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ABSTRACT. In this work, we use the concept of distance between self-dual codes, which generalizes the
concept of a neighbor for self-dual codes. Using the k-neighbors, we are able to construct extremal binary
self-dual codes of length 68 with new weight enumerators. We construct 143 extremal binary self-dual codes
of length 68 with new weight enumerators including 42 codes with v = 8 in their Wgg 2 and 40 with v =9 in
their Weg,2. These examples are the first in the literature for these « values. This completes the theoretical
list of possible values for v in Wesg, 2.

1. INTRODUCTION

Self-dual codes are a special class of linear codes. Because of the many interesting properties that they
have and the many different fields that they are connected with, they have attracted a considerable interest
in coding theory research community.

One of the most active research areas in the field of self-dual codes is the construction and classification
of extremal binary self-dual codes. Type I extremal binary self-dual codes of lengths such as 64, 66, 68, etc.
have parameters in their weight enumerators, which have not all been found to exist. Hence, the recent years
have seen a surge of activity in finding extremal binary self-dual codes of various lengths with new weight
enumerators. Many different techniques have been employed in constructing these extremal binary self-dual
codes such as constructions over certain rings, constructions through automorphism groups, neighboring
constructions, shadows, extensions, etc. [1], [4], [7], [8], [I0], [13], [14] are just a sample of the works that
contain these ideas and their applications in finding new extremal binary self-dual codes.

In this work, we use the concept of “distance” between self-dual codes. After proving some theoretical
results about the distance we observe that the neighbor can be defined in terms of the distance and this
leads to the concept of “k-range neighbors” or “k-neighbors”, which generalize the concept of neighbors of
self-dual codes. We then use these k-neighbors to construct extremal self-dual codes of length 68 from a
given self-dual code. In particular we construct 139 new extremal binary self-dual codes of length 68 with
new weight enumerators, including the first examples with v = 8,9 in Wgg 2 in the literature. This completes
the list of possible v values that can be found in Wgs 2. Forty two of the codes we have constructed have
~ = 8 in their weight enumerator, while forty of them have v = 9 in their weight enumerators.

The rest of the work is organized as follows: In Section 2, we give the preliminaries about self-dual codes
and the neighbor construction.In Section 3, we introduce the concept of distance and define the related
generalization of the neighbors. In Section 4, we apply the generalized neighbors to construct extremal
binary self-dual codes of length 68 with new weight enumerators. We finish the work with concluding
remarks and directions for possible future research.

2. PRELIMINARIES
2.1. Self-dual codes. For T = (x1,22,...,2,) and § = (y1,Y2, ..., Yn) € Fy, we define

(T,7) = 21y1 + T2y2 + -+ + TnYn-

This inner product leads to the following definition:
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Definition 2.1. Let C be a binary linear code over of length n, then we define the dual of C' as
Cct.={geFy(FT) =0, VIeC}
Note that, if C' is a linear [n, k] code, then C* is a linear [n,n — k]-code.
Definition 2.2. If C C C*, then C is called self-orthogonal and it is called self-dual if C = C*+.

Definition 2.3. Let C' be a self-dual binary code. If the Hamming weights of all the codewords in C are
divisible by 4, C is called Type II (or doubly-even), otherwise it is called Type I (or singly even).

The following theorem gives an upper bound for minimum distance of self-dual codes:

Theorem 2.4. ([I5], [B]) Let d;(n) and drr(n) be the minimum distance of a Type I and Type II binary
code of length n. then

d[[(’n) < 4|_ il

—|+4
< 24J+

and
42| +4 ifn#£22 (mod 24)
dr(n) < { 4L§J +6 ifn=22 (mod 24).

Self-dual codes that attain the bounds given in the previous theorem are called eztremal.

2.2. The neighbor construction. Two self-dual codes of length n are called neighbors if their intersection
is a code of dimension 5 — 1. This idea has been used extensively in the literature to construct new self-dual
codes from an existing one. For some of the works that have used this idea, we can refer to [3], [7], [L0] and
references therein.

