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1 Introduction

Once upon a time there was a world in which people were refusing to see that their world
was changing - let’s say because of global warming. The main wish of these many people was
to keep on doing their business-as-usual. For sure, the best strategy in the changing world
would be for them to learn as much as possible about the expected changes (all of them) and
to adopt the optimal behavior with respect to this large set of knowledge. But implementing
this optimal strategy was beyond their force or skill. The question we raise in this article is
not to define what would be the optimal strategy from the whole society’s standpoint (which
is already widely explored in the literature) but to highlight possible alternative trajectories,
considering that agents are always rational, but sometimes stubborn, lazy or myopic. Stubborn
because they always refuse to change their view. Lazy because they revise their view but only
after a while (or after some evidence). Myopic because they are more or less short-sighted
about how the world will look like in the future. The objective of this article is to explore the
consequences of such behaviors in the context of global warming. In this purpose, we develop
an innovative theoretical framework to redefine more realistic trajectories of the economies that
are fully rational, in contrast with the usual “business-as-usual” scenario defined in integrated
assessment models in the current literature.

Our contribution relies on the integrated assessment modeling of the economy and the
climate. Integrated means that feedbacks in both ways are considered: economic activity gen-
erates greenhouse gases emissions that cause global warming, and global warming affects the
economy with productivity and welfare losses. Integrated assessment models (IAMs) allow to
implement a dynamic cost-benefit analysis and to determine the optimal policies. Basically,
policies in IAMs consist in choosing the path for productive investment and emission abate-
ment that maximize some objective function, like country’s welfare. It is important to stress
that welfare, in IAMs, is expressed as consumption net of climate damages. It is indeed green

consumption that is maximized.
In order to develop this new framework we use the concepts of model predictive control

and adaptive behavior, and we combine them into the IAM framework. Ideas from the model

predictive control (see e.g. Grüne and Pannek, 2011) are employed due to the uncertainties
about the future environment and its impact on the economy that the agents persistently
face. Adaptive learning or is involved in order to take into account the improvement (with
time and/or experience) in the measurements quality and in the agents’ knowledge about the
environmental-economic dynamics.

The article is organized as follows. In Section 2, integrated assessment modeling and how
it is used for the climate change analysis is presented with some details. This section gathers
a condensed explanation of the very concept of IAM, a benchmark model, and a survey of the
many uses of IMAs in the literature. In Section 3 we present the general model describing the
dynamics of a multi-agent economic-environmental system that will be used in the paper. The
concepts of “model predictive rational behavior” and “adaptive behavior” are presented in
Sections 4 and 5. The adaptive behaviors considered in this article will concern the knowledge
about climate damages (a better knowledge with evidence for climate change) and the discount
factor (a decrease in the discount factor as wealth increases). Some numerical experiments are
provided in Section 6 with a two-country setting (the world is roughly divided into OECD and
non-OECD countries).
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2 Integrated assessment of global warming

The purpose of this first section is threefold: (i) to provide the reader with some elements
on the history of applied integrated assessment models (IAMs) and its economic rational, (ii)
to sketch a benchmark model, (iii) to survey the wide variety of uses of applied integrated
assessment models in the literature. This will allow us to better gauge the importance of each
contribution we shall introduce later in the paper.

2.1 What is Integrated Assessment?

Although the IPCC reports (1990, 1995, 2001, 2007) had been repeatedly calling for sharp
cuts in greenhouse gases emissions (minus 50 to 80 percent at the world level, immediately),
they never attempted to balance the costs and benefits of such policies, as it was initially
suggested by Nordhaus in 1984.1 Nonetheless, balancing costs and benefit has been a prominent
methodological and normative contribution of economics for many years. Why not for climate
change? Although cost-benefit raises several methodological and theoretical challenges (and it
is far beyond the scope of this paper to tackle them; see Pearce et al. (2006) for a comprehensive
analysis of CBA analysis and policy applications) it remains a comprehensive framework to
understand what should be done, and what could be achieved.

Starting in the early 90s, some aggregative models were developed to analyze the conse-
quences of economic activity on greenhouse gases (GHGs) concentration and how this con-
centration may harm the economy (see Rotmans, 1990, Nordhaus, 1992 and 1993a, Gaskins
et al., 1993, Manne and Richels, 1992, Yang, 1993). These are the very first integrated as-
sessment models (IAMs), so-called because they model the economy and its interplay with
climate. Economic activity generates greenhouse gases that cause global warming, and global
warming provokes physical damages that have an economic cost. IAMs seek at maximizing
intertemporal welfare by taking these two components into account. Indeed, it boils down to
a standard cost-benefit analysis, but applied to a worldwide and long-term issue.

Basically, the economic part of IAMs is made of a dynamic general equilibrium model of
the economy. A policy-maker is assumed to optimally choose consumption/saving path that
maximizes the discounted sum of the utility, taking into account how physical capital evolves
with time and taking the adverse impacts of climate change into account. In this purpose,
IAMs make use of damage functions that translate temperature increase into economic losses.
Besides, the policy maker knows the flow of GHGs emissions due to economic activity, how they
convert into concentration in the atmosphere and how this concentration affects the average
temperature of earth.

In sum, there exists a closed loop between polluting economic human activities, how these
affect the climate, and how climate change impacts on the economy. What causes global
warming is not the flow of GHGs but their accumulation in the atmosphere at a stock. So IAMs
are necessarily intertermporal optimisation models. They endogenously determine not only the
flow of GHGs but also emission abatement efforts and the path of productive investment.

2.2 A benchmark Integrated Assessment Model

The benchmark IAM is based on the DICE model (Dynamic Integrated Climate-Economy
model) built up by Nordhaus (1993a, 1993b). DICE is a stylized cost-benefit analysis framework
to optimally decide on the trajectory of GHG emissions and capital accumulation at the world

1
Twenty-three years later, Nordhaus publishes a new book entitled ”A question of balance”. Is it a new

illustration of the slow pace between science and policy?
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level. The model represents a central-planner problem which maximizes the discounted utility
taking into account economic and climatic constraints and their interconnection. The economic
constraints are those of the Ramsey model.2 Output is given by a Cobb-Douglas production
function, with the peculiarity that a damage function enters multiplying the formulation:

Q(t) = Ω(τ)A(t)K(t)γP (t)1−γ
,

where A is a technology index, K physical capital and P population. γ is the elasticity of
output to capital and Ω is the afore mentioned damage function. Damage is a function of
average temperature τ , and 1− Ω is the percentage of foregone production.

