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Abstract
We introduce a novel numerical method for solving two-sided space fractional partial dif-
ferential equations in two-dimensional case. The approximation of the space fractional Rie-
mann–Liouville derivative is based on the approximation of the Hadamard finite-part inte-
gral which has the convergence order O(h3−�) , where h is the space step size and � ∈ (1, 2) 
is the order of Riemann–Liouville fractional derivative. Based on this scheme, we intro-
duce a shifted finite difference method for solving space fractional partial differential 
equations. We obtained the error estimates with the convergence orders O(� + h3−� + h�) , 
where � is the time step size and 𝛽 > 0 is a parameter which measures the smoothness of 
the fractional derivatives of the solution of the equation. Unlike the numerical methods for 
solving space fractional partial differential equations constructed using the standard shifted 
Grünwald–Letnikov formula or higher order Lubich’s methods which require the solution 
of the equation to satisfy the homogeneous Dirichlet boundary condition to get the first-
order convergence, the numerical method for solving the space fractional partial differential 
equation constructed using the Hadamard finite-part integral approach does not require the 
solution of the equation to satisfy the Dirichlet homogeneous boundary condition. Numeri-
cal results show that the experimentally determined convergence order obtained using the 
Hadamard finite-part integral approach for solving the space fractional partial differential 
equation with non-homogeneous Dirichlet boundary conditions is indeed higher than the 
convergence order obtained using the numerical methods constructed with the standard 
shifted Grünwald–Letnikov formula or Lubich’s higher order approximation schemes.

Keywords Riemann–Liouville fractional derivative · Space fractional partial differential 
equation · Error estimates

 * Yubin Yan 
 y.yan@chester.ac.uk

 Yanyong Wang 
 y.wang@llhc.edu.cn

 Ye Hu 
 huye1015@163.com

1 Department of Mathematics, Luliang University, 38 Binghe North East Road, Luliang, 
Shanxi 033000, China

2 Department of Mathematics, University of Chester, CH1 4BJ Chester, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ChesterRep

https://core.ac.uk/display/341355742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-019-00036-7&domain=pdf


506 Communications on Applied Mathematics and Computation (2019) 1:505–523

1 3

Mathematics Subject Classification 65M12 · 65M06 · 65M70

1 Introduction

Consider the following space fractional partial differential equation, with 1 < 𝛼 < 2 , 
0 ≤ x, y ≤ 1 , 0 < t < T:

where f is a source/sink term and u0,�1,�2,�1,�2 are well-defined initial and boundary 
values, respectively. Here the Riemann–Liouville left-sided fractional derivative R

0
D�

x
f (x) 

is defined by

Similarly, we may define the Riemann–Liouville right-sided fractional derivative as 
follows:

There are several ways to approximate the Riemann–Liouville fractional derivative in the 
literature. Meerschaert and Tadjeran [30] used the Grünwald–Letnikov formula to obtain 
the first-order scheme O(h) to approximate the Riemann–Liouville fractional derivative. 
Lubich [27] introduced the higher order schemes with order O(hp), p = 1, 2,⋯ 6, to approx-
imate the Riemann–Liouville fractional derivative. Diethelm [9, 10] obtained the scheme 
to approximate the Riemann–Liouville fractional derivative with the convergence order 
O(h2−𝛼), 0 < 𝛼 < 2 using the Hadamard finite-part integral approach; see other higher order 
schemes to approximate the Riemann–Liouville fractional derivative in Li and Zeng [22].

Based on the different schemes for approximating the Riemann–Liouville fractional deriv-
atives, many numerical methods are introduced for solving space fractional partial differen-
tial Eqs. (1)–(4): finite difference methods [4–6, 15–18, 21, 24, 25, 28, 29, 31–40], finite 
element methods [1–3, 7, 8, 11–14, 23, 26] and spectral methods [19, 20]. Meerschaert and 
Tadjeran [30] introduced a shifted finite difference method based on the Grünwald–Letnikov 
formula for solving the two-sided space fractional partial differential equation in one-dimen-
sional case and proved that the convergence order of the numerical method is O(h). Meer-
schaert and Tadjeran [29] also considered the finite difference method for solving the frac-
tional advection–dispersion equation in one-dimensional case using the Grünwald–Letnikov 
formula. The second-order shifted finite difference methods for solving fractional partial 
differential equations based on the Grünwald–Letnikov formula are discussed in both one- 
and two-dimensional cases in Tadjeran et al. [35] and Tadjeran and Meerschaert [34]. Now 

(1)
ut(t, x, y) =

R
0
D�

x
u(t, x, y) + R

x
D�

1
u(t, x, y)

+ R
0
D�

y
u(t, x, y) + R

y
D�

1
u(t, x, y) + f (t, x, y),

(2)u(t, 0, y) = �1(t, y), u(t, 1, y) = �2(t, y),

(3)u(t, x, 0) = �1(t, x), u(t, x, 1) = �2(t, x),

(4)u(0, x, y) = u0(x, y),

(5)R
0
D�

x
g(x) =

1

Γ(2 − �)

d2

dx2 ∫
x

0

(x − �)1−�g(�) d�.

