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A social engineering model for poverty alleviation
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Poverty, the quintessential denominator of a developing nation, has been traditionally defined

against an arbitrary poverty line; individuals (or countries) below this line are deemed poor

and those above it, not so! This has two pitfalls. First, absolute reliance on a single poverty

line, based on basic food consumption, and not on total consumption distribution, is only a

partial poverty index at best. Second, a single expense descriptor is an exogenous quantity

that does not evolve from income-expenditure statistics. Using extensive income-expenditure

statistics from India, here we show how a self-consistent endogenous poverty line can be

derived from an agent-based stochastic model of market exchange, combining all expenditure

modes (basic food, other food and non-food), whose parameters are probabilistically esti-

mated using advanced Machine Learning tools. Our mathematical study establishes a con-

sumption based poverty measure that combines labor, commodity, and asset market

outcomes, delivering an excellent tool for economic policy formulation.
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Poverty is associated with the living standards of low income
households. There are three ways of looking at poverty. In
the first approach, poverty is defined as the deficiency in the

level of living, measured through insufficient consumption of the
essential commodities for low-income persons, who spend all
their income on essential commodities. This was the approach
used by Engel1–3.

The second and more commonly used poverty approach
depends on a poverty line that is obtained independently and
exogenously. This trend started in 1901 with Rowntree4, who
defined poor as individuals with income below the poverty line
level of income needed to cover basic needs. Popular approaches,
such as those in refs. 5,6, used consumption data to determine an
arbitrary poverty line only, thus failing to measure consumption
deprivation (CD). Arbitrariness is thus inherently embedded in
the definition of the poverty line. While the U.S. poverty line is
measured at three times the money needed to buy a low-income
diet plan outlined by the US Department of Agriculture7, the
Indian poverty line is determined by assuming a particular per-
centage of urban poor8. This approach, based on a subjectively
determined poverty line, is not helpful in bringing objectivity to
the poverty studies, for a scientific theory of poverty. Sen devel-
oped an axiomatic theory of poverty index9. His Focus axiom
axiomatized Rowntree’s notion of an income poverty line, below
which people are labeled poor. As axioms are often taken for
granted and rarely questioned, poverty line had remained the
quintessential benchmark in the field for long, despite obvious
controversies surrounding its origin. Foster et al. came up with a
class of poverty indices dependent on a poverty line10, such that
all other known poverty indices arose as special cases.

There is the third approach, now an accepted wisdom of
multidimensional poverty11–13. This existing literature on mul-
tidimensional poverty also requires multiple subjectively deter-
mined thresholds (poverty lines). All these three approaches
suffer from two drawbacks that they do not link poverty or CD to
the general working of the broader economic system that gen-
erates this poverty, and they do not provide a method of pre-
dicting the future level of poverty as a function of controllable
economic parameters.

We draw upon our earlier work in integrating all these ele-
ments. Fox and Kumar argued that there is a spatial hierarchy of
markets under the assumption of lexicographic preferences and
separable utility functions14. Sitaramam et al. showed that while
the Engel curve for the most essential commodity is concave with
respect to income, the next most essential commodity is also
concave with respect to the residual income, and so on. They15

established empirically that there exists a commodity hierarchy of
needs, complementing a series of concave Engel curves as func-
tions of residual income, leading to a phenomenological repre-
sentation of the Engel curve16,17, using a Michaelis–Menten
model18, where the concave function represented real consump-
tion of cereals (which ranked as the first basic need) as a function
of income, proxied by total expenditure. They used the cereal CD
as the deprivation function of Atkinson19 to demonstrate that
cereal CD index serves as a poverty index. Kumar et al. later used
a much larger data base (made available in digitized form by the
National Sample Survey Organization) at individual level from
three much larger quinquennial surveys20, and revalidated the
model for all of India and for rural and urban India and for all the
Indian states. They also established that the results vindicated the
development policies followed by India with respect to growth
and growth with equity.

Structured on stochastic wealth exchange between agents close
to the poverty line of income, Chattopadhyay et al. developed a
model of market exchange to generate income distribution21

abiding Sen’s axioms22. Chattopadhyay et al.23 then applied this

stochastic portfolio on labor markets, commodity markets, and
asset markets to link the poverty index with the entire working of
the economy, which is so essential for economic policy to reduce
poverty24. As a consequence, hierarchical Engel curves could be
seen to saturate with the rise in residual income, eventually
converging to a point where some residual income is left after
meeting all essential hierarchical needs. It is that threshold,
identifying economic inflexion, that is relevant to study the living
standards as conceived by Engel. These three studies21–23 jointly
established a theoretical basis for an endogenous poverty
threshold for its comparison over space and time. The time
varying income and consumption series from such a model
enable us to derive a probabilistically validated poverty index that
could predict future poverty lines.

