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Abstract This paper focuses on the design and imple-
mentation of optimization-based predictive control for

the problem of missile interception. Due to the the in-
herent nonlinearities of the missile-target dynamics or
even constraints, it is usually difficult to design a high

accuracy and efficiency control algorithm. A nonlin-

ear Receding Horizon Pseudospectral Control (RHPC)

scheme is constructed and applied to generate the opti-

mal control command. The problem of state estimation,

in the presence of measurement noise, is solved by im-
plementing a Moving Horizon Estimation (MHE) algo-
rithm. Since the RHPC and MHE algorithms solve the

online open-loop optimal control problem at each sam-

pling instant, the computational cost associated with

them can be high. In order to decrease the computation-

al demand due to the optimization process, a recent-

ly proposed Nonlinear Programming (NLP) sensitivity-

based algorithm is used and embedded in the optimiza-

tion framework. Numerical simulations and analysis are

presented to demonstrate the effectiveness of the pro-

posed control scheme.

Keywords Predictive control · Optimal control ·

Moving horizon estimation · Optimization

1 Introduction

The design of nonlinear missile interception guidance

and control algorithm is among the most important
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and difficult components of modern missile missions.

This type of problem has been widely studied during

the past decades [1–5]. However, it is still difficult to

design an optimal or near-optimal control strategy [6–

8]. The main theoretical and practical challenges rais-

ing in these problems are the inherent nonlinearities of

the missile-target dynamics, uncertainties in the aero-

dynamic model, target maneuver capability, measure-

ment noises and variable/mission constraints.

To enhance the performance of interception, vari-

ous robust control algorithms have been investigated

[10,11]. For example, Zhu et al. [10] applied a modi-

fied sliding-mode control to generate the guidance law,

wherein the target acceleration was handled by the ex-

tended state observer. Similarly, in [11], considering the

model uncertainties and target movement, a stochas-

tic optimal guidance law was designed based on the
Markov chain approximation technique. However, the
reported works do not address the inside constraints
such as the state and control limits or the velocity incre-

ment. In practical missile systems, these requirements

should be considered in the controller designs.

The problem addressed in this research is a Reced-
ing Horizon Pseudospectral Control (RHPC) design for

the integrated missile interception guidance and con-

trol problems. Traditionally, missile guidance and con-

trol systems are designed separately as two loops [2,

4]. That is, an inner loop autopilot is constructed in

order to track the acceleration command generated by

the outer-loop guidance algorithm. However, such a de-

sign usually leads to large design iterations and does

not fully exploit the relationships between different sub-

systems, thereby resulting in suboptimal performance

[12]. In recent years, there has been a growing interest

in the design of integrated guidance law and flight con-

trol system. For instance, in [9] the authors proposed
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an integrated sliding-mode controller for the guidance

and control of interceptors. Besides, Panchal et al. [12]

proposed a continuous-time predictive control-based in-

tegrated guidance and control algorithm to fulfill the 2-

D missile-target interception mission. It was shown in

these investigations that the end-game performance of

the interceptor can be effectively enhanced by taking in-

to account the coupling between the guidance and con-
trol dynamics. This is mainly because in a dual-control
structure, additional degrees of freedom and more mis-

sile state information can be used. Due to these advan-

tages, the integrated design of the missile guidance and

control system, referred as Integrated Guidance and

Control (IGC) [13], is considered in this investigation.

The missile-target IGC algorithm designed in this
work is mainly based on the implementation of Mod-

el Predictive Control (MPC). The motivation of the
use of Receding Horizon Control (RHC) or MPC re-
lies on its ability to deal with control and state con-

straints that naturally arise in practical application-

s [14,15]. Contributions made to apply MPC can be

found in the literature [16–19]. For example, Li et al.

[16] proposed a neural-network based robust MPC al-

gorithm to generate the optimal missile guidance law.
Zhao et al. [17] designed an MPC-based algorithm in
order to generate the multi-missile guidance law. Weiss

et al. [18] implemented an MPC algorithm to solve the

spacecraft rendezvous and docking problems. Wen et

al. [19] developed a specific MPC scheme with output

feedback for a deorbiting electrodynamic tether system.

Recently, control algorithms based on pseudospectral

methods are becoming popular to offer a promising al-

ternative to MPC [15,20,21]. Pseudospectral methods

can be used to solve optimal control problems under

constraints using a specific discretization of the solu-

tion [23–25]. The main advantage with pseudospectral

methods is that a high approximation accuracy can be

achieved with much less temporal nodes, which means

the size of the resulting static NLP problem can be de-

creased significantly. Therefore, the application of pseu-

dospectral methods in MPC schemes can have positive

influences in terms of improving the real-time compu-

tational performance.

One of the key components of the RHC schemes is

the optimization process [16,26,27,25]. Since the RH-

PC algorithm solves an open-loop optimal control prob-

lem at each sampling instant, the effectiveness and ef-

ficiency are largely affected by the optimization pro-

cedure employed. In order to meet the high real-time

requirements of the RHPC scheme constructed in Sec-

tion 3, a recently proposed NLP sensitivity-based opti-

mization technique [28] is applied and embedded in the

RHPC framework. This algorithm applies the implic-

it function theory, where the optimal solution is found

around a continuously updated reference solution. A

detailed description of this near optimal gradient-based

method can be found in [28,29]. By applying this tech-

nique, the complicated solution-finding can be avoided

by approximating the optimal solution inexactly. This

indicates that the online computational performance of

the proposed RHPC method can be improved.

