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Abstract— Mobile devices are increasingly used to store 
private and sensitive data, and this has led to an increased 
demand for more secure and usable authentication services. 
Currently, mobile device authentication services mainly use a 
knowledge-based method, e.g. a PIN-based authentication 
method, and, in some cases, a fingerprint-based authentication 
method is also supported. The knowledge-based method is 
vulnerable to impersonation attacks, while the fingerprint-
based method can be unreliable sometimes. To make the 
authentication service more secure and reliable for mobile 
device users, this paper describes our efforts in investigating the 
benefits of integrating a touch dynamics authentication method 
into a PIN-based authentication method. It describes the design, 
implementation and evaluation of this method. Experimental 
results show that this approach can significantly reduce the 
success rate of impersonation attempts; in the case of a 4-digit 
PIN, the success rate is reduced from 100% (if only the PIN is 
used) to 9.9% (if both the PIN and the touch dynamics are used). 

Keywords—Authentication, biometrics, touch dynamics, 
machine learning, mobile device security 

I. INTRODUCTION 

Mobile devices have become a preferred gadget for users 
to access information and digital services, and stay connected. 
The increased usage and dependence on these devices also 
indicate that they increasingly process and store confidential 
and sensitive data. As more sensitive data are stored in, or 
accessible from, mobile devices, the risk and cost of losing 
these data are becoming higher. Therefore, how to make the 
authentication service secure and reliable for mobile users is a 
pressing task. One of the possible measures to strengthen the 
security and reliability of the authentication service is to 
integrate a biometrics-based (e.g. touch dynamics) 
authentication method with a knowledge-based (e.g. PIN) 
authentication method to form a so-called two-factor 
authentication method [1].  

Touch dynamics refer to the digital signatures generated 
when a human interacts with a mobile device. A touch 
dynamics authentication method can be implemented by 
employing sensors already available in most mobile phones, 
digital tablets, and other touchscreen devices, making the 
implementation comparatively cheaper than other biometrics-
based authentication methods, such as fingerprint and iris 
where specialised hardware is required. In addition, the 

acquisition of touch dynamics features is less sensitive to 
external factors such as lighting conditions and background 
noise levels, making it more usable and reliable in a mobile 
context. Also, touch dynamics features can be acquired 
whenever a user uses his/her devices, for example, during their 
normal (i.e. non-authentication related) input activities, 
requiring little extra interactions by the user. For these 
reasons, a touch dynamics authentication method is cheaper, 
more usable and reliable, and may be more acceptable to the 
general public than other biometrics-based authentication 
methods. 

To investigate the feasibility and effectiveness of using 
touch dynamics biometrics as a mobile device authentication 
solution, we have designed and evaluated a touch dynamics 
authentication method. This paper reports our work in this 
regard. More specifically, it describes what types of features 
and how they are extracted. It then describes the classification 
of the features to build authentication model, and the use of 
the model to authenticate a user. The paper also describes the 
experiments carried out to evaluate the performance of the 
touch dynamics authentication method and discusses the 
evaluation results obtained with different parameter value 
settings. 

II. RELATED WORK 

This section critically analyses related work on touch 
dynamics. As the scope of our work is in touch dynamics 
using numerical-based input strings, our literature critical 
analysis here will focus on this input string type. For details 
on related work in other groups, readers are referred to a recent 
literature survey of touch dynamics [2]. The work most 
relevant to ours has largely been focusing on studying the 
applicability of, or improving the performance in, using touch 
dynamics as a means of verifying subjects. Here, we discuss 
the most notable ones. 

The work reported in [3] was carried out to test the 
applicability of verifying subjects based on touch dynamics 
using numerical-based input strings. In their experiments, 
some of the touch dynamics features were extracted by using 
the more sophisticated accelerometer and gyroscope sensors. 
By using an Euclidean Distance classifier, they obtained an 
accuracy performance of 20% equal error rate (EER) on a 4-
digit PIN. Using more sophisticated sensors to extract some of 
the features means that this method is energy-consuming [4].  



