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Abstract. Glaucoma is the second leading cause of blindness globally,
it is characterized by degeneration of the optic nerve with particular
patterns of corresponding defects in the visual field. Aiding doctors in
early diagnosis and detection of progression is crucial, as glaucoma is
asymptomatic in nature. Furthermore there is good therapeutic results
in early cases before irreversible visual loss occurs. Thus it is of great
importance to find automated methods to discriminate glaucomatous
diseases giving insight to doctors. In order to develop a Computer Aided
Diagnosis system (CAD), we realised an extensive competitive study of
pattern recognition methods should be undertaken. A range of methods
have been evaluated including the use of Deep Neural Networks (DNN),
Support Vector Machines (SVM), Decision Trees (DT) and K-Nearest
Neighbours (KNN) for diagnosing glaucoma. Using a range of classifi-
cation techniques, this paper aims to diagnose glaucomatous diseases.
Results have been produced with data comprising of Visual Field and
OCT Disc readings from anonymous patients with and without glau-
coma. Multiple systems are proposed that can predict diagnosis for ocu-
lar hypertension, primary open angle glaucoma, normal tension glaucoma
and healthy patients with a reasonable confidence. Best performance has
been obtained from voting classier comprised of SVM and KNN at 0.87
(AUC) and DNN at 0.87 (AUC) which possibly could be used as an au-
tomatic diagnosis aid in order to streamline the diagnosis of glaucoma
for complex cases or flagging of urgent cases.

Keywords: glaucoma; Visual Field, pattern recognition, Computer Aided
Diagnosis, Deep Neural Network, Support Vector Machine, Decision Trees.

1 Introduction

Glaucoma is a group of diseases that are characterized by degeneration of the
optic nerve with particular patterns of corresponding defects in the visual field.
This is usually, but not exclusively, associated with a raised intraocular pressure.
Visual field defects are permanent and if the disease progresses enough, can result
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in permanent blindness. It is the second leading cause of blindness globally.
However early detection and treatment, can often protect against serious vision
lose [13]. Repeated measurements of the visual field over time are required to
detect early changes.

Typically, eyes affected by glaucoma have a raised intraocular pressure. This
can be related to anatomical factors affecting the depth of the front chamber of
the eye. Where the front chamber is too narrow, the condition is termed chronic
narrow angle glaucoma (CNAG). Where glaucoma occurs despite no narrowing
it is termed primary open angle glaucoma (POAG). POAG accounts for the vast
majority of glaucoma cases.

In some cases of glaucoma there are clear signs of optic nerve degenera-
tion when the nerve is examined clinically or imaged. However, there may be
no evidence of visual field defect, in which case preperimetric glaucoma is ap-
plied. The biological mechanism that allows the visual field to remain intact de-
spite optic nerve damage is not fully understood, as one would expect a strong
anatomical:physiological correlation. Imaging of the optic nerve is performed by
a technique termed optical coherence tomography (OCT). The most common
abnormality of the optic nerves in glaucoma is termed ‘cupping’. Some optic
nerves display signs of cupping but never develop field defects. In this situation
the changes are termed physiologic disc cupping (PDC).

Ocular hypertension (OHT) exists where there is a raised intraocular pressure
but no signs of optic nerve damage. A small proportion of people with this will
eventually develop glaucoma, so regular monitoring is necessary to detect these
cases.

There have been many previous works on the classification of glaucoma by
machine classifiers. [7] used a support vector machine using eight parameters
achieving a AROC of 0.981. Classifying Healthy, early and advanced glaucoma.
Linear discriminant analysis (LDA), generalised linear model (GDM) and gener-
alised additive model (GAM) were also tested. [4] focused on predicting preperi-
metric glaucoma using a DNN with 52 parameters, two hidden layers and con-
nected with stacked de-noising autoencoders thus. Producing a AUC of 92.6%
and distinguishing preperimetric glaucoma visual fields from healthy visual fields.

[19] evaluates the performance of deep convolutional neural networks (DC-
NNs) for glaucoma discrimination using images producing AUC of 90% or more.

We aim to produce results with less parameters, as found in actual practice
due to incomplete data and pre-guideline recording. Diagnosing a wider range
of glaucomatous diseases than works, which just distinguish between healthy
and glaucomatous visual fields. Whilst pathognomic changes in the intraocular
pressure, disc appearance, disc/macula OCT and visual field tests are easily in-
terpreted as glaucomatous, we aim to show that a system of analysing just the
visual field and optic disc OCT can have similar sensitivity and specificity to
clinical observer. This opens up the possibility of glaucoma diagnosis and moni-
toring with limited tests (whilst also opening up a discussion around prognostic
indicators) and without the need for image analysis of the optic disc appearance
(which to date remains a challenge to replicate for automated systems).
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This comparative study of Deep Neural Networks, Decision Trees, Support
Vector Machine, and k-Nearest Neighbours for the classification of glaucoma
will determine which method performs best for this task. The proposed system
aims to predict diagnosis for ocular hypertension, chronic glaucoma and healthy
patients.

