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Abstract. In this work, we use the concept of distance between self-dual codes, which generalizes the

concept of a neighbor for self-dual codes. Using the k-neighbors, we are able to construct extremal binary

self-dual codes of length 68 with new weight enumerators. We construct 143 extremal binary self-dual codes
of length 68 with new weight enumerators including 42 codes with γ = 8 in their W68,2 and 40 with γ = 9 in

their W68,2. These examples are the first in the literature for these γ values. This completes the theoretical

list of possible values for γ in W68,2.

1. Introduction

Self-dual codes are a special class of linear codes. Because of the many interesting properties that they
have and the many different fields that they are connected with, they have attracted a considerable interest
in coding theory research community.

One of the most active research areas in the field of self-dual codes is the construction and classification
of extremal binary self-dual codes. Type I extremal binary self-dual codes of lengths such as 64, 66, 68, etc.
have parameters in their weight enumerators, which have not all been found to exist. Hence, the recent years
have seen a surge of activity in finding extremal binary self-dual codes of various lengths with new weight
enumerators. Many different techniques have been employed in constructing these extremal binary self-dual
codes such as constructions over certain rings, constructions through automorphism groups, neighboring
constructions, shadows, extensions, etc. [1], [4], [7], [8], [10], [13], [14] are just a sample of the works that
contain these ideas and their applications in finding new extremal binary self-dual codes.

In this work, we use the concept of “distance” between self-dual codes. After proving some theoretical
results about the distance we observe that the neighbor can be defined in terms of the distance and this
leads to the concept of “k-range neighbors” or “k-neighbors”, which generalize the concept of neighbors of
self-dual codes. We then use these k-neighbors to construct extremal self-dual codes of length 68 from a
given self-dual code. In particular we construct 139 new extremal binary self-dual codes of length 68 with
new weight enumerators, including the first examples with γ = 8, 9 in W68,2 in the literature. This completes
the list of possible γ values that can be found in W68,2. Forty two of the codes we have constructed have
γ = 8 in their weight enumerator, while forty of them have γ = 9 in their weight enumerators.

The rest of the work is organized as follows: In Section 2, we give the preliminaries about self-dual codes
and the neighbor construction.In Section 3, we introduce the concept of distance and define the related
generalization of the neighbors. In Section 4, we apply the generalized neighbors to construct extremal
binary self-dual codes of length 68 with new weight enumerators. We finish the work with concluding
remarks and directions for possible future research.

2. Preliminaries

2.1. Self-dual codes. For x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Fn
2 , we define

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn.

This inner product leads to the following definition:
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Definition 2.1. Let C be a binary linear code over of length n, then we define the dual of C as

C⊥ := {y ∈ Fn
2 |〈y, x〉 = 0, ∀x ∈ C}.

Note that, if C is a linear [n, k] code, then C⊥ is a linear [n, n− k]-code.

Definition 2.2. If C ⊆ C⊥, then C is called self-orthogonal and it is called self-dual if C = C⊥.

Definition 2.3. Let C be a self-dual binary code. If the Hamming weights of all the codewords in C are
divisible by 4, C is called Type II (or doubly-even), otherwise it is called Type I (or singly even).

The following theorem gives an upper bound for minimum distance of self-dual codes:

Theorem 2.4. ([15], [5]) Let dI(n) and dII(n) be the minimum distance of a Type I and Type II binary
code of length n. then

dII(n) ≤ 4b n
24
c+ 4

and

dI(n) ≤
{

4b n
24c+ 4 if n 6≡ 22 (mod 24)

4b n
24c+ 6 if n ≡ 22 (mod 24).

Self-dual codes that attain the bounds given in the previous theorem are called extremal.

2.2. The neighbor construction. Two self-dual codes of length n are called neighbors if their intersection
is a code of dimension n

2 − 1. This idea has been used extensively in the literature to construct new self-dual
codes from an existing one. For some of the works that have used this idea, we can refer to [3], [7], [10] and
references therein.

Given a self-dual code C, a vector x ∈ Fn
2−C is picked and then D is formed by letting D =

〈
〈x〉⊥ ∩ C, x

〉
.

The search for D can be made efficient by using the standard form of the generator matrix of C, which allows
one to fix the first n/2 entries of x without loss of generality. Usually in practical applications the first n/2
entries of x are set to be 0.

