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Abstract 

Among the recent innovative strategies for coping with product variety and market risk some firms have 
partnered to leverage economies of scale and risk pooling by sharing manufacturing capacity. In this 
paper we study how to structure such a joint venture to achieve full efficiency at low transaction costs. 
Specifically, we study whether capacity should be owned jointly or separately. Overall, we find that the 
two ownership structures have complementary strengths and weaknesses in term of their incentives for 
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coordinate under joint ownership, but may entail high transaction costs under separate ownership when 
the joint venture consists of many firms with different profit margins. On the other hand, capacity 
investments remain simple to coordinate under separate ownership, but are efficient under joint 
ownership only in the presence of large economies of scale or asymmetric demands or asymmetric 
profit margins, and would otherwise entail high transaction costs. Our analysis thus characterizes the 
trade-off between economic benefits and transaction costs in the choice of capacity ownership structure. 
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1 Introduction

Product proliferation and the shortening of their lifecycle have made it more challenging for man-

ufacturing firms to deliver the right product in the right quantity at the right time. To cope with

this increased product variety and market risk, some firms have sought to leverage economies of

scale and of risk pooling by investing in joint production capacity with other firms that use simi-

lar productive resources. For instance, Ford and Volkswagen jointly invested in the early 90s in a

Latin-American joint venture, called Autolatina, with the goal of sharing the risk of operating in

that volatile market and supporting a wide model range (Cavusgil et al. 2007). As another example,

Syncrude, the world’s largest producer of synthetic crude oil from oil sands, was created to offer its

founding partners (including large and financially strong firms such as Imperial Oil) an opportunity

to share capital demands and risks (Herd 2010). The trend towards forming alliances seems to have

been growing, at least in the automotive industry (The Economist 2012).

Although joint operations may create many economic benefits, it also creates additional compe-

tition for manufacturing capacity, on top of the product competition in the market. For instance,

Volkswagen, which accounted for the lion’s share of Autolatina’s output, blocked Ford’s plans to

introduce a small car through the joint venture, thereby pushing Ford to produce a small car on its

own (Jackson and Turner 1994), and ultimately leading to the dissolution of the joint venture despite

year-after-year profitability (Cavusgil et al. 2007). More recently, Ford, in its joint venture with

Mazda and Changan, was accused of allocating too much capacity to its own cars and to prevent

Mazda from meeting its fast-growing demand (Cheng 2010).

Although some may recommend to “be careful who you marry, and have a good prenuptial

agreement” (Bradsher 1997), aligning everyone’s interests for sharing capacity could require incom-

mensurable effort. Aligning incentives for capacity allocation is indeed nontrivial. For instance,

complex rules need to be adopted to align capacity allocation priorities in the Hunter Valley Coal

Chain, a consortium in charge of the world’s largest coal export operation (HVCC 2009). When

coordinating decisions to achieve full efficiency turns out to be too complicated to be contractu-

ally specified, i.e., entails high transaction costs, economic benefits may need to be sacrificed, even

though such benefits are often the primary reason for which joint ventures are created.

Is it possible to achieve the best of both worlds, i.e., to adopt simple and efficient coordinating

mechanisms for sharing capacity? The existence of such mechanisms depends on the structure of

capacity ownership. As Hansmann (1988) puts it, the costs of collective choice mechanisms are

crucial in determining the efficiency of alternative assignments of ownership.

Should capacity be owned jointly or separately? Under joint ownership (JO), each unit of capacity

is jointly owned by all partners, in proportion to their investments. (See Figure 1, left, for an

illustration.) Accordingly, capacity allocation decisions must be approved by all partners. For

instance at Syncrude, each owner has a specific undivided co-ownership interest in the assets of the

joint venture (Syncrude 2012). By contrast under separate ownership (SO), each unit of capacity

is owned by one firm only, and that firm is the only one entitled to choose how to use that unit of

capacity. (See Figure 1, right, for an illustration.) For instance at Sevel-Nord, an alliance between

Fiat and PSA, each partner owns half the production capacity and can decide to use it for its own

products or for its partner’s products in case of capacity shortage (Bidault and Schweinsberg 1996).

In this paper, we consider a joint venture (JV) between manufacturing firms that combine their

resources to leverage economies of scale and risk pooling. Although there are various reasons for

setting up a JV such as reinforcing competitive positions or developing joint organizational learning

(Kogut 1988), we focus here on economies of scale and risk pooling. Moreover, we consider a situation

in which firms keep the management of their product lines separate, either because profit margins

are difficult to contract on or because firms may not want or be allowed to reveal them, let alone

share them, for competitiveness or antitrust reasons. We study whether firms should own the JV’s

capacity jointly or separately, so as to align everyone’s interests in investing and allocating capacity

and achieve the full economic benefits of capacity sharing at low transaction costs.
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Joint Ownership Separate Ownership

Figure 1: Joint vs. Separate Ownership.

We model the JV operations as a two-stage game, similar to the newsvendor model (Van Mieghem

1999). In the first stage, firms jointly invest in production capacity without knowing demand. In

the second stage, demand is realized and firms must decide how to allocate the joint production

capacity. Because of demand uncertainty, capacity rationing will inevitably occur, thereby creating

competition for manufacturing capacity. Coordinating capacity investment and allocation decisions

at low transaction costs will be key to the long-term viability of the JV.

We find that SO arrangements may be associated with high transaction costs for coordinating

capacity allocation when the JV consists of many firms with different profit margins. With only

two firms, or when the firms have identical profit margins, as is the case at Sevel-Nord, capacity

allocation can be orchestrated at low transaction costs. By contrast, capacity sharing under JO is

always conceptually simple to administer even with a large number of firms.

However, JO may lead to capacity overinvestment, unless there exist sufficiently large economies

of scale in production or capacity investment; or, if the demand for the lower profit margin products

is sufficiently large; or, if the spread in profit margins between products is sufficiently important. If

those conditions are met, as appears to be the case at Syncrude, full efficiency is achieved by having

the JV operate on a non-profit basis. By contrast, SO arrangements lead to simple investment

coordination, provided that production capacity allocation decisions are also coordinated.

Consequently, SO and JO arrangements appear to be complementary in strengths and in weak-

nesses: coordinating capacity allocation seems to be SO’s main weakness and JO’s main strength,

and coordinating capacity investments seems to be SO’s main strength and JO’s main weakness.

The paper is organized as follows. We review the relevant literature in the next section and

introduce the model in Section 3. Sections 4 and 5 characterize the equilibrium in the capacity

investment and allocation games, respectively for the SO and the JO structures, and discuss when a

coordinating mechanism achieves full efficiency at low transaction costs. We present our conclusions

in Section 6. All proofs appear in the appendix.

2 Literature Review

JVs have generated a lot of academic research from the perspective of economics and strategic man-

agement theory because of their hybrid nature. In comparison, the management of their operations

has received only limited attention. We first briefly review the economics and management liter-

ature and then review the operations management literature on outsourcing, mergers, inventory

transshipments, and inventory centralization games.

Economics and Strategy of Joint Ventures. According to transaction cost economics,

the emergence of JVs results from a trade-off between savings in production costs (e.g., due to scale

of operations) and transaction costs (e.g., expenses for writing and enforcing contracts); see Kogut

(1988). In this paper, we offer an operational perspective on transaction cost theory by showing that

contractual complexity may grow exponentially with the number of JV partners. We study when
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it is feasible to achieve full economic efficiency with simple coordinating mechanisms, but note that

trade-offs inevitably arise in other circumstances.

Hennart (1988) makes the distinction between equity JVs, when “two or more sponsors bring

given assets to an independent legal entity and are paid for some or all of their contributions from the

profits earned by the entity” and non-equity JVs, which consist of contractual arrangements such

as supply agreements. Similarly, the International Financial Reporting Standards classify “joint

arrangements” either as “joint ventures, [which] are arrangements in which the parties have rights

to an investment,” or as “joint operations, for which the parties have rights to the assets and

obligations for the liabilities” (IFRS 2011). Consistent with those distinctions, we consider two

forms of ownership, namely joint ownership and separate ownership, which mimic these two forms

of joint arrangements.

Harrigan (1988) proposes a classification of JVs. According to her framework, we consider here

a situation with high market uncertainty and either stagnating demand, leading firms to create a

horizontal JV so as to consolidate capacity, or rapidly growing demand, leading firms to share supply

capacity until critical mass is reached. Kogut (1988) indeed argues that one of the primary reasons

for setting up a JV is to “take advantage of economies of scale and diversify risk.”

Outsourcing. Considering two newsvendors separately owning their capacity, Van Mieghem

(1999) studies when their capacity investment and production decisions can be coordinated, when

one newsvendor has the option to outsource its production to the other. The key economic tension

in this outsourcing model arises from demand uncertainty and the benefits of risk pooling (Van

Mieghem 2003, Jordan and Graves 1995). Similarly here, demand uncertainty is at the core of

competition for capacity, although risk pooling may not be the primary driver behind the creation

of a JV. It is found that full coordination with outsourcing is in general not attained with fixed-price

contracts and incomplete contracts, but can be achieved with state-dependent prices. In contrast to

outsourcing arrangements in which capacity transfers are unidirectional, we consider here a situation

in which capacity transfers can occur in either direction, thus offering even greater potential for risk

pooling. Unlike Van Mieghem (1999), we find that coordination can be achieved with fixed-price

contracts due to the bidirectional nature of transfers, but that their contractual complexity grows

exponentially with the number of partners.

Mergers. A JV is a form of horizontal merger. Focusing on economies of scale in production,

Cho (2011) and Cho and Wang (2012) study the impact of mergers on firms’ profits and consumer

prices, respectively without and with demand uncertainty. Zhu et al. (2012) empirically find that

mergers improve profits mostly through increased market power but do not seem to result in increased

operational efficiency. In contrast to this stream of research, which has primarily focused on the

changes in industry competitiveness before and after a merger, we focus on the management of the

operations of a particular alliance.

Inventory Transshipments. Considering independent newsvendors separately owning in-

ventory, Anupindi et al. (2001) study how to coordinate ex-post inventory transshipments to reduce

the local mismatches between supply and demand. In order to ensure participation of the firms in

the transshipment process, they propose a “dual allocation rule” based on the dual solution of the

corresponding transshipment optimization problem. Implementing the dual allocation rule remains

challenging, however, as retailers may want to withhold their inventory (Granot and Sošić 2003) or

may converge to a suboptimal equilibrium (Suakkaphong and Dror 2011). Instead of having recourse

to an ex-post allocation rule, Rudi et al. (2001) and Hu et al. (2007) propose to coordinate trans-

shipment decisions with ex-ante transshipment prices in a two-retailer distribution system. Dong

and Rudi (2004), Zhang (2005), and Krishnan et al. (2011) consider more general distribution net-

works, with or without centralized chain store downstream. Huang and Sošić (2011) show that the

dual allocation rule outperforms transshipment prices when retailers are asymmetric and that the
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opposite holds otherwise.

