
Embedding Fuzzy Rules with YARA Rules for
Performance Optimisation of Malware Analysis

Nitin Naik1, Paul Jenkins1, Nick Savage1, Longzhi Yang2, Kshirasagar Naik3 and Jingping Song4

1School of Computing, University of Portsmouth, United Kingdom
2Department of Computer and Information Sciences, Northumbria University, United Kingdom

3Department of Electrical and Computer Engineering, University of Waterloo, Canada
4Software College, Northeastern University, China

Email: {nitin.naik, paul.jenkins, nick.savage}@port.ac.uk, longzhi.yang@northumbria.ac.uk,
snaik@uwaterloo.ca, songjp@swc.neu.edu.cn

Abstract—YARA rules utilises string or pattern matching to
perform malware analysis and is one of the most effective
methods in use today. However, its effectiveness is dependent on
the quality and quantity of YARA rules employed in the analysis.
This can be managed through the rule optimisation process,
although, this may not necessarily guarantee effective utilisation
of YARA rules and its generated findings during its execution
phase, as the main focus of YARA rules is in determining whether
to trigger a rule or not, for a suspect sample after examining its
rule condition. YARA rule conditions are Boolean expressions,
mostly focused on the binary outcome of the malware analysis,
which may limit the optimised use of YARA rules and its findings
despite generating significant information during the execution
phase. Therefore, this paper proposes embedding fuzzy rules with
YARA rules to optimise its performance during the execution
phase. Fuzzy rules can manage imprecise and incomplete data
and encompass a broad range of conditions, which may not be
possible in Boolean logic. This embedding may be more advan-
tageous when the YARA rules become more complex, resulting
in multiple complex conditions, which may not be processed
efficiently utilising Boolean expressions alone, thus compromising
effective decision-making. This proposed embedded approach is
applied on a collected malware corpus and is tested against the
standard and enhanced YARA rules to demonstrate its success.

Index Terms—YARA Rules; Fuzzy Rules; Fuzzy Logic; Fuzzy
Hashing; Malware Analysis; Performance Optimisation; Ran-
somware.

I. INTRODUCTION

YARA rules discover malware based on a string matching
technique [1], which can be customised depending on the spe-
cific requirement of an individual or organisation to uncover
targeted attacks and security threats. Both the quality and
quantity of the YARA rules are crucial for analytic success
as there should be an effective and sufficient number of
YARA rules to improve the overall performance of the mal-
ware analysis, whereas the use of ineffective and superfluous
YARA rules would adversely affect the overall performance
of malware analysis [2]. Several approaches were proposed to
generate more effective YARA rules to be used in improving
the performance of YARA rules, however, there are some
common issues related to its execution and outcome affecting

the performance of majority of YARA rule-based systems
utilising Indicator of Compromise (IoC) strings, for example:

1. YARA rules may not identify a sample as malware even
on matching with several strings in any rule, whilst still
remaining below the set threshold of the condition in that
rule. Indeed, this set threshold of the condition in a rule
is determined by the in-house security expert on YARA
rule creation.

2. YARA rules may not identify a sample as malware even
on matching with several strings in several rules although
below the set threshold of condition in all the rules.
However, the total matched strings in all the rules could
be much higher than the set threshold of condition in any
rule.

3. YARA rules are commonly used as a method to determine
whether a sample is malware or not, irrespective of
its other significant findings, thus not considering any
probability between true and false (i.e., 1 and 0).

Nonetheless during the execution of YARA rules, the focus
is to trigger YARA rules or not and thus often valuable infor-
mation generated by YARA rules, which could have otherwise
been captured, is lost. One resolution to this problem might be
to utilise effectively either uncollected or unused information
during the execution phase of YARA rules as it generates much
useful information. The only requirement would be to capture
uncollected information or utilise unused information through
an effective mechanism. One such mechanism is the use of
embedded fuzzy rules with YARA rules, which is designed
to capture all the information generated by YARA rules and
assess it through a fuzzy rule-based system to generate more
useful and comprehensive outcomes, which would not usually
be possible using standard YARA rules alone. The benefit
of using fuzzy rules is that it can complement YARA rules
for several fuzzy operations to optimise the performance of
existing YARA rules without requiring any enhanced or AI
techniques in the rule generation process.