These studies, however, had one fundamental limitation. They
used basic food as the lone denominator of poverty, not the well-
recognized multidimensional construct involving all possible
expenditure modes11–13,25. Multidimensional Poverty Indices
(MPIs) are mainly of two types. The first category of studies
defines the poor as those who are poor at least for one
dimension13,25 while the other category identifies one as poor
only when poverty spans all dimensions (acute multidimensional
poverty)12. But they suffer from the same limitations as the
income poverty measures, as they have arbitrary thresholds for
minimum needs for each of the chosen dimensions. Furthermore,
they combine different dimensions using arbitrary weights that
are not data conforming.

For a holistic poverty index, one needs to assimilate informa-
tion from all three consumption entries and their covariances. In
order to suitably weigh all three components of consumption and
thereby appropriately address the multivariate problem, here we
use advanced machine learning techniques to dimensionally
reduce a multi-variable description to a single highest weighted
one-dimensional Principal Component (PC) that combines
information from all three expense modes. This statistically
reduced variable is then modeled within the Fokker–Planck fra-
mework as in refs. 21,23 to analyze the time evolution of the
probability density of expenditure, relating to the poverty
threshold. The recursive details of CD, involving all expense
modes, thus leads to a multidimensional, commodity exchange-
based poverty index that supersedes previous evaluations and lays
the groundwork for a generalized poverty index.

Results
Dimensionally reduced Engel curve. Engel2 empirically derived
a law showing that while expenditure on food consumption
initially increases with income, soon enough, such expenses reach
a plateau and are hence substituted by other expenditures (like
other food, non-food, etc.). Mathematically, this is represented
by a concave function (Fig. 1), typically of the form V(y)= Vy/
(K+ y)15,16. The real situation is more complicated though due to
the presence of multiple expenditure modes—on cereals, other-
food, and non-food.

To analyze this, we used NSS income data (y)26 and correlated
that with expenses C1(y, t), C2(y, t), and C3(y, t), the latter
respectively representing expenses on cereals, other-food, and
non-food items. To address this multivariate data modeling, we
used independent multivariate algorithms—Neuroscale27–29,
Locally Linear Embedding (LLE)30, Isomap31, Curvilinear
Component Analysis (CCA)32, Principal Component Analysis
(PCA)33—thereby combining all three expense heads into a single
(non-dimensional) function to obtain a multivariate version34 of
the Engel plot (Fig. 1).

As can be seen from Fig. 1, which represents the economic
equivalent of the Michaelis–Menten law in biochemistry, barring
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fluctuations in the values of fitting parameters V and K21,23, all
algorithms conform to the functional fit

Cðy; tÞ ¼ VðtÞy
KðtÞ þ y

; ð1Þ

where the time-dependent parameters V(t) and K(t), respectively,
enumerate the multivariate form of the maximum expenditure
per family over all three expense heads, and the income required
to support half of the maximum multivariate expenditure20,21,23.

In Fig. 2, the LLE dimension reduced model indicates a far
higher CD as would be expected with focus on non-food
expenditure. In order to perform this analysis robustly accounting
for the three dimensions of our data, we proceed with the
NeuroScale dimension reduction model26. The IsoMap, CCA,
and PCA embeddings show a less significant deprivation here, but
the NeuroScale embedding shows a lower level of decay in CD
than the other dimension reduced models.

As explained in ref. 15, CD relates to the actual shortfall in the
total expenditure from the maximum possible lifestyle based on
total consumption alone and is defined as

CDðyÞ ¼ VðtÞ � CðyÞ ¼ VðtÞKðtÞ
KðtÞ þ yðtÞ : ð2Þ

The scalar function CD(y) above is a dimensionally reduced
projection of the three-dimensional vector space constituted of
cereal, other-food, and non-food expenditure modes. Our

description henceforth will always tacitly assume C(y(t)) as the
dimensionally reduced scalar projection from the multivariate
distribution. Figure 2 plots the CD functions arising out of the
respective algorithms (scalar projections, as normal).

As in ref. 23, our target will be to associate a probabilistic
structure to the time varying Indian consumption and total
expenditure (income) data, the novelty here being the multi-
variate aspect involving all three modes of expenditure. In order
to perform this analysis robustly accounting for the three
dimensions of our data, we proceed with the NeuroScale
dimension reduction model27. The non-constant weights of the
three components of expenditure seem to mimic the prices of
those three components, as the principal component is almost
like a 45° line when plotted against total expenditure. This could
be verified against price data derivable from NSSO26, that will
confirm our agent-based model’s veracity in predicting equili-
brium quantities and prices from consumer expenditure data
(details in the online-appendix).

Machine learning of multivariate statistics. Figure 3a, b below
explains the implication of relative multivariate weighting that
some of the more popular dimensional reduction mechanisms
will do. Subjective to the (Indian) data analyzed, we find that
predictions from all five measures—Neuroscale27–29, LLE30, Iso-
map31, CCA32, PCA33—converge to reasonable agreement
amongst themselves.

