Improving the Software
Development Process in a Software
Development Team - a Case Study

Laxmi Thebe

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.

Helsinki 28.09.2020

Supervisor

Assoc. Prof. Casper Lassenius

Advisor

M.Sc. (Tech.) Miika Nordstrém

,, Aalto University
School of Science



School of Science www.aalto.fi

A’ , Aalto University Aalto University, P.O. BOX 11000, 00076 AALTO
Abstract of the master’s thesis

Author Laxmi Thebe
Title Improving the Software Development Process in a Software Development Team
- a Case Study
Degree programme Master’s Programme in Computer, Communication and
Information Sciences
Major Software and Service Engineering Code of major SCI3043

Supervisor Assoc. Prof. Casper Lassenius
Advisor M.Sc. (Tech.) Miika Nordstrom
Date 28.09.2020 Number of pages 65+8 Language English

Abstract

Changes in the context in which software engineering practices are carried out also
initiate the need to change in the practices to effectively work as a development team
while delivering the software product with the highest possible values. While the
thesis was initiated to improve the continuous integration and delivery practices in the
case company, the context and the need for the changes in the practices highlighted
the need for enhancing the Scrum practices within the software development team.
With the design science research methodology approach, the problems in the software
development team were drawn during the current state analysis phase followed by
a workshop to discuss the findings and select the challenges to tackle as part of
the thesis work - both from the case company and development team members’
perspective. The results from the current state analysis highlight five core problem
areas from which problem area "Process and Tools” was selected for solving in this
project after the discussion with the development team. Despite already utilizing
some practices of Scrum, the development team decided to evolve the Scrum adoption
with the utmost goal of solving concrete problems in the problem area captured
during the current state analysis phase. Semi-structured interviews and surveys were
utilized to collect the data, and the findings reveal the potential of the process while
suggesting further improvements. Scrum is easier to understand but challenging to
master. The process exposes the potential, offers the possibility to respond to the
challenges in an agile way while emphasizing the importance of context in shaping
the practices and tools which is utilized for software construction.

Keywords Agile Development, Scrum, Distributed Agile Development




Preface

I owe my sincere gratitude and appreciation to all beings whom I happen to share
even a brief amount of time in person or by other means. In particular - to my
parents for their relentless effort to support my school education, to my friend Harsha
and uncle Ganga Siwakoti for being there in my most vital period of life during
my high school, to Finland for accepting me regardless of my origin, to my girls
for keeping me always motivated and giving me reasons to pursue my dreams, to
my colleagues at Vediafi Oy for supporting through the whole project, to Joona
Jalovaara for being there to guide in my professional growth, to my advisor Miika
Nordstrom for providing supportive environment and guidance, to my supervisor
Casper Lassenius for always motivating and guiding me through this whole project.
Without your support and involvement, I would not have been able to be part and
bring this project into this state.

Helsinki, 29.08.2020

Laxmi Thebe



Contents

Abstract

Preface

Contents

Symbols and abbreviations

1 Introduction
1.1 Research Questions . . . . . . .. .. ... ... L.
1.2 Thesis Structure . . . . . . . . .

2 Background

2.1 Case Company . . . . . . . .. i
2.2 New Context - Reasons for Change . . . . . ... ... ... .....
2.3 Current Software Development Practice . . . . . . ... ... ... ..

3 Literature Review

3.1 Agile Development . . . . . .. ... L
3.2 Description of Scrum . . . . . ... oL
3.3 Coreof Scrum . . . . . . ...
331 Roles. .. .. .. . .
3.3.2 Artifacts . . ...
333 Events . . . .o
3.4 Scrum Adoption . . . . . . . ...
3.4.1 Challenges . . . . . . . ...
3.4.2 Opportunities . . . . . . ...
3.5 Distributed Scrum . . . ...
3.5.1 Challenges . . . . . . . . ...
3.5.2 Recommendations. . . . . ... ... ... ... ..

4 Research Method

4.1 Methodology . . . . . . ... ...
4.2 Data Collection . . . . . . . .. . .
4.3 Data Analysis . . . . . . ...
4.4 SumMmary . . . . ...

5 Current State Analysis
5.1 Elicitation of Problems . . . . . . . .. .. .. ... .00
5.2 Presenting and Brainstorming more Problems . . . . ... .. .. ..
5.3 Conclusion of Current State Analysis . . . . . ... ... ... ... ..



6 Design Artifact Description 42
6.1 Problems selected for the solution . . . . . ... ... ... .. .... 42
6.2 Mandated Approach to Solution . . . . . . . ... ... ... .. ... 44
6.3 Recommended Scrum Practices . . . ... .. ... ... ... ..., 44
6.4 Summary of the Retrospectives . . . . . . ... ... ... ... ... 46

7 Evaluation 50
7.1 Evaluation based on Problems . . . . . . . ... ... ... ...... 50
7.2 Understanding of Scrum and Future Application . . . . . . .. . . .. 52
7.3 Lessons Learned . . . . . . . . . . . . ... 52
7.4 Evaluation Summary . . . . .. .. .. Lo Lo 54

8 Discussion 56
8.1 Research questions and the answers . . . . . . ... ... ... .... 56
8.2 Limitations of the research . . . . . . . . . ... ... ... .. .... o8

9 Conclusion 60

References 61

A Current State Analysis Questions 66

B Current State Analysis Survey - DevOps maturity level in technol-
ogy area 67

C Current State Analysis Survey Answer 70

D Evaluation Questions 71

E Evaluation Survey 72



Symbols and abbreviations

Abbreviations
CI Continuous Integration
CD Continuous Delivery
API Application Programming Interface
PR Pull Request
DoD Definition of Done
DSRM Design Science Research Methodology
PO Product Owner

SM

Scrum Master



1 Introduction

Scrum is a powerful lightweight process framework (Schwaber, 1997) suitable to
utilize in complex domains of work where wicked problems are inherent like in the
fields of software development. It is simple to understand yet difficult to master but
offers the opportunity to try something new, see how it goes, and adapt it in the
new light of knowledge and hence repeat - do it again but adaptively.

With the adoption of agile practices in software development, there has always
been a focus on constant improvement in the overall software development process
with emphasis on three core values - transparency, inspection, and adaptation.
Automation is an ultimate outcome of our pursuit of achieving improvement in the
aspect of the process - whereas there are other core achievements in improvement in
our practice, process, and tools.

The case company has recently started adopting continuous integration and
delivery by developing pipelines with the help of the external consultant when the
software development team grew from two existing members to the eight members
team. This change not only introduced the need for a more robust approach to the
usage of tools, but it also established the need to adopt or at least question the
existing practices. The initial purpose for the thesis was to develop knowledge and
skill to handle the continuous integration and delivery (CI/CD) implementation in
future projects, but the study of current state analysis exposed most of the problems
in the software development process. As a result of that, the software development
team in the case company was mandated for improving the existing Scrum process
to solve the current problems before thinking about tools and automation.

Even though the demographic distribution of workforce enabled with technological
tools and globalization might have introduced the discussion of having distributed
Scrum, we are now forced to work remotely due to the COVID-19 pandemic. Develop-
ment team members are mostly working from the home office - a kind of distributed
work in which the day to day development works is performed from home differen-
tiating from other distributed work settings by creating a work in an individually
distributed setting (Luz et al., 2009). The current situation demands to tailor the
Scrum process even for the team otherwise collocated in the same office space.

1.1 Research Questions

This thesis aims to explore the Scrum practices used in the case company at the
time of undertaking this endeavor by observing the current practices while exploring
the problems and implementing a solution to handle those problems. As a part of
the DSRM research approach, the application of the solution in the given context
is evaluated using an exploratory approach. The thesis undertakes the inquiries to
answer the following research questions:



Research problem How to improve the software development practices in the
case company?

RQ 1 What are the current problems in the software development team in the
case company?

RQ 2 What practices are employed by the software development team in the
case company?

RQ 3 What are the changes introduced in the software development team?

RQ 4 How the introduced changes affect the existing problems?

Table 1: The research questions

In addition to answering the research questions, this thesis explores the further
possibility of improvement in the software development practices in the case company
as part of the continuous improvement approach as the core idea of contributing to
the case company while accomplishing the thesis project.

1.2 Thesis Structure

The thesis structure reflects the adoption of the DSRM process model in its content
structure. Section 1 presents the research problems and motivation while the case
background is introduced by introducing the case company in brief in Section 2. In
Section 3, the thesis presents the overview of agile software development and scrum
in particular while also discussing the challenges and opportunities of the scrum
in other similar situations. Due to the current COVID-19 pandemic situation, the
software development team in the case company is forced to work as a distributed
team and hence the adoption and challenges of Scrum in distributed settings are
also discussed. This enables us to view the implementation in light of the existing
practices and the knowledge of literature. The research method utilized to conduct
this thesis project is elaborated in Section 4, whereas Section 5 introduces the current
state analysis in the software development team in the case company which aims to
frame research problems. In Section 6, the selected problems are highlighted while
discussing the recommended practices and results of the retrospectives conducted
during the Scrum practices. The implementation is evaluated as described in Section
7 while Section 8 discusses the research questions and answers to the questions and
the limitations of the research before concluding the thesis project in the final Section
9.



2 Background

As the thesis was conducted in the context of the case company, this section provides
an overview of that context and provides a general idea for the thesis on-wards. As
the DSRM approach is applied to improve the situation while the context in the
case company changed, this section also discusses the newly developed context after
explaining the case company in brief. Moreover, it discusses the current practices -
which further sets the context for the problem analysis phase of this project.

2.1 Case Company

Vediafi Oy is a growing I'T company with two part-time developers less than two
years ago now having eight developers in its software development team - some of the
developers are working on the project full time while others are working for part time.
It offers its services and expertise in the field of logistics by developing various projects
and products based on context and clients ranging from individuals to companies
and organizations. The company relies on positioning hardware, different sensor
devices, and third-party APIs to gather different information to create data-driven
smart logistics solutions based on those technologies. Some of the projects have
sophisticated architecture and use different kinds of services for their functioning
while the applications are mainly developed using Python and JavaScript frameworks.

Moreover, as Vediafi Oy seeks to achieve quality in the software product and
improvement in developer productivity, looking into the issue of the improvement of
one of the core practices is of vital importance. Shorter lead time is sought after to
achieve quality products which are tested by internal members manually before the
release of the product. The projects undertaken at Vediafi Oy involve the integration
of different services and projects are mostly feature-driven while requirements are
changing often. According to the cultural model of the sociologist Ron Westrum,
the organization culture in Vediafi Oy is somewhere in the middle of generative and
bureaucratic state while focusing on harnessing generative culture which is highly
performance-oriented, cooperative, innovative, and shared responsibilities and risks
(Google, nd). Inter-team communication is missing but improving all the time and
the local team cultures within the software development team are strengthening.
The well-being questionnaire is sent monthly within the company with an average
rating of 4.2 out of 5 which was also reflected by the developers during the interview
discussion when the case of figuring out problems in the software development team
was conducted.

The software development projects in Vediafi Oy offer different kinds of challenges
and are different in nature and complexities. Some projects are to be delivered or at
least achieve some targets in incremental steps which requires delivering software
quickly and reliably. The agile software development methodology is used in the
software development team whereas a biweekly company-wide meeting is conducted
to highlight the general view of the projects which highlights the current status
and future expectations from the projects. Slack is predominantly used within the
software development team for team communication while emails are mostly used



10

as a communication channel within the company. G Suite tools are being heavily
used for sharing calendars, files, and video communication during this COVID-19
pandemic time in particular.

2.2 New Context - Reasons for Change

While automation and continuous improvement play a vital role in the software
development process, the case company focuses on achieving developer productivity
and software quality while building products for our projects. As the team seeks to
achieve that goal, continuous integration and delivery pipelines are used to automate
and enforce the rule that ensures software quality and developer productivity. One
of the ways the pipelines enable developer productivity is related to the reduced
risks while releasing the new software project artifacts as it is mostly automated
and risks are significantly mitigated with the possibility to rollback the changes
if something wrong happens. As stated earlier, the software development team
consisted of two developers working next to each other and communicating by going
over the desk if some issues arose during the day to day work while mostly resolving
issues immediately. Due to the growing size of the software development team, the
team was working from two different rooms while one of the developers worked
remotely before moving to the single big room which hosts all the members of the
development team in a single collocated space.

As Scrum promises developer productivity and improved quality by delivering
the highest values (Sadun, 2010), Scrum is already implemented to some degree
in the company to materialize the vision of increasing developer productivity and
enhancing the delivered product quality while working within the deadlines and
milestones. With the changes in the size of the team, the need for establishing control
and structure to software development activities arises while underlining the need
for establishing a software process to achieve business successes (Sanchez-Gordén
et al., 2016). While there are simultaneously running multiple projects in the case
company often having changing requirements, there is a need to tackle the challenges
of selecting and adopting suitable software development methodologies to meet the
specific requirements (Flora and Chande, 2014) defined by the context of the case
company while focusing on achieving development productivity and quality of code.

With the aforementioned growth, the company hired two external consultants
who brought new practices and tools which resulted in the introduction of continuous
integration and delivery pipelines while the whole team started to use Jira for task
management. The existing CI/CD pipelines were found beneficial in our project when
bug fixes require an immediate release to production - and although the deployment
to production is manual, it is semi-automated and hence partially focused on delivery.
Due to these new practices, the need for more discussion was realized within the
team while the company started to feel the need for nurturing in-house knowledge
and skills to maintain and implement new pipelines and automation tools.



11

2.3 Current Software Development Practice

In the case company, the software development practice is evolving as the number
of software developers is growing. When there were only two team members, the
developers were working in the collocated office space while communicating with the
work supervisor frequently while taking away the need for most of the management
aspects in software development. As the size of the software development team grew
up, the team started using Jira as an agile project management software tool while
Bitbucket was already being used as a code hosting platform. The work supervisor
was fulfilling the role both as a product owner and scrum master during the start
of this thesis study while grooming the product backlogs as a result of discussion
with other stakeholders involved in the project when there were no clearly defined
team roles. Developers were allowed to add the issues to the backlogs - and the
development team did not have any strong conceptual understanding of the backlogs
and the software development process. Concerning the practice of the Scrum, the
team used to have dailies twice a week and a sprint of usually two weeks’ length
while having sprint planning at the beginning of the sprint. The work was done as
an organized team and the process was called Scrum while having the aspects of
both the Kanban method and Scrum in the development practice. The task boards
were used mostly like in the Kanban method and the whole team was working with
greater flexibility often not having enough discussion on how to register an issue
in a Jira for example. As a result of that one, the tasks were often less detailed
and missing the proper format for presenting in the Jira even when documenting
requirements in user stories or use cases format is recommended (Eloranta et al.,
2013). The tasks in Jira were assigned to the developers during the sprint planning
to some extent and developers were discussing with each other mostly and taking the
task from the board voluntarily. If the task involved coding, a branch was checked
out from the master - the active development branch - which follows the naming
convention for the branch established quite recently so that the team could achieve
the traceability i.e. figuring out which features in the products are related to the
merge commits in the code aspect of the product. Regarding the git practices, the
development team used feature branch workflow where feature branches are used to
create new features and merge back to the master i.e. active development branch
once the feature branch is reviewed and approved.

The adoption of CI/CD practice started as a result of having an expert consultant
to work with the software development team starting from one of the projects, and
the practice in the company could be described with the figure 1. After the code
changes are pushed to the Bitbucket repositories, an automated test is run after the
environment is set up and code is checked out in the CI/CD platform i.e. CircleCI.
Automated tests mostly involve unit testing and the test coverage significantly differs
based on projects and the developer who is actively working on the project. If the
build is failed due to the issues in the code, the developer who pushed the changes is
responsible to fix the builds. Nightly builds are run dailies. During the nightly builds,
automated tests are run, the artifact is built as a docker image and pushed to the
docker repositories which are automatically set to deploy to the Kubernetes cluster.



12

Application automated deployment pipeline

Figure 1: Application Deployment Process (Rossberg, 2019).