This embedding of fuzzy rules with YARA rules demon-
strates an initial concept where the most common condition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/341321567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of String Matching and the additional condition of Fuzzy
Hash Matching are used to develop and embed both rule
types. However, it can be customised for a more complex
analysis, by configuration of different parameters, multiple
conditions and op-codes depending on the specific require-
ment of the malware analysis. The embedded approach is
applied to the collected ransomware corpus, which includes
four categories of ransomware WannaCry, Locky, Cerber and
CryptoWall. Subsequently, its similarity detection result was
compared against the similarity detection results of standard
and enhanced YARA rules to demonstrate its success.

The paper is organised into the subsequent sections: Section
II describes YARA Rules, Fuzzy Rules and Fuzzy Hashing.
Section III discusses the proposed approach of embedding
fuzzy rules with YARA rules and the development of fuzzy
rules. Section IV presents the experimental analysis of stan-
dard YARA rules, enhanced YARA rules and embedded
YARA rules and the comparative study of their similarity
detection results. Finally, Section V presents the summary of
the work and highlights the need of some future work.

II. BACKGROUND

A. YARA Rules

YARA rules are developed to detect malware by pri-
marily matching its signatures/strings with existing mal-
ware signatures/strings [1]. They contain predetermined sig-
natures/strings related to known malware, used to attempt
to detect a match when run against targeted files, folders,
or processes [3]. These matching strings can be classified
into three types: text strings; hexadecimal strings and regular
expression strings (see Figs. 1 and 2). Text strings are gener-
ally a readable text complemented with some modifiers (e.g.
nocase, ascii, wide, and fullword) to manage them more ef-
fectively [4]. Hexadecimal strings are a sequence of raw bytes
complemented with three flexible formats wild-cards, jumps,
and alternatives [4]. Regular expression strings are somewhat
similar to text strings being a readable text complemented
with some modifiers; which are available since version 2.0
and making YARA rules a more powerful tool [4].

Text strings and regular expression strings can be used to
express a sequence of raw bytes through the use of escape
sequences. The final part of YARA rules is a rule condition that
specifies the number of signatures/strings that must be matched
with the target to declare it as malware [5]. YARA conditions
determine whether to trigger the rule or not, however, these
conditions are Boolean expressions similar to those used in all
other programming languages [4]. Consequently, this aspect
of YARA rules can be strengthened by embedding fuzzy
rules, thus improving the functionality and performance of
YARA rules. This embedding may be very helpful for effective
decision making, when YARA rules are more complex in
nature, resulting in multiple complex conditions, which may
not be dealt with efficiently on their own.

Fig. 1. Structure of YARA Rules Fig. 2. Example of YARA Rules

B. Fuzzy Rules

Fuzzy logic is a superset of propositional or Boolean logic
which is extended to represent the degree of truth/membership
in the range of 0 (false/non-membership) and 1 (true/full-
membership), and is shown by comparing the fuzzy set and
crisp set in Fig. 3. Fuzzy rules are the core component of any
fuzzy system that articulates the knowledge of that system in
fuzzy logic [6]. A fuzzy rule is written as an If-Then rule
in the form of: If antecedent(s) Then consequent(s), where
antecedent and consequent are fuzzy propositions that contain
linguistic variables. For example a descriptive fuzzy rule can
be written as:

If x is A and y is B Then z = C

(Mamdani Fuzzy Rule [7]) (1)

If x is A and y is B Then z = f(x, y)

(Takagi− Sugeno Fuzzy Rule [8]) (2)

Fig. 3. Fuzzy Set and Crisp Set

These rules contain two inputs x and y (antecedents) and
an output z (consequent), two fuzzy sets A and B in the
antecedent and a fuzzy set C in the consequent. Fuzzy rules
mimic human thinking and are based on human experience.
These rules are derived by experts in the specific area or from
the collected dataset [6]. Fuzzy rule-based systems can manage
imprecise and incomplete data and include a broad range of
conditions, which may not be possible in Boolean logic [9].
Consequently, fuzzy rules are the most effectual mechanism
to resolve conflict in multiple criteria conditions and assessing
the most proficient option accordingly [10]. Additionally, these
rules are readily customisable similar way to that of YARA
rules.

