
Aalto University

School of Science

Master’s Programme in Security and Cloud Computing

Christian Yudhistira

Online Platform for Interactive Tutori-
als: Authentication and Authorization

Master’s Thesis
Espoo, August 11, 2020

Supervisor: Prof. Mario Di Francesco, Aalto University
Prof. Pietro Michiardi, EURECOM

Advisor: Prof. Mario Di Francesco, Aalto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/341247508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Master’s Programme in Security and Cloud Computing

ABSTRACT OF
MASTER’S THESIS

Author: Christian Yudhistira

Title:
Online Platform for Interactive Tutorials: Authentication and Authorization

Date: August 11, 2020 Pages: 46

Major: Security and Cloud Computing Code: SCI3084

Supervisor: Prof. Mario Di Francesco
Prof. Pietro Michiardi

Advisor: Prof. Mario Di Francesco, Aalto University

The development of human life relates mostly to the learning process that some-
one prepared. Each person takes different learning approaches to acquire new
knowledge based on their needs. In a traditional class, teachers are typically
responsible for providing knowledge to a group of students. This approach some-
times limits the learning process of students by relying on teachers to gain new
knowledge.

A different learning approach has emerged for students by employing a virtual
laboratory that is accessible from a web browser. Such an approach is beneficial
for computer science students in running various experiments. They do not need
to set up each experiment on their local machine as teachers implement each
lab running in a data center. Furthermore, the recent development of cloud
computing allows new possibilities to implement virtual laboratories in a public
cloud infrastructure.

In this thesis, we developed an online learning platform that enables teachers
and students to interact with virtual labs in a public cloud infrastructure. We
implemented a web server using the Django web framework to handle users’
interactions with the learning platform. The web server consists of two services
that provide authentication and authorization to the online learning platform,
including a user service and a course service.

In the current implementation, the user service supports the learning platform
to authenticate users using two schemes, either through Django built-in authen-
tication or OpenID Connect. On the other hand, the course service provides
the learning platform with system authentication and authorization, primarily
in accommodating teacher privileges. Users with teacher privileges can register
multiple courses and update the contents of each course that is registered under
their identity.

Keywords: Virtual Laboratory, Authentication, Authorization

Language: English

2



Acknowledgements

First, I would say thanks to God for blessing my life and allowing me to
finish my thesis at the right time.

Then, to my family members in Indonesia, who gave me support both
morally and mentally from the beginning until the end of this thesis period.

Then, to my supervisor, Professor Mario Di Francesco, who allowed me
to join as one of the members in developing OnPIT project. Thank you for
helping me in completing my thesis through all feedbacks and suggestions.

And finally, to the committee of SECCLO master’s program, particularly
both from Aalto University and EURECOM, who gave me such an oppor-
tunity to complete my master’s degree. To all friends from SECCLO 2018,
thanks for providing such a precious moment in the last two years, I wish
you all the best for the next journey.

Espoo, August 11, 2020

Christian Yudhistira

3



Abbreviations and Acronyms

API Application Programming Interface
DAC Discretinary Access Control
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IP Internet Protocol
MAC Mandatory Access Control
PaaS Platform as a Service
RBAC Role-based Access Control
REST Rpresentational State Transfer
SaaS Software as a Service
SSH Secure Shel
TCP Transmission Control Protocol
URL Uniform Resource Locator
VM Virtual Machine
VMM Virtual Machine Monitor

4



Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Research topic and goals . . . . . . . . . . . . . . . . . . . . . 8
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10
2.1 Online learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Cloud-based interactive labs . . . . . . . . . . . . . . . 12
2.2 Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Role-based access control . . . . . . . . . . . . . . . . . 16
2.3 Public key management . . . . . . . . . . . . . . . . . . . . . 16
2.4 Webhooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Online platform for interactive tutorials 22
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 System architecture . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Authentication and authorization in OnPIT 29
4.1 User service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 User authentication . . . . . . . . . . . . . . . . . . . . 29
4.1.2 User authorization . . . . . . . . . . . . . . . . . . . . 30

4.2 Course service . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Adding new courses . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Updating course contents . . . . . . . . . . . . . . . . . 35

5 Conclusions 39
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5



List of Figures

2.1 The structure of cloud-based interactive labs . . . . . . . . . . 13
2.2 The structure of access control . . . . . . . . . . . . . . . . . . 14
2.3 Symmetric and asymmetric encryption . . . . . . . . . . . . . 17
2.4 Generating (a) challenge and (b) key response in public-key

authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Comparison of polling and webhooks . . . . . . . . . . . . . . 20

3.1 The architecture of OnPIT . . . . . . . . . . . . . . . . . . . . 24
3.2 The structure of a course . . . . . . . . . . . . . . . . . . . . . 25
3.3 Channel for teachers . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Channel for students . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Steps for adding a new course . . . . . . . . . . . . . . . . . . 34
4.2 Authentication process in adding new courses . . . . . . . . . 35
4.3 Steps for updating a course . . . . . . . . . . . . . . . . . . . 37
4.4 Updating course contents using webhooks . . . . . . . . . . . . 38

6



Chapter 1

Introduction

Learning is an essential part of human life development. In a traditional class,
sharing of knowledge typically occurred in one way, primarily from teachers
to a group of students. Students tend to feel that they learn more by only
taking a passive role in this learning process [13]. A study from Deslauriers
et al. [13] shows contrary evidence that students learned more when taking
an active role in a so-called active learning classroom. A class with active
learning encourages students to produce appropriate solutions for real-like
problems [6]. Such a learning method is beneficial for students in science,
as it positively supports their conceptual development through participation
in different experimental activities [6]. In computer science, for instance,
students in active learning courses gained better technical skills than those
that were not [37].