Emissions of GHGs flow from the global economic activity (Q) with an exogenous emission
factor intensity (σ(t)), but taking into account emission abatement efforts, denoted by µ ∈
(0, 1). Actual emissions are thus given by:

E(t) = (1− µ(t))σ(t)Q(t),

The concentration of GHGs in the atmosphere (M) is given by past concentration plus new
emissions net of the natural decay rate:

M(t) = βE(t) + (1− δM )M(t− 1),

with β the atmospheric retention ratio, and δM the rate of GHGs absorbed in deep ocean.
Then, an equation is added to give the temperature increase. Nordhaus considers three different
layers: the atmosphere, the mixed layer of the oceans, and the deep oceans. The main link
is the damage function, with makes the retroaction between climate and the economy. The
damage function represents the economic losses for a given a temperature increase. It is an
increasing convex function of global temperature increase:

D(t) = α1 (T (t)/3)
α2 ,

with α1,α2 ∈ R+. The last piece of the model is the abatement cost function. Abatement costs
have been extensively studied. This function is thus deemed as more reliable. A 50% decrease
in GHGs intensity would cost 1% of the world output. The total abatement cost function is:

C(t) = β1µ(t)
β2Q(t).

where µ(t) ∈ (0, 1) is the abatement rate and β1,β2 are positive constants. Nordhaus uses the
DICE model to compare Business as Usual (defined as µ(t) = 0∀t) with different emission
stabilization scenarios and the optimal policy. The optimal policy leads to a 10% reduction of
carbon emissions from 2005, inducing a temperature decrease of 0.20C by 2100 with respect
to the Business as Usual scenario.

2.3 On the many uses of applied Integrated Assessment Models

Starting from Nordhaus, IAMs have evolved introducing more realistic economic behaviors or
outcomes, trying to escape from the basic comparison between BaU (no climate policy, myopic
agent) and the socially optimal solution (perfect foresight), because none of them is realistic.
In this section, our objective is not to provide an exhaustive survey of IAMs but to review
some examples of interesting extensions such as the inclusion of the regional dimension, models

2
We reproduce here the DICE equations taken from Nordhaus (1992), respecting notation, calibration and

interpretation.
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with a better description of the power sector, R&D behaviors, and coalition formation issues.
A recent survey of these approaches is provided by Stanton et al. (2009).

A direction along which IAMs were developed was geography, and depending on the paper,
geography is understood as space or as the union of economic regions. Let us first mention
the Integrated Model to Assess the Greenhouse Effect (IMAGE) by Rotmans (1990). In its
first version, IMAGE was a model integrating three clusters: the energy system, the terres-
trial environment system and the atmosphere-ocean system. The second version of the model
included a geographical scale, rare at that time. Geography was a grid of 0.5 by 0.5 degrees,
making possible the biophysical modeling of land cover, its history, carbon cycle, nutrients,
climate, etc. Still, all macroeconomic drivers were exogenous inputs to the model.

In 1996, Nordhaus and Yang extended the DICE model by producing a regional model,
RICE (Regional Integrated Climate-economic Model). In this model, the decision is taken at
the national level, and the authors consider different levels of coordination among nations. They
propose three different scenarios to study how nations could deal with climate change: market
policies (i.e. no-control on emission), cooperative policies (countries act as a unique decision
maker), and non-cooperative policies (in which countries act in their own interests ignoring the
externality create on the other countries). These scenarios were labelled “Business-as Usual”,
“Cooperative” and “Nash equilibrium” scenarios, respectively. This terminology will be widely
used later on in the literature.

Taking DICE or RICE as benchmarks, many authors searched to refine their modeling by
incorporating detailed descriptions of the energy sector, allowing for a plethora of mitigation
policies, etc. Edenhofer et al. (2005) introduce learning by doing in R&D, allowing for invest-
ment in R&D in different sectors. In the long term, improving energy efficiency of existing
technologies becomes too costly to be kept as the major mitigation policy. Instead, they find
that a backstop technology with the potential of learning by doings the best option to protect
climate at a lesser cost. They put forward Carbon Capturing and Sequestration (CCS) tech-
niques to reduce the cost of the transition from a fossil-fuel based system to a system based
on renewable resources.

Bosetti et al. (2006) build the WITCH model (World Induced Technical Change Hybrid
Model). WITCH is a multiregional neoclassical growth model in which technological progress is
endogenous that is, the price of new vintage of capital and R&D investment are endogenous.
The model is hybrid because the energy sector (a key sector) is modeled in great detail,
separating electric and non-electric uses of energy, with seven power generation technologies
and allowing the use of multiple fuels. The authors account for seven channels for regional
interaction. Let us mention amongst them the first, which is the fact that both R&D and
consumption decisions are affected by energy prices worldwide. Other interactions are learning
by doing, R&D spillovers, international trade of oil and gas, and emissions trading.

The MARKAL-TIMES family of models aims at better describing the technology op-
tions, in particular in the power and industry sectors. They are technico-economic models.
The modeler needs to introduce technology characterizations and costs, resource availability,
environmental constraints, services demands and macro-economic indicators. In this sense,
MARKAL-TIMES is much more detailed than other IAMs. In TIMES, the quantities and
prices of the various commodities are in equilibrium, i.e. their prices and quantities in each time
period are such that the suppliers produce exactly the quantities demanded by the consumers.
This equilibrium has the property that the total surplus (consumers plus producers surpluses)
is maximized. There also exists a World multi-regional Markal-Times model (Kanudia et al.

2005). Notice that MARKAL models can be developed at all decision levels from wide regions
of the world with several countries, to single countries, regions, counties, cities or even villages.