C. Fuzzy Hashing
Cryptographic hash and fuzzy hash techniques are utilised

in security analysis in an attempt to detect malware when
investigating both the integrity and similarity of files of
interest. Of these two techniques it is the similarity which
is of greater importance as malware developers base their
code on previous examples leading to the development of new
strains [11]. In fuzzy hashing analysis, the file of interest is
divided into multiple blocks and a hash value is calculated for
each block, with the final step being the concatenation of all
hash values of the blocks to generate the fuzzy hash value as
shown in Fig. 4. A number of factors affect the length of the
fuzzy hash value, including the block size, the size of the file
and the output size of the selected hash function [12]. Fuzzy
hashing methods can be classified into several categories:
Context-Triggered Piecewise Hashing (CTPH), Statistically-
Improbable Features (SIF), Block-Based Hashing (BBH) and
Block-Based Rebuilding (BBR) [13], [14], [15]. Forensic
analysis of malware requires a thorough understanding of
the degree of similarity between known malware samples
and inert files in coming to a conclusion. This is especially
important when considering the triaging and clustering of
suspected malware in order to identify new variants. As a
result the use of the similarity preserving property of fuzzy
hashing is useful in forensic investigation when comparing
unknown files with known malware families for their triage
and clustering, where samples have the same functionality,
yet different cryptographic hash values [2].

Fig. 4. Generation of Fuzzy Hash Value in Fuzzy Hashing Method

III. PROPOSED METHODOLOGY FOR EMBEDDING FUZZY
RULE WITH YARA RULES

A. Embedding Approach

YARA rule conditions are used to determine whether to
trigger a YARA rule or not, however, YARA rule conditions
are Boolean expressions mostly focused on the binary outcome
of the malware analysis. This proposed approach focuses on
this aspect to optimise the performance of YARA rules during
the execution phase, by extending the rule triggering condition
of String Matching and the addition of a Fuzzy Hash Matching
condition, to demonstrate an initial concept of embedding (see
Fig. 5). However, it can be customised in a more complex
way for a number of parameters, multiple conditions and op-
codes depending on the specific requirement of the malware
analysis. Almost all standard YARA rules rely on the most
common String Matching to trigger the rule, if the string
matching count is greater than the decided threshold in the
rule, then the rule will be triggered and the sample is flagged
as malware. However, if the string matching count is less than
the set threshold condition, then the rule is not triggered and
the sample is not flagged as malware. Despite the rule not
being triggered, it generated valuable information but it was
simply not collected or used.

This proposed method is designed to collect and use such
uncollected and unused information of YARA rules by supple-
menting fuzzy rules, especially in the event of no rule being
triggered. This embedding of fuzzy rules can complement
YARA rules generating an improved indication where the
YARA rules simply do not produce an alert due to the limi-
tations of Boolean combinatorics. As discussed earlier, fuzzy
rules are more effective when working with complex multiple
conditions, therefore, another additional condition of Fuzzy
Hash Matching is combined with the default String Matching
condition of YARA rules to demonstrate the use of multiple
conditions, and optimising the overall performance within this
scenario. Fuzzy hash is a compact and effective mechanism
to find structural similarity within malware samples, which
produces a similarity result as a percentage [16], [17], [18].
Another advantage of the proposed method is that fuzzy rules
can produce a degree of similarity which is not possible in
standard YARA rules. The combination of these two condi-
tions for YARA rules leads to several alternative outcomes,
which can be efficiently managed with fuzzy rules to produce
the best possible combined results. The logical approach for
this implementation is shown using the pseudocode in the
Algorithm 1. This approach is easily adaptable, as YARA rules
are fully customisable according to the specific requirement,
as is fuzzy rules.

