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Abstract 

People with anorexia nervosa (AN) commonly exhibit social difficulties, which may be 

related to problems with understanding the perspectives of others, commonly known as Theory 

of Mind (ToM) processing. However, there is a dearth of literature investigating the neural 

basis of these differences in ToM and at what age they emerge. This study aimed to test for 

differences in the neural correlates of ToM processes in young women with AN, and young 

women weight-restored from AN, as compared to healthy control participants (HC). Based on 

previous findings in AN, we hypothesised that young women with current or prior AN, as 

compared to HCs, would exhibit a reduced neural response in the medial prefrontal cortex, the 

inferior frontal gyrus, and the temporo-parietal junction whilst completing a ToM task. We 

recruited 73 young women with AN, 45 weight-restored young women, and 70 young women 

without a history of AN to take part in the current study. Whilst undergoing a functional 

magnetic resonance imaging (fMRI) scan, participants completed the Frith-Happé task, which 

is a commonly-used measure of ToM with demonstrated reliability and validity in adult 

populations. In this task, participants viewed the movements of triangles, which depicted either 

action movements, simple interactions, or complex social interactions. Viewing trials with 

more complex social interactions in the Frith-Happé task was associated with increased brain 

activation in regions including the right temporo-parietal junction, the bilateral medial 

prefrontal cortex, the cerebellum, and the dorsolateral prefrontal cortex. There were no group 

differences in neural activation in response to the ToM contrast. Overall, these results suggest 

that the neural basis of spontaneous mentalising is preserved in most young women with AN. 

Keywords: Anorexia nervosa; theory of mind; autism spectrum disorder; neuropsychology; 

functional magnetic resonance imaging 

  



Anorexia nervosa (AN) is a severe eating disorder characterised by food restriction and 

compensatory behaviours leading to body weight which is excessively low for the individual’s 

height and development status (American Psychiatric Association, 2013). AN has a complex 

aetiology, with a number of genetic and environmental risk factors contributing to onset of the 

disorder. Recent theoretical models have highlighted the importance of interpersonal 

difficulties in contributing to the onset and maintenance of AN (Schmidt & Treasure, 2006).

  

Theory of mind has (ToM) been defined as the ability to infer information about others’ 

emotions, intentions, knowledge, and beliefs from social interactions or given information 

(Frith & Frith, 2005). ToM abilities are therefore critical in most social situations to effectively 

understand and respond to the behaviours and intentions of others. Problems in ToM have been 

well-documented in autism and recent research has also found problems in ToM among people 

with AN, including difficulties with emotional and cognitive ToM (Bora & Köse, 2016; Kerr-

Gaffney, Harrison, & Tchanturia, 2019; Leppanen, Sedgewick, Treasure, & Tchanturia, 2018; 

Sedgewick et al., 2019). It is possible that ToM processes may hinder individuals’ response to 

talking therapies, such as by contributing to poor self-insight, and may impact affected 

individuals’ ability to access and utilise social support networks in the recovery process (Bora 

& Köse, 2016). It is, therefore, pertinent to better characterise the nature of ToM difficulties in 

AN and its underlying biological mechanisms in order to better understand the development of 

AN and possible social-cognitive targets for treatment intervention (Russell, Schmidt, Doherty, 

Young, & Tchanturia, 2009). 

 In the general population, ToM is associated with a complex network of brain regions. 

In particular, the temporo-parietal junction (TPJ) has been highlighted as a putative region that 

supports the formation of mental representations (Abu-Akel & Shamay-Tsoory, 2011; Döhnel 

et al., 2012). Following initial detection and representation of mental states, previous authors 



have hypothesised that the TPJ subsequently relays this information via the superior temporal 

sulcus (STS) to limbic and paralimbic regions for emotional processing (Abu-Akel & Shamay-

Tsoory, 2011; Gao et al., 2019). 

 The bulk of neuroimaging research administering a ToM task during scanning has 

found different patterns of activation in autistic people 1 compared to control participants. For 

example, research has found lower levels of activation in the right TPJ (Castelli, Frith, Happé, 

& Frith, 2002; Kirkovski, Enticott, Hughes, Rossell, & Fitzgerald, 2016) and altered functional 

connectivity between anterior and posterior brain regions among autistic people during ToM 

tasks (Kana, Keller, Cherkassky, Minshew, & Just, 2009). However, more recent evidence has 

suggested that these differences may be specific to men, with autistic women exhibiting similar 

activation in the right TPJ and ventromedial prefrontal cortex during a mentalising task 

compared to that of typically developing women (Kirkovski et al., 2016; Lai et al., 2019).  

 By contrast, recent evidence has highlighted differences in the brain networks recruited 

during ToM tasks in women with AN versus healthy controls, which may underpin functional 

differences in ToM abilities. McAdams and Krawczyk (2011), for example, found that, when 

compared to the healthy control participants, participants with a history of AN exhibited lower 

neural activation in brain regions forming part of the social cognition network, including the 

right inferior frontal gyrus, the bilateral TPJ, and the left fusiform gyrus during an implicit 

social attribution task. Schulte-Rüther, Mainz, Fink, Herpertz-Dahlmann, and Konrad (2012) 

conducted a later functional magnetic resonance imaging (fMRI) study using a similar ToM 

task in female adolescent inpatients with AN and healthy control participants. The authors 

found reduced neural activation in the middle and anterior temporal cortex and medial 

                                                           
1 Identity-first language (i.e., autistic person), opposed to person-first language (i.e., person with autism), is preferred by many autistic people 

and their allies. Therefore, in this article, the authors use predominantly identity-first language to describe this population. Kenny, L., 

Hattersley, C., Molins, B., Buckley, C., Povey, C., & Pellicano, E. (2016). Which terms should be used to describe autism? 

