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Abstract 

Although neural networks are commonly encountered to solve classification problems, ranking data 
present specificities which require adapting the model. Based on a latent utility function defined on the 
characteristics of the objects to be ranked, the approach suggested in this paper leads to a perceptron-
based algorithm for a highly non linear model. Data on stated preferences obtained through a survey by 
face-to-face interviews, in the field of freight transport, are used to illustrate the method. Numerical 
difficulties are pinpointed and a Pocket type algorithm is shown to provide an efficient heuristic to 
minimize the discrete error criterion. A substantial merit of this approach is to provide a workable 
estimation of contextually interpretable parameters along with a statistical evaluation of the goodness of 
fit. 
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1 Introduction

Many business and social studies require modeling individual differences in choice behavior by

asking respondents to rank alternatives. However, this kind of data present some particularities,

related to their non-continuous and bounded character that should be taken into account by the

models.

Neural Networks (NN) provide an approach that progressively attract more attention from

statisticians working in a wide variety of problems. Some examples issued in Statistica give an

interesting view of the variety of topics faced with a NN approach. Thus, [1] considers a forecasting

problem concerning quality characteristics of bovine; [5] proposes the automatic learning process

of a NN for the study of complex phenomenon in biostatistic; also [10] proposes to combine radial

basis function networks and binary classification trees. The object of this work is to model with NN

the firm’s preferences, in particular the relative importance of each attribute, in the firm’s ranking

procedure.

The data used to illustrate the method consist of rankings of alternative solutions for freight

transport provided by different companies through face-to-face interviews. These transport scenar-

ios are defined by six attributes: frequency of service, transport time, reliability, carrier’s flexibility,

transport losses, and cost. Further details are given in section 5.1 and a more systematic presenta-

tion of the data may be found in [2].

The paper presents first the data used to illustrate the method. Section 3 describes the as-

sumptions made in connection with the firm’s decision rule, and details the form considered for

the underlying utility function. The estimation of the firm’s decision rule is developed in Section

4, which is organized as follows: a general view of the perceptron structure is presented, followed

by a short description of some traps which should be avoided. The last part of this section relates

to the heuristic chosen to perform the minimization implied by the perceptron algorithm. Section

5 provides information on how the experiments were carried out, shows some results on the data

and discusses them.

2 Neural Networks approach for Ranking Data

Ranking data are obtained when I objects zi ∈ <J (i = 1...I) are ranked from 1 to I. A basic

difference between ”ordinal data” (i.e. data measured on an ordinal scale) and ”ranking data” is

that ordinal data are measured on a scale with far less degrees than the sample size; in contrast,
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the scale for ranking data has as many degrees as the sample size. Thus ties - or ex aequo - are

dominating in ordinal data, but scarce, and sometimes excluded, in ranking data. Beuthe et al.

[3] compares the analysis of ranking data under models adapted from models originally developed

for ordinal data (such as ordered logit, conjoint analysis or UTA type models). In theoretical

statistics, the distribution of rank statistics has been developed for the case of observable variables.

This paper develops a model based on the idea of interpreting ranking data as rank statistics of a

latent variable, namely the value of a latent utility function defined on the characteristics of the

ranked objects.

The modeling strategy is based on a neural approach. For the sake of more specificity, suppose

that we observe the ranking of I objects identified by J characteristics. The data consist therefore

of an (I × J)- matrix Z = [zij ] = [z1, z2, · · · , zI ]′ where zi ∈ <J represents the J characteristics of

the i− th object. Furthermore, we have a vector of I declared ranks R = (R1, R2, ..., RI), where Ri

denotes the rank of the i− th object. To each object i we associate a latent utility ui and therefore

obtain an I-dimensional latent vector u = (u1, u2, · · · , uI).

Figure 1: Neuron n of layer( l).

Generally speaking, a multi-layer perceptron consists of several layers of weights and neurons

which present the configuration illustrated in Figure 1. The output x
(l−1)
n of one neuron can be used

as an input for one or several neurons belonging to the next layer. Non-linear activation functions
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σ
(l)
n are associated to each neuron. This makes the NN framework suitable for developing learning

algorithms as a possible approach to iterative procedures used for complex statistical inferences as

exemplified in Section 4. Let us call w
(l)
nd the weights associated to the neuron n and input d of the

layer l, the output of the layer l is

x(l)n = σ(l)n

(
D∑
d=1

w
(l)
nd x

(l−1)
d

)
. (1)

From a neural perspective, we may therefore view the u- and v-vectors (see equations (5) and (6))

as hidden layers of a multi-layer perceptron (more details in [6] and [8]), the structure of which is

detailed in Figure 2. Finally, the target function aggregates the squared differences between the

observed ranks Ri and the rank statistics of the estimated latent utilities.