The software products are hence released in three different environments - testing,
release candidate, and production. As stated already, the nightly builds are released
in the testing environment, whereas deployment to release candidate environment
and production environment is automated once the code is checked out following
branching conventions and pushing the branch to the repositories. Production
deployment was not automated at the beginning of the study, but it is automated to
the point that it only needs manual approval. The work on implementing end to end
testing is discussed but still not implemented. While the importance of developers’
involvement in initial deployments is valued by most organizations (Davis, 2019),
the presence of the anxiety during the deployment of updates to production is often
experienced in the development team while most of the development team members
are not particularly aware of the overall process.

(origin/testinightly-20200205002111 ) origin/test/nightly-20200207002141 ) origin/test/nightly-20200208002516 ) origin/test/nightly-202002090024

Merged in 889-barcode-admin (pull request #202)
Production Cl configuration

O Changed to remove view
new approach

Back changes for removing barcodes

origin/ref1.2.0 | origin/releasef1.2.0 | origin/test/nightly-202001290024325 J origin/test/nightly-20200130002539 [ originftest/nightly-20200131002333

originftest/nightly-20200125002446 J origin/test/nightly-20200126001559 J originftest/nightly-20200127002246 ] origin/test/nightly-20200128002146

ELe e L Erleple eyl a vy Wil rilielry Merged in store-views-flake8-fixes (pull request#198)
Fix for tests

Merge branch 'master’ of bitbucket.org:indagon/caas_api into store-views-flake8-fixes

flake8 fixes

Merged in stats-flake8-fixes (pull request #197)

flake8 fixes

Figure 2: Git workflow and release practice

As a part of this development in CI/CD, there are also tools for monitoring and



13

alerting but barely used by developers - and the error tracking software report is
often neglected for many false-positive reports. At the moment, pull requests are
merged manually and some developers are unwilling to merge the pull request -
which necessitates the need for an automatic merge if the pull request fulfills the
agreed criterion as shown in the figure 2. To raise situational awareness through
logging and monitoring, Slack is integrated with other tools so that a developer is
notified in relevant Slack channels. Documentation is done in Confluence which is
also integrated with Slack.

In conclusion, the software development team has tools to establish better engi-
neering practices while lacking enough discussions or proper utilization of tools and
the need for establishing a lightweight process while working in multiple projects
within the time-boxed single sprint.



14

3 Literature Review

The initial goal of the thesis was to improve CI/CD practices in the case company,
but the problem analysis phase leads to the need to improve the existing software
development process practices in the case company after discussing it with the
development team. In addition to guiding the implementation phase of the thesis
process, this section provides the rationale and context for different concrete practices
employed in the process. Although most of the discussion is around what is Scrum,
it provides a review regarding challenges and opportunities of Scrum adoption in
addition to discussing distributed scrum as an emergency need to handle the COVID-
19 situation.

3.1 Agile Development

“Agile” represents the set of different practices in software development that embraces
the iterative approach. The growing popularity of agile development approaches is
witnessed in recent years as described by many research papers (Pauly et al., 2015).
The agile development approach is proven to increase the productivity of the software
development processes while achieving the delivery of done increments in a reduced
amount of time (Mahmood et al., 2017). The agile approach allows flexibility in the
planning and execution of the project while emphasizing the constant interaction
with the clients leading to higher customer values and satisfaction (Ozieraniska et al.,
2016). As agile software development represents a different set of frameworks and
development practices, what is core to the practice of agile software development
is the grounded values and principles as listed below as expressed in the ‘Agile
Manifesto’. With the focus on the preference on the items in the left side over the
items on the right side, the agile values are listed as:

— Individuals and interactions over processes and tools
— Working software over comprehensive documentation
— Customer collaboration over contract negotiation

— Responding to change over following a plan

In addition to the aforementioned values, agile practices are guided by the
underlying principles. The underlying principles guiding agile practices are outlined
below which also sets the context for defining and adopting Scrum while guiding in
the process:

1. Satisfy customer by delivering continuously and early
2. Accept changing requirements
3. Delivering working software frequently

4. Daily collaboration between the development team and business people



15

5. Trust, support, proper environment for motivated individuals to develop projects

6. Face to face communication

7. Working software as metrics of progress

8. Sustainable development at a constant pace

9. Continuous attention to technical excellence and design to enhance agility
10. Simplicity - the art of maximizing the amount of work not done - is essential

11. Emerging nature of architectures, requirements, designs from self-organizing
teams

12. Regular team reflection on being more effective. (AgileAlliance, nd)

As agile involves different sets of frameworks and practices like eXtreme Pro-
gramming (XP), Scrum, Crystal Clear, Feature Driven Development (FDD), Lean
Software Development, Dynamic System Development Methodology (DSDM), and
Kanban (Sverrisdottir et al., 2014), Scrum is described in particular highlighting the
different practices as described in the textbook implementation of the scrum.

3.2 Description of Scrum

With the wide adoption of Scrum in recent years, it is often misleadingly believed
that Scrum is a recently developed process model while in truth it was first presented
as “the rugby approach” in 1986 in Harvard Business Review by Hirotaka Takeuchi
and Ikujiro Nonaka for the first time. Peter DeGrace and Leslie Hulet Stahl coined
this concept as Scrum which itself comes from rugby which means “the quick, safe,
and fair restart of a rugby game after a minor infringement or stoppage”. In 1996,
Schwaber and Sutherland jointly presented Scrum at Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) while continuously adopting the
changes to refine the process. (Rossberg, 2019).

Scrum is a powerful lightweight process framework - simple to understand but
difficult to master. As software development involves wicked problems with often
changing requirements, Scrum has been a widely used agile software development
process. In contrast to the state gate approach to the software development process
where it is conducted in multiple phases, Scrum adopts the incremental iterative
development approach. “Agile” is the core concept of Scrum and often used as a
synonym to Scrum partly due to the wide adoption of the Scrum in the software
development process. Consequently, Scrum adheres to agile principles by delivering
customer values to the highest possible degree.

Scrum in itself holds Empiricism in its core as described by Steve Porter in three
simple and concise yet powerful and beautiful sentences i.e. “Try something new. See
how it goes. Repeat.” Every empirical process control is rooted on three fundamental
pillars i.e.



16

1. Transparency
2. Inspection
3. Adaptation (Ripley and Miller, 2020)

Having shorter iteration for transparency, inspection and adaptation enable partic-
ularly smaller companies in uncertain contexts with changing business requirements
to act with agility. As Schwaber mentions, software development involves complexity
often manifested due to the three most significant aspects of the software development
process i.e. requirements, technology, and people (Schwaber, 2004). Moreover, agile
approaches like Scrum are more suitable when projects are complex and requirements
are often changing and technology is far from certain by implementing the iterative
approach based on empirical process control (Rossberg, 2014).

Input from End-Users, ScrumMaster é

Customers, Team and
Cther Stakeholders Product
Bac kkog

e =
& &n

Froduct Owner

il Serum
Me=ating and
Artifacts Update

Sprint

1-4 Wecks

s 13

Team

r T \ — Review

| = '*.~ Team ﬁelehr]t_s ,'5
v HOw Euch To

- | CommitTeDo » -i

= = .- By Sprint's End /-’

= alhy

e No Changes Shippable Product

. i Sprint Planning Sprint in Duration or Goal A
I Meeting Backlog
| [Parts Onee and Two) -, .é

11
EE . w_d

Product Retrospective

Backlog

Figure 3: Scrum in Nutshell (EuropeanScrum, nd)

In a nutshell, Scrum is comprised of the development team, scrum master, and
product owner working on the product backlogs and taking prioritized product
backlog items to the time-boxed sprint where the product backlog items are planned
and executed to turn the idea into the potentially shippable increment constantly
planning and communicating during daily scrums meetings in a development team
while reviewing the increments in the presence of other stakeholders as summarized
in the figure 3 while celebrating the values of courage, focus, commitment, respect,
and openness. As the adoption of the software development practices involves the
transformation, discussion about values and creating the team spirit around the



17

value plays a vital role as value promotes practices like courage promotes doing the
right thing and take risks, focus enables working on prioritized tasks, commitment
for achieving sprint goals, respect to work in a cross-functional self-organized team as
an independent member, and openness about all the work-related challenges (Dave,
2016).

3.3 Core of Scrum

The core of the Scrum outlined below is what Scrum is composed of as a framework.
Being abide by these core elements of the Scrum, the scrum team members understand
the importance of the three pillars of the scrum and navigate through those scrum
values. The development team consists of a small, agile, and cross-functional team
of highly motivated individuals with the ability to organize themselves as a team.

3.3.1 Roles

Scrum team delivers iteratively and incrementally while getting feedback from self-
reflection, experiences, or stakeholders, and the team is composed of three different
roles i.e. Product Owner, Scrum Master, and Scrum Team.

Product Owner

The Product Owner is the immediate proxy to the clients and represents clients
while discussing with the developers and development team while discussing with the
clients. The product vision is best understood by the product owner and consequently
owns and grooms the product backlog items to deliver the highest possible value to
the clients. The Product Owner creates the user stories in the product backlog item -
with enough detail to get the work started at least for the next coming sprint with the
highest priority items to be included in the next increment. The textbook definition
of the product owner roles in Scrum and the actual practice in companies is studied
by Sverrisdottir, Ingason, & Jonasson which further highlights the differences in
the understanding of the product owner role between organizations despite agreeing
on the role of the product owner as an immediate proxy between the clients and
the development team. Despite the product owner being the authoritative owner
of the product, the cooperation of different stakeholders in shaping the product is
further elaborated (Sverrisdottir et al., 2014). Rossberg also highlights the textbook
responsibilities and its meaning in real practice like how “Defining the product road
map” means “ensuring that the development team understands the product backlog
items to sufficient details” in practice (Rossberg, 2019).

Development Team

The development team is composed of 7 4 2 members and is cross-functional and
self-organizing in nature with the ability to deliver potentially shippable product
increment at the end of each sprint by turning product backlog items to sprint
backlog items. No one can force the Development Team to work from a different set
of requirements. Team accountability is highly considered in the development team
and the scope of the work is defined in negotiation with the Product Owner. Despite
the development team members working independently concerning each other, the



18

development team shares the accountability collectively as a team (Permana, 2015).

Scrum Master

Scrum Master is a servant-leadership role who facilitates the whole scrum cere-
monies and promotes the scrum process in the organization and the team helping
the team to improve engineering practices and helping to figure out impediments
to deliver greater values. Scrum master also supports product owners with product
backlog items and product backlog refinement (Schwaber and Sutherland, 2017).
With such a role, the scrum master enables the transparency of artifacts. According
to the contribution model in the Scrum development team, scrum master roles involve
activities mostly in contentual and managerial realms while most of the technical
activities are done by the development team (Ramin et al., 2020). When thinking
about developer productivity and saving the time wasted with unnecessary meetings,
Scrum Master should focus on how to make scrum ceremonies and meetings meaning-
ful and effective while organizing such events (McKenna, 2016). In conclusion, the
role of Scrum Master is facilitation and support to the team to deliver high values
effectively.

3.3.2 Artifacts

Scrum artifacts are work and value which provide tangible outcomes of the effort team
puts during the sprint and provides the opportunity for inspection and adaptation.
There are three artifacts in Scrum as described below:

Product Backlog

The product backlog is a prioritized list of features needed in the product - usually
described as user stories or use case diagram. It is a living representation of the
product which evolves continuously reflecting the change in the product over its
lifetime. The product backlog items at least contain name and description while
including other metrics - like order, estimate, and value. The product backlog is
refined as a part of an ongoing process in collaboration with the development team
and product owner. The product backlog should include the most prioritized items
in the top with sufficient details that the development team could take that item to
the next sprint and could turn that idea into reality. As all products have some lists
of features or enhancements to be made in the future, all the products have some
sort of documentation to represent that state and are called with different names
like a product road map, comprehensive release plan, and product backlog in the
case of Scrum (Fowler, 2019). This artifact is owned by the Product Owner.

Sprint Backlog

The sprint backlog is owned by the development team which contains the product
backlog items divided into action plans to achieve the sprint goal. Sprint backlog
creates visibility to all the work the development team has to do to meet the sprint
goal hence taking away the need to have regular status update meetings. Sprint
backlog could be discussed during the scrum daily and changed after the scrum
daily with the opportunity for developers to modify it throughout the sprint. As the
development team owns the sprint backlog, only the development team members
are responsible to change items in the sprint backlog. The product backlog reflects



19

the lists of features in the product while the Sprint Backlog contains the list of the
items to be completed in the time-boxed sprint i.e. the Sprint Backlog exists at the
beginning of the sprint and gets discarded once the sprint is over (Fowler, 2019).

Increment

While Scrum adopts the iterative approach of development, development happens
in increments where features or functions are broken down into manageable sizes
which could be delivered predictably with its sum leading to the production of a
working system while fulfilling both functional and quality requirements (Dalton,
2019a). The artifact increment represents the sum of all product backlog items
completed by the development team during the sprint by fulfilling the “Definition
of Done” criterion. It is an inspectable artifact - and could be demonstrated as the
work done in the sprint review meeting while supporting empiricism. The increment
is additive to previous increments or at least historically traced over the time in the
development of the product (Ripley and Miller, 2020). With a robust definition of
done, an increment could be potentially releasable by increasing the agility.

3.3.3 Events

Scrum involves different events in which the development team carries out different
activities to produce a working software system as described in the following sections:

Sprint

Every event is time-boxed in Scrum - and sprint being the container of all other
events is itself time-boxed with a duration less than a month in which an iteration
of Scrum is completed while delivering the product of highest value. Sprint has a
sprint goal towards which a development team works over the duration of the Sprint
while being guided by the goal. In addition to guiding the development team, the
goal could be used to measure the increment produced in the sprint against while
inspecting and adapting in the process (Schwaber and Sutherland, 2017). Only
the product owner has the authority to cancel the sprint although the decision is
generally influenced by other stakeholders of the Scrum. Among the practitioners,
the length of 2 to 4 weeks has become a de-facto practice in Scrum (Eloranta et al.,
2013).

Sprint Planning

Sprint planning is an event where the development team discusses with the
product owner about the tasks to be taken to the upcoming sprint i.e. ‘what’ of the
product backlog items and figures out the ‘how’ to deliver a product increment by
the end of the sprint. The product owner refines the product backlog with the help
of Scrum Master if needed so the highly prioritized tasks are in enough detail so that
the development team has an understanding of what is to be achieved in regards to
the given product backlog items. The development team assesses the capability of
what it can accomplish in the upcoming sprint and hence limiting the amount of the
product backlog items to be considered for moving to the sprint backlog to break it
down as sprint backlog items as part of the ‘how’ to deliver the product increment
and achieve the result by implementing selected user stories (Dalton, 2019b). In
addition to having the plans, the Sprint goal is formulated during the Sprint planning



20

which guides the development efforts and highlights the priority during the upcoming
sprint. The following figure 4 depicts sprint planning in a nutshell while highlighting
the major idea of sprint planning.

Sprint Planning

"What?" "How?"

A
PBI SBI SBI SBI
FBI SBI SBI

PBI Not yet discussed but estimated and scoped
-«

Figure 4: Sprint Planning in Picture (adopted from (Ripley and Miller, 2020))

In addition to the product backlog, sprint planning involves past performance,
available working hours, and the increment from the previous sprint as it brings
transparency on the planning enabling adaptation - for example, the amount of
product backlog items or the accuracy of task estimation. Domain experts could be
involved as part of the sprint planning if needed (Ripley and Miller, 2020). As a
result of this time-boxed event, the development team should be able to explain how
the team self-organizes and achieves the goal of the sprint.

Daily Scrum

A daily scrum is an event in a sprint that occurs each day in the predefined places
and time so that there is no hassle or unnecessary effort to organize the event (Pauly
et al., 2015). Like other events, it is time-boxed with a duration of 15 minutes which
development teams utilize to synchronize and plan the daily effort to achieve the
goal for the sprint while playing a vital role in ensuring the regular communication in
the development team. During the daily scrum, development team members inform
each other by answering what they have been doing, coordinate for the next 24 hours
by discussing what they are going to do, and explore the solutions to problems by
discussing what kind of impediments they are dealing with (Stray et al., 2013). Even
though team members inform each other of what they are doing, daily scrum is for
the development team an opportunity for internal planning rather than a status



21

update of the task. If there are issues that could not be discussed during the short
15 minutes, relevant team members can arrange and solve the issue in additional
meetings. Daily scrum plays a vital role - like a 15 minutes half-time break in a
football match which can turn around the result - by offering a chance for inspecting
and adapting the approach on a day to day basis.