The main contributions of the work reported in this

paper are twofold. Firstly, prior to performing the MPC-

based IGC algorithm, the presence of noise in the mea-

surement of the model state is decreased by implement-

ing an MHE technique. Secondly, different from the
work carried out in [16], the online MHE+MPC opti-
mization model is solved using a pseudospectral method

so as to improve the solution-finding accuracy. More-

over, the computational performance of the optimiza-

tion process is enhanced by analyzing the NLP sensitiv-

ity of the solutions at two consecutive update time in-

stants. It is worth noting that currently there are many
effective state estimation methods available in the liter-
ature. For example, the use of Extended Kalman Filter

(EKF) and Particle Filter (PF) are two well-known s-

tate estimation strategies. The EKF is one of the most

widely-applied state estimate approaches for nonlinear

process control due to its strong generality. To apply

the EKF, the nonlinear system equation will be lin-
earized such that the classical KF becomes applicable.
One main challenge of using EKF is that in some appli-

cations, the calculation of the Jacobian might become

nontrivial. Besides, it requires the system nonlineari-

ty to be mild such that the linearization of the system

equation will not result in large divergence or approx-

imation error. On the other hand, The PF applies a

set of samples/particles in order to approximate the

posterior density function. Compared with the EKF, it

does not require to compute the Jacobian and needs

less computational power. Moreover, if the size of the

particle set goes to infinity, the PF can achieve asymp-

totically optimal estimation performance. However, a

major disadvantage of the PF is that it usually suffer-

s from the phenomena of degeneracy, and it tends to

be sensitive with respect to the initial guess value. The

MHE approach deals with the state estimation by for-

mulating an optimization model defined over a finite

moving horizon. This technique has the capability in

handling nonlinear system dynamics as well as variable

constraints. Furthermore, by applying the MHE state

estimator, the assumption of specific error distribution

is no longer necessary. Although solving an optimiza-

tion model online may result in a high computational

burden, the implementation of the sensitivity-based op-

timization method can effectively deal with this issue,
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thus making the MHE a potentially useful alternative

for the considered missile-target intercept problem.

The rest of this paper is organized as follows. The
overall interception strategy and the nonlinear dynam-

ics of the three dimensional missile-target system are

provided in Section 2. The main results are provided in

Section 3, where a moving horizon state estimation is

combined with a RHPC scheme to achieve the intercep-

tion in the presence of measurement noises. Numerical

simulations are provided in Section 4 to illustrate the

effectiveness of the proposed IGC strategies. The con-
cluding remarks are given in Section 5.

2 Missile-Target Nonlinear Model

2.1 2-D Missile Target Engagement

Let us consider a standard 2-D geometry of planar inter-

ception scenario illustrated in Fig.1. The corresponding

nonlinear kinematics are given by [2,4,10]:

ṙ = VT cos (θ − ϕT )− VM cos (θ − ϕM )

θ̇ = (−VT sin (θ − ϕT ) + VM sin (θ − ϕM ))/r

ϕ̇M = AM

VM

ϕ̇T = AT

VT

(1)

where r is the range along the Line-of-Sight (LOS). VT
and AT are target velocity and acceleration, respective-

ly. Correspondingly, VM and AM represent the missile

velocity and acceleration. θ stands for the LOS angle.

ϕM and ϕT are the flight path angle of the missile and
target.
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Fig. 1 Missile-Target engagement geometry

Then, by considering the normal acceleration as the
control input, the following state-space model of missile-

target engagement formulation can be constructed [4,

10]:

ṙ = Vr

V̇r =
V 2
θ

r
+ATr −AM sin (θ − ϕM )

θ̇ = Vθ

r

V̇θ = −VrVθ

r
+ATθ −AM cos (θ − ϕM )

(2)

where Vr = VT cos (θ − ϕT ) − VM cos (θ − ϕM ), Vθ =

−VT sin (θ − ϕT ) + VM sin (θ−ϕM ). Vθ can be treated

as a transversal component of relative velocity rotat-

ing with the LOS. ATr = AT sin (θ − ϕT ) and ATθ =

AT cos (θ − ϕT ). ATr and ATθ can be described as the
projection components of the target acceleration.

During the engagement, the target maneuver is con-
sidered to be given by the first order lag dynamics given

by:

ȦT = (Ac
T −AT )/τT (3)

where Ac
T is the commanded target acceleration, while

τT is the time constant associated with the target dy-

namics. Subsequently, the pitch-plane dynamics for the

missile should be constructed so as to describe the mis-

sile attitude related to the inertial frame. That is,

α̇ = q − (Lβ
αf1(α) + Lδf2(α+ δ))/VM

q̇ =Mβ
αf3(α) +Mδf4(α+ δ) +Mqq

δ̇ = (δc − δ)/τs

(4)

where α denotes the angle of attack; q stands for the
pitch rate; δ and δc are, respectively, the actual and

demanded deflection angles. Similar with Eq.(3), δ is
established by the first order dynamics with the time

constant τs. L
β
α, Lδ, M

β
α , Mδ and Mq are the aerody-

namic forces and pitch moments acting on the missile,

respectively. fi, i = 1, 2, 3, 4 are saturation functions de-

noting the nonlinear aerodynamic characteristics of the
missile. Based on the engagement equations and pitch-

plane dynamics, the integrated model is then estab-

lished. Let us rewrite the dynamic equations by defin-

ing the state variable in a more compact form (e.g. x =

[r, Vr, θ, Vθ, AT , α, q, δ]
T=[x1, x2, x3, x4, x5, x6, x7, x8]

T ).

Then Eq.(2)-(4) in the state space can be given by:

ẋ = f(x(t), u(t), t) (5)

where f ∈ ℜ8 is the right hand side of the dynamic
equations (2)-(4). u = δc is the control input.

In this study, we aim at the integrated guidance and

control law design in the presence of model uncertain-

ties and noise measurements of the state model. The

objective is to design an optimization-based predictive

controller such that the state variables (given by Eq.(2))

can be stabilized to the origin.
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2.2 3-D Missile Target Engagement

The mission scenario can be easily extended to a 3-D

case. To better illustrate the 3-D engagement system,

equations of motion for the missile and target are con-

structed separately as follows:

Missile:





ẊM = VM sinϕMa cosϕMe

ẎM = VM cosϕMa sinϕMe

ŻM = VM sinϕMe

Target:





ẊT = VT sinϕTa cosϕTe

ẎT = VT cosϕTa sinϕTe

ŻT = VT sinϕTe

(6)

where ϕMa, ϕTa, ϕMe and ϕTe are azimuth and eleva-
tion angles of the missile and target, respectively. Based

on Eq.(6), the 3-D dynamic model of the missile-target

engagement system is constructed as follows:





ṙ = VT cos(θy − ϕTe) cos(θz − ϕTa)

−VM cos(θy − ϕMe) cos(θz − ϕMa)

θ̇z = (VT sin(θz − ϕTa)− VM sin(θz
−ϕMa))/r

θ̇y = (VT cos(θz − ϕTa) sin(θy − ϕTe)

−VM cos(θz − ϕMa) sin(θy
−ϕMe))/r cos θz

ϕ̇Ta = ATy/VT
ϕ̇Te = ATz/VT
ϕ̇Ma = AMy/VM
ϕ̇Me = AMz/VM

(7)

where θy and θz are the LOS angles. Eq.(7) can be

analogized using the 2-D engagement system given by
Eq.(1). The target acceleration is again modeled as:

ȦTy = (Ac
Ty − ATy)/τT and ȦTz = (Ac

Tz − ATz)/τT ,

where ATy and ATz stand for the yaw and pitch lat-

eral accelerations. A detailed description of the 3-D

case missile-target interception geometry is depicted in

Fig.2.