Perspectives from the UK autism community. Autism, 20(4), 442-462.  

 



prefrontal cortex (mPFC) during the ToM task, as compared to the healthy control group. 

Furthermore, the level of hypoactivation in the mPFC was correlated with clinical outcome one 

year following discharge. 

 The current study aimed to expand on previous neuroimaging research into ToM in AN 

in a more highly-powered study, thus enabling us to draw more confident conclusions about 

the degree of difference in the neural underpinning of ToM in young women with AN, and 

those weight-restored from AN, as compared to age-matched controls. We were specifically 

interested in testing for differences in the neural correlates of ToM processes in young adults 

with AN and young adults in weight recovery from AN compared to healthy control 

participants. We also sought to investigate the relationship between ToM-related neural 

activation and autistic features in young women with AN. Whilst undergoing an fMRI scan, 

participants completed the Frith-Happé task, which is a commonly-used measure of ToM with 

demonstrated reliability and validity (Abell, Happe, & Frith, 2000; White, Coniston, Rogers, 

& Frith, 2011). Based on previous findings in AN, we hypothesised that the mPFC, the inferior 

frontal gyrus, and the TPJ would be associated with a reduced blood-oxygenated-level-

dependent (BOLD) response in young women with, and weight-restored from, AN as 

compared to healthy controls, whilst completing the Frith-Happé task. We also hypothesised 

that greater levels of autistic characteristics in participants with AN would be associated with 

reduced ToM-related neural activation in the mPFC and related circuits extending to the TPJ. 

Materials and Methods 

Participants 

A total of 188 young women between 16 and 25 years old participated in the current 

study. Seventy-three women met DSM-5 criteria for AN at the time of the study, 23 women 

were weight-restored from AN but exhibited continuing elevated levels of eating disorder 

symptoms, 22 women were in full recovery from AN, and 70 comparison women had no 



current or prior history of an eating disorder. Given the low sample sizes for the weight-

recovered and fully recovered participant samples, these groups’ data were pooled into a single 

weight-restored participant group for all analyses. The BMI range of healthy control (HC) 

participants was 18.29 to 33.39, the BMI range of participants with acute AN (AAN) was 12.65 

to 18.50, and the BMI range of participants weight-restored from AN (WR) was 18.36-26.81. 

The average duration of illness for participants with current AN was 3.10 years (SD = 2.56 

years) and the average duration of illness for participants weight-restored from AN was 4.53 

years (SD = 2.78 years). Demographic statistics and clinical characteristics associated with 

each participant sample are presented in Table 1. Full inclusion and exclusion criteria for the 

study and details of the participants’ medication use are presented in the Supplementary 

Material. 

Participants with AAN were recruited from the South London and Maudsley National 

Health Service Foundation Trust. The HC and WR participant groups were recruited via social 

media, via the website for BEAT (the UK’s charity for eating disorders), and through 

advertisements in the local community. All participants provided written informed consent to 

take part in the study and, for participants under the age of 18, parental consent was also 

obtained. Ethical approval for the study was granted by the London – Surrey Borders Research 

Ethics Committee (REC Reference: 17/LO/0271). All study activities were in completed in 

accordance with the Declaration of Helsinki. 

Measures 

 The Eating Disorders Examination – Questionnaire version (Fairburn et al., 2009), the 

Hospital Anxiety and Depression Scale (Zigmond & Snaith, 1983), the National Adult Reading 

Test (Nelson, 1982), Autism Quotient-10 item version (Allison, Auyeung, & Baron-Cohen, 



2012), and the Autism Diagnostic Observation Schedule (Lord et al., 2000) were administered 

to the participants. Details about these measures are presented in the Supplementary Material.  

 The Frith-Happé Animations. The Frith-Happé animations depict a series of cartoons 

in which a red triangle and a blue triangle can be seen to move around a central open box, often 

in a way that implies they are animate and interacting (Abell et al., 2000). The Frith-Happé 

animations fall into three categories: 1) Random movement, in which the two triangles appear 

to float across the screen, occasionally bumping into each other, but displaying no symbolic 

social interaction; 2) Goal-directed movement, in which the triangles move in the same 

direction, and may appear to chase each other, but do not exhibit mentalising behaviour; and 

3) ToM interactions, in which the triangles appear to take the other shape’s thoughts and beliefs 

into account, such as by tricking or coaxing the other triangle to do something. The Frith-Happé 

animations are sensitive to difficulties with ToM even in autistic people who have an IQ within 

the normal range, who pass standard first- and second-order false belief tasks (Abell et al., 

2000). The Frith-Happé animations have a standardised coding system that produces an 

accuracy measure and a language measure for each of the three types of trials. Each trial’s 

accuracy is rated as 0 if the participant’s narrative contains a plainly wrong description and/or 

focuses on an unimportant aspect, 1 if the participant’s narrative contains a partial description 

of the sequence, but is imprecise or incomplete, and 2 if the participant’s narrative is a spot-on 

description of the story or the actions represented. Each trial’s language was coded as 0 if the 

participant describes a simple action with no interaction between the triangles, 1 if the 

participant describes interaction between the triangles without reference to mental states, and 

2 if the participant uses mental state verbs to describe reciprocal interactions between the 

triangles.  

Procedure 



 Each participant attended two study sessions. During the first session, participants 

completed the self-report questionnaires and structured clinical interviews (e.g., the ADOS). 

Participants were screened for MRI safety prior to proceeding to the second session. 