Another kind of model is MERGE (Manne and Richels, 2005). MERGE is a model for
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estimating the regional and global effects of GHGs reductions. The model is flexible enough
to explore alternative views on a wide range of contentious issues, such as costs of abatement,
damages from climate change, valuation and discounting. The model covers the domestic and
international economy, energy-related emissions of greenhouse gases, non-energy emissions of
GHGs, global climate change, and market and non-market damages. Each region’s domestic
economy is viewed as a Ramsey-Solow model of optimal long-term economic growth. Price-
responsiveness is introduced through a top-down production function where output depends
upon the inputs of capital, labor and energy bundle. Separate technologies are defined for each
source of electric and nonelectric energy.

Two specific problems in the climate issue are that, first, there exists no supranational
authority entitled to implement the optimal policy and, second, emission reduction must be
worldwide to be effective against global warming. As a result, a wide international agreement
among the countries is required, and such an agreement can only be found on a voluntary
basis. This is the issue of coalition formation raised by Eyckmans and Tulkens (2003) with the
CWS integrated assessment model: which international agreements are feasible, and how to
implement them? In other words, between Nash and the socially optimal solution, what inter-
national agreement could be achieved? Bréchet et al. (2011) extend this analysis by comparing
the policy implications of the two competing theoretical streams available to date, namely, the
cooperative and non-cooperative settings. 3

3 The dynamics of a multi-agent economic-environmental sys-

tem

Let the global economy consists of n agents (regions, countries or groups of countries) and let
xi(t) denote the economic state of the i-th agent at time t (this may include physical capital,
human capital and other dynamic stock-variables, so that xi is a single or multi-dimensional
vector). Let vi(t) be the policy vector of the i-th agent at time t, which may include investments,
abatement and other components. The economic agents operate in a common environment,
the state of which may influence the productivity or the utility of the agents. The state of
the environment at time t will be represented by a vector y(t), whose components can be
the concentrations of GHG in different sectors of the environment and the average world
temperature. Let the economy of the i-th agent be driven by the equation

ẋi(t) = fi(t, xi(t), vi(t), y(t)),

where vi(·) is the chosen by this agent policy (control) function. (Everywhere in this paper
ẋ denotes the derivative with respect to the time.) Then the overall dynamics of the world
economy is described by the equation

ẋ(t) = f(t, x(t), v(t), y(t)),

where x = (x1, . . . , xn), v = (v1, . . . , vm), f = (f1, . . . , fn).
On the other hand, the economic activities have impact on the evolution of the environ-

ment, say due to emission of GHGs. Let e(t, x, v, y) represents the instantaneous impact vector
resulting from global economic state x, control v and environmental state y at time t.

3
See also Bréchet and Eyckmans (2012) for a survey on the use of game theory with IAMs, or Yang (2008)

for an application with the RICE model.
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Because GHGs are fungible (they melt in the upper atmosphere irrespective to the country
of origin), the impact vector is represented by the aggregate emissions

e(t, x, v, y) =
n�

i=1

ei(t, xi, vi, y), (1)

where ei(t, xi, vi, y) is the emission of agent i at time t, determined by her economic state,
control, and the environmental state at this time.

We assume that the dynamics of the environment can be represented by an equation of
the form

ẏ(t) = h(t, e(t, x(t), v(t), y(t)), y(t)).

Thus, given the control function v(·) chosen by the agents, the overall economic-
environment system is described by the equations

ẋ(t) = f(t, x(t), y(t), v(t)), x(0) = x
0
, (2)

ẏ(t) = h(t, e(t, x(t), v(t), y(t)), y(t)), y(0) = y
0
, (3)

where x0 and y0 are initial data.

In the numerical analysis in this paper we use one simple version of the IAM as described
below.

The benchmark model. We specify xi(t) = ki(t) – the physical capital stock of the
i-th agent, vi(t) = (ui(t), ai(t)) – the investment intensity and the abatement effort, y(t) =
(τ(t),m(t)) – the average atmospheric temperature at the earth surface and the concentration
of GHG (measured in the CO2 equivalent units in the warming context). Equations (2), (3)
are specified as

k̇i(t) = −δiki(t) + [1− ui(t)− ci(ai(t))]πi(t)ϕi(τ(t)) (ki(t))
γi(li(t))

1−γi , ki(0) = k
0
i , (4)

τ̇(t) = −λ(m(t)) τ(t) + d(m(t)), τ(0) = τ
0
, (5)

ṁ(t) = −µm(t) +
n�

i=1

ei(t, ki(t), ai(t), τ(t)) + ν(t, τ(t)), m(0) = m
0
, (6)

with
ei(t, ki, ai, τ) = (1− ai) ηi(t)πi(t)ϕi(τ)k

γi
i l

1−γi
i .

Since versions of the above most simple IAM are widely used in the literature (see the
literature review in Section 2.3) we only shortly explain the appearing notations.

Physical capital accumulation is described by equation (4). The depreciation rate of the
physical capital of agent i is δi > 0. The labor supply of agent i is li(t) and the production
function is of Cobb-Douglas type with elasticity of substitution γi ∈ (0, 1). The productivity
of the i-th agent is πi(t) and ϕi(τ) is a correction factor for the productivity depending on the
current temperature τ . Thus Yi(t) = πi(t)ϕi(τ(t)) (ki(t))γi(li(t))1−γi is the economic output
of agent i. It is assumed that the emission (without any costly abatement) is proportional to
the output Yi, namely equals ηi(t)Yi(t), where ηi(t) takes into account the change of emission
per output due to technological change.

A fraction ui(t) of the output is consumed and another fraction, c(ai), is devoted to CO2

abatement at rate ai, the rest is invested, as seen in equation (4). Abatement at rate ai reduces
the emission by a factor ai: ei = (1− ai)ηiYi and costs a fraction ci(ai) of the total product.

The evolution of the CO2 concentration is described by equation (6), where µ is the natural
absorption rate, ν(t, τ) is the non-industrial emission at temperature τ . Finally, (5) establishes
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the link between CO2 concentration and temperature change. The CO2 concentration increases
the atmospheric temperature through d but also may affect the cooling rate λ. The initial values
k0, τ0, m0 are given.