During the implementation of active learning in a course, teachers usually
need to provide students with guidance to help them run a personal experi-
ment. For some courses that do not require frequent updates for the experi-
mental content, the active learning activity demands less pre-class prepara-
tion time for teachers than the traditional class setup [37]. Unfortunately,
this is not always the case for courses in computer science. In fact, the field
of computer science has a variety of study topics with different rates of tech-
nology updates. As a result, it requires more time for teachers to prepare
guidance for each study topic. Moreover, students need to set up different
supporting tools in their machines for each experiment. In most cases, it
is difficult for higher education institutions to provide experiments that are
up-to-date if not supported by an adequate environment [21, 47].

A new approach has emerged to provide students in computer science
with such a new learning environment. This approach employs a virtual lab-
oratory that is accessible from a web browser. Teachers provide a virtual
laboratory that run in a data center instead of on the local machine of stu-

7



CHAPTER 1. INTRODUCTION 8

dents. A web-based learning platform allows students to interact with each
lab with more flexibility, even by using mobile devices [26]. Several studies
define such a learning environment as interactive labs [39]. Moreover, the
emergence of cloud computing brings new possibilities to realize interactive
labs. Specifically, they allow teachers to provide different types of virtual
laboratories with limited setup time. The deployment of interactive labs at
such infrastructure is indicated as cloud-based interactive labs.

1.1 Research topic and goals

The deployment of interactive labs leverages the cloud infrastructure. There-
fore both teachers and students require an interface to interact with virtual
laboratories. For this purpose, some research suggests that online learn-
ing employs different underlying technologies in the cloud. For instance,
research conducted by Kabiri et al. [27] proposes a cloud-based virtual lab-
oratory based on IaaS (Infrastructure as a Service) service model at the
private cloud. Despite the benefit of sharing multiple labs in a shared pool
of computing resources, this solution lacks scalability when the number of
student access exceeds the computing resource. Teachers need multiple high-
end servers and network devices to handle a large number of students, which
is not efficient in terms of maintenance cost. Consequently, other solutions
need to take into account to provide a more feasible environment.

Another study proposes a different implementation of interactive labs
through PaaS (Platform as a Service) and SaaS (Software as a Service) ser-
vice models in a public cloud provider [14]. As opposed to the implementation
in a private cloud, this solution relieves teachers from any maintenance of
IT infrastructure when the number of requests from students demands more
computing resources. This study shows the feasibility of implementing inter-
active labs in a public cloud service. However, less research has considered
security aspects related to the implementation of interactive labs in a public
cloud infrastructure. In this context, this thesis aims to describe security
on the web application level of the online learning platform, particularly in
implementing authentication and authorization to users and services located
at a web server.

The goals of this thesis are the following:

1. Define a service that enables users authentication and access control in
the learning platform.

2. Define a service that supports system authentication and authorization
for different user roles.



CHAPTER 1. INTRODUCTION 9

3. Develop a dashboard for configuring interactive labs for users with a
teacher role.

1.2 Structure

The thesis is organized as follows. Chapter 2 introduces the concept of
cloud-based interactive labs and the relevant technology used to establish
authentication and authorization for the developed online learning platform.
Chapter 3 presents the design and the structure of the developed online learn-
ing platform. Chapter 4 provides security considerations of services on the
web server. Finally, Chapter 5 concludes the thesis by providing directions
feature for future work.



Chapter 2

Background

This chapter overviews the relevant technology employed to establish au-
thentication and authorization to the cloud-based interactive labs, including
role-based access control and public key management. Moreover, this chapter
discusses webhooks and their use for relaying information between different
web services.

2.1 Online learning

The development of Information Technology (IT) is very beneficial for many
aspects of human life, including in education. The latest developments in In-
ternet technologies allow everyone to collect heterogeneous learning materials
using their mobile devices, such as smartphones and laptops. Furthermore,
many educational institutions have started to leverage online learning sys-
tems in addition to the traditional classroom setup, primarily for delivering
learning resources [8, 25]. Such learning environments enable teachers to
share study materials to distance learners, either through native desktop
applications or web applications. On the other hand, students have more op-
tions to learn new knowledge from different types of online learning resources.
Such a new study possibility offers students more flexibility, in terms of both
time and location, to review concepts and theories outside of class, not just
limited to in-class learning at school.

Many studies use terms such as e-learning, distance learning, and online
learning interchangeably. As Moore et al. [38] mentioned in their research,
any form of those terms has a similar objective, which is improving access
to educational resources for students via the use of technology. This thesis
targets online learning as a learning environment accessible by students from
the Internet.