(6)R
x
D�

1
g(x) =

1

Γ(2 − �)

d2

dx2 ∫
1

x

(� − x)1−�g(�) d�.
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we turn to the Lubich’s higher order schemes. When Lubich’s higher order schemes with no 
shifts are applied for solving space fractional partial differential equations, the obtained finite 
difference methods are unstable as for using the Grünwald–Letnikov formula. With shifted 
Lubich higher order methods, it shows that the corresponding numerical methods for solv-
ing space fractional partial differential equations have only first-order accuracy; see [4, 5]. In 
[22, Section 2.2], Li and Zeng introduced other higher order schemes, for example, L2, L2C 
schemes, to approximate the Riemann–Liouville fractional derivative. However, to the best of 
our knowledge, there are no works available in the literature to use the L2 and L2C methods 
for solving space fractional partial differential equations. The numerical methods discussed 
in [22, Chapter 4] for solving space fractional partial differential equations are also based on 
the Grünwald–Letnikov formula and Lubich’s higher order schemes; see other recent works 
for solving space fractional partial differential equations in [1–3, 5, 21, 24, 25, 39, 40]. All 
the numerical methods constructed using the Grünwald–Letnikov formula or Lubich’s higher 
order methods for solving space fractional partial differential equations require the solution of 
the equation satisfies the homogeneous Dirichlet boundary condition. Otherwise, the experi-
mentally determined convergence orders of such numerical methods are very low, e.g., see 
Table 4 in Example 2 in Sect. 3. Therefore, it is interesting to design some numerical meth-
ods which have the higher order convergence for solving the space fractional partial differen-
tial equation with respect to both homogeneous and non-homogeneous Dirichlet boundary 
conditions. The purpose of this paper is to introduce such finite difference methods for solv-
ing the space fractional partial differential equation.

Recently, Ford et  al. [17] considered the finite difference method for solving the 
space fractional partial differential equation in one-dimensional case where the Rie-
mann–Liouville fractional derivative is approximated using the Hadamard finite-part 
integral; see also [15, 16, 37]. The convergence order O(𝜏 + h3−𝛼 + h𝛽), 𝛼 ∈ (1, 2), 𝛽 > 0 
of the numerical method in [17] is proved in the maximum norm for both homogeneous 
and non-homogeneous Dirichlet boundary conditions. In this paper, we will extend the 
method in Ford et  al. [17] to solve space fractional partial differential equations in two-
dimensional case. The corresponding error estimates in this paper are proved using a com-
pletely different way from Ford et al. [17]. The error estimates with the convergence order 
O(𝜏 + h3−𝛼 + h𝛽), 𝛼 ∈ (1, 2), 𝛽 > 0 hold for both homogeneous and non-homogeneous Dir-
ichlet boundary conditions.

The main contributions of this paper are as follows.

 (i) A new finite difference method for solving space fractional partial differential 
equations in two-dimensional case is introduced and the convergence order is 
O(𝜏 + h𝛽 + h3−𝛼), 𝛼 ∈ (1, 2), 𝛽 > 0 , where the Riemann–Liouville fractional deriva-
tive is approximated using the Hadamard finite-part integral approach.

 (ii) The convergence order of the finite difference method introduced in this paper is 
valid for both homogeneous and non-homogeneous Dirichlet boundary conditions.

The paper is organized as follows. In Sect.  2, we introduce the shifted finite difference 
methods for solving (1)–(4) and the error estimates are proved. In Sect.  3, we consider 
four numerical examples in both homogeneous and non-homogeneous Dirichlet boundary 
conditions with the different smoothness for the solution of the equation and show that the 
numerical results are consistent with the theoretical analysis.
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2  The Finite Difference Method

In this section, we shall extend the method in Ford et al. [17] for solving the space frac-
tional partial differential equation in one-dimensional case to solve space fractional partial 
differential equations (1)–(4) in two-dimensional case. For simplicity with the notations, 
we also assume that the boundary values are equal to 0, i.e., �1 = �2 = �1 = �2 = 0.

We have

Lemma 1 [17, Lemma 2.1] Let 1 < 𝛼 < 2 and let M = 2m0 where m0 is a fixed positive 
integer. Let 0 = x0 < x1 < x2 < ⋯ < x2j < x2j+1 < ⋯ < xM = 1 be a partition of [0,  1]. 
Assume that g ∈ C3[0, 1] is a sufficiently smooth function. Then, with j = 1, 2,⋯ ,m0,

and,  with j = 1, 2,⋯ ,m0 − 1,

where

R
0
D�

x
g(x)

|||x=x2j =
x−�
2j

Γ(−�)

(
2j∑
l=0

�l,2jg(x2j−l) + R2j(g)

)

= h−�
2j∑
l=0

wl,2jg(x2j−l) +
x−�
2j

Γ(−�)
R2j(g),

R
0
D�

x
g(x)

|||x=x2j+1 =
1

Γ(−�) ∫
x1

0

(x2j+1 − �)−1−�g(�) d�

+
x−�
2j+1

Γ(−�)

(
2j∑
l=0

�l,2j+1g(x2j+1−l) + R2j+1(g)

)

=
1

Γ(−�) ∫
x1

0

(x2j+1 − �)−1−�g(�) d�

+ h−�
2j∑
l=0

wl,2j+1g(x2j+1−l) +
x−�
2j+1

Γ(−�)
R2j+1(g),

(−�)(−� + 1)(−� + 2)(2j)−��l,2j =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

2−�(� + 2), for l = 0,

(−�)22−� , for l = 1,

(−�)(−2−��) +
1

2
F0(2), for l = 2,

−F1(k), for l = 2k − 1, k = 2, 3,⋯ , j,
1

2
(F2(k) + F0(k + 1)), for l = 2k, k = 2, 3,⋯ , j − 1,

1

2
F2(j), for l = 2j,

F0(k) = (2k − 1)(2k)((2k)−� − (2(k − 1))−�)(−� + 1)(−� + 2)

− ((2k − 1) + 2k)((2k)−�+1 − (2(k − 1))−�+1)(−�)(−� + 2)

+ ((2k)−�+2 − (2(k − 1))−�+2)(−�)(−� + 1),

F1(k) = (2k − 2)(2k)((2k)−� − (2k − 2)−�)(−� + 1)(−� + 2)

− ((2k − 2) + 2k)
�
(2k)−�+1 − (2k − 2)−�+1)(−�)(−� + 2)

+ ((2k)−�+2 − (2k − 2)−�+2)(−�)(−� + 1),

F2(k) = (2k − 2)(2k − 1)((2k)−� − (2k − 2)−�)(−� + 1)(−� + 2)

− ((2k − 2) + (2k − 1))((2k)−�+1 − (2k − 2)−�+1)(−�)(−� + 2)