The control functions vi = (ui, ai) chosen by the agents should satisfy the constraints

ui(t), ai(t) ≥ 0, ui(t) + ai(t) ≤ 1. (7)

These inequalities define a constraining set V for (ui, ai), which imply in particular, that no
transformation of existing capital into consumption or abatement is possible.

The particular specifications used in the numerical simulations will be given below. The
main trouble with the above model and its extensions is that most of the model components are
actually not known with certainty. In fact this applies to all of the involved in the benchmark
model exogenous functions.

Since the economic agents have to make their policy decisions, vi(t), in conditions of un-
certainty about the future changes of the data, these decisions have to be made on the basis of
predictions. Therefore in the next section we develop the concept of prediction-based rational
behavior of an individual agent.

In the following two sections we define the two concepts we shall introduce in the IA frame-
work: model predictive Nash equilibrium and adaptive behavior. The methodology presented
below is not restricted to a specific model. Therefore the exposition is carried out for the gen-
eral model (2), (3), while we refer to the benchmark case (4)–(6) only for clarification, and in
Section 6 – for numerical simulations.

4 Model predictive rational behavior

Even if the model (2), (3) provides a reasonable description of the dynamics of the real global
economic-environment system, it is not exactly known to the agents due to imperfection of
the modeling and due to uncertainties in its parameters. That is, at time s agent j chooses
her future control policy based on a model that may differ from the “true” one. At any time
instant s agent j models her economy in her own way, including the impact of the environment
on the economy and her own input to the environment. Moreover, the performance criterion of
each individual agent may depend on the time at which the control decision has to be made.
Thus at any time s agent j maximizes an individual objective function representing the total
(possibly discounted) utility

� ∞

s
g
s
j (t, xj(t), vj(t), y(t)) dt (8)

subject to the controlled dynamics

ẋj(t) = f
s
j (t, xj(t), vj(t), y(t)), xj(s) = x

s – known at time s, t ≥ s, (9)

ẏ(t) = h
s(t, ej(t, xj(t), vj(t), y(t)) + ēj(t), y(t)) y(s) = y

s – known at time s (10)

and the control constraint (see (7) for the benchmark constraints)

vj(t) ∈ V. (11)

Here gsj is the function that agent j uses at time s for evaluation of the future (discounted)
utility, f s

j represents the model that agent j employs at time s for predicting the evolution of
her economic state xj(t) (for any given future control policy vj(t) and future environmental
state y(t), t ≥ s), hs is the model that all agents use at time s for predicting the evolution of the
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environmental state y(t), t ≥ s (given the future total emission e(t)). From the point of view
of agent j the total emission e(t) consists of own emission ej(t, xj(t), vj(t), y(t)) depending on
the own control and economic state and on the environmental state y(t), and of the emission
of the rest of the agents, ēj(t), which is not a priori known to agent j. The environmental
dynamics hs employed at time s is the same for all agents.4

As it will be argued at the end of this and in the next section, this assumption is not too
restrictive, since the agents may use the predictions obtained by the environmental model in
diverse ways, varying between total ignorance and complete trust.

The interconnected problems (8)–(11) of the n agents at time s are regarded as defining
a differential game in which the players (that is, the agents) implement (an open-loop) Nash
equilibrium solution. In the next lines we clarify what is the meaning of the Nash equilibrium
solution in the present context.

A specific feature of this context is the information pattern. In solving her optimization
problem agent j is not necessarily aware of the models f s

i that agents i �= j use at time s (as
we will see below these models may change with s due to agent-specific adaptive learning).
Instead, it is assumed that agent j solves the problem (8)–(11) if the emission ēj(t) of the
rest of the agent is given. Let (xsj [ēj ](t), v

s
j [ēj ](t), y

s
j [ēj ](t))), t ≥ s, be a solution of problem

(8)–(11) for the given function ēj(t), t ≥ s. 5 The resulting emission of agent j is

e
s
j [ēj ](t) := ej

�
t, x

s
j [ēj ](t), v

s
j [ēj ](t), y

s
j [ēj ](t)

�
.

In the definition of Nash equilibrium it is enough to assume that (instead of the dynamics f s
i

of all other agents) the emission functional

ēj(·) −→ e
s
j [ēj ](·) (12)

of each agent is known to the rest of the agents. That is, each agent gives a correct information
about her future emissions, given any scenario for the cumulated future emission of the rest of
the agents. (This information would be automatically available if the models f s

i on which the
agent’s decisions are based were known to all agents.) Then the Nash solution consists of an
n-tuple of control policies {vsi (t)}, trajectories {xsi (t)} of the economies, and emissions {esj(t)},
t ≥ s, such that following equilibrium conditions hold for j = 1, . . . , n and t ≥ s:

v
s
j [ē

s
j ](t) = v

s
j (t) with ē

s
j(·) :=

�

i �=j

e
s
i (t), (13)

x
s
j [ē

s
j ](t) = x

s
j(t), (14)

e
s
j(t, x

s
j(t), v

s
j (t), y

s(t)) = e
s
j(t), (15)

where ys is the solution of the equation

ẏ(t) = h
s(t, es(t), y(t)), y(s) = y

s
, with e

s(t) :=
n�

i=1

e
s
i (t). (16)

The meaning of the above equalities is the following. Equations (13) and (14) mean that for
the cumulated emission ēsj(t) of the rest of the agents, agent j will have (xsj , v

s
j ) as an optimal

4
The assumption that all agents use the same environmental model is made only for the sake of simplicity.

An additional comment on this is given in Footnote 6.
5
In this paper we ignore the issues of existence and uniqueness. Some comments on these issues in a slightly

different framework are given in Bréchet et al. (2012). In the economic-environmental model in Greiner et al.

(2010), for example, the solution does not need to be unique.
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solution. Equations (15) mean that the optimal emission of each agent j would equal esj(t),
provided that the trajectory of the environmental state is ys(·).