3 Statistical Modelling

3.1 The firm’s decision rule

The decision maker (d.m.) is assumed to make his choice as follows:

(i) To each scenario zi he associates a utility U∗(zi, εi) depending on the relevant and known char-

acteristics, or attributes, (zi) and on characteristics of events which are uncontrolled and unknown

and that also affect the decision maker’s utility (εi).

(ii) The utilities U∗(zi, εi) are random for the decision maker because they depend on the unob-

servable vector ε = (ε1, ε2, ..., εI). Under an expected utility assumption, the d.m. computes for

each scenario zi the expectation of these random utilities, namely:

U(zi, θ) = E[U∗ | zi, θ] (2)

where θ contains the parameters of the utility function U∗ and of the distribution of (ε|z) (for

further details, see in [11]). Thus, the function U is a cardinal utility function, i.e. identified up to

an arbitrary linear transformation only.

(iii) The observed ranking Ri is interpreted as an ordering, over the I scenarios, of the expected

utilities U(zi, θ), 1 ≤ i ≤ I. Therefore, the theoretical rank ri(Z, θ) is given by:

ri(Z, θ) = 1 +

I∑
i′=1

1I{U(z
i
′ ,θ)<U(zi,θ)} (3)

4



where 1I{.} represents the indicator function. Thus ri(Z, θ) = 1 is given to the scenario with lowest

utility.

Because the rank statistic r(Z, θ) is not sufficient for the utility vector u, the transformation (3)

leads to an identification problem (see Oulhaj and Mouchart 2002 [9]). More specifically, for a

given set Z of scenarios, the ranking function r(Z, θ) defined by

r(Z, θ) : (Z, θ) 7→ (r1(Z, θ), ..., rI(Z, θ)) (4)

is not one-to-one. This means that different values of θ may correspond to a same ranking.

3.2 A parametric utility

The following parametric specification for U is considered :

U(zi, θ) =

J∑
j=1

ωjvj(zij , γ) 1 ≤ j ≤ I (5)

where vj , 1 ≤ j ≤ J , are known functions and θ = (γ, ω) is the parameter of interest. The

parameter ω = (ω1, ω2, ..., ωJ) lies in the (J −1) dimensional simplex S[J−1] = {s ∈ <J+ |
∑J

j=1 sj =

1} , and γ are parameters of vj .

We pay a particular attention to a logistic specification of the utility function, namely:

vj(zij , αj , βj) =
eαj+βjzij

1 + eαj+βjzij
=

1

1 + e−(αj+βjzij)
(6)

Here, γ = (α, β) where α = (α1, α2, ..., αJ), β = (β1, β2, ..., βJ). It should be noticed that, if ω

is not constrained to lie in the simplex, the minimization of the loss function (to come later on)

provides uninterpretable results, namely negative values for most ωj and meaningless signs for the

coefficients βj . This remark leads to the following reparametrization of the weights ωj :

ωj =
eλj

1 +
∑J−1

p=1 e
λp
, 1 ≤ j ≤ J − 1, (7)

ωJ =
1

1 +
∑J−1

p=1 e
λp

(8)

where λ = (λ1, λ2, ..., λJ−1) ∈ <J−1. The inverse transformation is

λj = ln(
ωj

1−
∑

1≤p≤j ωp
), 1 ≤ j ≤ J − 1. (9)
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This relation characterizes a bijection between the interior of S[J−1] and <J−1. The parameter

vector to be estimated, θ = (γ, λ), has accordingly dimension 3J − 1 .

4 Neural Estimation

Figure 2: Perceptron structure (for θ̂ = θ̂q = (γ̂q, λ̂q) at the q-th iteration)
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The objective of this section is to build an estimator of θ minimizing a loss function L(θ) which

aggregates a loss Li(θ) associated to each scenario i = 1, ..., I, viz.