While the weights used in the traditional MPI are arbitrary, the
weights we use are derived through dimension reduction
algorithm. In order to assess the significance of each of the
observed expenditure streams (cereals, other food, and non-food),
we present Fig. 3b. It may be observed that the three projections
add to the 45° line, suggesting that the scalar weights are actually
the market prices. This observation is also independently
supported by the observations made later about how the relative
weights move as income increases.

Figure 3 shows the comparison of the dimension reduced plots
with respect to the individual PDFs. However, we can also assess
the effectiveness of the dimension reduction methods as a
descriptor for the total income realized by each of the expenditure
streams; cereals, other food, and non food.

In the PCA dimension reduction case of Fig. 4a, the weights
allocated to cereal, other-food, and non-food variables are 0.1694,
0.4336, and 0.8851, respectively. These weights seem to be in the
same order of relative magnitude as the market prices for the
three components. It is likely that these weights correspond to
market equilibrium prices for the three components. It is thus
very reassuring that the agent-based model (ABM) is capable of
generating equilibrium prices and quantities, and thus fully
characterize the competitive market mechanism.

In Fig. 4b, we show the plot of the normalized dimension
reduction models against total expenditures (the normalized
summation of cereal, other food, and non-food expenditures) for
a sample year. These dimension reduced curves are contrasted
with a unit curve whereby the dimension reduction model would
perfectly account for total expenditure. As shown in Fig. 3a and b,
the preservation is highest for NeuroScale and Isomap and lower
for the local methods of LLE and CCA as well as for the linear
model PCA. Figure 4b thus demonstrates that despite the
reduction of dimensions from three in the observation space to
a univariate latent model, the information governing the
observations can still be preserved.

In order to visualize the relative importance of each dimension
in the mapping, we follow the approach of refs. 27,28 to generate
three independent batches. In the first batch, we take 100 linear
steps between the minimum and maximum values of cereal
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expenditure keeping the other two dimensions fixed at the
median values and project this through the NeuroScale mapping
to achieve the univariate curve z1. Repeating this process for the
other-food and non-food streams results in the curves z2 and z3.
These three variable weights demonstrate relative impact of these
three dimensions in the total expenditure/income space. The
relative significance of these is shown in Fig. 5, from the curves of
z2/z1 and z3/z1, both normalized with respect to the equivalent
cereal expenditure z1. Individually, they represent the relative
projection weights of other-food and non-food, relative to the
projection weights for cereals.

Our dimension reduction arises as nonlinear projection of each
dimension on the total expenditure. The weights therefore are not
constant, as in most MPI studies, but vary with income. At low
expenditure levels, other-food has greater weight than non-food
in our index (both of them have larger weight than basic food, as
the market values them that way). As expenditure increases, both
other-food and non-food weights increase. But the weight of
other-food remains stable and maintains a level of ten times that
of food weight. On the other hand, the weight of non-food keeps
on increasing. This demonstrates that people keep on substituting
more and more of high priced non-food items as income
increases.

Cereal has the lowest weight, other food and non-food have
higher weights than cereal. These seem to reflect the order of
magnitude of the price indices for the three dimensions. In fact, as

our data are generated from the outcomes of market transactions,
it is natural to expect that the projection would only discover the
patterns in market exchange, and the weights mimic the market
prices. Thorbecke11 describes how the market prices could arise
as weights by using the indirect utility functions. He also shows
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the normative limitations associated with market-based weights,
as they do not correct for market distortions and do not capture
non-market transactions. The implication of this observation is
that when the markets fail to address the needs of the deprived,
necessary corrective steps have to be taken to alter the allocation
mechanism. Another issue discussed is the inherent dependence
of the various dimensions. While the details are beyond the scope
of the present study, it must be noted that the dimension
reduction algorithm uses a distance metric, e.g., Mahalanobis’
distance metric3 accounting for the correlations between different
dimensions. The observed non-linear weighting pattern reflects
the fact that the prices vary with incomes, reflecting the variation
in the quality of the goods and quality of the markets through
which the goods are exchanged (Fig. 5).

The multivariate poverty index. The definition of the poverty
index PCD(t) follows the structure laid out in refs. 16,19,21,23. The
key difference is the substitution of the cereal expenditure vari-
able C(y), as in refs. 21,23, with the all expense mode inclusive
multivariate-C(y) obtained by dimensional reduction, as detailed
above.