It remains to notice that due to (15) the equalities

yj [ē
s
j ](t) = y

s(t), j = 1, . . . , n

are automatically fulfilled. That is, at the Nash equilibrium solution each agent evaluates the
future environmental state in the same way. 6

The numerical calculation consists of iterating the fixed point system (13)–(16). Between
3 and 7 iterations give enough accuracy in the numerical investigation in Section 6.

Now we continue with the definition of the model predictive rational behavior of the economic
agents. Let us fix a time-step � > 0 and set sk := i�, k = 0, 1, . . ..

At time s = s0 = 0 the agents determine the Nash equilibrium controls {vs0i (t)} resulting
from the models f s0

j , gs0j , hs0 that the agents use at time s0, and from the measurements xs0j ,
ys0 of the states. The so obtained controls are implemented, however, only in the time-interval
[s0, s1]. Then the agents update their models and measure the actual state xs1j , ys1 . The agents
determine the Nash equilibrium controls {vs1i (t)} resulting from the updated models f s1

j , gs1j ,
hs1 and implement them in the time interval [s1, s2]. The same procedure repeats further on.
The resulting control policies are

v̂
�
j(t) := v

sk
j (t) for t ∈ [sk, sk+1], k = 0, 1 . . . .

The time-step � can be viewed as the length of the commitment periods defined under a legally
binding international agreement, like the Kyoto protocol. However, both for mathematical
convenience and due to the continual and non-synchronized adjustment of the policies of the
agents at micro level, we eliminate the dependence of the control policies on the choice of �
letting it tend to zero.

Definition 1. Every limit point of any sequence v̂�j defined as above in the space Lloc
1 (0,∞)

when � −→ 0 (if such exists) will be called Model Predictive Nash Equilibrium (MPNE) policy.7

In practice the time-step at which the actual state of the environment is updated may be
many years long due to the slow change of the environment and the relatively high fluctua-
tions from the trend. However, the model updates may take place more frequently due to the
relatively faster change of the economic states and the progress in the modeling methodologies.

We outline the particular case in which an agent j chooses her model f s
j , g

s
j independent of the

environmental state y. That is, in her current control policy agent j does not take into account
the influence of the future changes in the environmental state on her economy. Accordingly,
such an agent disregards the impact of her economic activities on the environment, hence
the environmental component (10) is irrelevant for her decisions. In Bréchet et al. (2012)
we interpret such an agent as doing Business as Usual (BaU). A BaU agent disregards her
interconnections with the environment and, consequently does not abate emissions. We stress
that the above notion of BaU differs from the one used in the literature (see e.g. Nordhaus and

6
This is the place where the assumption that all agents use the same environmental model hs

at any given

instant s plays a role. If each agent uses its own model hs
j for the environment, then the definition of the Nash

equilibrium solution becomes more complicated and depends on the information pattern: do the rest of the

agents know what is the environmental model used by the agent j, or they know only the emission mapping

(12). In the later case only a slight modification of the above definition of Nash equilibrium is needed. In the

former case the definition of a Nash solution is more complicated.

7
A sequence v� converges to v in Lloc

1 (0,∞) if
� T

0
|v�(t)− v(t)| dt converges to zero for every T > 0.
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Yang, 1996), where BaU is an agent who does not abate, although having a foresight about
the influence of the future environmental changes on the economy.

In the above consideration the models of the individual economic dynamics and objectives
of the agents, as well as the model of the environment, are considered as given, although
changing with the time in a non-anticipative way (the future changes in the models are not
known, hence not involved in the formation of the current control policies). In the next section
we partly endogenize the evolution of the models that agents employ by using a simple version
of adaptive learning.

5 Adaptive behavior

At any time s the agents use models (given by the triplet (f s
j , g

s
j , h

s)) to determine their policy
for some period of time after s, as described in the previous subsection.

In this subsection we address the following question: how the agents change the models
that they use, depending on the newly available measurements of the actual economic and
environmental states?

A variety of data assimilation techniques can employed for this purpose, out of which a
simple adaptive learning is chosen in this paper.

For the sake of clarity and for numerical simulations we consider here only the benchmark
model. The environment is assumed to be relevantly described by equations (5), (6), thus in
this case hs = h for all s. Moreover, we apply adaptive learning to only two crucial uncertain
factors that may vary with the time at which the control decisions are taken and that essentially
influence the behavior of the agents: the damage function which represents the effect of the
climate change on the economy, and the discount rate used by the agents in the formulation
of their future objectives. It is reasonable to apply adaptive learning to many other economic
factors, such as future productivity, πi(t), future labour li(t), future emission per output, ηj(t),
future natural emission, ν(t), etc., but here we assume a perfect knowledge for their evolution.

In the benchmark case the model (9)–(11) that agent j uses at time s reads as

k̇j = −δj kj + [1− uj − cj(aj)]πj ϕ
s
j(τ) k

γj
j l

1−γj
i , kj(s) = k

s
j , (17)

τ̇ = −λ(m) τ + d(m), τ(s) = τ
s
, (18)

ṁ = −µm+ (1− aj) ηj πj ϕ
s
j(τ) k

γj
j l

1−γj
i + ēj + ν(τ), m(s) = m

s
, (19)

uj(t), aj(t) ≥ 0, uj(t) + aj(t) ≤ 1. (20)

To complete the benchmark agent’s model we consider a particular objective function gsj
in (8) defined as

� ∞

s
e
−rsj t

�
uj(t)πj(t)ϕ

s
j(τ(t)) (kj(t))

γj (lj(t))
1−γj

�1−α
dt, (21)

where rsj is the discount rate used by agent j at time s.
As already said, the model components that the agent j updates at time s (based on

the available measurements for kj(t) and τ(t) till time s) are the damage function ϕs
j(τ) the

discount rate rsj .
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5.1 Updating the damage function

In the next paragraphs we analyze how agents with diverse level of knowledge and concerns
or with diverse opinion about the reliability of the presently used environmental models and
monitoring (in our case (18), (19)) may build their formal estimates about the influence of the
global warming on their regional economic efficiency.