The proceeding sections are organized as follows. Section 2 describes con-
cepts of classification algorithms, including deep neural networks. Section 3 dis-
cusses configuration and implementation of these algorithms. Section 4 shows
the dataset used for training and testing, detailing demographics and composi-
tion. Section 5 discusses the results. Finally, in Section 6 conclusions regarding
optimal methods and possible future works are presented.

2 Background on classifiers

2.1 Deep Neural Network

Deep Neural Networks (DNN) also known as deep feedforward neural networks,
are a popular method for classification and regression [11]. This bio-inspired
method, is modelled on how our brains are structured. Built with layers of neu-
rons (nodes) which react to a given stimulus (input), producing a response. These
neurons are modelled by an activation function such as a sigmoid or Gaussian
function. This method is trained by adjusting weights which connect the nodes
to gain a desired decision surface, so when given input x a prediction of y is
given. DNNs are Artificial Neural Networks which have multiple layers of neu-
rons. [10] Doing this increases the networks ability to accurately represent a
decision boundary.

For multi-class classification, the Softmax function is used on the output
layer. Softmax normalises the output, a discrete variable with n possible values.
Equating to a categorical probability distribution, producing the probability of
the classification being correct.

2.2 k-Nearest Neighbours

k-Nearest Neighbours (KNN) is a simple algorithm which stores given data and
produces predictions based on a similarity measure, such as euclidean distance.
A prediction is given using a majority vote based on the k closest data-points. [9]

For this type of deterministic classifier, it is necessary to have a training set
which is not too small, and a good discriminating distance. KNN performs well
in multi-class simultaneous problem solving. There exists an optimal choice for
the value of the parameter k, which results in better performance of the classifier.

2.3 Support Vector Machine

The Support vector machine (SVM) is a kernel based method. Given training ex-
amples labelled either ”yes” or "no”, a maximum-margin hyperplane is identified
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which splits the ”yes” from the "no” training examples, such that the distance
between the hyperplane and the closest examples (the margin) is maximized [12]
Since generally a larger margin equates to a lower generalization error.

There is a way to create non-linear classifiers by applying the kernel trick
to maximum-margin hyperplanes. The resulting algorithm is formally similar,
except that every dot product is replaced by a non-linear kernel function.

The margin determines the offset of the vector to the data points v controls
the range in which points are included. These points on the edge of the optimal
hyperplane are known as support vectors, giving the method its name.

2.4 Decision Trees

A Decision Tree consists of a set of ordered rules for classifying data. Each node
in the tree addresses an input variable. Leaves assign labels or values to the data.
Decision trees are quite different to the methods already described as they are
not kernel based. They are intuitive when compared to ANNs, due to the fact
the reasoning behind a classification can be easily followed.

However if greedy learning algorithms are used then DTs can be prone to
getting stuck in local optima. Furthermore algorithms can produce overly com-
plex or large trees that do not generalise well (cause overfitting). Decision trees
are constructed by splitting the dataset recursively into sub-sets based on a in-
put variable. This is done until all subsets have the same class, the sets become
too small or splitting no longer improves classification [17]. This is measured by
one of the following commonly used metrics, Gini impurity or Shannon entropy.
They both measure diversity in a set of discrete data, also know as purity [18].

3 Methods

3.1 DNN

The Deep Neural Network architecture used consisted of a 4 layer network with
6 input nodes, two hidden layers with 30 and 20 nodes respectively, and four
output nodes (one for each class) using softmax. Input features are detailed in
Section 4.1. The hidden layers used a rectified linear unit (ReLU) [15] activation
function, as this produced the best results in testing. The AdaGrad algorithm
was used, a modified stochastic gradient descent was used for gradient descent
optimisation [8]. AdaGrad adapts learning rates by scaling them, inversely pro-
portional to the square root of the sum of all the historic values of the gradient.
The effect of this is greater progress in more shallow sloped directions of the
parameter space [11]. The addition of a dropout layer was tested, though did
not provide an improvement in results. The DNN was simulated using Tensor-
Flow [2].



Glaucoma Diagnosis

3.2 SVM

The SVM was created with the scikit-learn library [16], as where all algorithms
except the DNN. A range of C values and kernels where tested. Kernels tested
where sigmoid, radial basis function (RBF), polynomial and linear.

A configuration with a C = 50, v = 1/n_features and a non-linear RBF
activation function, proved to be the most optimal configuration for the model.
Out performing over tested configurations.

