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Abstract 47 

The aim of this study was to evaluate the effect of raw (RawBC) and iron (Fe)-modified biochar (FeBC) 48 

derived from Platanus orientalis Linn branches on the plant growth, enzyme activity, and bioavailability 49 

and uptake of As, Cd, and Pb by rice in a paddy soil with continuously flooded (CF) or alternately wet 50 

and dry (AWD) irrigation in a pot experiment. Application of RawBC (3%, w/w) significantly increased 51 

soil pH, while FeBC decreased it. The FeBC was more effective in reducing As and Pb bioavailability, 52 

particularly under the AWD water regime, while RawBC was more conducive in reducing Cd 53 

bioavailability under the CF water regime. The FeBC decreased As concentration, but increased 54 

concentrations of Cd and Pb in the straw and brown rice, as compared to the untreated soil. Soil catalase 55 

and urease activities were enhanced by RawBC, but decreased by FeBC treatment. The FeBC increased 56 

the grain yield by 60 and 32% in CF and AWD treatments, respectively. The FeBC can be recommended 57 

for immobilization of As in paddy soils, but a potential human health risk from Cd and Pb in FeBC-58 

treated soils should be considered due to increased uptake and translocation of the metals to brown rice. 59 

 60 

Keywords: Heavy metal; Bioavailability; Soil enzyme; Engineered biochar; Irrigation. 61 
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1. Introduction 63 

Paddy soils have been contaminated with potentially toxic elements (PTEs) in large areas worldwide, 64 

which is mainly attributed to anthropogenic activities (Chen et al., 2019; Palansooriya et al. 2020). 65 

According to a National Survey, among others, arsenic (As), cadmium (Cd), and lead (Pb) are widely 66 

distributed pollutants in agricultural soils in China (Chinese Ministry of Environmental Protection and 67 

Ministry of Land and Resources, 2014). The PTEs in soils have increasingly gained attentions because of 68 

their ubiquitous distribution, bioavailability, and toxicity (Yang et al., 2019; Bandara et al., 2020). The 69 

PTEs can be taken up by crops, and subsequently accumulate in human bodies by going up in the food 70 

chain (Yang et al., 2016; Li et al., 2019; Antoniadis et al., 2019). Rice (Oryza sativa L.) is one of the 71 

most widely grown field crops and a staple food for millions of people in Asia (Sohn, 2014). Previous 72 

studies showed that rice was more effective than other crops in accumulating PTEs such as As, which 73 

could enter into human bodies through daily diet (Antoniadis et al., 2019). Appropriate management of 74 

risks posed by PTEs has become imperative to food safety and public health (Rizwan et al., 2016a; 75 

Rizwan et al., 2016b; O’Connor et al., 2020). 76 

Recent studies found that soil amendments including biochar could be used to decrease the 77 

bioavailability and bioaccumulation of PTEs through adsorption, precipitation, complexation and other 78 

physicochemical mechanisms (e.g., Wei et al., 2019; Wu et al., 2020; Rinklebe et al., 2020), while 79 

maintaining or even increasing crop yields due to reduced phytotoxicity and improved soil 80 

physicochemical properties (Ye et al., 2020). Owing to high porosity and specific surface area, highly 81 

aromatic structure, and various functional groups (Wu et al., 2019), biochar has drawn particular 82 

attention as a potential remediation agent for PTE-contaminated soils (Qin et al., 2018; Bandara et al., 83 

2020).  84 

https://apps.webofknowledge.com/OutboundService.do?SID=6DUroYb3k2o9NEmInae&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=5764649
https://apps.webofknowledge.com/OutboundService.do?SID=6DUroYb3k2o9NEmInae&mode=rrcAuthorRecordService&action=go&product=WOS&daisIds=5764649
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Biochar can be used to alleviate stress posed by PTEs, and improve the overall soil health, including soil 85 

fertility (Li et al., 2018; Feng et al., 2020; Matin et al., 2020) and microbial diversity (Lu et al., 2019; 86 

Chen et al., 2020), and facilitate plant growth (Nie et al., 2018; Chu et al., 2020). Furthermore, 87 

researchers suggested that iron (Fe) oxides could reduce the mobility of PTEs (especially As) in the soil, 88 

and thus mitigate PTE bioavailability and leaching potential (Qiao et al., 2019; Tang et al., 2020; Wang et 89 

al., 2020). Studies also suggested the feasibility of using biochar loaded Fe materials to remove As and 90 

other toxic elements from aqueous solutions (e.g., Niazi et al., 2018; Xia et al., 2019; Yin et al., 2020). 91 

Nevertheless, little information is available on the effect of Fe oxide-designed biochar on the 92 

bioavailability and transportation of PTEs in the soil-rice system. 93 

Water management is another important factor that controls PTE bioavailability in paddy soils (Arao et 94 

al., 2009; Li et al., 2020). The growth of paddy rice responded differently to an anaerobic condition 95 

caused by continuous flooding, and an aerobic condition facilitated by alternative wetting and drying 96 