+ ((2k)−�+2 − (2k − 2)−�+2)(−�)(−� + 1).
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 Further, we have,  with l = 0, 1, 2,⋯ , 2j,

and

The remainder term Rl(g) satisfies, for every g ∈ C3(0, 1),

Similarly, we may consider the approximation of the right-sided Riemann–Liouville frac-
tional derivative R

x
D�

1
g(x) at x = xl, l = 0, 1, 2,⋯ , 2m0 − 2 . Using the same argument as for 

the approximation of R
0
D�

x
f (x) at x = xl , we can show that, with j = 0, 1, 2,⋯ ,m0 − 1,

and, with j = 0, 1, 2,⋯ ,m0 − 2,

Let M = 2m0 . Let 0 = x0 < x1 < x2 < ⋯ < xj < ⋯ < xM = 1 and 0 = y0 < y1 < y2 < ⋯

< y
j
< ⋯ < y

M
= 1 be the partitions of [0, 1] and h the space step size. Let 0 = t0 < t1 < t2

< ⋯ < t
n
< ⋯ < t

N
= T  be the time partition of [0,  T] and � the time step size. At the 

point (tn+1, xl, ym) , where l, m will be specified later, we have

where f n+1
l,m

= f (tn+1, xl, ym).
To obtain a stable finite difference method, we will consider the following shifted equation:

where the errors produced by the shifted terms are denoted by

(7)Γ(3 − �)wl,2j = (−�)(−� + 1)(−� + 2)(2j)−��l,2j,

(8)�l,2j+1 = �l,2j, wl,2j+1 = wl,2j.

�Rl(g)� ≤ Ch3−�‖g���‖∞, l = 2, 3, 4,⋯ ,MwithM = 2m0.

R
x
D�

1
g(x)

|||x=x2j = h−�
M−2j∑
l=0

wl,M−2jg(x2j+l) +
x−�
2j

Γ(−�)
R2j(g),

R
x
D�

1
g(x)

|||x=x2j+1 =
1

Γ(−�) ∫
xM

xM−1

(� − x2j+1)
−1−�g(�) d�

+ h−�
M−(2j+1)−1∑

l=0

wl,M−(2j+1)g(x2j+1+l) +
x−�
2j+1

Γ(−�)
R2j+1(g).

(9)
ut(tn+1, xl, ym) =

R
0
D�

x
u(tn+1, xl, ym) +

R
0
D�

y
u(tn+1, xl, ym)

+ R
x
D�

1
u(tn+1, xl, ym) +

R
y
D�

1
u(tn+1, xl, ym) + f n+1

l,m
,

(10)
ut(tn+1, xl, ym) −

R
0
D�

x
u(tn+1, xl+1, ym) −

R
x
D�

1
u(tn+1, xl−1, ym)

− R
0
D�

y
u(tn+1, xl, ym+1) −

R
y
D�

1
u(tn+1, xl, ym−1) = f n+1

l,m
+ �n+1

l,m
,

(11)

�n+1
l,m

= R
0
D�

x
u(tn+1, xl, ym) −

R
0
D�

x
u(tn+1, xl+1, ym)

+ R
x
D�

1
u(tn+1, xl, ym) −

R
x
D�

1
u(tn+1, xl−1, ym)

+ R
0
D�

y
u(tn+1, xl, ym) −

R
0
D�

y
u(tn+1, xl, ym+1)

+ R
y
D�

1
u(tn+1, xl, ym) −

R
y
D�

1
u(tn+1, xl, ym−1).
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We assume that R
0
D�

x
u(t, x, y), R

0
D�

y
u(t, x, y) satisfy the following Hölder conditions.

Assumption 1 For any x∗, x∗∗, y∗, y∗∗ ∈ ℝ , there exist constants C > 0 and 𝛽 > 0 such that

We also assume that R
x
D�

1
u(t, x, y), R

y
D�

1
u(t, x, y) satisfy the following Hölder conditions.

Assumption 2 For any x∗, x∗∗, y∗, y∗∗ ∈ ℝ , there exist constants C > 0 and 𝛽 > 0 such that

Remark 1 To make Assumptions 1 and 2 hold, we need to assume that the solution u satis-
fies some regularity conditions. In some circumstances, such conditions are easy to check, 
for example, when R

0
D�

x
v(x) ∈ C1[0, 1] , we have, with � = 1,

Similarly, we can consider R
x
D�

1
v(x).

We now turn to the discretization scheme of (10). Discretizing ut at t = tn+1 using the back-
ward Euler method and discretizing R

0
D�

x
, R
x
D�

1
, R
0
D�

y
, R
y
D�

1
 at x = xl+1, x = xl−1, y = ym+1,

y = y
m−1 , respectively, using the Diethem’s finite difference method introduced in Lemma 1, 

we obtain

where Sn+1
l,m

 can be defined as Sn+1
2j

 in [17, (27)] and the weights w(1)

k,l+1
,w

(2)

k,m+1
,w

(3)

k,M−(l−1)
,

w
(4)

k,M−(m−1)
 in (12) are defined by (7) and (8). Further, we denote l(1)

i
, l
(2)

i
,m

(1)

j
,m

(2)

j
 by the 

following, with i = 1, 2,⋯ ,m0 − 1, j = 1, 2,⋯ ,m0 − 1,

and

|||
R
0
D�

x
u(t, x∗, y) − R

0
D�

x
u(t, x∗∗, y)

||| ≤ C|x∗ − x∗∗|� ,
|||
R
0
D�

y
u(t, x, y∗) − R

0
D�

y
u(t, x, y∗∗)

||| ≤ C|y∗ − y∗∗|� .

|||
R
x
D�

1
u(t, x∗, y) − R

x
D�

1
u(t, x∗∗, y)

||| ≤ C|x∗ − x∗∗|� ,
|||
R
y
D�

1
u(t, x, y∗) − R

y
D�

1
u(t, x, y∗∗)

||| ≤ C|y∗ − y∗∗|� .

|||
R
0
D�

x
v(x∗) − R

0
D�

x
v(x∗∗)

||| ≤ C|x∗ − x∗∗|� .