The authors in [5] also investigated the accuracy 
performance of touch dynamics using a 4-digit PIN. In their 
investigation, subjects were asked to provide 100 input 
samples of a predefined PIN (“1593”) each. The authors used 
the Multi-Layer Perceptron classifier to classify the legitimate 
subjects, and these subjects can be correctly classified up to 
86% of the time. The result is encouraging, but to achieve the 
reported level of accuracy performance, they have made use 
of 100 input samples per subject to train the classifier. 
Acquiring such a large number of samples from the subjects 
is time-consuming and not always practical during an 
enrolment phase.  

The work reported in [6] was somewhat unique. The 
authors proposed a method to allow subjects to change their 
PINs without rebuilding the authentication model. The 
subjects were asked to input ten different randomly selected 
10-digit PINs. Based on the samples collected, they produced 
a table of all possible feature values for each digit. Using this 
method, they were able to achieve EER values of 23%, 21%, 
and 18% on three different PINs with the string lengths of 6, 
8, and 10, respectively. However, the majority of the subjects 
taking part in this experiment were at the age of 17-20, it is 
not clear whether the experimental findings apply to other age 
groups. 

More recently, Shen et al. [7] investigated the accuracy 
performance of touch dynamics on 4-digit, 5-digit, and 6-digit 
PINs. Unlike other related work, they used only raw motion 
data extracted from accelerometer and gyroscope sensors. To 
make the raw data useable as features, they computed a set of 
statistical metrics (min, max, mean, variance, etc.) from the 
raw data, and used the computed metrics as motion features. 
A similar method has also been used in other experiments such 
as [8]–[10]. By far, this method has only been used to extract 
motion features. It would be interesting to see how well this 
method works when used to extract other types of features, 
such as timing and spatial features investigated in our work.  

By far, the best accuracy performance was reported by 
[11]. The authors achieved an EER value of 0.56%. In this 
work, a two-class classification approach is used in building 
the authentication model, i.e. to build the model, samples from 
both legitimate and illegitimate subjects are used. This is also 
the case for the work reported in papers [8], [11], [12]. 
However, in real-life, as mobile devices are very much 
personal devices, illegitimate subject samples may not always 
be available. Therefore, this approach is less practical. 

III. AUTHENTICATION SYSTEMS DESIGN 

A. The Architecture and its Functional Units 

This section presents an overview of the system 
architecture for our touch dynamics authentication method. As 
shown in Fig. 1, the architecture consists of six functional 
units all run on a user’s mobile device. AIU is an input facility 
for users to provide their touch dynamics input samples. DSU 
is a database used to store authentication model. The rest four 
units provide the core functions of our touch dynamics 
authentication system and are summarised below. 

• RDAU: This unit acquires touch dynamics input 
samples from users via AIU and extracts raw touch 
dynamics data from the samples. These raw data are 
passed to FCU for feature construction. 

• FCU: This unit identifies and extracts touch dynamics 
features from the raw data. The extracted features are 
passed to MTU for model training. 

• MTU: This unit analyses and trains the extracted 
features to build an authentication model. The built 
model is stored in DSU and will be used by ADMU for 
authentication decision-making. 

• ADMU: This unit makes an authentication decision by 
matching a claimant’s touch dynamics features against 
the model stored in DSU. 

Fig. 1. The touch dynamics authentication system architecture. 

The operation of a touch dynamics authentication system 
can broadly be captured in two phases: enrolment and 
verification. In the enrolment phase, the touch dynamics input 
samples of the owner of a mobile device are acquired, 
processed and transformed into an authentication model that 
is stored in the DSU. In the verification phase, the touch 
dynamics input samples of a test subject (i.e. a claimant) is 
acquired, processed and compared against the model retrieved 
from DSU to verify if the claimant is indeed whom he/she 
claims to be (i.e. the owner of the mobile device). The two 
operational phases along with the units involved are illustrated 
in Fig. 1. In the next section, we describe the designs of the 
four core units and discuss the issues involved in more detail. 