Sprint Review

While daily scrum aligns the development effort with the sprint goal, sprint review
aligns it with the whole product development. This time-boxed event is intended
to be attended by relevant stakeholders at the discretion of the Product Owner to
receive feedback and collaboration from the customers and stakeholders rather than
just a status update. The recommended duration for this time-boxed event is of
four hours in which time the review on done product backlog items, discussion on a
delivery date based on progress, demo, and review of the sprint in itself is conducted.
As a result of the sprint review, product backlog could be revised as more inputs
from key stakeholders are considered. It is always recommended to have the sprint
review even when the development team feels like there is nothing to demo to the
stakeholders as it enables transparency while providing inputs for steering the whole
product in the future (Ripley and Miller, 2020).

Sprint Retrospective

In the context of the agile software development world, enabling developers to
utilize the best engineering practice is one of the major agenda. Sprint retrospective
provides such opportunities where the development team, product owner, and scrum
master openly discuss people, processes, and tools from the previous sprint with a
focus on improvement providing the team agility to adapt processes during the next
sprint with the goal of continuous improvement (Marshburn, 2018). This time-boxed
event is conducted before the next sprint planning but after the sprint review with
the recommended three hours event for one month sprint. After inspecting people,
process, tools, and their relationship; the development team identifies key areas of
improvements and draws actionable improvement plans in the spirit of the agile
manifesto as stated: “At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly (Fowler et al., 2001)”.

When the focus is on the software development team, focusing on the effective-
ness and accountability of retrospectives is important and could be achieved with
documented retrospectives to make it trackable and useful as input for the next sprint
planning. Moreover, the effective retrospective is helpful to achieve work satisfaction
while improving the development productivity as an approach for software process
improvement in agile development approaches (Matthies et al., 2019).

From the perspective of the software development team, the scrum development
process starts by collecting the features in the product backlog and moving them in
chunks based on the priorities and expected customer values to the sprint backlog
which the development team owns and plans daily to change the features into the
potentially shippable product increment. The core pillars of the empirical process
control i.e. transparency, inspection, and adaptation are achieved by conducting the
aforementioned sprint ceremonies while the artifacts and other issues are brought
into the discussion amid relevant stakeholders.



22

3.4 Scrum Adoption

Although Scrum is the most widely used agile methodologies, there is a need for
understanding the scrum adoption process as it enhances the ability to tweak the
scrum adoption process given the distinguished context in which scrum is adopted.
While Scrum adoption challenges explore and guide the scrum adoption process,
opportunities encourage and provide hope during the scrum adoption process which
would be discussed in more detail following.

3.4.1 Challenges

After going through the literature on the basics of Scrum, it is important to gather
knowledge that is relevant to the adoption of the scrum to companies that are
developing software and of more or less similar size to the case company as there
are always challenging areas during the adoption. According to Eloranta et. al.,
the scrum adoption challenges can be categorized as either arising due to harmful
deviation from practically beneficial practices or not discarding practices that are
harmful for the application in given context (Eloranta et al., 2013). While there is
an abundance of literature that focuses on critical aspects while implementing agile
methodologies and hence often neglecting the aspect of the context an organization
and the entities encompassing the organization create around the endeavor of the
software development team to adopt Scrum practices. Ozieranska et. al. outlines
twenty-three critical factors for agile methodologies adoption under five categories
based on project team, psychological and cultural aspects, process and method,
environment, and technology. The spatial distribution of the team, remote working,
team size, team skill composition, part-time availability of team members, team
goals, individual aspirations and attitudes, team chemistry, discipline, members
profile, attitude about the workplace, role in the team, business understanding
of the product owner, absence of scrum master during the meetings with limited
efforts, scrum training, utilized techniques, the team taking several tasks once in
Work in Progress, violations of meeting rules, conflicts of business process, team
synchronization, limited communication with the customer, influence from outside
the team, third party dependencies, continuity of tech stacks, the suitability of current
tech stacks are highlighted to affect teams either positively or negatively based on
how these factors are affecting the team (Ozieranska et al., 2016). Chow and Cao
analyze the success factors and failure factors in the literature and identifies five
major critical success factors categorized as organizational structure, process, people,
technology, and project factors while defining success based on the perception of
quality, scope, time, and cost in software projects (Chow and Cao, 2008). Nerur et al.
are quoted to produce almost similar categorizations for successful migrations to agile
methodologies i.e. management and organizational structure, people, process, and
technology (Ozieraniska et al., 2016) - as highlighted by Berczuk with the importance
of management support allowing and enabling the development team to embrace the
process while figuring out a way for improvement (Berczuk, 2007).

While most research papers discuss some aspects of the challenges in global
scrum adoption, Hanslo & Mnkandla reviews the literature and consolidates the list



23

of challenges after studying twenty-one researches which includes: lack of knowl-
edge/training/skills, organizational culture/mindset, teamwork /communication is-
sues, lack of documentation, budget and schedule constraint, escalating commitment,
hard to scale, high management overhead, lack of senior support, work specializa-
tion, cross-functional generalist teams, increase stress and workload, lack of quality,
lack of top management support, long time to market, low user satisfaction, over-
engineered solutions, over-optimistic task estimates, project team size, requirements
creep, retrospective inadequacy, and too many meetings (Hanslo and Mnkandla,
2018). In addition to consolidating the challenges, the figure 5 is produced as a
Scrum Adoption Challenges Detection Model (SADCM) where nineteen independent
variables having either positive or negative impact on scrum adoption are clustered
across four constructs i.e. individual factors, team factors, organization factors, and
technological factors.

( w ( )
'Escalatlir:ln of sChange Resistant (-)
Commltment ) sCommunication (+)
[ ]
iy i M. INDIVIDUAL TEAM *Specialization (-)
*Over Engineering (-) FACTORS FACTORS *Sprint Management (+)
%) (¥3) sTeamwork (+)
L\_ SCRUM J
ADOPTION
Y .
é v) sCollaboration (+) )
TECHNOLOGY ORGANIZATION i m—— et )
sCompatibility (+) FACTORS FACTORS *Q0rganizational Culture (+)
*Complexity (-) (%) (Xs) *Organizational Structure (-)
*Relative Advantage (+) *Quality (+)
*Recognition (+)
*Resources (+)
\ *Training (+) _/1

Figure 5: Scrum Adoption challenges (Hanslo and Mnkandla, 2018)

In addition to challenges faced in scrum adoption, anti-patterns are also discussed
in the literature and books on Scrum which are evidential in practice after Scrum
is adopted. Eloranta et. al. recognized marathon sprint, technical debt in testing,
heavy documentation, unordered product backlog, the customer as a product owner,
work estimates given to teams, invisible progress, lack of cross-functionality in the
team, and customer caused disruptions as anti-patterns in Scrum team (Eloranta
et al., 2013). Not having a sprint goal and having the same person as both product
owner and scrum master are also recognized as anti-patterns (Ripley and Miller,
2020). Regarding the adoption of the agile methods in general, understanding what
kind of projects under what kind of conditions are most suitable to work with agile
approaches is also important. As the focus is on building projects around motivated
individuals and solid engineering practices, starting scrum adoption could create
resistance within the organization (Rigby et al., 2016).



24

3.4.2 Opportunities

Scrum framework is one of the most widely used agile methodologies. The agile
approach, in general, offers flexible planning and execution of the projects while
emphasizing constant interaction with customers (Ozieranska et al., 2016) with
emphasis on face to face interactions offering improved adaptability and control
over risk caused due to over-reliance on rigidly fixed plans (Bhatia et al., 2017).
Scrum being one of the frameworks in agile methodologies provides support to the
project which is often non-life-critical and requirements are often changing with
emergent nature while working in the fast-paced software projects with small teams
(Chow and Cao, 2008). In Scrum, the product backlog items are ordered based
on the priorities while completing them in the short sprint with constant product
backlog refinements. Better visibility of the projects, management of changing
priorities, business alignment of I'T endeavors, and faster time to market is the
key Scrum benefits (ScrumAlliance, nd). Although the Scrum dailies are not for
regular updates as the main goal is to organize the whole team for the next 24 hours
towards achieving the sprint goal, it provides the opportunity for the development
team to reflect on their work while providing the visibility of the works within
the development team. In addition to dailies, the Scrum framework provides an
opportunity for the development team to improve the engineering practices and
improve all aspects of process, tools, and people during the sprint retrospectives. As
agile methodology focuses on delivering values by delivering functioning software,
it supports the communication between the operation and development team while
providing other stakeholders a glimpse of continuously evolving releasable software
products. As noted by Humble, high-performing organizations strive for continuous
improvements where generative organizational culture is practiced to accept obstacles
as challenges to conquer and grow (Humble, 2018). Scrum is indeed a framework
that provides organizations with the opportunity and tools to try new things with
the openness based on the existing knowledge while striving for improvement i.e.
empirical practices based on three pillars of transparency, inspection, and adaptation.

3.5 Distributed Scrum

The Scrum process by book emphasizes the focus on a collocated team (Berczuk,
2007) where the software development team works in an office space with ease
of communication with face to face communication being the cheapest channel of
communication. Due to globalization and the reach of communication technology and
tools, global software development appears to be lucrative when offshore development
supports cost-saving, enhances the core competencies, compensates for the lack
of resources or knowledge while situating the segment of the development team
closer to the market in the globalized world. In addition to having development
teams working in a distributed setting, another form of distributed scrum involves
individuals working in home office settings regardless of working in a single project as
a team or as many teams. While the former brings the issues of agile development in
the large in addition to the issues of distribution of efforts working in a single project,



25

the latter brings the issue only due to the distributed nature of the development
efforts. This chapter includes the discussion on challenges and recommendations
which apply to both settings rather than talking about opportunities as the situation
was forced due to the COVID-19 pandemic.

3.5.1 Challenges

The inherent conflict due to the emphasis of Scrum on the collocated team and
distributed work settings is emphasized by various literature. Qureshi, Basheri &
Alzahrani quote Scott et al. regarding the challenges software companies face while
managing the distributed teams (Qureshi et al., 2018). Sadun highlights the need
for detailed documentation and structured communication while mentioning the
challenges related to signing agreements, remote access, communication challenges,
idle time, motivation and peer feeling, and governance and transparency (Sadun,
2010). In the context of global software development, the distributed teams face
challenges to meet the criterion that supports global software development practices
like frequent visits, intensive communication with multiple tools, mirroring sites,
rotation of senior engineers, and synchronization of work hours (Paasivaara et al.,
2009). The difficulties for product owners to transfer the product vision, challenges
to share Scrum’s visual and physical elements, Scrum meetings challenges, and
information sharing challenges are some of the challenges in the settings of home
office environments (Luz et al., 2009). While there is no argument about the inherent
conflict aforementioned, Berczuk emphasizes on the idea that the distributed nature
of the team often highlights the existing process issues rather than being itself
a problematic issue while offering recommendations (Berczuk, 2007). Although
agile software development does not have strict and formal planning like in the
waterfall development approach, planning plays an integral role and face-to-face
communication is vital for that reason which is hindered in distributed settings
even though several online tools are developed to address this issue (Wang et al.,
2010). Regarding the challenges in distributed settings, Ramesh, B., Cao, L., Mohan,
K., & Xu, P. outlines ‘communication need vs. communication impedance’, ‘fixed
vs. evolving quality requirements’, ‘people vs process-oriented control’, ‘formal vs
informal agreement’ and ‘lack of team cohesion’ as a context for creating distributed
settings more challenging. As an example, informal face-to-face communication is
assumed in agile developments which are hindered in distributed settings and the
same with the constantly evolving requirements being more planned and fixed in
distributed settings. Regarding the people and process, agile development is a people-
oriented control process based on team cohesion and motivated individuals instead of
process-oriented while there is a need to establish a formal process to achieve control.
Moreover, the agreement is formal in distributed settings as opposed to loosely
defined contracts in agile settings (Ramesh et al., 2006). Inherent to the distributed
setting is geographical dispersion, time and cultural differences (Amar et al., 2019).
Qureshi and Sayid highlight the same issues arisen due to the inherent nature of
distributed settings i.e. geographical dispersion, time differences, cultural issues,
and poor coordination and communication (Qureshi et al., 2018). One particular



26

aspect of the challenges in Scrum adoption arises from the human tendency to follow
scrum practices religiously while forgetting the agile value of focusing on people
and interactions over process and tools as more processes and tools are involved to
handle the issues in distributed settings (Drummond and JF, 2008). In conclusion,
distributed scrum provides opportunities; and in difficult situations like the current
situation with COVID-19, the development team is forced to work remotely. Despite
having benefits or needs to work in distributed settings, there are challenges inherent
to distributed scrum practice due to the differences in assumptions in Scrum with the
context created by distributed settings. While most literature discusses challenges
and frames the challenges, recommendations are also abundant literature providing
guidelines to Scrum adoption in distributed settings.

3.5.2 Recommendations

After understanding the challenges in the distributed scrum, most of the literature
focuses on the recommendation for those challenges - while some provide applicable
practical tips while others provide some kind of abstract pictures. For example,
Sadun categorizes the experience under ‘Signing agreements’, ‘Establishing remote
access’, ‘Overcoming communication barriers’, ‘Actively managing distributed agile
projects’, ‘Dealing with idle time’, ‘Achieving motivation and peer feeling’, and
‘Adapting governance and steering’ categorizes while offering the challenges and rele-
vant recommendations. The practical tips include firewall openings, virtual network
clients setup, giving offshore people more responsibility based on skills, more physical
traveling, exchanging people from offshore to onshore and vice versa, the common
language between onshore and offshore, high attention to communication issues, low
tolerance for communication blocks and resistance to communication, classifying
questions to prioritize which questions need to respond quickly, and peer relationship
between onshore and offshore organization (Sadun, 2010). With the focus on incre-
mental adoption, Rayhan and Haque provide useful tips on offshore development
such as utilizing tools, focusing on a culture that promotes self-organizing, educating
stakeholders about the iterative process, being aware of cultural implication, focusing
on bringing change gradually regarding the scrum process, and physical meeting
at times (Rayhan and Haque, 2008). As agile is about people and communication,
the emphasis is given more on the tools which are required for communication.
Cultural understanding and the difference in time zones are often mentioned when
the distributed team is located in a different context defined by location and culture.
Although Scrum has artifacts that facilitate communication, the iterative process
of the development demands communication as opposed to the state-gate approach
to development. Berczuk also emphasizes the importance of incremental adoption
or improvement in the practices while emphasizing the importance of basing the
practice in principles and ensuring that team members understand and embrace
the agile values. About the practical aspects of the recommendations, usages of
tools like burn-down chart, wikis, and issue tracking to track down the work and
communicate, low tech tools like clock, tuned sprint length to match the changing
requirements, continuous integration and testing, collective participation in making



27

decisions like what tool to use, meaningful sprint review to reflect the current state
of the project phase, and brief collocation of the team if possible are highlighted
(Berczuk, 2007). Moreover, good engineering practices are discussed both to improve
the scrum adoption process and in distributed scrum implementation settings too
- for example, Ripley & Miller emphasizes the practices like writing tests to check
regression failure, end-to-end and unit testing, pair programming, and culture to
accept the continuous design and constant refactoring (Ripley and Miller, 2020);
and Fowler M. emphasizes the use of continuous integration practices with offshore
development (Fowler, 2006). As communication is highlighted as dominant issues
in distributed projects and ways of achieving the required level of communication
is emphasized, Amar, Rafi-ul-Shan & Adegbile suggests the 5C based theory with
five major factors i.e. competency, correlation, comprehension, contentment, and
commitment as imperative guidelines while working on scrum-based distributed
projects (Amar et al., 2019).