(12)

�−1
(
u(tn+1, xl, ym) − u(tn, xl, ym)

)

− h−�
l
(1)

i∑
k=0

w
(1)

k,l+1
u(tn+1, xl+1−k, ym) − h−�

m
(1)

j∑
k=0

w
(2)

k,m+1
u(tn+1, xl, ym+1−k)

− h−�
l
(2)

i∑
k=0

w
(3)

k,M−(l−1)
u(tn+1, xl−1+k, ym) − h−�

m
(2)

j∑
k=0

w
(4)

k,M−(m−1)
u(tn+1, xl, ym−1+k)

= f n+1
l,m

+ Sn+1
l,m

+ O(� + h� + h3−�),

l
(1)

i
=

{
2i, l = 2i,

2i + 2, l = 2i + 1,
m

(1)

j
=

{
2j, m = 2j,

2j + 2, m = 2j + 1,
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Then we have

Lemma 2 [17, Lemma 2.3] Let 1 < 𝛼 < 2 . The coefficients w(s)

k,2p
, s = 1, 2, 3, 4, p = 1, 2,⋯ ,m0 

defined in (12) satisfy

Let Un
l,m

≈ u(tn, xl, ym) denote the approximate solution of u(tn, xl, ym) . We define the fol-
lowing finite difference method for solving (1)–(4):

where Qn+1
l,m

 is some approximation of Sn+1
l,m

 , defined as in [17, (30)] which satisfies

Now we come to our main theorem in this work.

Theorem  1 Assume that u(tn, xl, ym) and Un
l,m

 are the solutions of (12) and (16), respec-
tively. Assume that Assumptions 1 and 2 hold. Then there exists a norm ‖ ⋅ ‖ such that

Proof Let en
l,m

= u(tn, xl, ym) − Un
l,m

 . Subtracting (16) from (12), we get the following error 
equation, with � = �∕h�:

l
(2)

i
=

{
M − (2i − 1) − 1, l = 2i,

M − 2i, l = 2i + 1,
m

(2)

j
=

{
M − (2j − 1) − 1, m = 2j,

M − 2j, m = 2j + 1.

(13)w
(s)

1,2p
< 0,

(14)w
(s)

k,2p
> 0, k ≠ 1, k = 0, 2, 3,⋯ , 2p,

(15)
Γ(3 − 𝛼)

2p∑
k=0

w
(s)

k,2p
< 0.

(16)

�−1
(
Un+1

l,m
− Un

l,m

)

− h−�
l
(1)

i∑
k=0

w
(1)

k,l+1
Un+1

l+1−k,m
− h−�

m
(1)

j∑
k=0

w
(2)

k,m+1
Un+1

l,m+1−k

− h−�
l
(2)

i∑
k=0

w
(3)

k,M−(l−1)
Un+1

l−1+k,m
− h−�

m
(2)

j∑
k=0

w
(4)

k,M−(m−1)
Un+1

l,m−1+k

= f n+1
l,m

+ Qn+1
l,m

,

Qn+1
l,m

− Sn+1
l,m

= O(h3−�).

‖en‖ = ‖Un − u(tn)‖ ≤ C(� + h3−� + h�).

(17)

(en+1
l,m

− en
l,m
) − �

⎛⎜⎜⎝

l
(1)

i�
k=0

w
(1)

k,l+1
en+1
l+1−k,m

+

m
(1)

j�
k=0

w
(2)

k,m+1
en+1
l,m+1−k

⎞⎟⎟⎠

− �

⎛⎜⎜⎝

l
(2)

i�
k=0

w
(3)

k,M−(l−1)
en+1
l−1+k,m

+

m
(2)

j�
k=0

w
(4)

k,M−(m−1)
en+1
l,m−1+k

⎞⎟⎟⎠
= �Rn+1

l,m
,
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where

Rearranging (17), we get

that is,

More precisely, we have, for l = 1,m = 1, 2,⋯ ,M − 1,

For l = 2,m = 1, 2,⋯ ,M − 1 , we have

Rn+1
l,m

= O(� + h� + h3−�).

(18)

(
1 − ��

(1)

1,l+1
− ��

(3)

1,M−(l−1)
− ��

(2)

1,m+1
− ��

(4)

1,M−(m−1)

)
en+1
l,m

− �

(
l+1∑
k=2

�
(1)

k,l+1
en+1
l+1−k,m

+

M−(l−1)∑
k=2

�
(3)

k,M−(l−1)
en+1
l−1+k,m

)

− �

(
m+1∑
k=2

�
(2)

k,m+1
en+1
l,m+1−k

+

M−(m−1)∑
k=2

�
(4)

k,M−(m−1)
en+1
l,m−1+k

)

− ��
(1)

0,l+1
en+1
l+1,m

− ��
(3)

0,M−(l−1)
en+1
l−1,m

− ��
(2)

0,m+1
en+1
l,m+1

− ��
(4)

0,M−(m−1)
en+1
l,m−1

= �Rn
l,m

+ en
l,m
,

(19)

(
1 − ��

(1)

1,l+1
− ��

(3)

1,M−(l−1)
− ��

(2)

1,m+1
− ��

(4)

1,M−(m−1)

)
en+1
l,m

− ��
(1)

0,l+1
en+1
l+1,m

− 0 − �w
(1)

2,l+1
en+1
l−1,m

−⋯ − �w
(1)

l+1,l+1
en+1
0,m

− �w
(2)

0,m+1
en+1
l,m+1

− 0 − �w
(2)

2,m+1
en+1
l,m−1

−⋯ − �w
(2)

m+1,m+1
en+1
l,0

− ��
(3)

0,M−(l−1)
en+1
l−1,m

− 0 − ��
(3)

2,M−(l−1)
en+1
l+1,m

−⋯ − ��
(3)

M−(l−1),M−(l−1)
en+1
M,m

− ��
(4)

0,M−(m−1)
en+1
l,m−1

− 0 − ��
(4)

2,M−(m−1)
en+1
l,m+1

−⋯ − ��
(4)

M−(m−1),M−(m−1)
en+1
l,M

= en
l,m

+ �Rn+1
l,m

.

