
BugVis: Commit Slicing for Fault Visualisation
David Bowes

Lancaster University
Lancaster, United Kingdom
d.h.bowes@lancaster.ac.uk

Jean Petrić
Lancaster University

Lancaster, United Kingdom
j.petric@lancaster.ac.uk

Tracy Hall
Lancaster University

Lancaster, United Kingdom
tracy.hall@lancaster.ac.uk

ABSTRACT
In this paper we present BugVis, our tool which allows the visu-
alisation of the lifetime of a code fault. The commit history of the
fault from insertion to fix is visualised. Unlike previous similar
tools, BugVis visualises only the lines of each commit involved in
the fault. The visualisation creates a commit slice throughout the
history of the fault which enables comprehension of the evolution
of the code involved in the fault.

KEYWORDS
commit, fault, bug, fix, visualisation
ACM Reference Format:
David Bowes, Jean Petrić, and Tracy Hall. 2020. BugVis: Commit Slicing for
Fault Visualisation. In 28th International Conference on Program Comprehen-
sion (ICPC ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3387904.3389299

1 INTRODUCTION
Fixing code faults can be challenging and it is not uncommon
for secondary faults to be introduced during a fix. Implementing
effective fixes relies on developers understanding all the lines of
code involved in a fault. Ko et al [6] and LaToza & Myers [7] report
that understanding historical changes in code is one of the most
time-consuming activities in software development. Understanding
previous fault fixes is particularly difficult as fault fixing commits
are often bundled up with other changes and refactorings. Such
bundled commits make it difficult to understand the history of
specific faults. Using code analysis in relation to faults is valuable as
important questions related to code maintenance can be answered,
such as “where, when and why was the fault inserted?” [8].

A range of existing tools are available to assist developers to
make sense of historical changes. Many of these tools focus at
a higher level of granularity than the line of code level at which
BugVis works. BugMaps works at the class-level [4], whilst HATARI
operates at the method-level [11]. Even though these tools provide
insights to a fault’s whereabouts, they do not pin point the exact
location of faulty lines throughout their history. Other tools, such as
CHRONOS [9] do visualise historical changes at the code line-level.
However, the CHRONOS approach analyses changes of any code
snippet, not specifically the lines of a code fault from insertion to
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7958-8/20/05. . . $15.00
https://doi.org/10.1145/3387904.3389299

fix. With CHRONOS the developer still needs to identify the exact
location of the fault. BugVis not only visualises the lines of code
specific to a particular fault from insertion to fix, but also enables
developers to identify changes not associated with the fix under
examination.

In this paper we present our tool BugVis which allows developers
to see where and how fault reports have been fixed in the history
of a file. BugVis also allows the developer to see all files and the
changes that were made to them, highlighting the changes to lines
and commits while still giving the full context of the code around
the changes. Some faults go back beyond the initial indicated prob-
lem and can be missed by previous approaches, but BugVis tracks
back to the possible origin of the fault and beyond. Unlike other
visualisation tools for fault investigation, BugVis provides the min-
imum complete history of faulty lines presented in the context of
the file in which the faulty lines occurred. BugVis identifies for the
developer where and when a fault was introduced. BugVis provides
a program slice based only on committed lines of code associated
with the fault being analysed. Viewing only lines of code relevant
to the fault in question makes reasoning about that fault easier.

BugVis implements the SZZ algorithm [10] for initially linking
fault reports to fault fixes and backtracking to identify the fault
insertion commits. We have improved the original SZZ algorithm
by: a) linking deleted as well as modified lines b) using advanced diff
commands which follow blocks of code being moved. Both of these
changes improve linkage from fault fix to insertion point [1]. In
addition, BugVis is an interactive tool allowing developers to select
individual lines and see where they came from and where they go
to. The interactive ability of the tool allows people to investigate
code which may be surrounding the fault changes.

In the next section we discuss related work and previous fault
analysis tools. In Section 3 we describe how BugVis was devel-
oped and works. Finally we discuss how BugVis has been used and
evaluated in Section 4.

2 RELATEDWORK
Fault analysis is challenging due to the availability of suitable tools
for tracking historical changes. Previous tools for fault analysis
have mostly focused on tracking the history of faulty code at the
file and method level. Other tools track changes at the line level,
however the historical analysis is limited to any code snippets.
Currently no tools offer a complete visualisation solution to follow
faults at the line level across their lifetime.