Given a self-dual code C, a vector x € Fy —C' is picked and then D is formed by letting D = <<as>L na, a:>
The search for D can be made efficient by using the standard form of the generator matrix of C', which allows
one to fix the first n/2 entries of x without loss of generality. Usually in practical applications the first n/2
entries of x are set to be 0.

3. DISTANCE BETWEEN SELF-DUAL CODES AND GENERALIZED NEIGHBORS

To generalize the notion of a neighbor, we first begin with the following definition of a distance between
two self-dual codes:

Definition 3.1. Let C; and C3 be two binary self-dual codes of length n. The neighbor-distance between
C1 and C5 is defined as

dMQL@z%—WﬁQﬂ@)

Remark 3.2. We would like to observe that this concept of the distance might have been considered in the
literature in the context of a graph that can be formed by taking all the self-dual codes as the vertices.
Then edges are drawn between the vertices if they are neighbors. What we have done in the paper is mostly
equivalent to this concept but stated in algebraic terms.

Proposition 3.3. The distance function dy defined above is a metric on the set of all binary self-dual codes
of length n.

Proof. Since dim(C1NCs) < dim(C1) = dim(C3) = 5, we have dy(C1,C2) > 0 for all self-dual codes C1, Cs.
Next, observe that if dy(Cq,Cs) = 0, this means
Mm@ﬁ%@z%zﬁm@ﬁz%ﬁ@)
which implies C; = Co = Cy N Ca. Conversely, if Cy = Cy, then dy(C1,Co) = 5 — 5 = 0.
By the definition, it is clear that dy(C1,Cy) = dn(Cs, Ch).
For the triangle inequality, assume that C,Cs, C3 are self-dual codes. Observe that

(01 n Cg) ] (02 n 03) = Cg N (01 U 03) - C(2~
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which implies

dim(Cy N 02) + dim(Cy N 03) < dzm(C’Q) = g

Thus we have
n

dzm(Cl N CQ) + dZm(Cg N Cg) - dzm(Cl N Cg) <

\}

Adding % to both sides and sending dim(Cy N Cy) + dim(Co N C3) over to the right side of the equation, we
get

n .
dN(Cl,Cg) = 5 — dzm(C’1 N Cg)

% — dim(Cy N Cy) + g — dim(Cy N C)
<dn(C1,C) +dn(Cy, C3).

IN

The next proposition shows that self-dual codes cannot have the maximum distance to each other:
Proposition 3.4. Let C1 and Cy be two binary self-dual codes of length n. Then dn(C1,Ca) < %.

Proof. Tt is well known that if C is any binary self-dual code, then (1,1,...,1) € C. thus 1 € C; NCy, which
implies that dim(Cy; N Cy) > 1. But then
n

dn(Cy,Co) = g —dim(C1NCs) < 5~ 1<

|3

O

Question: Is there an upper bound on the distance between equivalence classes of self-dual codes? The
proposition shows that the distance cannot be larger than 5 — 1. It is an open question whether this upper
bound can be reduced further.

We now define k-range neighbor and k-neighbor of a code using the distance notation:

Definition 3.5. Let C; and Cs be two self-dual codes. C7 and Cy are said to be k-range neighbors if
dn(C1,Cs) < k and they are called k-neighbors if dy(C1,Cs) = k.

Remark 3.6. The neighbor of a self-dual code is well known in the literature and it corresponds to a 1-neighbor
in our context.

Remark 3.7. The concept of a k-range neighbor code can be more useful than the strict k-neighbor codes,
because of the following observation:

Suppose C and Cy are self-dual binary codes with generator matrices [I,,/2|M1] and [I,, /2| M>], respec-
tively, where

1 S1
Ty S
_ T _ S:
My =|_Ts |, My, = |_53
Tn /2 Sn /2

Here 7; and S; are the rows of M7 and M, respectively. If 7, =5, for i =k + 1,k +2,...,n/2, then C; and
Cy are k-range neighbors.