(20)

(
1 − ��

(1)

1,2
− ��

(3)

1,M
− ��

(2)

1,m+1
− ��

(4)

1,M−(m−1)

)
en+1
1,m

− ��
(1)

0,2
en+1
2,m

− 0 − ��
(1)

2,2
en+1
0,m

− �w
(2)

0,m+1
en+1
1,m+1

− 0 − �w
(2)

2,m+1
en+1
1,m−1

−⋯ − �w
(2)

m+1,m+1
en+1
1,0

− ��
(3)

0,M
en+1
0,m

− 0 − ��
(3)

2,M
en+1
2,m

−⋯ − ��
(3)

M,M
en+1
M,m

− ��
(4)

0,M−(m−1)
en+1
1,m−1

− 0 − ��
(4)

2,M−(m−1)
en+1
1,m+1

−⋯ − ��
(4)

M−(m−1),M−(m−1)
en+1
1,M

= en
1,m

+ �Rn+1
1,m

.
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In general, for l = M − 1,m = 1, 2,⋯ ,M − 1 , we have

Thus, we may write (18) as the following matrix form:

where

and

(21)

(
1 − ��

(1)

1,3
− ��

(3)

1,M−1
− ��

(2)

1,m+1
− ��

(4)

1,M−(m−1)

)
en+1
2,m

− ��
(1)

0,3
en+1
3,m

− 0

− �w
(2)

0,m+1
en+1
2,m+1

− 0 − �w
(2)

2,m+1
en+1
2,m−1

−⋯ − �w
(2)

m+1,m+1
en+1
2,0

− ��
(3)

0,M−1
en+1
1,m

− 0 − ��
(3)

2,M−1
en+1
3,m

−⋯ − ��
(3)

M−1,M−1
en+1
M,m

− ��
(4)

0,M−(m−1)
en+1
2,m−1

− 0 − ��
(4)

2,M−(m−1)
en+1
2,m+1

−⋯ − ��
(4)

M−(m−1),M−(m−1)
en+1
2,M

= en
2,m

+ �Rn+1
2,m

.

(22)

(
1 − ��

(1)

1,M
− ��

(3)

1,2
− ��

(2)

1,m+1
− ��

(4)

1,M−(m−1)

)
en+1
M−1,m

− ��
(1)

0,M
en+1
M,m

− 0 − �w
(1)

2,M−1
en+1
M−2,m

−⋯ − �w
(1)

M,M−1
en+1
0,m

− �w
(2)

0,m+1
en+1
M−1,m+1

− 0 − �w
(2)

2,m+1
en+1
M−1,m−1

−⋯ − �w
(2)

m+1,m+1
en+1
M−1,0

− ��
(3)

0,2
en+1
M−2,m

− 0 − ��
(3)

2,2
en+1
M,m

−⋯ − ��
(3)

2,2
en+1
M,m

− ��
(4)

0,M−(m−1)
en+1
M−1,m−1

− 0 − ��
(4)

2,M−(m−1)
en+1
M−1,m+1

−⋯ − ��
(4)

M−(m−1),M−(m−1)
en+1
M−1,M

= en
l,m

+ �Rn+1
l,m

.

(23)Aen+1 = en + �Rn+1,

e
n+1 =

⎛⎜⎜⎜⎝

e
n+1

1

e
n+1

2

⋮

e
n+1

M−1

⎞⎟⎟⎟⎠
, R

n+1 =

⎛⎜⎜⎜⎝

R
n+1

1

R
n+1

2

⋮

R
n+1

M−1

⎞⎟⎟⎟⎠
,

e
n+1

l
=

⎛
⎜⎜⎜⎜⎝

e
n+1

l,1

e
n+1

l,2

⋮

e
n+1

l,M−1

⎞⎟⎟⎟⎟⎠
, R

n+1

l
=

⎛⎜⎜⎜⎜⎝

R
n+1

l,1

R
n+1

l,2

⋮

R
n+1

l,M−1

⎞⎟⎟⎟⎟⎠
, l = 1, 2,⋯ ,M − 1,

A = (ai,j)(M−1)2×(M−1)2 =

⎛⎜⎜⎜⎝

A1,1 A1,2 ⋯ A1,M−1

A2,1 A2,2 ⋯ A2,M−1

⋮ ⋮ ⋮

AM−1,1 AM−1,2 ⋯ AM−1,M−1

⎞⎟⎟⎟⎠
(M−1)2×(M−1)2

.
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Here

where

and, with E = I(M−1)×(M−1),

We shall show that there exists a norm ‖ ⋅ ‖ such that

Assume (24) holds at the moment, we have, by (23), noting that n� = tn ≤ T ,

Al,l =

⎛
⎜⎜⎜⎜⎝

a11 − �w
(2)

0,2
− �w

(4)

2,M
− �w

(4)

3,M
⋯ − �w

(4)

M−1,M

−�w
(2)

2,3
− �w

(4)

0,M−1
a22 − �w

(2)

0,3
− �w

(4)

2,M−1
⋯ − �w

(4)

M−2,M−1

⋮ ⋮ ⋮ ⋮

−�w
(2)

M−1,M
− �w

(2)

M−2,M
− �w

(2)

2,M
− �w

(4)

0,2
⋯ aM−1M−1

⎞
⎟⎟⎟⎟⎠
,

a11 = 1 − ��
(1)

1,l+1
− ��

(3)

1,M−l+1
− ��

(2)

1,2
− ��

(4)

1,M
,

a22 = 1 − ��
(1)

1,l+1
− ��

(3)