(Wu et al., 2018). Arsenic is more available as arsenite under anaerobic condition, whereas it can be 97 

readily transformed to arsenate under aerobic condition (Talukder et al., 2014). Divalent metal cations in 98 

soil, such as Cd2+ and Pb2+, could also be stabilized with sulfur under anaerobic condition caused by 99 

continuous flooding, thereby reducing the accumulation of these PTEs in rice grains (Arao et al., 2009; 100 

Bandara et al., 2020).  101 

A co-benefit of using biochar as a soil amendment is that it could facilitate sustainable disposal of 102 

excessive green wastes such as leaves, branches, and residual flowers (Chen et al., 2019; Zhao et al., 103 

2018). Producing biochar via pyrolysis is a green and eco-friendly strategy to potentially achieve the 104 

maximum value-added benefits of green wastes (Zhao et al., 2018). In this study, biochar derived from 105 

Platanus orientalis branches (RawBC), and its Fe-modified biochar (FeBC) were used as soil 106 
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amendments to investigate their effects on the bioavailability and transportation of As, Cd, and Pb in a 107 

soil-rice system, under continuously flooded (CF), and alternately wet and dry (AWD) water 108 

management conditions. Previous studies (e.g., Yin et al., 2017; Qiao et al., 2019) showed that Fe-loaded 109 

biochar could increase the immobilization of PTEs through surface (co)precipitation. Due to the water 110 

regime-induced changes of redox potential, factors such as pH and chemical speciation of S and Fe also 111 

change, which might affect the behavior of PTEs being stabilized by biochar (Rinklebe et al., 2020). We 112 

hypothesize that RawBC and FeBC would change the mobility of PTEs, thus affect their bioavailability 113 

and bioaccumulation in rice plants. The specific objectives of this study are to: (1) determine the effect of 114 

RawBC and FeBC application on the rice plant growth, soil enzyme activities, and bioavailability and 115 

uptake of As, Cd, and Pb in the soil-rice system; and (2) investigate the impact of different water 116 

management regimes on the biochar-induced changes of rice plant growth, soil enzyme activities, and 117 

(im)mobilization of As, Cd, and Pb in the paddy soil.  118 

 119 

2. Materials and methods  120 

2.1 Biochar preparation and characterization  121 

RawBC was prepared by pyrolyzing Platanus orientalis Linn (Oriental plane) branches at a temperature 122 

of 650°C under an oxygen-limited condition for 2 h. The obtained biochar was passed through a 2-mm 123 

stainless steel sieve prior to the experiment. To prepare the FeBC, the RawBC was added into a FeCl3
. 124 

6H2O solution at a ratio of 20:1 (biochar:Fe, w/w), and stirred vigorously, followed by 1 h of sonication 125 

at 25°C for homogeneous mixing. The FeBC was oven-dried at 60°C until attaining a constant weight, 126 

and subsequently pyrolyzed again at 650oC for 1 h for better loading of Fe to obtain the FeBC (Dong et 127 

al., 2016).  128 
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The physicochemical characterization of the biochar samples including the measurement of Brunauer–129 

Emmett–Teller (BET) specific surface area (SSA), collecting scanning electron microscope (SEM) 130 

images, energy dispersive X-ray (EDX) spectrometry, and Fourier transform infrared (FTIR) 131 

spectroscopy were conducted using methods described previously (Yang et al., 2016). 132 

 133 

2.2 Soil sampling and characterization  134 

A soil contaminated with As, Cd, and Pb was collected from the 20-cm surface layer of a paddy field in 135 

Shangyu County, China, which was polluted by surface runoff from nearby mine tailings. The studied 136 

soil is classified as a silty clay loam soil according to the Chinese soil classification system (Gong, 137 

1999). A 3-mm stainless steel sieve was used to pass the air-dried soil. The soil physicochemical 138 

properties were analyzed according to standard methods (Lu, 2000). The total concentration of As, Cd, 139 

and Pb in the soil was analyzed by digesting the soil (0.15 g) in HF–HClO4–HNO3 (7-5-1 mL) (Carignan 140 

and Tessier, 1988). The soil was weakly acidic (pH = 5.8), and contained 20.6, 45.8, and 33.5% clay, silt, 141 

and sand. The total concentration of As, Cd, and Pb was 141.3, 0.5, and 736.2 mg kg−1, respectively. 142 

 143 

2.3 Pot experiment 144 

The pot experiment was conducted at Zhejiang A&F University in Hangzhou City, Zhejiang Province, 145 

China. Briefly, 3% (w/w) of RawBC and FeBC were added into the sieved paddy soil, and 146 

homogenously mixed before being placed into plastic pots (24 cm × 22 cm). Every treatment had four 147 

replicates, with 8 kg of co-contaminated soil in each pot. Pots (including the control with no amendment) 148 

were complemented with a compound fertilizer which contained a N:P:K ratio of 15:12:18. The fertilizer 149 

was supplemented at a rate of 0.085 g kg-1 (dry weight), which was according to the local rice production 150 



9 

practice. The rice cultivar selected in this experiment was Xiushui-519. Five healthy rice seedlings pre-151 

cultivated for 38 days in the selected soil were transplanted into each pot. Ten days after transplanting, 152 