Remark 3.8. As we observed above, the ordinary neighbor of a code C' is a 1-neighbor. We can also observe
that, the neighbor a 1-neighbor of C' is a 2-range neighbor of C. This can be generalized into considering
the neighbor of a neighbor of a neighbor etc. of a code as a k-range neighbor of the original code.
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4. APPLICATIONS OF k-RANGE NEIGHBOR CODES TO EXTREMAL SELF-DUAL CODES

In this section, we will give an equivalent description for the k-range neighbors and use them to construct
new extremal binary self-dual codes. Let N(g) be a binary self-dual code of length 2n. Let z¢ € F3» \ Moy
define

Nivn) = <<ﬂﬂi>L ﬁN(i)7x¢>

where N(;41) is the neighbour of N;) and z; € F3™ \ sN(;).

It is not hard to see that J\/’(i) defined in this way is an i-range neighbor of MO) as was observed above
in Remark In what follows, we will apply this idea to search for extremal binary self-dual codes from
k-range neighbors of a known code. We use Magma Algebra System ([2]) for our searches.

4.1. Numerical results from i-range neighbours. The possible weight enumerator of an extremal binary
self-dual code of length 68 (of parameters [68,34,12]) is in one of the following forms by [4l 12} 6]:

Wes1 = 14 (442448)y" + (10864 — 88) y** +---,104 < 3 < 1358,
Weso = 14 (442 +4B)y'? + (14960 — 88 — 2567) y'* + - -

where 0 < v < 9. Recently, Yankov et al. constructed the first examples of codes with a weight enumerator
for v =7 in Wis 2 in [I]. Together with these, the existence of codes in Wgg 2 is known for many values. In
order to save space we only give the lists for v =5, v = 6 and v = 7, which are updated in this work;

~v =5 with 8 € {101,105,109,111,...,182,187,189,191,192,193,201,202,213}

v =6 with 8 € {133,137,139,...,174,176,177,184,192,210}

v =7 with 8 € {Tm|m = 14,...,39,42}

Let /\/(0) be the extremal binary self-dual code of length 68 (Wss o) with the parameters v =5 and § = 213
which was recently constructed in [9]. Its generating matrix is given by (I34]A) where

o
I
OFHOOOROFORFEHFFEOORRFFERFEORFEFERFOOOROOO
OO0 FOOOHROFRFOOOOROHORRFFFOOROOORFO
HOOOOOORORHFFHOFRFOROOOOHROFFOROROORO
OO0 ORHOOORORRFRORHHHHHFOOOROROOOOR
HEHEOOOOOOROFOFFFOFROOOHRHFOORRFOROO
HFEOHOOOOHOHOHORHHOOORORRORRORRFRFROOO
OO OOFOFROORFOOOFORFHFHHOFHHFEOOOOOH=OHHO
OO OFOOHOOOOFFFHOOHOOHOOOHHOOHOHOO
HEOFOFROOOOOHOOHOHOOOOOOHHOHOHOOHOM
OO == = = OO OO0 O = = = OO - O = = =
ORFROFRORRRHRORHOORFRFRORHOOORRFRRFRORRHROORH
HFORHRFOORRFOOHORFHFEHOHFOOOFROOK = F O
HOFROORFOHOHOOORRFFHOHOHOOFROOOORRFORK
OFRFFRORFRFFOFRFROFRFFOFROOOOHROOORFFOROOR
HOOFRFOFOFRHFOOFROFROOOOHFORHFRFFOOFOORORF
OHOOFOFRFOOHOOOOFFOOOOOOHOOOROOROOR
HREROROORHFHROORRFRHOOHOOHRROOORRORF -
HEEEEFOOOOOHOFROOFOOROOHFHOFROOROOOOH
OHOOOFFFOOHFFHOOOFORORFFHFEFEOORRFEFEHEOO
HOOOHOHHOOHHOHOOORORRRRRORRORRFRFRROO
HOOOHROOFOOFORFFOOHOOHOFHOOOHOOHOOOH
OHOHHOHRHHHOOOHORHFHROROOOORORORORFFF
OO OFHOHOOOHHFOOOOHO OO MO R = =
HEOOFORFFHEOFEFEOMFEFEFHEOHEOHHOFHEOOHHOOFO
[l el al gl gl g elel Jelelelel ol dolelelel delelele] gt )
HEOORFRFOORRFRHFFRFOOOORORRFHFFEFEFOOOROROOR
HEORFROFROORFOFRFFEFORFORORFRFOFRFOORFOO
HHEOOFRORFORFRFRFEORFOORHFHFHFOFROOOOOOOOOH
OFHOFRFFOORHFOO0O0OOFROOOOHHFOOFFOROOOORO
HOORRRRFRRHEHEHEREREFRRORFRHHOORFOOROOOOOHO
HOOORFOFROROFRFOOOFOORRFOROFFOOROROOO
OHHFHOOOOOOHROOOOOORFOORKFHEFEFORFORRFOOR
HOHOORKHHHHHHHOORRHRHROROORRROORRFRFORF
OHOHHORHHHHHOHHORRORORRORROORFROROO