B. Development of Fuzzy Rules

The two most notable benefits of fuzzy rules for YARA
rules and this proposed embedded approach are: they can
utilise a value range for any parameter (based on the degree
of membership) instead a binary value, and combine multiple
parameters and their conditions to produce one approximated

Fig. 5. Embedding of Fuzzy Rules with YARA Rules

Algorithm 1: Pseudocode to determine the use of Fuzzy
Rules with YARA Rules
S, Set of Samples for Investigation
R, Set of YARA Rules
$, Set of Strings in a YARA Rule
F, Set of Fuzzy Hashes of Known Malware
F , Fuzzy Hash Value
β, YARA String Count; βT , Threshold
δ, Fuzzy Hash Similarity; δT , Threshold
∆, Degree of Similarity
C, Counter for Matched Strings
for (i = 1; i < |S|; i+ +) do

for (j = 1; j < |R|; j + +) do
for (k = 1; k < |$|; k + +) do

if $k ∈ Si then

Ci,j + +

if Σ
|$|
k=1Ci,j ≥ βT OR ∆(FSi , Fl) ≥ δT [Fl ∈ F]

then

return Y ARARule

if
Σ
|R|
j=1Ci ≥ βmin OR ∆(FSi , Fl) ≥ δmin [Fl ∈ F]

then
if Σ

|R|
j=1Ci ≥ βT then

return Y ARARule

else

return Fuzzy Rule

output. The proposed embedded approach extends the rule
triggering condition of String Matching and adds another
additional condition of Fuzzy Hash Matching, therefore, cor-
responding to these two conditions, two fuzzy input variables
called YARA String Count (YSC) and Fuzzy Hash Similarity
(FHS) are derived respectively. The fuzzy output variable
called Fuzzy Rule Indicator (FRI) is derived from the two

fuzzy input variables based on the Mamdanis inference method
[7]. The three fuzzy sets Low, Medium and High for the first
fuzzy input variable YSC - β are created in the range of βmin

= 1 to βmax = |$| (total number of strings in a YARA rule)
and divided as shown in Fig. 6. Similarly, the three fuzzy sets
Low, Medium and High for the second fuzzy input variable
FHS - δ are created in the range of δmin = 10 to δmax = 100
(fuzzy similarity range in percentage) and divided as shown in
Fig. 7. Finally, the fuzzy output variable is divided into three
fuzzy sets Less Likely Malware, Likely Malware, and Most
Likely Malware in the range of 1 to 100 as shown in Fig. 8, to
display the appropriate result using fuzzy rules. The sample of
fuzzy rules developed for the experimentation are illustrated
below.

Fuzzy Rules
If Y SC is Low AND FHS is Low

THEN FRI is Less Likely Malware

If Y SC is Low AND FHS is Medium

THEN FRI is Likely Malware

If Y SC is Medium AND FHS is Low

THEN FRI is Likely Malware

If Y SC is Medium AND FHS is Medium

THEN FRI is Likely Malware

If Y SC is Low AND FHS is High

THEN FRI is Most Likely Malware

If Y SC is Medium AND FHS is High

THEN FRI is Most Likely Malware

If Y SC is High AND FHS is High

THEN FRI is Most Likely Malware

If Y SC is High AND FHS is Low

THEN FRI is Most Likely Malware

If Y SC is High AND FHS is Medium

THEN FRI is Most Likely Malware

Fig. 6. Generic Fuzzy Input Variable - YARA
String Count (YSC) and its Fuzzy Sets

Fig. 7. Generic Fuzzy Input Variable - Fuzzy
Hash Similarity (FHS) and its Fuzzy Sets

Fig. 8. Generic Fuzzy Output Variable - Fuzzy
Rule Indicator (FRI) and its Fuzzy Sets