0.085 g kg-1 of the compound fertilizer and 0.0425 g kg-1 of urea were applied to each pot. The 153 

experiment was carried out in a randomized block design. For the continuously flooded (CF) treatment, 154 

the pots were irrigated daily until the soil moisture reached nearly saturation, and then were continuously 155 

flooded until 10 days before the harvest. For the alternately wet and dry (AWD) treatment, the pots were 156 

re-flooded when small cracks were present on the surface soil. After 132 days of cultivation, the above-157 

ground parts of rice plant were harvested (4 July to 12 November 2018). The plant samples were 158 

separated into rice straw and grain. All plant samples were oven-dried at 65°C until attaining a constant 159 

weight, and then ground to pass a 0.25-mm sieve.  160 

 161 

2.4 Analyses of soil and plant samples 162 

Soil pH and total organic carbon (TOC) content of the untreated and biochar-treated soil samples were 163 

analyzed according to Chen et al. (2020). The potentially available concentrations of Cd, Pb, and Fe were 164 

extracted from a portion of 5 g air-dried soil with 25 mL diethylenetriaminepentaacetic acid (DTPA) 165 

solution (Lindsay and Norvell, 1978). The potentially available concentration of As was extracted with 166 

75 mL NaH2PO4 solution from 5 g air-dried soil (Wenzel et al., 2001). Soil urease and catalase enzyme 167 

activities were determined by the methods described by Dick et al. (1996). A portion of 0.3 g plant 168 

samples (straw and brown rice) were digested with nitric acid using a microwave digester (DigiBlock 169 

ED54, LabTech CO, China) for As, Cd, and Pb measurements in the straw and brown rice (Lu, 2000). 170 

All the extracted elements were measured using inductively coupled plasma optical emission 171 

spectrometry (ICP-OES Optima 2000, PerkinElmer Co., USA).  172 
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 173 

2.5 Data analysis 174 

Statistical analysis of the data was performed by SPSS 17.0 software program. Analysis of variance 175 

(ANOVA) and Duncan’s multiple range test were used to determine the significant differences between 176 

treatments, with the significance level set at P=0.05. 177 

The quality control for total As, Cd, and Pb determination in the soil and plant were checked by 178 

analyzing reagent blanks, and certified reference materials GBW-07405 (soil) and GBW-07603 (plant) 179 

obtained from the China Standard Materials Research Center. The recoveries of As, Cd, and Pb in soil 180 

and plant samples ranged from 87.5% to 99.5%. 181 

 182 

3. Results 183 

3.1 Characteristics of the raw and modified biochars 184 

The physicochemical properties of the two biochar samples are shown in Table 1. The pH of FeBC 185 

(pH=4.41) was lower than that of RawBC (pH=9.25). The carbon content, Olsen-P concentration, and 186 

SSA of RawBC were higher than FeBC, whereas the ash content and electrical conductivity of FeBC 187 

were higher than those of RawBC (Table 1). 188 

From the SEM images (Fig. 1A,B), it was observed that both biochars had evenly arranged tube bundle 189 

structures, which could be attributed to the original shape of the biomass. However, after Fe loading, the 190 

pore structure on the biochar surface seemed to be blocked, and thus the cross section of FeBC was 191 

honeycomb-shaped. The FTIR spectra showed that RawBC had more abundant functional groups on its 192 

surface than FeBC (Fig. 1C), including olefin (650-1000 cm-1) and aromatic C=C (1448-1576 cm-1) 193 

functional groups. According to the EDX spectra, 6.9% chlorine (Cl), and 3.9% Fe were detected in 194 



11 

FeBC, while they were not detected in RawBC (Fig. 1D). 195 

 196 

Table 1 Selected physicochemical properties of the raw biochar (RawBC) and Fe-modified biochar 197 

(FeBC) 198 

Biochar RawBC FeBC 

pH 9.25±0.14 4.41±0.03 

C (%) 69.34±1.05 59.91±1.21 

H (%) 2.74±0.23 2.24±0.35 

N (%) 1.11±0.01 0.94±0.01 

Ash content (%) 9.66±0.33 15.34±0.20 

CECa (cmol kg-1) 21.59±0.56 16.7±0.37 

ECb (dS m-1) 0.37±0.02 4.49±0.04 

SAc (cmol kg-1) 215.9±0.37 183.6±0.38 

SSAd (m2 g-1) 110.7±2.35 74.5±1.43 

Olsen P (mg kg-1) 24.47±0.59 1.35±0.16 

Total P (g kg−1) 1.93±0.06 3.03±0.11 

Total Fe (g kg−1) 7.59±0.60 54.61±3.16 

Total Pbe (mg kg−1) 6.97±0.56 11.92±0.54 

a CEC: cation exchange capacity  199 

b EC: electrical conductivity.  200 

c SA: surface alkalinity.  201 

d SSA: specific surface area.  202 
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e Concentration of As and Cd was below the detection limit. 203 