Remark 1 It is worth remarking that in some relative

references and the missile-target dynamic model used in

this paper, the effect of gravity was omitted to simpli-

fy the engagement formulation. For the design of guid-

ance and control command, the gravitational effects can

be taken into account by simply subtracting the gravity

from the acceleration command. This strategy consid-

ers the gravity implicitly and it might result in some

deviations from the real system. Future works should

be carried out in order to explicitly incorporate gravity

compensation into the missile-target engagement sys-

tem such that the effect of gravity can be optimally com-
pensated.
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Fig. 2 3-D Missile-Target engagement geometry

3 Receding Horizon Pseudospectral Control

3.1 Discrete Approximation Model

For the numerical solutions of the RHPC problems,

the multi-interval Legendre-Gauss-Radau (LGR) pseu-

dospectral method is applied to parameterize the con-

tinuous time equations of state dynamics given by Eq.(5)

[20,23–25]. The motivation of the use of pseudospectral

algorithm relies on its high accuracy in function approx-
imation. A detailed introduction with respect to the d-
ifferent classes of pseudospectral methods can be found

in [23]. The time horizon is divided into Ñ mesh inter-

vals [ti, ti+1] for i = 1, ..., Ñ . The mesh grid points are

equally spaced and the Θ is assumed to be the length of

the mesh interval. By using the Lagrange interpolation,

the state and control variables are discretized over the

ith time interval as:

x(i)(t) ≈ X(i)(t) =
∑Nk+1

j=1 x
(i)
j L

(i)
j (t) = Φ(i)x(i) (8)

u(i)(t) ≈ U (i)(t) =
∑Nk

j=1 u
(i)
j L

(i)
j (t) = Φ(i)u(i) (9)

where j = 1, 2, ..., Nk, Nk is the number of LGR col-

location points. tj ∈ [ti, ti+1] can be obtained by solv-

ing PK−1(t) + PK(t) = 0, where PK is the Kth order
Legendre polynomial. a(·) is a positive weight function.

Φ(i) = [L
(i)
1 , L

(i)
2 , ..., L

(i)
Nk

] where L
(i)
j is the Lagrange

interpolation basis function.

One advantage of using pseudospectral approxima-

tion is that the derivative of the state equations (e.g.

ẋ(t) = f(x(t), u(t), t)) can be obtained by differentiat-
ing the approximation function:

ẋ(i)(t) = dx(i)(t)
dt

≈ dx(i)(t)
dt

=
∑Nk+1

j=1
d
dt
( a(t)
a(tj)

L
(i)
j (t))x

(i)
j

(10)
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Note that the term d
dt
( a(t)
a(tj)

Lj(t)) can be obtained at

collocation points and it can be compacted into a dif-

ferentiation matrix. That is

Djk =
d

dt
(
a(t)

a(tj)
L
(i)
j (t)) |t=tj (11)

where Djk denotes the elements of the Nk × (Nk +

1) differentiation matrix and can be calculated by the

following equation:

Djk =





−Nk(Nk+2)
4 , k = j = 0;

LNk
(tj)

LNk
(tk)

1
tj−tk

, k 6= j, 1 ≤ k, j ≤ Nk;
−1

2(1−tj)
, 1 ≤ k = j ≤ Nk.

(12)

In order to clearly show the approximation accuracy

of the Legendre-Gauss-Radau Pseudospectral Method

(LGRPM), Fig.3 shows a comparison between the ap-

proximations of an open-loop optimal control solutions
using LGRPM and Zero-Order-Hold (ZOH) functions
(commonly used in the MPC framework [16,18]).
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Fig. 3 Approximation comparison of an open-loop optimal
control problem

This example can also be understood as a conver-
gence analysis of open-loop solution to the exact solu-

tion and the problem formulation associated with it is

defined as follows:

minimize J = 1
2

∫ 1

0

[u(t)2 + x(t)u(t) + 1.25x(t)2]dt

subject to ẋ(t) = 0.5x(t) + u(t), x(0) = 1

The exact state and control trajectories to this problem

are:
x∗(t) = cosh (1−t)

cosh (1)

u∗(t) = − sinh (1−t)+0.5 cosh (1−t)
cosh (1)

The approximation errors are measured using the max-

imum base ten logarithm of the state and control vari-

ables. That is

Ex = max
j

log10 |xj − x∗(tj)|

Eu = max
j

log10 |uj − u∗(tj)|

As can be seen from Fig.3, LGRPM can produce al-
most identical results with the exact solution. However,

ZOH functions cannot achieve such a high accuracy. In

addition, the algorithm will steer the approximation er-

ror to zero as the number of basis functions increases.

Remark 2 It is worth noting that one well known is-

sue with pseudospectral optimal control is the choice of

collocation points. For optimal control of underactuated

nonlinear dynamical systems (e.g., the missile dynam-

ical system), the approximation to the dynamics may

be poor if the current mesh grid is chosen improper-

ly. This brings the development of mesh refinement s-
trategies. That is, the current mesh grid will be updated
several times in order to achieve higher accuracy. In
recent years, many effective mesh refinement strategies

that can be embedded in the pseudospectral methods were

developed. In this paper, we are interested in applying

the pseudospectral method to solve the MHE and MPC

formulation. A detailed analysis of the approximation
error order of the pseudospectral method is beyond the
scope of this paper. We refer to [33] for such an analy-
sis.

Remark 3 One important issue of mesh refinement-

based pseudospectral methods is that it may result in
several calls to the NLP solver and a significant com-
putational cost. Due to the lack of physical knowledge
of the system dynamics and the uncertainties/noises in

the model, it is usually hard to select a proper accura-

cy threshold of the mesh refinement process. Therefore,

to make a tradeoff between the approximation accura-

cy and realtime applicability, the multi-interval LGR

pseudospectral method with fixed number of collocation

points is applied to produce a relatively dense mesh grid.