L(θ) =

I∑
i=1

Li(θ). (10)

Under a neural approach, the iterative algorithm generates a sequence of estimates θ̂q(q ≥ 0)
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following the structure illustrated in Figure 2. This algorithm, repeated independently for each

firm, presents the structure of a perceptron with two hidden layers and proceeds as follows:

0. Input the I scenarios Z = [zi], the observed ranks R = (R1, ..., RI) and an initial value θ̂0.

1. Compute U(zi, θ̂q) 1 ≤ i ≤ I (from (5) and (6)).

2. From equation (3), compute the estimated ranking ri(Z, θ̂q).

3. Knowing ri(Z, θ̂q) and the observed rank of zi (i.e. Ri) for each scenario, evaluate the loss

associated to the ranking error of the scenario i, namely: Li(θ̂q). Then compute the total loss

function L(θ̂q) (from (10)).

4. Update the parameter θ̂q. The update is based on the minimization of the total loss function

L(θ̂).

5. Iterate steps 1 to 4 until convergence.

The error criterion to be minimized takes into account the discrete character of the observed

ranking, and the continuous character of the hidden (latent) utility function (5) and (6). A natural

solution is to use the quadratic error between the stated ranking Ri and the estimated ranking

ri(Z, θ) produced by the model namely:

L = LD(θ) =
I∑
i=1

(ri(Z, θ)−Ri)2. (11)

Remark: When fitting ordinal data, minimizing the quadratic error (11) might seem less attractive

than maximizing the Kendall coefficient, namely

τK(R, R̂) =
S

1
2I(I − 1)

, (12)

where I is the number of scenarios and S the observed sum of the +1 and -1 scores for all possible

pairs of scenarios and where the scores are calculated as:

Sij = 2 · 1I{(Ri−Rj)(R̂i−R̂j)>0} − 1

S =
∑

1≤i≤I−1,j≥i
Sij .

Both criteria correspond to closely related ideas and may be expected to produce similar results. In

particular, in the case of perfect fit (i.e. Ri = R̂i,∀i), LD(θ̂) = 0 and τK(θ̂) = 1. In the application,

we systematically optimize LD for being numerically more stable than τK .
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5 Application

5.1 The data

For a given firm, we observe I = 25 scenarios and a corresponding ranking. Each scenario is

represented by a vector of J = 6 attributes. By convention, z1 stands for a reference scenario. We

denote by Z the (25× 6) matrix containing all the 25 scenarios. The ranking of these scenarios is

represented by a vector R = (R1, R2, ..., R25) where Ri denotes the rank of zi according to the firm’s

preference. The ranking Ri of each scenario lies eventually between 1 and 25. Thus, for each firm

we have a (25× 7) data matrix (Z,R). The rankings of 9 firms have been treated independently of

each others.

5.2 Pitfalls in minimization

Equation (3) makes clear that ri(z, θ) and therefore LD(θ) (where D stands for discrete), are not

continuously differentiable in θ. Its minimization cannot be carried out by classical algorithms

such as gradient methods. In order to circumvent this difficulty, one might think that the rankings

behave as a discrete approximation of a utility scaled to lay in [1, 25]. This may be achieved through

the following transformation of U(zi, θ):

U s(zi, θ) = 1 + 24
U(zi, θ)−m(θ)

M(θ)−m(θ)
∈ [1, 25] (13)

where m(θ) = mini U(zi, θ) and M(θ) = maxi U(zi, θ). Thus, m(θ) (resp. M(θ)) is the lowest

(resp. highest) utility. In this case, the loss function can be written as follows:

L = LC(θ) =
25∑
i=1

(U s(Z, θ)−Ri)2 (14)

where C stands for continuous. The loss function LC(θ) is differentiable and can be minimized by

a gradient method.

Experience has however revealed that such an approach raises substantial problems. For two

selected companies, we observed the following difficulties. In Figures 3 and 4, we plot, for 2 different

firms, in plain line the value of LC(θ̂q) and in dashed line, the corresponding value of LD(θ̂q), as

functions of the number of iterations. Figure 3 shows that minimizing LC may be conflicting with

minimizing LD. Figure 4 reveals that, for another company, assessing whether the algorithm has

achieved a reasonable neighborhood of the true minimum may be problematic because the decrease
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of the objective function may have an unusual behavior: will the steep decrease around the 1000-

th iteration repeated later on? after the iteration 100 000? and is the value of the objective

function, namely 26, far or close to the true minimum? The maximum ranking error LD among J

alternatives, say M(J), is equal to

M(J) = 2

|J/2|∑
(J − 2j + 1)2 (15)

where |a| stands for the integer part of a. Thus, with 25 alternatives, we know that 0 ≤ LD ≤ 5200.