10



CHAPTER 2. BACKGROUND 11

Online learning has actually been evolving for more than a decade, ac-
companied by the advancement of computer technologies. This development
has provided many benefits to both teachers and learners in modern educa-
tion. Van Popta et al. [46] explored the learning benefits of peer feedback
in online learning. The authors showed the improvement of critical insight
and reflection of students from such an activity. In fact, online peer feedback
helps students find strengths and weaknesses in their homework, more than
in conventional learning situations. Another research from Rebholz et al. [41]
presented an online analytic tool that allows teachers to perform formative
assessment of students. This assessment gives an overview of the student’s
understanding and identifies their areas of misconception in a subject. For
instance, the tool encourages teachers to restructure the course material for
future teaching. Bruzual et al. [11] proposed a system for automating the
assessment of Android exercises in a university-level course. Such an auto-
mated assessment provides insightful feedback for each exercise submission
of students. As a result, the system enables students to perform independent
learning of mobile application development. Many researchers from both
fields of education and computer science believe in the potential of combin-
ing the two with online learning [30].

In an online learning environment, interactions between teachers and
learners are not only limited to collecting assignments via online web ap-
plications and giving feedback to students after their homework submission.
There is also the chance for students to interact through their browsers to
perform virtual experiments. This environment requires substantially less ef-
fort to set up the laboratory compared to using a local machine [10, 39]. This
type of learning environment is typically called interactive labs. Teachers es-
tablish a virtual laboratory running in a computing infrastructure, generally
in public or private data centers. A web-based learning platform is publicly
accessible for students to access labs with their browsers over the Internet.
Web applications offer students more flexibility than native applications, as
they are platform-independent [26]. In such a learning environment, teach-
ers typically manage multiple laboratories that can be prepared as a course.
Students can then follow any tutorial inside the laboratory after enrolling in
a course.

Despite its benefits, this learning setup incurs in infrastructure costs. The
growing number of users requires more resources to handle several services.
Most educational institutions cannot afford more budget to set up and pro-
vide maintenance for the infrastructure [28]. To this end, the implementation
of interactive labs demands different infrastructure solutions.



CHAPTER 2. BACKGROUND 12

2.1.1 Cloud-based interactive labs

Another breakthrough in computer technology happened in the last decade
since the emergence of cloud computing. The term cloud refers to a group of
IT resources that allows users to share computing resources, either hardware
or software, through an Internet connection [7]. Cloud providers in the pub-
lic cloud infrastructure typically offer different delivery models such as SaaS
(Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastruc-
ture as a Service). Each is referring to different layers of resources that they
provide to the customers.

Customers can pick one or a combination of several models to build an ap-
plication. It means that every customer can build an application without the
need to handle the IT infrastructure included in each chosen service model.
The public cloud also allows users to scale resources on-demand and pay only
for used services [20]. Furthermore, customers do not need to pay extra cost
for hardware while their services demand more computing resources. This
feature is enabled by virtualization technology that allows isolation between
multiple services running on top of a single machine. With those benefits, the
public cloud becomes a promising solution to deploy interactive labs. In the
following, the deployment of interactive labs at the public cloud is indicated
as cloud-based interactive labs.

Running interactive labs on a public cloud infrastructure has some ad-
vantages. One of the most important is to relieve course administrators of
any IT infrastructure maintenance, as this is taken care of by the cloud
providers [50]. As a result, teachers can concentrate on the design and man-
agement of course labs. Another benefit is the increased reusability by creat-
ing an instance of a virtual laboratory. This can be achieved by replicating
each instance through virtualization technology for many students, without
having to prepare it from scratch every time [27].

There are typically two types of virtualization technologies employed to
provide virtual environments in the cloud infrastructure, including hypervisor-
based virtualization and container-based virtualization [18]. A hypervisor or
Virtual Machine Monitor (VMM) is a software running on a hardware layer of
a host machine with a privilege to control underlying computing resources.
Such a privilege allows the hypervisor to create multiple virtual machines
(VMs) running on a single host machine by virtually sharing its resources.
As a result, it provides near-complete isolation between VMs as each VM
runs in an independent guest operating system (OS) even though it becomes
an inefficient solution if several VMs are running with the same guest OS.
On the other hand, a container provides virtualization at the operating sys-
tem level. Such virtualization does not deploy multiple virtual environments



CHAPTER 2. BACKGROUND 13

in separate OS. Thus, this type of virtualization is more lightweight than
the previous virtualization technique. Each tutorial in the interactive labs
usually requires different experimental requirements to accommodate a vir-
tual laboratory [47]. A learning platform provides users with a service to
deploy a virtual laboratory running in an isolated environment based on the
experimental requirement.

User	Interface	Layer

Platform	Management	Layer

Cloud	Service	Layer

Physical	Hardware	Layer

Figure 2.1: The structure of cloud-based interactive labs

The structure of cloud-based interactive labs in the literature can be
represented as consisting of four layers [14, 27], as shown in Figure 2.1 and
explained below.

• The User Interface Layer provides multiple interfaces for users.
This layer enables learners to access web pages of a tutorial and in-
teract with the virtual laboratory. On the other hand, this layer also
provides interfaces for course administrators to access the dashboard
page of a course.

• The Platform Management Layer includes several services that
accommodate interaction between users and virtual laboratories. One
of the services can trigger the provisioning of Virtual Machines or con-
tainers to accommodate the laboratory environment for each student.
Another service supports course management, such as creating new
courses, uploading course content, and organizing user accounts.