Below it will be assumed that the true damage on the productivity in the region of agent
j caused by a temperature increase τ above the pre-industrial level is given by the formula

ϕ(τ) =
1

1 + θ∗τκ
, (22)

where κ is a known constant and the value of θ∗ is not known to the agent (considering also κ

or more parameters as unknown does not bring principal difference). The above constants are
agent-specific, but we skip the index j in the notations since the considerations below apply
to an individual agent.

As a specification of the benchmark model we assume that at any time s instead of the
“true” damage function (22) for her region agent j uses the following one:

ϕ
s(τ) =

1

1 + θs(βsτ s + (1− βs)τ)κ
, (23)

where θs represents the current estimate of the true value θ∗, τ s is the measured average
temperature at time s, and βs ∈ [0, 1] is an additional parameter chosen by the agent at
the current time s. As argued below, this parameter reflects the level of confidence in the
environmental model (18), (19). Notice that at the current time s the temperature is τ(s) = τ s,
hence the evaluation of the damage function gives

ϕ
s(τ(s)) =

1

1 + θsτ(s)κ
. (24)

Since the true value of the damage is measurable, the agent may calculate the value θ̃s that fits
to the current measurements of τ(s) and ϕ(τ(s)). Due to the uncertainties in the measurements
the agent evaluates the parameter θs to be used in her current model as

θs = θs− + ερs(θ̃s − θs−),

where θs− is the agent’s estimation of θ prior to time s (which depends on past measurements).
The parameter ρs ∈ [0, 1] reflects the agent’s uncertainty about the currently estimated factors:
temperature, capital stock, economic output: the lower is the confidence of the agent, the
smaller is ρs. The parameter ε > 0 is the time step for updating the damage function, as in the
preceding subsection. In the limit case with ε → 0 and ρs = ρ the value ρ can be interpreted
as the exponential decay rate of the error: θ∗ − θs = e−ρs(θ∗ − θ0).

On the other hand, at time s the agent employs the damage function in her long-run
investment/abatement planning model (17)–(21), as described in the previous subsection. Since
the temperature τ may change in the future and the agent uses the environmental model (18),
(19) to predict this change, the anticipated error in τ produced by the model may distort the
predicted damage rate. To take into account these uncertainties the agent modifies the damage
function (24) in the way given by (23). The argument for choosing a damage function in the
form of (23) is shortly explained below, taking for simplicity the value κ = 2.

At time s the agent has updated her damage function ϕs by choosing the new parameter
θs in (24) as described above. However, the agent realizes that the true temperature at time

12



t > s may be different from the one resulting from the model (18), (19), with an error ξ = ξ(t).
Then the anticipated value of the damage function, when using (23) at time t and with the
true temperature τ = τ(t) will be

1

1 + θs(βτ s + (1− β)(τ + ξ)2)
.

Since ξ can be viewed as a random variable (although its distribution is unknown), the rational
agent would try to minimize by choosing the parameter β ∈ [0, 1] the expectation

E
��

1

1 + θsτ
2
− 1

1 + θs(βτ s + (1− β)(τ + ξ)2)

�2
�
.

Having in mind that θ∗, hence also θ, is a small number (θ∗ = 0.0054 according to Nordhaus,
2007), one can reasonably represent the above expression as

θ
2
sE

��
β∆(β∆+ 2τ) + 2(β∆+ τ)(1− β)ξ + (1− β)2ξ2

�2�
+O(θ3s), (25)

where ∆ = τ s − τ and O(ε)/ε is bounded when ε → 0. From here one can make the following
essential observation:
(i) if the agent trusts the employed environmental model (hence ξ = 0), then this agent would
choose β = 0, which gives value zero in the error-expectation formula (25);
(ii) if the agent does not believe in the long run trend of the temperature change (assuming
∆ = 0) and anticipates an error ξ �= 0 of the model-base prediction for the temperature, then
this agent would choose β = 1.

The analysis may be continued by considering the optimal choice of the parameter β, that
is, choosing the β that minimizes the expression in (25). We skip this technical (and not very
precise) consideration, which suggests that an agent whose opinion about the accuracy of the
environmental model (18), (19) measured by

�4
n=1 |E(ξn)| is large relative to the expected by

the agent temperature change ∆ = τ − τ s (a “skeptical” agent), then this agent would choose
β closer to 1, while an agent who trusts more the model and anticipates a temperature increase
would choose β closer to zero. Of course, the same learning procedure as for θ can be applied
also for β.

Summarizing, one may say that the choice of the predictor for the future damage caused by
the global warming is a subjective decision of the agent, which can be formally characterized
by the following statement in terms of the parameters ρs and βs in the update of the damage
function: agents who are sceptic about the measurements (and the model) of the economy and
about the measurement of the current temperature choose lower value of ρs; agents who are
sceptic about the credibility of the employed environmental model choose a higher value for
the parameter βs ∈ [0, 1].

We note that an agent choosing β = 1 makes no use of the environmental model at all,
since this agent always takes the current temperature as a proxy for the future one. Thus
β = 1 represents a BaU-agent. In the present framework the agents are distinguished by their
parameters ρs and βs and the BaU agent is an extreme case in a continuous variety of agents.

5.2 Updating the discount rate

The discount rate rsj chosen by agent j at time s in its utility function represents her opinion
about the value of the present utility relative to a future one. Of course, the discount rate rsj
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depends on the agent’s view on the future uncertainty, but in the context of the environmental
concerns it depends also on the agent’s per capita wealth. As one can clearly see from the
daily practice, a rich country tends to be more far-sighted than a poor country in which
the political and the economic policies are more myopic. Similar suggestions are given in the
economic literature (see e.g. Lawrence, 1991, and Samwick, 1998). Therefore, it is reasonable
to assume that the discount rate of agent j depends on her per capita wealth measured at
time s by kj(s)/lj(s) = ksj/lj(s) (where labor is proportional to the population size). Thus,
at time s the agent would have an endogenous discount rate rsj = R(ksj/lj(s)). The particular
specification of the function R used in the subsequent numerical analyses is given in Section
6.

