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1 Introduction

The literature on measuring specialization and concentration in economic geography and spatial

economics has been dramatically expanding

during the last twenty years, putting forth the obvious relevance of the topic. This paper aims at

providing a fresh look at the measurement of concentration and specialization using the perspective

of stochastic independence in the analysis of contingency tables (for the sake of brevity, we use

interchangeably the framework of stochastic independence or of contingency tables). What is our

contribution? A unique and simple principle: analyze the spatial structure of a country by comparing

distributions, or profiles, characterizing sectors or regions, taking due account that the variables

“region” or “sector” are categorical variables, i.e. not numerical and not even ordered.

The interest for the contingency table approach mainly lies on two issues. Firstly, it provides

a coherent framework to analyze concentration and specialization at three different levels; from

a decisional point of view, these three levels correspond to three different economic policy issues.

Secondly, this approach provides access to significant literature open to a wide range of application

fields encompassing virtually all social sciences. While the approach of contingency table does not

cover all the indices proposed so far in the New Economic Geography ( henceforth, NEG) literature,

relying on a coherent framework is helpful to better appreciate criticisms raised against indices

coming from other families, such as those derived from the Lorenz curve and its associated Gini’s

index, or those associated to the works of Krugman. The practitioner may particularly appreciate

an increased coherence in the treatment of issues such as the decomposition or the aggregation of

sectors or regions, the ranking of different countries or different periods for the same country.

This paper has quite a pragmatic motivation as it aims at suggesting practitioners whatever is

involved in selecting a particular measure of concentration or specialization. Hence, we want to

compare several alternative measures for a given concept with the following questioning: (i) how to

evaluate the kind of information provided by competing measures? (ii) how to evaluate the numerical

behaviour of these measures under different circumstances, in particular when grouping regions or

sectors, or when ordering the degree of specialization of regions or the degree of concentration of

sectors? This case provides the base for a discussion of the relationship between a concept and its

measure, a crucial methodological issue in social sciences. On this topic, the interested reader may

like to have a serious look at Sheldon and Moore (1972) or Zeller and Carmines (1980). Accordingly,

we wish to compare numerically measures of relative and global specialization, some within the

framework of the stochastic independence approach, others in different frameworks. The underlying

question for these comparisons is to evaluate to what extent are these measures mutually coherent

and quantify the same concept. We also check whether these measures operate in the same ranking of

specializations among sectors, regions or countries. A heuristic conclusion of our analysis is that the

different measures proposed in the stochastic independence approach are reasonably coherent, but

3



ranking differences require cautiousness at the interpretation stage. Finally, this paper is focused on

descriptive measures of global specialization but does not consider sampling or asymptotic properties

in view of an eventual statistical inference as in the works of Brülhart and Traeger (2005), Mori,

Nishikimi and Smith (2005), and Mulligan and Schmidt (2005).

The paper is divided in two main parts. The first part is included in the following section,

that puts forth the stochastic independence approach and explains how different measures of con-

centration or of specialization can be built and adapted to different levels of analysis. The second

part evaluates the stochastic independence approach according to the criteria developed in the next

three sections. Section 3 includes an overview of the literature in economic geography and spatial

economics, while it examines the potential contribution of the stochastic independence approach.

In section 4 we confront the stochastic independence approach with Argentina-related data and

evaluate the numerical behaviour of the proposed measures and of other measures based on the

framework of Gini and Krugman indices. Section 5 confronts the stochastic independence approach

with challenges raised by grouping regions or sectors. The paper concludes with a short summary

of the stochastic independence approach and with some final remarks.

2 The approach of stochastic independence

The approach called “a stochastic independence approach” stands for the idea that the spatial struc-

ture of an economy is analyzed in terms of distributions, and comparisons of distributions, and that

regional specialization and industrial concentration are viewed as a distributional issue of statistical

association between “region” and “sector”.

2.1 The structure of the data

We start by describing the data we propose to handle. Indeed, the available data determine which

measures can be operationalized. By the same token we introduce the notation to be used.

For a given country, let us consider regions labeled i ∈ I = {1, ..., I}, and sectors labeled

j ∈ J = {1, ..., J}. For each pair (i, j) ∈ I × J , we observe the number of primary units, let Nij .

Thus we obtain a two-way I×J contingency table N = [Nij ] that in turn also produces row, column

and table totals:

Ni· =
∑J

j=1
Nij N·j =

∑I

i=1
Nij N·· =

∑I

i=1

∑J

j=1
Nij =

∑J

j=1
N·j =

∑I

i=1
Ni· (1)

Equivalently, the data may be represented by the complete sample size, N·· , and the relative

frequencies :

pij =
Nij
N··

pi· =
Ni·
N··

p·j =
N·j
N··

pj|i =
Nij
Ni·

pi|j =
Nij
N·j

(2)
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Two types of issues are considered in this paper, namely the concentration of sectors within

regions and the specialization of regions in terms of sectors. Thus, the contingency table N = [Nij ]

is to be analyzed in terms of profiles, or distributions, characterizing regions and sectors, namely:

• region i may be characterized by the profile (or conditional distribution) of the i-th row:

p~j|i = (p1|i, · · · , pj|i, · · · , pJ|i) (3)

to be compared with the global row profile (or marginal distribution):

p·~j = (p·1, · · · , p·j , · · · , p·J) (4)

• similarly, sector j may be characterized by the profile (or conditional distribution) of the j-th

column:

p~i|j = (p1|j , · · · , pi|j , · · · , pI|j) (5)

to be compared with the global column profile (or marginal distribution):

p~i· = (p1·, · · · , pi·, · · · , pI·) (6)

Accordingly, this paper handles issues related to a discrete space, i.e. a space partitioned into

a finite number of regions. Moreover, label i in the regions is arbitrary and reflects neither spatial

contiguity nor distance among regions. In a sense, this analysis is “spaceless” and motivated by

policy-making rather than by spatial diffusion issues. Thus the data Nij provides no information

about the localization of primary units within a region. Problems of agglomeration, or spatial

dependence among regions, can therefore not be suitably handled through these data: these problems

would require additional data related to the distance, or contiguity, between the regions. When the

country is treated as a unique continuous space, the basic data refer to the localization of points in

the country and the interest is focused on designing stochastic processes, such as a marked point

process, in order to represent locally diffusion issues. See for instance Duranton and Overman (2005)

for an analysis of localization through point processes. Through this approach, motivation is more

oriented to modelling and explaining an observed spatial structure. The continuous approach cannot

be developed with the data under consideration in this paper; however, readers who are interested

in modelling continuous spaces may fruitfully read Barff (1987), Arbia (2001), Marcon and Puech

(2003), Arbia, Espa and Quah (2007), Haedo (2009, Chapter 4), Kosfeld, Eckey and Lauridsen

(2011).

2.2 A preliminary: comparaison of distributions

Since the measures of specialization and concentration are obtained from confronting distributions,

first we consider the general topic of comparing two distributions of a categorical variable on the
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same universe {1, · · · , i, · · · , I}; let, more specifically, two distributions:

q~i = (q1, · · · , qi, · · · , qI) (7)

r~i = (r1, · · · , ri, · · · , rI) (8)

Two standard families of tools are available for comparing these two distributions: either a distance

or a divergence. We use the term discrepancy to designate either one or the other and write d(q~i | r~i),

with a subscript to identify particular specifications. In the present case, discrepancy functions are

non-negative functions defined across all possible distributions, actually the (I − 1)−dimensional

simplex, taking the 0 value on the identity: d(q~i | q~i) = 0. The distance function is a symmetric

function: d(q~i | r~i) = d(r~i | q~i) and satisfies the triangular inequality. The divergence function is

not a symmetric function, i.e. d(q~i | r~i) 6= d(r~i | q~i); for this reason, when d(·, ·) is a divergence, we

read d(q~i | r~i) as “the divergence of q~i with respect to r~i”; when used in economic geography, r~i is

typically considered as a “benchmark” distribution. Moreover, a divergence does not satisfied the

triangular inequality and its geometric properties are derived from the properties of convex functions

(for more details on f -divergence: see Csiszár 1967).

Many distance functions are available in the literature of probability theory. For our purposes,

the most useful are:

dH(q~i | r~i) =
1

2

∑
i

(
√
qi −

√
ri)

2 Hellinger-distance (9)

dpLp(q~i | r~i) =
∑
i

| qi − ri |p Lp-distances (10)

Hellinger-distance is valued in the interval [0, 1] where the value 1 corresponds to mutually singular

distributions (i.e. qi ri = 0 ∀i); this property provides bounded measures of concentration. For

the divergence functions, two cases are particularly relevant for the present field:

dχ2(q~i | r~i) =
∑
i

ri

(
qi
ri
− 1

)2

χ2 − divergence, or inertia (11)

dKL(q~i | r~i) =
∑
i

qi log

(
qi
ri

)
Kullback-Leibler divergence (12)

More information on distances and divergences between probability distributions may be found e.g.

in Tjøstheim (1996), Gibbs and Su (2002) or Liese and Vajda (2006).

2.3 Three levels of comparison

The analysis of specialization and concentration may be operated at three different levels, namely:

1. A separate analysis of the spread of each sector specific (p~i|j) and of each region specific (p~j|i)

profiles. For categorical variables, the spread of the frequency distribution may be viewed

as a natural adaptation of the analysis of dispersion for a numerical variable, such as the
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variance, to the concentration of categorical variables. A natural strategy compares the relevant

distribution with a uniform distribution considered as a benchmark of minimal concentration,

in the spirit of the pioneering works in information theory. In particular, the entropy may be

viewed as a divergence with respect to the uniform distribution and the L1-distance boils down

to an average of absolute deviations. These analyses provide absolute measures in the sense of

measures not depending on other regions or sectors. Note that the uniform distributions take

the form 1/I for the regions and 1/J for the sectors. This benchmark for the non-concentration

does not take into account the heterogeneity among regions, in terms of area or population.