Various visualisation tools exist to assist developers in under-
standing software faults. Hora et al. introduced BugMaps, a visuali-
sation tool for faulty code [4]. Their tool links bug tracking systems
with version control commits to find classes involved in the fix.
BugMaps presents the developer with two visualisation modes, one
to visualise the history of faulty code and the other to visualise

https://doi.org/10.1145/3387904.3389299
https://doi.org/10.1145/3387904.3389299

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Bowes et al.

the commits of interest. Both modes show meta information about
the code, which includes the classes involved, static code metrics
and historical numbers of faults. Couto et al. extended BugMaps to
include causality relationships between source code metrics and
faults in the tool called BugMaps-Granger [2]. BugMaps-Granger
uses past changes of source code metrics to predict changes in the
number of faults over a period of time. The tool is primarily de-
signed to assist developers in refactoring and unit testing activities.
Whilst the BugMaps tools focus on visualising the file level (i.e.
class) changes of already fixed faults, the HATARI tool marks risky
methods within classes that are likely to be faulty [10]. HATARI
uses the original SZZ algorithm [11] to build models for predicting
fault-prone code. The tool visualises methods with high and low risk
allowing the developer to navigate through the historical changes
of the code. BugVis on the other hand uses the improved SZZ algo-
rithm [1] to follow faults from insertion to fix at the line-level of
granularity.

Several tools support the historical analysis of code at the line
level. Servant and Jones introduced CHRONOS, a tool which enables
the visualisation of change history of target lines across all historical
versions of code [9]. Their tool uses a query mechanism to select
the lines of interest, where the lines can be contiguous or disparate.
Wittenhagen et al. developed Chronicler, a tool that uses a tree
representation of code to track changes across the file’s history [13].
In Chronicler each line of code is part of a treewhich a developer can
use to analyse its evolution. Yoon et al. introduced Azurite which
helps developers navigate source code by tracking its history using
diff [14]. Azurite uses a “replay” approach, where the historical code
changes are supported by the timeline which the developer can use
to replay the development of code as it happened at a specific time
frame. To date, no tool working at the line level granularity offers
the tracking of faulty lines of code.

Existing tools have limited functionalities for analysing historical
changes of faulty code. The BugMaps tools do not indicate specific
location in code where a fault was fixed. However, developers are
often interested in source code at the line level [3, 7]. The HATARI
tool mostly focuses on the present state of the code being designed
to indicate fault-prone methods. Other tools such as CHRONOS,
Chronicler and Azurite offer the visualisation of historical changes
at the line level, however without targeting faulty lines. On the
other hand, BugVis combines and extends the strengths of existing
tools to enable developers to effectively analyse the history of faulty
code at the line level. BugVis is a complete visualisation approach
that enables comprehension of the evolution of a code fault.

3 HOW BugVis WORKS
BugVis is a visualisation tool which combines information from
code repositories and bug databases and visualises the history of
potentially faulty lines of code. BugVis has three modules which
extract information from different sources in order to produce the
final visualisation. These modules are a Linker which matches
closed bugs to file commits, a Line Mapper, which allows lines to be
followed during the history of a file and a Bug Backtracker which
identifies the changes in the fix commit and the lines previous
to them which are likely to be faulty. Different modules require
information from different sources, some of which are external

Git Bug Database

Fix commits
for a Bug

Visualisation of the
History of a Fixed File

Linker

Line
Mapper

Bug
Backtracker

File
History

Figure 1: Schematic of BugVis. Gray boxes are external to
BugVis. Bordered boxes implement the SZZ algorithm.

to BugVis, and others are generated on the fly. Figure 1 shows a
schematic of BugVis indicating how different modules interact in
order to generate the visualisation of the changed files.1

3.1 Implementation
3.1.1 Connections to data sources. BugVis collects data from a
cloned Git repository and an online bug database (e.g. GitHub is-
sues). BugVis uses the operating system’s Git installation to interact
with the cloned Git repository to find all commits using Git log.
BugVis can connect other bug databases, including, GitHub, Jira,
Bugzilla and XML. Using a connection to a bug database, BugVis
extracts all bugs which are labeled as faulty. The label may be dif-
ferent for different projects, therefore, BugVis allows the label to
be specified at run-time.

3.1.2 Bug Linking. To identify commits responsible for fixing a
bug, BugVis matches the commit messages from Git log with the
bug ids from the bug database. BugVis is configurable so that a
customisable regex is used to find relevant links. The connection
to the data sources and the bug linking occur at the start of the
program. The bug database, the file history and the fix commits for a
bug are held in memory. The bug database can be saved locally to a
reduced XML format to allow BugVis to load a cached version of the
bugs, reducing the need to connect remotely to the bug database.