B. Raw Data Acquisition Unit (RDAU) 

RDAU is the first core functional unit of the proposed 
system architecture, responsible for extracting raw touch 
dynamics data from the subject’s input samples. The design 
details of this unit and the dataset used for this experiment can 
be found in [6]. The paper gives detailed discussions with 
regard to how the raw data acquisition experiment is setup, 
how the input samples are acquired, how raw touch dynamics 
data are extracted from the input samples, and how the raw 
data are processed into a proper format for further analysis. 
The entire dataset used consists of 3000 samples and 33000 
touch actions from 150 subjects. Each subject contributed a 
total of 20 samples (10 for the 4D string and 10 for the 16D 
string) from 220 touch actions (50 for the 4D string and 170 
for the 16D string). The dataset is available to download at 
https://goo.gl/sNACU8. 

C. Feature Construction Unit (FCU) 

FCU is responsible for extracting a subject’s touch 
dynamics features from the subject’s raw touch dynamics 
data. In our design, two categories of features are extracted, 
first-order features (FOF) and second-order features (SOF). 
FOF features are a basic set of features extracted directly from 
the raw touch dynamics data, and SOF features are an 
extended set of features extracted from FOF features. 

1) First-Order Features (FOF) 
This section describes the process of extracting FOF 

features from a subject’s raw touch dynamics data and 
constructing a cumulative FOF feature vector for the subject. 



For each subject, a number of FOF features are captured, one 
spatial feature and multiple timing features.  

The pressure size (PS) is a spatial feature capturing the 
approximated size of the screen area being touched. A timing 
feature is an attribute capturing a time interval between two 
touch actions of one or more keys. Depending on how the 
intervals are measured, there are three types of timing features, 
i.e. dwell time (DT), flight time (FT), and input time (IT), and 
for FT, there are further four variants, i.e. FT1, FT2, FT3, and 
FT4. The descriptions of these timing features are given in [6]. 

Once FOF features, , ∈ {1,2,⋯ , }, are extracted from 
the raw data, they should be organised into the form of an FOF 
feature vector, i.e. = , ,⋯ , , where  indicates a 
particular type of FOF feature and  refers to the feature 
dimension of . When all the feature vectors are formed 
for a subject, a cumulative FOF feature vector, , can be 
generated. This is done by concatenating the FOF feature 
vectors, i.e. = 	, ,⋯ , . 

2) Second-Order Features (SOF) 
Some classification algorithms (or classifiers) perform 

better with a larger number of features [13], so increasing the 
number of features used in training the classifier to generate 
an authentication model can improve the accuracy 
performance of the model. For this reason, we extract a new 
category of features, known as the second-order features, from 
FOF features, and use both of them in the training of 
authentication model. As discussed above, FOF features 
extracted from the raw touch dynamics data are organised into 
FOF feature vectors. For each of these vectors, a set of SOF 
features is extracted. The set consists of 19 features, and each 
feature represents a descriptive statistics metric of the FOF 
feature vector concerned. Descriptive statistics metrics are 
used to quantitatively summarise or describe a collection of 
data in a meaningful way [14]. The list of descriptive statistics 
metrics used in our experiment (with their corresponding 
feature identifiers in brackets) are: Minimum (mn), Maximum 
(mx), Arithmetic Mean (am), Quadratic Mean (qm), 
Harmonic Mean (hm), Geometric Mean (gm), Median (md), 
Range (rg), Variance (vr), Standard Deviation (sd), Skewness 
(sk), Kurtosis (ku), First Quartile (fq), Third Quartile (tq), 
Interquartile Range (ir), Mean Absolute Deviation (ma), 
Median Absolute Deviation (mi), Coefficient of Variation 
(cv), and Standard Error of Mean (se). 