PCDðtÞ ¼
Z 1

y0

CDðy; tÞf̂ ðy; tÞ dy; ð3Þ

where CD(y, t) and f̂ ðy; tÞ will be, respectively, obtained from
Eqs. (14) and (12). The time varying mean income C(t) present in
Eq. (14) can be evaluated from the relation CðtÞ ¼R1
y0

yf ðy; tÞ dy which addresses the oscillatory instability that

would otherwise destabilize the numerical simulation should the
C(t)= 1.16 × t− 2218.7 fit function be used instead (details in
ref. 23). V(t) and K(t) used in Eq. (14) above are extrapolation fits
of data, as shown in Fig. 6. The strength of our complementary
model can be justified both from the fit (solid line against real
data circles) as well as from the solution (dotted line) of our
proposed model represented in Eq. (14).

As shown in Fig. 6, linear regression fits over 23 years’ NSS
data26 suggest poverty increasing from 1951 to 1970 and then
decreasing steadily. The peak is shown immediately in the pre-
1970 era. India had war with China in 1962. It had a war with
Pakistan in 1965–66, it had a draught in 1965. USA stopped its
aid to India in 1965. The war resulted in price rise, including for
food grains. All these factors were responsible for the rise of
poverty in India prior to 1969. The green revolution also started
working from 1970. India also launched poverty alleviation
programs in the Fifth Five Year Plan (1974–79). These
developments explain the sharp decline in poverty between

1970 and 1990. India’s economic liberalization through more
market-friendly economic policies that started in 1991 arrested
the sharp declining trend in poverty and slightly flattened it after
1991.

Another key aspect of the multivariate index is its relatively
high measure compared to the HCI and PG indices, as also noted
in other multidimensional studies related to the human
development initiative12,13. A data based reconnaissance affirms
that according to the global MPI statistics recorded in 2018, 271
million Indians moved out of poverty between 2005–06 and
2015–16, https://ophi.org.uk/multidimensional-poverty-index/
global-mpi-2018/, which effectively implies that the Indian
poverty rate has nearly halved, an estimate that is not shown
accurately in the unidimensional measures. Consideration of all
modes of expenditure essentially contributes in further reducing
the magnitude of the poverty index. This is most noticeable in
multidimensional PI measures12,13 where the reduction in the
overall PI with addition of the non-food and other-food-related
extra dimensions. This is nothing special of the Indian data that
we used here but is seen elsewhere as well35. As a confirmation,
we provide multidimensional analysis of the US data in the
online Supplementary Information to affirm this statement.

We compared the new theoretical poverty index in Fig. 7 with
data from all three indices popularly used in the literature: the
head count (HCI) index, the poverty gap (PG) index, and the
squared poverty gap (SPG) index. Our most recent work23

showed two key incongruences with its earlier data-based
predecessor21, notably the dips in the poverty index (versus
time) plot at years 1970 (sharper in ref. 21 than in ref. 23) and then
at 1987 (simply not showing up in ref. 23) as well as in the present
work. The first is now reckoned to be an artifact of the nature of
NSS data in that in the pre-1970 regime, economic data were not
appropriately calibrated against corresponding expenditure
heads. This deficiency shows up in our present model as well
but one must remember that a statistical predictive model is
unlikely to forecast local dips crests and troughs. Its strength is in
its ability to reach beyond data by incorporating all expense heads
and then crystalizing such information within the realms of a
dimensionally reduced, effectively single variable model.

Discussion. The importance of multidimensional poverty
assessment is now well acknowledged in the literature12,13,
especially its preponderance in Indian poverty estimation35. The
critical issue though, lay in the mechanism of estimation that
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required implementation of appropriate multivariate tools for
such assessment. In terms of integrating the concept of poverty in
existing ABMs, there still exists a big gap. A self-consistent
agreement between fixed-income-based poverty lines (impacting
cognitive functions36), or income with subsistence
production37,38, or CD-based poverty lines23 based on nutritional
indicators is still missing. They also suffer from a disconnect with
the structural aspects of asset and commodity markets whose
outcomes generate poverty. It is this disconnect that precludes the
use of those measures for anticipating future trends in poverty
and arresting any expected increase in poverty through policy
intervention. As the levels of development increase the focus of
poverty has shifted from basic need food to other dimensions.
This resulted in mushrooming literature on MPIs. Those indices
also suffer from the use of arbitrary poverty lines, one for each
commodity, and combine multiple dimensions into one by an
index formula that is also often arbitrary.

In this article, we offer an alternative formulation of inequality
based on the consumption-based poverty measure that is multi-
dimensional in nature. We avoid using any arbitrary and
exogenous information such as a poverty line or an exogenously
specified mathematical formula for the poverty index. Instead, we
use economic theory suggested CD, combined with objectively
defined machine learning tools reducing the multidimensional
poverty as a single dimensional measure of poverty index. We
link the multidimensional poverty measure to the outcomes of
asset market and commodity markets. We also model agent-
based market exchange mechanism. We use extensive data over
three decades from India to demonstrate how well our model
works and how well it reproduces the trends in poverty in India.
A traditional mechanism of ensuring veracity of a data-based
model is to split the sample into two subsamples, one to estimate
the model and another to predict and compare against the data
points that were not considered in defining the initial continuum
measure. That is a technique normally employed when the
sample relies on cross-sectional data. In time series data analysis,
it is not necessary, in fact may even be technically incorrect as
time series data analysis tends to ascribe greater weight to data
from the recent past (Markovian nature). In such context,
splitting the sample might actually loose the information needed
for better prediction. To confirm the robustness of our analysis,
we replicate these methods with another data set (US data—
Supplementary Information) to demonstrate that our observa-
tions are not just a statistical coincidence but are replicable in
other country contexts.