The same remark should be raised for the sectors, the “natural” sizes of which are typically

quite different.

2. A separate analysis of each region, or each sector, comparing the relevant distribution with

the corresponding marginal distribution as a benchmark of non-concentration, i.e. evaluating

the discrepancies d(p~i|j | p~i·) and d(p~j|i | p·~j). These comparisons take explicitly into account

that the regions or the sectors are not uniformly distributed in the country under analysis and

therefore provide measures that are relative to the overall structure of the country.

3. A global analysis of all the regions and sectors, by comparing the joint distribution, on re-

gions × sectors, with the closest distribution reflecting independence, namely pi· p·j taken as

a benchmark of a completely non-concentrated, or non-specialized, country, i.e. the global

analysis is focused on the discrepancies d([pij ] | [pi· p·j ]).

Table ?? in Appendix A summarizes these concepts. Their connections may be viewed as follows.

Absolute regional specialization is a feature of the distribution of sectors across a region (p~j|i), and

a region is said to be absolutely specialized if a few sectors concentrate a large share of the region.

This may be the case, for instance, when a sector is considerably larger than others at a country

level. Relative regional specialization of a region shows up when an area has a greater proportion of

a particular sector than the proportion of that sector in the whole territory. In other words, relative

regional specialization compares an area share of a particular sector with the sector share at the

country level, and is accordingly measured through a discrepancy d(p~j|i | p·~j), thus relatively to the

marginal distribution p·~j . The same comment can also be made for specific and relative industrial

concentration.

In order to introduce the concept of global specialization, imagine the following (artificial) exper-

iment. Draw randomly one primary unit from the N·· ones and classify the drawn primary unit into

the region and the sector. The probability of drawing a primary unit from the cell (i, j) is evidently

pij . Within this framework, the absence of global specialization may be viewed as a stochastic in-

dependence between the row and the column criteria: for instance, in every region, there would be

the same probability that a randomly drawn individual is active in a specific sector. Thus, global
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specialization may be viewed as an association between the region and the sector variables. This sug-

gests to measure the degree of global specialization through a statistic that might be used for testing

independence in a contingency table: this is precisely operated by the discrepancy d([pij ] | [pi· p·j ]).

2.4 Measures of specialization and of concentration

When defining degrees of global specialization, one possible strategy consists in defining first a

regional index, characteristic of a region, and thereafter aggregate the regional indices into a global

one characteristic of the country. Conversely, one may start by first defining a global index of

the country and thereafter decomposing it into regional components. Moreover, as the concept of

stochastic independence is essentially symmetric between the two involved variables, the role of the

regions and the sectors may be permuted.

A natural approach is a local one, more precisely to examine whether a cell (i, j) reveals over- or

under-specialization, and aggregate over the complete table N. The well-established Hoover-Balassa

Local Quotient is designed to answer that question and may be equivalently defined for each cell

(i, j) as follows:

LQij =
Nij/Ni·
N·j/N··

=
Nij/N·j
Ni·/N··

=
NijN··
Ni·N·j

=
pij

pi· p·j
=
pj|i

p·j
=
pi|j

pi·
(13)

The local quotient has been widely used in many different fields. The second and the third terms of

(??) correspond to “relative risk” or “excess risk” in epidemiology. The fourth term corresponds to

the usual “cross-product ratio” of the 2×2 sub-table constructed around Nij and is a core tool in the

statistical analysis of contingency tables. The last three terms express the same concepts through

proportions, i.e. independently of N·· which represent the size of the country. The last two equalities

in (??) emphasize that the specialization is an issue concerning the global structure at a country

level: thus the absence of specialization of a cell (i, j) means that, relative to the distribution in the

country, sector j is not over-(nor under-) represented in region i and that region i is not over-(nor

under-) represented for sector j. Thus, “local” points to the fact that LQ is localized in a cell (i, j).

In the framework of stochastic independence, this local quotient reveals the following feature of

sector j in region i:

LQij = 1 or pij = pi· p·j no specialization

> 1 or pij > pi· p·j over-specialization

< 1 or pij < pi· p·j under-specialization (14)

where “no-specialization” corresponds to the row-column independence. It should be clear from (??)

that a discrepancy between the distributions [pij ] and [pi· p·j ] is equivalent to a discrepancy between

the matrix [LQij ] and a corresponding matrix of one’s.
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Among the most often used measures of independence between the rows and columns in the

contingency table N, to be used as measures of global specialization, we shall focus on the following

three:

dχ2(N) =
∑
i

∑
j

pi·(pj|i − p·j)
2

p·j
=
∑
i

∑
j

p·j(pi|j − pi·)
2

pi·

=
∑
i

∑
j

pi·p·j(LQij − 1)2 χ2 − divergence, or inertia (15)

dKL(N) =
∑
i

∑
j

pi· pj|i log

(
pj|i

p·j

)
=
∑
i

∑
j

p·j pi|j log

(
pi|j

pi·

)
=

∑
i

∑
j

pi· p·j LQij log(LQij) Kullback-Leibler divergence (16)

dH(N) =
1

2

∑
i

∑
j

(
√
pi· pj|i −

√
pi·p·j)

2 =
1

2

∑
i

∑
j

(
√
p·j pi|j −

√
pi·p·j)

2

=
1

2

∑
i

∑
j

pi· p·j (
√
LQij − 1)2 Hellinger-distance (17)

Brülhart and Traeger (2005) call dKL(N) the “relative Theil index” (Theil 1967) and also propose

generalizations by supplementing the original form with a so-called sensitivity parameter α. Aiginger

and Davies (2004), Mulligan and Schmidt (2005), Bickenbach and Bode (2006 and 2008), Cutrini

(2009), Alonso-Villar and del Ŕıo (2011) and many others have made use of the case α = 1.

These measures deserve the following comments:

• As should be expected, these formulas display interchangeability between regions and sectors,

congruently with the concept of stochastic independence.

• Because the stochastic independence approach operates with discrepancies among distribu-

tions, the induced measures takes the form of a double sum and may accordingly be decomposed

as an average of the discrepancies between the conditional distributions and the corresponding

marginal distributions. More specifically:

dχ2(N) =
∑
i

pi·

∑
j

(pj|i − p·j)
2

p·j

 =
∑
j

p·j

[∑
i

(pi|j − pi·)
2

pi·

]
(18)

dKL(N) =
∑
i

pi·

∑
j

pj|i log

(
pj|i

p·j

) =
∑
j

p·j

[∑
i

pi|j log

(
pi|j

pi·

)]
(19)

dH(N) =
1

2

∑
i

pi·

∑
j

(
√
pj|i −

√
p·j)

2

 =
1

2

∑
j

p·j

[∑
i

(
√
pi|j −

√
pi·)

2

]
(20)

Thus these three measures of specialization accept a similar decomposition:

dω(N) =
∑
i

pi· dω(p~j|i | p·~j) =
∑
j

p·j dω(p~i|j | p~i·) ω ∈ {χ2,KL,H} (21)
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In other words, each of these global measures appears as an average of the relative regional

specializations dω(p~j|i | p·~j), or the relative localizations dω(p~i|j | p~i·). Conversely, the properly

weighted average of the relative regional specialization or the relative industrial concentration

provide the same measure of global specialization. This is not due to the concepts of relative

regional specialization or relative industrial concentration that, supposedly, should always

evolve on the same track but rather to the structure of the measurement devices used, as

remarked in Cutrini (2009). The realization of this fact has induced Bickenbach and Bode

to call the global measures of specialization dω(N) measures of polarization in 2006 and of

localization in 2008 and 2010.

Note. We use a slightly incoherent notation: dω(N) is a short-hand notation for dω([pij ] | [pi·p·j ])

that does not make explicit the two distributions [pij ] and [pi·p·j ] conforming the divergence, whereas

for instance in dω(p~j|i | p·~j) we make the relevant distributions explicit.

The discrepancies dχ2 , dKL and dH have been widely used in several chapters of mathematical

statistics. Another distance is also widely used; this is the L1-distance based on the absolute

deviations among probabilities:

dL1
(N) =

1

2

∑
i

∑
j

|pij − pi· p·j | =
1

2

∑
i

∑
j

pi·p·j |LQij − 1| (22)

=
1

2

∑
i

pi·

∑
j

∣∣pj|i − p·j
∣∣ =

1

2

∑
j

p·j

[∑
i

∣∣pi|j − pi·
∣∣] (23)

This distance is equivalent to the distance of total variation and has been widely used in particular

for the analysis of robustness in mathematical statistics. It has also been used in economic geography

(see for e.g. Krugman 1991a, Hallet 2000, Midelfart-Knarvik, Overman, Redding and Venables 2000,

Mulligan and Schmidt 2005, et al. ). Moreover, dL1
(N) shows the same representations, in terms

of local quotients, and the same decompositions as in (??). It is interesting to notice that dL1
has

been attributed as a variant of Relative Mean Deviation (RMD) of Krugman index in Bickenbach

and Bode (2006 and 2008). Since, similarly to dH , its range of variation is also bounded by 1, it has

not been added to our numerical evaluations in order to control the length of this paper.