0 1000 2000 3000 4000 5000 6000 7000
31

32

33

34

35

36

37

38

39

40

41

number of iterations

Figure 3: Evolution of the discrete loss function LD (plain line) and the continuous loss function

LC (dashed line) in function of the number of iterations for company 4.

5.3 A heuristic Approach

The unsatisfactory results and the problems related to the approximation of the discrete loss func-

tion LD by the continuous loss function LC lead us to look for an alternative approach. Minimizing

the discrete error LD fosters the use of non classical techniques able to deal with a discontinuous

criterion.

In the present case, the heuristic allowing the minimization is based on the Pocket algorithm

[7]. Similarly to a gradient method, the Pocket algorithm generates a sequence of estimates θ̂q. One

major difference is that the computation of θ̂q+1, as a transformation of θ̂q, is obtained through

an iterative procedure with steps indexed by, say, t. In this application, there are 17 parameters
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Figure 4: Evolution of the discrete loss function LD (plain line) and the continuous loss function

LC (dashed line) in function of the number of iterations for company 9.

(see equations (6) to (9)), but, as each step t may require a positive or a negative variation, the

Pocket algorithm considers 34 possible variations to be evaluated. Thus the 17-dimensional vector

θ = (θf ) is replaced, in the Pocket algorithm, by a 34-dimensional vector (θf,s) with f = 1, ..., 17

and s = +1,−1.

Two types of parameters characterize a Pocket algorithm, namely a fixed number (D) of coor-

dinates (f, s) to be updated at each step t and a length of adaptation (∆f ), kept constant at each

step t. For simplicity, let us consider a particular iteration q and write θ̂ instead of θ̂q, where θ̂ has

coordinates θ̂f,s. The sequence θ̂f,s(t) is generated as:

θ̂f,s(t+ 1) = θ̂f,s(t) + 1I{(f,s) ∈ At} s∆f , (16)

where At selects, among all possible (f, s), the D most favorable ones, i.e. the updates corre-

sponding to the steepest decrease of squared error LD eliminating those coordinates for which s∆f

increases LD. Thus the step t is final once At+1 becomes empty. Obviously D ≤ 2F , where F

stands for the number of parameters to be optimized; here F = 3J − 1 = 17.
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5.4 Choice of the parameters for the iterative procedures

For the initialization of the perceptron procedure, the weights ωj are set equal to values declared in

the interviews when available, this is the case for companies 2, 3, 4, 6, 7, 8 and 9. For the other

companies, namely companies 1 and 5, the initial weights are set equal to those obtained in a

UTA model developed in Beuthe et al.(2006) [3]. The other parameters, α and β, are initialized to

1. The number of iterations is fixed at 200; the same number of iterations is used for all simulations.

A simple run of the Pocket algorithm described above is quick but the reliability of the results

crucially depends on the specification of F +1 parameters required by the working of the algorithm,

namely D and ∆f with f = 1, ..., F . It is therefore compelling to input several trial values for these

parameters. In the present application, the optimization for each firm is organized as follows:

• D varies between 1 and 17 by steps of 1

• the length of adaptation for the α and β parameters varies from 0.1 to 1 by steps of 0.1

• the length of adaptation for λ varies from 0.0005 to 0.002 by steps of 0.00025.

The variation for the length of adaptation of λ is chosen lower than that of α and β because of the

high impact of a variation of λ in the value of ω. As a matter of fact, the problem is quite sensitive

when the number of updates per step (D) is high. The best model can be selected according to the

loss function LD or the τK . Because the evaluation of τK is not computationally convenient, we

systematically minimize LD and report the results and the τK for the models reaching the smallest

value of LD and the highest value of τK respectively; when the two models coincide, we write

LD ∼ τK .