1,M−l+1
− ��

(2)

1,3
− ��

(4)

1,M−1
,

⋯

a
M−1,M−1 = 1 − ��

(1)

1,l+1
− ��

(3)

1,M−l+1
− ��

(2)

1,M
− ��

(4)

1,2
,

Al,l−1 = (−��
(1)

2,l+1
− ��

(3)

0,M−l+1
)E, l = 2, 3,⋯ ,M − 1,

Al,l−2 = −�w
(1)

3,l+1
E, l = 3, 4,⋯ ,M − 1,

⋯

Al,l−(M−2) = −�w
(1)

M−1,l+1
E, l = M − 1,

Al,l+1 = (−��
(1)

0,l+1
− ��

(3)

2,M−l+1
)E, l = 1, 2,⋯ ,M − 2,

Al,l+2 = −��
(3)

3,M−l+1
E, l = 1, 2,⋯ ,M − 3,

⋯

Al,M−l = −��
(3)

M−1,M−l+1
E, l = 1.

(24)‖A−1‖ ≤ 1.

‖en+1‖ ≤ ‖A−1‖�‖en‖ + �‖Rn+1‖� ≤ ‖en‖ + �‖Rn+1‖
≤ ⋯

≤ ‖e0‖ + ((n + 1)�) max
1≤n≤N ‖R

n‖ ≤ C(� + h� + h3−�),



515Communications on Applied Mathematics and Computation (2019) 1:505–523 

1 3

where we use the fact e0 = 0.
It remains to show (24). It suffices to show all the eigenvalues of A are greater than or 

equal to 1, which implies that all the eigenvalues of A−1 are less than or equal to 1. If all the 
eigenvalues of A−1 are less than or equal to 1, then there exists some norm ‖ ⋅ ‖ such that 
‖A−1‖ ≤ 1 [33]. To show all the eigenvalues of A are greater than or equal to 1, we may use 
the well-known Gershgorin lemma.

Let

We have

which imply that

rl =

(M−1)2∑
k=1,k≠l

|al,k|.

r1 = ��
(1)

0,2
+ ��

(2)

0,2
+ �

(
�
(4)

2,M
+⋯ + �

(4)

M−1,M

)
+ �

(
�
(3)

2,M
+⋯ + �

(3)

M−1,M

)
,

a1,1 = 1 − ��
(1)

1,2
− ��

(3)

1,M
− ��

(2)

1,2
− ��

(4)

1,M
,

r2 = ��
(1)

0,2
+ �

(
�
(3)

0,3
+ �

(2)

2,3

)
+ �

(
�
(4)

0,M−1
+ 0 + �

(4)

2,M−1
+⋯ + �

(4)

M−2,M−1

)

+ �(�
(3)

2,M
+⋯ + �

(3)

M−1,M
),

a2,2 = 1 − ��
(1)

1,2
− ��

(3)

1,M
− ��

(2)

1,3
− ��

(4)

1,M−1
,

⋯

r(M−1)2 = �

(
�
(1)

2,M
+⋯ + �

(1)

M−1,M

)
+ ��

(3)

0,2

+ �

(
�
(2)

2,M
+⋯ + �

(2)

M−1,M

)
+ ��

(4)

0,2
,

a(M−1)2,(M−1)2 = 1 − ��
(1)

1,M
− ��

(3)

1,2
− ��

(2)

1,2
− ��

(4)

1,M
− ��

(2)

1,M
− ��

(4)

1,2
,

a1,1 − r1 = 1 − �

(
�
(1)

0,2
+ �

(1)

1,2

)
− �

(
�
(2)

0,2
+ �

(2)

1,2

)

− �

(
�
(3)

1,M
+⋯ + �

(3)

M−1,M

)
− �

(
�
(4)

1,M
+⋯ + �

(4)

M−1,M

)
,

a2,2 − r2 = 1 − �

(
�
(1)

0,2
+ �

(1)

1,2

)
− �

(
�
(2)

0,3
+ �

(2)

1,3
+ �

(2)

2,3

)

− �

(
�
(3)

1,M
+⋯ + �

(3)

M−1,M

)
− �

(
�
(4)

0,M
+⋯ + �

(4)

M−2,M−1

)
,

⋯

a(M−1)2,(M−1)2 − r(M−1)2 = 1 − �

M−1∑
i=1

�
(1)

i,M
− �

M−1∑
i=1

�
(2)

i,M

− �

(
�
(3)

0,2
+ �

(3)

1,2

)
− �

(
�
(4)

0,2
+ �

(4)

1,2

)
.
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By Lemma 2, we get

which implies that all the eigenvalues � of A satisfy, by Gershgorin lemma,

that is, all the eigenvalues � of A are greater than 1 which implies (24).
Together these estimates complete the proof of Theorem 1.

3  Numerical Examples

We shall consider in this section four numerical examples to illustrate that the numerical 
results are consistent with our theoretical results.

Example 1 Consider, with 1 < 𝛼 < 2 , 0 ≤ x, y ≤ 2  [6],

where

It is easy to check that u(t, x, y) = 4e−tx2(2 − x)2y2(2 − y)2 is the exact solution.

Note that the error estimate satisfies, by Theorem  1, with � = min(3 − �, �),

al,l − rl > 1, l = 1, 2,⋯ , (M − 1)2,

1 < al,l − rl < 𝜇 < al,l + rl,

(25)ut(t, x, y) =
R
0
D

𝛼

x
u(t, x, y) + R

0
D

𝛼

y
u(t, x, y) + f (t, x, y), 0 < t < 1,

(26)u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 2) = 0,

(27)u(0, x, y) = 4x2(2 − x)2y2(2 − y)2,

f (t, x, y) = − 4e−tx2(2 − x)2y2(2 − y)2

− 4e−t(y2(2 − y)2)

(
4

Γ(2 + 1)

Γ(2 − � + 1)
x2−�

−4
Γ(3 + 1)

Γ(3 − � + 1)
x3−� +

Γ(4 + 1)

Γ(4 − � + 1)
x4−�

)

− 4e−t(x2(2 − x)2)

(
4

Γ(2 + 1)

Γ(2 − � + 1)
y2−�

−4
Γ(3 + 1)

Γ(3 − � + 1)
y3−� +

Γ(4 + 1)

Γ(4 − � + 1)
y4−�

)
.