3. Distance between self-dual codes and generalized neighbors

To generalize the notion of a neighbor, we first begin with the following definition of a distance between
two self-dual codes:

Definition 3.1. Let C1 and C2 be two binary self-dual codes of length n. The neighbor-distance between
C1 and C2 is defined as

dN (C1, C2) =
n

2
− dim(C1 ∩ C2).

Remark 3.2. We would like to observe that this concept of the distance might have been considered in the
literature in the context of a graph that can be formed by taking all the self-dual codes as the vertices.
Then edges are drawn between the vertices if they are neighbors. What we have done in the paper is mostly
equivalent to this concept but stated in algebraic terms.

Proposition 3.3. The distance function dN defined above is a metric on the set of all binary self-dual codes
of length n.

Proof. Since dim(C1∩C2) ≤ dim(C1) = dim(C2) = n
2 , we have dN (C1, C2) ≥ 0 for all self-dual codes C1, C2.

Next, observe that if dN (C1, C2) = 0, this means

dim(C1 ∩ C2) =
n

2
= dim(C1) = dim(C2),

which implies C1 = C2 = C1 ∩ C2. Conversely, if C1 = C2, then dN (C1, C2) = n
2 −

n
2 = 0.

By the definition, it is clear that dN (C1, C2) = dN (C2, C1).
For the triangle inequality, assume that C1, C2, C3 are self-dual codes. Observe that

(C1 ∩ C2) ∪ (C2 ∩ C3) = C2 ∩ (C1 ∪ C3) ⊆ C2.
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which implies

dim(C1 ∩ C2) + dim(C2 ∩ C3) ≤ dim(C2) =
n

2
.

Thus we have

dim(C1 ∩ C2) + dim(C2 ∩ C3)− dim(C1 ∩ C3) ≤ n

2
.

Adding n
2 to both sides and sending dim(C1 ∩C2) + dim(C2 ∩C3) over to the right side of the equation, we

get

dN (C1, C3) =
n

2
− dim(C1 ∩ C3)

≤ n

2
− dim(C1 ∩ C2) +

n

2
− dim(C2 ∩ C3)

≤ dN (C1, C2) + dN (C2, C3).

�

The next proposition shows that self-dual codes cannot have the maximum distance to each other:

Proposition 3.4. Let C1 and C2 be two binary self-dual codes of length n. Then dN (C1, C2) < n
2 .

Proof. It is well known that if C is any binary self-dual code, then (1, 1, . . . , 1) ∈ C. thus 1 ∈ C1∩C2, which
implies that dim(C1 ∩ C2) ≥ 1. But then

dN (C1, C2) =
n

2
− dim(C1 ∩ C2) ≤ n

2
− 1 <

n

2
.

�

Question: Is there an upper bound on the distance between equivalence classes of self-dual codes? The
proposition shows that the distance cannot be larger than n

2 − 1. It is an open question whether this upper
bound can be reduced further.

We now define k-range neighbor and k-neighbor of a code using the distance notation:

Definition 3.5. Let C1 and C2 be two self-dual codes. C1 and C2 are said to be k-range neighbors if
dN (C1, C2) ≤ k and they are called k-neighbors if dN (C1, C2) = k.

Remark 3.6. The neighbor of a self-dual code is well known in the literature and it corresponds to a 1-neighbor
in our context.

Remark 3.7. The concept of a k-range neighbor code can be more useful than the strict k-neighbor codes,
because of the following observation:

Suppose C1 and C2 are self-dual binary codes with generator matrices [In/2|M1] and [In/2|M2], respec-
tively, where

M1 =


r1
r2
r3
...

rn/2

 , M2 =


s1
s2
s3
...

sn/2

 .
Here ri and sj are the rows of M1 and M2 respectively. If ri = si for i = k + 1, k + 2, . . . , n/2, then C1 and
C2 are k-range neighbors.