Our model highlights two key aspects of inequality perception.
First, multivariate construction is a key component of economic
data analysis, implying all modes of income and expenditure need
to be considered to arrive at a proper weighted estimate of
poverty. Second, in developmental economics, machine learning
as a tool functions better when integrated with statistical
mechanics-based models for the purpose of economic prediction.
This will explain why a reasonable body of literature dealing
exclusively with artificial intelligence modes of data modeling
have underperformed when it came to modeling poverty. More
detailed statistical error measures, like Type I and II errors, p-
values, and others could have been added; but this will not add
anything to our conclusions and hence outside the scope of the
present paper. It is possible to build a bootstrap element into
model estimation to generate multiple replications of the sample
to generate the standard errors and confidence intervals which is
something that we intend to more extensive future analysis with
statistically large enough samples where that will add further
dimensions to error modeling.

Multidimensional poverty measures in India are few and far
between12,35. By removing arbitrary functional forms and poverty

thresholds and linking poverty measurement to structural agent-
based economic models, our approach to poverty measurement
and prediction goes a long way in advancing economic science
associated with measurement of poverty. Further emphasizing the
need for multivariate modeling12,13, our analysis highlights how
estimations based on individual PDFs could be drastically
different from their combined conditional distribution (Fig. 2).
The veracity of the conclusions drawn using Indian data are
confirmed against US data (also from the26 website, detailed in
the Supplementary Information) with the dynamical PDFs (Fig.
S1), their (Pareto distribution) rescaled counterparts (Fig. S2),
consistent scaling (Fig. S3), and a time evolving dynamics of the
Pareto exponent (Fig. S4) all conforming to the key signatures
noted above. Both data modeling conclusions (India and the US)
relate to the fact that the total poverty index calculated from the
unified (multivariate) distribution shows a comparatively lower
value than that for a cereal based poverty-index. These results,
especially the latter, are not simple artifacts, rather they depict the
comparative push-and-pull type economic dynamics between
different modes of wealth flow that manage to stabilize (or
destabilize) an economy, paving the way for social engineering.

Methods
Engel law or Engel curve play a central role in our model. Engel curve is the
observed relation between the consumption expenditure on any specific com-
modity and total income15. Economic agents, given their income, would like to
choose a level of consumption that is the community norm as reflected by the point
on the Engel curve corresponding to their income. We take the observed Engel
curve derived from long-term time series data as a proxy for the perception people
have of the relation between income and expenditure by people of a community. In
a dynamical model, the economic agent strives to move up the income ladder and
improve the level of living. The Engel curves of consumption expenses are concave
toward their income axis, as in Fig. 1. In a hierarchical setup, they are concave with
respect to the horizontal axis represented by the residual income left after meeting
the more important needs as described in Sitaramam et al. Details related to sample
sizes and data collection methods are all provided in ref. 26. The model exclusively
uses Indian data but is generic in its construct.

For a three-dimensional multivariate expenditure distribution, such steady-state
Engel representation as in Fig. 1 of the statistics show the following data; here α is
the non-dimensional scaling exponent representing the Malthusian saturation
point beyond which more income will not translate in to more food consumption.

The analytical representation of the scaling exponent α comes from Eq. (13) that
shows a Pareto decay for relatively larger values of expenditure. In our multivariate
formulation of income–expenditure statistics, α is the consummate multivariate
representation of the poverty index that we provide in more details hereafter. The
comparison between model outputs and real data have all been benchmarked
within ±σ, where σ is the standard deviation measured from real data (also pro-
vided explicitly in ref. 26).

Machine learning: Dimension Reduction. Dimension reduction is the process of
mapping consumption expenditure data, yi 2 Rm , to a (typically) lower dimen-
sional space, z i 2 Rn, with n < m such that it can be analyzed. Many algorithms
exist for the projection of data to a lower dimensional space32. Perhaps the most
well-known algorithm is PCA effecting a linear transformation upon data yi. PCA
identifies the optimal projection only where the manifold upon which the true data,
yi, sits is linear and Euclidean and as such is incapable of reliably analyzing real-
world processes. The notion of a global Euclidean chart was improved upon in
refs. 30,33 resulting in the LLE algorithm. The patchwork of local Euclidean
neighborhoods attempts to linearly map data preserving local neighborhoods;
however, the degree of nonlinearity in the real world often leads to the failure of
LLE in preserving the topological ordering of data.