IV. EXPERIMENTAL ANALYSIS

A. Malware Collection

To test and analyse the proposed embedded approach, one
of the most prevalent forms of malware, ransomware was
selected. Numerous types of ransomware were created and
used in cyberattacks, though, some ransomware categories
were worthy of more focus due to their severity of attacks and
financial loss. Based on primary research, four ransomware
categories were targeted for this work WannaCry, Locky,
Cerber and CryptoWall [19], [20], [21]. Thousands of mal-
ware samples were downloaded from the two sources Hybrid
Analysis [22] and Malshare [23]. Later, these samples were
verified for their credibility as numerous samples were just
bogus samples. It was critical to select only credible samples
of a specific category as a ground truth to test this proposed
embedding method successfully. These samples were investi-
gated based on the information available on VirusTotal [24]. To
determine that every sample was indeed genuine malware or
ransomware and belonged to a specific ransomware category,
the criteria was set that it must be identified as malware by
at least 40 or more detection engines on VirusTotal. To check
the ransomware category of collected samples, their category
from WannaCry, Locky, Cerber and CryptoWall was verified
manually on the recognized detection engines on VirusTotal.
This sample collection and verification process was very
lengthy and time consuming. Eventually, 1000 ransomware
samples were selected out of several thousand samples, and
equally divided (250 samples each) into four ransomware
categories WannaCry, Locky, Cerber and CryptoWall. The four
different categories of ransomware were chosen to avoid any
biasing in favour of one type of sample or pattern.

B. Experiments

Here three types of YARA rules are tested on the collected
ransomware samples and their detection success rate are
compared: Standard YARA Rules, Enhanced YARA Rules and
Embedded YARA Rules.

1) Standard YARA Rules: In the first experiment, the stan-
dard YARA rules were generated for the four ransomware
categories by using the yarGen tool [25], [26]. This yarGen

tool generates two types of rules simple rules and super rules,
depending on malware types by utilising some intelligent
techniques such as Fuzzy Regular Expressions, Naive Bayes
Classifier and Gibberish Detector [26]. These generated stan-
dard YARA rules contained up to 20 Indicator of Compromise
(IoC) strings based on their highest scores, which is the default
setting of the yarGen tool. Later, the similarity detection rate
of standard YARA rules was computed for all four ransomware
categories as shown in Table I, which generated the overall
malware analysis result of 62.2% (detection success rate) as
shown in Fig. 9. However, there is a caveat here as these stan-
dard YARA rules were generated by yarGen with its default
settings, it means different YARA tools may generate different
rules which might produce different results. Furthermore, if the
number of strings and attributes are increased or decreased
then it may also change the analysis results.

2) Enhanced YARA Rules: In the second experiment, the
standard YARA rules were modified and enhanced YARA
rules were created utilising the fuzzy hashing method (SS-
DEEP) [3], and their similarity detection rate was computed
for all four ransomware categories as shown in Table I,
which generated the overall malware analysis result of 67.1%
(detection success rate) as shown in Fig. 9. This analysis result
of enhanced YARA rules was a moderate improvement (4.9%)
as compared to standard YARA rules, due to the fuzzy hashing
detection mechanism, which attempts to find the structural
similarity in an entire file, rather than only selected strings.
This different detection mechanism was complementary to
YARA rules without affecting its performance significantly.
However, the analysis result of enhanced YARA rules was
still not satisfactory and requires further improvement.

3) Embedded YARA Rules: In the third experiment, the
standard YARA rules were modified and embedded YARA
rules were created utilising a fuzzy hashing method (SS-
DEEP) and made suitable for embedding with fuzzy rules.
Subsequently, the similarity detection rate of embedded YARA
rules with fuzzy rules was computed for all four ransomware
categories as shown in Table I, which generated the overall
malware analysis result of 73.5% (detection success rate) as
shown in Fig. 9. This included the results based on the two

fuzzy categories Likely Malware and Less Likely Malware,
which were not possible using standard or enhanced YARA
rules alone. This analysis result of embedded YARA rules
was again a moderate improvement (6.4%) as compared to
the enhanced YARA rules using only fuzzy hashing. How-
ever, the overall improvement in similarity detection rate was
noteworthy (11.3%) as compared to the standard YARA rules.
These three experimental results show that embedded YARA
rules with fuzzy rules can produce slightly better results due
to its capability to detect malware below the set threshold
conditions in the standard YARA rules. Thus, this approach
can optimise the performance of YARA rules, irrespective of
how they are generated and does not require any additional
rule optimisation process.