6 Some simulation results

The agents in the benchmark model (17)–(21) are heterogeneous with respect to all involved
parameters. However, we shall focus on the heterogeneity with respect to their behavioral
features, represented by the damage function ϕs

j(τ) and the discount rate rsj used at time s by

agent j.8

6.1 Model calibration

The individual damage function used by an agent at time s is characterized in the previous
section by three parameters: the knowledge about the “true” damage function prior to s,
denoted by θs−, the learning parameter ρs, and the “trust” parameter βs. Diverse values
of these parameters and of the discount rate rsj allow to cover agents with rather different
behavior, including such doing BaU (see the end of Section 4), myopic versus far-sighted
agents, sceptical about the accuracy of the climate predictions versus “believers”, etc. Given
any configuration of agents, their (interconnected) economic behaviour is defined in Section 4
by the Model Predictive Nash Equilibrium (MPNE).

Although the concept of MPNE applies to any number of agents, in the simulation results
below we consider for more transparency only two agents. The first agent, named agent R
(from “Rich”), is presumably richer, hence less discounting the future, has better knowledge
on the damage function and trusts more the predictions for the climate change. The second
one, agent P (from “Poor”), is presumably poorer, hence more myopic, has bad knowledge on
the damage function but may learn with experience, and is skeptical about the predictions for
the climate change. In the benchmark model agents R and P are indexed by i = 1 and i = 2,
respectively.

The prototypes of these two agents in some of the simulations below are the OECD and
the non-OECD countries, respectively. Therefore in all simulations 74.7% of the world physical
capital stock (estimated as 733.2 trillion USD in 2005) belongs to agent R, while the rest
of 25.3% belongs to agent P. Thus the initial data for the economy are k01 = 547.7004 and
k02 = 185.4996 trillion USD. On the other hand, the population of agent R is 18.2% of the total,
which gives l1 = 0.184L, l2 = 0.816L with the total population L = 6464.75 million. The initial
data for the environment are m0 = 808.9 and τ0 = 0.7307, representing the concentration of
CO2 in GtC and the increase of temperature above the pre-industrial level in 2005, respectively.

The constant parameters of the benchmark model are given on Table 1. The calibration
year is 2005.

The functional parameters in the benchmark model are specified as follows.

8
The adjective “behavioral” indicates dependence on subjective attitude of the agent. Moreover, the agents

have no foresight about the damage function and the interest rate that they will use in the future.
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Table 1: Values of stationary parameters

Economic parameters
intertemporal elasticity of substitution α 0.5
depreciation rate δi 0.1
capital elasticity γi 0.75
initial productivity of R π1(0) 1.75
initial productivity of P π2(0) 1.17
initial emission rate ηi(0) 0.0427
Climate parameters
temperature stability rate λ 0.11
CO2 absorption rate µ 0.0054
natural emission ν 3.211

Due to technological progress the productivity πi(t) is assumed linearly increasing with
time so that technology is 25% more efficient after 175 years, that is, πi(175) = 1.25πi(0) for
i = R,P .

The technological progress reduces the emission per unit of output (without abatement)
at an exponential rate 0.00384, which corresponds to a decrease by 25% in 75 years: ηi(t) =
e−0.00384tηi(0). The cost-of-abatement function ci(a) = c(a) is specified as c(a) = 0.01a/(1−a),
which implies that reducing emission by 50% incurs cost of 1% of GDP. The true damage
function for all agents is assumed to be

ϕ
∗(τ) =

1

1 + θ∗τ2
, with θ∗ = 0.0057

(of course it is not assumed to be known to the agents).
Finally, the effect of CO2 concentration on the average temperature increase is captured

by the standard function d(m) = 0.5915 ln(m/m∗
0), where m∗

0 = 596.4 GtC is the preindus-
trial CO2 concentration in the atmosphere. All the specifications are within usually suggested
ranges.9

6.2 Scenarios description

For the behavioral parameters ϕs
j(·) in (23) and the discount rate rsj we consider several

scenarios as described below.

Scenarios 1 and 2. These are two “extreme” scenarios. In Scenario 1 both agents are myopic
and totally neglect the environmental dynamics in their decisions, adapting to the temperature
change only post factum (this is what we called BaU agent in the end of Section 4). Precisely,
agent R has the parameters rs1 = r1 = 0.02 (myopic), θs = θ∗ (evaluates correctly her damage
at the current temperature τ s), β = 1 (ignores the prediction for future change of temperature),
ρ is irrelevant. Agent P has the same parameters with the only difference that θs = θ∗/6 and
ρ = 0 (underestimates the damage of the current temperature and does not learn).

In Scenario 2 we consider that both agents as far-sighted, perfectly informed about the
environmental dynamics and the damage function. Precisely, for both agents rsi = 0.005,
θs = θ∗, βs = 0. In fact, in this case the MPNE coincides with the usual Nash equilibrium due
to the perfect foresight of both agents.

9
See the IPCC (2007), Nordhaus (2008), Stern (2008) and Yang (2009).
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Scenario 3. In the third scenario we take into account that agent P may learn and may
become less sceptic with experience, still remaining myopic. The role of this scenario is to
exhibit the effect of learning. Formally, agent R is exactly as in Scenario 2, while agent P has
rs2 = 0.02, θs = θ∗ − e−ρs(θ∗ − θ0), with θ0 = θ∗/6, ρ = 0.03465, and βs = e−ρs. The chosen
value of ρ means that agent P reduces the error in θ by half and the value of the distrust
parameter β from 1 to 0.5 in 20 years.

Scenario 4. This last scenario involves endogenous discount for agent P, all the rest is as Sce-
nario 3. Agent P is initially myopic (r02 = 0.02), but her discount rate decreases quadratically
with the per capita stock of capital till the value r = 0.005 is achieved when the capital stock
reaches the initial value of the initial capital stock of agent R. That is, at this point agent P
starts discounting as low as agent R, who has r1 = 0.005 all the time.

In all scenarios the agents use the investment and the abatement rates, ui(t) and ai(t), as policy
instruments. Of course, in Scenario 1 the agents have no reasons to abate (hence aj(t) = 0).