Despite their similarities, capacity and inventory sharing cannot be managed in the same way

because production capacity is inherently more flexible than inventory. In particular, capacity is

completely undifferentiated before it is used whereas inventory’s usage costs may depend on who

bought it and where it is stored. Consequently with capacity, it may not be optimal to satisfy

the local demands first before satisfying the excess demand of other products, which is a necessary

condition for the applicability of the dual allocation rule (Suakkaphong and Dror 2011). In fact, we

show that operating capacity in the same way as inventory, i.e., sharing only the leftover capacity

to satisfy the residual demand, can result in a substantial loss of efficiency.

Inventory Centralization. Similar to this paper, Hartman et al. (2000), Müller et al. (2002),

Plambeck and Taylor (2005), and Kemahlıoğlu-Ziya and Bartholdi (2011) consider a situation in

which the full benefits of risk pooling are reaped, with multilateral transfers of undifferentiated units

of capacity. Yu et al. (2011) consider a similar setup with queuing systems. Adopting a cooperative

game-theoretic framework, this literature studies how to allocate the benefits of pooling to make the

coalition stable.

However, JVs are often subject to opportunistic behavior and internal conflicts despite being

paved with the best intentions.1 In fact, a JV’s performance – and survival – is significantly affected

by the tensions between cooperative and noncooperative behaviors (Park and Russo 1996, Kumar

2010). It is thus critical to understand the strategic tensions between the partners before setting up

a JV. Reporting that more than half of JVs fail, Bamford et al. (2004) indeed argue that most JV

failures could have been prevented had more time been spent upfront to better align the partners’

strategic objectives. Luo (2002) confirms that contracting and cooperation have a complementary,

and not substitute, impact on JV performance, since contracts provide an institutional framework

for guiding the course of cooperation. Accordingly, we adopt in this paper a non-cooperative game-

theoretic approach to study the strategic interactions arising in the creation and operation of the

JV. Compared to cooperative game theory, our focus is on the enforceability of decisions at low

transaction costs, and not on stability. Our approach can therefore be viewed as complementary to

cooperative game theory, precisely delving into the contractual details that are typically assumed

away in cooperative game-theoretic models (Plambeck and Taylor 2005, p. 140).

3 Model

We consider a JV between n ≥ 2 firms that independently manage their product lines. For ease

of exposition, we assume that each firm produces only one product, sold on distinct markets and

using one single flexible piece of production equipment. For instance at Sevel-Nord, Fiat and PSA

made almost identical vehicles, sold under the firms’ respective brands through their respective

distribution networks, with a large portion of their demand based in their respective home markets

(Bidault and Schweinsberg 1996). Similarly at Autolatina, Volkswagen focused on the subcompact

car segment whereas Ford focused on the midsize car segment and they kept separate distribution

channels in Brazil (Cavusgil et al. 2007). This simple setting, which can be interpreted as a high-

level, “black-box” description of a complex newsvendor network production facility (Van Mieghem

and Rudi 2002), also captures most of the benefits of flexibility.

We model the JV’s operations as a two-period game, akin to the newsvendor model, as it fre-

quently occurs in the high-tech and the automotive industries (e.g., Jordan and Graves 1995, Van

Mieghem 1999). In the first period, the JV partners decide on their investments in a common re-

source without knowing the demand for their products. In the second period, demand is realized

and the firms choose how to allocate the joint capacity so as to fulfill their respective demands.

1For instance, EADS is renowned for being prone to endless conflicts between its two parents, the French and the

German governments (Reiermann 2007). Even Renault-Nissan, which is often reckoned as one of the most successful

alliances, has also been subject to internal jealousy (The Economist 2011).
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In reality, this second period can consist of N production planning periods. Capacity investment

decisions are indeed often strategic, e.g., are made once every decade, whereas production planning

decisions are tactical, e.g., are made on a monthly basis. In that case, the probability of a particular

demand realization can be interpreted as the expected frequency of that demand realization over the

N planning periods. With multiple planning periods, it is even more important to structure the JV

so as to coordinate capacity allocation decisions since each planning period could potentially give

rise to a new conflict.

Let yi be the effective capacity provided by Firm i in the capacity investment stage, and let

y =
∑n

i=1 yi be the total effective capacity. As is common in many JVs, capacity investments

may exhibit economies of scale. Accordingly, let K(y) be the total cost to install capacity y, with

K(0) = 0, K ′(y) > 0, and K ′′(y) ≤ 0.

After the investment stage, demand D = (D1, . . . , Dn) is realized. Demand is assumed to follow

a multivariate continuous distribution F1,...,n(ξ) = P[D1 ≤ ξ1, . . . , Dn ≤ ξn], finite with probability

1, with expectation E[D]. Let us denote Fi(ξ) = P[D1 ≤ ∞, . . . , Di−1 ≤ ∞, Di ≤ ξ, Di+1 ≤

∞, . . . , Dn ≤ ∞] as the distribution of Di, F̄i(ξ) = 1−Fi(ξ) as its complementary distribution, and

fi(ξ) = F ′
i (ξ) as its density; similarly, let F (ξ) = P[

∑n

i=1 Di ≤ ξ], F̄ (ξ) = 1−F (ξ), and f(ξ) = F ′(ξ)

be the corresponding quantities for the total demand D =
∑n

i=1 Di. With these notations, a shortage

of capacity will occur if D ≥ y. Demands are not restricted to be independent; in particular, the JV

could benefit from risk pooling with negative correlation.

Upon observing their demands, the firms decide how to allocate capacity to maximize their

profits. Let xi be the quantity of Product i produced and x =
∑n

i=1 xi be the total production

quantity. Similar to the literature on outsourcing (e.g., Van Mieghem 1999), inventory sharing (e.g.,

Anupindi et al. 2001) and inventory centralization games (e.g., Hartman et al. 2000), we assume

exogenous prices and denote vi as Product i’s gross profit margin exempt of production costs. As

is common in many JVs, production costs may exhibit economies of scale. Let c(y) be the unit

production cost if y units of capacity have been invested, with c′(y) ≤ 0. Without loss of generality,

we assume that products are ranked in decreasing order of profitability, i.e., vi > vi+1. (We shall

also discuss the degenerate case in which vi = vi+1.) For simplicity, we assume that each unit of

product uses exactly one unit of capacity. (This assumption is without loss of generality if c′(y) = 0.)

To eliminate trivial cases, we assume that all products are profitable to make, i.e., vn ≥ c(y), once

capacity investments are sunk.

Throughout this paper, we assume perfect information. It turns out that, if the contractual

mechanism coordinates production decisions, firms will be willing to truthfully reveal their demand,

so our analysis is robust to that assumption. In addition, we consider a situation in which firms do not

want or are not allowed to share their profit margins, either for competitiveness or antitrust reasons.

In fact, profit margins are often hard to estimate, especially when they include non-manufacturing

costs (e.g., distribution) or opportunity costs (e.g., growth in market share). Consequently, we only

consider contracts that do not make payments dependent on profit margins.

Moreover, we assume that all actions of the firms, namely capacity investment and allocation

decisions, are contractible, i.e., there is no double moral hazard, unlike Marinucci (2009) and Roels

et al. (2010). Accordingly, there always exists, in principle, a contract that can attain full efficiency

under decentralized decision-making. However, such contract may entail high transaction costs. We

next characterize the system-optimal capacity investment and allocation decisions, which will serve

as a natural benchmark to achieve full efficiency in the JV operations at low transaction costs.

3.1 First-Best Decisions

Let Π (x;D, y) be the JV’s profit, for a given production vector x, demand realization D, and

capacity y. The first-best (FB) production plan, denoted x∗(D, y), maximizes the JV’s total profit,
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i.e., solves

maxx Π(x;D, y) =
∑n

j=1(vj − c(y))xj − K(y)

subject to
∑n

j=1 xj ≤ y

0 ≤ xi ≤ Di ∀i.

(1)

Because (1) is a continuous knapsack problem, x∗
i (D, y) = min{Di, y −

∑

j<i x∗
j (D, y)} for all i.

Let Si(y) denote the expected sales for Product i if the FB production plan is implemented, i.e.,

Si(y) = ED[x∗
i (D, y)].

Define Π (y) as the expected profit at capacity y if the FB production plan is implemented, i.e.,

Π (y) ≡ ED [Π (x∗(D, y);D, y)]. In the following, we assume that Π(y) is strictly pseudo-concave,

i.e., has a unique maximum and no interior minimum. 2 Let y∗ be the first-best (FB) capacity level,

defined as the solution to the following optimality conditions:

n
∑

i=1

(vi − c(y∗))S′
i(y

∗) − c′(y∗)S(y∗) − K ′(y∗) = 0. (2)

3.2 Capacity Allocation and Investment Game

For the JV to be viable, capacity allocation and investment decisions must be approved by all JV

partners. Otherwise, opportunistic behavior or conflicts could arise. Although there always exists,

in principle, a contract that can lead to full efficiency, such contract may entail high transaction

costs. In particular, that contract may require the JV partners to foresee an exponential number

of contingencies or to define complicated rules to coordinate their decisions. In that case, efficiency

may need to be sacrificed to preserve contractual simplicity. Is it possible to achieve the best of both

worlds, i.e., high efficiency and contractual simplicity?

To answer that question, we need to consider the structure of capacity ownership. We consider

two extreme forms of ownership structure, namely joint and separate ownership, illustrated in Figure

1. Under joint ownership (JO), each unit of capacity is jointly owned by all n partners, in proportion

to their investments. By contrast under separate ownership (SO), each unit of capacity is owned by

one firm only, and that firm is the only one entitled to choose how to use it.

3.2.1 Capacity Allocation Game.

In the production stage, the JV partners may need to trade capacity to make the best use of the joint

capacity. Let qij denote the amount of capacity owned by Firm i and allocated to the production

of Product j. In order to create incentives for firms to share capacity, capacity trades need to be

rewarded. Accordingly, let tij(q) be the price paid by Firm j to Firm i to use q units of its capacity.

Although this transfer function can be quite general, we assume that it does not depend on the

demand realizations; that is, price functions must be agreed on ex-ante, similar Van Mieghem’s

(1999) price-only contracts.3

Given a vector of capacity transfers q, demand realization D, and capacity investment y, Firm i’s

profit, denoted as Πi (q;D,y), consists of the net revenue associated with Product i and the net profit

from capacity trades, minus the firm’s share of capacity investment costs. That is, Πi (q;D,y) =

(vi − c(y))xi(q) −
∑

j 6=i tji(qji) +
∑

j 6=i tij(qij) − K(y)yi

y
.