TABLE I
COMPARISON OF SIMILARITY DETECTION RESULTS OF EMBEDDED

YARA RULES WITH STANDARD YARA RULES AND ENHANCED YARA
RULES FOR WANNACRY, LOCKY, CERBER AND CRYPTOWALL

RANSOMWARE SAMPLES

Detection
Rate for
Particular
Ransomware
Category

Standard YARA
Rules* Similarity
Detection Rate

Enhanced YARA
Rules (with Fuzzy
Hash) Similarity
Detection Rate

Embedded YARA
Rules (with Fuzzy
Hash and Fuzzy
Rules) Similarity
Detection Rate

WannaCry
Ransomware
Samples

89.6% 93.2% 95.2%

Locky
Ransomware
Samples

54.4% 59.6% 65.6%

Cerber
Ransomware
Samples

77.2% 77.2% 82.8%

CryptoWall
Ransomware
Samples

27.6% 38.4% 50.4%

Standard YARA Rules*: These rules are generated by yarGen tool
utilising machine learning methods Fuzzy Regular Expressions, Naive
Bayes Classifier and Gibberish Detector, where simple rules contain up
to the 20 highest scored strings.

C. Benefits of the Proposed Embedded Approach

• Fuzzy rules can combine multiple parameters and their
complex conditions to produce one approximated output.

• In addition to alerting samples as malware by YARA
rules, fuzzy rules reveal the degree of similarity of
malware (Less Likely Malware, Likely Malware, and
Most Likely Malware).

• It can help security experts in analysing or classifying
samples based on their fuzzy membership results to apply
appropriate actions on specific groups without a further
deep dive into the samples.

• Fuzzy hashing can complement YARA rules as it attempts
to find structural similarity between the two files in their
entirety, rather than focussing on specific strings which
may not be found in the sample. Thus, it can still be
triggered by fuzzy rules and labelled as possible malware.

• Another benefit of embedding approach is a possible
indication of whether samples are unlikely to be malware,

Fig. 9. Overall Similarity Detection Rate of Standard YARA Rules, Enhanced
YARA Rules (with Fuzzy Hash) and Embedded YARA Rules (with Fuzzy
Hash and Fuzzy Rules)

if they are not flagged by both YARA rules and fuzzy
hash.

V. CONCLUSION

This paper presented the principle of embedding fuzzy
rules with YARA rules to optimise the performance of YARA
rules during the execution phase, irrespective of how they
are generated. The embedding of fuzzy rules permitted the
alerting feature to YARA rules to trigger in the event of a “no
result” being produced by YARA rules when used on their
own. This proposed approach and corresponding fuzzy rules
were developed utilising the two rule triggering conditions of
String Matching and additionally the Fuzzy Hash Matching to
demonstrate an initial concept of embedding. The experimental
evaluation was based on the collected ransomware corpus
consisting of four categories of ransomware WannaCry, Locky,
Cerber and CryptoWall. The proposed embedded YARA rules
were tested on the collected ransomware samples and its per-
formance was compared against standard and enhanced YARA
rules. Importantly, the similarity detection result of embedded
YARA rules was compared against the similarity detection
results of standard YARA and enhanced YARA rules. The
embedded YARA rules produced improved similarity detection
results as compared to standard YARA rules and enhanced
YARA rules as it could encompass missing conditions of
YARA rules and the degree of similarity of malware. This
embedded approach is a flexible and adaptable approach and
can be customised according to the specific requirement of
the malware analysis. Nonetheless, this proposed approach
requires more rigorous testing in terms of parameters, con-
ditions, op-codes, large sample size and complexity to con-
firm its successful implementation in large-scale investigation
projects.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Hybrid-
Analysis.com, Malshare.com and VirusTotal.com for this re-
search work.

REFERENCES

[1] VirusTotal. (2019) YARA in a nutshell. [Online]. Available: https:
//virustotal.github.io/yara/

[2] N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 1: Triaging Ransomware using Fuzzy Hashing, Import Hashing
and YARA Rules,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE, 2019.