 Upon presentation to the second study session, participants completed a narrative 

version of the Frith-Happé animations outside of the scanner. During each trial of the Frith-

Happé animations, the participants were asked to describe what they thought the triangles were 

doing. Participants’ descriptions of each trial were audio-recorded and these behavioural data, 

collected outside of the scanner, were later analysed. Participants subsequently underwent an 

fMRI scan in which they completed a battery of neuropsychological tests. The Frith-Happé 

task was repeated inside the scanner as before except that, rather than the participant describing 

what the triangles were doing, at the end of each trial participants were instead asked to use a 

button box to indicate whether the triangles had exhibited random, goal-directed, or ToM 

movements. The multiple-choice version of the Frith-Happé animations has previously been 

validated in adults within the context of fMRI scanning paradigms (White et al., 2011). 

fMRI Scan Acquisition 

 A total 307 volumes were acquired during the Frith-Happé task. Images within the 

fMRI scans were acquired with a slice thickness of 4mm and a slice gap of 0.5mm. A total of 

28 slices were acquired in a top to bottom order. The field of view was 192mm2 with a 64 x 64 

matrix size. The resulting voxel size was therefore 3mm x 3mm x 4mm. The scan was 

conducted with an echo time of 30ms and a repetition time of 2,000ms. The flip angle was set 

to 80 degrees. A 3D high- spatial-resolution, Magnetisation Prepared Rapid Acquisition (3D 

MPRAGE) T1-weighted scan was also acquired. Field of view was 270mm2, TR/TE/TI = 

7.312/3.016/400ms. Two dummy scans were acquired at the start of the task and were 

subsequently discarded. 



Statistical Analysis 

 Behavioural Data Analysis. The audio recording of each trial in the Frith-Happé task 

was coded by one researcher, and then checked by a separate researcher. Initial inter-rater 

reliability was 92.23%. Discrepancies were subsequently reviewed by the lead author, such 

that instances of agreement with the second coder were confirmed and instances of 

disagreement were resolved. We planned to compare the accuracy and language scores of the 

three participants groups for random, goal-directed, and ToM trials on the Frith-Happé task 

using between-groups ANOVAs in line with the analyses previously conducted by Abell and 

colleagues (Abell et al., 2000). However, as the residuals for the between-groups ANOVAs 

were not normally distributed, we instead conducted a Kruskall-Wallis test for each 

comparison and subsequently controlled for multiple corrections using an alpha rate of p < 

.05FWE-corrected. 

MRI Data Pre-processing. We conducted pre-processing of the MRI data using 

fMRIprep 1.2.6-1 (Esteban et al., 2017; Esteban et al., 2019), which is based on Nipype 1.1.7 

(Gorgolewski, 2017; Gorgolewski et al., 2011). The full boilerplate associated with fMRIPrep, 

containing extensive details of pre-processing, is presented in the Supplementary Material.  

MRI Data Analysis. We conducted both first- and second-level processing using FSL 

FEAT (FMRI Expert Analysis Tool) Version 6.00 (Jenkinson, Beckmann, Behrens, Woolrich, 

& Smith, 2012; Smith et al., 2004). At the single subject level, the data were modelled using 

the general linear model framework. We operationalised the “ToM” regressor as a linear 

contrast increasing in value from random trials, to goal-directed movements, to ToM trials and 

a separate contrast decreasing in social value from ToM trials, to goal-directed movements, to 

random trials. The BOLD signal was modelled by convolving our design matrix with a Double 

Gamma function. We included global signal, derivatives of motion parameters, squares of 



motion parameters, and a scrubbing variable excluding volumes with a framewise displacement 

> 0.9 as confound variables at the single-subject level. 

 At the group level, we conducted region-of-interest (ROI) analyses using FSL 

featquery. We constructed the ROI masks based on peak coordinates from previous relevant 

studies. ROIs were 10mm spheres based on coordinates identified by previous ToM research 

for the right inferior frontal gyrus (MNI coordinates [52 28 8] (McAdams & Krawczyk, 2011)) 

and the right TPJ (MNI coordinates [54 -52 26] (Krall et al., 2015)). As a 10mm sphere 

localised in the mPFC crossed the brain boundary, we instead constructed a 9mm spherical 

mask within the mPFC in order to avoid extracting null data from outside of the brain (MNI 

coordinates [4 60 20] (Schulte-Rüther et al., 2012)). We subsequently conducted exploratory 

whole brain analyses using cluster level inference with a cluster threshold of Z > 3.1 and p < 

.05, corrected for multiple comparison using Gaussian random field theory. 

 Four participants did not complete the theory of mind task and two participants had 

scans of unusable quality, resulting in a total of 182 participants’ data included in the final 

analysis. A power analysis conducted in G*Power revealed that our between-groups analyses 

were powered to detect small to medium effect sizes (f = 0.23) (Erdfelder, Faul, & Buchner, 

1996). 

Results 

Behavioural Data Analyses 

 Descriptive statistics associated with the accuracy and language scores associated with 

the Random, Goal-Directed, and ToM trials for each participant group and results of the 

Kruskal-Wallis tests comparing the participant groups are presented in Table 2. There were no 

significant between-group differences in accuracy for any of the three trial types. The analysis 



initially identified differences in the level of social language used for the random and theory of 

mind trials, such that HC participants tended to use greater levels of social language to describe 

random trials than participants with AAN and WR participants tended to use greater levels of 

social language to describe ToM trials than participants with AAN. However, these differences 

did not survive correction for multiple comparisons. 

ROI Analyses 

 We conducted a between-groups ANOVA comparing mean BOLD activation within 

the mPFC, the TPJ and the inferior frontal gyrus. There were no significant differences between 

the three participant groups for any of the ROIs. We subsequently added psychiatric medication 

use as a covariate in a between-groups ANCOVA. This ANCOVA also did not reveal 

significant differences between the three participant groups for any of the ROIs. 