Under JO, Firm i owns only yi/y share of each unit of capacity. Accordingly, if Firm i believes

it is best to make xj units of Product j, it can only contribute (yi/y)xj units of capacity towards

that goal, i.e., its capacity transfer to Firm j must be equal to (yi/y)xj .

Under SO, Firm i owns yi units of capacity and is the only one entitled to choose how to allocate

those yi units. The available capacity for Product j is therefore the net result of capacity inflows

2This is in particular the case when K′′(y) = c′(y) = 0. When Π(y) has multiple stationary points, the conditions for

coordinating capacity investments (Propositions 2 and 4) are only necessary.
3This restriction turns out to be without loss of generality, at least conceptually, since we will allow for state-dependent

trade limits, which serve the same purpose as state-dependent prices in a dual fashion.
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(
∑

k 6=j qkj) and outflows (
∑

k 6=j qjk), in addition to the initial capacity investment (yj). Accordingly,

xj(q) = min{Dj, yj +
∑

k 6=j qkj −
∑

k 6=j qjk}. In addition, the JV partners may wish to set trade

limits to better match supply and demand. For instance, trades may be forbidden if the trade

recipient does not need or intend to sell back the traded capacity. On the other hand, trades should

not be forced, consistent with the free spirit of the JV. Accordingly, we assume that trades must

satisfy the following upper bound constraints: 0 ≤ qij ≤ gij(D,y) for all i, j. Although these trade

limits can be defined arbitrarily, we assume that they are such that the FB production decisions are

always feasible. Ideally, these trade limits (gij(D,y)) should be contractually simple to specify so

as to keep transaction costs low.

Accordingly if Firm i were the only firm making decisions about capacity transfers and capacity

allocations, it would choose capacity transfers so as to maximize its own profit:

maxq Πi (q;D,y) = vixi(q) −
∑

j 6=i tji(qji) +
∑

j 6=i tij(qij) − c(y)xi(q) − K(y)yi

y

subject to
∑n

j=1 xj(q) ≤ y

0 ≤ xj(q) ≤ Dj ∀j

xj(q) = qij
y
yi

∀j [JO]

xj(q) = min{Dj, yj +
∑

k 6=j qkj −
∑

k 6=j qjk} ∀j [SO]

0 ≤ qij ≤ gij(D,y) ∀i, j [SO],

(3)

in which the first two constraints require that production should not exceed total capacity and the

production of Product j should not be greater than its demand, similar to (1). The third constraint

applies to JO arrangements only, and the last two constraints apply to SO arrangements only. In

the following, we will refer as ΠSO
i (q;D,y) Firm i’s profit under SO and as ΠJO

i (q;D,y) Firm i’s

profit under JO.

In reality, capacity allocation decisions are made jointly. A firm will agree with the collective

decision if that decision maximizes its profit. In addition, firms care about economic efficiency given

that it is often the primary driver for creating a JV. This leads to the formulation of our first

coordinating principle: Capacity trades are incentive-compatible if they lead to the FB production

plan and they maximize each firm’s individual profit.

Coordinating Condition 1 (ICProd). There exists a q̄ such that q̄ ∈ arg maxΠi (q;D,y) for all

i and x(q̄) = x∗.

Fortunately, coordination leads to efficiency. If all firms agree on the capacity transfers, these

capacity transfers will be such that the FB production plan is implemented, as shown next.

Lemma 1. If q̄ ∈ argmaxΠi (q;D,y) for all i, then x(q̄) = x∗.

Hence for (ICProd) to be satisfied, it is necessary and sufficient that all firms agree on a capacity

transfer plan.

3.2.2 Capacity Investment Game.

We next consider the capacity investment game, which takes place under demand uncertainty. Let

Πi (yi;y−i) ≡ ED [maxq Πi (q;D,y)] denote Firm i’s expected profit if it invests yi and the other

firms invest y−i = (y1, . . . , yi−1, yi+1, . . . , yn). Implicit in this expectation are all capacity transfers

obtained from (3), for each possible demand realization. In particular, this expected profit depends

on the structure of ownership.

If Firm i were autonomous in its choice of capacity investment, it would choose a capacity that

maximizes its expected profit:

yi = arg max
yi≥0

Πi (yi;y−i) . (4)

In reality, capacity investment decisions are made jointly. Under decentralized decision-making, a

firm will agree with the collective investment decision if its own investment maximizes its indivual
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profit, given the other firms’ investments. In addition, firms care about economic efficiency given

that it is often the primary driver for creating a JV. This leads to the formulation of our second coor-

dinating principle, which mirrors (ICProd): Capacity investment decisions are incentive-compatible

if they lead to the FB investment in equilibrium.

Coordinating Condition 2 (ICInv). There exists a ȳ such that ȳi = arg maxyi
Πi (yi;y−i) for all

i and
∑n

i=1 ȳi = y∗.

In the sequel, we will say that a contract is coordinating if both (ICInv) and (ICProd) are satisfied.

We next investigate whether coordination is achievable at low transaction costs, for both cases of

SO and JO.

4 Separate Ownership

We first consider separate ownership (SO) arrangements. We find that SO arrangements can yield

full efficiency at low transactional costs when the JV consists of only two partners or when the firms

have identical profit margins. Otherwise, they may be associated with high transaction costs, which

grow exponentially with the number of firms. We first study the capacity allocation game and then

the capacity investment game.

4.1 Coordinating Capacity Allocation

We first consider the production stage. After demand is realized, some firms may experience a

capacity shortage while others are experiencing a capacity surplus. Naturally, firms who have an

excess of capacity would like to sell it at the highest price whereas firms who experience a shortage

would like to buy capacity at the lowest price. Hence, coordinating capacity trades to achieve full

efficiency is nontrivial.

The next proposition shows that capacity trades can only be coordinated with extreme-point

solutions q to (3). Hence for (ICProd) to be satisfied, one needs to properly define the capacity

trade limits gij(D,y) for every possible demand realization D. Proposition 1 however reveals that

as many as 2n scenarios may need to be considered to properly specify those trade limits and yield

the FB production plan. Intuitively, each firm can be either in a buyer or in a seller position. Taken

together, this yields 2n scenarios.

Proposition 1. Let qSO ∈ argmax Πi (q;D,y) for all i under SO. Then, qSO
ij = 0 or qSO

ij =

gij(D,y) for all i, j, in which the function gij(D,y) is piecewise with as many as 2n different pieces.

For instance when n = 2, four demand scenarios need to be considered. Specifically, setting

g12(D,y) = min{(D2−y2)
+, (y1−D1)

+} and g21(D,y) = min{y2, (D1−y1)
+} will satisfy (ICProd).

Intuitively, each firm would like to position itself at the center of all trades, buying from all firms

that have an excess of capacity and selling to all firms that have a shortage of capacity. Without

those trade limits, capacity trades would then be impossible to coordinate. Those capacity trade

limits thus play the same role, in a dual fashion, as the role played by state-dependent prices (Van

Mieghem 1999).

The complexity of the specification of the capacity trade limits will thus limit the applicability

of SO arrangements when either n is large or when the firms’ profit margins are different. On the

one hand when n is small, enumerating all demand contingencies remains manageable. For instance

when n = 2, only four demand scenarios need to be foreseen. Moreover, it is easy to specify transfer

prices tij(q) so as to allocate capacity in priority to the most profitable products. For instance

with linear transfer prices (tij(q) = λijq), Condition (ICProd) is achieved when v1 − c(y) ≥ λ21 ≥

v2 − c(y) ≥ λ12 ≥ 0. On the other hand when firms have identical profit margins, any capacity

allocation rule attains the FB production plan, as long as there is no waste. For instance, firms

could satisfy their own demand first and then allocate the total residual capacity proportionally to

the residual demands.

9



50%

75%

100%

 SO/ *

0%

25%

0.2 0.6 1 1.4 1.8

!v/k

Figure 2: Efficiency of a simple SO capacity allocation mechanism that uses each firm’s capacity to

meet its own demand, and then optimally allocates the residual capacity among residual demands.

The parameters are: n = 3, Di ∼ U [0, 10], K(y) = ky, c(y) = 0, vi−1 = vi + ∆v, k/[
∑

i vi/n] = 50%.

But with a large number of firms exhibiting different profit margins, SO arrangements will prob-

ably be too complex to organize and administer if they are aimed at attaining full efficiency. The

contract writing process will inevitably require coordinated efforts to structure capacity trades to

attain full efficiency, violating the decentralized spirit of SO arrangements. Alternatively, capacity

trades could be centrally managed, but the central nature of such an organization would also go

against the decentralized nature of the SO philosophy. Under such centralized management, capac-

ity trades could be structured so as to attain full efficiency at the price of being potentially complex

or administered by an opaque mechanism.

Alternatively, efficiency could be sacrificed in favor of simple allocation rules, such as allocating

residual capacity proportionally to products experiencing a capacity shortage, in decreasing order

of profitability. This capacity allocation method is in fact similar to inventory transshipment games

(e.g., Anupindi et al. 2001, Huang and Sošić 2011), in which inventory is first used to satisfy the

local demands first, and leftovers are then pooled to optimally satisfy the residual demands. Figure

2 illustrates the loss of efficiency of such a rule with n = 3 and vi−1 = vi + ∆v as a function of

∆v. In that numerical example, we assume that all firms invest equally in the JV and that the total

investment is equal to the FB investment, i.e., yi = y∗/n, so that the loss of efficiency only comes

from inefficient capacity allocations. Naturally, we observe that the greater the spread in profit

margins, the greater the loss of efficiency associated with suboptimal capacity allocation. In fact,

the total profit under SO is decreasing in ∆v/k whereas the FB profit (Π∗) is increasing in ∆v/k.

More importantly, the loss of efficiency can be very substantial. This illustrates the importance of

treating capacity differently than inventory.

Irrespective of whether an optimal, but complex, or a simple, but inefficient, rule is adopted, such

a rule must be specified, together with transfer payments, to induce proper capacity investments.

In addition, the implementation of such rules must be tightly monitored to prevent the emergence

of subcoalitions and parallel exchanges of capacity or to prevent firms from engaging themselves in

shortage gaming by not truthfully revealing their demand (Granot and Sošić 2003).

Instead of sacrificing on efficiency, capacity allocation decisions could be resolved through a

market mechanism, e.g., an auction, and therefore left unspecified in the contract. This incomplete

contract approach, despite leading to ex-post efficient capacity allocations at low transaction costs,

is not without challenges as it forces firms to foresee 2n demand scenarios to guide their investment

decisions, notwithstanding the unpredictability of its outcomes if the firms’ bargaining power is

unknown at the outset. Moreover, it leads to suboptimal investments in capacity, as we show next,

consistent with transaction cost theory (Grossman and Hart 1986).