5.5 Results for freight transport data

The weights associated to each attribute, as well as the corresponding Kendall coefficients are

presented in Table 1 for the models related to nine firms. The criterion used to choose the Pocket

parameters is also given. Tables 2 and 3 give the values taken by the α and β parameters for each

model.

Let us first examine Table 1. For Companies 1, 2, 4 and 5, the models with lowest LD and

highest τK are different but the corresponding τK ’s are close together (for instance, .9067 and .9133

for company 1, .8867 and .9000 for company 2) and the estimates of the weights are also similar.

For the other companies, namely companies 3, 6, 7, 8 and 9, the two models are the same.
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The fact that all methods, estimated in Beuthe et al.(2006) [3], lead to models whose τK is one for

company 9 suggests that the behavior of this firm is quite simple and that all models overfit. It

is likely that this phenomenon of overfitting occurs in several cases. Indeed, it is questionable that

a model could approximate the behavior of a company in terms of choice of transportation mode

in such way that the Kendall coefficient would reach 0.9000. The fact that the NN method counts

less parameters than UTA and leads to lower τK is reassuring from this point of view.

Table 2 shows that the estimation of the α’s is reasonably robust with respect to the choice

between the two criteria LD or τK : they keep the same sign and the same order of magnitude,

with however one noticeable exception for company 2 where the estimations differ substantially,

in sign and in order of magnitude, for Reliability and Flexibility. This may be taken as a signal

numerical sensitivity due to the discreteness of the rankings.

Table 1: Kendall coefficient and weights for each model.

Company Criterion Frequency Time Reliability Flexibility Loss Cost LD, τK

1 LD 0.0076 0.0353 0.1074 0.0426 0.0625 0.7446 0.9067

τK 0.0077 0.0361 0.1128 0.0454 0.0666 0.7314 0.9133

2 LD 0.1426 0.1426 0.1407 0.1397 0.1388 0.2966 0.8867

τK 0.1406 0.1372 0.1344 0.1316 0.1296 0.3266 0.9000

3 LD ∼ τK 0.0997 0.1474 0.3397 0.1425 0.0000 0.2707 0.7200

4 LD 0.4319 0.3678 0.0486 0.1129 0.0092 0.0296 0.8200

τK 0.4388 0.3643 0.0478 0.1088 0.0086 0.0316 0.8400

5 LD 0.0028 0.0000 0.0007 0.0049 0.0007 0.9908 0.8200

τK 0.0030 0.0000 0.0008 0.0054 0.0008 0.9900 0.8600

6 LD ∼ τK 0.0001 0.0201 0.0001 0.1650 0.0001 0.8146 0.7000

7 LD ∼ τK 0.0493 0.0489 0.1953 0.1940 0.0476 0.4649 0.9400

8 LD ∼ τK 0.3321 0.0815 0.5058 0.0262 0.0520 0.0023 0.7600

9 LD ∼ τK 0.0000 0.0000 0.4001 0.0000 0.0000 0.5998 1.0000

Equation 5 shows that the weights ωj provide some insight about the relative importance of

each feature of the freight transport. According to the weights, Cost is the main or the second main

attribute for 7 out of the 9 companies. The corresponding values of the β parameters support this
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Table 2: Values taken by the α parameters for each company.

Company Criterion Frequency Time Reliability Flexibility Loss Cost

1 LD 0.0000 -1.2000 0.0000 1.2000 1.8000 4.4000

τK 0.2000 -2.0000 0.2000 0.2000 1.2000 3.0000

2 LD 3.0000 2.0000 -4.0000 -8.5000 3.5000 2.0000

τK 5.0000 4.2000 1.8000 2.6000 8.2000 2.6000

3 LD ∼ τK 3.4000 1.0000 2.6000 8.2000 1.0000 -1.4000

4 LD 2.6000 3.0000 2.2000 1.8000 2.2000 -0.6000

τK 3.000 2.6000 2.2000 4.2000 0.2000 -0.6000

5 LD 4.2000 0.2000 2.6000 3.4000 7.4000 2.6000

τK 3.4000 1.6000 1.000 2.8000 13.000 2.2000

6 LD ∼ τK 1.0000 1.0000 0.0000 1.0000 1.0000 2.000

7 LD ∼ τK 5.0000 4.2000 1.8000 2.6000 8.2000 2.6000

8 LD ∼ τK 8.0000 -5.0000 7.0000 -10.0000 6.0000 5.0000

9 LD ∼ τK 1.0000 0000 1.0000 1.0000 1.0000 1.0000

observation. On the contrary, the Loss attribute seems unimportant with respect to the values of

the weights, which are less or equal to 7%, except for company 2. Reliability has also an impact

for some companies. Company 4 presents an atypical behavior: its main attribute is Frequency,

followed by Time.