3 An overview of the literature at the light of the stochastic

independence approach

3.1 On the concepts and their measures

The NEG has proposed a wealth of measures of industrial concentration, regional specialization

or global specialization, not infrequently out of the present proposal. Moreover, such literature is

vast and the use of words is not completely standardized. One reason for this state of affairs is
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related to the nature of the primary units underlying the Nij ’s. According to the main interest of an

investigation, these may be the number of employees, firms or establishments. It should therefore

be expected that different interests lead to adopt different wordings even if the formal problem is

identical. Thus, the conventional aspect of Table ?? is to present a convention that links different

fields of interests using a unified methodology. This section is not aimed at producing an exhaustive

glossary of terms used in a rapidly growing literature but rather at pinpointing major developments

of the basic concepts in the field of industrial concentration and regional specialization.

The diversity of terms also relates to the multifaceted nature of the concepts in use. The NEG

models explaining specialization originated mainly in trade theory, while models explaining con-

centration came from location theory. Here the distinction between absolute and relative concepts

becomes particularly relevant. Thus, when Cutrini (2009) asserts that industrial concentration and

regional specialization are “the two sides of the same medal” she refers to the global concepts; in-

deed (??) shows that the measure of the global specialization is equivalently a (suitably) weighted

average of either the relative industrial concentrations or of the relative regional specializations.

However, using concepts not based on the stochastic independence approach Krugman (1991a, b)

develops a simulation model that produces a U-shaped relationship between changes in transport

costs and specialization or concentration; Aiginger and Rossi-Hansberg (2006) discusses the basic

setup of the model developed in Rossi-Hansberg (2005) and finds that specialization and concen-

tration in fact go in opposite directions when transport costs change, in particular, lower transport

costs imply higher specialization and lower concentration. Aiginger and Davies (2004) and Mulligan

and Schmidt (2005) also find that absolute concepts may produce diverging evolution of industrial

concentration and regional specialization.

“Polarization”, used by Perroux (1950) among others (see e.g. Bickenbach and Bode 2006 and

2008), instead of our global specialization, has also been used for the analysis of agglomeration.

Starting from a location model, Ellison and Glaeser (1997) define a concept of agglomeration not

relying on spatial autocorrelation of the regions and which is viewed as a concept of relative industrial

concentration; this work measures the extent of relative industrial concentration once the size of

establishments (based on the Herfindahl index) and the inherent randomness in the concentration of

firms are accounted for. Also, Maurel and Sédillot (1999), Devereux, Griffith and Simpson (2004),

Guimarães, Figueiredo and Woodward (2007) developed new indexes following this approach.

Mori, Nishikimi and Smith (2005) have proposed a relative measure of regional specialization,

based on KL-divergence, where the benchmark is given by the area of the regions rather than by the

corresponding marginal distribution; these authors call it a “D-index” whereas Brülhart and Traeger

(2005) call a similar index “topographic Theil index”, and mention that their “relative Theil index”

and their “topographic Theil index” are equivalent to the distinction in spatial statistics between

“heterogeneous” and “homogenous” space as in Marcon and Puech (2003).
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3.2 On the family of Gini and Krugman coefficients

A large class of the proposals in the NEG literature are based on Lorenz curves (Lorenz 1905)

and Gini indices (see for e.g. Krugman 1991a, Kim 1995, Amiti 1999, Duranton and Puga 2000,

Hallet 2000, Brülhart 2001, Dohse, Krieger-Boden and Soltwedel 2002, Midelfart-Knarvik, Overman,

Redding and Venables 2002, Lafourcade and Mion 2003, Rossi-Hansberg 2005, Aiginger and Rossi-

Hansberg 2006, and many others). In Appendix C, details are given on a Gini index of relative

regional specialization GIi and of relative industrial concentration GIj . Appendix C also includes

details on another class of indices based on absolute deviations, as due to Krugman. They provide

other indices of relative regional specialization SKi or of relative industrial concentration SKj .

These indices may also be aggregated into measures of global specialization by means of weighted

averages, either on the relative regional specialization:

GIreg =
∑
i

pi· GIi SKreg =
∑
i

pi· SKi (24)

or on the relative industrial concentration

GIsec =
∑
j

p·j GI
j SKsec =

∑
j

p·j SK
j (25)

The Lorenz curve is a graphical representation of the spread of a distribution derived from cumu-

lative distribution functions (see Appendix C) and raise several difficulties when used to represent

industrial concentration or regional specialization, in particular: i) the Lorenz curve concern uni-

variate distributions of a numerical, or at least ordered, variables whereas the problems of industrial

concentration and of regional specialization concern a two-way contingency table, i.e. bivariate cat-

egorical variables. The adaptation of the Lorenz curve, and Gini’s index, to the case of categorical

variables, such as sector or region, is obtained by ordering the (arbitrary) labels according to the

ascending order of the local quotient. This implies a different ordering for each region and each

sector; these different orderings make the interpretation of the average Gini’s coefficient difficult;

ii) the global index GIreg has been called a specialization coefficient where GIsec has been called a

coefficient of industrial concentration. Because these measures are not developed in the symmetric

framework of stochastic independence, the global measures based on regions or on sectors do not

coincide:

GIreg 6= GIsec SKreg 6= SKsec (26)

The fact that in general GIreg 6= GIsec (for a numerical illustration, see subsections ?? and ??)

raises an issue of interpretation,whereas the approach of stochastic independence considers the re-

gions and the sectors interchangeably. iii) The Gini coefficient is based on the mean of the industrial

structure distribution. This means it implicitly lends greater weight to the middle structure classes,

which makes it more resistant vis-à-vis the underestimation of very high and very low employment
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structures. For these same attributes, the Gini coefficient has been criticized as tending to underes-

timate the amount of inequality (owing to the lower weight of values on the edge of the distribution).

For more details see Atkinson (1983) and Lerman and Yitzhaki (1989).

4 Application to Argentine data

4.1 Scope of this application

In order to understand better which aspects of global specialization are captured by each of the

three measures, we make a diversified investigation of the numerical behaviour of these measures

evaluated in specific cases.

We want to examine different issues. First, when considering the profiles of the sectors, or of

the regions, relative to their corresponding marginal (country-wide) distribution, to what extent

are associated the measures of relative concentration, or relative specialization? This question

may be answered through a graphic representation of these measures or through the evaluation of

the correlations among them. And this question raises another one. These measures are subject

to different ranges of variation: the unit interval for dH or bounded intervals for dχ2 or dKL. A

comparison of their behaviour is therefore easier if they are transformed into measures with similar, or

identical, range of variation. Some transformations are considered, but a uniform standardization, to

the unit interval for instance, is not feasible because their maximum values depend on the dimensions

of the table, I and J , or on extreme values. A graphic representation of these measures, along with

some of their transformations, reveals linear or non-linear associations.

Observing, and hopefully explaining, these differences of behavior is one way for better inter-

preting these measures. Other issues are that, when considering the different measures of relative

concentration or of relative specialization, do these measures provide a same ordering of the sectors,

or of regions? When evaluating the global degree of specialization for different countries, is the

ordering the same for each measure?

It should be emphasized but these issues basically refer to the interpretation of the numerical

values of these measures and their comparability among different sectors, different regions or different

countries. Moreover, we also want to compare the numerical behaviors of dH , dχ2 and dKL with

those of Gini and of Krugman indices.

4.2 The data

The original data is concerned with the employees in the manufacturing sector and are obtained from

of the Economic Census performed by the National Institute of Statistic and Censuses of Argentina

(INDEC-1994: 1,083,928 employees). The spatial units or regions are the political-administrative
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jurisdictions called departments (462 out of 523 after eliminating those with no employees in the

manufacturing sector).

The sector classifications refer to the first 2 digits of the International Standard Industrial Clas-

sification (ISIC Rev.3.1) of manufacturing sectors (http://unstats.un.org/unsd/cr/registry/

regcs.asp?Cl=17&Lg=1&Co=D). They are 22 sectors after grouping divisions 36 (Manufacture of

furniture; manufacturing n.e.c.) and 37 (Recycling).

The final data used in this application are obtained after regrouping the 22 sectors into 17 and

the 462 regions into 35. Regrouping was made from an automatic grouping procedure on large

two-way contingency tables based on hierarchical clustering and correspondence analysis (HCCA),

aimed at obtaining a “Best Collapsed Table” with low level of information loss vis-à-vis the degree

of specialization in the original data (see more in Haedo 2009).

4.3 Findings

Tables ?? and ?? show the 35× 17 contingency table N of the data along with the row and column

totalsNi·, N·j with their proportions. We complete the table by providing region and sector measures

of relative regional specialization dω(p~j|i | p·~j), and relative industrial concentration dω(p~i|j | p~i·),

and finish the table with the global measures of specialization dω(N), where ω ∈ {χ2,KL,H}.

Let us look at the numerical values of the three measures of global specialization:

dχ2(N) = 1.6532; dKL(N) = 0.3176; dH(N) = 0.0713. (27)

As they are measured on different scales, their numerical values are difficult to interpret except for

dH that takes values in the unit interval. Thus, only the numerical value of dH can be compared

with Gini’s and Krugman’s coefficients that are also valued in the unit interval. We obtain:

GIreg = 0.3262; GIsec = 0.3495; SKreg = 0.2963; SKsec = 0.3041. (28)

As is confirmed in the sequel, dH systematically gives a lower value of global specialization.

Also, region-based and sector-based numerical values are but slightly different. Moreover, Gini’s

and Krugman’s coefficients also take different though very similar values.