3.1.3 Line Mapping. BugVis implements an algorithm for annotat-
ing lines of a file similar to Williams and Spacco [12]. The native Git
log with diffs is used to both follow renames and chunk movements.
We did not include line matching using Levenstein’s distance be-
cause we are interested in the general location of faults which can
be achieved using the Git log commands. Git reverse blame also
allows us to identify lines in the previous commit which did not
end up in the final fix commit. Line mappings are held in mem-
ory while generating the bug backtracking information needed for
interactively visualising a file.

1It is possible to use BugVis without a bug database purely to visualise the changes to
a file up to a particular commit.

BugVis: Commit Slicing for Fault Visualisation ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

3.1.4 Bug Backtracking. Although a line might have been changed
in the fix commit, it may have been part of a change started after
the bug was reported. As such, the line was not part of the fault
insertion because it has changed since the original report and we
cannot determine if the change was due to fixing the bug, or a
refactoring. We use the date of bug reporting, combined with the
line mapping data and the lines changed in the fault fix commit to
generate annotations in BugVis to indicate lines which are faulty
and commits which insert faults. We assume that any changes prior
to a line marked as a fault insertion are not faulty. Clearly, this may
not be true, however, BugVis allows an easy manual investigation
of this hypothesis.

3.2 Tool application scenario
The scenario for this demo asks: "For the joda-time project on
GitHub: what commits fixed bug #93 and what lines in which files
were fixed and where did the faulty lines originate?". In Figure 2a,
the tool has extracted the bugs from the repository and displayed
them as a list. Figure 2 shows a typical scenario for using the tool
which starts with the BugVis having been configured to use the joda-
time GitHub repository2 and the associated GitHub issue tracking
database. Once BugVis starts, the data is loaded from both sources,
or from locally cached data. Once the data has been loaded, bug
links are discovered. At its simplest, BugVis can be used to show
which commits are linked to bugs.

If we select bug #93 from Figure 2a, BugVis shows a list of com-
mits (9a62b3 and 8612f4) which have been identified to fix bug #93,
Figure 2b. Selecting the first commit (9a62b) populates the next list
with the files changed in that commit. The list shows all the files
changed in the fix commit.

In this scenario, selecting the file org/joda/time/Partial.java
displays a timeline of windows each showing the code for the file in
a particular commit Figure 2c. Each line of the file is coloured. Green
indicates the addition of lines. Yellow indicates modified lines and
red shows lines which are deleted. Lines highlighted in blue show
that the user has interactively selected a particular line. The gutter
of prior files also contain icons which show if a change in a line
is associated with the fault fix using the SZZ algorithm. Clicking
on a line in the last version of the file Figure 2c (highlighted in
blue), then backtracks through the history to show how that line
has been affected Figure 2d. Clicking on a line will also align all of
the code windows to show roughly the equivalent line. In Figure
2d, the penultimate file shows the lines which are modified and the
hash of the last commit of that line. The gutter contains markers
which indicate that the line has been fixed but was present prior
to the bug being reported5. Figure 2e shows that the bug had been
traced back to the original version of the file.

4 HOWHAS BugVis BEEN USED
BugVis has been evaluated and used in a range of different cir-
cumstances. The tool has been an integral part of working with
industrial collaborators and has allowed us to gain new insights
2https://github.com/JodaOrg/joda-time
3https://github.com/JodaOrg/joda-time/commit/9a62b06
4https://github.com/JodaOrg/joda-time/commit/8612f9e
5Lines changed after the bug is first reported are less likely to be the original fault and
are therefore not marked as faulty.

Table 1: Bugs identified by different systems for joda-time

BugVis
Defects4J Not linked Linked
Not linked 92 38 130
Linked 11 14 25
Totals 103 52 155

into faults and their fixes. BugVis has also allowed us to evaluate
and improve our version of the SZZ algorithm. The visualisation
of the code has allowed us to check the lines which SZZ marks
as faulty and it has enabled us to verify the point where SZZ has
identified the fault insertion point.

We evaluated BugVis against the extensively used Defects4J data
[5]. We used the GitHub repository for joda-time and the issue
tracking system on GitHub. We linked bugs using a simple regex:
(?i:(^|\\W)fix.*#bugid(\\W|$))
Where bugid is replaced by the id from the bug database before
linking starts. We restricted our analysis to the same time range as
the original Defects4J analysis. Defects4J uses a manual approach
to bug linking and therefore finds links to commits which contain
no indication of the bugid from the bug database. Table 1 shows
the number of bugs linked to commits by Defects4J and BugVis.
In total, there are 92 faults which neither tool associated a bug to
a commit. Defects4J identified 11 commits linked to bugs which
BugVis did not find. BugVis identified 38 bugs which were linked
to commits and both tools agreed on links for 14 bugs. Although
the agreement is only slight (Kappa= 0.186), BugVis allowed us to
manually confirm the links made by BugVis and those made by
Defects4J. Bugid #96 was found by BugVis and not Defects4J. While
inspecting the code changes for bugid #96 using BugVis, it was
possible to see how bugid #93 had not been correctly closed by
commits (9a62b or 8612f) and further work had been needed.