Tenenbaum et al.31 use a global approach where a local Euclidean chart is
assumed and non-neighborhood distances are calculated through use of a geodesic
known as IsoMap. It should be noted that the local chart can be non-Euclidean
where an alternative dissimilarity measure is specified. Once the local distances are
calculated, the global distances between non-neighboring points approximated
using Djikstra’s algorithm. The resulting dissimilarity matrix is then linearly
embedded into an n- dimensional space in a similar fashion to PCA. Despite the
more accurate approximation of global distances in IsoMap compared to PCA, the
linear mapping can still result in a low-dimensional embedding, but with poor
neighborhood preservation. The advantage of the linear embedding used in the
IsoMap algorithm is that a global minimum of the linear embedding is found, in
contrast to other nonlinear dimension reduction algorithms requiring gradient-
based optimization of non-convex cost functions. However, in some applications,
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the ease of embedding in IsoMap does not overcome the limitations of the linear
process.

The approach given in ref. 27, called NeuroScale (NS), presents a nonlinear
mapping from Rm ! Rn based on the Sammon mapping34. The latent points, zi,
are identified through minimization of a mapping cost function known as STRESS:

E ¼
X
i;j

Dyði; jÞ � Dzði; jÞ
� �2

Dyði; jÞ
; ð4Þ

where Dy(i, j) represents the dissimilarities between datapoints yi and yj and Dz(i, j)
represents the dissimilarities between the dimension reduced points zi and zj.
Typically the Euclidean distance is used in the dimension reduced space such that
Dz(i, j)= ∥zi − zj∥, resulting in a Euclidean embedding of the data yi. The
observation dissimilarities Dy(i, j) are application specific and should be selected
based upon the nature of the observations, for instance where yi consists of binary
elements, a binary distance measure should be used instead of the Euclidean
distance which is often implemented. The latent points, zi, are identified through
minimization of Eq. (4) using a form of gradient descent known as Shadow
Targets29. In addition to the nonlinear mapping, a further benefit of NS over the
linear mappings discussed above is that it effects a parameterized mapping using a
Radial Basis Function Neural Network39, such that new observations y* can be
projected to the dimension-reduced manifold. CCA28 is similar to NS with a slight
modification of the STRESS term from that of Eq. (4). This modification includes a
nonlinear weighting, F(Dy(i, j), λ), of non-neighboring points, approximating their
distances in a non-Euclidean fashion as Isomap does:

E ¼
X
i;j

Dyði; jÞ � Dzði; jÞ
� �2

FðDyði; jÞ; λÞ: ð5Þ

Perhaps the most popular weighting scheme is to neglect distances associated
with far points offering a nonlinear local projection known as step-CCA. Global
mappings of CCA require the selection of a parameterized nonlinear weighting
function which can have a large impact on the resulting embedding and as such we
choose to implement step-CCA with a neighborhood width allowing for the
creation of a fully connected neighborhood graph.

Agent-based model. We now present an agent-based barter model of trade to
capture the complex behavior of interacting economic agents in an environment of
market institutions and social interactions.

We assume that the economic agents interact with each other in an institutional
environment with markets for commodities and assets, and with the non-market
institutions such as the State and other non-profit institutions. In the labor
markets, agents exchange their human skills (work) for wages and salaries. In the
commodity markets, agents exchange money for commodities. In asset markets,
agents exchange their physical and financial capital for financial returns. There are
those who only have human capital to exchange but no financial assets. Such
people get only wages and salaries, and spend most of it and save little for
contingencies. Others, who have other assets other than human capital, save after
meeting consumption needs. Agents with only low wage income exchange their
attributes of low-income destitution or deprivation for entitlements for grants or
financial assistance. In line with Ernst Engels, our focus will be on these two sets of
people who depend only on their human skills and save nothing, and those whose
destitution is such that they exchange the destitution attributes for grants and other
financial assistance.

ABMs are of two kinds: (i) based on an optimization model depicting the self-
interest goal of agents or (ii) based on a behavioral model using certain rules of
thumb. It was observed that behavioral models tend to do well, apart from in
exceptional or contrived conditions. Aumann40 takes a synthetic view and shows
that the exceptions occur as the behavioral models do not explain how the rules
evolve. Thus, by explaining how the behavior rules evolve, one can get a synthetic
model that is better than either. Whether it is an equation-based model or a
behavioral model, one can specify it at any degree of aggregation. The more
disaggregated the model is, the larger would be the size of the number of
parameters and larger would be the computational inaccuracy. It is for this reason
that ABMs are used at nano level by physicists and computer scientists to build
econophysics models involving computer simulations41,42.