Implementing the formula described above to this code /\/(0), we obtain:
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TABLE 1. i-range neighbour of N

2 N(i+1) g ‘A’U/t(./\/(prl)” Yy ,8

0 A/(l) (1100000101101111011001110100000100) 1 6 210
1 ./\/'(2) (0111111111110110010100110111001100) 1 7 212
2 M3) (0111010010010101001000101110011001) 1 8 221
3 /\/<4) (1000000111110011101001110001110000) 1 9 221

4.2. Neighbours of Neighbours. In this section, we separately consider neighbours of j\f(o), J\/(l), /\f(2)7
Niz) and Na).

TABLE 2. Neighbours of N

Ci (.’L’357 T36y -y .’1168) ‘A’u/t(./\/‘(;g’i)l Yy ,B

C: (1001100000010100010100001111100011) 2 5 195
C» (1000010001011010000011010000011010) 1 5 198
Cs (0111101000110110001011101100010000) 1 5 200
Cs4 (0111001101010010011001000101101010) 1 5 202
Cs (0100101101000111111110110101110111) 2 5 211
Cs¢ (0011011100110001100010000000100100) 1 6 198
Cr (0111011111101001111101101111001000) 1 6 204

TABLE 3. Neighbours of Ny

Ci (303571’36-, -+, T68) v B ‘ Ci (T35, T36; -+, Tos) Y B

Cs (1001010111010111110011100111000011) 6 175 | Cy (0001011110111110011101001111111100) 6 177
Cip (1011110110111010111010010111101111) 6 179 | C;; (1011011001101100010101001010001111) 6 181
Ci12 (0111001000010101110001001100111100) 6 182 | C;3 (0111111111011111101100100100001110) 6 183
Ci4 (1011111001001110011110000010100011) 6 185 | C;5 (1010100011111100010011111101001101) 6 186
Ci¢ (1011010111110011001011000100111011) 6 187 | C;7 (0011110011110111111101101100110100) 6 188
Cis  (0000000010010101010011001010001011) 6 189 | Ci9 (1011101110011101111110100101011100) 6 190
Coo (1111000000010110001111001111010101) 6 191 | Co; (1010111010101011100011100011001111) 6 193
Ca2  (1000001101010100110101000011000101) 6 194 | C3 (0101011110100101000000011010001111) 6 195
Coq (1111011101111101110110100010000111) 6 196 | Co5 (1111011010010110011101100001000110) 6 197
Co6 (1011110001001000100001000110100000) 6 199 | C27 (1001010010110100100000001100000101) 6 200
Css  (1010010010100011111100011100111010) 6 201 | C29 (0100010011101100010110001010110000) 6 202
C3o (0100100000011110000010011000010110) 6 206 | C3; (0001110111010001111011010001011111) 6 207
Cs2 (0010110010011001111110101000011110) 7 184 | C33 (0011001100100010111110000000011001) 7 185