• The Cloud Service Layer accommodates every provisioning request
from the upper layer by managing virtualization on a pool of comput-
ing resources in a datacenter. Furthermore, it routes data traffics for
each pair of a user interface and an isolated environment of the virtual
laboratory.



CHAPTER 2. BACKGROUND 14

• The Physical Hardware Layer is the foundation infrastructure that
provides all the computing resources to the upper layers. Such an in-
frastructure typically comprises of servers, network devices, and storage
devices. In a public cloud environment, the physical hardware is not a
user concern.

2.2 Access control

Access control is a security mechanism that regulates access of authenticated
users to resources in a system. Such a mechanism grants or rejects a request
to access resources, depending on the user’s rights [44]. In the context of
computer security, access control constrains the operations of both users
and programs executing on behalf of the users. A suitable implementation of
access control prevents any activity that could breach a security of a machine,
such as a privilege escalation in a web application [52].

Reference
Monitor

Authorization
database

Authenticated
user

Objects

1 3

2

Auditing

Figure 2.2: The structure of access control

To establish access control, different security components need to interact
with each other, as shown in Figure 2.2. The reference monitor assesses every
attempted access from authenticated users to objects in a system. Before
allowing a user to access objects, the reference monitor typically checks the



CHAPTER 2. BACKGROUND 15

user’s access rights against an authorization database. The rules governed by
the security administrator is stored in the database. In addition, there is an
auditing component that monitors users actions to determine possible flaws
in the system as a result of unauthenticated user activity.

Harrison et al. introduce a protection model for computing systems, and
it is known as the access control matrix model [24]. This model abstracts an
access policy, but it is not practical to implement. In fact, the access policy
would need to be stored in a single table that contains the access rights (i.e.,
open, read, write, close) of all users for each file in the system. Moreover, this
model has a security problem that might lead to the permission escalation of
users: every user who obtains write permission could modify the matrix and
grant write permission to other users without any approval from system ad-
ministrators. Thus, other solutions are required to implement access control
policies in computing systems.

One of the initial improvements over the previous model is Discretionary
Access Control (DAC). DAC is an access control model that combines users’
identity with corresponding authorization rules to determine the access right
of users to the target information [44]. If the authorization rule asserts
that users can access the object, then access is granted; otherwise, users do
not have access permission for that object. DAC offers better solutions for
granting access compared with the previous model. In fact, the owner of
the object is the only entity that can determine the access rights of other
users. Despite having that security property, DAC has the drawback of
not imposing any restriction on the information flow in a system [36]. It
allows unauthorized users to read information obtained from legitimate users
without the awareness of the data owner.

Another solution from early access control models is Mandatory Access
Control (MAC). MAC is an access control model that determines users’ access
rights based on the classification of subjects and objects in the system [44].
A system administrator usually assigns a security level tag to each user and
object in the system. The assignment of security level tags forms a hierarchi-
cal security level (i.e., top-secret, secret, confidential, unclassified). Following
the same rule as in the military setting, subjects obtain permission to access
objects if they satisfy a particular security level associated with the two. This
security property solves the issue in the DAC model by regulating the flow
of information in a system using the security level hierarchy.

According to Zhu et al. [52], some web applications have a conditional link
displayed if a specific access control examination is satisfied. In a multi-user
web application, such as the interactive lab platform, having this security
property is beneficial to separate web pages for teachers and students. Nev-
ertheless, both MAC and DAC have limitations which make them impractical



CHAPTER 2. BACKGROUND 16

for a multi-user web application: MAC is too rigid as it is designed for mili-
tary settings, while DAC is not a practical solution as it takes control of each
asset.

2.2.1 Role-based access control

In the 1970s, the emergence of multi-user applications in computing systems
leads to the new model called role-based access control (RBAC) [16, 43].
This model introduces a new notion called role as a set of permissions to
access objects in a system. Instead of regulating permissions for each user,
users will be assigned to roles based on their responsibilities in a system.
In the case of online learning applications, there are at least two distinct
roles: teachers and students for each authenticated user. Each role possesses
different capabilities to access features in the learning platform. Compared
with the previous two access control models, the RBAC model simplifies the
management of permissions in multi-user applications.

The RBAC model offers a better alternative to manage access to resources
compared to the DAC and MAC models. In the DAC model, data owners
apply access rights for each user associated with their resources. Therefore,
the authorization rules are directly established between users and resources.
Consequently, the DAC model is not practical, especially when a user’s re-
sponsibilities change. Instead of revoking all user access rights and granting
a set of new rules, the RBAC model only needs to revoke roles corresponding
to the user and grant other roles. The latter solution requires less time than
the DAC model for updating new permissions.

On the other hand, the MAC model is too rigid in the sense that there
is only one-directional information flow in the implementation. There are
two principles (read-up, write-down or read-down, write-up) that satisfy dif-
ferent security objectives (information integrity or information secrecy). In
contrast, the RBAC model allows users to possess multiple roles that do not
limit access to only one-directional flow. Moreover, new permissions can be
added to roles as new resources are included. Thus, these properties give
more flexibility to the access control in multi-user applications.