 204 

 205 

Fig. 1. Scanning electron microscope (SEM) images of RawBC (A), and FeBC (B); Fourier transform 206 

infrared (FTIR) spectra (C), and energy dispersive X-ray spectra (EDS) and elemental contents (D) of 207 

RawBC and FeBC. 208 

 209 

3.2 Biochar and water regime-induced changes in the soil pH, TOC, and Fe availability 210 

Compared to the untreated control, application of RawBC significantly (P<0.05) increased the soil pH 211 

respectively by 0.74 and 1.33 units under AWD and CF treatments, while the addition of FeBC decreased 212 

the soil pH by 0.17 and 0.13 units under AWD and CF treatments (Fig. 2A). The CF treatment had higher 213 

pH than AWD irrespective of the type of biochar applied. Application of both biochars significantly 214 

(P<0.05) increased the soil TOC content, and the effect under AWD treatment was more effective than 215 
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CF treatment (Fig. 2B). RawBC was more effective than FeBC in increasing the soil TOC content. For 216 

instance, in the CF treatment, the TOC content increased from 20.7 mg kg-1 in the control to 34.7 mg kg-1 217 

in the RawBC-treated soil, while it increased from 20.7 mg kg-1 in the control to 32.4 mg kg-1 in the 218 

FeBC-treated soil. Both RawBC and FeBC significantly decreased (P<0.05) the DTPA-extractable Fe 219 

concentrations as compared to the control. Interestingly, application of FeBC caused a more pronounced 220 

decrease in DTPA-extractable Fe (43-63%) than RawBC (32-56%) (Fig. 2C). Compared to the AWD 221 

treatment, the average concentration of DTPA-extractable Fe was higher in the CF treatment. 222 

 223 

Fig. 2. Effect of biochar applications on soil pH (A), total organic carbon (TOC) (B), and available Fe 224 

(C). Treatments: RawBC: raw biochar; FeBC: Fe-modified biochar. CF: continuously flooded; AWD: 225 

alternately wet and dry. Error bars indicate standard error of the means (n=4). Different letters indicate 226 

significant differences between treatments (P<0.05). 227 

 228 

3.3 Biochar and water regime-induced changes on the potential availability of As, Cd, and Pb  229 
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Application of FeBC significantly (P<0.05) decreased the potentially available concentration of As in the 230 

soil under both CF and AWD water regimes by 41.7 and 38.8%, respectively, as compared to the control 231 

(Fig. 3A). The average concentration of available As was lower in the CF than AWD treatment. 232 

Both biochars significantly (P<0.05) decreased the potentially available Cd concentration in the soil as 233 

compared to the control. However, RawBC was more effective than FeBC and decreased the available 234 

Cd concentration up to 37.3% under the CF water regime treatment. Concentrations of DTPA-extractable 235 

Cd in the FeBC- and RawBC-treated soils were 5% and 23.4% lower in AWD treatment than in CF 236 

treatment (Fig. 3B).  237 

Addition of FeBC caused a significant decrease in the concentrations of DTPA-extractable Pb in both the 238 

CF (13.6%) and AWD (34.9%) water regime treatment. Under AWD treatment, RawBC significantly 239 

(P<0.05) decreased the DTPA-extractable Pb concentration by 16.2%. The DTPA-extractable Pb 240 

concentration in the soil under AWD condition was lower than that of CF treatment. 241 

 242 
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Fig. 3. Effect of biochar applications on soil available As (A), available Cd (B), and available Pb (C). 243 

Treatments: RawBC: raw biochar; FeBC: Fe-modified biochar. CF: continuously flooded; AWD: 244 

alternately wet and dry. Error bars indicate standard error of the means (n=4). Different letters indicate 245 

significant differences between treatments (P<0.05).  246 

 247 

3.4 Biochar and water regime-induced changes on the concentration of As, Cd, and Pb in rice straw and 248 

brown rice  249 

Application of RawBC and FeBC, particularly the later, significantly (P<0.05) decreased the As 250 

concentration in rice straw (Fig. 4A). The maximum reduction of As concentration in rice straw (61.5%) 251 

by FeBC was in the AWD water regime treatment, as compared with the control. Application of FeBC 252 

decreased the As concentration in brown rice by 73.2% in CF treatment, and by 80.1% in AWD 253 

treatment, while the application of RawBC had no significant effect on As concentration in brown rice 254 

(Fig. 4D). The concentration of As in the AWD treatment was 5-15% lower than that in CF treatment 255 

with both biochar treatments.  256 

Addition of FeBC caused a significant (P<0.05) increase in the concentration of Cd and Pb in rice straw 257 

as compared to the control and RawBC treatments under both CF and AWD water regimes (Fig. 4B,C). 258 

For example, as compared to the control, FeBC increased the Cd concentration of rice straw by 390.1% 259 

and 169.0% in CF and AWD treatments (Fig. 4B), and Pb concentration by 281.1% and 57.4% in CF and 260 

AWD treatments, respectively (Fig. 4C). The concentration of Cd and Pb in rice straw was lower under 261 

CF treatment than AWD treatment in the biochar-treated and untreated soils (Fig. 4B,C). 262 