This mesh grid setting is given in the simulation sec-

tion and perturbations of this number will only result in

negligible differences of the results.

3.2 Moving Horizon Estimation

As a technique based on numerical optimization, the

nonlinear MPC constructs a series of optimal control
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problems to optimize a specified objective function while

accounting for the system dynamics and constraints

[26]. The design of optimization-based controllers is usu-

ally based on the assumption of full state feedback.

However, in some practical applications (e.g. the mis-

sile interception guidance and control), there might be

some measurement noises in the system and thus the

state variables are not directly available [11,12]. To ad-
dress this problem, an MHE technique is developed by
constructing an online sub-optimization problem.

In the absence of measurement noise, the relation-

ships between the measurable outputs and the integrat-
ed missile-target state variables are defined as y = h(x).
h(·) is a mapping from the missile-target state space to

the measurable output space. Note that in many prac-
tical scenarios, only a part of states are available for
measurement. In these cases, it is necessary to recon-

struct the state information using a limited number of

measurement. For the MHE optimization process, the

solution-finding is carried out using the latest N̄ mea-

surements yij obtained at the sampling time instants

tij , where i = 1, ..., N̄ . Using the LGRPM method to
approximate the dynamics, the MHE subproblem can

then be formulated as follows:

minimize JMHE =
∑N̄

i=1 ‖h(z
(i)
j )− yj‖

2
2

subject to ∀t
(i)
j ∈ [ti, ti+1]

Nk+1∑

k=1

D
(i)
jk z

(i)
j =

ti+1 − ti
2

f(z
(i)
j , u

(i)
j , t

(i)
j )

zj − zmax ≤ 0

uj − umax ≤ 0

(13)

where zj stands for the state estimation at time in-
stant tj , whereas h(zj) is the actual measured value.

Usually, an initial state estimation term should also be

introduced in the objective function. However, for the

missile-target intercept problem, it is assumed to have

a known initial state vector of the engagement system.

The motivation for the use of MHE over standard
tools such as the Extended Kalman Filter (EKF) relies

on its ability in dealing with highly nonlinear system

dynamics (e.g., the nonlinear missile-target engagement

system considered in this study). The EKF is compu-

tationally efficient but it requires both the variances of

the noises to be small and the system nonlinearities to

be mild such that the linearization of dynamics can still
be valid. On the other hand, utilizing the MHE algo-
rithm requires more computational efforts since it needs

to solve the nonconvex nonlinear optimization problems

related to the MHE formulation. However, one advan-

tage of using the MHE formulation (13) is that only the

latest N̄ measurements are taken into account instead

of all the Nk measurements. Therefore, the computa-

tional complexity can be reduced significantly and the

online performance can also be improved.

The objective function of Eq.(13) is a measure of the

missile-target state estimation errors. It is worth noting

that the state estimate at the time instant tk+1 (e.g.

z
(N̄)
Nk+1) is used as the initial condition of the subsequent

model predictive pseudospectral control step.

3.3 Receding Horizon Pseudospectral Control

MPC can be regarded as an iterative optimization pro-

cess that produces control moments by performing a

moving horizon trajectory optimization [26,27]. The con-

trol is periodically recalculated with the current state

as an initial condition, thus providing a feedback ac-

tion that can improve robustness to uncertainties and

disturbances.

By using the updated initial condition x
(1)
1 = z

(N̄)
Nk+1,

the moving prediction horizon of the kth RHPC opti-

mization problem becomes [tk+1, tk+1 + T ], where T =
ÑΘ. That is, the moving horizon of the RHPC for-

mulation consists of Ñ sampling intervals. Considering

that the control objective of the RHPC is to drive the

missile-target system given by Eq.(5) to the origin, the

following stage cost function can be formulated:

JRHPC =

Ñ∑

i=1

∫
tk+1+ÑΘ

tk+1

(x(i))TQx(i) + (u(i))TRu(i)dt (14)

where i = 1, ..., Ñ . Q ∈ ℜ4×4 is a semi-definite matrix.

R ∈ ℜ1×1 is a symmetric positive definite matrix. By in-

troducing ψ(x(i), u(i), t(i)) = (x(i))TQx(i)+(u(i))TRu(i)

and using a Gauss quadrature to approximate the inte-

gral term, the RHPC cost can be rewritten as:

J̄RHPC =
Ñ∑

i=1

Nk∑

j=1

ωjψ(x
(i)
j , u(i), t

(i)
j ) (15)

where ωj is the LGR weight and defined as:

ωj =

∫ +1

−1

Lj(t)dt (16)

According to [23], Eq.(16) can be rewritten as:

ωj =

{
2

(Nk+1)2 , j = 0;
1

(Nk+1)2
1−tj

[LNk
(tj)]2

, j 6= 0.
(17)

Therefore, the RHPC formulation is considered as

an online optimal control problem which has the min-

imum value of cost function defined by Eq.(15) sub-

ject to the state, control, and nonlinear algebraic con-
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straints. Specifically, the RHPC optimization model can

be given by:

minimize J̄RHPC =

Ñ∑

i=1

Nk∑

j=1

ωjψ(x
(i)
j , u

(i)
j , t

(i)
j )

subject to

Nk+1∑

k=1

D
(i)
jk x

(i)
j =

ti+1 − ti
2

f(x
(i)
j , u

(i)
j , t

(i)
j )

x
(i)
j − xmax ≤ 0

u
(i)
j − umax ≤ 0

(18)

3.4 NLP Optimality and Approximated KKT

Conditions

One significant challenge of the optimization-based con-
trol strategies is that the computational cost associat-

ed with it can be high and usually cannot be afforded

online [16,28,35]. To deal with this problem, a NLP

sensitivity-based optimization method is applied and

embedded in the RHPC framework. This technique im-

proves the computational performance, by solving an

easier, approximate problem.