The demand for commodity by an individual i at time t is given by typical
arguments of Walrasian multiple market temporary equilibrium, as developed in
ref. 43. According to Grandmont43, the next period consumer equilibrium will be a
time adjustment from the previous period equilibrium with an increase or decrease
in the quantity exchanged, taking into account the common information about the
markets in the next period (It) as well as specific information that agent i has for
the next period (Iit)

xit ¼ xit�1 þ4xit�1ðItÞ þ 4xit�1ðIitÞ; ð6Þ
where It refers to the information commonly available to all agents in period time t,
while Iit is the information in period t specific to agent i; xit is a vector representing
all consumer goods purchased by individual i at time t, and it depends on the
common market prices faced by all agents and income of the agent i. The
incremental changes depend on the expectations and their realizations through a
groping process of adjustment of actuals with expected. As expectations are

adaptive and depend on the actual and realized values of the previous period, we
can rewrite parts of the above equation as

4xit�1ðItÞ ¼ g1ðxit�1Þ þ xit�1ωt ; ð7Þ
where ωt is a general market disturbance that affects equally all economic agents,
while the variance of the market disturbance is proportional to the square of the
level of economic activity in the previous period (xt−1). Likewise, we write:

4xit�1ðIitÞ ¼ g2ðxit�1Þ þ xit�1ϵit ; ð8Þ
where ϵit depicts how the ith economic agent deviates from the others in the same
market. Plugging these expressions into the previous equation, we get:

xit ¼ xit�1 þ gðxit eÞ þ xit�1 ηit ; ð9Þ
where ηit= ωt+ ϵit, g is appropriately defined and depends on g1 and g2, xit

e is the
expected or anticipated quantity at period t for agent i, and ηit is a random variable
derived from a Gaussian distribution (under the assumption that the privileged
private information of the agents’ is distributed likewise). This distribution can be
modified if necessary. Similar arguments apply for the agents working on the supply
side. Our model can be easily extended to build a macroeconomic model by
assuming that the individual equilibrium demands aggregate to market demand and
individual equilibrium supplies are aggregated to market supply. In a temporary
stochastic equilibrium model such as this, we define the market equilibrium as a
stochastic Markov equilibrium as defined in ref. 44. We then assume that demand
and supply are co-integrated over time. They adjust with each other through a dis-
equilibrium dynamics mechanism, giving rise to an error-correction.

Applying the above temporary equilibrium concepts to the labor and asset
markets, we get the following income generation model:

yit ¼ yit�1 þ gðyit eÞ þ yit�1 ηit ; ð10Þ
where y is rescaled x. Assuming that these markets work on daily basis or weekly
basis, one can take the daily version of it and that daily change is infinitesimal
compared to yearly data points we have in our data base. This then leads to the
Langevin and complementary Fokker–Planck formulation in line with ref. 23.

Langevin Fokker–Planck model. The CD function CD(yi, t) measures the amount
of income lacking in an income class i that is needed to reach the saturation level of
consumption of the essential commodity. This was well explained and estimated in
some previous works15,16,21,23. But there is a fundamental knowledge gap in all
such previous measures of the CD function in that they relied only on the key
expenditure variable, cereals, as the unique descriptor of CD. The tacit assumption
was that the other expenditure categories, even though contributing to consump-
tion and welfare, will all be subsumed within the inequality outliers defined by the
dominant cereal-expenditure. As Figures 3a and 3b clearly demonstrate, this was a
weak foundation to base any model on, since intrinsically each of the three
expenditure modes, cereals, other foods, and non-foods, abide completely different
distribution functions. In other words, any self-consistent measure of poverty needs
to analyze the multivariation of all contributing expenditure modes. Using tools
from the machine learning literature33, we have combined all three contributing
expense modes into a one-dimensional reduced variable that combines information
about their individual and correlated dynamics. As shown in Figure 3a, 3b and 4b,
the choice of methods (Neuroscale, LLE, IsoMap, CCA, PCA) barely affects the
qualitative distribution.

Following on from the ABM, each agent spends an income yi(t) from wages and
salaries and asset markets and expect for the next period an income of yi

eðtÞ> yiðtÞ,
only a fraction β from that is immediately accrued. The agent i spends a fraction α
of savings or borrowing, depending on the sign of the expression in the parenthesis,
as either interest expense or as cost of holding assets (for simplicity we are
assuming the cost of lending and borrowing are the same and equals). The
resultant stochastic (Langevin) model that we then get from this construction is as
follows:

dyi
dt

¼ β yi
e � α ðyi � CDiÞ þ yi ηiðtÞ; ð11aÞ

<ηiðtÞηjðt0Þ> ¼ D0δðt � t0Þδij; ð11bÞ
where β yi

e is the maximum attainable level of income (proportional to the mean
growth rate yi

e of income) at time t for the ith class of individuals. The CD function
cumulatively represents all three nodal expenditures, cereal, other-food, and non-
food, whose non-dimensional multivariate form defines our new variable C(y). In
other words, C(y) is a suitably weighted function of C1(y), C2(y), and C3(y). For
reasons of brevity, we will deliberately obfuscate the income class index i from all
future descriptions as it is only a generic dummy index.