[3] N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and J. Song,
“Augmented YARA rules fused with fuzzy hashing in ransomware
triaging,” in IEEE Symposium Series on Computational Intelligence
(SSCI), 2019.

[4] V. Alvarez. (2019) Writing YARA rules. [Online]. Available:
https://yara.readthedocs.io/en/v3.4.0/writingrules.html

[5] Readthedocs. (2019) Writing YARA rules. [Online]. Available:
https://yara.readthedocs.io/en/v3.5.0/writingrules.html

[6] D. Dubois and H. Prade, “What are fuzzy rules and how to use them,”
Fuzzy sets and systems, vol. 84, no. 2, pp. 169–185, 1996.

[7] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis
with a fuzzy logic controller,” International journal of man-machine
studies, vol. 7, no. 1, pp. 1–13, 1975.

[8] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE transactions on systems,
man, and cybernetics, no. 1, pp. 116–132, 1985.

[9] N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and its
application to intrusion detection,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 4, pp. 1878–1892, 2018.

[10] N. Naik, C. Shang, P. Jenkins, and Q. Shen, “Building a cognizant
honeypot for detecting active fingerprinting attacks using dynamic fuzzy
rule interpolation,” Expert Systems, p. e12557, 2020.

[11] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91–97, 2006.

[12] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University Canberra, 1999.

[13] F. Breitinger and H. Baier, “A fuzzy hashing approach based on random
sequences and hamming distance,” in Annual ADFSL Conference on
Digital Forensics, Security and Law. 15, 2012. [Online]. Available:
https://commons.erau.edu/adfsl/2012/wednesday/15

[14] C. Sadowski and G. Levin, “Simhash: Hash-based similarity detection,”
2007. [Online]. Available: www.webrankinfo.com/dossiers/wp-content/
uploads/simhash.pdff

[15] V. Gayoso Martı́nez, F. Hernández Álvarez, and L. Hernández Encinas,
“State of the art in similarity preserving hashing functions,” 2014.
[Online]. Available: http://digital.csic.es/bitstream/10261/135120/1/
Similarity preserving Hashing functions.pdf

[16] N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 2: Tracking Ransomware Threat Actors using Fuzzy Hashing and
Fuzzy C-Means Clustering,” in IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). IEEE, 2019.

[17] N. Naik, P. Jenkins, J. Gillett, H. Mouratidis, K. Naik, and J. Song,
“Lockout-Tagout Ransomware: A detection method for ransomware
using fuzzy hashing and clustering,” in IEEE Symposium Series on
Computational Intelligence (SSCI), 2019.

[18] N. Naik, P. Jenkins, and N. Savage, “A ransomware detection method
using fuzzy hashing for mitigating the risk of occlusion of information
systems,” in 2019 IEEE International Symposium on Systems Engineer-
ing (ISSE), 2019.

[19] K. Savage, P. Coogan, and H. Lau, “The evolution of ransomware -
Symantec,” pp. 1–57, 2015.

[20] Y. Klijnsma. (2019) The history of Cryptowall: a large scale
cryptographic ransomware threat. [Online]. Available: https://www.
cryptowalltracker.org/

[21] Malwarebytes. (2019) Ransomware. [Online]. Available: https:
//www.malwarebytes.com/ransomware/

[22] Hybrid-Analysis. (2019) Hybrid Analysis. [Online]. Available: https:
//www.hybrid-analysis.com/

[23] Malshare. (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. [Online].
Available: https://malshare.com/index.php

[24] VirusTotal. (2019) Virustotal. [Online]. Available: https://www.
virustotal.com/#/home/upload

[25] F. Roth. (2018) yarGen is a generator for YARA rules. [Online].
Available: https://github.com/Neo23x0/yarGen

[26] ——. (2017) How to post-process YARA rules generated
by yarGen. [Online]. Available: https://medium.com/@cyb3rops/
how-to-post-process-yara-rules-generated-by-yargen-121d29322282