2.3 Public key management

Cryptography has been used in many parts of modern businesses, including
maintaining the privacy of patients in hospitals [19], protecting electronic
communication in the banking systems [51], and providing integrity and au-
thenticity of customer data in financial transactions [22]. In such cases, a



CHAPTER 2. BACKGROUND 17

cryptographic key is as valuable as the protected assets. Therefore, it is es-
sential to manage cryptographic keys across their life cycle [9]. An adequate
implementation of public key management allows preserving the resistance
of computing systems from attacks [35].

Chiper
Text

Plain
Text Encryption

Decryption

Public	Key Private	Key

(b)	Asymmetric	Encryption

Chiper
Text

Plain
Text Encryption

Decryption

Secret	Key

(a)	Symmetric	Encryption

Figure 2.3: Symmetric and asymmetric encryption

Cryptographic keys can be categorized into symmetric and asymmetric.
Each of these is extensively used in many services over the Internet, for in-
stance, to improve security in cloud computing [48]. In symmetric encryption,
there is only one key for encrypting and decrypting data between two systems.
Typically, such a key is identified as a secret key. In contrast, asymmetric
encryption uses a pair of keys: a public key generally used for encryption;
and a private key for decrypting data. Figure 2.3 displays an illustration of
symmetric and asymmetric encryptions. The generation of a key pair in the
asymmetric encryption leverages cryptographic algorithms (e.g., RSA, DSA,
and ECDSA) that rely on mathematical problems (e.g., factoring, discrete
logarithm, and elliptic curve). Such a mechanism allows users who possess



CHAPTER 2. BACKGROUND 18

the private key to prove the relationship with a public key but not vice versa.
This security property of asymmetric encryption usually used to prove the
authenticity of the user’s identity without actually showing classical creden-
tials (i.e., combining username and password). Algorithms for asymmetric
encryption require more processing power for generating keys than those for
symmetric encryption [12]. However, the public part of the asymmetric key
allows the key exchange to occur in an insecure channel. As a result, there
are many security protocols rely on the security property of asymmetric key.

Random	Number Client's	Public	Key

Encrypt

Challenge

(a)	Generating	Challenge

Challenge Client's	Private	Key

Decrypt

Key	Response

(b)	Generating	Key	Response

Random	Number SSH	Session	ID

Hash

Figure 2.4: Generating (a) challenge and (b) key response in public-key au-
thentication

Secure Shell (SSH) is a protocol that provides users secure access to re-
mote systems over an insecure network. Public-key authentication is one of
the authentication methods used in the SSH authentication protocol to au-
thenticate a user who initiates remote access to a server using SSH [49]. The
client generates a key pair based on a specific cryptographic algorithm using
an SSH command-line tool. Then, the client copies the generated public key
to many servers and usually stores it in the authorized keys file of each
server to consider the key trustworthy. In contrast, the private key remains
in the client site as proof of the client’s identity.

The public-key authentication process of SSH starts when a server receives



CHAPTER 2. BACKGROUND 19

a request for access from a client. The client prepares a username and set up
a key session inside the request. The server utilizes the username to locate
the client’s public key to create a challenge. The creation of the challenge
includes a random number generation and encryption of the random number
using the client’s public key, as shown in Figure 2.4(a). In this case, only
an authentic client who holds the corresponding private key can decrypt the
server’s challenge and obtain the random number. Then, the client computes
a key response as a proof of holding private key by performing a hash function
to the random number and SSH session ID, as shown in Figure 2.4(b). After
the client sends the key response to the server, then the server computes
the random number and SSH session ID with the same hash function and
compares the hashed result with the key response received from the client.
If both values are the same, then the request for access from the client is
granted.

Additional security should take place to store the private key in the
public-key authentication process of SSH. After the key generation process
using a particular cryptographic algorithm, the private key is usually stored
in .ssh directory of a user’s home directory. The filename of each private
key depends on the type of the cryptographic algorithm to generate the key
pair (e.g., .ssh/ssh id rsa, .ssh/ssh id ed25519). To add an extra layer
of security, a user uses a passphrase to decrypt the private key when logging
in to the remote system through SSH. The implementation of public-key au-
thentication in automated processes (e.g., automated deployment from Git)
requires a system to handle multiple key pairs, and no available user is typ-
ing the passphrase. Consequently, the passphrase would have to be stored
in another place or hard-coded the passphrase in a script [3], and it is not
a practical solution. One feasible approach is to specify each private key
directly in each authentication of automated processes though it reduces the
security of the private key.

2.4 Webhooks

In the early stage of web development, web applications consist of static
elements that fit into a single page. All interactions between clients and
servers were limited: clients initiated all the requests, and servers sent a
response with static files. The next stage begins with the implementation of
Ajax in web applications that allows each component of the web application
to interact with the server without reloading an entire web page. The recent
development of the server handles not only static pages but also different
types of web services (e.g., check balance, add pictures to social media).



CHAPTER 2. BACKGROUND 20

Web applications of the client side obtain access for resources of each web
service located on the server, usually through REST API.

A webhooks is a method designed to relay information between two web
applications to enable a real-time interaction [33]. In the traditional ap-
proach based on REST APIs, an application needs to poll information from
another web application frequently [29]. In contrast, webhooks offer a dif-
ferent method by sending information immediately, as an event occurs, in
the form of a push-like notification. This solution is best suited for applica-
tions that rely on asynchronous events, such as pushing an update code to
a repository or adding comments to a blog post [34]. Figure 2.5 displays the
different implementation of pooling and webhooks in updating web contents.