Remark 3.8. As we observed above, the ordinary neighbor of a code C is a 1-neighbor. We can also observe
that, the neighbor a 1-neighbor of C is a 2-range neighbor of C. This can be generalized into considering
the neighbor of a neighbor of a neighbor etc. of a code as a k-range neighbor of the original code.
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4. Applications of k-range neighbor codes to extremal self-dual codes

In this section, we will give an equivalent description for the k-range neighbors and use them to construct
new extremal binary self-dual codes. Let N(0) be a binary self-dual code of length 2n. Let x0 ∈ F2n

2 \ N(0),
define

N(i+1) =
〈
〈xi〉⊥ ∩N(i), xi

〉
where N(i+1) is the neighbour of N(i) and xi ∈ F2n

2 \ sN(i).
It is not hard to see that N(i) defined in this way is an i-range neighbor of N(0) as was observed above

in Remark 3.8. In what follows, we will apply this idea to search for extremal binary self-dual codes from
k-range neighbors of a known code. We use Magma Algebra System ([2]) for our searches.

4.1. Numerical results from i-range neighbours. The possible weight enumerator of an extremal binary
self-dual code of length 68 (of parameters [68, 34, 12]) is in one of the following forms by [4, 12, 6]:

W68,1 = 1 + (442 + 4β) y12 + (10864− 8β) y14 + · · · , 104 ≤ β ≤ 1358,

W68,2 = 1 + (442 + 4β) y12 + (14960− 8β − 256γ) y14 + · · ·

where 0 ≤ γ ≤ 9. Recently, Yankov et al. constructed the first examples of codes with a weight enumerator
for γ = 7 in W68,2 in [1]. Together with these, the existence of codes in W68,2 is known for many values. In
order to save space we only give the lists for γ = 5, γ = 6 and γ = 7, which are updated in this work;

γ = 5 with β ∈ {101,105,109,111,...,182,187,189,191,192,193,201,202,213}
γ = 6 with β ∈ {133, 137, 139, . . . , 174, 176, 177, 184, 192, 210}
γ = 7 with β ∈ {7m|m = 14, . . . , 39, 42}

Let N(0) be the extremal binary self-dual code of length 68 (W68,2) with the parameters γ = 5 and β = 213
which was recently constructed in [9]. Its generating matrix is given by (I34|A) where

A =



0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0
0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0
0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0
0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1
0 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0
1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0
1 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 1
1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0
0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 1 0 1
1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1
1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0
1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1
1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0
1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1
1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0
0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 0 0 0 1
1 1 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0
1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 1
1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1
0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1
1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1
0 1 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0
0 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
0 0 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1
1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1
0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0



.

Implementing the formula described above to this code N(0), we obtain:
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Table 1. i-range neighbour of N(0)

i N(i+1) xi |Aut(N(i+1))| γ β

0 N(1) (1100000101101111011001110100000100) 1 6 210
1 N(2) (0111111111110110010100110111001100) 1 7 212
2 N(3) (0111010010010101001000101110011001) 1 8 221
3 N(4) (1000000111110011101001110001110000) 1 9 221

4.2. Neighbours of Neighbours. In this section, we separately consider neighbours of N(0), N(1), N(2),
N(3) and N(4).

Table 2. Neighbours of N(0)

Ci (x35, x36, ..., x68) |Aut(N68,i)| γ β

C1 (1001100000010100010100001111100011) 2 5 195
C2 (1000010001011010000011010000011010) 1 5 198
C3 (0111101000110110001011101100010000) 1 5 200
C4 (0111001101010010011001000101101010) 1 5 202
C5 (0100101101000111111110110101110111) 2 5 211
C6 (0011011100110001100010000000100100) 1 6 198
C7 (0111011111101001111101101111001000) 1 6 204

Table 3. Neighbours of N(1)