The RawBC and FeBC showed different impacts on Cd and Pb concentrations in brown rice (Fig. 4E,F). 263 

The application of FeBC significantly (P<0.05) increased the Cd concentration in brown rice by 268.8% 264 
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(CF treatment) and 263.6% (AWD treatment) as compared to the control (Fig. 4E). The application of 265 

both the biochars increased the concentration of Pb in brown rice as compared to the control (Fig. 4F). 266 

For example, the brown rice concentration of Pb in the RawBC treatment was about 138.7% (CF 267 

treatment) and 90.1% (AWD treatment) higher than that of the control. As compared to the control, FeBC 268 

addition increased the brown rice concentration of Pb by 96.7% (CF treatment) and 68.4% (AWD 269 

treatment). The concentration of Pb in brown rice grown under CF treatment was higher (98.6% with 270 

RawBC-85.2% with FeBC) than that grown under AWD treatment. 271 

 272 

Fig. 4. Effect of biochar applications on As, Cd and Pb accumulation in straw (A, B, C), and brown rice 273 

(D, E, F). Treatments: RawBC: raw biochar; FeBC: Fe-modified biochar. CF: continuously flooded; 274 

AWD: alternately wet and dry. Error bars indicate standard error of the means (n=4). Different letters 275 

indicate significant differences between treatments (P<0.05). 276 
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 277 

3.5 Biochar and water regime-induced changes on soil enzyme activities  278 

Application of RawBC enhanced the urease and catalase activities in the soil, while these enzymes 279 

activities decreased in FeBC-treated soil as compared to the control (Fig. 5A,B). Urease activity in the 280 

RawBC-treated soil increased by 18.6% and 20.4%, respectively, under CF and AWD treatments. The 281 

RawBC-induced increase of catalase activity was 6.4% (CF treatment) and 6.7% (AWD treatment). The 282 

FeBC addition caused a significant decrease of urease activity by 10% and 15% in CF and AWD 283 

treatments, respectively, as compared to the control (Fig. 5A). Application of FeBC resulted in a 284 

significant decrease in the catalase activity by 12.0% and 12.8% under CF and AWD treatments, 285 

respectively, as compared to the control (Fig. 5B).  286 

 287 

Fig. 5. Effect of biochar applications on soil urease activity (A) and catalase activity (B). Treatments: 288 

RawBC: raw biochar; FeBC: Fe-modified biochar. CF: continuously flooded; AWD: alternately wet and 289 

dry. Error bars indicate standard error of the means (n=4). Different letters indicate significant 290 
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differences between treatments (P<0.05). 291 

 292 

3.6 Biochar and water regime-induced changes on rice growth and yield  293 

The addition of RawBC and FeBC increased the rice straw yield by 74.3% and 89.2%, respectively, in 294 

the CF treatment, and by 37.5% and 63.7%, respectively, in the AWD treatment, as compared to the 295 

control (Fig. 6A). Both biochars increased the grain yield by 60.3% in the CF treatment, and by 32.4% in 296 

the AWD treatment, as compared to the control (Fig. 6B).  297 

 298 

Fig. 6. Effects of biochar applications on the (A) straw yield and (B) grain yield of rice. Treatments: 299 

RawBC: raw biochar; FeBC: Fe-modified biochar. CF: continuously flooded; AWD: alternately wet and 300 

dry. Error bars indicate standard error of the means (n=4). Different letters indicate significant 301 

differences between treatments (P<0.05). 302 

 303 

4. Discussion 304 
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4.1 Modification-induced changes on biochar properties 305 

The ash content of FeBC was higher than RawBC, which might be due to the abundant surface mineral 306 

elements on FeBC (Fig. 1D). The pH of FeBC was lower than RawBC, which can be explained by the 307 

release of a high amount of H+ due to the hydrolysis of Fe (Yin et al. 2017). Additionally, reduction of 308 

basic functional groups (Fig. 1C) also contributed to the decrease of pH. Due to the modification, Fe-309 

compounds were loaded on FeBC, thus increasing the total-Fe content, and the existence of Cl- led to the 310 

increase of EC. 311 

 312 

4.2 Soil pH, TOC and available Fe 313 

The RawBC-induced increase of soil pH might be owing to the high pH of the biochar (pH=9.25; Table 314 

1). The hydrolysis of soluble alkaline minerals (K, Ca, Na) might also have contributed to the increase of 315 

soil pH (Lu et al., 2014). By contrast, the decrease of pH in the FeBC-treated soil could be due to the 316 

biochar’s acidic pH (pH=4.4; Table 1), and a higher amount of H+ released during the hydrolysis of 317 

exogenous Fe from FeBC (Yin et al. 2017).  318 

Different water regimes also contributed to the variation of soil pH, and the lowest pH value was 319 

reported under the CF treatment. Under CF treatment, we assume that flooding the soil might decrease 320 

the soil redox potential (Eh). The production of CO2 and organic acids originated from microbial 321 

activities and decomposing organic matter might explain the lower pH in the continually flooded soils 322 

than the AWD water regime (Shaheen et al., 2014). Furthermore, these results can be explained by the 323 

increased TOC and dissolved organic carbon in the biochar-treated soil under the CF treatment (Rinklebe 324 

et al., 2020).  325 

Application of RawBC and FeBC significantly increased TOC content, likely because of their own high 326 
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carbon contents (Table 1). Application of RawBC had more apparrent effect than FeBC in increasing 327 