Web	Server Git	Server
2.	HTTP	request

1.	Event3.	Callback
4.	Git	request

(b)	Webhooks

Web	Server Git	Server

Update	?

No

Update	?

No

Event

Update	?

Yes

Git	request

(a)	Polling

Figure 2.5: Comparison of polling and webhooks

Sending a notification for every occurrence of an event instead of polling
makes webhook a less resource-intensive option in fetching information. This
property also allows developers to build a web application with an event-
driven architecture [40]. One of the main benefits is that two systems can



CHAPTER 2. BACKGROUND 21

be decoupled while still being able to communicate, resulting in improved
scalability and fault-tolerance. Moreover, this approach allows an event on
one site to invoke actions on another site. The actions could be anything,
for instance, starting the deployment process in continuous deployment or
triggering an update of course contents as used in this thesis.

Typically, there are two elements involved in the webhook functionality:
the receiver system and the sender system. The receiver system is responsi-
ble for providing a public endpoint that is used by the sender system as the
destination for sending a notification. Moreover, the receiver system devel-
oper also provides a callback function associated with the public endpoint for
responding to incoming requests from the sender system. On the other hand,
the sender system prepares a service that will send a notification once a rel-
evant event occurs on this site. Usually, the sender system makes an HTTP
POST request to the URL endpoint configured for webhooks. It shows from
the Figure 2.5, the web server operated as the receiver system and the Git
server served as the sender system. Since the webhooks uses HTTP, other
web services do not need different infrastructure to integrate a webhook [34].

From the fact that the implementation of webhooks requires the receiver
system to expose a public endpoint, it allows many foreign entities to access
a service behind this public link. This condition has opened vulnerabilities
because any foreign services which have the URL of the webhook can send
malicious information by impersonating a valid event. To protect the service
from such a threat, webhooks has security mechanisms for the receiver system
to validate the authenticity of the sender system. Some examples of the
security mechanism employed by the webhook validation include [32]:

• Storing a whitelist of IP Address for known machines. This approach
allows the receiver to reject each incoming HTTP request with IP ad-
dress that is not registered in the authenticated IP list.

• Using HMAC [31] signature to validate each incoming HTTP Post re-
quest to the receiver. The receiver system generates a signature follow-
ing the same steps as the sender system. Then, the receiver compares
the generated signature with the received HMAC before handling the
incoming HTTP request from legitimate machines to the callback func-
tion.

• Employing mutual TLS [5] authentication to authenticate each sender
system. The receiver system verifies the sender machine’s certificate
when establishing an HTTP connection in the first place.



Chapter 3

Online platform for interactive
tutorials

The goal of the thesis is to build a web-based interactive labs in the public
cloud infrastructure. For this purpose, an online learning platform was de-
signed to enable students to access the web page of a course, interact with
the virtual laboratory, and provide an interface for course administrators to
access the dashboard page.

This chapter outlines the system requirement and discusses the system
architecture of the online learning platform.

3.1 Overview

The learning process of students usually includes two major approaches: the-
oretical lectures and practical work. The majority of educational fields de-
liver study materials in theoretical lectures that typically occur in face-to-face
classes. Unfortunately, students from the field of science and technology do
not obtain the full potential of learning experiences with such a learning sys-
tem. In fact, an approach in practical works represents a crucial aspect of
learning for students in science and technology, including engineering [15].
Such a study situation enables students to take an active role by working
on hands-on exercises. Consequently, this type of practice helps students to
improve their problem-solving skills [27]. Such a practice is beneficial for
students in computer science too, as many new technologies are arising each
year, and it would be challenging for students to keep their knowledge update
if not supported by appealing labs.

The field of computer science has a wide area of study topics with different
rates of technology updates. It is difficult for some educational institutions

22



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 23

to provide up-to-date experiments if not sustained with an adequate study
environment [21, 47]. Interactive labs are best suited for accommodating such
experiments for students in computer science. The integration of interactive
labs and the underlying public cloud technologies enables students to access
different types of computer-related experiments in isolated environments.
To this end, an online learning platform is built to accommodate such an
integration.

In the following, we discuss the primary components and features that
follow to establish the online learning platform. The security considerations
of the web application are detailed in Chapter 4.

A web server is the first component that provides an interface for both
teachers and students to access the online learning platform. The user in-
terface is built as a web application available to both users through their
browsers as it provides flexible access in different types of mobile devices.
The learning platform needs an authentication mechanism and access con-
trol to manage access rights for each user. Such a mechanism enables each
authenticated user to have different sets of privileges when accessing the
learning platform.

In our implementation, two user roles are supported: teacher and stu-
dent. Users with a teacher privilege require to have a teacher dashboard
for maintaining their courses. Using the dashboard, teachers can add a new
course, update contents of a course, and manage student enrollment. On the
other hand, users with a student privilege need a right to enroll in multiple
available courses. Moreover, the interaction between students and each iso-
lated virtual laboratory should be hosted by the learning platform. Thus, the
learning platform provides students with different front-end types, primarily
for accommodating such an interaction. This component also supports stu-
dents with service to initiate a provisioning process of the virtual laboratory
handled by the container orchestration component.