‖eN‖ = ‖UN − u(tN)‖ ≤ C(� + h� ).
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In the numerical method (16), we simply ignore the errors �n+1
l,m

 in (11) which are produced 
by the shifted terms. Of course, if we use the numerical methods (16) to calculate the 
approximate solutions, the spatial error should be O(h� + h3−�) . Since the exact solutions 
are given in our numerical examples, the errors �n+1

l,m
 in (11) produced by the shifted terms 

can be calculated exactly. Thus, the convergence order should be O(h3−�) if we include �n+1
l,m

 
in the numerical method (16). In general, we do not know the exact solutions of the equa-
tion. In such case, we may approximate �n+1

l,m
 using the computed solutions Un to improve 

the convergence orders. In all our numerical simulations in this section, the numerical 
method (16) will include �n+1

l,m
 defined by (11), which makes the experimentally determined 

order of convergence (EOC) independent of 𝛽 > 0.
We will observe the convergence orders with respect to the space step size. To see 

this, we shall choose sufficiently small time step size � = 2−10 and the different space 
step sizes hl = 2−l, l = 2, 3, 4, 5, 6 such that the computational error is dominated by the 
space step size O(h3−𝛼), 1 < 𝛼 < 2 . Denote ‖eN

l
‖ = ‖UN − u(tN)‖ the L2 norm of the error 

at tN = 1 calculated with the step size hl . We then have

which implies that

Hence, the convergence order satisfies

The experimentally determined orders of convergence (EOC) for the numerical method 
(16) are provided in Table 1 with respect to the different � . We observe that the conver-
gence order is indeed O(h3−�) which is consistent with Theorem 1.

Next, we solve the equation in Example 1 using the finite difference method intro-
duced in Meerschaert and Tadjeran [30] where the Riemann–Liouville fractional 
derivatives are approximated using the Grünwald–Letnikov formula which requires the 
solution of the equation satisfies the homogeneous Dirichlet boundary condition; see 
some other shifted and weighted Grünwald difference operator to approximate the Rie-
mann–Liouville fractional derivative in [36]. The convergence order of the finite differ-
ence method in [30] is O(h) and we indeed observe this in Table 2 for solving (33)–(35). 

(28)‖eN
l
‖ ≈ Ch

�

l
, l = 2, 3, 4, 5, 6,

‖eN
l
‖

‖eN
l+1

‖ ≈
h
�

l

h
�

l+1

= 2� .

(29)� ≈ log 2

� ‖eN
l
‖

‖eN
l+1

‖

�
.

Table 1  The experimentally 
determined orders of 
convergence (EOC) in Example 1 
using the numerical method (16) 
at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

2−10 2−3

2−10 2−4 1.490 9 1.510 3 1.4715 1.543 9
2−10 2−5 1.586 3 1.499 8 1.363 2 1.325 1
2−10 2−6 1.706 8 1.519 7 1.356 2 1.246 8
2−10 2−7 1.813 6 1.628 5 1.350 4 1.191 5
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From now on, we call the finite difference method in Meerschaert and Tadjeran [30] as 
“the shifted Grünwald–Letnikov method ”.

Example 2 In this example, we will consider the following space fractional partial dif-
ferential equation with non-homogeneous Dirichlet boundary conditions, with 1 < 𝛼 < 2 , 
0 ≤ x, y ≤ 2:

where

It is easy to see that u(t, x, y) = 4e−tx2(2 − x)2y2(2 − y)2 + 5 is the exact solution of the 
equation.

In Table 3, we show the convergence orders using the numerical method (16). We see 
that for some � , the convergence orders can reach O(h3−�) and for some other � the con-
vergence orders are less than O(h3−�) . But in most cases, the convergence orders of the 
numerical method (16) are greater than 1 for solving (30)–(32) with the non-homogeneous 
Dirichlet boundary conditions.

In Table 4, we use “the shifted Grünwald–Letnikov method” introduced in Meerschaert 
and Tadjeran [30] for solving (30)–(32). We observe that the convergence orders are very 

(30)ut(t, x, y) =
R
0
D𝛼

x
u(t, x, y) + R

0
D𝛼

y
u(t, x, y) + f (t, x, y), 0 < t < 1,

(31)u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 2) = 5,

(32)u(0, x, y) = 4x2(2 − x)2y2(2 − y)2 + 5,

f (t, x, y) = −4e−tx2(2 − x)2y2(2 − y)2

− 4e−ty2(2 − y)2
(
4

Γ(2 + 1)

Γ(2 − � + 1)
x2−� − 4

Γ(3 + 1)

Γ(3 − � + 1)
x3−�

+
Γ(4 + 1)

Γ(4 − � + 1)
x4−�

)
+ 5

Γ(1)

Γ(1 − �)
x−�

− 4e−tx2(2 − x)2
(
4

Γ(2 + 1)

Γ(2 − � + 1)
y2−� − 4

Γ(3 + 1)

Γ(3 − � + 1)
y3−�

+
Γ(4 + 1)

Γ(4 − � + 1)
y4−�

)
+ 5

Γ(1)

Γ(1 − �)
y−� .

Table 2  The experimentally 
determined orders of 
convergence (EOC) in Example 2 
using the shifted Grünwald–
Letnikov method at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

2−10 2−3

2−10 2−4 0.877 0 0.963 0 1.198 1 1.076 5
2−10 2−5 0.920 4 0.998 7 1.086 8 1.069 2
2−10 2−6 0.967 1 1.010 4 1.044 0 1.094 6
2−10 2−7 0.989 2 1.003 3 1.015 6 1.067 6
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low because of the non-homogeneous boundary conditions. From Tables  3 and  4, we 
observe that the numerical method (16) introduced in this paper has higher order conver-
gence than “the shifted Grünwald–Letnikov method” introduced in Meerschaert and Tad-
jeran [30] for solving space fractional partial differential equations with non-homogeneous 
boundary conditions.