Exploratory Whole-Brain Analyses 

 An initial one-sample t-test revealed 19 significant clusters associated with increasing 

complexity of the ToM contrast and a separate one-sample t-test revealed 20 significant 

activation clusters associated with decreasing complexity of the ToM contrast. These task-

activated regions conform with previous norms reported within the theory of mind literature, 

including activation within the temporo-parietal junction, medial prefrontal cortex, and inferior 

frontal gyrus. The full results of these one-sample t-tests are presented in Supplementary 

Table 1 and Supplementary Table 2. 

A between-groups ANOVA comparing the ToM contrast between the three participant 

groups did not reveal any significant clusters associated with increasing or decreasing social 

complexity of the ToM contrast. We next conducted a sensitivity analysis excluding 

participants taking psychoactive medication to account for any suppression of between-group 



differences driven by psychotropic medication. This between-groups ANOVA also failed to 

detect any significant between-groups differences associated with increasing or decreasing 

complexity of the ToM contrast. 

 Finally, we conducted exploratory whole brain analyses within the AAN participant 

group including the AQ10, ADOS Communication subscale, ADOS interaction subscale, 

ADOS imagination and creativity subscale, the ToM accuracy and language scores, BMI, 

global EDE score, and illness duration as covariates in nine separate one-sample t-tests. The 

ADOS communication subscale and the ADOS interaction subscale were both correlated with 

BOLD response to decreasing complexity of the ToM contrast within the right extrastriate 

cortex (i.e., higher ADOS scores were associated with lower BOLD response to ToM trials). 

Cluster peaks for the ADOS communication subscale were located at MNI coordinates [23.5 -

78.5 -10.5] and [15.5 -82.5 -16.5]. The cluster peak for the ADOS interaction subscale was 

located at MNI coordinate [23.5 -78.5 -12.5]. Illness duration was correlated with the BOLD 

response to increasing complexity of the ToM contrast in the left parahippocampal gyrus, MNI 

coordinate [-22.5 -22.5 -14.5] and to decreasing complexity of the ToM contrast in the left 

premotor cortex, MNI coordinates [-22.5 -4.5 55.5] and [-26.5 -0.5 63.5]. There were no 

significant associations between any of the other covariates and BOLD response to the ToM 

contrast amongst participants with current AN. 

Discussion 

 The current study aimed to test for differences in the brain correlates of ToM processing 

in young women with AN, young women weight-restored from AN, and healthy comparison 

participants. We hypothesised that participants with, or weight-restored from, AN would 

exhibit reduced activation in the mPFC, the TPJ, and the inferior frontal gyrus in response to a 

ToM task, when compared to those without history of an eating disorder. However, the data 



did not support any of these hypotheses, as there were no significant between-group differences 

in BOLD response to a spontaneous mentalising task. We also hypothesised that neural 

activation within the mPFC, the TPJ, and the inferior frontal gyrus would be negatively 

correlated with autistic traits amongst participants with AN. Our manipulation check revealed 

that task-activated regions conformed with previous norms reported within the theory of mind 

literature, including activation within the temporo-parietal junction, medial prefrontal cortex, 

and inferior frontal gyrus. The latter hypothesis was not supported by the results, as autistic 

traits were not associated with task-related activation in these three hypothesised regions. 

However, the ADOS communication and interaction scales were associated with task-related 

neural response in early visual processing regions. Furthermore, illness duration was found to 

be associated with task-related neural response in the left parahippocampal gyrus and left 

premotor cortex. 

 Our behavioural findings corresponded with previous studies which also found no 

evidence of differences in accuracy between women with a history of AN and healthy control 

participants on spontaneous mentalising tasks (McAdams & Krawczyk, 2011; Schulte-Rüther 

et al., 2012). However, the lack of group differences in brain response to the ToM task was an 

unexpected result, which contrasts with previous studies finding altered patterns of BOLD 

responses to a very similar task among adult women in recovery from AN (McAdams & 

Krawczyk, 2011) and in a previous study conducted in adolescents with AN (Schulte-Rüther 

et al., 2012). There are several potential explanations for this difference in findings. First, it 

may be the case that differences in the neural underpinning of ToM develop progressively 

throughout the course of the illness and remain for some time after recovery, which might 

explain why a different pattern of neural response to a similar ToM task has previously been 

observed amongst older adult women in weight recovery from AN, as compared to age-

matched control participants, but not in our sample of young adults with AN (McAdams & 



Krawczyk, 2011). However, this explanation does not account for the failure to replicate 

previously-documented differences in BOLD responding to a ToM task amongst adolescents 

with AN (Schulte-Rüther et al., 2012). 

 It is possible that the present results may reflect no true differences in the neural 

underpinnings of ToM across the entire population of young adults with AN. Indeed, our 

relatively large sample size of 188 young adults, including 73 young adults with current AN, 

45 young adults in weight recovery from AN, and 70 healthy control participants, is likely to 

be associated with more stable effect sizes and reduced confidence intervals than the previous 

study conducted in young people with AN, which recruited only 19 participants with current 

AN. This is consistent with the notion that ToM impairments are present in a subgroup of those 

with AN, but do not feature on average across cases with adolescent onset (Stewart, McEwen, 

Konstantellou, Eisler, & Simic, 2017). 

 The current results suggest that differences are specifically observed in individuals with 

AN who are high in autistic characteristics. Specifically, higher levels of communication and 

interaction difficulties were associated with increased neural response to decreasing 

complexity of the ToM contrast. This finding may be explained by previous research 

demonstrating that, in contrast to neurotypical participants, autistic participants demonstrate a 

lack of attentional modulation when viewing social stimuli, which is associated with 

differences in the activation of early visual regions, including the primary visual cortex and 

extrastriate cortex (Bird, Catmur, Silani, Frith, & Frith, 2006). Previous evidence suggests that 

this between-groups effect is particularly pronounced for subtle, versus overt, social cues 

(Zürcher et al., 2013), which are exemplified by the representational social cues depicted by 

triangles in the Frith-Happé task. 