10



 21

(IC P d)(IC Prod)

v1-c

(IC Inv)

v2-c

 12
v2-c

Figure 3: (ICInv) and (ICProd) under Separate Ownership.

4.2 Coordinating Capacity Investment

We next consider the capacity investment game. Because capacity allocation decisions must be fore-

seen when transfer prices are negotiated and capacity investment decisions are made, the complexity

of capacity allocation decisions will propagate in the investment negotiation stage.

We focus on the case of n = 2 firms here since otherwise, transactions costs are high or efficiency

may need to be sacrificed in the production stage. In addition with n > 2, there exist multiple

solutions satisfying (ICProd), thus preventing any analysis of the capacity investment game without

additional assumptions on the capacity trade flows. Moreover, we consider the case of linear transfer

prices, i.e., tij(q) = λijq, given their flexibility for coordinating (ICProd) and their simplicity, and

we assume that the FB production plan is implemented. Specifically, (ICProd) is satisfied as long

as v1 − c(y) ≥ λ21 ≥ v2 − c(y) ≥ λ12 ≥ 0.

Accordingly, the expected profit of Firm i in the investment stage can be expressed as follows:

ΠSO
i (yi; y−i) = (vi − c(y))Si(y) − K(y)yi

y

−λjiE [x∗
i (y, D1, D2) − yi]

+
+ λijE

[

x∗
−i(y, D1, D2) − y−i

]+
.

(5)

When n = 2, v1 ≥ v2, K ′′(y) = c′(y) = 0, a Nash equilibrium can be shown to exist in the SO

capacity investment game when v1−c(y) ≥ λ21 ≥ v2−c(y) ≥ λ12 ≥ 0 using Debreu-Glicksberg-Fan’s

theorem; see Lemma A-6 in the appendix. When (ICProd) holds strictly, that Nash equilibrium can

be shown to be unique. (The proof is omitted for brevity.)

The next proposition provides a condition under which capacity investment decisions are coordi-

nated. This result contrasts with outsourcing and subcontracting agreements, for which there exists

no coordinating linear transfer-price contracts (Van Mieghem 1999). This difference in results stems

from the fact that capacity transfers are bidirectional here, thus reducing both overage and underage

costs of both firms, unlike outsourcing agreements, which involve only unidirectional transfers.

Proposition 2. Suppose that n = 2. If there exists an interior Nash equilibrium ySO in the SO

capacity investment game, then (ICInv) is satisfied if and only if λ21P[D1 ≥ ySO
1 ] + λ12P[D1 ≤

ySO
1 , D2 ≥ ySO

2 ] = K(y∗)/y∗.

Identifying the coordinating transfer prices thus involves the solution of a fixed-point problem,

consisting of the equilibrium conditions characterizing the capacity investment game, obtained by

differentiating (5), and the conditions stated in Proposition 2. Intuitively, transfer prices are func-

tions of the respective investments, which are themselves functions of the transfer prices. Moreover,

the computation of these transfer prices must consider all possible demand contingencies, depending

on whether a firm experiences a shortage or a surplus of capacity. Hence the exponential complex-

ity characterizing the coordination of production decisions carries over to the negotiation of their

transfer prices.

Figure 3 illustrates the feasible space of SO linear contracts that satisfy (ICInv) as well as the

space of contracts that satisfy (ICProd). It can be shown that the curve on which (ICInv) is satisfied

11



is monotone when S′
1(y

∗) > 0. In addition, it can be shown that profits evolve monotonically along

the curve (i.e., dΠSO
i /dλi = −dΠSO

−i /dλi ≤ 0), thus offering flexibility in terms of profit allocation.

Does there always exist an SO coordinating contract that satisfies both (ICInv) and (ICProd)?

The answer, when n = 2, is yes. For instance, setting (λ21, λ12) = (v1 − c, 0) coordinates capacity

investment and allocation decisions when K(y) = ky and c(y) = c. In that case, Firm 1 earns exactly

its newsvendor profit. Incidentally, this coordinating contract illustrates the failure of incomplete

contracts to coordinate capacity investment decisions, as was observed by Van Mieghem (1999) in the

case of outsourcing. In a bargaining game, the total surplus is shared in fixed proportions depending

on the firms’ relative bargaining power; see Grossman and Hart (1986). Because the total surplus

when Firm 2 sells a unit of capacity to Firm 1 is either equal to v1 − c if Firm 2 has excess capacity

or (v1− c)− (v2− c) if Firm 2 has a capacity shortage, the firms’ transfer prices would then be state-

dependent and therefore non-coordinating, even if Firm 2 had complete bargaining power. Hence,

leaving the contract incomplete on capacity allocation will in general not induce efficient (i.e., FB)

capacity investments, a classical result in transaction cost economics (Grossman and Hart 1986).

To summarize this section, we showed that SO arrangements could attain high efficiency at low

transaction costs when either the JV consists of n = 2 firms or when the firms have identical profit

margins. With n > 2 firms having different profit margins, the JV would have to either incur high

transaction costs to reap the full economic benefits of the alliance, by either foreseeing as many as

2n demand contingencies in the contract or by creating a central entity that would administer the

ex-post capacity trades. Alternatively, efficiency would need to be sacrificed to keep transaction costs

low.

5 Joint Ownership

We next consider joint ownership (JO) arrangements. In contrast to SO arrangements, we find that

JO arrangements always lead to efficient capacity sharing at low transaction costs; specifically, they

may involve only n different prices, satisfying 3n − 2 linear inequalities. However, they may entail

transaction costs at the investment level in order to prevent capacity overinvestment. The risk of

overinvestment is however reduced in the presence of economies of scale, when the demand for the

lower profit margin products is large, or when there is a large spread in profit margins.

5.1 Coordinating Capacity Allocation

We first consider the production stage. In contrast to SO, we show that capacity allocation decisions

are easily coordinated under JO due to its centralized nature. In particular, they can easily be

coordinated with linear transfer price functions, i.e., tij(q) = λijq.

Proposition 3. Let tij(q) = λjq with λj ≥ 0 under JO. Then, (ICProd) holds if and only if

(i) λi ≥ λi+1 for all i,

(ii) λi−1
yi

y
≥ vi − λi

(y−yi)
y

− c(y) ≥ λi+1
yi

y
for all i,

with λ0 = ∞ and λn+1 = 0.

Similar to SO arrangements, simple rules are applicable when firms have identical profit margins,

such as allocating capacity proportionally to the demands, provided that they do not create waste.

Full efficiency is always attained in that case and transaction costs can be kept at a minimum,

although those rules may still need to be contractually specified.

5.2 Coordinating Capacity Investment

We next consider the investment stage. Given that linear contracts can easily coordinate production

decisions (Proposition 3), we focus on linear transfer price contracts in the sequel and assume that

the FB production plan is implemented. Accordingly, Firm i’s profit, when making a capacity
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investment of yi, can be expressed as follows:

ΠJO
i (yi;y−i) = (vi − λi − c(y))Si(y) +

yi

y
(Λ(y) − K(y)) , (6)

in which Λ(y)
.
=

∑n
j=1 λjSj(y). In this formulation, production costs are allocated proportionally

to sales; alternatively, those costs could be allocated proportionally to capacity investments, similar

to K(y), without changing our results.

A Nash equilibrium in the capacity investment game can be shown to exist without economies

of scale (i.e., K ′′(y) = c′(y) = 0) under Conditions (i)-(iii) stated in Lemma 3, using Debreu-

Glicksberg-Fan’s theorem; see Lemma A-7 in the appendix. Moreover, the equilibrium can be shown

to be unique under mild conditions on the transfer prices. (The proof is omitted for brevity.)

The next proposition provides a condition under which capacity investment decisions are coor-

dinated.

Proposition 4. Suppose there exists an interior equilibrium in the capacity investment game. Then

(ICInv) is satisfied if and only if Λ(y) = K(y).

Hence, Proposition 4 states that (ICInv) is satisfied if and only if the JV operates on a non-profit

basis, as is done by Syncrude or many cooperatives. One of the Rochdale principles for cooperatives

indeed requires that the capital contributed by cooperative members be common property of the

cooperative and that any surplus be either reinvested in the business or redistributed to its members

(ICA 2007). This clearing condition is in fact similar to the requirement that the profit margins of all,

but one, partners must be set to zero in a vertical supply chain to mitigate double marginalization.

Under (ICInv), the relative shares of investment, if both firms invest in the JV (i.e., yJO
i > 0)

can be expressed as follows:

yJO
i

y∗
=

(vi − λi − c(y))S′
i(y

∗) − c′(y∗)Si(y
∗)

K ′(y∗) − Λ′(y∗)
. (7)

We make the following two observations. First, the relative shares of investment may not be pro-

portional to capacity allocations. For instance at Autolatina, Volkswagen accounted for about 2/3

of the output despite owning only 51% of the JV (Jackson and Turner 1994).

Second, Equation (7) reveals that investments are driven by (i) service levels (S′
i(y

∗)) and (ii)

economies of scale in production (c′(y∗)). Economies of scale affect all firms, although firms with

larger sales volumes (Si(y
∗)) will give them more weight. Service levels affect mostly the firms

that have the lowest profit margins, since their probability of not fulfilling their demand will be the

highest given that they have the lowest priority access to capacity. In particular without economies

of scale in production (c′(y) = 0), the JV may degenerate into an outsourcing agreement, in which

the most profitable firms outsource their production to the least profitable firms.

Moreover under (ICInv), Profit (6) simplifies to

ΠJO
i

(

yJO
i ;yJO

−i

)

= (vi − λi − c(y∗))Si(y
∗). (8)

Hence, Firm i makes nonnegative profit if its transfer price (λi) is no greater than its profit margin

(vi − c(y∗)).

Taken together, Equations (7) and (8) reinforce the interpretation of JO arrangements as equity

JVs. Specifically when c′(y) = 0, the relative investments (7) turn out to be proportional to the

relative shares of profits. Hence, the more a firm invests in the JV, the greater share of total prof-

its it collects. Moreover unlike profit-sharing agreements, JO arrangements do not make dividends

dependent on profit margins, and they are therefore more robust to errors in profit margin evalua-

tions. In addition, the profit shares are determined endogenously here, contingent on the respective

investments, instead of being taken as exogenous as in traditional profit-sharing contracts.