A virtual laboratory is the second component that provides an envi-
ronment for students to do an experiment. Each virtual laboratory hosts an
experiment that typically has particular experimental requirements. There-
fore, we provide a specific set of experimental tools and supporting software
for students based on the experiment’s requirement every time they start
a virtual laboratory. Moreover, each student needs to verify their progress
when experimenting in a lab. For this purpose, we provide students with
an automatic grading feature, primarily for verifying student completion of
labs.

A container orchestrator is the third component that manages cloud
resources leveraged by users in virtual laboratories. This component is re-
sponsible for providing an isolated environment using virtualization technol-



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 24

ogy (i.e., container) when students start a virtual laboratory from the web
server. In addition, this component also orchestrates each virtual laboratory
in the public cloud infrastructure to maintain the security of the cluster.

3.2 System architecture

Internet SSH

Container-based	
Laboratory

Web	Server

Database

Internet

Git	Server

Web	Browser1

2

4

3

5

Figure 3.1: The architecture of OnPIT

The online learning platform developed in this thesis is referred to as
OnPIT (Online Platform for Interactive Tutorials). Figure 3.1 shows the
architecture of OnPIT that consists of 5 components:

1. Web Browser. This component displays an interface that users can
use to interact with OnPIT.

2. Web Server. This is a place that handles each interaction of users and
OnPIT. The web server is implemented with the Django framework.
A PostgreSQL database integrated with the web server to store data
related to users and courses. Both the web server and the database
deployed as separate containers based on Docker.



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 25

3. Virtual Laboratory. This component provides an environment for
students to perform each experiment of a laboratory. Each virtual
laboratory run as separate containers based on Docker.

4. Public Git Server. This is a component that is used to store contents
of a course.

5. Kubernetes Cluster. This component is responsible for provision-
ing each container in the cluster and orchestrating each container to
maintain resources and the security of the cluster. We utilize Google
Kubernetes Engine (GKE) that provides us with an environment for
managing containerized applications using Google infrastructure.

Lab	1

Lab	n

Tasks

Tasks

Course

Figure 3.2: The structure of a course

We present the structure of a course in OnPIT, as shown in Figure 3.2.
Each course consists of different type of labs which represent an individual
virtual laboratory running in a container. Each lab includes a list of tasks
that are provided to students when starting an experiment. The tools and
supporting software of a lab are installed during the deployment step of the
container.

Each role (i.e., teacher and student) has different privileges while access-
ing OnPIT. Generally, it can be represented in two different channels. Each
channel consists of several services that reside in different components of
OnPIT and establish a connection of different services to accommodate the
privileges of each user.

Figure 3.3 shows a channel that is provided to accommodate the teacher
role. Generally, the interaction between services in this channel leverages



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 26

Database

Course	Service
User	Service Repository

Webhooks

Teachers

HTTP SSH

Git	ServerWeb	Server

Dashboard

Browser

Figure 3.3: Channel for teachers

Hypertext Transfer Protocol (HTTP) and Secure Shell. Furthermore, there
is only one type of front-end that is used by teachers to interact with the
learning platform through the browser. As a teacher, three main privileges
are available on this channel; the description of each privilege is provided
below.

• Adding a new course. This privilege enables teachers to add a new
course under their name. Teachers start the process by accessing the
dashboard through their browser. In this step, teachers need to provide
their credentials to the authentication system before getting permission
to access other services. Once they pass that step, teachers can access a
course service that is resided in the web server. In the implementation,
the communication between the browser and the web server occurred
over HTTP. The course service provides teachers with a course regis-
tration page that teachers can use to provide a Git repository Uniform
Resource Locator (URL) of the new course. Finally, the web server
clones the course contents from the remote repository designated by
the repository URL using the SSH protocol, and the course service
stores metadata of the course to the database.

• Updating contents of a course. This privilege allows teachers to
renew contents of a course that belongs to them. The implementation of
this privilege relates to the course registration step in the first privilege.
In the registration step of a course, teachers need to configure the
repository of the new course with the webhook details (e.g., a URL and
a secret). Once the previous step has been performed, the course service
receives a notification every time teachers push an update to the course
repository at the Git server. The notification contains information
related to an event in the remote repository that triggers the webhooks.
The course service uses the event’s information to request the web
server copy the latest course contents from the remote repository using



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 27

the SSH protocol. Then, the course service updates metadata of the
course in the database.

• Managing student enrollment. This privilege authorizes teachers
to select a group of students who can access their course. As with
the first privilege, teachers need to authenticate their identity before
obtaining access to the user service located on the web server. The com-
munication between the browser and the web server occurred in HTTP.
The user service provides teachers with a web page to enroll students
for each of their courses and then store each student’s information to
the database.

Database

Course	Service

Students

HTTP

WebSocket SSH

Virtual	Laboratory

Dashboard

Browser

Terminal

Web	Server

Tools
Grading

Figure 3.4: Channel for students

Figure 3.4 presents a channel that is implemented to support the student
role. Typically, the interaction between services in this channel leverages
three types of Transmission Control Protocol / Internet Protocol (TCP/IP)
protocols, including HTTP, WebSocket, and SSH. In contrast with the pre-
vious channel, two types of front-ends are available for students to interact
with the learning platform, including a course dashboard and a terminal. As
a student, the front-end accommodates only one privilege; the description of
the privilege is provided below.