In order to compare the numerical values of all indices, a possible solution could be to take a

statistical view to evaluate the asymptotic distribution (or an approximation of the small sample

distribution by means of a resampling procedure) and compute the critical alpha corresponding to

a test of independence. Each would have a same asymptotic, or approximate, distribution uniform

on [0 1]. Take 1− critical alpha as a comparable measure of association.

We do not follow this path because we deem it inappropriate for the later developments, and

rather take alternative ways. Gibbs and Su (2002) and Reiss (1989) have proposed the following

transformations: log(1 + dχ2) and 4dH , respectively, in order to provide them with a range close to
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that of dKL. Transformed measures then become

log(1 + dχ2(N)) = 0.4238; dKL(N) = 0.3176; 4dH(N) = 0.2852. (29)

These transformed measures bear close but not identical values and suggest a low level of special-

ization in Argentina, in view of the value of dH . In subsection ?? we discuss the relative position of

Argentina with respect to other countries. The transformation (??) ensures a similar range, namely

around the interval [0 4] for the three measures; but this interval is only approximately true. In

particular, it is known that the maximum value of dχ2 depends on both I and J . Cramer (1946)

shows that the maximum possible for dχ2 is min{I−1, J−1} and may be obtained only if I = J ; this

issue motivated the proposition of Cramer, namely Cdχ2 =
dχ2

min(I−1,J−1) when proposing measures

of association in contingency tables; for more information, see for instance Bishop, Fienberg and

Holland (1975), Everitt (1977) or Agresti (2002). Another difficulty is that there is no such range

for dKL. A simple, but not totally satisfactory proposal, consists on normalizing dχ2 and dKL to

the interval [0 1], just as dH . Any strictly increasing function R+ → [0 1] may do the job, but the

simplest one might be:

Ndχ2 =
dχ2

dχ2 + 1
; NdKL =

dKL
dKL + 1

. (30)

The results, namely Ndχ2(N) = 0.6231 and NdKL(N) = 0.2410 suggest that transformations (??)

are not satisfactory to make the values of dχ2 , dKL and dH easily comparable.

Let us have a closer look at the decomposition of the global measure into sector-specific and

region-specific measures according to (??), as given in Tables ?? and ??. In Figure ?? and Figure

?? respectively (in Appendix B), we have ranked the 17 sectors, and the 35 regions, in ascending

order of dH , and plotted together the three transformed measures.

Two features should be noticed:

• the numerical values of the three modified measures display low dispersion for values under

1 but higher dispersion otherwise, for the region-specific as well as for the sector relative

measures;

• the ranking between regions, or sectors, is modified each time one of the curves displays

a descending piece; clearly the three rankings are similar although some discrepancies are

noticeable. These discrepancies show low as well as high values for the measures. Further on

we return to the issue of the ranking stability.

Let us have a look at the graphic behaviour of the normalized measures Ndχ2 and NdKL com-

pared to GI and SK, relative to dH . They are shown in Figure ?? to illustrate the relative industrial

concentration and in Figure ?? for the relative regional specialization. These curves take their values

in the unit interval. These figures correspond to Figures ?? and ?? that are related to the three
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transformed measures. Now we notice that these five measures show roughly a similar behaviour

although Ndχ2 is the least similar. Moreover, the curves relative to the industrial concentrations in

Figure ?? show more coherence than those related to the regional specializations in Figure ??.

In order to get a deeper insight into the meaning of these measures, we examine the joint

behaviour of 8 measures: the first 3 measures (dχ2 , dKL and dH), the transformed log(1 + dχ2), the

normalized version Ndχ2 and NdKL, and the Gini and Krugman coefficient GI and SK. We first

examine their numerical values by means of (pairwise) correlations (Table ??) and pairwise scatter

diagrams (Figure ??). Next we perform a similar analysis on the ranks in Table ?? and ??. These

tables and figures provide the results on regional specialization under the main diagonal and the

results on industrial concentration above the main diagonal.

For each instance, we also provide the correlations with the relevant marginal profiles pi· (first

column) and p·j (first row) and notice a systematic negative association between the marginal profiles

and the relative measures. Both Table ?? and Figure ?? however, show that in absolute values

their association is the weakest one for dχ2 but the strongest one for Ndχ2 . This systematically

negative association shows that smaller sectors or smaller regions are expected to be relatively more

specialized, as an effect of size. The scatter diagrams and the absolute values of the correlation,

however, show that their association is globally weak, in particular because the largest regions and

the largest sectors are essentially outlying data for this association.

Let us now examine the associations among the 8 measures. All pairwise correlations are positive

and significantly high. There is no clear indication that the transformed version log(1 + dχ2) or the

normalized version Ndχ2 or NdKL tend to substantially increase those correlations although some

are surprisingly high: most with dH and with NdKL, particulary between dH and dKL, and also

between GI and dKL.

It should also be noticed that the correlations among the measures of relative industrial concen-

tration behave in an essentially similar way as those of relative regional specializations. The scatter

diagrams, in Figure ??, show however that most of these associations are non-linear, calling for more

care when interpreting coefficients of linear association. But the linearity of the relationships of SK

with dH , NdKL and GI, and of Ndχ2 with GI is noteworthy.

One last aspect should also be checked, namely the stability of the ranking. This aspect may

be viewed as a non-parametric approach (see also Slottje 1990). This is examined in Table ?? by

means of the Spearman’s rank coefficient and in Figure ?? by means of scatter diagrams among

ranks. Here, the rows and columns relative to log(1 + dχ2) are redundant compared to those related

to dχ2 . The same redundancy is also true for normalized versions of dχ2 and dKL. Again, the

correlations in Table ?? are uniformly high and the correlations related to the marginal profiles are

higher than in Table ??. But now the behaviour among the ranks corresponding to the sectors

(above the main diagonal) have less associations than those related to the regions (under the main
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diagonal), comforting what was previously noticed.

As a first conclusion, the high rank correlation among all the measures considered so far comfort

the overall coherence of these measures but the possible modifications among the ranking should be

considered as a signal that these measures should be interpreted with care and, in no case viewed as

objective and final measures of specialization. Finally, some peculiarities of dχ2 might be attributed

to the fact that dχ2 is based on squared differences that tend to overweight extreme cases, while this

feature is mitigated by the log transformation.

4.4 Comparison between Argentina, Brazil and Chile

The aim of this subsection is to compare the overall degree of specialization of Argentina, Brazil and

Chile using the measures described above, based on employment data from the local government

entities at a lower level. We analyze the evaluated measures with a particular attention to the

dramatically different dimensions of the contingency tables of each country, due to the difference on

the number of regions.

The regional units are the political-administrative jurisdictions called departments (#523), mu-

nicipalities (#5,138) and communes (#342) for Argentina, Brazil and Chile respectively. The final

number of regional units (after eliminating those with no employees in the manufacturing sector)

are 462, 5,138 and 249 for Argentina, Brazil and Chile, respectively. It should be noted that both

regions of Brazil and Chile refer to the local government entity while those of Argentina refer to

the catastral divisions. Thus, from an administrative point of view, Argentina’s divisions cannot be

directly compared to those of Brazil and Chile, although in some cases their boundaries match those

of the municipalities.

The data related to employment in the manufacturing sector were obtained from of the National

Economic Census made by the National Institutes of Statistics and Censuses of Argentina (INDEC-

1994: 1,083,928 employees), Brazil (IBGE-1998: 6,018,445 employees), and Chile (INE-2005: 446,613

employees), respectively. The data for Chile refer to firms with 5 or more employees. As in Section ??,

sector classifications refer to the first 2 digits of the International Standard Industrial Classification

(ISIC Rev.3.1) of manufacturing sectors (22 sectors after grouping the divisions 36 and 37).

Table ?? shows a summary of the results obtained from the proposed measures of global spe-

cialization and the number of cells of each contingency table. While the absolute values of these

measures lie on different scales, the global measures of specialization show that Chile has a higher

level of specialization, followed by Brazil and Argentina respectively, for all proposed global measure:

this ranking (derived from a visual examination, since the correlation coefficients for the data of the

3 countries do not make sense) does not depend on the selected measure of global specialization nor

on the number of cells. There is extensive literature on the comparison of contingency tables with

different sizes (see e.g. Lauritzen 1989, van der Heijden, Mooijaart and Takane 1994, and Agresti
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2002), while present results are found to be relatively stable among these measures. Moreover, a

similar stability is revealed in different simulations developed for this purpose (not shown in this

paper) following extreme scenarios, not only referring to the dimension of the contingency tables

but also to different levels of global specialization.

Once again, although dH , GIreg, SKreg, GI
sec, and SKsec operate on a same range of variation,

namely the unit interval, we systematically observe the same order, namely dH < SKreg < SKsec <

GIreg < GIsec, with rather substantial differences within these measures related to each country.

It should also be noticed that the ranking of the three countries for each measure and the ranking

among the five measures for each country, remain exactly the same. Comparing these results with

those of subsection ??, we observe that Gini’s coefficients are systematically higher than Krugman’s

coefficients and that in both cases sector-based coefficients are higher than, but close to, region-based

coefficients. It must also be noted that in the case of Argentina, all coefficients are lower than in

this application. This is due to the fact that, as already mentioned, the contingency table used in

subsection ?? is a collapsed table of that used in this application, implying a loss of information

that will be considered in the next section.