Ci (x35, x36, ..., x68) γ β Ci (x35, x36, ..., x68) γ β

C8 (1001010111010111110011100111000011) 6 175 C9 (0001011110111110011101001111111100) 6 177
C10 (1011110110111010111010010111101111) 6 179 C11 (1011011001101100010101001010001111) 6 181
C12 (0111001000010101110001001100111100) 6 182 C13 (0111111111011111101100100100001110) 6 183
C14 (1011111001001110011110000010100011) 6 185 C15 (1010100011111100010011111101001101) 6 186
C16 (1011010111110011001011000100111011) 6 187 C17 (0011110011110111111101101100110100) 6 188
C18 (0000000010010101010011001010001011) 6 189 C19 (1011101110011101111110100101011100) 6 190
C20 (1111000000010110001111001111010101) 6 191 C21 (1010111010101011100011100011001111) 6 193
C22 (1000001101010100110101000011000101) 6 194 C23 (0101011110100101000000011010001111) 6 195
C24 (1111011101111101110110100010000111) 6 196 C25 (1111011010010110011101100001000110) 6 197
C26 (1011110001001000100001000110100000) 6 199 C27 (1001010010110100100000001100000101) 6 200
C28 (1010010010100011111100011100111010) 6 201 C29 (0100010011101100010110001010110000) 6 202
C30 (0100100000011110000010011000010110) 6 206 C31 (0001110111010001111011010001011111) 6 207
C32 (0010110010011001111110101000011110) 7 184 C33 (0011001100100010111110000000011001) 7 185

Table 4. Neighbours of N(2)

Ci (x35, x36, ..., x68) γ β Ci (x35, x36, ..., x68) γ β

C34 (1101111111101111011110011101101110) 7 174 C35 (1001101001000111010110110111111111) 7 177
C36 (1011010010001010111100010010000100) 7 178 C37 (1101111001010110110111010110001111) 7 179
C38 (1011101100100101100110111101101111) 7 181 C39 (1001111111011111110110010001001110) 7 183
C40 (1101010001010110001001111001100010) 7 186 C41 (0110111111000000011011000001110001) 7 187
C42 (0010011000010000000011111111111010) 7 188 C42 (1001101101101011111111010100101101) 7 190
C43 (0110000001011010011001111110100010) 7 191 C44 (1011000011111010100011111011100011) 7 192
C45 (0100001110010111010110101010011110) 7 193 C46 (0000001101111110100001100001000000) 7 194
C47 (0100110110001011101001011000110001) 7 195 C48 (1111010100000010111100100101110101) 7 197
C49 (1100100000001001100110010111111111) 7 198 C50 (0000110011100001111010110100110001) 7 199
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Table 5. Neighbours of N(3)

Ci (x35, x36, ..., x68) γ β Ci (x35, x36, ..., x68) γ β

C51 (0101000010100010000111100101011100) 7 171 C52 (0000011101001011001010111100001110) 7 173
C53 (0000011101101010010000110000101000) 7 176 C54 (1011010010100001010000111011100110) 7 180
C55 (1011110011111111111100111110100111) 8 181 C56 (1101111111010111111111100010110111) 8 186
C57 (0000110100100011011001001101111010) 8 187 C58 (1101000111000011001010010001000000) 8 189
C59 (0000001011100100110100101111000100) 8 190 C60 (0111011011011011010010101101100011) 8 192
C61 (0011011011110001000111111111011110) 8 191 C62 (1010111011000111100110111001110111) 8 193
C63 (0010010011101001110101011010111100) 8 194 C64 (0001001001010000111101111001110111) 8 195
C65 (0001101011101101100010111110110011) 8 196 C66 (0100100001010000001010001111100010) 8 197
C67 (1011100101000101100011110111101011) 8 198 C68 (0011011111101011011011111011110011) 8 199
C69 (1111000101100111100010101010000001) 8 200 C70 (0011000110010100110010000110000001) 8 201
C71 (1110101001000010010100101000011100) 8 202 C72 (0110111010011110110001011011101001) 8 203
C73 (1001100101111110111101011001101110) 8 204 C74 (0000100111111101000010110011001001) 8 205
C75 (1011001000010010011100101011000100) 8 206 C76 (0101111110001111110000111111111011) 8 207
C77 (0110101010100001110101011010110110) 8 208 C78 (0001111000110101011111001111101111) 8 209
C79 (1111011101111110000011100111111011) 8 210 C80 (1101010100000100000001110100010001) 8 211
C81 (0011110101110001000001111001110000) 8 212 C82 (1100011110110111110101000101011111) 8 213
C83 (0101011001011011111001010100001000) 8 214 C84 (0000011110101100110001010101100011) 8 215
C85 (1110100101011111001101011011011110) 8 216 C86 (0001111000001111100010100011011010) 8 217
C87 (1110011000000010100101000101010110) 8 218 C88 (0100011111001011000000000010000011) 8 220

Table 6. Neighbours of N(4)