The Langevin model defined in Eq. (11a) leads to the following Fokker–Planck
equation45 that shows the time variation of the income distribution function:

∂f̂
∂t

ðy; tÞ ¼ ∂

∂y
ðαþ 2Þy � CðtÞ � CDðy; tÞ½ � f̂ þ y2

∂f̂
∂y

( )
: ð12Þ

The coupled dynamics described above, involving the probability density
function of income f(y, t) and CD function CD(y, t), represents the fact that
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effective trade in assets ensues only when y > CD, as discussed before (the solution
to the Burgers equation is shown in Eq. (14)).

In the steady state, CðtÞ ¼ C0 and CDðyÞ ¼ V0K0
K0þy (t → ∞ limit), which gives us

the steady-state income distribution:

^fðyÞt!1 / e�
ðC0þV0 Þ

y

yαþ2
1þ K0

y

� �V0=K0

; ð13Þ

where V0 and K0 represent values of V(t) and K(t) on specific years (represented by
t). Figure 7 uses a linear approximation in extrapolating the data points for V and K
as functions of time t. Note such an extrapolation does not restrict the remit of this
model as with a simple Markovian approximation, the value of these parameters at
time t can be used to predict the value at the following time point t+ 1. We have
checked this and can confirm that the results do not differ significantly. We observe
from the scatter diagram that there is a piecewise linear relation, a linear function
until year 12 and another after year 12. As we are using only the data for the latter
period, the fit is linear with perfectly respectable fit. The proportionality constant
can be evaluated from the condition

R1
y0

f̂ ðy; t ! 1Þ dy ¼ 1.

The parameter α is highly country specific but is reasonably stable over the
range of years of data analyzed. As shown in Table 1 above, the mean multivariate-
α value is ~−1.0. As previously shown in refs. 21,23, Eq. (12) admits of a closed
form harmonic solution with a hypergeometric function as its generating function.

CD dynamics. To study an agent-based version of the CD model, we follow the
prescription as in ref. 23. We consider an agent i who has (multivariate) expen-
diture y line at time t. Trade is entertained only when y > CD(y, t) at all times. Our
interest is in a trade situation where an amount Δy has been transacted across
agents belonging to two income classes.

In order to neutralize the economic disturbance, this extra source needs to be
isotropically diffused between economic neighbors of the two agents responsible
for this exchange; this necessitates a diffusion term in the dynamics:
νðtÞ ∂2

∂y2 CDðy; tÞ (ν(t): time-dependent diffusion constant). This economic

palliation will be challenged by further wealth accumulation that will happen as a
function of the rate of change of CD in between these income classes with respect
to the combined (i.e. multivariate) expenditure y, calibrated against CD itself:
CD ðy; tÞ ∂

∂y CD ðy; tÞ. Together, the income distribution time variation model is

then seen as follows:

∂
∂t CDðy; tÞ þ CDðy; tÞ ∂

∂yCDðy; tÞ ¼ νðtÞ ∂2

∂y2 CDðy; tÞ;
∂
∂tCDðy; tÞ ¼ VðtÞKðtÞ 2νðtÞþVðtÞKðtÞ

ðKðtÞþyÞ3
: ð14Þ

The trendline fits shown in Fig. 6 are for years beyond 1971. Evaluation before
that can be done but is redundant as the new base market policy against which our
evaluations are all calibrated started only in 1971. These are linear regression fits
only as a first approximation. Better nonlinear fits can be attained but that does not
have any measurable impact on the outcome.

In Fig. 6 above, the x-axis uses round numbers depicting timelines, rather than
year numbers; this is to allay the aperiodic nature of data collection over the years.
A linear regression fit to these time-dependent variables shows the following: V(t)
= 77.61− 0.83t and K(t)= 54.71− 1.15t. Equation (14) represents a form of the
celebrated Burgers equation in fluid mechanics46 that characteristically admits of
shock waves, an obvious economic after turn. For a real-time varying model, Eq.
(14) can only be solved numerically utilizing the linear equations for V(t) and K(t).

Data availability
All relevant data have been accessed from the World Bank repository (cited in ref. 26)
and the codes used for simulation, leading to the plots produced in this work, can be
accessed from the Aston University repository (https://researchdata.aston.ac.uk) through
the following doi-link: https://doi.org/10.17036/researchdata.aston.ac.uk.00000469.

Code availability
Codes solving the stochastic model and subsequent Machine Learning analysis were all
written in Matlab, which could be accessed from the Aston University Library website
(https://researchdata.aston.ac.uk) through the following doi-link: https://doi.org/
10.17036/researchdata.aston.ac.uk.00000469.
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