TABLE 4. Neighbours of Nz

Ci (w35, 365 -+, To8) v B ]G (T35, T36; -+ Tos) Y B

Csq4 (1101111111101111011110011101101110) 7 174 | Css (1001101001000111010110110111111111) 7 177
Cs¢ (1011010010001010111100010010000100) 7 178 | C37 (1101111001010110110111010110001111) 7 179
Css (1011101100100101100110111101101111) 7 181 | C39 (1001111111011111110110010001001110) 7 183
Cs0 (1101010001010110001001111001100010) 7 186 | C4; (0110111111000000011011000001110001) 7 187
Cs2  (0010011000010000000011111111111010) 7 188 | C42 (1001101101101011111111010100101101) 7 190
C43 (0110000001011010011001111110100010) 7 191 | C44 (1011000011111010100011111011100011) 7 192
Cs5 (0100001110010111010110101010011110) 7 193 | C46 (0000001101111110100001100001000000) 7 194
C47 (0100110110001011101001011000110001) 7 195 | C4s (1111010100000010111100100101110101) 7 197
Cs9 (1100100000001001100110010111111111) 7 198 | C5p (0000110011100001111010110100110001) 7 199
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TABLE 5. Neighbours of N3

Ci (w35, 36, -, Tes) v B ]G (35, 736, ---; Tes) v B
Cs1 (0101000010100010000111100101011100) 7 171 | Cs2  (0000011101001011001010111100001110) 7 173
Css (0000011101101010010000110000101000) 7 176 | Cs4 (1011010010100001010000111011100110) 7 180
Css (1011110011111111111100111110100111) 8 181 | Cs¢ (1101111111010111111111100010110111) 8 186
Cs7 (0000110100100011011001001101111010) 8 187 | Cs¢ (1101000111000011001010010001000000) 8 189
Cs9 (0000001011100100110100101111000100) 8 190 | Csp (0111011011011011010010101101100011) 8 192
Ce1 (0011011011110001000111111111011110) 8 191 | Cs> (1010111011000111100110111001110111) 8 193
Ces (0010010011101001110101011010111100) 8 194 | Cs4 (0001001001010000111101111001110111) 8 195
Cés (0001101011101101100010111110110011) 8 196 | Css (0100100001010000001010001111100010) 8 197
Ce¢7 (1011100101000101100011110111101011) 8 198 | C¢s (0011011111101011011011111011110011) 8 199
Ceo (1111000101100111100010101010000001) 8 200 | C7o (0011000110010100110010000110000001) 8 201
Cr1 (1110101001000010010100101000011100) 8 202 | C72 (0110111010011110110001011011101001) 8 203
Crs (1001100101111110111101011001101110) 8 204 | C74 (0000100111111101000010110011001001) 8 205
Crs (1011001000010010011100101011000100) 8 206 | Cr¢ (0101111110001111110000111111111011) 8 207
C77z (0110101010100001110101011010110110) 8 208 | Crs (0001111000110101011111001111101111) 8 209
Cr9 (1111011101111110000011100111111011) 8 210 | Cgp (1101010100000100000001110100010001) 8 211
Cs1 (0011110101110001000001111001110000) 8 212 | Csp (1100011110110111110101000101011111) 8 213
Css (0101011001011011111001010100001000) 8 214 | Cs4 (0000011110101100110001010101100011) 8 215
Css (1110100101011111001101011011011110) 8 216 | Cs¢ (0001111000001111100010100011011010) 8 217
Cs7 (1110011000000010100101000101010110) 8 218 | Css (0100011111001011000000000010000011) 8 220
TABLE 6. Neighbours of N4
Ci (I357I367'“7I68) i 6 C’L ($357$367"'7I68) i 6
Cso (0110011110100110101110111111001110) 7 163 Coo (1010011101011110101011111111011110) 7 166
Co1 (1001110111100010010000100001111010) 7 169 Coe (0011101011111100101001110010011011) 7 170
Cos (1101101101010111100010000101001101) 7 172 Coy (1001001100010110100011110011101101) 8 180
Cos (0110000111110011101010000111110111) 8 182 (g (1110000100101011001100000100001101) 8 183
Co7 (1110111101111011001110111111010111) 8 184 Cyg (0111001000001101101001110011010010) 8 185
Co9 (0010010100101110111101101011111111) 8 219 Cioo (1101000000110100011000000110101000) 8 188
Cio1 (0111101011001101101011010011001011) 9 186 Cio2 (0001001011000000110111110000010110) 9 187
Cios (1011011001100001001110011100101101) 9 188 Cio4 (1000000111000110111000100010000001) 9 189
Ci05 (1111010100111110101110110000011111) 9 190 Ci6 (1000100000000111110001110000010010) 9 192
Cio7 (0111011010010110011110110001000110) 9 193 Ci0s (0010011100001000000010001111011000) 9 194
Cig9 (0001101100111010100010011110101000) 9 195 Cy3 (1000011011111111111010001110010001) 9 196
Ci1n (0111010111111001111101011000101110) 9 198 (32 (0101101101001100001001110011010010) 9 199
Ci1s (1111011011111111111010100100111001) 9 200 Ci;4 (0011111100000101110110110111011111) 9 201
Ci15 (0100111111101001101001110001101011) 9 202 (i3 (1111101111000110001100111111101100) 9 203
Ci17 (0101111110001110100001110110011011) 9 204 (i3 (0111110111111110111101000001110100) 9 205
Ci19 (1110110111101011000110100111111100) 9 206 Cipp (0000000111010010100010010001011001) 9 207
Ci21 (0001001101110101011111001000101101) 9 208 Ci22 (0100001111001011001010000111010011) 9 209
Ci23 (0101000110111111010111000111000100) 9 210 Cy24 (0110110111011011011110111101001100) 9 211
Ci25 (0001110001110001001001110010111010) 9 213 Ci26 (0001010100001110010110011101111101) 9 214
Cio7 (0101010110001011110111000001101110) 9 215 Ci2s (0010011111011010100011110101011011) 9 216
Cia9 (0111100100111001111101100111110101) 9 217 (i3 (1101110110110011011001111111011011) 9 218
Ciz1 (1101011010110011000111101000101100) 9 219 (i3, (0110101110111110101011011111101011) 9 220
Cizs  (1110000011001101000110000000101110) 9 222 (i34 (1001111010110000000101110100000100) 9 223
Cizs (1001000111100111010011111100111001) 9 224 (i3 (1011111011110111101111011111011100) 9 225
Cizz (0011111100110101110101101110110101) 9 226 Ci3s (1011010011100011110000011000001011) 9 228
Ci39 (0101001011001111001010011001000011) 9 230