5 Grouping of regions or sectors

5.1 Grouping of regions

Let us operate a partition of I regions into M “grouped regions”, that will be called “g-regions” for

the sake of of clarity. Thus:

I = {1, 2, · · · , I} =

M⋃
m=1

Im Im ∩ Im′ = ∅ (m 6= m′) #(Im) = Im
∑
m

Im = I (31)

Using q to denote probabilities in the space of the g-regions, we define:

qm· =
∑
i∈Im

pi· qm|j =
∑
i∈Im

pi|j (32)

q~m· = (q1·, · · · , qm·, · · · , qM ·) q~m|j = (q1|j , · · · , qm|j , · · · , qM |j) (33)

Furthermore:

pi|m =
pi·
qm·

1I{i∈Im} pi|j,m =
pi|j

qm|j
1I{i∈Im} (34)

The KL-divergence has a characteristic feature, namely to accept a decomposition related to

grouping rows or columns, which outcome is similar to a decomposition of the variance resulting

from the sum of a “within” term and a “between” term. This decomposition is well-known in the

literature on information theory and has been widely used in spatial economics. See for instance

Shorrocks (1980, 1982 and 1984), Mori, Nishikimi and Smith (2005), Brülhart and Traeger (2005),

Cutrini (2009), Alonso-Villar and del Ŕıo (2011), among others.
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Indeed, if we start with the second term of (??), we will subsequently obtain:

dKL(N) =
∑
j

p·j

[∑
i

pi|j log

(
pi|j

pi·

)]
(35)

=
∑
j

p·j

[∑
m

qm|j log
qm|j

qm·

{∑
i∈Im

pi|j,m

}
+
∑
m

qm|j

{∑
i∈Im

pi|j,m log
pi|j,m

pi|m

}]

=
∑
j

p·j

[
dKL(q~m|j | q~m·) +

∑
m

qm|j dKL(p~i|j,m | p~i|m)

]
(36)

In (??), as a general result, the KL-measure of specialization is viewed as a weighted average

of industrial concentration, namely dKL(p~i|j | p~i·) in (??), whereas in (??) each sector measure is

decomposed with respect to a partition of the regions into a “Between” term and a “Within” term,

namely:

• Between:
∑
j p·j dKL(q~m|j | q~m·), this is a weighted average of the specific sector measures of

the specializations among g-regions;

• Within:
∑
j

∑
m p·jqm|j dKL(p~i|j,m | p~i|m), this is a (doubly) weighted average of the sector

specific measures of the specializations among the composing regions of each g-regions;

• Global = Between + Within.

Two polar cases are of interest. First, let’s suppose that M = 1, i.e. that all the regions in

the country are grouped into a unique g-region, namely the country. In this case, the Between g-

regions term vanishes and in the Within g-regions term the weighted average has only one term with

qm|j = 1 and the sum
∑
i∈Im is equivalent to

∑
1≤i≤I . Conversely, when M = I, each g-region has

exactly one region and the Within g-regions term disapears because each dKL(p~i|j,m | p~i|m) would

represent a divergence between two degenerate one-point distributions, whereas in the Between

g-regions term dKL(q~m|j | q~m·) matches dKL(p~i|j | p~i·) in (??).

Similarly to the analysis of variance, the ratio (Between/Global) may be interpreted as a measure

of how far an aggregation criterion maintains the Global degree of specialization; the other ratio

(Within/Global) measures how much an aggregation decrease the specialization. Heuristically, the

ratio (Between/Global) may be seen as a measure of association between specialization and the ag-

gregation criterion. It must be noted that in the extreme case of aggregation into a unique region, the

Between term would annihilate. But another polar case would be obtained by aggregating identical,

or very similar, regions. This would produce the within term to annihilate, or decrease substantially.

Thus, the ratio Between/Global may also be interpreted as a measure of the homogeneity of the

aggregated regions. This feature is a central argument for constructing the “Best Collapsed Table”

in Haedo (2009).
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The two polar cases suggest the following. Let us compare the effects of two nested partitions.

Thus let us consider the partition given in (??) along with a finer partition:

I = {1, 2, · · · I} =

M ′⋃
m′=1

Im′ Im′1 ∩ Im′2 = ∅ (m′1 6= m′2) #(Im′) = Im′
∑
m′

Im′ = I

M < M ′ ∀m′ ∃m : Im′ ⊂ Im (37)

We may evaluate the sign of the changes in the between-term and the within-term by successively

refining each member of the coarser partition leaving other members unaffected. The preceding

reasoning shows that this refinement increases the between term and eventually decreases the within

term, obtaining the limit in M = I.

5.2 Grouping of sectors

The same analysis can be applied when grouping sectors instead of regions. Hence, we will now

consider a partition of the sectors into L g-sectors:

J = {1, 2, · · · , J} =

L⋃
l=1

Jl Jl ∩ Jl′ = ∅ (l 6= l′) #(Jl) = Jl
∑
l

Jl = J (38)

Using r to denote probabilities on the space of g-sectors, we define:

r·l =
∑
j∈Jl

p·j rl|i =
∑
j∈Jl

pj|i (39)

r·~l = (r·1, · · · , r·l, · · · , r·L) r~l|i = (r1|i, · · · , rl|i, · · · , rL|i) (40)

Furthermore:

pj|l =
p·j
r·l

1I{j∈Jl} pj|i,l =
pj|i

rl|i
1I{j∈Jl} (41)

We may now repeat the decomposition of the KL-measure of specialization related to a grouping

of sectors. Indeed, starting with the first term of (??), we successively obtain:

dKL(N) =
∑
i

pi·

∑
j

pj|i log

(
pj|i

p·j

) (42)

=
∑
i

pi ·

∑
l

rl|i log
rl|i

r·l

∑
j∈Jl

pj|i,l

 +
∑
l

rl|i

∑
j∈Jl

pj|i,l log
pj|i,l

pj|l




=
∑
i

pi ·

[
dKL(r~l|i | r·~l) +

∑
l

rl|i dKL(p~j|i,l | p~i|l)

]
(43)

Similarly to what has been observed for the regions, the two polar cases of interest now become:

aggregating all sectors into only 1 (i.e. L = 1) let the between g-sectors term vanish and the within

20



g-sectors term be equal to the global measure whereas the finest partition, i.e. L = J , let the within

g-sectors term vanish and the between g-sectors term be equal to the global measure.

As a final remark, aggregating regions into larger ones, or aggregating sectors, for instance by

using less digit classification, always decreases the global measure of specialization because it only

retains the between term and neglect the within term of the global measure before aggregation.

Moreover, the coarser the aggregation, the lower the specialization.

Measures dχ2 and dH accept the same decomposition related to a grouping of the regions (rows) or

of the sectors (columns), but unlike dKL(N) their decompositions are not exact and show residuals

to be denoted as Rχ2(N) and RH(N), respectively. Thus, for the decomposition related to to a

grouping of regions, we obtain:

dχ2(N) =
∑
j

p·j

[
dχ2(q~m|j | q~m·) +

∑
m

qm|j dχ2(p~i|j,m | p~i|m)

]
+Rχ2(N) (44)

dH(N) =
∑
j

p·j

[
dH(q~m|j | q~m·) +

∑
m

qm|j dH(p~i|j,m | p~i|m)

]
+RH(N) (45)

And similarly for a sector grouping.

5.3 Grouping argentinean regions and sectors

We now examine numerically the impact of grouping regions and/or sectors. Initially, a natural

question is raised: is the impact of these groupings on the degree of specialization similar for the

three global measures?

We use the same data as in section ?? and analyze the impact, on global specialization, of

regrouping regions or sectors, by evaluating numerically the terms of the decomposition (??), (??)

and (??), and the corresponding terms for the sectors.

We first consider an arbitrary aggregation of regions by assembling the first 10 regions into a

single one (representing .7520 of the global employment), leaving the other regions as singletons in

the aggregated partition. We analyze the numerical results from the following perspective:

(i) when decomposing the global measure of specialization with respect to an aggregation, how

important are the residual terms for dχ2 and dH , knowing that there is no residual for dKL?

(ii) does the ratio (Between/Global) strongly or weakly depend on the measure dχ2 , dKL or dH?

Table ?? presents the numerical results for the aggregation of regions in the following order:

line 1: the 3 global measures, as given in (??);

line 2: the sum of the between and the within term;

line 3, 4 and 5: the between, within and residual terms;
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line 6: the ratio of the residual term with the global term;

line 7 and 8: the ratio of the between term with the global term as in lines 1 and 2.

We notice the following features. Firstly, in this application the residual terms are never substan-

tial, namely less than 1% of the global measure (lines 5 and 6). But this residual term may be positive

(for dχ2) or negative (for dH). Secondly, the information provided by the ratio (Between/Global),

lines 7 and 8, is not identical but fairly robust with respect to the 3 measures (dχ2 , dKL or dH).

This may be viewed as an indication that the (arbitrary) regroupment of 35 into 26 regions modifies

significantly, but not dramatically, the global degree of specialization. One reason may be that, as

shown in Table ??, the aggregation has been operated on fairly homogenous and large regions with

a percentage of the total employment ranging from 0.77% to 32.02% and dH ranging from 0.0189 to

0.1646. As the 10 aggregated regions cover more than 75% of the total employment, the remaining

25 regions are smaller.

Let us now consider another (arbitrary) partition by regrouping the last 10 regions. These are

mostly small regions (representing between 0.05% and 0.51% of the total employment) with high

specialization due their small sizes, with dH ranging from 0.2262 to 0.6971. Together these 10

regions represent only 2.69% of total employment. We now observe in Table ??, that the residual

part is considerably bigger than in Table ??, raising from 0.76% to 21.91% for dχ2 and from 0.60%

to 3.72% for dH , with the same sign as in Table ??. The share of the between term, in line 8,

increases considerably for the three measures from around 70% to around 90%. Notice however that

for dχ2 the between term decreases but its share, taking into account the inflated residual term, has

increased. These results show that aggregating small regions into a unique one mildly affects the

global level of specialization, at variance from aggregating large regions.