Based on the constructed online optimization for-

mulation shown in Eq.(18), the corresponding augment-

ed Lagrange function is then given by:

L =

Ñ∑

i=1

Nk∑

j=1

ωjψ(x
(i)
j , u

(i)
j , t

(i)
j ) + λ1(x

(i)
1 − z

(N̄)
Nk+1)

+

Nk∑

j=1

λTj (

Nk+1∑

k=1

D
(i)
jk x

(i)
j −

ÑΘ

2
f(x

(i)
j , u

(i)
j , t

(i)
j ))

+

Nk∑

j=1

νTj (x
(i)
j − xmax) +

Nk∑

j=1

µT
j (u

(i)
j − umax)

(19)

where λj , νj , µj , j = 1, ..., Nk are vectors of the La-

grange multipliers. For simplicity in the presentation,
the superscript representing the index of time interval
is ignored in the following equations. The optimal so-

lution of the optimization problem (18) should satisfy

the first-order optimality or Karush-Kuhn-Tucker (KK-

T) conditions given by:

∇λ1
L = x1 − z

(N̄)
Nk+1 = 0

∇λj
L =

Nk+1∑

k=1

Djkxj −
ÑΘ

2
fj = 0

∇xj
L = ωj∇xj

ψj +

Nk+1∑

k=1

λk

ωj

Dkj −
ÑΘ

2
AT

j

λj

ωj

+ νj = 0

∇uj
L = ωj∇uj

ψj − ÑΘ

2
BT

j

λj

ωj
+ µj = 0

(20)

where fj := f(xj , uj , tj), ψj := ψ(xj , uj , tj), A
T
j :=

∇xj
fj and BT

j := ∇uj
fj , respectively. By defining p :=

z
(N̄)
Nk+1, the first-order nonlinear equations can be rewrit-

ten in a more condensed form:

ζ(s(p,Nk + 1), p) = 0 (21)

where s(p,Nk+1) is the solution vector and is given by

s(p,Nk + 1)T = [xT1 , u
T
1 , λ

T
1 , ν

T
1 , µ

T
1 xT2 , u

T
2 , λ

T
2 , ν

T
2 , µ

T
2

..., xTNk
, uTNk

, λTNk
, νTNk

, µT
Nk

]. The optimal solution is then

defined as: s∗(p,Nk+1). NLP solvers based on Newton-

iteration search for a given solution s∗(p0, Nk + 1) by

successive linearization of Eq.(21) (e.g. first-order Tay-

lor expansion) around the current searching point sj

(p0, Nk+1), where j is the iteration index. This can be

described as:

K(p0, Nk + 1)∆s = −ζ(s(p0, Nk + 1), p0)

K(p0, Nk + 1) = ∂ζ
∂s
|(s(p0,Nk+1),p0)

(22)

where K is the KKT matrix. Eq.(22), combined with

suitable adjustments to monitor the step length∆s (e.g.

line search or trust region techniques), yields the opti-

mal solution s∗(p0, Nk + 1).
In order to improve the online performance of the

optimization algorithm, the effect of perturbations on

p around the nominal solution is analyzed. Then, these

sensitivity results are used to approximate solution-

s to the neighbouring problems. The general idea of

the sensitivity-based optimization can be understood

as exploiting the similarity between the solutions of the

optimization problem at two consecutive update time

instants. To achieve the approximation, the following
theory regarding NLP sensitivity is introduced [28,29].

Theorem 1 [28,30] Consider the RHPC optimization
problem given by Eq.(18) with f(·) and ψ(·) that are

twice continuously differential in a neighborhood of the

nominal solution s∗(p0, Nk + 1), if the nominal solu-

tion s∗(p0, Nk +1) can satisfy the Linear Independence

Constraint Qualifications (LICQ) [28,30] and Second

Order Sufficient Conditions (SOSC) [28,30], then,

1. s∗(p0, Nk+1) is an isolated local optimal solution of

the problem and the associated Lagrange multipliers

are unique.

2. For p in a neighborhood of p0, there exist a unique,

continuous and differentiable vector function s∗(p,

Nk + 1), which is a local optimal solution satisfying
the LICQ and SSOC conditions.

3. There exists positive constants c1 and c2 such that

|s∗(p,Nk + 1) − s∗(p0, Nk + 1)| ≤ c1|p − p0|; and

the optimal values satisfy |JNk+1(p)− JNk+1(p0)| ≤

c2|p− p0|.

The results in Theorem.1 allow the application of

the implicit function theory to Eq.(21) at the nominal

solution point s∗(p0, Nk + 1):

K∗(p0, Nk+1)
∂s∗

∂p
= −

∂ζ(s(p,Nk + 1), p)

∂p
|s∗(p0,Nk+1)(23)
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where K∗(p0, Nk + 1) is the KKT matrix calculated at

s∗(p0, Nk + 1). The right hand side term of Eq.(23) is
∂ζ(s(p,Nk+1),p)

∂p
|s∗(p0,Nk+1) = [−Inx

, 0, ..., 0], where nx is

the degrees of freedom of the state equations. Assume

the nominal solution s∗(p0, Nk + 1) can satisfy SSOC

and LICQ, the KKT matrix can then be used to calcu-
late the sensitivity matrix shown in Eq.(23). Based on

these results, the estimation of the neighboring problem

can be approximated by:

s̃(p,Nk + 1) = s∗(p0, Nk + 1) +
∂s∗

∂p
(p− p0) (24)

where s̃ stands for the approximation of s∗(p,Nk +
1). Based on the continuity and differentiability as-

sumptions, there exists a positive constant c3 such that

|s̃(p,Nk + 1)− s∗(p,Nk + 1)| ≤ c3|p− p0|
2.

The calculation of the sensitivity matrix in Eq.(23)

(e.g. ∂ζ(s(p,Nk+1),p)
∂p

) requires nx backsolves. This pro-

cess is usually expensive especially when the size of the

system becomes larger. To deal with this problem, the

step length ∆s(p,Nk+1) = s̃(p,Nk+1)−s∗(p0, Nk+1)

is obtained by linearization of KKT conditions at the

nominal solution point s∗(p0, Nk + 1). That is,

K∗(p0, Nk+1)∆s(p,Nk+1) = −ζ(s∗(p0, Nk+1), p)(25)

where ζ(s∗(p0, Nk+1), p) corresponds to the KKT ma-

trix calculated at the nominal solution. ∆s can be de-

scribed as a Newton step starting from the nominal so-

lution to the solution of the neighboring problem such

that s̃(p,Nk + 1) can satisfy Eq.(24). The main advan-

tage of this approximation process is that only a single

backsolve is required to compute the sensitivity matrix.