Figure 4 illustrates the feasible space of linear JO contracts that satisfy (ICInv) when n = 2,

as well as the feasible space of contracts that satisfy (ICProd) when the total investment is the

FB investment, i.e., after substituting (7) into Conditions (i) and (ii) in Proposition 3, and when
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Figure 4: (ICInv) and (ICProd) under Joint Ownership.

c′(y) = 0 and K ′(y) = ky. Unlike SO arrangements, the set of feasible JO contracts that satisfy

(ICInv) does not depend on the equilibrium investments, i.e., does not result from a fixed-point

mapping, and can therefore be represented as a straight line in the space of transfer prices. Hence

in addition to be intuitive, the clearing condition (ICInv) is also simple to compute, an attractive

feature for guiding contractual negotiations.

Lemma A-8 in Appendix shows that profits evolve monotonically along that line of feasible

contracts (i.e., dΠJO
i /dλi ≤ 0). Similar to SO arrangements, JO arrangements lend themselves to

various ways of allocating the total profit. Moreover, the equilibrium capacity investments evolve

monotonically along that line of feasible contracts with linear costs of production (i.e., dyJO
i /dλi ≤

0). Naturally, investing more makes you deserve a lower price and getting a lower price makes you

invest more.

Does there always exist a fully coordinating JO contract that satisfies both (ICInv) and (ICProd)?

Unfortunately, the answer is not always, even when n = 2. Hence, JO arrangements, although (or

because) they are associated with low transaction costs to coordinate capacity sharing, may not

necessarily lead to the right capacity investment decisions in equilibrium. This is in contrast to SO

arrangements which in general lead to the right capacity investments, but with high transaction

costs to coordinate capacity allocation decisions.

To gain more insight into the conditions under which there exists a coordinating contract, we

assume that n = 2 in the sequel. The next proposition provides a sufficient condition under which

there exists a coordinating contract. The proposition assumes that both firms invest in the JV.

Although similar insights can be derived for the case in which one firm does not invest in the JV,

it should be noted that shared investment is the most interesting case of JV, as otherwise the JV

would degenerate into an outsourcing agreement.

Proposition 5. When n = 2, there exists a coordinating JO contract with yJO
1 , yJO

2 > 0 if

1 +
c′(y∗)S2(y

∗)K(y∗)

(v2 − c(y∗))K ′(y∗)S1(y∗)
≤

K(y∗)

y∗K ′(y∗)

y∗S′(y∗)

S1(y∗)
. (9)

Although this condition is only sufficient, it turns out to be also necessary in the absence of

economies of scale in production (i.e., when c′(y) = 0) or when the requirement that ΠJO
i

(

yJO
i ;yJO

−i

)

≥

0 for all i is also added. From this, we already observe that economies of scale in production are

beneficial, as they enlarge the set of coordinating contracts, a property that will be reinforced below.

We next explore the conditions under which Condition (9) is satisfied. We first study the effect of

economies of scale in production or investment. Economies of scale in production (c′(y) < 0) make

the left-hand side of the above inequality smaller, and therefore make Condition (9) easier to satisfy.

Similarly, economies of scale in investment (K ′′(y) < 0) imply that K(y) > K ′(y)y, and therefore

also make Condition (9) easier to satisfy.
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Corollary 1. Coordination under JO is more likely to be achieved with economies of scale in pro-

duction (c′(y) < 0) or investment (K ′′(y) < 0).

To gain further insights, let us consider the (arguably contrived) case with no economies of scale.

In that case, the line of contracts satisfying (ICInv) will always intersect the λ1-axis below the upper

boundary of the box defining the set of feasible contracts satisfying (ICProd), i.e., λ1 ≤ k/S′
1(y

∗);

see Figure 4. As a result, the only cause of coordination failure is that the box defining the set of

contracts satisfying (ICProd) may lie above the line defining the set of contracts satisfying (ICInv).

Because dy/dλi ≥ 0, i = 1, 2, for the equality Λ(y) = K(y) to hold (by the implicit function

theorem), shifting the line Λ(y) = K(y) upwards results in greater investment y. In other words,

the firms risk to overinvest in capacity if one wants to ensure that (ICProd) is satisfied.

When would firms not overinvest in capacity? When c′(y) = 0 and K ′′(y) = 0, Condition (9)

simplifies to y∗S′(y∗) ≥ S1(y
∗). (With n firms, this condition is expressed as y∗

∑i+1
j=1 S′

j(y
∗) ≥

∑i

j=1 Sj(y
∗) for all i when K ′′(y) = c′(y) = 0.) Graphically, the feasible set of contracts satisfying

(ICInv) intersects the λ1-axis above the lower boundary of the box defining the set of feasible

contracts satisfying (ICProd) when y∗S′(y∗) ≥ S1(y
∗); see Figure 4.

Intuitively, Firm 2 is reluctant to allocate capacity to Product 1 unless it receives a high price

for every unit of capacity used by Firm 1. This will happen if either Firm 1 is paying a high

transfer price (λ1) or if Firm 2 is capturing a large share (y2/y) of that price. The risk with the

first approach is that firms may end up overinvesting in capacity. In particular while the contract

(λ1, λ2) = (v1 − c, v2 − c) always satisfies (ICProd), it clearly leads to capacity overinvestment.

Hence, the first approach will work only if the spread in profit margins is sufficiently large. The

second approach, on the other hand, applies only if Firm 1 has limited incentives for investing in

the JV, which, by (7), happens when S′
1(y

∗) ≈ 0. The next two corollaries formalize this intuition,

in reverse order, by characterizing when the condition y∗S′(y∗) ≥ S1(y
∗) is satisfied.

Corollary 2. Without economies of scale, coordination under JO is more likely to be achieved when,

for a given demand D1, D is stochastically large.

In particular when D1 and D2 are independent, the condition is more likely to be met when D2

is large (in the first stochastic order), which happens in particular when Product 2 has a large mean

demand. When Product 2 has a large demand, the service level of Product 1 will be very high,

i.e., S′
1(y

∗) ≈ 0, and therefore yJO
2 /y∗ ≈ 1 by (7). Hence, the JV will quickly degenerate into an

outsourcing agreement in that case, i.e., Firm 1 outsources its production to Firm 2.

The next result shows that the requirement that S1(y
∗) ≤ y∗S′(y∗) is more likely to be satisfied

with a large spread in profit margins. The result requires a specific condition, namely that there

exists a ȳ such that S1(y) − yS′(y) ≤ 0 if and only if y ≤ ȳ. As shown in Lemmas A-9 and A-10

in the appendix, a sufficient condition is that either D1 or D2 is exponential and that demands are

independent and have an increasing failure rate.

Corollary 3. Suppose that D1 and D2 are such that there exists a ȳ such that S1(y)− yF̄ (y) ≤ 0 if

and only if y ≤ ȳ. Without economies of scale, coordination under JO is more likely to be achieved

when, for a given margin v1, v2 is small.

Hence, the profit margins need to be sufficiently spread apart so that the transfer price paid

by Firm 1 is sufficiently large to motivate Firm 2 to allocate capacity to Product 1, while being

sufficiently smaller than v1 − c to prevent a situation of capacity overinvestment.

Incidentally, an industry observer, commenting on the failure of Autolatina, noted that the

alliance came apart when the carmakers started using the plant to build similar models rather than

sticking to complementary lines (Gao 2002). This observation is supported by Corollary 3, which

advances that greater cooperation can be achieved with larger spreads in profit margins. Hence,

dissimilar products not only reduce the intensity of competition in the marketplace, but also reduce

competition for manufacturing capacity.

15



50%

75%

100%

 JO/ *

0%

25%

0.2 0.6 1 1.4 1.8

!v/k

Figure 5: Efficiency of a simple JO arrangement that results in capacity overinvestment in the absence

of economies of scale.

The parameters are: n = 3, Di ∼ U [0, 10], K(y) = ky, c(y) = 0, vi−1 = vi + ∆v, k/[
∑

i vi/n] = 50%.

The JO contract and equilibrium investments (λ,y) are found by jointly solving λ = arg min
∑

i λi

subject to λi ≥ λi+1 for all i and λi−1
yi

y
≥ vi − λi

(y−yi)
y

≥ λi+1
yi

y
for all i, with λ0 = ∞ and λn+1 = 0;

and yi = arg max(vi − λi)Si(y) + yi

y
(
∑

i λiSi(y) − ky) for all i.

If Condition (9) does not hold, i.e., in the absence of economies of scale in production and

investment, when the firms have relatively symmetric demands and symmetric profit margins, then

the firms run into the risk of overinvesting in the JV. Figure 5 illustrates the loss of efficiency of

JO arrangements associated with such capacity overinvestment. Among all contracts that satisfy

(ICProd), the contract that minimizes the sum of transfer prices is selected. The intuition behind

this selection rule comes from Figure 4, in which the contract that lies in the lower left corner of the

(ICProd) feasible region minimizes the level of investment, and will thus minimize the magnitude of

overinvestment when the feasible region of (ICProd) lies above the feasible region of (ICInv).

Consistent with Corollary 3, Figure 5 reveals that the loss of efficiency resulting from overin-

vestment generally decreases with the spread in profit margins. Hence, JO arrangements should

succeed particularly where simple capacity allocation rules fail. Although simple capacity sharing

rules (e.g., sharing proportionally to demand) are likely to perform well when profit margins are

similar, they could lead to a large loss of efficiency when profit margins are very different. In fact,

the loss of efficiency associated with JO arrangements overall exhibits the opposite behavior to the

loss of efficiency associated with simple, but inefficient, SO arrangements displayed in Figure 2. This

divergence in behaviors thus illustrates the complementary nature of the two capacity ownership

structures.

In addition, Figure 5 reveals that the loss of efficiency associated with capacity overinvestment

under JO, although significant, remains bounded, although the transfer prices have been selected in a

rather ad-hoc fashion (i.e., to minimize
∑

i λi), thus giving room for potentially further improvement.

Hence in the absence of economies of scale or when the firms are too symmetric, the firms

would need to rein in their desire to overinvest in capacity by forcing themselves to adopt a global,

rather than individual, perspective on the joint investment. That is, coordinating investments under

JO may entail high transaction costs. (On the positive side, it seems easier to restrict oneself to

overinvest than to force oneself to not underinvest.) Hence, JO arrangements may be associated

with high transaction costs at the capacity investment stage, to limit overinvestment, in contrast

to SO arrangements which may be associated with high transaction costs at the capacity allocation

stage.
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6 Conclusion

This paper studies how to structure capacity ownership in manufacturing joint ventures to achieve

full efficiency at low transaction costs. Specifically, we study whether capacity should be owned

jointly or separately. We find that separate ownership and joint ownership have complementary

strengths and weaknesses.