Similar to the case for FOF features, SOF features, , ∈{ , , ⋯ , }, once extracted from FOF features, should 
be organised into the form of a SOF feature vector, i.e. =, ,⋯ , , where  indicates a particular type of FOF 
feature. When all the SOF feature vectors are formed for a 
subject, a cumulative SOF feature vector, , can be 
generated. This is done by concatenating the SOF feature 
vectors, i.e. = , ,⋯ , . Once both FOF 
and SOF cumulative feature vectors are formed for a subject, 
they should be combined into a form of a feature set. A feature 
set consists of the FOF and SOF features extracted from the 
raw touch dynamics data of a single input string of a subject.  

D. Model Training Unit (MTU) 

MTU analyses the touch dynamics feature sets (also 
referred to as touch dynamics samples or samples) extracted 
by FCU and trains them to generate an authentication model. 
The generated model should uniquely represent the 
corresponding subject’s touch dynamics pattern.  

Depending on the data used, classifiers can be classified 
into two groups, one-class classifier (OCC) and two-class 
classifier (TCC). An OCC classifier only uses data from a 
single class (e.g. data from legitimate subject). Unlike an OCC 
classifier, a TCC classifier uses data from two classes (e.g. 
data from both legitimate and illegitimate subjects). In the 
mobile device context, obtaining two classes of data with a 
similar size is not practical. This is due to the fact that a mobile 
device is rarely shared among multiple users. Also, sharing a 
passcode with others increases data privacy risks and is not a 
recommended practice. For these reasons, obtaining 
illegitimate subject data is not practical, and only the data from 
the legitimate subject are available for use to train the 
classifier. If this is the case, a TCC classifier may not perform 
well, as it requires data from two classes to train a model that 
separates the two classes apart [15]. By contrast, an OCC 
classifier only needs data from one class to train a model, so 
in this case, the model training is not affected by any 
imbalanced data. Besides, the time taken by a TCC classifier 
to train a model is longer than that by an OCC classifier, as the 
former uses more data in training the model. Based on these 
considerations, we have chosen to use OCC classifier for 
feature classifications. 

In this paper, we have implemented both OCC and TCC 
classifiers. Specifically, we have implemented two OCC 
classifiers: (1) one-class k-nearest neighbour (OCKNN) [16], 
and (2) the support vector data description (SVDD) [17]. For 
our comparative study, i.e. the study we have carried out to 
examine the effectiveness of using OCC classifiers versus 
using TCC classifiers, we have implemented two TCC 
classifiers as well: (1) k-nearest neighbour (KNN), and (2) 
support vector machine (SVM) [18]. The classifiers used in 
our experiments are implemented using the Matlab (version 
8.5.0.197613) programming platform and two open source 
toolboxes. The OCC and TCC classifiers are implemented 
using the dd_tools toolbox [19] and the PRTools toolbox [20], 
respectively. 

E. Authentication Decision-Making Unit (ADMU) 

ADMU makes an authentication decision, i.e. whether a 
testing sample matches with the authentication model of the 
owner of the device. The design of ADMU involves two 
processes, feature matching and feature thresholding. In the 
feature matching process, the testing sample acquired from an 
authentication attempt is matched against the stored model in 
DSU to obtain a classification score. In the thresholding 
process, the score is compared to a predefined threshold, and 
if the score is over the threshold, then the sample is classified 
as legitimate. Otherwise, the sample classified as illegitimate. 