The sign of the β parameters expresses the favorable (when positive) or unfavorable impact

(when negative) of the related attribute. Attributes whose weights in the model are close to zero

are not significant and should not be taken into account when interpreting the corresponding values

of α and β.

The comparison of Tables 1 and 3 shows therefore that signs of β are intuitive for Frequency,

Time, Loss and Cost, in the case all significant attributes. For instance, the signs of β parameters

related the Cost (main factor for most firms) are negative in all models; this means that an increase

of this attribute leads to a lower utility. The negative impact of Time is also correctly expressed by

8 of the 13 models, while the 5 models left present a small weight (less or equal to 0.0361) for this

transport feature. The signs of β for these 5 models are consequently not significant. In the case of

Reliability, all signs are intuitively correct, except for one model. A β parameter not significantly

different of zero means that the corresponding attribute has no impact in the model (even if the
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Table 3: Values taken by the β parameters for each company.

Company Criterion Frequency Time Reliability Flexibility Loss Cost

1 LD 3.4000 0.4000 1.4000 0.6000 -1.4000 -8.8000

τK 3.8000 1.2000 3.4000 0.6000 -2.6000 -6.8000

2 LD 0.5000 -1.5000 -4.5000 -22.5000 -32.0000 -17.0000

τK 4.2000 -0.6000 9.8000 1.8000 -35.8000 -38.2000

3 LD ∼ τK 12.2000 -31.0000 5.0000 -23.0000 49.4000 -13.4000

4 LD 1.4000 -3.4000 7.0000 1.0000 -1.8000 -13.4000

τK 2.2000 -3.8000 8.2000 -1.0000 0.2000 -20.2000

5 LD 2.6000 -0.6000 14.6000 3.4000 -31.000 -95.000

τK 0.4000 0.4000 10.000 1.6000 -53.6000 -64.4000

6 LD ∼ τK 0.0000 0.0000 2.0000 0.0000 0.0000 -2.0000

7 LD ∼ τK 4.2000 -0.6000 9.8000 1.8000 -35.8000 -38.2000

8 LD ∼ τK 10.0000 -2.0000 10.0000 -10.0000 -14.0000 -39.0000

9 LD ∼ τK 1.0000 1.0000 0.4000 1.0000 1.0000 -1.3000

weight is nonzero). In the case of Flexibility, three significant β parameters are non positive, but

one of these is not significant. This therefore suggests that Flexibility plays no significant role in

this model.

We may notice in general that the results for both criteria of selection (loss function and Kendall)

lead to the same model or to models rather similar in terms of performances and relative importance

of the attributes. The other parameters seem however less stable.

6 Conclusion

This paper shows that a perceptron model can lead to a good prediction of the ranking. In addition,

the parameters of the model express correctly the negative or positive impact of an increase in an

attribute level, in most cases. The weights of the model give an insight about the relative importance

of each freight transport attribute. In particular, it is shown that Cost and Reliability are often

the most important features.

A continuous approximation of the quadratic error between the ranking and its estimate is not

always suitable. Indeed, the minimization of the quadratic error and the continuous approximation
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may be conflicting. Also, the behavior of the continuous approximation make the minimization by

a gradient method difficult.

The performances in terms of Kendall coefficients is lower than the UTA model (τK is always

higher than 0.9, against 0.7 for the perceptron). However, the UTA model counts 23 parameters for

25 alternatives: the UTA model most probably overfits. Moreover, achieving this τK in such com-

plex problem seems unrealistic. The Neural Network model outperforms the non-metric conjoint

analysis and rank-ordered logit models (in simple and nested versions). The Kendall coefficients

are however slightly lower than Quasi-UTA, a simplified version of UTA with less parameters. The

description and comparison of these models can be found in Beuthe et al. [3]. However, those

methods do not provide results easily interpretable, contrarily to the perceptron model.
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