6.3 Simulation results

The four scenarios are graphically depicted in figures1-3. Our results support the intuitive idea
that the more you know the better you do. Indeed, Scenario 2 represents the economy with
the best informed individuals who care the most about the future. On the other side, agents
in Scenario 1 are myopic about global warming and do not care much about the future. On
top of this, they are unable to learn. This implies that they never revise their vision about
global warming nor do they increase their concern about the future. They are stubborn and
short-sighted, which are rather common psychological features in the the real word. As a result,
in short, Scenario 2 provides the highest consumption and GDP per capita in the long-term,
incurring in the lowest increase in temperature while Scenario 1 provides the worst results.
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Figure 1: World GDP per capita.
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Figure 2: Average abatement rate.

A striking result to be mentioned about these two scenarios is the shape of GDP (or
consumption) over time. After an increase in GDP per capita at the beginning of the simulation
period, Scenario 1 displays a shrink in the level of the world GDP by 25% in 90 years. This
reflects the economic consequences of neglecting climate change. Actually, in Scenario 1 World
GDP declines by 0.3% per year between time 50 and 140. In the same period of time world
GDP increases by 0.3% per year on average in Scenario 2. This shows how a more realistic
definition of a BaU translates into climate costs on the economy. Let us remind that we use
the same calibration parameter values as Nordhaus (2007). What makes the difference is the
rational behind the scenarios. Clearly, this result sheds a new light on the potential costs of
no-action against global warming. Most people agree that emission abatement is costly but
forget that climate change itself is costly to the economy. This simulation reveals that these
costs may be much higher than usually appraised with IAMs because of they ill-define what
is business-as-usual.

After 100 years, Scenario 2 induces a temperature increase of less than 3◦C, providing a
GDP of 30,000 USD per capita. Scenario 1 provides higher consumption during the first 90
years, given that agents do not abate. Nevertheless, because they incur in the largest emissions,
their productivity is harmed the most. In order to preserve a high level of consumption during
the entire period, agents in Scenario 2 abate more than 50% of their emissions, attaining up to
70% after 50 years. Given that agents do not abate at all in Scenario 1, temperature increases
by more than 6.5◦C after 100 years, which dampens their productivity and hence their income.

Naturally, Scenarios 3 and 4 provide results that lie in between Scenario 1 and 2, getting
closer to Scenario 2 as the amount of information and concern about the future increase.
Scenarios 3 and 4 are similar during the first 20 years. Differences arise after and one can
observe the behavioral differences between agents who update their discount rate, and those
who do not. In Scenario 3, agent R knows exactly the damages induced by global warming,
and she discounts future at at a higher rate. On the other side, agent P, who does not abate
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at the beginning, starts soon doing so, adding her effort to agent R’s. However, agent P’s lack
of care about the future impedes larger abatement efforts. Consequently, GDP per capita and
consumption are larger than in Scenario 1, and temperature increase after 100 years is 3.75◦C
above the preindustrial level. Therefore, although this economy starts abating a 10% of their
emissions on the average, it gradually increases abatement efforts until 50% after one century.

Finally, building on Scenario 3, we allow agent P in Scenario 4 to become more patient
as she becomes wealthier. Hence, as agent P accumulates wealth with time, she starts caring
more about its future and increases her abatement effort accordingly. We can see in figure 2
that the average abatement rate equalizes Scenario 2’s after 70 years and then over-reach it
for some decades. Agents get very close to Scenario 2 in terms of consumption and GDP as
well, but they cannot catch them because of the damages accumulated on productivity during
the first 60 years.

It is interesting to notice that, although Scenario 2, 3 and 4 are relatively close in terms
of temperature increase, they display contrasting profiles regarding GDP, consumption, and
abatement policies. For example, in Scenario 4 abatement efforts are stronger than in the
“optimistic” Scenario 2 for most time periods because of the delay incurred by the endogenous
discounting. It shows that the idea of relying on endogenous discounting (driven by economic
development) to cope with global warming is inadequate because it takes too long.

It is interesting to compare the aggregated discounted utility of agent R (given by (21) on a
200 years long horizon) in scenarios 2 and 4. The discount factor of agent R is r = 0.005 in each
of these scenarios, therefore the results are comparable: the values are 52,995 in Scenario 2 and
37,022 in Scenario 4. Since agent R has exactly the same parameters in the two scenarios, the
reason for the large difference of her welfare is caused by agent P. Notice that due to learning
and due to the endogenous discount, after 100 years agent P in Scenario 4 behaves exactly as
agent P in Scenario 2: has a perfect knowledge and discounts with r = 0.005. However, due to
the delay in the evolution of agent P from a myopic ignorant to a far-sighted knowledgeable

18



agent (as R is from the very beginning), agent R loses about 30% of her 200-years utility. This
result shows how important it is for the rich country to help the poor one to develop, because
both share the same common good, climate.

7 Conclusion

The purpose of this article was to extend the standard integrated assessment framework applied
to climate change by incorporating model predictive control and adaptive behavior. Model
predictive control is employed due to the uncertainties about the future environment. It allows
agents to redefine their optimal strategy on a regular basis, on the grounds of the observed
changes in the world or in the agents’ time preferences (endogenous discounting in our model).
With this setting, agents are rational (they adopt the optimal policy) but revise it (with some
inertia) as the word changes. Adaptive behavior (or learning) is involved since the agents
gradually improve their knowledge about the world (the interconnection between environment
and economy, in our model). These ingredients are particularly relevant in the context of global
warming. We provide a generic theoretical model encompassing all elements of an integrated
assessment model. In particular, we define an innovative concept of Model Productive Nash
Equilibrium (MPNE) to characterize an economy with many countries. Simulations show,
among other results, how the trajectory of the economy can be affected by the adaptive
configuration. In particular, a pessimistic configuration (pessimistic, but maybe not so far
from reality) displays a shrink in the world GDP due to the adverse effects of climate change
and the persistent agent’s will to disregard them. This new framework would deserve to be
extended in several directions. A first natural one would be to split the word in many countries
or regions. In this case, strategic interactions among countries would become a new ingredient
of the framework.
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Bréchet T., Gérard F. and Tulkens H. (2011). “Efficiency vs. stability of climate coalitions:
a conceptual and computational appraisal” The Energy Journal 32(1), pp. 49-76.
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