TOC content, which was attributed to the higher carbon content of RawBC than FeBC (Table 1). It was 328 

found that the soil under AWD treatment had a higher content of TOC than under CF treatment, due to 329 

the fact that AWD treatment provided a more suitable condition for soil aggregate formation, which 330 

inhibited or slowed down the degradation of soil TOC (Liang et al., 2009).  331 

The DTPA-extractable Fe concentrations were higher under the CF treatment than AWD treatment (Fig. 332 

3C), which might be explained by the potential decrease of soil Eh, and associated decrease of soil pH 333 

under CF conditions as compared to AWD. The higher solubility of Fe under reducing acidic conditions 334 

agrees with Shaheen et al. (2014). Application of biochars, particularly FeBC decreased the DTPA-335 

extractable Fe concentration as compared to the control (Fig. 3C). The lower Fe availability in the 336 

RawBC-treated soil as compared to the control might be due to the increase of soil pH. According to Hu 337 

et al. (2018), application of FeBC might inhibit the activity of Fe-reducing bacteria, which might explain 338 

the lower concentration of available Fe in FeBC than RawBC treatment. 339 

 340 

4.3 Bioavailability and uptake of As, Cd, and Pb  341 

4.3.1 Arsenic 342 

FeBC was more effective than RawBC in reducing the phytoavailability (Fig. 3) and uptake of As by rice 343 

straw (Fig. 4A) and grains (Fig. 4D). This might be explained by the potential immobilization of As by 344 

Fe compounds, likely through forming amorphous Fe (III)-arsenate compounds (Mensah et al., 2020). 345 

The decrease of As uptake in the FeBC treatment could largely be attributed to the sequestration of As in 346 

Fe-plaque on rice root surfaces, which agrees with Yin et al. (2017). The biochar-induced decrease of 347 

bioavailability and uptake of As under flooding conditions might be explained by redox mediated 348 



21 

interactions between the surface functional groups of biochar and As species (Amen et al., 2020). The 349 

functional groups (e.g., semiquinone-type free radicals, phenolic-OH, C=O) could act as electron 350 

acceptors, and play an important role in oxidizing As(III) to less mobile and less toxic As(V) (Yuan et al., 351 

2017; Niazi et al., 2018; Amen et al., 2020). The redox reactivity in the case of Fe-modified biochar 352 

could also affect the depletion of As availability. Arsenic species, including As(III) and As(V), could 353 

undergo redox reactions in the presence of strong oxidizing and reducing agents on the biochar surface 354 

resulting in strong innersphere complexation of As on the biochar surface (Yuan et al., 2017; Shaheen et 355 

al., 2019; Amen et al., 2020).  356 

The lower soil pH in the FeBC treatments than the control and RawBC treatments could have played a 357 

key role in the extent and rate of redox reactions of As on FeBC surfaces (Shaheen et al., 2019; Zhong et 358 

al., 2019; Amen et al., 2020). Functional groups on the surface of biochar, such as -NH, -OH and –359 

COOH, could be protonated under low pH. The bioavailability and mobility of As therefore could 360 

decrease through the formation of ion-pair interaction mechanism between the negatively charged As 361 

species and positively charged biochar functional groups (Shaheen et al., 2019). In addition, the 362 

oxidation of As(III) to As(V) in the presence of redox-active species was pH-controlled, which could be 363 

ascribed to the unique activities of the redox moieties on biochar (Yuan et al., 2017; Bandara et al., 364 

2020). Under acidic and neutral conditions, the transformation from As(III) to As(V) occurred by 365 

hydroxyl free radicals (OH) and H2O2 produced from the activation of O2 by phenolic −OH and 366 

semiquinone-type persistent free radicals (Zhong et al., 2019).  367 

Higher bioavailability (Fig. 3A) and uptake of As in the RawBC treatment than FeBC treatment (Fig. 368 

4A,D) might be due to the higher pH and P concentrations of RawBC than FeBC (Table 1), which 369 

increased the soil pH and P concentration in RawBC treatment as compared to the control and FeBC 370 
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treatments (Fig. 2A), and this might have increased the release of As in the RawBC-treated soil (Beiyuan 371 

et al., 2017).  372 

The concentration of As in rice straw and brown rice was lower in AWD treatment than CF treatment 373 

(Fig. 4A,D). This might be due to the decrease of redox potential of soils under the flooded treatment 374 

which could inhibit As translocation from roots to shoots (Arao et al., 2009). Hu et al. (2013) suggested 375 

that under aerobic condition, the concentration of As in rice grain decreased, while the Cd concentration 376 

increased. Hua et al. (2011) found that aerobic conditions reduced the uptake of As by rice straw and 377 

brown rice because Fe3+ in aerobic condition had better effect to stabilize As in solid phases than Fe2+ in 378 

anaerobic condition, thus reducing As availability for rice uptake. 379 

It is worth mentioning that according to the National Food Safety Standards of China: Contaminant 380 