Environment:

= Trust

= Virtual work environment

Reduce waste

Inspect to achieve
& Adapt speed and
simplicity

Organization:
- Agile servant-leader
- Agile team

Figure 6: Elements of Scrum to Agile Journey in Distributed Settings (Lous et al.,
2018)

To summarize the main points from the literature, it is important to create
transparency, inspect and adapt while learning. Although there are challenges
while adopting distributed scrum or remote work settings, there are always ways
to improve and handle those challenges. Good engineering practices, usage of the
tools, understanding of the people and finding a way to get together the team, and
improving the communications using tools are some of the recommended ways to
thrive in distributed settings while using Scrum as a process management framework.
As emphasized by Pauly, Michalik, and Basten, there is a need to tailoring adaptation
to make it suitable to development context (Pauly et al., 2015), the demonstration



28

of the thesis work in the case company should focus on such tailored approach
as opposed to following the scrum by the book while continuously inspecting and
adapting in the existing organizational and environmental context to reduce waste
to achieve development productivity as shown in the figure 6 while conducting the
retrospective about distributed work settings itself.



29

4 Research Method

In this case, the proposal of a research method such as Design Science Research that
is adapted to problems in areas such as management would serve to maintain the
rigor necessary for investigative research. Most importantly, it might contribute to
increasing the relevance of the studies conducted by bridging the gap between what
is developed in academia and what is applied in organizations (Dresch et al., 2015).

4.1 Methodology

The purpose of the thesis is to analyze the current state of the problems and figure
out ways to solve those problems before implementing the designed measure - hence
generating the values to the case company while contributing to the research work.
For that reason, a Design Science Approach was used as the foundational methodology
in this thesis work. Current state analysis was done using the thematic content
analysis although the main purpose of the thesis was to introduce an artifact to solve
an existing set of problems. As Design Science Research methodology creates artifacts
to solve a particular class of problems as its major contribution to the research,
the introduction of artifacts creates a new reality in the context where it is applied
- rather than just explaining the existing context (Ilivari and Venable, 2009). As
described in the DSRM process model diagram 7 given below, the research entry point
was context initiated due to the new context in the company as described in the Case
Background section. While the nominal process sequence was initiated because of this
new context and the initial expectation for the thesis was to improve the continuous
integration and delivery practices within the case company, current state analysis
and discussion with the software development team in the case company mandated
the improvement of the existing Scrum practices. The current state analysis was
conducted using the thematic content analysis method, qualitative analysis was used
and the collected interview data were coded to find the core problem areas. As
a part of the implementation process, scrum adoption guidelines were developed
and introduced to the development team which followed the implementation in
practice. While the scrum adoption guidelines served as the developed artifact, the
implementation of the guideline was the demonstration in practice within the given
context. Due to the iterative approach of the scrum framework; the evaluation,
feedback, and communication were frequently done within the team although the
interview with the development team was conducted as part of the evaluation before
communicating the changes that had been made over the period of this project. As
described in the DSRM process, the process iteration over the different phases of
the process sequence was hence included within the iterative approach of the scrum
framework.

Regardless of the research questions, when the researchers’ interest lies in produc-
ing an artifact to solve a problem as “a means to an end” (Holmstrom et al., 2009),
design science research methodology is one of the appropriate methods. In the case
of this thesis project, the pursuit for improvement for the case company emphasizes
the need for bringing changes while providing the framework for evaluation for the



30

Nominal Process

v Sequence |
Problem/Motivation
Identification : Problem Centered
Inference +
Defining
> Objectives Objective Centered
P Theory +
r Design
o > Development ; Design Centered
C
e
s How to Knowledge +
s Demonstration
' In Context Context Centered
t
e Metrics/Analysis ¢
r Research Entry
a Evaluation Points
ar
t
i
o Disciplinary
n Knowledge
Communication

Figure 7: DSRM Process Model (Peffers et al., 2007)

implementation introduced as an ontological basis for exploratory research.

4.2 Data Collection

As the research includes three phases of involvements with the context where the
research was applied - i.e. current state analysis phase, demonstration of design in
context, and evaluation - data collection was conducted in all phases for different
purposes. While some focus group discussion was conducted to create ideas for solving
existing problems during the retrospective sessions, the initial data was collected
using a standardized template for measuring the maturity level of DevOps adoption
in the case company while interviewing the software development team members
using a semi-structured format. Semi-structured interviews are suitable for eliciting
information with the list of prepared questions while offering flexibility to dig deeper
into the issues in a conversational manner guiding the participants (Longhurst, 2003)
and driving the discussion in alignment to research interest and understanding of
participants. While the context-initiated nature of this thesis process provides the
context to create a list of the questions, the suitability of semi-structured interview in



31

exploring issues with the richness of information from the participants is particularly
relevant while the aim of the research process itself is to transform the context where
research is being undertaken. As the goal of the research was to transform the context
collaboratively working with the software development team, getting deeper into the
understanding of the issues faced by both individuals and collectively as a team is
important.

In addition to semi-structured interviews, a focus group discussion was conducted
during the research process. As focus group discussions are good for concept explo-
ration and generating ideas with the purpose of exploration or triangulation while
influencing the members of the focus group discussion (Solcum, 2003), the approach
could be utilized in sprint retrospectives while exploring the positive, negative, and
improvement area from the past sprints. Since the research approach seeks to estab-
lish a sense of ownership to established solutions and values by establishing practices
based on informed consensus, the focus group discussion method was utilized while
creating the ‘Definition of Done’. The time-saving nature of focus group discussion
with its ability to synergize the whole team towards optimum consensus if moderated
properly is the rationale behind utilizing this approach in the implementation phase
of the thesis project. To understand the problems and challenges of Scrum adoption,
literature resources were also studied and used as guidelines to shape the implementa-
tion as a secondary data source. Despite not having many research papers conducted
exactly in a similar context, a lot of valuable insights were available in the literature
that guided the initial idea and implementation of the project.

The evaluation part of the research was conducted by utilizing semi-structured
interviews which were conducted with five members of the development team who
were available. Moreover, a survey was designed and sent to the whole development
team using a Likert scale to measure the feeling of impacts in the development team
which gathered six responses in total. The interview involved problem discussion
and the impact of the adoption process on those problems, understanding of the
scrum, and the way for future improvement. With the initial idea of rotating scrum
master roles within development team members, discussion about understanding
of the scrum is important. After collecting the data in both phases, the data was
analyzed in the next phase of the project.

4.3 Data Analysis

In the case of this research, the data analysis was conducted using thematic content
analysis by categorizing the ideas expressed in the data to enrich the themes that
emerged while utilizing the existing data employing constant comparison during the
coding. As thematic analysis is suitable in diverse situations, it can be used as a tool
for data analysis for both data and theory-driven analyses (Clarke and Braun, 2013).
In particular, data analysis was conducted during the current state analysis phase
to determine the root cause of the problem after figuring out five major problem
areas. While the goal of the research at that stage was improving the continuous
integration and delivery adoption and existing literature was reviewed based on
that idea, the presentation of the existing problems with the software development



32

team mandated the process improvement by adopting scrum at full scale. As a
result of that, literature was not reviewed in the thesis process - rather utilized as a
guiding knowledge while designing and demonstrating the adoption of the Scrum
process. Interesting challenges and recommendations were noted down available in
the literature while utilizing them in practice.

The data collected during the evaluation phase was utilized to support or refute the
statement that a particular existing problem was solved rather than analyzing the data
for any particular purpose. In that way, the evaluation data was familiarized within
the light of existing problems - in particular from the problem area which was selected
to solve. Despite that, the major idea behind choosing the scrum implementation was
to utilize the elements of the scrum to solve the existing problems while discussing
the various problems during the scrum retrospective while crossing the boundaries
of the selected problems for solution.

4.4 Summary

While the context in the case company provided the case to start the implementation
of the design artifact to solve problems with working in a project as a team, the
existing problems were drawn by using semi-structured interviews and a standard
survey template to conduct the maturity of the current continuous integration and
delivery practices. The collected data were analyzed using a thematic content analysis
approach and the root cause of the problems was analyzed to be the ‘process and
visibility”. While the result of the current state analysis and the set of problems
from the major problem areas were discussed with the software development team,
problems regarding ‘process and tools’ were prioritized to deal with as a part of the
thesis process. Improving the existing practices by adopting all the major elements
of the Scrum framework was decided to guide the software development method.
The major reason for choosing the scrum framework was the existing use of scrum to
some extent already in the case company in addition to having a small team working
on constantly changing requirements.

Within the framework of the scrum, different interventions were introduced as a
part of the work to improve software quality and developer productivity. For example,
the development team started using a single Jira board actively despite working on
multiple projects at the same time while the Jira was configured to work the same
way across multiple projects the software development team is working on. The
Definition of Done was introduced and often updated - while the communication
within the development team was conducted more often in team channels than before.
The demo of the main project worked during the sprint was demonstrated at the
end of the sprint as part of the review. While scrum provided an opportunity to
try what works with the development team and supports the goal of the company
and project, the development team often neglected the software testing side while
focusing more on rigorous reviewing and static code analysis tools.

After the thesis artifact was demonstrated in the context of the software devel-
opment team, the evaluation was conducted within the development team by using
semi-structured interviews and surveys within the development team.



33

5 Current State Analysis

As described in the ‘Case Background’ chapter, the intended research was initiated
as a result of the growing number of developers in the team - and hence a need
to improve the way of working collectively as a team by implementing continuous
integration and delivery solutions for upcoming projects. During this phase of the
research, a set of questions were asked to assess the current level of practices and the
role of developers in achieving the current level of practices in addition to surveying
developers about the current level of CI/CD practices.

5.1 Elicitation of Problems

To elicit the problem, a set of questions from a standard template was used for
surveying (Appendix B) in addition to a semi-structured interview (Appendix A)
- carried out with five developers to figure out the problem developers were facing
at the time of interview. Out of the five interviews, four of them were taken on the
same day on January 13, while one of them was taken on the 17th of January. The
interview and survey reflect the lack of coherence among team members about the
knowledge of tools and processes utilized during the software development life cycle
and implementation of the existing pipelines. From the perspective of tools, there
are plenty of tools set up, but the effectiveness of the tools in its productivity is still
insufficient - and developers often tend not to think of tools or processes implemented
if it’s working as intended and the rationale or the need of the tools being used is not
often even discussed in the team. The interview data and survey data were analyzed
using the coding as utilized in the thematic content analysis - major problem areas as
themes were developed by utilizing the thematic content analysis approach comprised
of ‘familiarization with data’, ‘coding’, ‘searching for themes’, ‘reviewing themes’,
‘defining and naming themes’, and ‘writing up’ (Clarke and Braun, 2013) by utilizing
the data expressed in the transcribed interviews. The Qualitative Research approach
was employed with semi-structured interviews as a way of data collection to enter
the world of participants and to understand the problem in the given domain from
the participants’ perspective. Based on the listed codes, themes were formulated to
explain the core area of problems being faced in the case company. The result of
such a process is portrayed in figure 8 while the description follows after:



34

_ Onboarding

- Knowledge & Infor ion ==

Minimal Resource Usage
Documentation &
Communication

Agreed Practices

Onboarding
SW. Conf Meaning & Understanding
A i ti
Configuration & Environment onfiguration Competencies

y Management improvement

Local environment setup
> Manual artifact validation

Lacking automated tests
e 0

L — Quality of Code 45_‘?& > Test Coverage

End to End testing

Bugllssue Reporting
Smoke and Performance test
Improve process monitoring

Visibility
Metrics for the tasks etc. Task Management

Metrics for Pipelines Stakeholders

Planning
Process & Tools

Database migrations

i ) Requirements Change
“Transparency, Inspection and Adaptation”
Minimal Resource Usage

Figure 8: Problem Representation

After analyzing the interview results, five core areas of improvement were high-
lighted with the root cause being the “Process and Visibility” - fundamentally
important for transparency which is a key pillar of empiricism. The five core areas
of improvement are described in detail as follows.

Quality of Code

Quality of Code is one of the reasons for implementing the continuous integration
and delivery pipelines besides achieving developer productivity. While it could
be achieved with code review, test-driven development, static code analysis and
implementation of pipelines; quality of code is still suffering due to various factors.
Despite one developer mentioning senior developers about pull request guidelines,
the case company does not have any particular guidelines over which team has the
ownership and adheres to it as its own coherent set of practices.

The CI/CD pipeline includes testing but that phase is allowed to pass even
without any test in the code and without being enforced by set coverage level. In
addition to that, the development team has not even discussed what quality of code
means for the team and what could be done to achieve such quality. A lot of time
is spent in manual testing particularly as part of the review jobs to make sure that
functionality is working as intended while at times not realizing that the other parts
of the system are broken consequently without our notice. There are only unit tests
and the amount of tests differs significantly among projects running at the same
time even when there is no standard set for quality. Projects lack smoke tests, health
tests, or any kind of performance tests although our overall goal is to improve the
quality of the product and the code itself.

The team does not have any set of ‘Definition of Done” and hence there are no set
checkpoints to check the implementation against - often time developers wondering
if writing a test is as important as getting other tasks done instead. End to end



35

testing is now work in progress but it is not implemented in any of the projects. In
addition to these conceptual problems, developers pointed out the following concrete
problems:

Code repetition and copying

— Lack of self-documenting code

— Documentation in code with comment and doc-strings
— More tests using cypress

— No test coverage tools implemented

Ways to integrate testing into workflow missing
— Determining the priority for testing different areas, features, or projects

In conclusion, the software development team is lacking a proper discussion about
the quality of code and having an agreed level of tests and coverage to keep the
product in a releasable state. Some good practices include the implementation of
code integration and code reviewing before merging to the master branch of the
project repository. Code review does not make sure that bugs are not introduced
while merging the feature branches into the master branch even when code review
is supposed to improve the overall quality (Kononenko et al., 2015). Test-driven
development is often heard within the development team, but any concrete steps on
adopting this practice are not yet taken.

Knowledge and Information

Knowledge and information are vital to achieving both developer productivity
and quality of code. The importance of information is particularly visible during the
onboarding process - which means when a new member joins the team or when the
whole team moves on to the next project. Having this kind of information would be
also useful to feel the void created if some developers leave and the task to maintain
the existing code relies on the new members of the team.

In addition to lacking proper knowledge management, the team has a lot of
tools used during the process which are not properly utilized and the team has
not even discussed on way to better utilize these tools. There is a lack of resource
utilization in a way that the team has not achieved maximum value through the
same tools that are utilized in the practice. Most importantly, there is a lack of
agreed practices within the development team - for example, there is no recorded
discussion on what the commit messages should be like and the commit messages for
build failures fixes are mostly meaningless and provides very little sense of what was
the reason for the build failure. When developers have different aptitude and skill
levels, setting up common practices or putting effort into developing those practices
not only helps the developers in their early stage of career but also the whole team
would be benefited. Some developers also mentioned the problems when working
with their branch because some other developers have already pushed the changes to
that branch without notifying anyone which reflects the lack of agreed practices with



36

the evidence of surprise. During the interview, some developers suggested having
exploratory testing together in the developer team to better understand the whole
system and find bugs that otherwise might be neglected.

Competency is one of the aspects of knowledge and plays an important role
in improving developer productivity. The case company provides a flexible work
environment and provides flexibility to its employees. Despite that contextual setting,
some developers feel uncomfortable spending time learning new things at work.
Discussion on the team and making what the company offers to employees visible
would shed light on the issues that developers might be on the dark side regarding
self-development and team development. Moreover, this kind of discussion will
promote common understanding and sharing the meaning in the same way as others.
The survey reflects the mismatch in the understanding of the current process and
tools and how developers understand different aspects differently which highlights
the need to promote discussion as a team.

Additionally, significant improvement is required in documentation and commu-
nication as Slack is used mostly in personal communication rather than discussing in
team channels making some developers have the opinion that there are no collabora-
tion tools at the team level. Many developers think that information is scattered
among different channels and sometimes in channels where common things and
mostly random stuff are shared consequently causing valuable information to be
lost in the world of messages. Moreover, documentation is scattered all around or
sometimes not even updated immediately making some developers feel like they are
wasting time to figure out something just because someone changed something and
have not notified of the change and how the change affects the existing setup. The
following specific problems were mentioned during the current state analysis phase:

— Onboarding tutorials
— Local environment setup missing

— Lack of knowledge on how to deploy to testing, staging, and production envi-
ronment

— Knowledge gap between frontend and backend developers

— Some projects are documented in confluence and some are documented in code
repository causing a lack of consistency

— Activities and times for learning and doing new things.
— Personal communication than team communication
— No information flow (what are planned changes and what people have changed)

— Poor online cooperation as a developer might have to wait until face-to-face
meeting in the office

— Definition of Done is missing



37

— Commit message guidelines
— Not enough discussion before next project

— When there is a big design update, there should be a bit of storytelling on how
the design works

Since scrum focuses on cross-functional team and software development team is
working based on skills and knowledge, it is highly important to break the organi-
zational functional silos and promote internal cooperation over competition. While
available frameworks are dealing with knowledge management principles like the
four pillar of knowledge management i.e. Leadership, Organization, Technology, and
Learning (Mohamed et al., 2004), the major focus of the development team is on
discussion, learning, and internal cooperation within the team to promote knowledge
and information sharing in the spirit of cross-functionality and self-organization.