In the next example, we shall investigate the convergence orders of the numerical 
method (16) for solving space fractional partial differential equations where the solutions 
of the equations are not sufficiently smooth.

Example 3 Consider, with 1 < 𝛼 < 2 , 0 ≤ x, y ≤ 1  [6],

where

Here the exact solution has the form u(t, x, y) = e−tx�1y�1 . We will consider two different �1 : 
the nonsmooth solution case with �1 = � and the smooth solution case with �1 = 3.

For the case �1 = � , we have, there exists some constant C,

(33)ut(t, x, y) =
R
0
D𝛼

x
u(t, x, y) + R

0
D𝛼

y
u(t, x, y) + f (t, x, y), 0 < x < 1, t > 0,

(34)u(t, 0, y) = 0, u(t, 1, y) = e−ty�1 , u(t, x, 0) = 0, u(t, x, 1) = e−tx�1 ,

(35)u(0, x, y) = x�1y�1 ,

f (t, x, y) = − e−tx�1y�1 − e−t
Γ(�1 + 1)

Γ(�1 + 1 − �)
x�1−�y�1

− e−tx�1y�1 − e−t
Γ(�1 + 1)

Γ(�1 + 1 − �)
y�1−�x�1 .

Table 3  The experimentally 
determined orders of 
convergence (EOC) in Example 2 
using (16) at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

2−10 2−3

2−10 2−4 1.452 0 1.469 7 1.557 9 1.651 2
2−10 2−5 1.448 8 1.290 6 1.243 6 1.213 0
2−10 2−6 1.378 6 1.104 9 0.979 3 1.013 7
2−10 2−7 1.067 7 0.829 9 0.703 1 0.709 9

Table 4  The experimentally 
determined orders of 
convergence (EOC) in Example 2 
using the shifted Grünwald–
Letnikov method at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

2−10 2−3

2−10 2−4 0.792 1 0.354 8 0.617 0 1.186 9
2−10 2−5 0.544 4 0.234 8 0.273 8 0.547 8
2−10 2−6 0.414 5 0.260 4 0.234 8 0.276 4
2−10 2−7 0.381 1 0.329 1 0.278 0 0.194 9
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which implies that the following Lipschitz condition holds

for any 𝛽 > 0.
In Table 5, we obtain the experimentally determined orders of convergence (EOC) 

for the different � = 1.2, 1.4, 1.6, 1.8 . Since the solution is not sufficiently smooth, the 
convergence orders are less than O(h3−�) as we expected.

For the smooth solution case with �1 = 3 , in Table  6, we observe that the conver-
gence orders are almost 3 − � as we expected.

In our final example, we consider a two-sided space fractional partial differential 
equation.

Example 4 Consider, with 1 < 𝛼 < 2 , 0 ≤ x, y ≤ 2 [30],

R
0
D�

x
(x�1 ) = D2

(
R
0
D�−2

x

)
(x�1 ) = D2 1

Γ(2 − �) ∫
x

0

(x − �)1−���1 d�

= CD2(x2) = C,

|||
R
0
D�

x
u(t, x∗, y) − R

0
D�

y
u(t, x∗∗, y)

||| = 0 ≤ C|x∗ − x∗∗|�

(36)
ut(t, x, y) =

R
0
D𝛼

x
u(t, x, y) + R

x
D𝛼

2
u(t, x, y)

+ R
0
D𝛼

y
u(t, x, y) + R

y
D𝛼

2
u(t, x, y) + f (t, x, y), 0 < t < 1,

(37)u(t, 0, y) = u(t, 2, y) = u(t, x, 0) = u(t, x, 2) = 0,

Table 5  The experimentally 
determined orders of 
convergence (EOC) in Example 3 
for �1 = � using (16) at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

�1 = 1.2 �1 = 1.4 �1 = 1.6 �1 = 1.8

2−10 2−3

2−10 2−4 1.299 1 1.148 9 1.047 5 0.968 3
2−10 2−5 1.464 9 1.345 2 1.198 4 1.064 7
2−10 2−6 1.441 5 1.427 8 1.267 6 1.145 9
2−10 2−7 1.220 2 1.432 8 1.329 2 1.145 1

Table 6  The experimentally 
determined orders of 
convergence (EOC) in Example 3 
for �1 = 3 using (16) at t = 1

Δt h � = 1.2 � = 1.4 � = 1.6 � = 1.8

�1 = 3 �1 = 3 �1 = 3 �1 = 3

2−10 2−3

2−10 2−4 1.370 5 1.237 6 1.150 2 1.104 5
2−10 2−5 1.580 0 1.389 1 1.335 8 1.101 1
2−10 2−6 1.716 3 1.502 8 1.310 9 1.154 0
2−10 2−7 1.849 7 1.569 4 1.360 5 1.170 0
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where u(t, x, y) = 4e−tx2(2 − x)2y2(2 − y)2 is the exact solution.

In Table 7, we observe that the convergence orders of the numerical method (16) for 
solving this equation are also O(h3−�) as we expected.

4  Conclusions

In this paper, we construct a new and reliable finite difference method for solving the  space 
fractional partial differential equations. The error estimates are proved and the convergence 
order of the numerical method depends on the smoothness of the solution of the equation. 
The convergence orders are proved for both homogeneous and non-homogeneous Dirichlet 
boundary conditions. Numerical examples show that the proposed numerical method in 
this paper has much higher convergence order than the shifted Grünwald–Letnikov method 
proposed in Meerschaert and Tadjeran [30] for solving space fractional partial differential 
equations with non-homogeneous boundary conditions.
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