0233784 3.6576e-4 8.3417e-6

This result is completely expected by the theory, the FGM exhibits a convergence rate of

the form Θ
(
LR2

k2

)
, significantly better than Θ

(
LR2

k

)
for the DGM.
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Now assume that we have only access to a stochastic gradient Gδ,L(x, ξ) = Ax+ ξ where

ξ is a stochastic noise (with normal distribution) such that E[ξ] = 0 and E[‖ξ‖2∗] ≤ σ2.
We consider first a reasonable noise level σ = 1. We can try to apply the SDGM and
the SFGM with constant coefficients βi = L like what we do in the exact case. This
choice is not recommended by the theory since the SDGM exhibits in this case a rate

Θ
(
LR2

k + σD
)

and the SFGM Θ
(
LR2

k2 + kDσ
)
. Performing 10000 iterations, we obtain:

Num. Iter. 10 100 1000 10000
SDGM (C=0) 0.481479 0.335265 0.0728529 0.00698266
SFGM (C=0) 0.428563 0.0385569 0.399419 0.881574

SDGM exhibits here a slow but convergent behavior. However, we see that SFGM is
unstable and suffers from accumulation of errors. This bad behavior of the SFGM when
used with constant stepsize (γi = 1

L ) and a stochastic oracle has been predicted by the
theory. The SDGM is slow but more robust to the errors, the method is still convergent
even with this aggressive constant stepsize policy.

In order to avoid this sensitivity to the stochastic noise σ, we use now the decreasing
stepsize policies developed in this paper i.e. the increasing sequence of coefficients: βi =
L+ Cσ

21/4R
(i+ 1)1/2 for the SDGM and βi = L+ Cσ

23/4
√

3R
(i+ 2)3/2 for the SFGM. When

C = 0, we retrieve the constant stepsize policy and C = 1 corresponds to the theoretical
optimal choice.
With the theoretical optimal choice C=1, we obtain:

Num. Iter. 10 100 1000 10000
SDGM (C=1) 0.481753 0.339013 0.0786420 0.00822247
SFGM (C=1) 0.431472 0.0531080 0.00491995 7.851197e-4



January 13, 2012 33

The SFGM retrieves his good behavior, the method is significantly faster than the SDGM
and can decrease now the effect of the oracle noise (instead of increasing it with con-
stant stepsizes). We see here clearly the importance of using decreasing stepsizes in the
stochastic case ( at least for the fast-gradient method). For the SDGM, for this level of
noise, a decreasing sequence of stepsize seems not necessary and slow down a little bit the
convergence.

We can also compare our methods (SDGM and SFGM) with the methods developed
by Lan in [7]:

• The Modified Mirror Descent SA (MMDSA) method with convergence rate Θ
(
LR2

k + σR√
k

)
(like what we obtain for the SDGM when used with C=1)

• The Accelerated SA (AC-SA) method with convergence rate Θ
(
LR2

k2 + σR√
k

)
(like

what we obtain for the SFGM when used with C=1).

An important property of the methods developed by Lan is the fact that they are based
on the a priori knowledge of the performed number of iterations N . The goal of these
methods is to reach a good accuracy after N iterations, not for intermediate 0 < k < N .
Performing 10000 iterations of our two methods and the two methods developed by Lan,
we obtain:

Num. Iter. 10 100 1000 10000
SDGM (C=1) 0.481753 0.339013 0.0786420 0.00822247
SFGM (C=1) 0.431472 0.0531080 0.00491995 7.851197e-4
MMDSA 0.491474 0.376019 0.0986267 0.0100789
AC-SA 0.508434 0.503937 0.249861 0.00365878
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For the gradient-type methods (i.e. the SDGM and the MMDSA method), the two meth-
ods exhibits the same kind of behavior with however a faster convergence for our SDGM.
For the fast-gradient-type methods (i.e. the SFGM and the AC-SA method), the AC-
SA is only efficient if we perform really N iterations, not for an intermediate number of
iterations whereas the SFGM is fast everywhere. We see here clearly the advantage of
methods that are not based on a fixed number of iterations.

In conclusion, when the stochastic noise is reasonable ( here 1 % of the Lipschitz-constant
of the gradient), the SFGM with decreasing stepsize seems to be the method of choice.
This method is fast (compare to SDGM and MMDSA method), is not sensitive to the
oracle error (compare to SFGM with constant stepsize) and is flexible, does not need to
perform exactly an a priori fixed number of iterations (which is the case for the AC-SA
method).

We consider now the situation when the noise σ is significantly more important: σ =
10. First, we compare the SDGM with the SFGM, both using constant or decreasing
stepsizes:

Num. Iter. 10 100 1000 10000
SDGM (C=0) 0.526044 0.467577 0.155076 0.030702
SDGM (C=1) 0.523209 0.463160 0.1751157 0.0419122
SFGM (C=0) 0.48812 0.5741252 0.446167 0.975812
SFGM (C=1) 0.462503 0.292540 0.097984 0.026385
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We observe that:

• The SFGM must be used with decreasing stepsizes in order to avoid a bad accumu-
lation errors. This phenomenon has been already observed for σ = 1.

• The SFGM with decreasing stepsize is a little bit faster than the SDGM with decreas-
ing stepsize. However the advantage of the SFGM is significantly reduced compare
to the case σ = 1. This is natural, when the noise is large, the advantage of a con-

vergence rate O
(
LR2

k2 + σR√
k

)
over O

(
LR2

k + σR√
k

)
becomes negligible, the dominant

term in the convergence rate becomes quickly the bad term coming from the noise.

• The SDGM can be used with constant stepsize and this more aggressive choice gives
a faster convergence. It seems that the robustness of the SDGM (more important
than expected by the theory) is sufficient in order to avoid a decreasing stepsize even
when σ = 10. The worst-case oriented decreasing stepsize policy seems to slow down
the method unnecessarily on this numerical example.

Now we can compare also our methods with the methods developed by Lan on this
noisy example:

Num. Iter. 10 100 1000 10000
SDGM (C=0) 0.526044 0.467577 0.155076 0.030702
SDGM (C=1) 0.523209 0.463160 0.1751157 0.0419122
SFGM (C=0) 0.48812 0.5741252 0.446167 0.975812
SFGM (C=1) 0.462503 0.292540 0.097984 0.026385
MMDSA 0.494363 0.4463241 0.1633532 0.034726
AC-SA 0.508496 0.508166 0.4631923 0.0593871
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We observe that:

• The AC-SA method performs badly on this example. This method is very slow at the
begining (the method being designed only to reach a good accuracy after the fixed
number of iterations N) and even ater the N iterations, the obtained solution is not
so accurate. The SFGM with decreasing stepsize that share the same convergence

rate O
(
LR2

k2 + σR√
k

)
is clearly a better choice.

• The MMDSA method of Lan performs well on this noisy example but the best choice
for a gradient type method seems to be the SDGM with aggressive constant stepsize.
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