Configuration and Environment Configuration and environment provisioning
are some of the problem areas which could be improved but possess challenges as well.
First of all, virtualization is not used in local development setup while testing, release
candidate, and production environment is completely running in the Kubernetes
cluster. Developers sometimes face a situation when the code works in the local
machine and not in the testing environment - and mostly because of not having
enough understanding of how different environments work in the bigger picture.

Not discussing before starting a new project complicates how the setup of projects
and how could the development team sync the whole development setup to be
consistent with the other environments. The onboarding of the team members would
be smoother by doing so - and it also improves the practice in the new project than
repeating all the good and bad practices from the previous project as often observed
in the existing projects.

Regarding the software configuration management, some of the configurations are
done by configuring the environment while the others are included in the code. Some
frameworks better support having the configuration in code, but not having enough
discussion about how configuration is managed would shed light on how the whole
deployment setup is working. Specifically, the following aspects of the problems were
mentioned during this phase of the research:

— No discussion on what good practices - even for configuration management -
could be taken to the future projects

— Missing guidelines and documentations

— Development environment is set up differently than other environments

— Manual setup of the local development environment.

— Not all developers know release management, versioning, and git workflows

— Not used virtualization in the local development setup



38

— Software configuration not discussed enough

Version control is being used by the software development team and it has its
role in software configuration management. Some technological frameworks support
the configuration management in a way that it could be maintained along with the
code while other frameworks might need other library support. Workspace manage-
ment is done privately although some curious programmers are always wondering
about other developers’ approach to workspace setup - and primarily either Mac or
Linux based development platforms are utilized. This does not necessarily mean
enforcing the same setup rather to develop a mindset that seeks constant growth
as a team. Having a discussion about software configuration management in an
agile team is about adopting robust configuration management implementation to
enhance the values provided with agile methodology (Moreira, 2010). In conclusion,
there are tools and automated continuous integration that supports the software
configuration management, but the software development team lacks the necessary
cross-functionality required to work as a Scrum team.

Process and Tools

Regarding the process and tools, the development team mostly underutilized the
available platform and tools which could be improved by looking for ways to better
utilize - instead of relying on individuals’ ability to figure out how to use it because
most of the tools are used also as a team and optimizing the workflow of the tools
around the team would improve the intended goal of the company i.e. developer
productivity. The issue about task management in Jira appeared frequently during
the discussion - some developers mentioned the inconsistencies in the use of Jira
by mentioning how the bug reports coming through the personal communication
channels are registered as an issue in the Jira if remembered to do so. As the software
development team was working on multiple projects at the same time with separate
backlogs for each project, the configuration of Jira with different board settings across
multiple projects was often confusing. Moreover, templates for bug reporting could
be used so that internal testers in the case company can file the bug reports in a way
that communicates meaning to the development team. One of the issues discussed
was the frequent requirements change.

Some of the concrete examples of the problem which surfaced during the interview
in this phase are given below:

— Not utilizing the possibility to discuss on the Confluence or in the pull request
review

— Process and monitoring tools are set up but the data are not utilized
— Confluence have tools for planning release, but not utilized in the team

— All the bugs from different products and different deployment environments
are coming in the same Slack channels.

— Bug reporting template is missing - often taking more time for developers to
figure out what the bug is even about.



39

— Requirements change in the middle of the project and quite frequently
— Missing proper channels or tools for getting bug reports from internal testers

— Some tools are not useful - for example, Sentry is not reporting bugs from the
frontend applications

— CI/CD pipeline creation is considered as a single task instead of breaking it
down into multiple tasks keeping other developers on the dark side of how it is
accomplished.

— Stakeholders are not present in any meeting with the development team - and
not made part in any sprint events.

— Planning could be improved so that the big feature branches could be trimmed
down to be manageable enough task

— Database migrations are complex and often neglected

As described in the current state analysis, one of the issues in the software
development team was not having a discussion on what kind of Scrum practice was
being used - and hence, not having for example any retrospective or sprint reviews
included in the practice. The whole process was missing what to add in the practice,
or what to remove to improve as a development team as tweaking and seeing what
works and what does not is vital to agile practices. Consequently, both process and
toolset were used sub-optimally despite the case company providing support and
tools.

Visibility

Like the process in itself, visibility is cross-cutting aspects as it touches all aspects
of the issues previously discussed and plays a vital role in achieving the much-needed
transparency in the empirical software development process although this topic is
discussed only around the finding during the current state analysis phase in this
section. As it is mostly bringing out issues in the light for the whole development
team, it involves many issues like metrics of the CI/CD pipelines, metrics for the
tasks, tracking of the bugs or other issues, and improving the process monitoring.
Some of the concrete examples which appeared during the survey and interview are
listed below:

No discussion or visualization about how to measure the CI/CD pipelines
itself - even though for example, there is constant refactoring for improving
the performance.

Tasks estimation is missing

Bug and issues are not tracked - some bugs are just fixed and forgotten

Build failures are not visualized and discussed



40

— There are some logging and monitoring tools, but developers might not even
consider going through those tools or getting an understanding about the
measurement

As transparency is one of the pillars of empirical process control, gaining visibility
- i.e. making aspects of the process affecting the outcome to all stakeholders involved
(Cho, 2008) - is particularly important. Since the existing process did not involve
sprint review and demo, the iterative development did not demonstrate the evolving
nature of the product particularly to the stakeholders who had business concerns
regarding the projects besides hearing from the proxy product owner about the status
update. Additionally, the software development team lacked discussion on what are
important metrics and what does the metric represents in practice, hence hindering
the visibility within the team itself.

5.2 Presenting and Brainstorming more Problems

After eliciting the problems, the next step in the process was to conduct a workshop
with the whole development team where the initial findings were discussed after
explaining the purpose of the workshop. As not all developers were included in the
interviews, a quick round of brainstorming was carried out to enrich the already
established themes. Moreover, the rationale for conducting the workshop within
the development team was to create a sense of ownership over the improvement
endeavor. The initial findings were qualitatively analyzed using a thematic content
analysis method for making sense of data by categorizing interview data into different
themes by using classification, summarization, and tabulation process for data-
driven analysis. The root cause of the problem was concluded based on the linkages
established between categories.

For the workshop part of this phase, two more developers joined the program -
one of the developers remotely. The remote developer was included with the whole
development team using the Google Meet while the related screen from the computer
was shared with. To get organized around the problems as a team, there is a need to
brainstorm problems together as a team besides discussing existing problems. To
keep the discussion within the limited time and to make all developers feel included
even though not all were interviewed, the brainstorming phase was included to enrich
only those five key areas of improvement.

As a result of the brainstorming, following additional concrete problems were
presented while most of the ideas were similar to the finding during the interview
phases besides scrum explicitly mentioned as inconsistently applied to our projects as
an issue during this brainstorming phase. Moreover, the software development teams
suggested the use of statically typed languages like TypeScript, using test-driven
development practices, and regular review of backlog to constantly refine the backlog
to have only the most prioritized items in the list.



41

5.3 Conclusion of Current State Analysis

As the context of the research was initiated due to the increase in the size of the
development team, there was still a need to find out the problem areas where improve-
ments are needed with the focus on software quality and development productivity
as guiding requirements from the perspective of the case company. The current state
analysis was conducted as a stage of problem identification in the design science
research methodology. The software development team works as a self-organizing
team of highly motivated individuals in Scrum. Gathering problems as a whole team,
analyzing the results, and presenting the result to the whole team is founded on that
foundational assumption. Despite the initial inclination to improve the continuous
integration and delivery practices in the case company, the current state analysis
results in five key areas of improvement with ‘Process and Visibility’ as the root
cause of all problems. In conclusion, the current state analysis highlighted ‘Quality of
Code’, ‘Knowledge and Information’, ‘Configuration and Environment’, ‘Process and
Tools” and ‘Visibility’ as key problem areas with root cause ‘Process and Visibility’
as the major issues linking all other issues in the given five areas. As part of the
problem identification phase of the design science research methodology, current state
analysis was conducted and the whole software development team was included in
one or another stage of the process to create a shared sense of responsibility towards
the solutions to the selected problems.



42

6 Design Artifact Description

This chapter of the thesis presents the approach to solve the problems and the
rationale behind utilizing such approaches. As a part of producing artifacts, first,
the team discussed the problems found during the current state analysis phase and
then proceeded with the discussion to select the problems to tackle before discussing
possible approaches to solve those problems given that the major focus is on code
quality and developer productivity. The main approach to solve the problems was
to improve Scrum practices and utilize the retrospective in particular to implement
solutions to existing problems with the following discussion elaborating on this
process in more detail.

6.1 Problems selected for the solution

After detailing more problems, the team was requested to vote on the elicited concrete
problems - if they are relevant for achieving our goal of code quality and development
productivity based on its significance and our ability to solve collectively as a team.
During the same workshop day, voting was conducted after the problem was discussed
on its significance and meaning in the context of the software development team.
Based on the voting, only issues from three major areas of improvement were selected
out of the five areas figured out during the interview i.e. ‘Quality of Code’, ‘Knowledge
and Information’, and ‘Process and Tools’. After the discussion with the team, the
supervisor at work was requested to select the problem area to focus on solving the
problems given the situation in the case company.

Figure 9: Selection of Problems



43

As shown in the Figure 9, out of the five key problem areas, only three were
selected. Just like during the current state analysis phase, knowledge and information
was aggregated with agreed practices as knowledge and information could be generated
based on the agreed practices. Although agreed practices could be in itself a cross-
cutting aspect touching different problem areas, having a set of agreed practices
to enhance the knowledge and share the best engineering practices was of utmost
importance in the beginning of this thesis project. With that combination of ‘Agreed
practices” and ‘Knowledge and Information’, following concrete problems were selected
from the given three key problem areas as shown in the table 2:

Table 2: Concrete Problems in Three Key Problem Areas.
Quality of Code Knowledge and Infor-| Process and Tools
mation
Onboarding tutorials

Code repetition Inconsistent Scrum use

Self documented code | Workspace setup Requirements review
with statically typed and design  before
language implementation

Documentation in code | Commit message guide- | Verification and ap-

lines

proval of design before
starting development

Integration of testing
workflow

Lack of knowledge be-
tween frontend and back-
end

Not enough planning in
sprint planning

Prioritization of testing
areas to define good
enough product for re-
lease

Knowledge on how deploy-
ment works on different
environments

Developers and design-
ers in requirement dis-
cussions

End to end testing with
cypress

Lack of consistency in us-
ing documentation (bit-
bucket versus confluence)

Metrics for task (estima-
tion etc.)

Test coverage tools

Free time for learning

Ways for internal testers
to report bugs

Personal communication
over team communication

Scrum team owns the
Jira board

Communication

Clearly defined respon-
sibility

Definition of Done missing

Regular review of back-
log

Poor online cooperation

No prototyping

Onboarding discussion for
next project

Design update briefing




44

After selecting the problems within the development team, the team discussed the
possible approach to solve the existing problems. As the root cause of the problem
during the current state analysis phase was ‘Process and Visibility’, the discussion
was mostly focused on solving the root problems with the rationale that the other
problem will be solved as well. The opinion of the workplace supervisor was included
in the discussion and the opinion of the team members was heard of. After the
discussion, the problems regarding ‘Process and Tools’” were selected for getting the
improvement process moving on and was approved by the workplace supervisor as
well. Based on that selected problem area, the solution approach was discussed as
described in the next section.

6.2 Mandated Approach to Solution

During the discussion in the workshop, the discussion on the team regarding the
problems and their details in the context of improving development productivity and
software quality illustrated the need to improve the use of tools and the adopted
process. As a conclusion of the discussion, the team decided to fix some of the issues
immediately - like talking about development issues in the team channels rather
than personal discussion in direct messages. For solving the problems related to the
problem area ‘Process and Tools’, the team decided to experiment with the Scrum
and start utilizing Scrum by book to start with instead of just having daily and short
and brief planning. Additionally, the team decided to have a review with salespeople
immediately after one of the projects is accomplished. The team also decided to
create a Slack channel to discuss general technical issues and use message threads
instead of new reply messages to make the use of Slack channels more like a Question
and Answer channel. As a part of implementing Scrum on a greater scale, the Scrum
Blueprint was required to be produced as a part of the thesis work which was used
for explaining the development team about Scrum and guiding the overall process of
Scrum adoption. One of the rationale to start with the Scrum by book was to include
the Scrum Retrospectives to discuss and figure out ways to improve engineering
practices while deriving approaches to solve the existing problems in the team.

In conclusion, the team actively participated in problem identification and defining
the objectives of the endeavor while brainstorming and mandating the Scrum adoption
process even though the current state analysis was conducted to improve the current
continuous integration and delivery practices in the case company. In addition to
that, the Covid-19 pandemic also forced the entire team to work remotely during the
demonstration in the context phase of this study necessitating the study of Scrum in
distributed settings.

6.3 Recommended Scrum Practices

After deciding to adopt the Scrum in its improved form in the case company, Scrum
Blueprint was introduced with recommendations as mandated by the software devel-
opment team. The development team was introduced with the Scrum by book with
the commitment to try what the team decides, see how it goes, and evaluate if to



45

continue or not.
Concrete actions taken are listed following:

— Scrum process followed by the book with the agreement to modify if some
practices do not make sense while considering that almost half of the developers
work mostly part-time.

— The role of Product Owner and Scrum Master would be assigned to different
individuals as it facilitates the necessary dialogue between Scrum Master and
Product Owner.

— Single team single-board regardless of the multiple projects development team
was working on - the development board was consolidated by issues in active
sprints in multiple projects. In its optimum use, the Product Owner creates the
product features as backlog stories and the development team creates the tasks
to accomplish those stories from the development team board (or by going to
the respective project board).

— Single team single board rules in Jira to remove the confusion between projects.
The global rules were applied to all projects in Jira so that the development
team members have the same feeling regardless of which projects board they
are checking out.

— Inclusion of planning, review, and retro events and making daily like dailies.

— All the works done by the development team members would be logged in the
Jira which not only promotes the visibility of the work the development team
is working on but improves traceability and knowledge sharing.

— Creating the definition of done to achieve potentially shippable artifacts by the
end of each sprint.

— Clearly defining the goal of the Sprint particularly when the development team
has to prioritize even within the projects in the middle of the sprint.

— Utilizing the scrum dailies to raise the major concerns and take time later if
needed for further discussion.

— Involving and engaging domain experts and designers and other stakeholders
with the development team if and when needed.

— 80/20 rule of planning - the available time is not fully allocated to the develop-
ment team.

— Documenting sprint retrospectives and creating accountability on the sense
that actionable items are achieved by the team members.

— Utilizing sprint retrospectives to review the problems discussed during the
current state analysis in small increments.



46

— Distributed Scrum practices were not explicitly discussed in the beginning
although some of the practices introduced during the retrospectives could help
to tackle those issues.

In conclusion, the scrum adoption was started following it by the book while being
open to change as per the needs of the development team. Since the development
team has often changed requirements and priorities among multiple projects running
at the same time with almost half of the members in the development team working
only part-time, long-term planning was always challenging and hence it was dropped
and more focused on sprint goals and its fulfillment. In addition to that, all the sprint
events beside daily were conducted by the end of the Sprint on the same day when
all the development team members were present. With this work mainly focused
on the development team rather than considering the transformation of the whole
organization, particular focus was paid on improving the development productivity
by figuring out ways of improvement during sprint retrospectives with the agreement
on utilizing scrum to experiment and learn while solving the existing problems in
the development practices. Given that the software development team is willing
to grow and learn while already demonstrating commitments to more productive
development work and the team; with the nature of the problems explored during
the workshop, adoption of the scrum will help to solve most of the problems despite
some of the challenges while experimenting and learning about Scrum itself.