Specifically, separate ownership may entail high transaction costs for regulating capacity alloca-

tion, especially when a large number of firms participate in the joint venture. With only two firms

or when the firms have identical profit margins, then capacity trades can be orchestrated in a simple

manner and full efficiency can be attained at low contractual costs. If that is the case, capacity

investments are easy to coordinate so as to achieve full efficiency. Otherwise, efficiency may need to

be traded off for reducing transaction costs, either through the adoption of simple, but inefficient,

capacity allocation rules or by leaving the contract incomplete, which would then result in inefficient

investments.

By contrast, joint ownership leads to a simple and efficient administration of capacity allocation

even with a large number of firms, but they may not lead to efficient capacity investments. Efficient

capacity investments can be attained in a decentralized fashion with economies of scale or if the

least profitable firms have a large demand, or if there is a wide spread in profit margins. If those

conditions are met, the joint venture must be operated on a non-profit basis to reap all benefits of

the venture. Otherwise, transaction costs must be incurred to rein in the firms’ desire to overinvest

in capacity.

To summarize, coordinating capacity allocation is the main strength of joint ownership and the

main weakness of separate ownership, whereas coordinating investment decisions is the main strength

of separate ownership and the main weakness of joint ownership. With limited economies of scale,

separate ownership tends to perform best when firms have similar profit margins whereas joint

ownership tends to perform best when they have very different profit margins. Overall, this paper

highlights the importance of understanding how operational decisions are made before embarking in

a joint venture.

Several questions remain. In particular, we have ignored competition in the market place. Al-

though this is a mild assumption when firms operate in different markets (as was the case for PSA

and Fiat at Sevel-Nord) or have differentiated products (as was initially the case for Ford and Volk-

swagen at Autolatina), this may not always be the case. With pricing power, we conjecture that

demand rationing would happen less often, thereby reducing the intensity of competition at the

manufacturing level. A potential caveat to this conjecture is that pricing power could reverse the

priorities of the production allocation decisions if the firms have similar cost structures. By contrast

without pricing power, competition in the marketplace may spill over in manufacturing, as a firm

may want to crowd the market with its product to capture market share, as Volkswagen did with its

Gol, blocking Ford’s plans to sell a similar subcompact car (Bradsher 1997). The long-term viability

of the joint venture is likely going to be even more fragile in that case.

A Proofs.

Proof. Proof of Lemma 1. Fix D and therefore x∗. Under JO, there exists a unique matrix q(x∗)

such that x∗
j = qij

y
yi

for all j. Similarly under SO, we assumed that the trade limits gij(D,y) were

such that the FB production plan is always feasible, i.e., there exists a matrix q(x∗) satisfying 0 ≤

qij ≤ gij(D,y) for all i, j such that x∗ is implemented. Therefore, maxx Π(x;D, y) = Π(x∗;D, y) =
∑n

i=1 Πi (q(x∗);D,y) ≤
∑n

i=1 maxq Πi (q;D,y) =
∑n

i=1 Πi (q̄;D,y) = Π(x(q̄);D, y). Because q̄ is

feasible in (3) for all i, x(q̄) is feasible in (1). Hence, x(q̄) is optimal in (1).

Lemma A-1. Suppose that qSO ∈ argmax ΠSO
i (q;D,y) for all i. Then qSO

ij = 0 or qSO
ij = gij(D,y)

for all i, j.
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Proof. Proof. Suppose that 0 < qSO
ij < gij(D,y). Then, the first-order optimality conditions

yield dΠSO
k /dqij = 0 for all k. We first show that xl = yl +

∑

k 6=l qkl −
∑

k 6=i qlk for l = i, j. If

xi < yi +
∑

k 6=i qki −
∑

k 6=i qik, dΠSO
i /dqij = t′ij(qij) > 0, a contradiction. Similarly if xj < yj +

∑

k 6=j qkj−
∑

k 6=j qjk, dΠSO
j /dqij = −t′ij(qij) < 0. Accordingly, dΠSO

i /dqij = −vi+t′ij(qij)+c(y) = 0

and dΠSO
j /dqij = vj − t′ij(qij) − c(y) = 0. Since vi 6= vj , this is a contradiction.

Lemma A-2. Any solution qSO ∈ arg maxΠSO
i (q;D,y) must be such that qSO

ij = (x∗
j−

∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk − yj)

+ for all i, j.

Proof. Proof. Suppose, for contradiction, that qSO
ij > x∗

j −
∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk − yj and

qSO
ij > 0. By Lemma 1, xj(q

SO) = x∗
j . Hence, qSO

ij > xj(q
SO) −

∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk − yj

and qSO
ij > 0. Taking the derivative of ΠSO

j with respect to qij on that range of values yields

dΠSO
j /dqij = −t′ij(q

SO
ij ) < 0. Hence, Firm j will choose qij as small as possible, a contradiction.

Lemma A-3. Any solution qSO ∈ arg maxΠSO
i (q;D,y) must be such that

∑

k 6=j qSO
kj = (x∗

j +
∑

k 6=j qSO
jk − yj)

+ for all j.

Proof. Proof. Suppose that qSO ∈ arg maxΠSO
i (q;D,y). Pick any i, j. Assume first that x∗

j −
∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk −yj ≥ 0. Then, qSO

ij = x∗
j −

∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk −yj by Lemma A-2, and

therefore
∑

k 6=j qSO
kj = x∗

j +
∑

k 6=j qSO
jk − yj . Assume next that x∗

j −
∑

k 6=i,j qSO
kj +

∑

k 6=j qSO
jk − yj <

0. Then, qSO
ij = 0 by Lemma A-2. Therefore, x∗

j −
∑

k 6=j,l qSO
kj +

∑

k 6=j qSO
jk − yj < qSO

lj for all

l 6= i. By Lemma A-2, we then have that qSO
lj = 0 for all l. As a result,

∑

k 6=j qSO
kj = 0 whenever

x∗
j +

∑

k 6=j qSO
jk − yj < 0 and

∑

k 6=j qSO
kj = x∗

j +
∑

k 6=j qSO
jk − yj otherwise.

Lemma A-4. Suppose that qSO = arg maxΠSO
i (q;D,y) for all i. Let N (D,y) be the set of nodes

j such that x∗
j +

∑

k 6=j gjk(D,y) < yj. Then, for all i 6∈ N (D,y), qSO solves:

maxq −
∑

j 6=i tji(qji) +
∑

j 6=i tij(qij)

subject to
∑

j 6=i qji = min{Di, (y −
∑

j<i Dj)
+} +

∑

j 6=i qij − yi

0 ≤ qij ≤ gij(D,y) ∀j,

and such that qSO
ij = gij(D,y) for all i ∈ N (D,y) and for all j 6= i and qSO

ji = 0 for all i ∈ N (D,y)

and for all j 6= i.

Proof. Proof. By Lemmas 1 and A-3, x(qSO) = x∗ and
∑

k 6=j qSO
kj = (x∗

j +
∑

k 6=j qSO
jk − yj)

+ for

all j. Hence if qSO = argmax ΠSO
i (q;D,y) for all i, then qSO maximizes, for all i,

maxΠSO
i (q;D,y) = (vi − c(y))xi(q) −

∑

j 6=i tji(qji) +
∑

j 6=i tij(qij) − K(y)yi

y

subject to
∑n

j=1 xj(q) ≤ y

0 ≤ xj(q) ≤ Dj ∀j

xj(q) = min{Dj , yj +
∑

k 6=j qkj −
∑

k 6=j qjk} ∀j

0 ≤ qij ≤ gij(D,y) ∀i, j

x(q) = x∗,
∑

k 6=j qkj = (x∗
j +

∑

k 6=j qjk − yj)
+ ∀j.

(A-1)

Consider a particular solution qSO and assume that x∗
j +

∑

k 6=j qSO
jk − yj < 0. By Lemma A-3,

∑

k 6=j qSO
kj = 0, and therefore, xj(q

SO) +
∑

k 6=j qSO
jk −

∑

k 6=j qSO
kj − yj < 0. Taking the derivative

of Πj with respect to qji on that range of values yields dΠj/dqji = t′ji(q
SO
ij ) > 0. Hence, Firm

j will choose qji as large as possible, namely, gji(D,y). Hence, the requirement that
∑

k 6=j qkj =

(x∗
j +

∑

k 6=j qjk − yj)
+ simplifies as follows: Either x∗

j +
∑

k 6=j gjk(D,y) < yj , i.e., j ∈ N (D,y), in

which case qSO
jk = gjk(D,y) for all k 6= j and qSO

kj = 0 for all k 6= j. Or x∗
j +

∑

k 6=j gjk(D,y) ≥ yj , i.e.,

j 6∈ N (D,y), in which case
∑

k 6=j qSO
kj = x∗

j +
∑

k 6=j qSO
jk − yj. Replacing the last constraint in (A-1)

with these two formulations and eliminating the redundant variables establishes the lemma.

Lemma A-5. For any (i, j), the function gij(D,y) is piecewise with as many as 2n different pieces.
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Proof. Proof. By Lemma A-1, qSO
ij is either equal to its upper bound or equal to zero. Let A(D,y)

be an arc set such that qSO
ij = gij(D,y). From Lemma A-4, we must have

∑

j 6=i:(j,i)∈A(D,y) gji(D,y) =

min{Di, (y −
∑

j<i Dj)
+} +

∑

j 6=i:(i,j)∈A(D,y) gij(D,y) − yi for all i 6∈ N (D,y). Since there are 2n

possible configurations for N (D,y), each function gij(D,y) is thus piecewise with as many as 2n

different pieces.

Proof. Proof of Proposition 1. The proof follows from Lemmas A-1 and A-5 in the appendix.

Lemma A-6. Suppose that n = 2, K(y) = ky, c′(y) = 0, v1 ≥ λ1 ≥ v2 ≥ λ2 ≥ 0, and λ1 ≥ k.

Then, under the FB production plan, there exists a pure-strategy Nash equilibrium in the SO capacity

investment game.

Proof. Proof. Without loss of generality, let us rewrite vi ≡ vi − c(y) since c′(y) = 0. Any

equilibrium, if it exists, must satisfy the following first-order conditions:

dΠ1(y1;y2)
dy1

= v1S
′
1(y) − k + λ1P[y ≥ D1 ≥ y1] + λ2P[y1 ≥ D1, D1 + D2 ≥ y] = 0, and

dΠ2(y2;y1)
dy2

= v2S
′
2(y) − k + λ1P[y ≤ D1] + λ2P[y2 ≤ D2, D1 + D2 ≤ y] = 0.