C is the penalty parameter for the error term. It balances the size of the
margin with the amount of data-points correctly classified. It defines how much
you want to avoid misclassifying a data-point. The larger the C' the smaller
the hyperplane of the margin though this hyperplane will give a better decision
boundary.

3.3 KNN

The KNN uses k£ = 3 neighbours, using the Minkowski metric with a power of
2 (p = 2) which is equivalent to the euclidean distance. Using uniform weights,
where all in a neighbourhood are equal.

3.4 DT

The implemented decision tree uses the Gini impurity metric as classification
criteria. On creating a split, the best split is taken. A maximum depth was set
to avoid all leaves becoming pure. A range of random forests where tested for
performance with different number of estimators.

4 Dataset

The initial dataset consisted of 119 patients OCT nerve fibre layer thicknesses
and Visual Field indices of sensitivity over three visits starting in 2014,/2015.
To total 236 eyes. All data was completely anonymized and only included test
readings (shared prior to GDPR regulations introduction).

The dataset comprises of multiple diagnoses OHT, PDC, Normal Tension
Glaucoma (NTG), POAG, CNAG and Healthy. CNAG and PDC cases where
excluded due to limited examples in the dataset, which could lead to inaccurate
prediction. After cleaning the dataset size reduced to 196 eyes, Figure 1 shows
the exact breakdown of classes.

W Healthy
O OHT
O POAG

A ONTG

Fig.1. A breakdown of classes in dataset. A uneven class distribution within the
dataset can be seen.
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Only the most recent visit readings were used in the dataset for the methods
tested, as data was incomplete in previous visits. This was due to the incomplete
nature of the earlier sets as not all of the tests and measurements take place at
every visit. Any patterns which had missing data where removed. The following
Table 1 shows the demographic of the dataset by class.

Healthy Glaucoma OHT
(n=39) (n=115) (n=284)
Gender (male/female) 20/19 57/58 43/41
Age, years (mean+SD) 69 £ 14.10 724+9.56 624 10.88
Visual Field (MD) —1.78 £ 2.71 —5.51 £ 6.88 —2.16 £+ 2.32
Visual Field (PSD) 2.184+1.53 4.26 £3.37 2.51+1.40
Table 1. Dataset Demographics

Parameter

4.1 Feature Selection

Features where selected based on there relevancy to diagnosis, MD (Mean Devi-
ation) and PSD (Pattern Standard Deviation) on the Visual Field, and Superior
(Sup), Inferior (Inf), Nasal, Temporal (Temp) average RNFL segment thickness
on the disc OCTs. Analysis of principle components (PCA) was carried out
though produced the same results as the manually selected features. OCT Disc
retinal nerve fibre layer thickness readings were only provided in four segment
averages. Due to having limited parameters form the OCT, PCA did not produce
better feature selector.

Various methods where tested to normalise the dataset, centering to the mean
and doing a component wise scale to the unit variance produced the best results.

A small amount of noise was added to the dataset, this was done to increase
the number of examples. This was implemented using a Gaussian noise with
a standard deviation of available ¢ = 0.2. Wherewe use an original sample
Xand a virtual sample X + noise The generated noise was added to the whole
set doubling the amount of examples. This resulted in a slight improvement in
classifier accuracy of a couple percent.

5 Experimental results

All the results are described in terms of sensitivity and specificity in this case
they are the weighted averages of each class’s sensitivity and specificity. Results
are also measured in AUC, also known as AUROC or the area under receiver
operating characteristic.

5.1 General chronic glaucoma diagnosis

In this experiment, all type of glaucoma are defined under the same label e.g
POAG, CNAG — Glaucoma. This was carried out to test the general ability to
classify between glaucoma, OHT and healthy cases.
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DNN With this dataset a sensitivity of 77.52% and a specificity of 86.63% was
achieved, with a k-Fold k = 5 cross validation (CV) on the DNN [14]. Figure 2
shows the Receiver Operating Characteristics (ROC) curve for each fold.

KFold DNN ROC

1.0 1

e
o

Sensitivity

o
IS

0.2

0.0

ROC fold 1 (AUC = 0.94)

ROC fold 2 (AUC = 0.96)

ROC fold 3 (AUC = 0.95)

ROC fold 4 (AUC = 0.97)

ROC fold 5 (AUC = 0.88)

Luck

Mean ROC (AUC = 0.94 = 0.03)
+ 1 std. dev.

0.4 0.6 0.8 1.0
1 - specificity

0.2

Fig. 2. Receiver operating characteristic for each class using DNN.
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R ROC fold 2 (AUC = 0.96)
-~ ROC fold 3 (AUC = 0.93)
- ROC fold 4 (AUC = 0.98)
-7 ROC fold 5 (AUC = 0.84)
Luck
7 —— Mean ROC (AUC = 0.93 * 0.05)
+ 1 std. dev.