6.4 Summary of the Retrospectives

Before having the concluding retrospective to refine the definition of done and create
a solid engineering practice, there were altogether eight retrospectives during the
thesis process. In the following sections, the main points of the sprint retrospectives
are described per each sprint retrospectives.

Sprint Retro 1 (2020-04-23): Although this was the first sprint retrospectives,
the team discussed solving the existing problems while improving the team productiv-
ity and quality of the code. The development team agreed on some initial template
for the pull request review which is more detailed and easily traceable to the issues
related to the features. Non-functional requirements apply to the entire product
which could be applied by creating ‘Definition of Done’ (DoD) items that apply to
all backlog items (Merkow, 2019). The initial version of the DoD was created with
the development team during this retrospective. Estimation was always the problem,
and particularly not cared enough when multiple projects were running at the same
time often changing priorities in the middle of the projects. Moreover, the concept
of main reviewers was also introduced which helped to have many reviewers who can
check the idea of the feature and implementation while giving the main reviewer the
responsibility of checking the pull request in more detail. As planning was missing
in detail, time estimates were mandated to be estimated with the developers who
were present in the design meetings. To consistently use Jira, the development team
agreed to create stories for features while having sub-tasks as the breakdown of the
story by the development team to get the story done. To improve the testing, the
feature’s implementation was decided to include the tests also.



47

Sprint Retro 2 (2020-05-07): In this retrospective, the focus was on improv-
ing the workflow while working remotely while briefly reflecting on the previous
retrospective. As already mentioned, the development team was already working
as a collocated team before going remotely while one of the members was always
working remotely. To improve the remote working, the development team decided
to have an optional coffee break in the Google Meet daily at 14:00. Furthermore,
the team decided to present the idea of being at home the way as being at work
with the proper office settings and dresses. Most of the development team members
who were working from the office before experienced being distracted during the
remote working - and ways to handle distractions were discussed. While the entire
planning was virtual, it was decided to discuss more if some of the stories are needed
to discuss while mostly preventing from having team discussion when not all team
members have concerns. For that reason, the team also suggested having a better
description of the tasks with an appropriate label to differentiate between frontend
and backend tasks while highlighting the need for a standard for stories that involve
both frontend and backend works. For the same reason of not wasting a lot of time
for conversation, time estimation was left on the hand of the developers which at least
provides an overview of the next 24 hours of work. In case the pull request review
becomes lengthy, the main reviewers and the developer were suggested to arrange a
meeting over Google Meet to figure out the pull request fixes quicker. Not having
dailies was one of the suggested ideas which were not included in creating action
plans. Spending more time on sprint retrospective and brainstorming what works
better in the remote working situation was one of the suggested recommendations.
One of the developers also requested not to add tasks in the sprint as it changes
the scope of the sprint without the team being aware of the changes while pointing
out the need for including subtasks to the story if the proper implementation of
the features could not be achieved without doing extra work. Moreover, providing
how many hours of work each member of the development team is available over
the period of the sprint was discussed as available working hours directly affects the
scope of the sprint.

In conclusion, the team decided to have coffee at Google Meet, synchronous pull
request review over several comments in the Slack channels, working only from the
sprint board, and more planning before discussion with the whole team during the
sprint planning to save the development time.

Sprint Retro 3 (2020-05-21): The goal of this retrospective was to get com-
mitted to the plan and in its execution rather than only planning and not following
through it with actions. As Scrum values are fundamental to keeping the Scrum in
action, the team discussed the values and what value each developer in the team is
committed to holding in some form of measurable actions to reflect the commitment
of that value. With that context, the DoD was revisited with the team while dis-
cussing if it is being applied in the current practices. In particular, writing tests and
time estimation in the tasks have been the most challenging part of the development
team.

In conclusion, the team discussed Scrum values i.e. commitment, courage, focus,
openness, and respect, and actions like daring to ask in team channels and making



48

the work transparent using Jira boards, etc. Moreover, the same improvement actions
were decided to keep working on from the previous two sprints instead of figuring
out improvement actions - focus on committing on doing great things until it sticks.

Sprint Retro 4 (2020-06-18): To highlight the most urgent cases, this ret-
rospective was limited to a very short time with the main focus on creating two
powerful words - one to describe the positive aspects from the past sprint while the
other one to describe the negative aspects. The words thus collected were discussed
in the next round where each development team member was allowed to explain the
words in one minute each which followed the discussions on how to change those
words into positive actions. While scope changes, the complexity of the requirements,
new technology, and fixing the implementation before the demo was mentioned on
the negative sides; demo, progress, teamwork, communication was highlighted on
the positive sides.

Since not all members of the development team work fulltime as mentioned before,
all the sprint events were conducted on the same day causing meeting fatigue to the
development team members. During the sprint, the development team came up with
the idea of demonstrating the artifacts to the product owner; and the demo was done
for the first time as a part of the review of the sprint followed by the retrospectives
the day before the next sprint planning day. As an actionable item, a recurring
calendar event was created where the development team demonstrates the artifact
to the product owner at the end of the biweekly sprint.

Sprint Retro 5 (2020-07-01): After conducting the sprint review with the
demo again, the development team continued to discuss the weather from the
previous sprint. Scheduling meeting without clear agenda, leaving integration or
implementation to the last day, and not taking problems and owning them, huge
changes in the backend implementation while the frontend is still integrating the
backend were mentioned mostly on the cloudy weather while the sunny side included
demo, snacks and drinks during the demo, and API design meeting for required
endpoints.

As the list of actionable items, the development team decided to create the Slack
channels dedicated to announcing changes, scheduled the API design meeting after
the sprint planning, and getting snacks and drinks for the demo while making the
previous day for review and retro while the next day for the planning.

Sprint Retro 6 (2020-07-15): At this point of the time, all the project boards
in Jira are already set to use the same approach from the perspective of the develop-
ers - effectively implementing the single board single development team approach.
Moreover, Jira automation and rules are applied to make the estimation and time
spent necessary while feature stories requiring the story points. The story points
are discussed within the team for the features based on the Fibonacci sequence. To
better utilize the time, the development team has decided to call the designer for
design briefing while providing an overall understanding of the product. The frontend
developers decided to split the frontend tasks after the sprint planning (which only
discussed the what), while the senior backend developers for the endpoints and
backend implementation. Moreover, the team decided to use tagging in the Slack to
make sure that all backend developers or frontend developers get the attention to the



49

issues raised. Since the development team felt the improvement in communication
between frontend and backend, the need for keeping up that spirit was highlighted
during this sprint retrospectives.

Sprint Retro 7 (2020-07-29): As most developers were on summer vacation,
the sprint retrospective was shorter than the others while it reflected the lack of
preparation and no need for drastic improvements. One of the constant issues as a
result of having a demo part of the sprint review was backend frontend integration.
The development team discussed the need for the backend pull request reviewer
to use the frontend apps to check the pull request if the pull request concerns the
changes in the implementation while not necessarily for new endpoints implementation.
Regarding the software quality and test, the backend includes tests while the frontend
is missing the test - which is mostly neglected due to the workloads for frontend
team members. The development also discussed the need for the backend developers
to help the frontend developers if needed. Also to get the product demoable, the
team decided not to merge the breaking changes before the demo while keeping some
buffer time for miscellaneous fixes before the demo. Furthermore, the development
team set the next sprint retrospective as an opportunity to go through the results
of all the previous retrospectives and update the Definition of Done and decided to
request the designer to attend the sprint planning.

While the thesis focused solely on the development team, the sprint retrospectives
provided opportunities for the development team to improve the engineering practices
and discuss possible problems and approaches to solve those problems while focusing
on providing values to the company and customers efficiently and effectively. Some
of the existing problems were solved while the estimation and plannings are still
problems if Scrum is thought about doing by the book, but most importantly the
culture of the demo was established in the case company that the demo within
the development team is grown beyond the development team to include the whole
organization.



50

7 Evaluation

As shown in the DSRM process model, evaluation is a fundamental phase of the
design science research which as quoted Peffers et al comprises two activities i.e.
demonstration in context and evaluation. While the former demonstrates the feasi-
bility of the artifacts in the context, the later provides the relevance of the solution
to solve the problems (Ostrowski and Helfert, 2012). Instead of utilizing the metrics
and analysis in this project, a qualitative semi-structured interview was conducted
with five developers in addition to utilizing the survey to collect the evaluation data
with the goal of the qualitative evaluation of the adoption process to evaluate the
effectiveness in solving the existing problems discussed in the current state analysis
phase. As discussed in the current software development practice topics, the software
development team was already utilizing the scrum practices to some extent indicating
this adoption process as evolution instead of new implementation in the context.
When the system dimension involves evolution, the artifact evaluation criteria are
robustness and learning capability of the system which highlights the ability of a
system to respond in changing context with the ability to learn in the given context
(Prat et al., 2014). Consequently, the evaluation of the implementation of the artifact
in this project focuses on the following three questions:

1. Does it solve the selected and other existing problems?
2. Could it be used to solve future problems?

3. What could have been done better in the future and the demonstration phase?

In the following subsections of this section, these questions are discussed in detail
concerning the perception of the developers in the software development team who
were interviewed. While the thesis focused on the holistic improvement of the overall
process, the evaluation reflects the holistic evaluation based on the perception of the
developers interviewed instead of focusing on a more quantitative approach.

7.1 Evaluation based on Problems

While the following Table 3 uses v'to mention the concrete problems handled during
the thesis process and Xto mention the problems not discussed, the table is followed
with the discussion of these issues in details while elaborating other findings regarding
the problem areas.

Scrum was consistently used with sprint reviews and retrospectives introduced.
In addition to adding additional scrum events into the process, a single development
board was created to reflect the work development team was going to undertake
during a sprint in a single view. One of the development team members mentioned
the absence of a task without assignee in the progress as opposed to before - which
also reflects partly the result of a regular review of the backlog. During the problem
analysis phase, one developer mentioned the issue of clearly defined responsibility -
while frontend and backend people are working in the team - these aspects of the



ol

Table 3: Tackled Problems in 'Process and Tools’ Area.

Process and Tools Evaluation Discussion
Inconsistent Scrum use v

Requirements review and design before implementation v

Verification and approval of design before starting development | v/

Not enough planning in sprint planning X

Developers and designers in requirement discussions v X

Metrics of task (estimation etc.) v
Ways for internal testers to report bugs X
Scrum team owns the Jira board v
X
v
X

Clearly defined responsibility
Regular review of backlog
No prototyping

problem was not discussed instead focusing on working on problems as a single
development team. As a result of hiring a part-time designer in a full-time role, the
designer is more accessible to the development team than before. Although it is not
consistently practiced, the development team highlights the need for design meetings
to happen often instead of having the meeting while a new project is introduced or
the design undergoes major changes. The development team applied different tools
while working remotely - and applied effort to best handle COVID-19 situations. Yet,
one of the developers mentions the improvement in teamwork as a collocated team
during this adoption process. While the interaction with the designer has improved,
interactive prototyping is not yet considered. The development team highlights the
better grasp of development efforts for the next sprint - due to all tasks being visible
in a single board with clearly formulated sprint goals and regular discussion of the
sprint backlog items still unassigned. Regarding the planning, there is mixed feeling
in the development team - while they agree on the improvements, they see it as a
major area that could be significantly improved.

In addition to these problems; introduction of change-log and endpoints docu-
mentation, additional automation, less repetition of code, improvement in semantic
aspects of the code, mutual learning, standardized PR template, additional UX
tools, and ability to work in multiple projects as a single team more smoothly were
often mentioned. Despite having a focus on developer productivity and software
quality, software testing is a bit of gray area but understandable due to the constant
pressure to deliver in multiple projects. At the beginning of the adoption process,
DoD was established at least at the PR level which was partly already enforced due
to the evolving CI/CD pipeline and further defined in the PR template. Personal
communication over team communication was one of the major problems in the
development team which seems to work inconsistently as development team mem-
bers often highlighted the need for frequently reminding about the importance of
communicating in team channels.



52

7.2 Understanding of Scrum and Future Application

Most of the development team members mentioned the practical knowledge of the
scrum while some development team members already possessed the experience and
knowledge of working in the Scrum team. The importance of scrum in supporting
the daily work while providing a better focus on priorities was highlighted by some
development team members. The PO role as a proxy between stakeholders and
the development team was reported to improve the productivity of the developers
and highly regarded in a positive note. While there was a need for the process to
provide structure, rules, agreements, and approach to everyday work and project, the
importance of Scrum in bringing people together in an organized way was particularly
resonant to the spirit of Scrum which focuses on a collocated team of highly motivated
individuals working in a self-organized manner. The importance of Scrum values and
the structure provided by the Scrum was reflected in the developers’” understanding
while neglecting the potentially shippable increments and customer values as the
process was primarily focused on the software development team. On the other hand,
the case company is growing more customer-driven with the growing number of end
customers’ products.

In conclusion, most developers would like to continue using Scrum in the future
and see the importance of Scrum to provide better values and organization to
the development team’s teamwork while providing opportunities for improvements.
As one development team member mentioned, the development team has three
opportunities for improvement - Scrum Daily, Retrospective, and Slack channels;
Scrum provides the agility while providing structures to improve while delivering
values.

7.3 Lessons Learned

Lessons were learned during this implementation process as evidenced in the interview
process. Moreover, I find myself many aspects I could have done better during this
process. While this subsection primarily discusses the lessons learned as a team, I
feel the importance of rotating the Scrum Master role in the software development
team so that the whole software development team could improve and understand
the context of our work while heightening the spirit of getting better together - in
addition to applying our learning in a different context. Despite the aforementioned
improvements, the evaluation reflected the lack of rigor in implementation or at least
its consistency. For example, one of the development team members mentioned the
problem with documentation as it is often outdated. Communication has improved
but in need of the constant reminder to the team so that team channels are more
often used than the direct messages. Design meetings are held and reported to be not
sufficient - which might mean that there needs to be a discussion in the development
team if such meetings are needed. Schedule, deadline, and clarity are often requested
by development team members which reflects more of the issues of managing Scrum
than Scrum itself. Some development team members have the opinion that PR should
be commented a lot for documentation, while others feel the need to merge and get



93

the work moving on as demonstrated by the PR review practice over Google Hangouts
meeting instead of spending a lot of time in asynchronous communication during the
remote working. Planning has been always difficult which was further hindered by
the team composition of full-time and part-time members. While review, retro, and
planning were done in a single day to include all team members in the process, it was
particularly challenging for everyone because of the long duration. While review and
retrospectives are done now the previous day with planning on the next day, having
structures or templates to reflect the clear beginning and ending for the planning was
suggested by some team members - which would be cognitively less burdensome to
everyone in the team. To improve the practice, some development team members still
feel the importance of some small workshops about tools. While some development
team members prefer having daily like daily, the others prefer not having it at all
reflecting the challenges of working with people. Although the potentially shippable
idea of the artifact was discussed in the introduction phase, the adoption of Demo in
the practice was not done until later as noticed by some development team members.
Some development team members suggested solving multiple problem areas and
the other developers suggested introducing small changes one at a time with fewer
commitments to start with. One thing the team was very clear from the beginning
is to try something new and see if it works or not and then decide whether to keep
those practices or not. All development team members experienced stability at work
while having some free time devoted to learning also. Some of the factors were
outside of the control - like development members unavailability, the disproportionate
number between frontend and backend tasks, changing priorities over the different
projects in the middle of the sprint. Despite those challenges, the overall process
was quite nimble as the development team started having short and regular two
weeks Sprint. Some team members mentioned the sprint backlog items being carried
through multiple sprints - mostly because some of the tasks from the story were
not finished and discussion about completing the whole story was carried out in the
retrospective as well. While backend and frontend prefer planning separately, having
frequent design meetings is recommended in the evaluation phase as it provides all
the members i.e. backend developers, frontend developers, and the designer in the
same place. One frontend developer described the improved code quality in general,
there was an issue about frontend testing not having enough testing as in the backend
code which is understandable given that there are often many frontend tasks in
comparison to the backend.