5. CONCLUSION

We introduced the concept of a distance between self-dual codes. This generalizes the notion of a neighbor
in self-dual codes, which leads to a new way of constructing new self-dual codes from a known one. Applying
these ideas to an extremal binary self-dual code of length 68 we were able to construct 143 new extremal
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binary self-dual codes of length 68 with new weight enumerators, including the first examples with v = 8,9
in Wesg,2 in the literature. Thus, we have now completed the theoretical list of possible v values that can be
found in Wss 2. Generator matrices for some of the new codes are available online at [II]. Out of the codes
we have constructed, 42 have v = 8 in their weight enumerator, while 40 of them have v = 9 in their weight
enumerators. In particular, we have been able to construct the codes that have the following parameters:

(v
(v

=5, B={195,198,200,202,211}),

=6, B={175,177,179,181,182, 183,185, 186, 187, 188, 189, 190, 191, 193, 194, 195, 196, 197, 198, 199,
200,201, 202, 204, 206, 207}),

=7, B=1{163,166,169,170,171,172,173,174, 176,177, 178,179, 180, 181, 183, 184, 185, 186, 187, 188,
190,191,192, 193, 194, 195,197, 198, 199, 212}),

=8, B ={180,181,182,183,184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,
200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
220,221}),

=9, B =1{186,187,188,189,190,192,193, 194, 195, 196, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207,
208,209, 210, 211, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 228, 230})

The strength of this new approach has been demonstrated by the number of new weight enumerators that
we have been able to obtain by applying it to a single code. We believe this will open up new venues in the
search and classification of new extremal binary self-dual codes.
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