Limits in Food Products (Ministry of Health, 2012), the limit of As in brown rice is 0.2 mg kg-1. The 381 

concentration of As in rice grains in the case of FeBC application under AWD and CF treatment was 382 

close to this limit and was 0.3 and 0.5 mg kg-1, respectively (Fig. 4A,D). The FeBC treatment was able to 383 

decrease the As concentration from 1.8 mg kg-1 in the control to 0.3 mg kg-1, and thus reduced the risk of 384 

transferring As into human bodies via consumption of rice. 385 

 386 

4.3.2 Cadmium 387 

RawBC and FeBC showed contradictory effects on the availability (Fig. 3B) and uptake of Cd (Fig. 388 

4B,E). Although FeBC decreased the DTPA-extractable Cd, it increased the Cd concentration in straw 389 

and brown rice as compared to the control (Fig. 3B; Fig. 4B,E). The higher efficiency of RawBC in 390 

immobilizing Cd and decreasing its uptake could be explained by the biochar’s higher pH, CEC, and 391 

more abundant surface functional groups than FeBC (Table 1, Fig. 1). The decrease of Cd bioavailability 392 
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and uptake in the biochar-treated soil as a result of associated increase of soil pH agreed with other 393 

studies (e.g., Lu et al., 2014; Chen et al., 2019). Biochar could also fix and inactivate Cd by complexing 394 

on surface functional groups, and forming precipitates, and/or via cation exchange (Yin et al., 2017; 395 

Bandara et al., 2020).  396 

The impact of FeBC on increasing the uptake of Cd could be due to the low pH of FeBC (Table 1), and 397 

the associated decrease of soil pH as compared to the control and RawBC treatments (Fig. 2A). The 398 

decline in soil pH with FeBC application might have decreased Cd sorption on biochar surfaces, and thus 399 

increased Cd desorption and solubility (Yin et al., 2017; Bandara et al., 2020), substantiating that Fe 400 

amendments including Fe-modified biochar might increase Cd mobility through soil acidification.  401 

The decrease of Cd solubility and uptake under flooding conditions could be due to the precipitation of 402 

Cd with sulfides under reducing conditions, while the increase of Cd solubility under relatively aerobic 403 

conditions in the AWD treatment might be due to the oxidation of sulfide to sulfate, and hence release of 404 

associated Cd to the pore water, which is in agreement with other studies (e.g., Shaheen et al., 2016; Yin 405 

et al., 2017). 406 

 407 

4.3.3 Lead 408 

The decrease of Pb availability in the RawBC-treated soil can be likely due to the associated increase of 409 

soil pH, which is in agreement with other studies (e.g., Lu et al., 2014; Li et al., 2020; Palansooriya et al., 410 

2020). The decrease of Pb availability in the RawBC treatment could be due to the biochar’s high P 411 

concentration; the available P in RawBC might be released into the soil, which might bind with Pb to 412 

form a poorly soluble phosphate precipitate, thereby decreasing the mobility of Pb in soil. The 413 

immobilization of Pb using phosphates is well documented and reported (e.g., Seshadri et al., 2017; Li et 414 
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al., 2019). For example, Li et al. (2019) found that phosphates on biochar provided sorption sites to 415 

immobilize Pb via the formation of Pb3(PO4)2. 416 

The decrease of Pb availability in the FeBC-treated soil could be explained by the increase of Fe in the 417 

treated soil, and the possible binding/occlusion of Pb on Fe oxides (Rinklebe et al., 2016). The hydrolysis 418 

of Fe3+ on the surface of FeBC could form a colloid to adsorb Pb2+ in the soil, which might be the reason 419 

that the concentration of Pb in the FeBC-treated soil was lower than the RawBC-treated soil (Li et al., 420 

2015). Besides, Fe3+ in the soil would be reduced to Fe2+ under anaerobic environment. The release of 421 

Fe2+ into the soil solution consequently would compete with Pb2+ for the adsorption sites on soil surface, 422 

which might lead to higher concentration of available soil Pb in CF treatment than AWD treatment 423 

(Fulda, et al., 2013). The functional groups and phosphates on both biochars, particularly RawBC could 424 

provide efficient sorption sites to chelate Pb and form stable compounds with C−O−Pb−O−C structures. 425 

In this respect, Wu et al. (2017) and Li et al. (2019) found that the carboxylic functional groups and 426 

phosphate on biochar had a high affinity to immobilize Pb through surface complexation and 427 

precipitation, respectively. 428 

Interestingly, although RawBC decreased DTPA-Pb and Pb concentration in straw, the treatment 429 

increased Pb translocation to the grains, and thus increased the Pb concentration in brown rice as 430 

compared to the control. The impact of RawBC on the translocation of Pb to grains was higher than 431 