In conclusion; it is vital to understand the three pillars of empiricism, adhere
to the Scrum values and agile principles, and most importantly be motivated and
self-organized to sharpen skills and ability to handle tools while focusing on creating
values for the customers. Despite the challenges in the adoption process, the scrum
framework provides agility to work in the changing environment with the goal of
continuous improvements and delivery of the highest values product.



54

7.4 Evaluation Summary

To conclude the evaluation of the artifacts implemented, the survey result will be
utilized in this section which validates the general feelings in the development team
explored during the meeting rather than implying the effectiveness in positivist
lenses. As emphasized by Berczuk of the significance of working as a collocated team
before going distributed (Berczuk, 2007), the software development team was already
collocated while one of the team members always working remotely from the very
beginning of the team formation. As a result of that experience, the team handled
the situation of having to work remotely pretty well, and the company guidelines
for working remotely during the COVID-19 were also aligned with the distributed
scrum recommendation in the software development team. As mentioned in the
interview regarding the commitment for Scrum continuation, figure 10 also confirms
the developers’ sentiments regarding the importance of having scrum events in the
Sprint except for one developer who likes to work remotely mostly communicating in
Slack rating only one for scrum daily.

B CevA [ DevB DevC | DevD
I DevE

TR AT

Daily  Review  Retro

B Deva | DevB DevC | DevD
I DevE

(= L LTS - ¥
[=TRNE N S T A 1]

Planning  Daily Review Retro
Sprint Events
Sprint Events

) ) Figure 11: Problem Specific Rat-
Figure 10: General Rating ing
While developers who preferred working remotely or had to work remotely were
against having daily, the one working from the office found having scrum dailies each
working day very important both as a general feeling towards scrum daily as in figure
10 and its importance in solving the existing problems in the development team as in
figure 11. In general, most developers preferred the single board for the development
team regardless of the project development team is working and the skills team
acquired during this thesis process on utilizing the Jira features in streamlining the
process was noticed by the team. None of the developers mentioned the DoD which
is mostly implemented in the continuously evolving CI/CD pipelines although there
is already the need to discuss and streamline the team’s DoD to have the product
in a releasable state all of the time. The following figure 12 reflects the impact of
the scrum adoption process in three major problem areas from which problems were
selected during the current state analysis phase before primarily focusing on Process
and Tools. The data might not be in itself significant, but it reflects the rationale
behind choosing to streamline the Scrum process i.e. utilizing the opportunities
Scrum framework offers to improve the development practice in addition to verifying



95

the root cause analysis in the current state analysis phase.

B DevA | DevB DevC | DevD
b DevE

Al

Process & Knowledge  CQuality of
Tools & Info Code

Lo TR S L5 N TS R - SO o

Problem Area

Figure 12: Developer Sentiment About Problem Areas.

While the focus of the thesis was the development team from the beginning and
the sprint demo was also conducted within the development team in presence of the
Product Owner, the culture of the demo is slowly permeating to the case company.
While the whole organization was having the demo, the CEO inquired:

“When is the next demo?”

Despite the challenges and the need for continuous learning during this process, the
overall evaluation of the process is positive as it shows the possibility of the process
and the ability of the development team to deliver customer values.



o6

8 Discussion

In the DSRM process model, the research process and the result is communicated once
the artifact is evaluated. Despite this whole thesis paper reflecting the communication
aspects of the process, this particular Section provides the core outcomes of the thesis
process. In the following discussion, it presents the answers to the posed research
questions and its significance both in the case company and the wider research
community.

8.1 Research questions and the answers

When the software development team grew in the size and many different tools
were introduced in the development workflow in the case company, the changed
context initiated the main question of how to improve or solve problems within the
software development team in the case company. Consequently, the research problem
was formulated to solve How to improve the software development practices
in the case company? as the main research question while performing a DSRM
approach to study the problems and implement the solutions to improve the software
development practices. The following research questions were posed to solve this
major research problem which is explained further with the answers discovered during
the process.

RQ1 (What are the current problems in the software development team
in the case company?) focused on finding problems in the software development
team in the case company. While the implementation was always based on the
collective decision of the development team, the evaluation and problem discussion
was conducted using a semi-structured interview with five members of the development
team as a tool for exploratory research. The answer reveals five major problem areas
"Quality of Code’, 'Knowledge and Information’, ’Configuration and Environment’,
"Process and Tools’, and "Visibility” while the root cause of these problems being
"Process and Visibility. The concrete problems are discussed in more details in
Section 5. In summary, the finding reveals the lack of the software development team
working as a self-organizing team despite having motivated individuals hence not
knowing what is happening inside the team. The Survey B result reflects the lack of
coherence of knowledge within the development team - out of 9 survey questions, all
5 respondents agreed only on one question as shown in C. In conclusion, the root
cause of the problems is a lack of process which supports visibility of the work within
the development team hence creating problems in five key areas. The current state
analysis phase exposes the lack of what every empirical process control is rooted i.e.
transparency, inspection, and adaptation (Ripley and Miller, 2020) - both validating
the root cause analysis and selection of the solution approach in this thesis project.

RQ2 (What practices are employed by the software development team
in the case company?) focused on finding existing practices to acquire a better
understanding of the context where the artifacts of the DSRM process is to be
demonstrated. The answer reveals some solid engineering practices in the development
team like standard application deployment process (Rossberg, 2019) as discussed



57

in Section 2 - most of them are adopted in the development team but not utilized
or not all relevant members of the development team is aware in the worst scenario.
Multiple boards in Jira for development work, git feature branch workflow, CI/CD
implementation with different tools in the pipeline, etc. were already in practice.
Scrum was already used within the software development team but missing most of
the elements of the scrum. Scrum dailies were not happening daily, sprint length was
not regular, and the scrum used was inconsistent (Ripley and Miller, 2020) as noted
by the development team also - mostly because of the team members’ schedule. The
current sprint was concluded and a new sprint was started in a short amount of time
without celebrating all scrum events.

Answering RQ3 (What are the changes introduced in the software de-
velopment team?) introduced the changes initiated as artifacts in the software
development team in the case company. At the beginning of the implementation,
Scrum basics were presented to the team while providing plans on how to implement
the process from now onwards. The implementation is discussed in great detail
in Section 6 and Subsection 6.3 provides the concise list of implemented concrete
practices during the thesis process. All Development team members interviewed
mentioned the single board for the whole development team as the most significant
changes as it also initiated other impacts which resulted in overall better knowledge
in Jira. For example, the single configuration/settings were established in Jira for all
projects the development team was working which simplified the general workflow.
The role of Scrum Master and the Product Owner was assigned to different Scrum
Team members (Ripley and Miller, 2020) and agreed to utilize rotating scrum master
roles from within development team members in the future. Regarding the practices
in distributed settings, the development team heavily utilized software tools (Berczuk,
2007), emphasized synchronous communication over the internet, prioritized physical
meetings at times when possible (Rayhan and Haque, 2008), and focused on the
highest priorities tasks to deliver the highest values regardless of the work settings.

In conclusion, the Scrum team was flexible and open to trying how new things
work, decide if it works or not, and then drop or continue based on the results despite
the warning of resistance in scrum adoption when the focus is on building projects
with motivated individuals adopting solid engineering practices (Rigby et al., 2016).
While different kinds of changes were introduced at different times - most of them
not even having a significant presence in the development team, the framework for
enabling development team members to continuously improve was established during
the thesis process.

RQ4 (How the introduced changes affect the existing problems?) was
presented to evaluate the effect of the changes thus introduced. While the previous
research questions pose the rationale and context, this research question evaluates
the implementation introduced as a part of the answer to RQ3. The positive changes
due to the introduction of the improved scrum process are generally experienced
in the software development team as seen in the result of the interview and the
survey. Most of the development team members experienced that the Scrum process
provided a better structure to the work (Sanchez-Gordon et al., 2016) while providing
opportunities for improvements. Development team members experienced more time



o8

for learning and sharing knowledge with others although it was frequently mentioned
that there is a need to constantly remind people to discuss in the team channels. As
expected in the discussion in the workshop during the current state analysis phase, the
impact of improving process was observed in the other problem areas too as discussed
in Section 7. In summary, there were perceived improvements in different problem
areas with the possibility of further improvements also. Most importantly, the
adoption process has established a framework that supports agility and improvement
while initiating the culture which is seeking improvements constantly. The sprint
events also observed improved discussion within the software development team as
the result of dividing the task of product owner and scrum master from a single
person to two individuals (Ripley and Miller, 2020).

8.2 Limitations of the research

There are limitations to this research also - despite having improved perception in the
development team, it does not map the effect one to one with any of the implemented
practices. Limitations are also prevalent due to the nature of interviews and myself
being part of the development team from the very beginning - which might distort
the perceptions of the people. Moreover, being a single case study research, it is
hard to say that it could be generalized to the extent. Implementing the full-scale
Scrum costs a lot of time - particularly for the small team which is often working
in multiple projects, it is hard to generalize the implementation particularly when
the larger context of implementation varies in each case. Regardless of the change
in context and the subtle granularity in implementation, the result supports the
benefits of Scrum provided in the literature. On the other hand, the context and
number of developers interviewed, and the nature of the qualitative interview does
not limit the perceived nature of the improvements in the case company. Describing
the case company and development company in more detail could have probably
supported the generalizability of the research.

While the literature review was not done extensively probing the relatedness of
the context in which other researches were conducted, this paper does not exactly add
value based on the literature although it provided an idea about different practices
which were tried in this process even though most of them were discarded as unsuitable.
Moreover, the literature review is scattered to cover the wide range of topics as the
situation during the thesis process changed due to COVID-19 which enforced the
development team to work in distributed settings. One of the limitations of the
research is the selection of interviewees which often represents their interests and gets
influenced by different aspects of the larger context in which the development team is
operating. As the software development team comprised seven developers who could
have been interviewed, five of them were interviewed in each stage. The interview
result was matched with the result from the survey where possible as a means for data
triangulation. One major limitation of this research is focusing absolutely within the
development team instead of the whole organization - even though the organization
culture greatly shapes the people working in the organization. One of the major
problems discussed during the current state analysis was employees outside of the



99

development team creating tasks in the development team board and not having
proper reporting tools for the bugs - which reflects the need for having organization
level discussion within the case company.

In addition to these limitations, the evaluation part reflects competencies in
my expertise regarding the implementation and overall research orientation - hence
affecting the research negatively. Moreover, being part of the development team
while working for this thesis might have some effects because of my relationship
with my colleague - despite me always preferring to accept what one truly perceives
than what makes me feel happy because ultimately the goal of this thesis is to help
the case company by helping ourselves with the improvements in process and tools
in addition to our skills and expertise. To tackle these shortcomings, additional
attention is paid in selecting interviewees and the number of interviewees as well.
Moreover, the data from the retrospective session is also included which presents
the results of the discussion taking place with other team members equivalent to the
focus group discussion.

In conclusion, there are limitations to the research - lack of strong literature
review and my own experience with DSRM being the two major ones. Moreover,
being myself as a development team member affects the research because it also
affects the people with whom interaction takes place within the team regardless of
being critically self-reflective to our interaction with other team members. Despite
having relevance and significance within the case company, this research lacks the
rigor which is demanded in the scientific community as stated by Dresch, Lacerda,
and Antunes from the conception to the communication stage of the research (Dresch
et al., 2015). In addition to utilizing the flexibility the case company offers to the
software development team to work independently, the relevance of this endeavor
could have been increased by including the whole organization in some stage during
this process.



60

9 Conclusion

The purpose of this thesis was to improve the software development practices in
the case company Vediafi Oy which involves current state analysis to figure out the
problems, a demonstration in context by fully adopting the Scrum with the final part
of the project involving the evaluation of the process. Scrum is challenging to master
- as software development practices are undertaken in changing context. While this
paper involves an exploratory approach to reveal the problems and to evaluate the
implementation, the DSRM approach was utilized in the process of the evolution of
the currently adopted practices.

While the improvement in practices is a constant search in the development team
in the case company as demonstrated by the use of improved tools and automation
over the time, most of the problems explored in the current state analysis phase
manifested as the result of the adoption of new tools often unfamiliar to most of
the members in the development team. When the external context is constantly
changing and there are multiple projects with changing priorities and requirements,
there is always the need for improvement and agility. While the development team
in the case company started the practice in agile approaches, the introduction of
the Scrum with its missing elements in the practice provided the framework for
improvement - improvement in the developer productivity and software quality
(Sadun, 2010). As mentioned by one of the development team members, there are
now three opportunities which offer a chance for discussion on improvement:

“.. talking about problems and improvements, we have three places i.e.
dailies, retro and maybe the Slack public channels. I feel like dailies can
be used to draw attention to serious problems, retro for improving general
long term practices, and Slack public channels for practical and small
problems.” (Participant D)

This project demonstrated solutions to some of the existing problems while
exposing the committed effort and demonstrating the artifacts in context i.e. applying
the Scrum in practices. Most of the negative issues were related to the planning of the
Scrum events itself as a result of the limited effort from Scrum Master (Ozieranska
et al., 2016) due to other responsibilities while other aspects of the Scrum and the
impact of the adoption process were taken positively in the software development team.
Most importantly, this project reveals the ability of the Scrum process to provide an
opportunity for the development team to improve the engineering practices while
utilizing skills and making assured to actively engage in the holistic development of
the practices in a participatory fashion despite the need for tailoring Scrum adoption
process.



61

References

AgileAlliance (n.d.). Twelve principles behind the agile manifesto.

Amar, H., Rafi-ul Shan, P. M., and Adegbile, A. (2019). Towards a 5c theory of
communication for scrum-based distributed projects. In BAM2019 Conference
proceedings. British Academy of Management.

Berczuk, S. (2007). Back to basics: The role of agile principles in success with an
distributed scrum team. In Agile 2007 (AGILE 2007), pages 382-388. IEEE.

Bhatia, A., Cheng, J., Salek, S., Chokshi, V., and Jetter, A. (2017). Improving the
effectiveness of fuzzy front end management: Expanding stage-gate methodologies
through agile. In 2017 Portland International Conference on Management of
Engineering and Technology (PICMET), pages 1-8. IEEE.

Bucena, I. (2017). Establish devops maturity level. [Retrieved January 13, 2020].

Cho, J. (2008). Issues and challenges of agile software development with scrum.
Issues in Information Systems, 9(2):188-195.

Chow, T. and Cao, D.-B. (2008). A survey study of critical success factors in agile
software projects. Journal of systems and software, 81(6):961-971.

Clarke, V. and Braun, V. (2013). Teaching thematic analysis: Overcoming challenges
and developing strategies for effective learning. The psychologist, 26(2).

Dalton, J. (2019a). Incremental development. In Great Big Agile, pages 181-182.
Springer.

Dalton, J. (2019b). Sprint planning. In Great Big Agile, pages 241-243. Springer.
Dave, W. (2016). Updates to the scrum guide: The 5 scrum values take center stage.

Davis, C. (2019). Cloud Native Patterns: Designing change-tolerant software.
Manning Publications.

Dresch, A., Lacerda, D. P.; and Antunes, J. A. V. (2015). Design science research.
In Design science research, pages 67-102. Springer.

Drummond, B. S. and JF, J. F. (2008). Yahoo! distributed agile: Notes from the
world over. In Agile 2008 Conference, pages 315-321. IEEE.

Eloranta, V.-P., Koskimies, K., Mikkonen, T., and Vuorinen, J. (2013). Scrum
anti-patterns—an empirical study. In 2013 20th Asia-Pacific Software Engineering
Conference (APSEC), volume 1, pages 503-510. IEEE.

EuropeanScrum (n.d.). Scrum trainings.



62

Flora, H. K. and Chande, S. V. (2014). A systematic study on agile software
development methodologies and practices. International Journal of Computer
Science and Information Technologies, 5(3):3626-3637.

Fowler, F. M. (2019). The product backlog. In Navigating Hybrid Scrum Environ-
ments, pages 59—66. Springer.

Fowler, M. (2006). Using an agile software process with offshore development.
[Retrieved July 23, 2020].

Fowler, M., Highsmith, J., et al. (2001). The agile manifesto. Software Development,
9(8):28-35.

Google (n.d.). Devops culture: Westrum organizational culture.

Hanslo, R. and Mnkandla, E. (2018). Scrum adoption challenges detection model:
Sacdm. In 2018 Federated Conference on Computer Science and Information
Systems (FedCSIS), pages 949-957. IEEE.