We now consider an arbitrary aggregation of sectors by assembling the first 5 sectors into a single

one (representing 40.92% of the global employment), leaving the other sectors as singletons in the

aggregated partition. The results are presented in Table ?? in the same format as in Table ??.

We notice that in this second application the residual terms are substantially higher than in the

first application, with 15% and 5% of the global measure and the signs are the same as in the first

application, positive for dχ2 and negative for dH . The three ratios of the terms (Between/Global)

are different in value but with a similar order of magnitude. In both applications the ratio related

to dKL has an intermediate value between those related to dχ2 and to dH , once the effect of the

residual term has been taken into account, i.e. line 8 rather than 7.

We now turn, in Table ??, to another arbitrary partition of the sectors, by regrouping the last

5 sectors. The percentages of the global employment range from 0.086% to 6.82%; together they

represent 13.04% of the total employment. The values of dH range from 0.0970 to 0.2165. Let us

now compare the results in Table ?? and ??. For dχ2 and dH , the residual share remains at a similar

level with the same sign. The share of the Between term, in line 8, considerably increases. Tables
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?? and ?? show that when regrouping 5 smaller sectors, representing 13% of the total employment,

the global measure of specialization is less affected than by regrouping 5 larger sectors, representing

41% of the total employment.

If we examine the 4 regrouping exercises we find that:

• the share of the residual terms are always substantially lower for dH than for dχ2 ; moreover,

the residuals of dχ2show a substantially higher variability than those of dH ;

• the sign of the residual terms is systematically positive for dχ2 and negative for dH ;

• the share of the Between terms, after taking into account the residual term (i.e. line 8 of the

Table) is smaller when aggregating larger regions, or sectors, than when aggregating smaller

ones.

6 Discussions and conclusions

6.1 The stochastic independence approach in a nutshell

Based on data in the form of a two-way contingency table “Regions × Sectors”, the concepts of

specialization and of concentration are naturally based on the analysis of the conditional distribu-

tions, or profiles, (p~j|i) for the regional specializations or (p~i|j) for the industrial concentrations. The

natural tools to measure the degree of specializations are provided by discrepancies dω(· | ·), more

precisely distances or divergences, among distributions: between profiles and a uniform distribution

for absolute concepts (dω(p~j|i | [ai = I−1]) or dω(p~i|j | [bj = J−1])) that represent the spread of a

distribution on categorical variables, between profiles and the corresponding marginal distribution

(dω(p~j|i | p·~j) or dω(p~i|j | p~i·)) for the relative concepts, or between the joint distribution and the

product of the marginal distributions dω([pij ] | [pi· p·j ]) for the global concept. This is the approach

of stochastic independence that governs the analysis in terms of stochastic independence between

sectors and regions, while the global discrepancy is viewed as a measure of row-column association.

The relative and global concepts may be written in terms of the local quotients LQij only; thus

the local quotient is a local indicator of association at the level of the cell (i, j) in the contingency

table. As the concept of stochastic independence is naturally symmetric between the sectors and

the regions, the global concept of specialization is uniquely defined, at variance from concepts de-

veloped in other frameworks that construct global measures of specializations by aggregating sector

specific or region specific measures of specializations, to eventually obtain different global measures

of specialization. Such is the case for Gini’s and Krugman’s indices. The KL-measures enjoy a

suitable decomposition with respect to regrouping. The residual terms of the other measures make

more difficult an evaluation of the impact of regrouping, particularly in the case where the residual

term is substantial .
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6.2 Final remarks

This paper advocates the reference to a single framework for the study of regional specialization

and of industrial concentration, namely a systematic reliance on discrepancies among frequency

distributions. This integrating framework is particularly relevant when trying to cope with the

substantial variety of approaches and of choices of words in spatial economy or economic geography.

The choice of a particular family of discrepancies is not the main object of this paper, but as a

hint for the practitioner three of them, namely χ2, KL and H, have been explored through numerical

illustrations, and prove to be reasonably coherent in terms of the substantial conclusions to be drawn

when they are simultaneously evaluated on several data set. However, it should be pointed out that

they have not always provided the same ranking among countries nor the same impact of groupings.

The analysis of regional specialization and industrial concentration quite often involve contin-

gency tables with an extreme heterogeneity of sizes of cells (i, j) or of marginals, i.e. the ratios

(maxj p·j)/(minj p·j) or (maxi pi·)/(mini pi·) may be extremely high. This heterogeneity raises

issues related to the robustness of the measurement and the interpretation of international compar-

isons. The illustrations of subsection ?? and the Section ?? on the impact of grouping provide hints

on questions that quite clearly deserve further attention.

Instead of developing a single integrating framework, an alternative road, not pursued in this

paper, would be to describe general properties potentially attractive for measurements, possibly by

axiomatizing these properties. Bollen and Long (1993) summarizes a number of desirable properties

for discrepancy measures but recognizes that no single measure meets them all; moreover not all

researchers would even agree with all of these properties. In their search for desirable properties,

Combes and Overman (2004) emphasizes the analysis of the deviation from a benchmark distribution.

Alonso-Villar and del Ŕıo (2011) mentioned some of the main properties we also meet when using

discrepancies measures.

Recently, Tajar (2003, Chapter 6), developed a representation of a two-way contingency table by

means of copula, to be called a uniform representation of a discrete bivariate distribution. Interest-

ingly enough, the construction is based on a log-linear model for a bivariate discrete variable where

the first order interaction is determined by the cross-product ratio, or local quotient. This analysis

opens potentially interesting avenues for a different approach to specialization from the point of view

of region-sector association.

The systematically negative correlation between the size of the region, and of the sector, and

the measures of specialization has been noticed in the application of Section ??. This observation

provides a first hint on the impact of grouping on specialization and concentration. As already

noticed in the case of concentration (see e.g. Krugman 1991b and Anas, Arnott and Small 1998),

the reason for these differences lies in the nature and balance of the centrifugal and centripetal force

systems acting in different geographical scales. This problem is known as the “Modifiable Areal
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Unit Problem” (MAUP), and refers to the role of the geographical partition in use (for more details,

see Yule and Kendall 1950; Openshaw 1984; Arbia 1989; Amrhein 1995 and Unwin 1996). The

arbitrariness of geographical boundaries gives rise to two different manifestations, namely aggrega-

tion and scale, and any statistical measure based on spatial aggregates is sensitive to the scale and

aggregation problems. The same issue is also raised in the case of sector aggregation. Therefore,

the arbitrariness of partitions plays a key role in capturing the effects mentioned previously, and

becomes potentially more dangerous the more unequal become its elements. Arbia (1989) and Arbia

and Espa (1996) discuss the distortions due to scale and aggregation and the possibilities of con-

structing optimal partitions of the space. The analysis of groupings in Section ?? maybe viewed as

a first hint for obtaining a better grasp of the consequences of grouping regions or sectors in the

MAUP problem.
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Discussion Paper 91.

Lauritzen, S. (1989), Lectures on Contingency Tables. Aalborg: University of Aalborg Press.

Lerman, R., and Yitzhaki, S. (1989), Improving the accuracy of estimates of the Gini Coeffi-

cient. Journal of Econometrics 42: 43-47.

Liese, F., and Vajda, I. (2006), On divergences and informations in statistics and information

theory. IEEE Transactions on Information Theory 52: 4394-4412. DOI:10.1109/TIT.2006.881731.

Lorenz, M. (1905), Methods of measuring the concentration of wealth. Journal of the American

Statistical Association 9: 209-219.

28



Marcon, E., and Puech, F. (2003), Evaluating the geographic concentration of industries using

distance-based methods. Journal of Economic Geography 3: 409-428.

Maurel, F., and Sédillot, B. (1999), A measure of the geographic concentration in French

manufacturing industries. Regional Science and Urban Economics 29: 575-604.

Midelfart-Knarvik, K., Overman, H., Redding, S., and Venables, A. (2000), The location

of European industry. European Comission, Economic Papers 142.

Mori, T., Nishikimi, K., and Smith, T. (2005), A divergence statistic for industrial localization.

Review of Economics and Statistics 87: 635-651.

Mulligan, G., and Schmidt, C. (2005), A note on localization and specialization. Growth and

Change 36: 565-576.

Openshaw, S. (1984), The Modifiable Areal Unit Problem. Norwich: Geo Books.

Osberg, L., and Xu, K. (2000), International comparison of poverty intensity: index decompo-

sition and bootstrap inference. Journal of Human Resources 35: 51-81.

Perroux, F. (1950), Economic space: theory and applications. Quarterly Journal of Economics

64: 89-104.

Reiss, R. (1989), Approximate distributions of order statistics. New York: Springer-Verlag.

Rossi-Hansberg, E. (2005), A spatial theory of trade. American Economic Review 95: 1464-

1491.

Sheldon, E.H.B., and Moore, W.E. (eds.) (3rd ed.:1972), Indicators of Social Change: Con-

cepts and Measurements. New York: Russel Sage Foundation.

Shorrocks, A. (1980), The class of additively decomposable inequality measures. Econometrica

48: 613-625.

Shorrocks, A. (1982), Inequality decomposition by factor components. Econometrica 50: 193-

211.

Shorrocks, A. (1984), Inequality decomposition by population subgroups. Econometrica 52:

1369-1385.

Slottje, D. (1990), Using grouped data for constructing inequality indices: parametric vs. non-

parametric methods. Economics Letters 32: 193-197.