Compared with addressing the NLP problem to obtain

new solutions, this update costs negligible time. More-

over, it is worth noting that if f(·) and ψ(·) are convex
quadratic functions, s̃(p,Nk+1) = s∗(p,Nk+1), which

means the approximate solution is exactly equivalent

to the optimal solution.

It should be noted that the change of the active set-

s concerning the inequality constraints may affect the
results of the sensitivity analysis. If ∆s(p,Nk + 1) =

s̃(p,Nk+1)− s∗(p0, Nk+1) is large enough to result in
a change with respect to the current active set, approx-
imation of the KKT conditions becomes nonsmooth.

This indicates that Eq.(24) does not hold true and the

updated solution s̃(p,Nk+1) might violate the box con-

straints. Besides, Theorem 1 does not hold at the points

where the change of active set occurs. As a result, the

continuity and differentiability of s∗(p,Nk +1) with re-

spect to p cannot be preserved. One way to tackle this

problem is to use the generalized SOSC condition as

well as the relaxed set of constraint qualifications [29,

35].

3.5 Implementation consideration

In order to better present the proposed algorithm, the

overall procedures of the MHE algorithm and the MPC

method are summarised, respectively, in Algorithm 1

and Algorithm 2.

Algorithm 1 Framework of the MHE real-time loops

/*Offline*/

Step 1: Initialize z
(N̄)
1 , Nk and N̄ ;

Step 2: Generate the LGR points {tj}
Nk

j=1, the differential

matrix via Eq.(12), and the LGR weight coefficients
via Eq.(17);

/*Online (main Loop)*/
Step 3: At each time step j = 1, ..., Nk

(a). Discretize the continuous system via Eq.(10);
(b). Construct the NLP problem via Eq.(13);

Step 4: Wait for a new measurement z
(N̄)
j+1;

Step 5: Calculate the derivative of the objective and
constraints;

Step 6: Solve the optimization problem (20) via the
sensitivity-based method;

Step 7: Update the primal and dual solutions via
Eqs.(23)-(25);

Step 8: Repeat Steps 3-7 until the next time step;

Algorithm 2 Framework of the MPC real-time loops

/*Offline*/
Step 1: Initialize x1, Nk and Ñ ;
Step 2: Generate the LGR points {tj}

Nk

j=1, the differential

matrix via Eq.(12), and the LGR weight coefficients
via Eq.(17);

/*Online (main Loop)*/
Step 3: At each time step j = 1, ..., Nk

(a). Discretize the continuous system via Eq.(10);
(b). Construct the NLP problem via Eq.(18);

Step 4: Wait for a new state xj+1;
Step 5: Calculate the derivative of the objective and

constraints;
Step 6: Solve the optimization problem (20) via the

sensitivity-based method;
Step 7: Update the primal and dual solutions via

Eqs.(23)-(25);
Step 8: Repeat Steps 3-7 until the next time step;

According to Algorithm 2, for the MPC loop, the

control variable is recalculated at each time step, there-
by providing feedback to reduce the effects caused by
uncertainties or model errors. Apart from the structure

of the MPC algorithm, it is also important to know

how the MPC scales as the problem grows. Therefore,

a computational complexity analysis with the number

of operations required to solve an iteration of MPC ver-

sus the dimensionality, number of collocation points as
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well as the time horizon of the problem is provided. Sup-

pose that an optimal control problem contains nx state
variables, nu control variables, and Nk LGR points are

applied to discretize the system. If the mesh grid con-

sists of Ñ sampling intervals and the length of the mesh

interval is Θ, then O(ÑΘ(nx(Nk + 1) + nuNk)
3) oper-

ations are required to solve the formulation [16,22].

4 Simulation Studies

4.1 Parameter Specification

In order to verify the effectiveness of the proposed RH-

PC based IGC approach, numerical simulations were

carried out. All the simulation results were carried out

using Matlab under Windows 7 and Intel (R) i7-3520M

CPU, 2.90GHZ, with 12.00 GB RAM. The parame-

ters of the RHPC algorithm are chosen as: N̄ = 2,

Ñ = 3, Nk = 4. Q and R are obtained according to the
Bryson’s rule [34]. The lower and upper bounds of the

state and control variables are chosen as: r ∈ [0, 20000],

Vr, Vθ ∈ [−5000, 5000], θ ∈ [−40, 40], α ∈ [−20, 20],

AM ∈ [−350, 350], and δ ∈ [−20, 20], respectively. Be-

sides, the pitch rate and raw rate should vary in the

region [−250, 250].

The initial positions of the missile are assigned as:
XM (0) = 0m, YM (0) = 0, and ZM = 0. The mis-

sile initial flight path angle and velocity are chosen as

ϕM = 35deg and VM = 1800m/s, respectively. Corre-

spondingly, the initial flight path angle and velocity of

the target are set as ϕT = 50deg and VT = 2000m/s.

The initial range along the LOS is r = 12000m. In

addition, the initial LOS angle is θ = 40deg, and the
measurement of the LOS is taken as a first-order-lag

system. It is supposed that the target acceleration is

given by AT = (150 + dAT
) sinπt (m2/s).

Moreover, to evaluate the performance of the MHE

approach against measurement noises, it is assumed

that the measurements of the missile-target range r,

target acceleration AT and the LOS angle (θy and θz)
are disturbed by d = [dr, dAT

, dθy , dθz ], where d is the

zero mean Gaussian noise with standard deviation of

10m, 2m/s and 1mrad. The missile model-dependent

parameters are set as: L̄β
α = L̄α−L̄δ, L̄α = 1070.1m/s2,

L̄δ = 191.8m/s2, M̄β
α = M̄α − M̄δ, M̄α = −353.4s−2,

M̄δ = −283.3s−2, M̄q = −14.8s−1. Since the RHPC op-
timization problem is formulated as a large-dimension

NLP problem, the scaling process becomes important

to obtain a robust and rapid convergence to the opti-

mal solution. Therefore, all the optimization variables

are scaled using the strategy suggested in [34]. For the

numerical simulation, the trajectory sampling step is

set to 0.2s. The NLP problems arising from the MPC

and MHE formulations are addressed using the primal-

dual interior point algorithm (e.g., the IPOPT optimiz-
er [36]). The update of the NLP sensitivity is carried
out manually via MATLAB.