IV. PERFORMANCE ANALYSIS 

A. Evaluation Method 

To perform the accuracy performance evaluation of our 
touch dynamics authentication methods, we should perform 
the following four tasks. Firstly, we classify subjects into two 
sets, one designated as legitimate subjects and the other as 
illegitimate subjects. Secondly, some of the touch dynamics 
samples acquired from these subjects are used as training 
samples, in which these samples are used by MTU to generate 
authentication models. Thirdly, some of the other samples are 
used as testing samples, in which these samples and the 
generated models are used by ADMU to make authentication 
decisions. Lastly, based on the decisions, the evaluation 
metrics values are calculated, which indicates the accuracy 



performance of the model. The performance evaluation 
method described above is implemented using the evaluation 
procedure summarised in Algorithm 1. 

Algorithm 1. Evaluation procedure 

Input: Dataset  with  number of subjects, { , , … , }, Classifier 
, folds  

Output: Accuracy performance of the model  
 
for = 1 to  do 
    ← initialise the legitimate subject samples { } 
    ← initialise the illegitimate subjects samples − { } 
   Randomly split  and  into  disjoint folds, { , , … , } and      			{ , , … , } 
   for = 1 to  do 
       ← initialise the legitimate training samples, − { } 
       ← initialise the illegitimate training samples, − { } 
       ← initialise the training set, +  
       ← initialise the testing set, { } + { } 
       if  is a OCC classifier then 
            ← −  
            ← +  
       end if 
      Train  on  to build model  
       ← + (test the accuracy performance of  on ) 
   end for 

 ← + /  
end for 

 ← /  

B. Evaluation Metrics 

To evaluate the accuracy performance of the 
authentication model, three evaluation metrics are used, the 
False Rejection Rate (FRR), the False Acceptance Rate (FAR) 
and the Equal Error Rate (EER). The lower the values of these 
metrics the better the accuracy performance of the model. 
FRR and FAR are also used to plot the Detection Error Trade-
off (DET) curve [21], which is used to evaluate and compare 
the accuracy performances of different models in a graphical 
representation form. To plot the DET curve of a model, a set 
of FRR and FAR values of the model is needed. The values 
are obtained by setting the threshold to different values. The 
curve is formed by plotting the FRR values on the y-axis and 
the FAR values on the x-axis. The closer the curve to the 
bottom left corner, the better the accuracy performance of the 
model. 

C. Results Discussion and Analysis 

This section describes the experiments carried out to 
evaluate the performance of the touch dynamics 
authentication method and discusses the evaluation results 
obtained. The experiments were conducted using the 
evaluation methodology described in Section IV.A. Unless 
otherwise stated, each experiment was repeated four times, 
each time using one of the four classifiers (discussed in 
Section III.D) in turn, and the results reported were the 
average of the classifiers. 

1) Input String Lengths 
Using different input string lengths may also affect EER 

values. To examine the effect, we used two input strings with 
two different lengths, a 4D and a 16D string. For both input 
strings, FOF and SOF features were extracted. For each input 
string, we repeated the experiment four times, and for each 
time one of the four classifiers were used. 

Fig. 2 shows the EER values versus two input strings and 
four different classifiers. As shown in the figure, for all the 
classifiers, using the 16D string introduces a lower EER value, 
indicating that the longer the input string, the more accurate 
the authentication model. The reasons for this are three-fold. 
Firstly, the length of the 16D string is four times longer than 
that of the 4D string, and so is the number of features that are 
extracted from the 16D string. More features means more 
information about a subject’s touch dynamics pattern can be 
captured, therefore a more accurate model can be built out of 
the features. Secondly, when the input string length increases, 
the number of possible chunk combinations also increases, 
and so is the ability to better capture a subject’s touch 
dynamics pattern. Finally, when the input string length 
increases, the number of illegitimate features required to 
match that of a legitimate model will also increase, which 
means that the level of difficulty in impersonating a subject 
successfully also increases. 

Fig. 2. EER values versus two different input string lengths and four 
classifiers. 