Tajar, A. (2003), Measuring and modelling dependence. Ph.D. thesis, Louvain la Neuve: ISBA,
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Appendix A: Tables

Table 1: Some conventional definitions

Technique Measured concept

d(p~j|i | [1/J ]) Absolute regional specialization

d(p~i|j | [1/I]) Absolute industrial concentration

d(p~j|i | p·~j) Relative regional specialization

d(p~i|j | p~i·) Relative industrial concentration

d([pij ] | [pi· p·j ]) Global specialization

Table 2: Correlations between relative regional specialization (dω(p~j|i | p·~j)-under the main diagonal)

and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal) measures

(I=35, J=17)

Item p~i· p·~j dχ2 dKL dH log(1 + dχ2) Ndχ2 NdKL GIj SKj

p~i· - - - - - - - - - -

p·~j - - −.2933 −.4373 −.4603 −.5462 −.7481 −.6461 −.5692 −.3673

dχ2 −.1793 - - .9551 .9301 .8671 .5482 .7891 .8011 .8281

dKL −.4062 - .8101 - .9921 .9471 .7141 .9241 .9311 .9171

dH −.4551 - .6491 .9601 - .9201 .6961 .9191 .9521 .9381

log(1 + dχ2) −.4601 - .7411 .9531 .8891 - .8671 .9681 .8971 .8101

Ndχ2 −.6361 - .4072 .7841 .8131 .8771 - .9051 .7861 .6081

NdKL −.5741 - .5271 .9021 .9361 .9281 .9561 - .9601 .8621

GIi −.5751 - .4801 .8821 .9521 .8631 .9071 .9801 - .9461

SKi −.4501 - .5101 .8881 .9671 .8171 .8181 .9351 .9721 -

1Significant at level 0.01 (two-sided)

2Significant at level 0.05 (two-sided)

3Not significant
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Table 3: Ranking correlations between relative regional specialization (dω(p~j|i | p·~j)-under the main

diagonal) and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal)

measures (I=35, J=17)

Item p~i· p·~j dχ2 dKL dH GIj SKj

p~i· - - - - - - -

p·~j - - −.7551 −.6181 −.6081 −.5122 −.3733

dχ2 −.7951 - - .9171 .8241 .7181 .5542

dKL −.8461 - .9591 - .9171 .8871 .7891

dH −.8511 - .8541 .9721 - .9511 .8381

GIi −.8611 - .8931 .9641 .9871 - .8951

SKi −.7861 - .8421 .9381 .9771 .9751 -

1Significant at level 0.01 (two-sided)

2Significant at level 0.05 (two-sided)

3Not significant

Table 4: Summary of the results

Measure Argentina Brazil Chile

dχ2 (N) 2.1580 3.1345 3.4363

dKL(N) 0.5049 0.7420 0.8870

dH(N) 0.1300 0.1894 0.2600

GIreg 0.4621 0.5595 0.6017

GIsec 0.4880 0.5925 0.6358

SKreg 0.3625 0.4521 0.5079

SKsec 0.3980 0.4856 0.5897

#of cells
10,164 113,036 5,478

(462x22) (5,138x22) (249x22)

Table 5: Arbitrary grouping of 10 first regions

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.6406 0.3176 0.0717

3 Between 1.2631 0.2107 0.0468

4 Within 0.3775 0.1069 0.0249

5 Residual 0.0126 0.0000 -0.0004

6 % Residual on dw(N) 0.76 0.00 -0.60

7 % Between on dw(N) 76.40 66.35 65.69

8 % Between on dw(N) Grouping 76.99 66.35 65.30
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Table 6: Arbitrary grouping of 10 last regions

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.2909 0.3176 0.0739

3 Between 1.2088 0.2911 0.0663

4 Within 0.0821 0.0265 0.0076

5 Residual 0.3622 0.0000 -0.0027

6 % Residual on dw(N) 21.91 0.00 -3.72

7 % Between on dw(N) 73.12 91.65 93.08

8 % Between on dw(N) Grouping 93.64 91.65 89.74

Table 7: Arbitrary grouping of 5 first sectors

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.4005 0.3176 0.0750

3 Between 1.0513 0.2250 0.0509

4 Within 0.3492 0.0925 0.0240

5 Residual 0.2527 0.0000 -0.0037

6 % Residual on dw(N) 15.28 0.00 -5.16

7 % Between on dw(N) 63.59 70.86 71.48

8 % Between on dw(N) Grouping 75.06 70.86 67.97

Table 8: Arbitrary grouping of the 5 last sectors

N◦ Item dχ2 dKL dH

1 dw(N) 1.6532 0.3176 0.0713

2 dw(N) Grouping 1.3591 0.3176 0.0747

3 Between 1.2622 0.2825 0.0653

4 Within 0.0969 0.0351 0.0095

5 Residual 0.2941 0.0000 -0.0035

6 % Residual on dw(N) 17.79 0.00 -4.87

7 % Between on dw(N) 76.35 88.95 91.59

8 % Between on dw(N) Grouping 92.87 88.95 87.33
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Table 9: Argentine data (1)

PPPPPPPPRegion

sector
1 2 3 4 5 6 7 8 9 10 11 12

1 28,919 272 4,238 7,104 2,106 1,977 2,577 22,108 601 9,003 21,385 3,299

2 3,819 6 1,496 6,779 424 258 479 1,750 4 2,147 3,300 384

3 50,279 1,280 25,655 14,639 17,799 5,731 9,574 9,431 1,348 29,783 119,628 10,942

4 3,825 0 279 613 157 199 846 521 170 4,463 5,127 352

5 16,261 0 1,818 1,377 1,152 1,494 2,709 1,458 511 4,054 17,944 7,958

6 6,157 0 809 317 118 442 219 514 1,778 2,991 3,012 804

7 8,487 0 1,336 675 5,311 658 878 419 26 2,025 4,789 885

8 2,791 1,977 55 54 18 208 61 80 2 68 2,436 356

9 47,042 0 2,053 3,096 2,932 2,072 1,960 3,397 65 6,113 39,813 4,345

10 15,456 0 978 1,644 2,470 2,368 925 2,559 327 1,199 14,123 2,491

11 8,323 0 64 225 77 602 491 1,364 0 651 3,526 725

12 12,516 0 164 253 290 1,630 202 494 39 248 3,645 1,307

13 3,188 11 332 571 481 673 185 300 0 519 2,328 6,243

14 31,462 0 128 458 417 874 61 606 0 411 3,804 528

15 851 0 193 3,255 289 149 1 151 0 4 827 61

16 1,409 0 732 140 59 120 462 200 784 639 2,125 454

17 18,929 12 8,856 1,338 856 930 594 1,799 0 814 6,340 1,842

18 1,375 0 6 34 4,568 23 0 40 0 5 117 30

19 388 0 2 63 5 248 0 11 1,118 786 436 44

20 6,737 0 72 2,654 334 298 89 474 0 165 4,655 497

21 8,372 0 29 73 49 3,195 223 536 0 322 2,158 591

22 2,509 0 6,917 518 540 427 30 318 1 28 1,291 581

23 476 0 2 88 5 32 136 131 0 25 468 4,668

24 1,069 3 54 16 0 171 2,011 59 0 613 597 152

25 1,411 0 99 177 2,239 109 0 205 0 10 328 261

26 4,657 0 0 0 1 24 0 20 0 3 75 48

27 408 0 19 9 5 2,715 1,563 24 0 49 211 215

28 1,426 11 11 27 23 1,907 0 88 0 189 462 46

29 332 961 35 6 178 40 1 40 0 127 59 18

30 108 0 0 20 0 798 0 2 0 0 36 27

31 180 0 1,913 7 7 80 0 10 0 345 103 62

32 85 0 0 0 0 20 0 2 0 1,147 22 25

33 415 3 632 4 5 481 0 50 0 16 198 83

34 24 477 0 0 0 3 0 0 0 0 20 4

35 485 0 224 24 1 164 0 76 0 85 827 61

N·j 290,171 5,013 59,201 46,258 42,916 31,120 26,277 49,237 6,774 69,047 266,215 50,389

p·~j 0.2677 0.0046 0.0546 0.0427 0.0396 0.0287 0.0242 0.0454 0.0062 0.0637 0.2456 0.0465

dχ2 (p~i|j | p~i·) 0.3625 59.8952 1.8482 1.8675 2.9312 3.7377 2.0062 1.3557 9.7915 0.6328 0.1499 2.5095

dKL(p~i|j | p~i·) 0.1546 2.8511 0.5262 0.4437 0.5727 0.5833 0.3892 0.4407 1.3626 0.2533 0.0851 0.4716

dH(p~i|j | p~i·) 0.0376 0.5331 0.1283 0.0953 0.1233 0.1043 0.0897 0.0978 0.3039 0.0699 0.0236 0.0889
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Table 10: Argentine data (2)

PPPPPPPPRegion

sector
13 14 15 16 17 Ni· p~i· dχ2 (p~j|i | p·~j) dKL(p~j|i | p·~j) dH(p~j|i | p·~j)