(A-2)

From (A-2), we obtain that ∂2ΠSO
1 (y1; y2)/∂y2

1 is equal to

−(v1 − λ1)f1(y) − λ1

∫ y−y1

0

f12(y, ξ2)dξ2 − (λ1 − λ2)

∫ ∞

y−y1

f12(y1, ξ2)dξ2 − λ2

∫ y1

0

f12(ξ1, y − ξ1)dξ1,

which is nonpositive when v1 ≥ λ1 ≥ λ2 ≥ 0. Similarly, given that f(y) =
∫ y

0 f12(y − ξ2, ξ2)dξ2, we

find from (A-2) that ∂2ΠSO
2 (y2; y1)/∂y2

2 is equal to

−(λ1 − v2)f1(y) − λ2

∫ y2

0

f12(y − ξ2, ξ2)dξ2 − (v2 − λ2)f(y) − λ2

∫ y−y2

0

f12(ξ1, y2)dξ1,

which is nonpositive when λ1 ≥ v2 ≥ λ2 ≥ 0. Hence, ΠSO
1 (y1; y2) and ΠSO

2 (y2; y1) are continuous

and concave when v1 ≥ λ1 ≥ v2 ≥ λ2 ≥ 0. Without loss of generality, the action spaces can be

bounded. As a result, there exists a Nash equilibrium (Fudenberg and Tirole 1991, p. 34) and every

equilibrium satisfies (A-2).

Proof. Proof of Proposition 2. Any interior equilibrium must satisfy the following first-order

conditions:

dΠSO
1

(ySO
1

;ySO
2

)
dy1

= 0 = (v1 − c(y))S′
1(y) − y1

y
K ′(y) − y2

y2 K(y) − c′(y)S1(y)

+λ21P[y ≥ D1 ≥ y1] + λ12P[y1 ≥ D1, D1 + D2 ≥ y], and
dΠSO

2
(ySO

2
;ySO

1
)

dy2

= 0 = (v2 − c(y))S′
2(y) − y2

y
K ′(y) − y1

y2 K(y) − c′(y)S2(y)

+λ21P[y ≤ D1] + λ12P[y2 ≤ D2, D1 + D2 ≤ y].

(A-3)

Adding the equilibrium conditions (A-3) and using the first-order optimality condition (2) yields

λ21P[D1 ≥ ySO
1 ] +λ12P[D1 ≤ ySO

1 , D2 ≥ ySO
2 ] = K(y∗)/y∗. Conversely, suppose that there exists an

equilibrium satisfying λ21P[D1 ≥ ySO
1 ] + λ12P[D1 ≤ ySO

1 , D2 ≥ ySO
2 ] = K(ySO)/ySO. Summing up

the equilibrium conditions (A-3) yields (v1 − c(ySO))S′
1(y

SO) + (v2 − c(ySO))S′
2(y

SO) = K ′(ySO) +

c′(ySO)S(ySO). Because Π(y) is strictly pseudo-concave, ySO = y∗.

Proof. Proof of Proposition 3. First, note that (i) implies that λi ≥ λj if and only if i < j; and, (i)

and (ii) imply that vi − λi
(y−yi)

y
− c(y) ≥ λj

yi

y
if and only if i < j.

Replacing qij = xjyi/y for all i, j, qJO = arg maxΠJO
i (q;D,y) if and only if xJO solves, for all

i:

maxΠJO
i (x;D,y) = (vi − c(y))xi − λixi

∑

j 6=i

yj

y
+ yi

y

∑

j 6=i λjxj − K(y)yi

y

subject to
∑n

j=1 xj ≤ y

0 ≤ xj ≤ Dj ∀j,

with qJO
ij = xJO

j yi/y for all i, j.
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Suppose that Conditions (i)-(ii) hold. Suppose that xJO < y. For any xj < Dj , we have

dΠJO
i /dxj = λjyi/y ≥ 0 and dΠJO

j /dxj = vj − λj(1 − yj/y) − c(y) ≥ 0 by (ii). Hence, all players

agree that xj must increase as much as possible until either xj = Dj or until x = y. Suppose now

that x = y. For any xJO
j < Dj , we have dΠJO

i /dxj ≥ dΠi/dxk if and only if j < k by (i), for all

i 6= j, k, and dΠJO
j /dxj ≥ dΠJO

j /dxk if and only if j < k by (ii). Hence if xj < Dj and xk > 0, all

players agree that xj must increase and xk must decrease if j < k until either xj = Dj or xk = 0.

As a result, xJO = x∗. The converse is shown similarly.

Lemma A-7. Suppose that n = 2, K(y) = ky, c′(y) = 0, λi ≤ vi for i = 1, 2, λ1 ≥ λ2 ≥ 0, and

y∗ ≤ ŷ ≤ F̄−1(c/λ1), in which ŷ solves Λ(ŷ) = kŷ. Then under the FB production plan, there exists

a pure-strategy Nash equilibrium (yJO
1 , yJO

2 ) in the JO capacity investment game.

Proof. Proof. Without loss of generality, let us rewrite vi ≡ vi − c(y) since c′(y) = 0. By

the Weierstrass theorem, for any y−i, ΠJO
i (yi; y−i) attains a maximum on [−y−i,∞) because it is

continuous and because limyi→∞ ΠJO
i (yi; y−i) = −∞. Hence, any equilibrium, if it exists, must solve

dΠJO
i (yi; y−i)

dyi

= (vi − λi)S
′
i(y) − k +

yi

y
Λ′(y) +

y−i

y2
Λ(y) = 0, i = 1, 2. (A-4)

Summing up the necessary optimality conditions (A-4), we obtain that a Nash equilibrium (yJO
1 , yJO

2 ),

if it exists, must solve v1S
′
1(y) + v2S

′
2(y)− k + Λ(y)/y − k = 0 with y = yJO

1 + yJO
2 . For any y < y∗,

v1S
′
1(y)+ v2S

′
2(y)−k > 0 by (2) and Λ(y)/y−k ≥ 0 because y∗ ≤ ŷ; hence yJO

1 + yJO
2 ≥ y∗. On the

other hand for any y > ŷ, v1S
′
1(y)+v2S

′
2(y)−k < 0 by (2), because y∗ ≤ ŷ, and Λ(y)/y−k ≤ 0; hence,

yJO
1 + yJO

2 ≤ ŷ. Therefore, for any y−i, ΠJO
i (yi; y−i) must attain its maximum on [y∗ − y−i, ŷ− y−i]

for (yi, y−i) to be an equilibrium.

Moreover, if there exists an equilibrium with yJO
i < 0, there also exists one with yJO

i ≥ 0 because

dΠJO
i (0; y−i)/dyi = (vi − λi)S

′
i(y) − k + Λ(y)/y ≥ (vi − λi)S

′
i(y) ≥ 0, given that Λ(y)/y − k ≥

Λ(ŷ)/ŷ − k = 0 for any y ≤ ŷ. Therefore, without loss of generality, one can restrict the strategy

spaces to the compact sets [(y∗ − y−i)
+, (ŷ − y−i)

+].

When y2/y ≤ (v2 − λ2)/(λ1 − λ2), the derivative of Firm 2’s profit function is nonnegative:

dΠJO
2 (y2; y1)

dy2
= (v2 − λ2)S

′
2(y) − k +

Λ(y)

y
+

y2

y

(

Λ′(y) −
Λ(y)

y

)

≥ (v2 − λ2)S
′
2(y) − k +

Λ(y)

y
+

v2 − λ2

λ1 − λ2

(

Λ′(y) −
Λ(y)

y

)

=
v2 − λ2

λ1 − λ2

(

λ1S
′(y) −

Λ(y)

y

)

− k +
Λ(y)

y
≥

(

1 −
v2 − λ2

λ1 − λ2

) (

Λ(y)

y
− k

)

≥ 0,

in which the first inequality used the fact that function Λ(y) is concave increasing, the second

inequality used the fact that S′(y) ≥ S′(ŷ) ≥ k/λ1 for any y ≤ ŷ, and the third inequality used the

fact that Λ(y)/y − k ≥ Λ(ŷ)/ŷ − k = 0 for any y ≤ ŷ.

On the other hand, when y2/y ≥ (v2 − λ2)/(λ1 − λ2) and y1 ≥ 0, the second derivative of Firm

2’s profit function is nonpositive:

d2ΠJO
2 (y2; y1)

dy2
2

= (v2 − λ2)S
′′
2 (y) +

y2

y
Λ′′(y) + 2

y1

y2

(

Λ′(y) −
Λ(y)

y

)

≤ (v2 − λ2)S
′′
2 (y) +

y2

y
Λ′′(y)

=

(

v2 − λ2
y1

y

)

S′′(y) +

(

(λ1 − λ2)
y2

y
− (v2 − λ2)

)

S′′
1 (y) ≤ 0.

As a result, when y1 ≥ 0, ΠJO
2 (y2; y1) is quasiconcave, increasing when y2/y ≤ (v2−λ2)/(λ1−λ2)

and concave when y2/y ≥ (v2−λ2)/(λ1−λ2). On the other hand, Firm 1’s profit function ΠJO
1 (y1; y2)

is concave for all y1 ≥ 0 because (v1 − λ1)S1(y), (y1/y)(λ1 − λ2)S1(y), (y1/y)λ2S(y), and −ky1

are all concave in y1. Because both players’ profit functions are continuous and quasiconcave on

[(y∗−y−i)
+, (ŷ−y−i)

+] and their respective strategy sets are compact, there exists a Nash equilibrium

(Fudenberg and Tirole 1991, p. 34).
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Proof. Proof of Proposition 4. Suppose that there exists a Nash equilibrium such that
∑n

i=1 yi = y∗.

From (6), it must solve the equilibrium conditions: For i = 1, . . . , n,

dΠJO
i (yi;y−i)

dyi

= 0 = (vi − c(y) − λi)S
′
i(y) − c′(y)Si(y) +

yi

y
(Λ′(y) − K ′(y)) +

∑

j 6=i yj

y2
(Λ(y) − K(y)) .(A-5)

Summing up (A-5) over i = 1, . . . , n, we obtain 0 = (v1 − c(y∗))S′
1(y

∗) + (v2 − c(y∗))S′
2(y

∗) −

c′(y∗)S(y∗) − K ′(y∗) + (n − 1) (Λ(y∗) − K(y∗)) /y∗. Because (2) holds,
∑n

i=1 λiSi(y
∗) = K(y∗).

Conversely, suppose that there exists a Nash equilibrium satisfying (A-5) such that
∑n

i=1 λiSi(y) =

K(y). Summing up the equilibrium conditions (A-5), we obtain (v1−c(y))S′
1(y)+(v2−c(y))S′

2(y)−

c′(y)S(y) − K ′(y) = 0. Because Π(y) is strictly pseudo-concave, there exists a unique y, namely y∗,

such that this equality holds.

Lemma A-8. For any λ = (λ1, . . . , λn) such that Λ(y∗) = K(y∗), dΠJO
i /dλi = −

∑

j 6=i dΠJO
j /dλi ≤

0, for all i and, when c′(y) = 0, dyJO
i /dλi = −

∑

j 6=i dyJO
j /dλi ≤ 0 for all i.