The above results have revealed a correlation between the 
input string length and security. The shorter the input string 
length, the lower the level of authentication accuracy, 
indicating a lower level of security. There is also a correlation 
between the input string length and usability. The longer the 
input string, the more the number of touch actions are required 
to complete the input of the string, thus the harder and slower 
it is for the users to memorise the string, indicating a lower 
level of usability. A similar correlation has also been reported 
in [22]. In summary, the input string length influences the 
trade-off between security and usability. Therefore, in real-life 
applications, it should be chosen based on the security and 
usability requirements of the apps. 

2) FOF features 
There are four types of FOF (as discussed in Section 

III.C.1)). Each type of FOF captures a subject’s touch 
dynamics pattern in a different way. To investigate the 
accuracy performance of the authentication method using 
different types of FOF, we have extracted all four types of 
FOF from the 4D string as the test case. 

Fig. 3 shows the EER values of the four types of FOF. The 
EER value of PS is the lowest amongst the four types, which 
means that the accuracy performance of PS is better than 
timing features. This result can be explained as follows. The 
PS values are determined by several factors such as: (1) the 
physical size of the fingertip used to perform a TAP, (2) the 
amount of force exerted during a TAP, and (3) the fingertip 
position or angle during a TAP. The combination of these 
factors creates a distinctive pattern, which allows PS to better 
capture each subject’s touch dynamics pattern, and, as a result, 
achieves a higher level of accuracy. 



Fig. 3. EER values for different types of FOF. 

A better way of understanding the accuracy performances 
achieved by different types of FOF is to visualise the feature 
values from different subjects graphically. Fig. 4 shows the 
feature scatter plots of three types of FOF from three subjects. 
The subjects are randomly chosen. The x- and y-axis of each 
figure represents a type of FOF with the feature ID given in 
brackets. What is striking about the plots shown in the figure 
is that when PS is used (shown in Fig. 4c), the three subjects 
can be clearly distinguished or separated. However, this is not 
the case for FT (shown in Fig. 4b) and DT (shown in Fig. 4a). 
These observations are consistent with our discussions given 
above, i.e. PS achieves the best accuracy performance, which 
is followed by FT and, then, by DT. 

Fig. 4. Feature scatter plots of the three types of FOF: (a) DT, (b) FT, and (c) 
PS. 

3) Classifier Performance 
The classifiers used in our experiments can be classified 

into two groups, OCC and TCC. The main difference between 
the two groups lies in the type of training samples they each 
use in building authentication models (as discussed in Section 
III.D). Because of this, the models built by the two groups of 
classifiers differ in three attributes: (1) the accuracy 
performance, (2) the training time, and (3) the testing time. To 
evaluate and compare the two groups of classifiers in terms of 
these three attributes, we have chosen two classifiers for each 
group. For the OCC group, we have chosen OCKNN and 
SVDD, and, for the TCC group, we have chosen KNN and 
SVM. The input to each of these classifiers is set to be the FOF 
and SOF features extracted from the 4D string. 

Table I shows the EER values, training times, and testing 
times produced by using the classifiers, and Fig. 5 presents the 
DET curves of the classifiers. As shown in the table the EER 
values produced when using OCC are higher than those when 
using TCC. More specifically, the EER values when using 
OCKNN and SVDD are 10.5% and 9.9%, respectively, 
whereas the corresponding values when using KNN and SVM 
are, respectively, 8.7% and 9.4%. This indicates that the 
accuracy performances of the models built by OCC are lower 
than those by TCC. This may be due to the fact that, unlike 

OCC, the classifiers in TCC build the models with both 
legitimate and illegitimate samples, which means that the 
models can capture more information about the subjects’ 
touch dynamics patterns, leading to more accurate models. 
However, it should be emphasised that the level of gain in the 
accuracy performance by using TCC is not significant. As 
shown in Fig. 5, the DET curves of OCC and TCC are 
somewhat close to each other. 