0.4 0.6 0.8 1.0
1 - specificity

0.2

Fig. 3. Receiver operating characteristic for each class using SVM.

SVM The following Table 2 shows the results using LooCV.

Method

Sensitivity Specificity AUC

Voting (SVM + KNN) 81.30 £ 0.13 87.92 £ 0.05 0.85 £ 0.04

SVM
DNN

k-Neighbors
Random Forest
Decision Tree

80.67 £ 0.14 86.80 £ 0.06 0.84 = 0.04
78.99 £ 0.08 86.87 £ 0.05 0.83 £ 0.02
76.68 = 0.10 86.31 £ 0.04 0.81 £ 0.03
68.07 £0.24 77.28 £0.12 0.73 £ 0.06
66.60 = 0.19 76.71 £ 0.11 0.72 + 0.04

Table 2. Comparison of classifier results, using LooCV (k = n).
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5.2 More detailed glaucoma diagnosis

This experiment aims to gain resolution into diagnosing different types of glau-
coma. Labels are kept with the diagnosis as given by doctors, which consists of
four classes OHT, POAG, NTG and healthy cases.

SVM With this dataset the best results where produced using a SVM. With
a sensitivity of 82.90%, specificity of 92.18% and AUC of 0.87 however as can
be seen in Figure 4 the characteristic of the NTG ROC curve with a AUC of
0.88 does not perform as well as other classes. This is due to the low amount
of patterns which are contained in the dataset for this class. Which causes a
weaker “understanding” in the model of said class. Table 3 shows results for all
the classifiers tested.

1.0 LT
SIS i) e
v e
nig n® s
0.8 -~
- e
.,
- /,
o e
cu ,/
> 0.6 o e
3 . .
7 * ,z'
&
Boal &
041 & .
] e
- /,
-J Pid —— OHT class ROC curve (area = 0.94)
0.2 /z’ POAG class ROC curve (area = 0.91)
’ i e NTG class ROC curve (area = 0.88)
t R HEALTHY class ROC curve (area = 0.89)
. //’ = = micro-average ROC curve (area = 0.91)
004 ¥ = = macro-average ROC curve (area = 0.91)
0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

Fig. 4. Class ROC for SVM. Effects of low NTG class count can be seen.

Method Sensitivity Specificity AUC

Voting (KNN + SVM) 81.37 £ 0.12 91.93 4 0.03 0.87 £ 0.05
DNN 80.61 +0.12 92.33 +0.02 0.86 + 0.05
SVM 79.85 £0.11 91.14 £+ 0.03 0.85 + 0.04
k-Neighbors 75.51 £ 0.14 88.16 + 0.06 0.82 4+ 0.04
Decision Tree 64.29 +0.34 79.40 £0.14 0.72 + 0.11
Random Forest 63.52 +£0.28 78.42 + 0.15 0.71 £ 0.08

Table 3. Comparison of classifier results, using LooCV (k = n).

5.3 Voting Classifier

A combination of the SVM and the KNN was used to produce a voting classifier
using majority rule voting, in an attempt to improve classification accuracy. As
can be seen in Table 3 this was successful.
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6 Conclusion

In this paper we show that the proposed multiple system can predict diagnosis
for ocular hypertension, chronic glaucoma and healthy patients with a reasonable
confidence.

Health services around the globe face challenges dealing with the growing
demand placed on them by an increasing prevalence of glaucoma. Glaucoma
clinics have particular difficulties compared to other eye diseases, given that the
condition is a lifelong disease requiring multiple visits to the hospital to diagnose
and monitor. The use of artificial intelligence to streamline the diagnosis of
glaucoma means there is improved clinician availability for complex cases.

Furthermore, a system such as the one we have detailed could potentially
be used in triaging of community-based referrals to hospital eye services. It
could ‘flag’ a referral that is more likely to be true glaucoma from an ocular
hypertension or a healthy case. At present a referral is graded as urgent or routine
by an optician, but there is no grading system for ‘likelihood of glaucoma’. An
alert that could be added to referrals for this would facilitate the task of triaging
for the clinician, and improve timely access to glaucoma clinics for patients
according to clinical need.

Due to the resolution of data collected, only having segment averages limits
the results of this study. If we had the full set of parameters then a deeper
analysis could have been carried out to select better features to comprise the
input space.

Results are promising with DNN and SVM methods producing diagnosis with
similar accuracy to healthcare professionals [3] with a AUC = 87%. This could
be improved in further works, with larger sample and increased resolution of
data collected.
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