 The association between duration of AN and task-related activation in the left 

parahippocampal gyrus and left premotor cortex is, however, more difficult to explain on the 

basis of previous literature in populations with AN. In the general population parahippocampal 

gyrus activation has been observed in response to completing empathy and face recognition 

tasks (van Veluw & Chance, 2014; Völlm et al., 2006). It may be that the effects of more 

prolonged malnourishment disrupt circuits related to social memory and the perception of 

social stimuli mediated by the parahippocampal gyri. However, further evidence is needed to 

more clearly establish the functional significance of this finding. 

 The current findings add to our understanding of the complex pattern of differences 

exhibited by people with AN across different domains of ToM. A recent meta-analysis of ToM 

abilities in people with AN found that, while affected individuals exhibit statistically 

significant differences in the domains of emotional ToM, understanding simple social 

interactions, and understanding complex social interactions, there was no significant difference 

in the domain of implicit social attribution, measured in the current study (Leppanen et al., 

2018). 

Indeed, the extent of blanket differences in spontaneous mentalising abilities and gross 

differences in associated neural activation has more recently been questioned, even in autistic 

populations. For example, a recent large study recruiting more than 300 autistic participants 

found no differences in performance or neural activation on the Frith-Happé task, when 

compared to healthy control participants (Hayward et al., Unpublished results). Furthermore, 

previous evidence, which did find differences in the neural correlates of ToM in autistic men, 

did not find similar differences in autistic women (Kirkovski et al., 2016; Lai et al., 2019). 

These previous findings are difficult to reconcile with our current observation that some 

components of autistic traits are, indeed associated with neural response to a ToM task. Further 

research in large samples of autistic women will help to clarify whether such differences may 



be specific to those with the greatest levels of communication and social interaction difficulties, 

as suggested by our current findings in young women with AN.  

Strengths of the current study include the large sample size of women completing both 

behavioural and fMRI tasks, allowing greater confidence in the effect sizes found within the 

current set of analyses. However, this study is not without limitations, including the specific 

component of ToM measured within the Frith-Happé task. Thus, while the current study 

provided no evidence for differences in the brain underpinnings of spontaneous mentalising in 

young women with a history of AN versus healthy controls, problems in this population have 

previously been observed for other components of ToM (Leppanen et al., 2018), and may be 

associated with a different pattern of neural activation on other ToM tasks. Additionally, it is 

possible that presenting a descriptive version of the task prior to the neuroimaging scan resulted 

in a “training” effect, perhaps resulting in the recruitment of a greater degree of memory 

processes and lesser degree of theory of mind processes than would have been observed had 

participants viewed the task for the first time during the fMRI scan. Further research will 

therefore be required to corroborate these results and examine potential differences in the 

neural underpinnings of emotional ToM and complex social interactions. Finally, as this study 

was conducted exclusively in young women, the current findings should not be generalised to 

men or older adults with AN.  

While the current study has replicated consistent findings in brain regions that underpin 

ToM processing, including within the rTPJ and mPFC, we did not find evidence for between-

group differences in the neural underpinnings of spontaneous mentalising in young women 

with a history of AN versus healthy control participants.  It should be noted that this null finding 

may be due, in part, to the specific ROI masks analysed in the current study. We based our 

ROIs on previous studies conducted in AN to maximise applicability to the population 

recruited in the current study. However, these previous activation peaks were observed in 



relatively small samples, and a different pattern of results may have been observed had we 

based our ROIs on regions that are generally activated during the Frith-Happé task in HC 

participants. Future research will help to clarify whether different patterns of neural activation 

underpin behavioural performance in other domains of ToM and more clearly establish the 

functional significance of the association between illness duration and task-related neural 

response. Overall, the current set of findings suggests that the neural processing of spontaneous 

mentalising remains more intact in young women with AN than previously thought.



Table 1 

 

Descriptive demographic and clinical statistics 

 

Healthy Control (n = 70)  Acute AN (n = 67) Weight-restored AN (n = 49) K-W 

Test 

Statistic 

p 

 Mean(SD) Median(IQR) Skew Mean(SD) Median(IQR) Skew Mean(SD) Median(IQR) Skew   

Age (Years) 19.64(3.30) 18.54(17.39-22.72) 0.52 18.70(2.78) 18.40(16.53-20.90) 0.44 19.72(3.27) 18.94(17.31-22.41) 0.23 3.85 .278 

BMI 22.82(3.31) 22.26(20.68-24.35) 1.03 16.61(1.41) 16.82(15.77-17.77) -0.65 20.84 (2.26) 19.96(19.17-21.87) 1.20 123.81 < .001 

IQ 109.05(6.86) 110.35(104.78-113.66) -0.85 111.55(7.79) 110.77(106.22-117.17) -0.06 111.80(7.52) 111.18(107.46-117.38) -0.63 4.63 .201 

EDE-Q Global Score 0.60(0.83) 0.30(0.14-0.60) 2.82 3.33(1.47) 3.62(2.14-4.55) -0.46 2.83(1.67) 2.97(1.13-4.30) -0.25 81.41 < .001 

AQ10 2.31(1.72) 2.00(1.00-3.00) 0.95 3.98(2.41) 4.00(2.00-6.00) 0.36 3.54(2.16) 3.00(2.00-5.00) 0.75 20.81 < .001 

Note. AN = anorexia nervosa; AQ10 = Autism Quotient-10 item version; BMI = body mass index; EDE-Q = Eating Disorder Examination – Questionnaire 

version; K-W = Kruskal-Wallis; IQ = intelligence quotient; IQR = interquartile range. 