Holmstréom, J., Ketokivi, M., and Hameri, A.-P. (2009). Bridging practice and
theory: A design science approach. Decision Sciences, 40(1):65-87.

Humble, J. (2018). Continuous delivery sounds great, but will it work here?
Communications of the ACM, 61(4):34-39.

livari, J. and Venable, J. (2009). Action research and design science research - seem-
ingly similar but decisively dissimilar. 17th European Conference on Information
Systems, ECIS 2009, pages 1642-1653.

Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., and Godfrey, M. W. (2015).
Investigating code review quality: Do people and participation matter? In 2015

IEEE international conference on software maintenance and evolution (ICSME),
pages 111-120. IEEE.

Longhurst, R. (2003). Semi-structured interviews and focus groups. Key methods in
geography, 3(2):143-156.

Lous, P., Tell, P., Michelsen, C. B., Dittrich, Y., and Ebdrup, A. (2018). From
scrum to agile: a journey to tackle the challenges of distributed development in an
agile team. In Proceedings of the 2018 International Conference on Software and
System Process, pages 11-20.

Luz, M., Gazineu, D., and Teéfilo, M. (2009). Challenges on adopting scrum
for distributed teams in home office environments. World Academy of Science,
Engineering and Technology, 59:308-311.

Mahmood, W., Usmani, N., Farooqui, S., and Ali, M. (2017). Benefits to orga-
nizations after migrating to scrum. In 29th International Business Information
Management Association Conference.



63

Marshburn, D. (2018). Scrum retrospectives: Measuring and improving effectiveness.
In Proceedings of the Southern Association for Information Systems Conference.

Matthies, C., Dobrigkeit, F., and Ernst, A. (2019). Counteracting agile retrospective
problems with retrospective activities. In European Conference on Software Process
Improvement, pages 532-545. Springer.

McKenna, D. (2016). The scrum framework. In The Art of Scrum, pages 27-34.
Springer.

Merkow, M. (2019). Secure, resilient, and agile software development.

Mohamed, M., Stankosky, M., and Murray, A. (2004). Applying knowledge
management principles to enhance cross-functional team performance. Journal of
knowledge management.

Moreira, M. E. (2010). Adapting Configuration Management for Agile Teams:
Balancing Sustainability and Speed. John Wiley & Sons.

Ostrowski, L. and Helfert, M. (2012). Design science evaluation—example of
experimental design. Journal of Emerging Trends in Computing and Information
Sciences, 3(9):253-262.

Ozieranska, A., Skomra, A., Kuchta, D., and Rola, P. (2016). The critical factors
of scrum implementation in it project—the case study. Journal of Economics €
Management, 25:79-96.

Paasivaara, M., Durasiewicz, S., and Lassenius, C. (2009). Using scrum in distributed
agile development: A multiple case study. In 2009 Fourth IEEE International
Conference on Global Software Engineering, pages 195-204. IEEE.

Pauly, D., Michalik, B., and Basten, D. (2015). Do daily scrums have to take
place each day? a case study of customized scrum principles at an e-commerce
company. In 2015 48th Hawaii International Conference on System Sciences,
pages 5074-5083. IEEE.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45-77.

Permana, P. A. G. (2015). Scrum method implementation in a software development
project management. International Journal of Advanced Computer Science and
Applications, 6(9):198-204.

Prat, N., Comyn-Wattiau, I., and Akoka, J. (2014). Artifact evaluation in informa-
tion systems design-science research-a holistic view. In PACIS, page 23.

Qureshi, R., Basheri, M., and Alzahrani, A. A. (2018). Novel framework to improve
communication and coordination among distributed agile teams. International
Journal of Information Engineering & Electronic Business, 10(4).



64

Ramesh, B., Cao, L., Mohan, K., and Xu, P. (2006). Can distributed software
development be agile? Communications of the ACM, 49(10):41-46.

Ramin, F.,; Matthies, C., and Teusner, R. (2020). More than code: Contributions in
scrum software engineering teams. arXiv preprint arXiv:2007.08237.

Rayhan, S. H. and Haque, N. (2008). Incremental adoption of scrum for successful

delivery of an it project in a remote setup. In Agile 2008 Conference, pages
351-355. IEEE.

Rigby, D. K., Sutherland, J., and Takeuchi, H. (2016). Embracing agile. Harvard
Business Review, 94(5):40-50.

Ripley, R. and Miller, T. (2020). Fizing Your Scrum: Practical Solutions to
Common Scrum Problems. Pragmatic Bookshelf.

Rossberg, J. (2014). Beginning application lifecycle management. Apress.

Rossberg, J. (2019). Agile Project Management with Azure DevOps: Concepts,
Templates, and Metrics. Apress.

Sadun, C. (2010). Scrum and global delivery: pitfalls and lessons learned. In Agility
Across Time and Space, pages 71-89. Springer.

Sanchez-Gordon, M.-L., Colomo-Palacios, R., de Amescua Seco, A., and O’Connor,
R. V. (2016). The route to software process improvement in small-and medium-
sized enterprises. In Managing software process evolution, pages 109-136. Springer.

Schwaber, K. (1997). Scrum development process. In Business object design and
implementation, pages 117-134. Springer.

Schwaber, K. (2004). Agile project management with Scrum. Microsoft press.

Schwaber, K. and Sutherland, J. (2017). The scrum guide-the definitive guide to
scrum: The rules of the game. [Retrieved April 11, 2020].

ScrumAlliance (n.d.). Benefits of using scrum. [Retrieved August 10, 2020].

Solcum, N. (2003). Participatory methods toolkit: A practitioner’s manual. [Re-
trieved August, 13, 2020].

Stray, V. G., Lindsjgrn, Y., and Sjgberg, D. I. (2013). Obstacles to efficient daily
meetings in agile development projects: A case study. In 2018 ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement,
pages 95-102. IEEE.

Sverrisdottir, H. S., Ingason, H. T., and Jonasson, H. I. (2014). The role of the
product owner in scrum-comparison between theory and practices. Procedia-Social
and Behavioral Sciences, 119:257-267.



65

Wang, X., Maurer, F., Morgan, R., and Oliveira, J. (2010). Tools for supporting
distributed agile project planning. In Agility Across Time and Space, pages
183-199. Springer.



66

A Current State Analysis Questions

1. How do you support the continuous delivery of the software? What are your
responsibilities?

2. How do you use git workflow? What are the most common challenges you face
while collaborating with other developers?

3. What are the challenging aspects of CI/CD? How do you feel the team /organization /yourself
is reacting or acting to the change?

4. How has the CI/CD process evolved over time? What is your role in this
development? How have you influenced or been influenced by these changes?

5. Do you see any problems with the current implementation? Any changes to
git workflow? Software quality issues? Build and integration process? Do you
have any suggestions?

6. Any other comments regarding the company, culture, team, CI/CD pipeline?



67

B Current State Analysis Survey - DevOps ma-
turity level in technology area

Please, provide your feedback or comments if you have any regarding the particular
questions (adopted from (Bucena, 2017)) followed by the feedback question. The
question is used to assess the current level in technological area of the DevOps
whereas the follow-up questions are used to collect your valuable opinion regarding
your choice.

1. How do you assess the level of deployment automation in current
Vedia projects?
OManual deployment
OBuild automation
ONon-production deployment automation
OProduction deployment automation

OOperational and Development teams are regularly collaborating to manage
risks and reduce cycle time

Could you explain your choice? ........ccccccevviviiiirininnns

2. How are issues and bugs tracked in current Vedia projects?
ONo tools or minimal tool usage for issue tracking
OAIl issues and bugs are tracked
Olssue reporting automation and monitoring
OActivities based on received feedback and data
Could you explain your choice? .........cccoeeeeiiiiiiinnnn...
3. How do you assess the level of information and knowledge flow
within Dev Team?
ONo collaboration tools
OProject planning tool
OTeam/toolset integration
OKnowledge management tool

Could you explain your choice? .........cccccevviviiiiiininnns

4. How are the required environments provisioned in current projects?
OEnvironments are provisioned manually
OAIl environment configurations are externalized and versioned
OVirtualization used if applicable

OAIl environments are managed effectively



68

OProvisioning is fully automated

Could you explain your choice? .........ccooeeeviiiiiiinnnn...

. How do you assess the process and data monitoring in current projects?
ONo or minimal monitoring

OBasic monitoring

Olntegrated monitoring

OAnalytics/Intelligence

Could you explain your choice? ........cccooeeeeiiiiiiinnnn...

. How do you assess the validation of the artifacts/deliveries devel-
oped?

OManual tests or minimal automation

OFunctional test automation

OTriggered automated tests

OSmoked tests and dashboard shared with Operational team

OChaos Monkey

Could you explain your choice? .........cccoeeeeiiiiiiiinennn...

. Does your organization use Software configuration management (SCM)?
ONo SCM

OStandardized SCM

OConfiguration delivered with the code

OSelf-healing tools

Could you explain your choice? ...........cccccvvvvviiiiinnnns

. How do you perform the build management in current projects?
OManual process for building software/ No artifact versioning

ORegular automated build and testing; any builds can be recreated from source
OAn automated build and test cycle every time a change is committed
OBuild metrics gathered, made visible and taken into account

OContinuous work on improvement, better visibility, faster feedback

Could you explain your choice? ..........ccccviviiiinn.

. How is the data management process organized?
OData migration un-versioned and performed manually
OChanges to DB done with automated scripts versioned with application

ODB changes performed automatically as part of deployment process



ODB upgrades and rollbacks are tested with every deployment
OFeedback from DB performance after each release
Could you explain your choice? .........cccoeeeeiiiiiiiiennn...

Would you like to provide any open feedback or comments?

69



70

C Current State Analysis Survey Answer

Only the free text answer to the survey questions is utilized along with the interview
for thematic content analysis.

1. How do you assess the level of deployment automation in current Vedia projects?

5 responses

80%

@ WManual deployment

@ Build automation

® Non-production deployment automation
@ Production deployment automation

@ Operational and Development teams are

regularly collaborating to manage risks
and reduce cycle time

3. How do you assess the level of information and knowledge flow within Dev Team?

5 responses

-

@ No collaboration tools

@ Project planning tool

® Teamitoolset integration

@ Knowledge management tool

5. How do you assess the process and data monitoring in current projects?

5 responses

78

@ No or minimal monitoring
@ Basic monitoring

® Integrated monitoring

@ Analytics/intelligence.

7. Does your organization use Software configuration management (SCM)?

5 responses

80%

.

9. How is the data management process organized?
5 responses

S

@ No SCW

@ Standardized SCM

® Configuration delivered with the code
@ self-healing tools

@ Data migration un-versioned and
performed manually

@ Changes to DB done with automated
scripts versioned with application

® DB changes performed automatically as
part of deployment process

@ DB upgrades and rollbacks are tested
with every deployment

@ Feedback from DB performance alter
each release

2. How are issues and bugs tracked in current Vedia projects?
5 responses

@ No tools or minimal tool usage for issue
tracking

@ Allissues and bugs are tracked

® Issue reporting automation and
monitoring

@ Activities based on received feedback
and data

4. How are the required environments provisioned in current projects?
5 responses

@ Environments are provisioned manually

@ All environment configurations are
externalized and versioned

® Virtualization used if applicable

@ All environments are managed
effectively

@ Provisioning is fully automated

60%

6. How do you assess the validation of the artifacts/deliveries developed?
5 responses

@ WManual tests or minimal automation

@ Functional test automation

® Triggered automated tests.

@ smoked tests and dashboard shared
with Operational team

@ Chaos Monkey

8. How do you perform the build management in current projects?
5 responses.

@ Manual process for building software/
No artifact versioning

@ Regular automated build and testing;
any builds can be recreated from source

© An automated build and test cycle every

100% time a change is committed

@ Build metrics gathered, made visible and
taken into account

@ Continuous work on improvement, better
visibilty, faster feedback



71

D Evaluation Questions

Problem Discussion
— What were the problems discussed during the current state analysis phases?
— Do you feel like some of those problems are solved after adopting this process?
— What could have been done better to solve those problems?

Application of Scrum
— How do you feel about your knowledge of Scrum?

— Could you explain the importance/rationale for introducing Scrum practice in
our process?

— How do you find the improvement of engineering practice in the Development
team over the time?

— What do you remember the most about this Scrum adoption process?
Future Improvement

— Would you like to continue the Scrum process? What could we do better in
either case?

— What are the areas we could have improved during this adoption process?



72

E Evaluation Survey

The aim of the survey is to measure the developers’ satisfaction regarding the sprint
events and their effectiveness in solving the existing problems. The survey uses
Likert scale in which 1 means (contributed to nothing/ do not agree at all) and 5
means (contributed highly/agree very much). Although the free text is optional,
your feedback will be highly appreciated.

1. How do you rate the different Scrum events? What is your general
overall feeling about them in our context? Please, suggest further area of
improvement if you lie to suggest any.

Sprint Planning
@ @ ® @ ®
Any idea for improvements? .............ccccoeeiiiiiinnnnns
Daily Scrum
@ @ ® @ ®
Any idea for improvements? .............ccccceeiiiiinnnnnns
Sprint Review
@ @ ® @ ®
Any idea for improvements? .............ccccceeiiiiinnnnnns
Sprint Retrospective
@ @ ® @ ®
Any idea for improvements? .............ccccciiiiiiiinnnn
2. How do you rate the different Scrum events in their effectiveness to
solve existing problems? As the reason for adopting Scrum was to solve the

existing problems discussed throughout the current state analysis phase, how
do different sprint events affect solving those problems?

Sprint Planning

@ @ ® @ ®

Could you explain your choice? ...........cccccvvvvivirinnnnns
Daily Scrum

@ @ ® @ ®

Could you explain your choice? ...........ccoviiiiiinn.
Sprint Review

) &) ® @ ®

Could you explain your choice? .........ccooeeeeiiiiiiinenn...



73

Sprint Retrospective

@ @ ® @ ®

Could you explain your choice? .........cccoeeeeiiiiiiiiennn...

. How do you agree about following statements? If you have comments
like if Scrum adoption introduced other challenges, instead of solving the
problems or if it solved some different problems in the given problem areas

instead of solving the problems you thought there were in the beginning, please
provide the comments.

The process and utilization of existing tools is improved
@ @ ® @ ®
Could you elaborate your choice? ...........ccoeeeeiiiiiininn.

The knowledge and information flows within the team as a single
team instead of within individuals.

@ @ ® @ ®

Could you elaborate your choice? ..........ccooeeeeiiiiiiiinn.
The quality of the code has improved.

@ @ ® @ ®

Could you elaborate your choice? .............ccoeeeiiiinn.



	Abstract 
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	1.1 Research Questions
	1.2 Thesis Structure

	2 Background
	2.1 Case Company
	2.2 New Context - Reasons for Change
	2.3 Current Software Development Practice

	3 Literature Review
	3.1 Agile Development
	3.2 Description of Scrum
	3.3 Core of Scrum
	3.3.1 Roles
	3.3.2 Artifacts
	3.3.3 Events

	3.4 Scrum Adoption
	3.4.1 Challenges
	3.4.2 Opportunities

	3.5 Distributed Scrum
	3.5.1 Challenges
	3.5.2 Recommendations


	4 Research Method
	4.1 Methodology
	4.2 Data Collection
	4.3 Data Analysis
	4.4 Summary

	5 Current State Analysis
	5.1 Elicitation of Problems
	5.2 Presenting and Brainstorming more Problems
	5.3 Conclusion of Current State Analysis

	6 Design Artifact Description
	6.1 Problems selected for the solution
	6.2 Mandated Approach to Solution
	6.3 Recommended Scrum Practices 
	6.4 Summary of the Retrospectives

	7 Evaluation
	7.1 Evaluation based on Problems
	7.2 Understanding of Scrum and Future Application
	7.3 Lessons Learned
	7.4 Evaluation Summary

	8 Discussion
	8.1 Research questions and the answers
	8.2 Limitations of the research

	9 Conclusion
	References
	A Current State Analysis Questions
	B Current State Analysis Survey - DevOps maturity level in technology area
	C Current State Analysis Survey Answer
	D Evaluation Questions
	E Evaluation Survey