TABLE I. EER, TRAINING, AND TESTING TIME VALUES OF FOUR 
CLASSIFIERS 

Features 
Classifier 

Group 
EER 
(%) 

Training 
Times (unit) 

Testing Times 
(unit) 

OCKNN OCC 10.5 1 1 

KNN TCC 8.7 1 7 

SVDD OCC 9.9 3 1 

SVM TCC 9.4 22 2 

 
Unlike the case for the accuracy performance, there is no 

clear correlation between a particular group of classifiers, 
OCC or TCC, and the model training time, rather the model 
training time appears to be classifier dependent. Among the 
four classifiers, SVM is significantly more expensive than the 
other three classifiers. The second most expensive classifier is 
SVDD, consuming 3 units of time against 1 by OCKNN and 
KNN. Two factors influence the model training time: (1) the 
nature (structure or approach) of a classifier, and (2) the 
number of samples a classifier uses to train a model. It seems 
that the first factor plays a dominant role in model training 
time. 

With regards to the model testing time, TCC classifiers are 
more expensive than OCC classifiers. KNN is the most 
expensive one among the four classifiers; seven times more 
expensive than OCKNN and SVDD. SVM is second most 
expensive, costing twice as much as OCKNN and SVDD. 
Similar to the case for the model training time, it seems that 
the nature of a classifier plays a dominant role in model testing 
time. 

Fig. 5. DET curves of four different classifiers. 

Based on the above results and discussions, particularly 
taking into consideration of the finding that, for a roughly 
similar level of accuracy performance, OCC classifiers are 
generally more efficient than TCC classifiers, both in terms of 
model training and testing times, and that, in a mobile device 
context, usually only the data from the owner of a device are 
available for use in training the classifier to build the 
authentication model, and performance and usability 
requirements are also important, we recommend the use of 
OCC classifiers in building an authentication model in this 
application context. 

 

 



4) With and Without Touch Dynamics 
To evaluate the effectiveness and efficiency of our 

proposed touch dynamics authentication method, we have 
compared two authentication systems: one using only a 4-digit 
PIN (denote as AS1), and the other using both a 4-digit PIN 
and the touch dynamics authentication method (denote as 
AS2).  

In the evaluation, for both AS1 and AS2, we have used the 
assumption that the PIN has already been exposed to an 
impersonator. In this case, with AS1, the probability for the 
impersonator to successfully gain access to the user’s device 
is 100%. On the contrary, with AS2, this probability is reduced 
to 9.9%, which is a significant reduction, indicating that the 
two-factor authentication method can achieve a significantly 
higher level of security in comparison with the single-factor 
method. Of course, there is a price to pay for using AS2; there 
is a non-zero FRR, which impedes usability. With this level of 
security enhancement offered by AS2, 1 out of 10 legitimate 
login attempts may be incorrectly rejected. With AS1, the 
FRR is zero, as none of the login attempts will be falsely 
rejected as long as the PIN is entered correctly. The above 
evaluation results also show that, with the use of a touch 
dynamics based authentication method, there is a trade-off 
between security and usability. We leave the research question 
as for how to balance this trade-off to future investigation. 

V. CONCLUSION 

This paper has investigated the feasibility and 
effectiveness of using touch dynamics biometrics for user 
authentication on mobile devices. To evaluate the 
effectiveness of this authentication method, we have acquired 
a comprehensive touch dynamics dataset. This paper has 
explained that two types of features can be extracted, a basic 
set of features, FOF, that can be extracted from the raw data, 
and an extended set of features, SOF, that can be extracted 
from FOF features. The paper then describes how the features 
may be classified using classifiers to build authentication 
models. Our experimental results show that the use of OCC 
classifiers is more efficient for roughly the same level of 
security than TCC classifiers, making the OCC-based 
classification method more practical in real-world 
applications. Experimental results showed that the idea of 
using touch dynamics biometrics to support user 
authentication in a mobile device or application context is 
feasible. Our future work is to use deep learning techniques 
[23]–[26] to automatically extract representative features to 
build more accurate authentication models.  
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