  



Table 2 

 

Descriptive statistics associated with the accuracy and language scores associated with the Random, Goal-Directed, and Theory of Mind trials for each 

participant group 

 

 Healthy Control M(SD) Acute AN M(SD) Weight-Restored AN M(SD) Kruskal test 

statistic 

p-value FWE-corrected p-

value 

 

Random Accuracy 1.62(0.612) 1.73(0.477) 1.70(0.434) 1.05 .591 .591  

Random Language 0.53(0.610) 0.23(0.460) 0.42(0.679) 9.47 .009 .052  

Goal-Directed Accuracy 1.52(0.311) 1.45(0.320) 1.57(0.308) 4.23 .121 .288  

Goal-Directed Language 1.02(0.169) 0.96(0.119) 1.04(0.193) 5.91 .052 .192  

Theory of Mind 

Accuracy 

1.25(0.434) 1.12(0.325) 1.24(0.366) 4.47 .107 .288  

Theory of Mind 

Language 

 

1.32(0.351) 1.21(0.277) 1.37(0.338) 7.06 .029 .138  

Note. AN = anorexia nervosa; FWE = familywise error.  
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Supplementary Material 

Supplementary Table 1 

Results of the One-sample t-test Exploratory Whole Brain Analysis for Neural Activation 

Associated with Increasing Complexity for the Theory of Mind Contrast 

 

A Z > 3.1 cluster-forming threshold was used. We report significant clusters at the  

p < .05 threshold. 

 

Cluster Number Hemisphere K PFWE Peak Coordinates 
Description 

x y z  

Cluster 1 Right 10,911 < .001 43.5 -46.5 -12.5 Fusiform gyrus, posterior 

superior temporal gyrus, 

and the middle temporal 

area 

47.5 -40.5 11.5 

49.5 -24.5 -4.5 

47.5 -20.5 -10.5 

47.5 -38.5 3.5 

41.5 -58.5 -10.5 

Cluster 2 Left 8,531 < .001 -42.5 -52.5 -14.5 Fusiform gyrus, visual 
association area, and the 

angular area -28.5 -98.5 -8.5 

-24.5 -100 -2.5 

-22.5 -102 -6.5 

-58.5 -52.5 13.5 

-46.5 -64.5 -14.5 

Cluster 3 Right 2,771 < .001 49.5 23.5 23.5 Dorsolateral prefrontal 

cortex and the inferior 

frontal gyrus 

39.5 7.5 27.5 

51.5 19.5 29.5 

35.5 9.5 29.5 

47.5 11.5 29.5 

57.5 25.5 27.5 

Cluster 4 Right 1,097 < .001 21.5 -60.5 25.5 Dorsal posterior cingulate 

cortex, ventral posterior 

cingulate cortex, and the 

precuneus 

17.5 -54.5 19.5 

15.5 -56.5 23.5 

11.5 -52.5 41.5 

1.5 -62.5 37.5 

3.5 -54.5 33.5 

Cluster 5 Right 223 < .001 17.5 -82.5 -30.5 The medial cerebellum 



23.5 -82.5 -32.5 

13.5 -74.5 -28.5 

25.5 -74.5 -34.5 

Cluster 6 Left 216 < .001 -20.5 -60.5 23.5 Visual association area 

and the precuneus -16.5 -66.5 35.5 

Cluster 7 Bilateral 149 < .001 -0.5 57.5 35.5 The medial prefrontal 

cortex -8.5 61.5 35.5 

-0.5 51.5 45.5 

3.5 49.5 39.5 

-0.5 45.5 43.5 

3.5 61.5 25.5 

Cluster 8 Right 120 < .001 33.5 -24.5 15.5 Primary auditory cortex 

and the temporo-parietal 

junction 

37.5 -26.5 21.5 

Cluster 9 Left 112 < .001 -34.5 -28.5 17.5 The temporo-parietal 

junction 

Cluster 10 Right 108 < .001 3.5 17.5 67.5 The supplementary motor 

area 7.5 9.5 73.5 

1.5 11.5 63.5 

9.5 23.5 65.5 

11.5 5.5 73.5 

Cluster 11 Right 54 < .001 39.5 -78.5 39.5 The angular area and the 

extrastriate cortex 39.5 -80.5 35.5 

45.5 -76.5 29.5 

Cluster 12 Right 52 < .001 3.5 -26.5 65.5 The primary motor cortex 

Cluster 13 Right 33 .003 17.5 -28.5 27.5 White matter 

Cluster 14 Left 32 .004 -22.5 -24.5 5.5 White matter 

-20.5 -24.5 -0.5 

Cluster 15 Right 26 .014 39.5 -4.5 13.5 Primary motor cortex 

Cluster 16 Right 24 .022 11.5 -26.5 -34.5 The brainstem 

11.5 -24.5 -40.5 

Cluster 17 Right 24 .022 41.5 11.5 -20.5 The temporopolar area 

 

  



Supplementary Table 2 

Results of the One-sample t-test Exploratory Whole Brain Analysis for Neural Activation 

Associated with Decreasing Complexity of the Theory of Mind Contrast 

 

A Z > 3.1 cluster-forming threshold was used. We report significant clusters at the  

p < .05 threshold. 