We have also successfully used BugVis with professional soft-
ware developers to investigate the type of faults software profes-
sionals insert into their code. Our aim being to understand whether
particular software developers insert particular types of faults. This
study involved 15 professional software developers.We used BugVis
to visualise faults inserted by individual developers then asked each
developer to explain the context and the characteristics of that fault.
This is an on-going study in which BugVis has proved to be effec-
tive at communicating information about individual faults between
professional developers and researchers.

ACKNOWLEDGEMENTS
This work was partly funded by a grant from the UK’s Engineer-
ing and Physical Sciences Research Council under grant number:
EP/S005730/1

REFERENCES
[1] D. Bowes, S. Counsell, T. Hall, J. Petric, and T. Shippey. 2017. Getting Defect

Prediction Into Industrial Practice: the ELFF Tool. In 2017 IEEE International
Symposium on Software Reliability EngineeringWorkshops (ISSREW). 44–47. https:
//doi.org/10.1109/ISSREW.2017.11

[2] Cesar Couto, Marco Tulio Valente, Pedro Pires, Andre Hora, Nicolas Anquetil, and
Roberto S Bigonha. 2014. BugMaps-Granger: a tool for visualizing and predicting
bugs using Granger causality tests. Journal of Software Engineering Research and
Development 2, 1 (2014), 1.

https://doi.org/10.1109/ISSREW.2017.11
https://doi.org/10.1109/ISSREW.2017.11

ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea Bowes et al.

(a) Selecting from the list of bugs retrieved from the yoda-time bug database.

(b) Selecting from the list of commits in the Git repository which probably fix bug #93.

(c) The View of Partial.java showing the fix commit 9a62b. Blue lines indicate the line clicked. Green shows lines added.
Yellow shows lines changed.

(d) Clicking on a line re-aligns all windows to show the history of the same line of code over time. The marks in the gutter
indicate the possible location of the bug.

(e) View showing that the original file contained the bug.

Figure 2: Screen shots of using the tool

BugVis: Commit Slicing for Fault Visualisation ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

[3] Reid Holmes and Andrew Begel. 2008. Deep intellisense: a tool for rehydrat-
ing evaporated information. In Proceedings of the 2008 international working
conference on Mining software repositories. 23–26.

[4] Andre Hora, Nicolas Anquetil, Stephane Ducasse, Muhammad Bhatti, Cesar
Couto, Marco Tulio Valente, and Julio Martins. 2012. Bug maps: A tool for the
visual exploration and analysis of bugs. In 2012 16th European Conference on
Software Maintenance and Reengineering. IEEE, 523–526.

[5] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[6] Andrew J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collo-
cated software development teams. In 29th International Conference on Software
Engineering (ICSE’07). IEEE, 344–353.

[7] Thomas D LaToza and Brad A Myers. 2010. Hard-to-answer questions about
code. In Evaluation and Usability of Programming Languages and Tools. 1–6.

[8] Francisco Servant. 2013. Supporting bug investigation using history analysis. In
2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 754–757.

[9] Francisco Servant and James A Jones. 2013. Chronos: Visualizing slices of source-
code history. In 2013 First IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, 1–4.

[10] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. Hatari: raising
risk awareness. In Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of
software engineering. 107–110.

[11] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When do
changes induce fixes? ACM sigsoft software engineering notes 30, 4 (2005), 1–5.

[12] Chadd C Williams and Jaime W Spacco. 2008. Branching and merging in the
repository. In Proceedings of the 2008 international working conference on Mining
software repositories. 19–22.

[13] Moritz Wittenhagen, Christian Cherek, and Jan Borchers. 2016. Chronicler:
Interactive exploration of source code history. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. 3522–3532.

[14] YoungSeok Yoon, Brad A Myers, and Sebon Koo. 2013. Visualization of fine-
grained code change history. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing. IEEE, 119–126.

	Abstract
	1 Introduction
	2 Related Work
	3 How BugVis Works
	3.1 Implementation
	3.2 Tool application scenario

	4 How has BugVis been used
	References