FeBC (Fig. 4C,F). This could be attributed to the different impacts of both RawBC and FeBC on the 432 

formation of Fe/Mn plaques on rice roots. The FeBC might increase the Fe/Mn plaques on rice roots, 433 

while RawBC might decrease it as compared to the control. Therefore, Pb was likely less immobilized by 434 

Fe/Mn plaques on rice roots in the RawBC-treated soil than FeBC-treated soil, and consequently higher 435 

Pb translocation rate was observed in rice plants grown in RawBC-amended soil than the untreated and 436 
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FeBC-treated soils. In this respect, Li et al. (2016) reported that the amount of Fe plaques on rice roots, 437 

and the concentration of Pb in the Fe plaques were reduced in raw rice-straw biochar amended soils. 438 

Furthermore, Li et al. (2020) found that the amount of Pb-ferrihydrite complexes on rice roots, as 439 

examined using Pb L3-edge XANES, was also decreased with 5% coconut fiber biochar, indicating that 440 

Pb retention by Fe/Mn plaques was inhibited by the presence of coconut fiber biochar in the soil. 441 

 442 

4.4 Soil enzyme activities 443 

In this study, the application of RawBC increased the soil pH, which might be a possible cause for 444 

promoting soil urease and catalase activities. Activities of these enzymes decreased in the FeBC-445 

amended soil, which might be attributed to the reduction of soil pH (Fig. 2A), and the high 446 

concentrations of Cl- (Fig. 1D) from FeBC increased the ionic concentration, which inhibited soil urease 447 

and catalase activities. The porous structure of biochar might provide a better environment for the growth 448 

of soil microorganisms, and therefore might increase soil enzyme activities (Yang et al., 2016; Nie et al., 449 

2018). The above theory also supported the increase of urease and catalase activities in the RawBC-450 

amended soil. The enhancement of urease and catalase activities in the RawBC-treated soil could also be 451 

due to the associated decrease of PTE bioavailability and toxicity (Yang et al., 2016; Bandara et al., 452 

2020). Urease activity was higher in AWD treatment than CF treatment, which could be due to the 453 

sensitivity of urease activity to soil moisture. Catalase activity was higher in CF treatment than AWD 454 

treatment, which might be caused by the death of some microorganisms under drought conditions 455 

(Sardans et al., 2005). 456 

 457 

4.5 Rice growth and yield  458 
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Application of biochars increased rice straw and grain yields (Fig. 6A,B). This might be due to the 459 

biochar-induced improvement of soil physicochemical properties, and nutrient supply (Dong et al., 460 

2015). In the current study, all treatments were applied with exogenous fertilizers, and the application of 461 

biochar contributed to the utilization of fertilizer in the soil, and thus improving the rice yield. The 462 

phytotoxicity of PTEs was another important factor in influencing the rice growth. High concentration of 463 

As and Pb in the soil would make these elements to accumulate in rice plant parts, thereby inhibit the 464 

absorption of essential nutrients and restrain plant growth (Sardar et al., 2013). Since biochar application 465 

reduced the available concentration of As, Cd, and Pb in the soil, grain yield production was increased. 466 

Nutrients absorbed by rice plants were used for improving the yield of rice grain after biochars were 467 

applied. 468 

Straw and grain yields under AWD treatment were higher than CF treatment, which might be attributed 469 

to the transpiration rate of rice plants. An aerobic condition caused by the AWD treatment would reduce 470 

the transpiration rate of rice plants, improve the oxidation activity of rice roots, and thus promote rice 471 

growth (Yang et al., 2009). Hu et al. (2012) indicated that intermittent irrigation conditions would 472 

promote plant growth, which had the same result with our study. Talukder et al. (2014) also pointed out 473 

that aerobic condition was considered an effective way for controlling water scarcity and improving rice 474 

yield.  475 

 476 

5. Conclusions 477 

Based on our findings, we can conclude that the modification using Fe decreased the ability of oriental 478 

plane (Platanus orientalis Linn) branches biochar to improve rice plant growth and reduce the uptake of 479 

As by rice plants and mitigate the potential risk more than the RawBC. However, the Fe-modified 480 



27 

biochar caused a decrease in the activity of soil urease and catalase, and an increase in the uptake and 481 

concentration of Cd and Pb in rice straw and brown rice as compared to the control and RawBC 482 

treatments.  483 

Furthermore, water management regime affected the bioavailability of As, Cd, and Pb in the biochar-484 

treated soils, and the bioavailability of As and Pb was lower under the AWD treatment than the CF one, 485 

whereas the opposite happened with Cd.  486 

These results demonstrate that the Fe-modified biochar can be used for remediation of As contaminated 487 

paddy soils under alternately wet and dry irrigation system, while the raw biochar might be more suitable 488 

for remediation of Pb under alternately wet and dry irrigation system, and Cd under continuously flooded 489 

system. However, these results should to be further verified under field conditions. Besides, future 490 

research is warranted to provide new insights into the modification of biochar using different iron 491 

materials, e.g., zero valent irons, and to explore the redox-mediated interactions between these PTEs and 492 

both raw and Fe-modified biochars under systematic changes of soil redox potential. 493 
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