4.2 Interception Results

The performance of the proposed IGC design is firstly

evaluated for a sample run. In this case, no model un-

certainty and measurement noise are considered. The
missile-target engagement trajectories, together with
the state measurement results, are displayed in Fig.4
and Fig.5. The corresponding estimation error evolu-

tions are presented in Fig.6.
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Fig. 4 3-D Missile-Target engagement trajectory (no uncer-
tainty and noise)

From the result displayed in Fig.4, it can be ob-
tained that the missile can engage the target successful-

ly with a 0.032m miss distance. According to the state

estimation results shown in Fig.5 and Fig.6, the plant s-

tates can be estimated satisfactorily and the estimation

error can be steered to a small neighbourhood of the ori-

gin. Therefore, these results demonstrate that the MHE

algorithm can have a good performance in terms of esti-

mating state variables for the missile-target engagement

system. In terms of the computational performance, the

average processing time for generating the solution of

each RHPC optimization problem is around 0.1721s in

this case, which is smaller than the the trajectory up-

date time.

Next, this sample run was performed by considering

the measurement noise as well as the parameter uncer-

tainty (e.g. the missile aerodynamic parameters L̄, M̄

were assumed to be varied randomly by ±10% from the

model values). Fig.7 depicts the time history of the 3-D
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Fig. 5 State estimation performance (no uncertainty and noise)
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Fig. 6 Estimation error profiles (no uncertainty and noise)
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intercept geometry obtained by applying the RHPC-

based IGC method.
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Fig. 7 3-D Missile-Target engagement trajectory (with un-
certainty and noise)

The corresponding state estimation trajectory re-

sults are then plotted in Fig.8. It should be noted that

in the last two figures (e.g. Fig.8(h) and Fig.8(i)), ATy

and ATz stand for the normal target acceleration pro-

files along the elevation plane and azimuth plane. From

these figures, it can be observed that by performing the

MHE process and minimizing its least-squares objective

function given by Eq.(13), the plant states can still be

estimated satisfactorily in the presence of measurement

noises.

The performance of applying other state estimation

approaches such as the EKF and the PF for the missile-

target interception problem is also analyzed. Numerical

simulations were performed and the state estimation er-

ror profiles obtained using different estimation methods
are depicted in Fig.9. According to the result presented
in Fig.9, it can be seen that the MHE and PF meth-
ods perform better than the EKF in the initial state

estimation. Moreover, in the later stage of simulation,

the estimation error achieved via the MHE method re-

mains nearly zero while the estimation errors achieved

via the EKF and PF both increase. In other words, the
MHE method tends to converge faster to the real value
than its counterparts. Moreover, the MHE approach is
likely to be more stable than the EKF and PF during

the entire estimation process. Therefore, it is suggested

to apply the MHE in dealing with the state estimation

problem of the missile-target interception task.

The results obtained via the proposed control scheme

are compared against other typical missile guidance and

control strategies. For example, a Primal-Dual Neural

Network-based (PDNN) predictive control scheme de-

sign reported in [16], and an integrated Sliding Mode

Guidance and Control (SMGC) design studied in [3].

For the PDNN method, the state and control input

constraints are taken care by means of performance in-

dex weightings. On the other hand, the SMGC control

scheme utilizes the control saturation function to han-

dle constraints.

The comparative time histories with respect to the

missile acceleration, control input and attitude angles

are plotted in Fig.10, from where it can be seen that the

proposed RHPC-based IGC law can produce state and

control trajectories without violating the pre-specified

state and control constraints in the absence of model

uncertainties and measurement noises (the control mo-

ments acting on the missile are provided in Fig.10(e)-
(f)). As for SMGC results, although the control con-
straints are guaranteed via the use of saturation func-
tions, constraint violations can be found in the missile

acceleration and angular rate trajectories. Similar phe-
nomena are found in the PDNN results. Hence, using
performance index weightings may fail to satisfy the s-

tate constraints and result in constraint violations. Ac-

tually, imposing state constraints might further restrict

the allowable control regions implicitly. As indicated

by Fig.10, the algorithm has to sacrifice using its maxi-

mum allowable control moments in order to satisfy the
missile acceleration and attitude angle constraints.

Based on the results shown in Figs.7-10, it is ob-

tained that the RHPC method achieves an engagement
time 3.303s, which indicates the interception can be

fulfilled within short time for the interception mission
investigated in this study. Besides, the miss distance
for this sample run as well as the average computation
time for the RHPC optimization process are 0.324m

and 0.1729s, respectively. These two factors are slight-

ly greater than the case that no model uncertainty and
measurement noises are considered. This can be ex-

plained that the performance of the proposed control
scheme might be degraded due to the consideration of
these noises and uncertainties. However, according to
the design of the RHPC scheme stated in Section 3 of

this paper, the optimization procedure is repeated on-

line at each sampling instant and the final state values

of the previous process will be applied as the initial

conditions of the continuing control loop. This receding
manner can provide feedbacks such that the effects of
uncertainty and model errors are reduced significantly,

thereby improving the robustness of the control algo-

rithm.

To further verify the performance of the proposed

optimization-based predictive IGC scheme, it is neces-

sary to run a large number of simulations using the

Monte-Carlo method. It is well known that the Monto-

Carlo simulation is a powerful tool to analyze the effec-
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Fig. 8 State estimation performance (with uncertainty and noise)
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tiveness and robustness of a design by allowing consid-

eration of the influences of different system noises and

uncertainties. 500 Monte-Carlo simulations were per-

formed for the missile-target engagement mission. Sim-

ulation results show that the proposed optimization-

based predictive control algorithm can lead the state

estimation error to a small value and achieve the hit

for most of the cases with an average miss distance

of 0.0362m and an average interception time of 3.305s

when the stochastic disturbances and measurement nois-

es are included in the missile-target system. A graph of

the average runtime per iteration of MPC is plotted in
Fig.11. It is further calculated that the mean value of
this runtime array is about 0.1723s, which is again s-

maller than the trajectory update time. Hence, based
on the results presented in Fig.11, the real-time ap-
plicability can be preserved by applying the proposed

control scheme.