Ci (x35, x36, ..., x68) γ β Ci (x35, x36, ..., x68) γ β

C89 (0110011110100110101110111111001110) 7 163 C90 (1010011101011110101011111111011110) 7 166
C91 (1001110111100010010000100001111010) 7 169 C92 (0011101011111100101001110010011011) 7 170
C93 (1101101101010111100010000101001101) 7 172 C94 (1001001100010110100011110011101101) 8 180
C95 (0110000111110011101010000111110111) 8 182 C96 (1110000100101011001100000100001101) 8 183
C97 (1110111101111011001110111111010111) 8 184 C98 (0111001000001101101001110011010010) 8 185
C99 (0010010100101110111101101011111111) 8 219 C100 (1101000000110100011000000110101000) 8 188
C101 (0111101011001101101011010011001011) 9 186 C102 (0001001011000000110111110000010110) 9 187
C103 (1011011001100001001110011100101101) 9 188 C104 (1000000111000110111000100010000001) 9 189
C105 (1111010100111110101110110000011111) 9 190 C106 (1000100000000111110001110000010010) 9 192
C107 (0111011010010110011110110001000110) 9 193 C108 (0010011100001000000010001111011000) 9 194
C109 (0001101100111010100010011110101000) 9 195 C110 (1000011011111111111010001110010001) 9 196
C111 (0111010111111001111101011000101110) 9 198 C112 (0101101101001100001001110011010010) 9 199
C113 (1111011011111111111010100100111001) 9 200 C114 (0011111100000101110110110111011111) 9 201
C115 (0100111111101001101001110001101011) 9 202 C116 (1111101111000110001100111111101100) 9 203
C117 (0101111110001110100001110110011011) 9 204 C118 (0111110111111110111101000001110100) 9 205
C119 (1110110111101011000110100111111100) 9 206 C120 (0000000111010010100010010001011001) 9 207
C121 (0001001101110101011111001000101101) 9 208 C122 (0100001111001011001010000111010011) 9 209
C123 (0101000110111111010111000111000100) 9 210 C124 (0110110111011011011110111101001100) 9 211
C125 (0001110001110001001001110010111010) 9 213 C126 (0001010100001110010110011101111101) 9 214
C127 (0101010110001011110111000001101110) 9 215 C128 (0010011111011010100011110101011011) 9 216
C129 (0111100100111001111101100111110101) 9 217 C130 (1101110110110011011001111111011011) 9 218
C131 (1101011010110011000111101000101100) 9 219 C132 (0110101110111110101011011111101011) 9 220
C133 (1110000011001101000110000000101110) 9 222 C134 (1001111010110000000101110100000100) 9 223
C135 (1001000111100111010011111100111001) 9 224 C136 (1011111011110111101111011111011100) 9 225
C137 (0011111100110101110101101110110101) 9 226 C138 (1011010011100011110000011000001011) 9 228
C139 (0101001011001111001010011001000011) 9 230

5. Conclusion

We introduced the concept of a distance between self-dual codes. This generalizes the notion of a neighbor
in self-dual codes, which leads to a new way of constructing new self-dual codes from a known one. Applying
these ideas to an extremal binary self-dual code of length 68 we were able to construct 143 new extremal
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binary self-dual codes of length 68 with new weight enumerators, including the first examples with γ = 8, 9
in W68,2 in the literature. Thus, we have now completed the theoretical list of possible γ values that can be
found in W68,2. Generator matrices for some of the new codes are available online at [11]. Out of the codes
we have constructed, 42 have γ = 8 in their weight enumerator, while 40 of them have γ = 9 in their weight
enumerators. In particular, we have been able to construct the codes that have the following parameters:

(γ = 5, β = {195, 198, 200, 202, 211}),
(γ = 6, β = {175, 177, 179, 181, 182, 183, 185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 204, 206, 207}),
(γ = 7, β = {163, 166, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 183, 184, 185, 186, 187, 188,

190, 191, 192, 193, 194, 195, 197, 198, 199, 212}),
(γ = 8, β = {180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,

220, 221}),
(γ = 9, β = {186, 187, 188, 189, 190, 192, 193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,

208, 209, 210, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230})

The strength of this new approach has been demonstrated by the number of new weight enumerators that
we have been able to obtain by applying it to a single code. We believe this will open up new venues in the
search and classification of new extremal binary self-dual codes.
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