1 1,747 2,271 1,318 2,557 872 112,354 0.1037 0.6112 0.1982 0.0433

2 68 281 114 587 21 21,917 0.0202 1.8948 0.4870 0.1025

3 12,232 5,490 3,892 25,779 3,556 347,038 0.3202 0.1380 0.0727 0.0189

4 550 142 53 282 55 17,634 0.0163 0.7436 0.2753 0.0661

5 1,297 233 456 3,642 206 62,570 0.0577 0.2266 0.0978 0.0246

6 658 74 221 791 419 19,324 0.0178 1.4528 0.2960 0.0610

7 244 134 12 543 261 26,683 0.0246 0.7784 0.2522 0.0584

8 39 8 57 167 4 8,381 0.0077 11.8685 0.9283 0.1646

9 2,899 931 180 7,550 1,119 125,567 0.1158 0.1490 0.0857 0.0246

10 1,875 490 404 25,526 799 73,634 0.0679 1.2604 0.3673 0.0787

11 109 27 16 491 10 16,701 0.0154 0.4207 0.2396 0.0716

12 40 18 20 468 60 21,394 0.0197 0.7144 0.3571 0.0981

13 42 7 22 164 22 15,088 0.0139 3.1200 0.6900 0.1403

14 423 28 10 426 50 39,686 0.0366 1.4241 0.6328 0.1683

15 21 8 26 81 0 5,917 0.0055 6.3716 1.1579 0.2359

16 13,022 5 281 1,328 60 21,820 0.0201 9.9012 1.4830 0.2749

17 175 295 210 1,832 484 45,306 0.0418 0.6022 0.2491 0.0627

18 4 1 0 1 0 6,204 0.0057 12.8803 2.0079 0.4362

19 810 6 4 1 1,093 5,015 0.0046 13.7846 1.6876 0.3436

20 111 29 4 653 127 16,899 0.0156 0.5702 0.2708 0.0768

21 334 8 2 263 19 16,174 0.0149 1.5169 0.5287 0.1365

22 47 47 5 366 40 13,665 0.0126 4.0248 0.8928 0.1873

23 4 5 4 65 17 6,126 0.0057 11.5757 1.8579 0.3713

24 0 41 1 28 2 4,817 0.0044 6.7694 1.0841 0.2266

25 2 0 0 54 1 4,896 0.0045 4.7676 0.9956 0.2243

26 0 0 0 0 0 4,828 0.0045 2.4799 1.1556 0.3738

27 1 1 1 11 0 5,232 0.0048 12.1284 2.0210 0.4202

28 1 1 12 65 2 4,271 0.0039 6.4580 1.1002 0.2286

29 0 0 0 15 2 1,814 0.0017 60.1717 2.3845 0.3575

30 0 0 1 0 2 994 0.0009 21.5243 2.4656 0.5016

31 0 1 0 0 2 2,710 0.0025 8.4426 1.6892 0.3839

32 0 0 0 0 0 1,301 0.0012 11.2352 2.1474 0.5071

33 3 1 0 8 0 1,899 0.0018 3.5439 0.9519 0.2262

34 0 0 0 0 0 528 0.0005 175.4862 4.5909 0.6971

35 0 0 3,379 215 0 5,541 0.0051 36.8669 2.2439 0.3552

N·j 36,758 10,583 10,705 73,959 9,305 1,083,928

p·~j 0.0339 0.0098 0.0099 0.0682 0.0086

dχ2 (p~i|j | p~i·) 5.8657 0.4719 19.1844 1.3368 2.9976 d
χ2 (N) =1.6532

dKL(p~i|j | p~i·) 0.8976 0.2827 1.2530 0.4345 0.4386 dKL(N) =0.3176

dH(p~i|j | p~i·) 0.1766 0.0896 0.2165 0.1035 0.0970 dH (N) =0.0713
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Appendix B: Figures

Figure 1: Level of relative industrial concentration (dω(p~i|j | p~i·)) of transformed measures

Figure 2: Level of relative regional specialization (dω(p~j|i | p·~j)) of transformed measures
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Figure 3: Level of relative industrial concentration (dω(p~i|j | p~i·)) of normalized measures

Figure 4: Level of relative regional specialization (dω(p~j|i | p·~j)) of normalized measures
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Figure 5: Dispersion between relative regional specialization (dω(p~j|i | p·~j)-under the main diagonal)

and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal) measures

(I=35, J=17)

Figure 6: Ranking dispersion between relative regional specialization (dω(p~j|i | p·~j)-under the main

diagonal) and between relative industrial concentrations (dω(p~i|j | p~i·)-above the main diagonal)

measures (I=35, J=17)
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Appendix C: On Gini and Krugman indexes

Many indexes commonly used throughout the economic literature to describe the phenomenon of

regional specialization and industrial concentration, are based on the Lorenz curve (Lorenz 1905).

The Lorenz curve is a graphical representation of the spread of a distribution based on the cumulative

functions. More explicitly, for a numerical variable X, the Lorenz curve is represented on the unit

square [0 1]
2

with a coordinate system made of the functions FX(x), the cumulative distribution

function, and µX(x), the relative mean function:

FX(x) =
∑
uj≤x

fX(uj) or

∫ x

0

fX(u)du;

µX(x) =

∑
uj≤x ujfX(uj)∑∞

0 ujfX(uj)
or

∫ x
0
ufX(u)du∫∞

0
ufX(u)du

.

The points on the main diagonal represent individuals with a value of x such that the proportion

of individuals with a value of X lower or equal to x is the same as that of their corresponding

proportion of the overall average. Thus, a distribution where each individual is characterized with a

same value x would be represented by the main diagonal. The area between the main diagonal and

the Lorenz curve may accordingly be interpreted as a graphical representation of the spread of the

distribution.

The Lorenz curve has been originally developed for a univariate numerical variable. Two issues

are at stake in the following extension of the Gini index (Gini 1912) for the characterization of the

relative regional specialization: the simultaneity of two dimensions, namely region and sector, and

the categorical feature of these two variables for which there is no natural order as in the case for

numerical variables.

For a given region i, the sectors may be arranged according to the increasing order of the local

quotient:

LQi,ji(1) < LQi,ji(2) < ... < LQi,ji(k) < ... < LQi,ji(J) (46)

where ji is a permutation of {1, ..., J} different for each region i. Finally we construct the coordinates

of the unit square through the increasing sequences of the following cumulative functions:

P
(i)
·ji(1) < P

(i)
·ji(2) < ... < P

(i)
·ji(k) < ... < P

(i)
·ji(J)

and

P
(i)
ji(1)|i < P

(i)
ji(2)|i < ... < P

(i)
ji(k)|i < ... < P

(i)
ji(J)|i

where P
(i)
·k =

∑
a≤k p·ji(a) and P

(i)
k|i =

∑
a≤k pji(a)|i, respectively. Thus, P

(i)
·ji(k) represents the pro-

portion of the country cumulative employment of the sectors that, in region i, have a local quotient
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lower or equal to that of the k-th sector upon the ordering given in (??), and P
(i)
ji(k)|i represents

the similar proportion, now relatively to the region i only. We now construct a curve for region

i, connecting by linear interpolation the points with coordinates P
(i)
·ji(k) and P

(i)
ji(k)|i. A region i

where each sector has a unit local quotient is represented by the main diagonal. The actual curve

of a region i will not cross the main diagonal because of the ordering (??). The actual curve may

accordingly be considered as a Lorenz curve and the area between the curve and the main diagonal

may be interpreted as a graphical representation of specialization.

The relative Gini specialization coefficient of region i, GIi, is constructed geometrically as the

ratio (the area between the Lorenz curve and the main diagonal, say A/area under the main diago-

nal), or equivalently 1-(area under the Lorenz curve, say B/area under the main diagonal) (Fig. ??

where area α = [P
(i)
·k − P

(i)
·k−1]× 1

2 [P
(i)
k|i + P

(i)
k−1|i]).

Figure 7: Lorenz curve for specialization

As the area under the main diagonal is equal to 1/2, we obtain:

GIi = 1−
∑

1≤k≤J

(
P

(i)
·k − P

(i)
·k−1

)(
P

(i)
k|i + P

(i)
k−1|i

)
(47)

where P
(i)
·0 = P

(i)
0|i = 0. This is only a geometric presentation of Gini coefficient. Lerman and

Yitzhaki (1989), Osberg and Xu (2000) and Xu (2003) provide an interesting overview of alternative

presentations and their respective merits.

GIi takes values in the range [0 1], i.e. a value 0 means that a region has the same sector shares

as those of the whole country, while a value 1 denotes the limit case of extreme relative specialization

for a region with a unique sector, the share of which is infinitely small in the country.

The same construction may be considered for each sector in order to construct a relative industrial

concentration coefficient

GIj = 1−
∑

1≤r≤I

(
P

(j)
r· − P (j)

r−1·

)(
P

(j)
r|j + P

(j)
r−1|j

)
(48)

40



where P
(j)
0· = P

(j)
0|j = 0, under an sector-specific reordering of the regions:

LQij(1),j < LQij(2),j < ... < LQij(r),j < ... < LQij(I),j . (49)

The index SKi proposed by Krugman (1991a) is a measure of regional specialization or industrial

concentration, expressed as half of the Relative Mean Deviation (RMD) based on the Manhattan

distance (see for more details Kendall and Stuart 1963). The relative version of this index captures

the gap between the sector structure of region i and the average of the sector j structure of the other

regions. It is defined as:

SKi =
1

2

∑
j

| pj|i − p·j | (50)

where

p·j =

∑I
m6=iNmj∑I

m 6=i
∑
j Nmj

(51)

The SKi index takes a zero value if the sector structure of region i is identical to the average of the

other regions. Given the normalization used here, the maximum value of SKi is equal to 1 when

the sector structure of one region differs completely from the rest of the country.

The index for relative industrial concentration is constructed similarly:

SKj =
1

2

∑
i

| pi|j − pi· | (52)

where

pi· =

∑J
l 6=j Nil∑

i

∑J
l 6=j Nil

(53)
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