4.3 Comparative study

Comparative studies were also performed to compare

the missile intercept accuracy achieved by applying the

proposed IGC solver with other alternative MPC-based

controllers. For instance, a Differential Dynamic Pro-

gramming based (DDP) MPC controller, and a Direc-

t Sequential Quadratic Programming based (DSQP)
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Fig. 12 Miss distance distribution and SSKP results for d-
ifferent methods

based MPC controller. Moreover, to make a fair com-

parison, all the algorithm dependent parameters are

tuned optimally as suggested in relative investigation-

s [31,32,30,19]. For the purpose of comparison, it is

worth mentioning that the missile’s target accuracy is

a critical factor for its effectiveness. Therefore, this is

used as the main criteria to evaluate the performance

of different controller designs.

Fig.12 illustrate the miss distance distribution ob-

tained using the different guidance and control strate-

gies. The last subplot in Fig.12 shows the corresponding

cumulative miss distance statistics for all the engage-
ment cases. Cumulative miss distance chart, also known
as Single-Shot-Kill-Probability (SSKP), is an effective
way to visualize guided missile system performance in a

Monto-Carlo sense. It can be observed from Fig.12 that

the DSQP-based method performs better than the pro-

posed method and the DDP-based controller in terms of

the SSKP value (a higher SSKP value can be obtained
with a small value of miss distance).

Regarding the real-time performance, it should be
noted that based on our experiments, a penalty might

be found in computational time for the increased ac-
curacy and fidelity. Consequently, a relatively small in-
dex of accuracy (e.g., 1 × 10−4) is applied in the op-

timization process and the comparative study in order
to enhance the real-time applicability of different con-
trol schemes as well as to make a fair comparison. The
average computational time required by the proposed

method, DSQP and DDP for the solution of each MPC

optimization problem are 0.1723s, 0.5743s and 0.6611s,

respectively. The proposed approach achieves real-time

applicability as the optimization time is smaller than

the trajectory update time. Therefore, it can be con-

cluded that compared with other algorithms studied in

this investigation, the proposed RHPC-based algorith-
m can preserve the real-time applicability without s-
carifying the interception accuracy significantly (this is

reflected by Fig.12, where a relatively high SSKP value

can be obtained by applying the proposed strategy).

4.4 Effect of parameter uncertainty
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Fig. 14 Effect of parameter uncertainty: RHPC results

In this subsection, the effect of parameter uncertain-

ty on the computational time and the interception ac-

curacy is studied. By assuming the missile aerodynamic

parameters are varied randomly by ±10%, ±15% and

±20% from the model values, the sensitivity results of

the MPC-based controllers with respect to modelling

errors are displayed in Figs.13-15.
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Table 1 Comparative results for different methods

Indicators
±10% uncertainty

DSQP-based wsDSQP-based Proposed method DDP-based
max(MD) (m) 0.2254 0.2247 0.3981 0.4717
min(MD) (m) 0.0281 0.0280 0.0362 0.0453
mean(MD) (m) 6.3928E-05 6.3928E-05 2.2709E-05 4.3299E-05

CPU (s) 0.5743 0.2841 0.1723 0.6611

Indicators
±15% uncertainty

DSQP-based wsDSQP-based Proposed method DDP-based
max(MD) (m) 0.7929 0.7621 1.1885 4.5592
min(MD) (m) 0.0878 0.0834 0.1588 0.4520
mean(MD) (m) 3.9464E-05 3.7223E-05 6.2835E-04 3.2375E-04

CPU (s) 0.7229 0.3041 0.1801 0.6412

Indicators
±20% uncertainty

DSQP-based wsDSQP-based Proposed method DDP-based
max(MD) (m) 2.1056 2.1056 2.9237 6.5470
min(MD) (m) 0.2893 0.2773 0.3476 2.2833
mean(MD) (m) 1.1122E-04 1.1122E-04 1.5891E-04 4.2029E-04

CPU (s) 0.8425 0.4447 0.1892 0.7070
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Fig. 15 Effect of parameter uncertainty: DDP results

The maximum, average and minimumMiss Distance

(MD) values, alone with the average computational time
consumed for each MPC optimization process, are sum-
marised in Table 1. According to the results presented

in Figs.13-15 and Table 1, it is apparent that an in-

creasing uncertainty effect will result in a decrease in

the interception accuracy and an increase in terms of

the computational time. It is worth noting that in Table

1, another comparative study denoted as warm-start D-

SQP (wsDSQP) was carried out. In this strategy, the

NLP problem is solved directly using the solution of the

previous time step as an initial guess. Compared with

the normal DSQP solution, the computational as well

as the interception performance obtained by using the

wsDSQP can be improved to some extent. However, the

real-time applicability of wsDSQP is still not achieved.

For all the uncertain cases, the proposed RHPC

control scheme with the sensitivity-based optimization

method is able to preserve the real-time applicability

and achieve a competitive interception accuracy. How-
ever, it is found that the real-time applicability will lose
when the uncertainty interval is increase to ±25%, as

the average running time for solving the optimization
problem will be increased to around 0.2738s.

5 Conclusion

In this paper, an optimization-based predictive con-

trol strategy was constructed and implemented to solve

the missile integrated guidance and control problem

in the presence of model parameter uncertainties and
measurement noises. A multiple interval pseudospec-
tral method was applied to discretize the moving hori-

zon state estimation and predictive control problem-

s. Then the resulting NLP formulation was solved vi-

a a sensitivity-based nonlinear programming approach.

In order to reduce the computational complexity and

match real-time requirements, the NLP sensitivity in-

formation was applied to approximate the optimal so-

lution. Numerical simulations were conducted to illus-

trate the effectiveness and robustness of the proposed

method. The results show that the integrated guid-

ance and control scheme investigated in this paper can

achieve the preceding requirements for the missile in-

terception mission.

However, there are some issues left in terms of ap-

plying the proposed control scheme for addressing the

missile-target interception problem. For example, the

performance of the sensitivity-based optimization tech-

nique might be affected significantly if large noises and
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model errors are considered. As a result, the process-

ing speed will be decreased, thereby restricting the im-

plementation of longer predictive horizons. In addition,

the current missile dynamic model is relatively simple

and more complex aerodynamic models should be ap-

plied. This will inevitably increase the computational

burden of the optimizer since a more dense mesh grid

is required to have an accurate approximation of the
dynamics. These issues will be the main subjects of our
future research.
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