Proof. Proof. Applying the chain rule to (6), we get

dΠJO
i (yi;y−i)

dλi

=
∂ΠJO

i (yi;y−i)

∂λi

+
∂ΠJO

i (yi;y−i)

∂yi

dyi

dλi

+
∑

j 6=i

∂ΠJO
i (yi;y−i)

∂yj

dyj

dλi

=
∂ΠJO

i (yi;y−i)

∂λi

= −Si(y)

∑

j 6=i yj

y
= −

∑

j 6=i

∂ΠJO
j (yj ;y−j)

∂λi

,

in which the first equality follows from the fact that ∂ΠJO
i (yi;y−i)/∂yi = 0 in equilibrium and that

∂ΠJO
i (yi;y−i)/∂yj = 0 for j 6= i when Λ(y∗) = K(y∗). Moreover, because −Si(y)(1 − yi)/y ≤ 0,

dΠJO
i (yi;y−i)/dλi ≤ 0.

From (8) and (7), we obtain that yJO
i /yJO

j =
(

ΠJO
i (yJO

i ;yJO
−i )/ΠJO

j (yJO
j ;yJO

−j )
) (

S′
i(y

∗)Sj(y
∗)/

(

Si(y
∗)S′

j(y
∗)

))

when c′(y) = 0. Hence, yJO
i /yJO

j is directly proportional to ΠJO
i (yi;y−i)/ΠJO

j (yj ;y−j). Therefore

dyJO
i /dλi = −

∑

j 6=i dyJO
j /dλi ≤ 0.

Proof. Proof of Proposition 5. By Propositions 3 and 4, there exists a coordinating contract if and

only if the following system of equations is feasible:

λ1S1(y
∗) + λ2S2(y

∗) = K(y∗)

λ1 ≥ λ2 ≥ 0

v1 − c(y∗) − λ1 ≥
yJO
1

y∗
(λ2 − λ1)

v2 − c(y∗) − λ2 ≤
yJO
2

y∗
(λ1 − λ2)

v2 − c(y∗) − λ2
yJO
1

y∗
≥ 0.

Consider the following polyhedron: P = {(λ1, λ2) : λ1 ≥ λ2 ≥ 0, vi − c(y∗) − λi ≥ 0, i = 1, 2},

which is nonempty since v2 ≥ c(y∗). Because Λ(y∗) ≤ K(y∗) at (λ1, λ2) = (0, 0) and Λ(y∗) ≥ K(y∗)

at (λ1, λ2) = (v1 − c(y∗), v2 − c(y∗)) since Π(y∗) ≥ 0, the hyperplane {(λ1, λ2) : Λ(y∗) = K(y∗)}

separates P . Therefore, the polyhedron Q = {(λ1, λ2) ∈ P : λ1S1(y
∗) + λ2S2(y

∗) = K(y∗)} is

non-empty.

For any point in Q, the constraints v1 − c(y∗) − λ1 ≥
yJO
1

y∗
(λ2 − λ1) and v2 − c(y∗) − λ2

yJO
1

y∗
≥ 0

are satisfied. Consider next the constraint v2 − c(y∗)− λ2 ≤
yJO
2

y∗
(λ1 − λ2). For any point in Q, this

constraint is satisfied if and only if, using (7),

v2 − c(y∗) − λ2 ≤
(v2 − λ2 − c(y∗))S′

2(y
∗) − c′(y∗)S2(y

∗)

K ′(y∗) − Λ′(y∗)
(λ1 − λ2)

⇔ K ′(y∗) − Λ′(y∗) ≤ S′
2(y

∗)(λ1 − λ2) − c′(y∗)S2(y
∗)

λ1 − λ2

v2 − c(y∗) − λ2

⇔
K ′(y∗)

S′(y∗)
+

c′(y∗)S2(y
∗)

S′(y∗)

λ1 − λ2

v2 − c(y∗) − λ2
≤ λ1,
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given that v2 − λ2 − c(y∗) ≥ 0 and that K ′(y∗) ≥ Λ′(y∗) since λi ≤ vi − c(y∗) and y∗ solves

(2). The hyperplane Λ(y∗) = K(y∗) intercepts the λ1-axis at λ1 = K(y∗)/S1(y
∗). Suppose that

v1− c(y∗) ≥ K(y∗)/S1(y
∗), i.e., the point (K(y∗)/S1(y

∗), 0) ∈ Q. Because K(y∗)/S1(y
∗) ≥ K′(y∗)

S′(y∗) +

c′(y∗)S2(y
∗)

S′(y∗)
K(y∗)

S1(y∗)(v2−c(y∗)) by assumption, the set {(λ1, λ2) ∈ Q : v2 − c(y∗)− λ2 ≤
yJO
2

y∗
(λ1 − λ2)} is

nonempty. Suppose now that v1−c(y∗) ≤ K(y∗)/S1(y
∗) and consider the point (v1−c(y∗), (K(y∗)−

(v1 − c(y∗))S1(y
∗))/S2(y

∗)) ∈ Q. Because v1 − c(y∗) ≥ K′(y∗)
S′(y∗) by (2) and because v1 ≥ v2, this

point also satisfies the constraint K′(y∗)
S′(y∗) + c′(y∗)S2(y

∗)
S′(y∗)

λ1−λ2

v2−c(y∗)−λ2

≤ λ1. In that case also, the set

{(λ1, λ2) ∈ Q : v2 − c(y∗) − λ2 ≤
yJO
2

y∗
(λ1 − λ2)} is nonempty.

Proof. Proof of Corollary 2. Denote K(y) = ky and c(y) = c. Using (2), we obtain

S1(y
∗) − F̄ (y∗)y∗ = S1(y

∗) −
k − (v1 − v2)F̄1(y

∗)

v2 − c
y∗.

The right-hand side of the expression is decreasing in y∗ because its derivative with respect to y∗ is

equal to ((v1−c)F̄ (y∗
1)−k)/(v2−c)−(v1−v2)f1(y

∗)/(v2−c) = −S′
2(y

∗)−(v1−v2)f1(y
∗)y∗/(v2−c) ≤ 0.

Let ỹ∗ be the solution to (2) when the total demand is D̃ and let S̃(y) be the corresponding expected

sales function. By (2), ỹ∗ ≥ y∗. Because the right-hand side of the above equation only depends on

D through y∗, keeping D1 constant, we thus obtain that S1(y
∗)− y∗[k − (v1 − v2)F̄1(y

∗)]/(v2 − c) ≥

S1(ỹ
∗) − ỹ∗[k − (v1 − v2)F̄1(ỹ

∗)]/(v2 − c). Hence if S1(y
∗) ≤ S′(y∗)y∗, then S1(ỹ

∗) ≤ S̃′(ỹ∗)ỹ∗.

Proof. Proof of Corollary 3. By (2), dy∗/dv2 > 0. Consequently, there exists a threshold v̄2 such

that S1(y) − yF̄ (y) ≤ 0 if and only if v2 < v̄2.

Lemma A-9. Suppose D1 + D2 has an increasing failure rate (IFR). If D1 is exponentially dis-

tributed, there exists a threshold ȳ ∈ [0,∞) such that S1(y) − yF̄ (y) ≤ 0 if and only if y ≤ ȳ.

Proof. Proof. In order to prove the existence of such a threshold, it is sufficient to show that the

derivative of S1(y) − yF̄ (y), equal to F̄1(y) − F̄ (y) + f(y)y, is positive whenever S1(y) − yF̄ (y) = 0

and y > 0. Given that D is IFR, h(ξ) ≡ f(ξ)/F̄ (ξ) is increasing. Using Equation (2.1) in Barlow

and Proschan (1965), we obtain F̄ (y) = exp
[

−
∫ y

0
h(ξ)dξ

]

≥ exp [−yh(y)], and therefore yh(y) ≥

− ln
(

F̄ (y)
)

. Accordingly, we obtain F̄1(y) − F̄ (y) + f(y)y ≥ F̄1(y) − F̄ (y) − F̄ (y) ln
(

F̄ (y)
)

, which

is equal to F̄1(y) − S1(y)
y

− S1(y)
y

ln
(

S1(y)
y

)

when S1(y) − yF̄ (y) = 0. When D1 follows a negative

exponential distribution with parameter λ, y = − ln(ϕ)/λ and S1(y) = (1−ϕ)/λ, in which ϕ = F̄ (y).

Accordingly, we obtain that, when S1(y) = yF̄ (y), F̄1(y) − F̄ (y) + f(y)y is bounded from below by

ϕ + 1−ϕ
ln(ϕ) + 1−ϕ

ln(ϕ) ln
(

1−ϕ
− ln(ϕ)

)

. It can be then be verified that the lower bound is always positive for

any 0 ≤ ϕ < 1, i.e., for any y ∈ (0,∞), completing the proof.

Lemma A-10. Suppose D1 and D2 are independent. If D2 is exponentially distributed, there exists

a threshold ȳ ∈ [0,∞) such that S1(y) − yF̄ (y) ≤ 0 if and only if y ≤ ȳ.

Proof. Proof. When D1 and D2 are independent, F̄ (y) =
∫ y

0
F̄2(y − ξ)f1(ξ)dξ + F̄1(y) and f(y) =

∫ y

0 f2(y − ξ)f1(ξ)dξ. Let h2(ξ) = f2(ξ)/F̄2(ξ). Hence, given that D2 is IFR, we have

F̄1(y) − F̄ (y) + f(y)y =

∫ y

0

(

yf2(y − ξ) − F̄2(y − ξ)
)

f1(ξ)dξ ≥ (h2(0)y − 1)

∫ y

0

F̄2(y − ξ)f1(ξ)dξ.

Let λ = h2(0). We must have that λy ≥ 1 when S1(y)−yF̄ (y) = 0 because otherwise F̄2(y−x) =

exp [−(y − x)λ] > exp [−(y − x)/y] ≥ x/y for all x ≤ y, and therefore F̄ (y) =
∫ y

0
F̄2(y − ξ)f1(ξ)dξ +

F̄1(y) >
∫ y

0 (ξ/y)f1(ξ)dξ + F̄1(y) = S1(y)/y, a contradiction. As a result, when D2 is exponentially

distributed, we obtain:

(

F̄1(y) − F̄ (y) + f(y)y
)

∣

∣

∣

S1(y)=yF̄ (y)
≥

(

(λy − 1)

∫ y

0

F̄2(y − ξ)f1(ξ)dξ

)

∣

∣

∣

S1(y)=yF̄ (y)
≥ 0.

Hence, the function S1(y) − yF̄ (y) ≤ 0 crosses zero at most once and, if it does, it crosses it from

below.
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