 

Cluster Number Hemisphere K PFWE Peak Coordinates 
Description 

x y z  

Cluster 1 Bilateral 26,613 < .001 15.5 -78.5 9.5 Right visual association 

area, right primary visual 

cortex, left visual 

association area, and the 

left primary visual cortex 

11.5 -92.5 17.5 

-4.5 -100 17.5 

-6.5 -94.5 13.5 

-12.5 -86.5 7.5 

-8.5 -98.5 11.5 

Cluster 2 Left 869 < .001 -32.5 17.5 11.5 The inferior frontal gyrus 
and the premotor cortex 

 -40.5 11.5 7.5 

-44.5 11.5 3.5 

-48.5 -0.5 7.5 

-44.5 15.5 -2.5 

-58.5 5.5 37.5 

Cluster 3 Left 856 < .001 -28.5 33.5 27.5 Dorsolateral prefrontal 

cortex and the frontal eye 

fields 

-26.5 39.5 43.5 

-30.5 37.5 35.5 

-32.5 43.5 39.5 

-30.5 33.5 47.5 

-22.5 31.5 11.5 

Cluster 4 Right 711 < .001 31.5 17.5 11.5 Inferior frontal gyrus, 

premotor cortex, and 

posterior superior 

temporal gyrus 

39.5 15.5 3.5 

45.5 3.5 7.5 

43.5 15.5 -0.5 

53.5 -2.5 -0.5 

51.5 3.5 -0.5 

Cluster 5 Left 393 < .001 -14.5 -22.5 43.5 Supplementary motor area 

and dorsal posterior 

cingulate cortex 

-10.5 -20.5 47.5 

-6.5 -22.5 49.5 



-2.5 -32.5 37.5 

-18.5 -34.5 41.5 

-12.5 -16.5 43.5 

Cluster 6 Right 229 < .001 19.5 5.5 27.5 White matter 

19.5 -4.5 29.5 

19.5 -8.5 29.5 

19.5 15.5 23.5 

23.5 -12.5 35.5 

23.5 5.5 41.5 

Cluster 7 Left 177 < .001 -44.5 -66.5 -38.5 Lateral cerebellum 

-44.5 -50.5 -34.5 

-38.5 -44.5 -32.5 

-50.5 -60.5 -38.5 

-44.5 -46.5 -38.5 

-44.5 -64.5 -44.5 

Cluster 8 Left 80 < .001 -48.5 -58.5 41.5 The angular area 

-42.5 -52.5 35.5 

-44.5 -52.5 39.5 

-50.5 -54.5 49.5 

Cluster 9 Right 51 < .001 35.5 -44.5 -30.5 Lateral cerebellum 

37.5 -54.5 -30.5 

33.5 -52.5 -28.5 

Cluster 10 Left 51 < .001 -12.5 39.5 23.5 Medial prefrontal cortex 

and the dorsal anterior 

cingulate cortex 

-8.5 37.5 13.5 

-10.5 41.5 17.5 

-12.5 41.5 7.5 

-14.5 37.5 13.5 

Cluster 11 Right 50 < .001 5.5 53.5 -0.5 Medial prefrontal cortex 

13.5 59.5 1.5 

11.5 55.5 1.5 

Cluster 12 Left 49 < .001 -36.5 49.5 -10.5 Frontopolar cortex 

-28.5 45.5 -10.5 

Cluster 13 Left 49 < .001 -30.5 -48.5 -48.5 Inferior cerebellum 

-26.5 -40.5 -46.5 

Cluster 14 Left 29 .007 -18.5 -52.5 -46.5 Inferior cerebellum 



Cluster 15 Right 28 .009 33.5 -34.5 11.5 White matter 

29.5 -26.5 9.5 

Cluster 16 Right 23 .029 13.5 -36.5 15.5 White matter 

7.5 -34.5 11.5 

3.5 -30.5 15.5 

Cluster 17 Left 22 .037 -40.5 -48.5 1.5 White matter 

-42.5 -40.5 -6.5 

Cluster 18 Right 22 .037 23.5 -54.5 35.5 White matter 

19.5 -52.5 41.5 

Cluster 19 Left 21 .048 43.5 -36.5 -8.5 White matter 

43.5 -42.5 -4.5 

Cluster 20 Left 21 .048 -8.5 -68.5 -34.5 Medial cerebellum 

-6.5 -72.5 -38.5 

 

  



 

Inclusion and Exclusion Criteria for the Study 

Participants in the current AN participant group were required to meet DSM-5 criteria 

for AN at the point of recruitment and have a BMI less than 90% of the median BMI for age 

and gender or a body mass index (BMI) less than 18.5. Participants in the weight-recovered 

AN group must have previously been diagnosed with AN, but have had a BMI within the 

healthy weight range (18.5-25) during the 12-month period prior to study participation. 

Participants in the healthy control group were required to have no current eating disorder or 

history of an eating disorder. Participants in the healthy control group were also required to 

have a BMI within the healthy weight range (18.5-25). Exclusion criteria for the study included 

any neurological impairment (e.g., epilepsy), serious brain injury or learning difficulties, and 

MRI incompatibility (e.g., pregnancy, claustrophobia, inability to lie down flat, and any metal 

in or on the body which could not be removed). 

Participant Medication Use 

Thirty-eight women with current AN, 14 weight-restored women, 13 women in 

recovery from AN, and 13 healthy control women were taking medication at the time of the 

study. This amounted to 23% of the total sample taking some form of medication at the time 

of the study, less than half of whom were taking psychiatric medication (9.6% of the total 

sample). 

With regards to psychiatric medication, 17 women with current AN were taking an 

antidepressant, 3 were taking an antipsychotic, 5 were taking both an antidepressant and an 

antipsychotic, and 1 was taking an antidepressant and benzodiazepine. Of the women recovered 

from AN, 5 were taking an antidepressant at the time of the study. Of the women who were 

weight-recovered from AN, 8 were taking an antidepressant, 1 was taking an antipsychotic, 

and 3 were taking an antidepressant and an antipsychotic. Two of the healthy control women 



were taking antidepressants and one healthy control women was taking a stimulant for attention 

deficit hyperactivity disorder (ADHD) at the time of the study.  

Measures 

Eating Disorders Examination – Questionnaire version.  The Eating Disorder 

Examination – Questionnaire version (EDE-Q) is a self-report measure of eating disorder 

psychopathology. The EDE-Q assesses the raw frequency of common eating disorder 

behaviours and also contains four eating disorder psychopathology subscales measuring 

Restraint, Eating Concern, Weight Concern, and Shape Concern. Each subscale is presented in 

the form of a 7-point Likert scale. For each item, participants are asked to indicate over what 

range of days they exhibited each component of eating disorder psychopathology, where 

responses are anchored from 0 (“No days”) to 6 (“Every day”). Higher scores on the EDE-Q 

therefore indicate greater levels of eating disorder psychopathology. The EDE-Q is associated 

with acceptable criterion validity, with significantly different mean scores for each subscale 

among individuals with, versus without, a current eating disorder (18). 

 Hospital Anxiety and Depression Scale. The Hospital Anxiety and Depression Scale 

(HADS) is a 14-item self-report questionnaire assessing levels of depression and anxiety. Each 

item is presented on a 4-point Likert scale anchored from 0-3. The HADS yields separate 

anxiety and depression subscales, where higher scores on each subscale indicate greater levels 

of anxiety and depression, respectively. The HADS is associated with good concurrent validity, 

with strong positive correlations to other measures of anxiety and depression (20). 

 The National Adult Reading Test. The National Adult Reading Test (NART)  is a 

measure of premorbid intellectual function in English-speaking adults. The test consists of a 

list of 50 written words with irregular spellings, which the participant is prompted to read aloud. 

The participants’ ability to pronounce each word correctly tests the participants’ vocabulary, 

which is used as a proxy measure for intelligence. Scores on the NART are converted to an 



estimated intelligence quotient (IQ) score. The NART exhibits good concurrent validity, with 

a strong positive correlation to scores on the Wechsler Adult Intelligence Scale (22). The 

primary advantage of administering the NART, as opposed to the WAIS, is that it takes a 

fraction of the time to complete, thus reducing participant burden. 

 The Autism Quotient-10 item version. The Autism Quotient-10 item version (AQ-10) 

is a 10-item questionnaire assessing autistic symptomatology. Items are presented in the form 

of a 4-point Likert scale, anchored from “strongly disagree” to “strongly agree”. Items are 

scored as either 0 or 1 depending on the direction of endorsement. Each item score is 

subsequently summed, such that higher scores on the AQ-10 indicate greater levels of autistic 

symptomatology. The AQ-10 has good sensitivity (88%) and specificity (91%) in the 

prediction of autism spectrum disorders (ASD) with a cut-off point of 6.0. 

 The Autism Diagnostic Observation Schedule. The Autism Diagnostic Observation 

Schedule (ADOS) is a semi-structured interview measuring autistic traits in the domains of 

social interaction, communication, play, and imaginative use of materials. Higher ratings 

within each module indicate greater levels of autistic traits. Each module has good test-retest 

reliability and excellent inter-rater reliability. The ADOS is associated with excellent 

sensitivity (82-95%) and specificity (80-100%) to detect ASD (20-22). 

 

fMRIprep Boilerplate 

 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

1.5.1rc1 (Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); 

RRID:SCR_016216), which is based on Nipype 1.3.0-rc1 (Gorgolewski et al. (2011); 

Gorgolewski et al. (2018); RRID:SCR_002502). 

 



Anatomical data preprocessing. The T1-weighted (T1w) image was corrected for 

intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed 

with ANTs 2.2.0 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-reference 

throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs 

as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) 

and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed using 

recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain 

mask estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 

Mindboggle (RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to 

one standard space (MNI152NLin2009cAsym) was performed through nonlinear registration 

with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and 

the T1w template. The following template was selected for spatial normalization: ICBM 152 

Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; 

TemplateFlow ID: MNI152NLin2009cAsym]. 

Functional data preprocessing 

 

    Functional data preprocessing. For each of the 1 BOLD runs found per subject (across all 

tasks and sessions), the following preprocessing was performed. First, a reference volume and 

its skull-stripped version were generated using a custom methodology of fMRIPrep. The 

BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) 

which implements boundary-based registration (Greve and Fischl 2009). Co-registration was 

configured with six degrees of freedom. Head-motion parameters with respect to the BOLD 



reference (transformation matrices, and six corresponding rotation and translation parameters) 

are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 

2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and 

Hyde 1997, RRID:SCR_005927). The BOLD time-series, were resampled to surfaces on the 

following spaces: fsaverage5. The BOLD time-series (including slice-timing correction when 

applied) were resampled onto their original, native space by applying a single, composite 

transform to correct for head-motion and susceptibility distortions. These resampled BOLD 

time-series will be referred to as preprocessed BOLD in original space, or just preprocessed 

BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed 

BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and three region-wise global signals. FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power 

et al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-

brain masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (CompCor, Behzadi et al. 2007). Principal components are 

estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 

filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 

(aCompCor). tCompCor components are then calculated from the top 5% variable voxels 

within a mask covering the subcortical regions. This subcortical mask is obtained by heavily 

eroding the brain mask, which ensures it does not include cortical GM regions. For aCompCor, 

components are calculated within the intersection of the aforementioned mask and the union 

of CSF and WM masks calculated in T1w space, after their projection to the native space of 

each functional run (using the inverse BOLD-to-T1w transformation). Components are also 



calculated separately within the WM and CSF masks. For each CompCor decomposition, the 

k components with the largest singular values are retained, such that the retained 

componentsâ€ ™ time series are sufficient to explain 50 percent of variance across the nuisance 

mask (CSF, WM, combined, or temporal). The remaining components are dropped from 

consideration. The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. The confound time series derived from head motion 

estimates and global signals were expanded with the inclusion of temporal derivatives and 

quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 

mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations (i.e. 

head-motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 

 

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of 

the pipeline, see the section corresponding to workflows in fMRIPrep documentation. 

 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 

that users should copy and paste this text into their manuscripts unchanged. It is released under 

the CC0 license. 
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