• Access to a virtual laboratory. This privilege enables students to
initiate a virtual laboratory and interact with the experiment in it. In
the first place, students need to prove their identity by providing their
credentials before gaining permission to access the course service in the
web server. There are two types of front-ends which are accessible for
students from their browser to the web server. The first one is the
course dashboard that students can use to select all available labs from
an enrolled course and read instructions from a given task. The com-
munication between the browser and the web server for this type of
front-end occurs over HTTP. The other one is the front-end terminal



CHAPTER 3. ONLINE PLAT. FOR INTERACTIVE TUTORIALS 28

that students can use to interact with the virtual laboratory. To estab-
lish such an experiment, the learning platform provides students with
experimental tools, a grading system, and a Unix shell in the virtual
laboratory. The Unix shell provides students with an interface to inter-
act with the virtual laboratory using the terminal. To accommodate
such an interaction, the SSH protocol is used between the web server
and the virtual laboratory running in a container. Then, the bidirec-
tional capability between the browser and the web server is achieved
through the implementation of the WebSocket protocol.



Chapter 4

Authentication and authorization
in OnPIT

This chapter discusses security considerations in the design and implemen-
tation of services located on the OnPIT web server. First, we present the
user service design and the implementation of user authentication and access
control in the learning platform. Then, we discuss the course service design
and the implementation of system authentication and authorization to add
new courses and update course contents.

4.1 User service

The user service allows users to authenticate their identity and get privileges
to access resources in the online learning platform. We leverage two types of
user authentication schemes: Django built-in authentication [4] and OpenID
Connect [42]. Moreover, we also provide access control for each authenticated
user. The following two sections discuss the design and the implementation
of user authentication and access control in the online learning platform.

4.1.1 User authentication

The web application requires all users to prove their identity in advance to
access the learning platform. As mentioned earlier, we provide two schemes
to authenticate users in the online learning platform. Each user authentica-
tion scheme facilitates the learning platform to obtain attributes of logged-in
users: name and email address. The learning platform provides those at-
tributes to support teachers in the student enrollment process. The first
option of user authentication uses a built-in authentication from Django.

29



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 30

Before getting access to the learning platform, each user should provide their
personal information (e.g., full name, email address), username, and creden-
tials in the web application’s signup page – the web application stores those
information to the local database. Once the sign up is complete, each user
can use their username and credentials to validate their identity before ac-
cessing the learning platform. The second option utilizes OpenID Connect to
perform user authentication on top of OAuth 2.0 [23]. We integrate the login
page of the web application with the OpenID Connect service provided by
the university. Such integration allows all users who have an active email ac-
count from the university to get direct validation into the learning platform.
On the other hand, such integration enables the learning platform to obtain
the attributes of each logged-in user directly from the university database.

4.1.2 User authorization

Once users prove their identity, each of them obtains different access rights to
resources in the learning platform. In the current implementation, resources
that are related to teacher privileges require limited access from authenti-
cated users. Such privileges include adding new courses and managing the
content of each course. To accommodate such privileges, we provide stan-
dard role-based access control (RBAC) to control each authenticated user’s
access rights. In standard RBAC, each user directly bounds to each one of
the user roles.

In our implementation of RBAC, there are two roles available for each
authenticated user: teacher and student. After login for the first time, all
authenticated user obtains a student role before granted with a teacher role.
Each user role represents different access rights to resources in the learn-
ing platform. The current implementation of access control using standard
RBAC allows the system administrator of the learning platform to grant each
user a role based on user status.

4.2 Course service

The course service provides teachers with an interface to register new courses
and set up an environment to automate course updates. Two services are
required to establish such features: a course service and a public Git service.
Such a connection form a service-to-service communication, which takes no
human intervention during the communication process. Nevertheless, such
communication requires security considerations to maintain assurance in the
communication of two services, as we can find in the communication of users



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 31

and web applications. Therefore, different approaches need to take place to
provide authentication and authorization between two services. The follow-
ing two sections discuss security aspects in the registration of courses and
course updates.

4.2.1 Adding new courses

All users who are assigned a teacher role have a privilege to add multiple
courses under their identity. Contents of each course are stored in a Git
repository at a public Git service. The course service provides teachers with
a dashboard where teachers can use to register a new course to the learning
platform. The registration process takes place in the web server and requires
teachers to provide a Git repository URL of the new course. Once teachers
provide such information to the dashboard, the course service requests the
web server to clone the repository of the new course designated by the Git
repository URL to a local directory of the web server.

After teachers give the Git repository URL to the course service, the
course service requests the web server to copy a repository located in the
public Git service. In this phase, the web server operates on behalf of the
user who initiated the registration process. There is no human interven-
tion that checks the protection during the communication of both services.
Therefore, we provide two security properties to maintain the assurance in
the communication of the course service located in the web server and the
public Git service, namely: an authentication and an authorization. The
authentication guarantees that the public Git service communicates with an
authentic web server. Such authorization allows the web server to access the
repository in a public Git service on behalf of the repository owner.

In the implementation, teachers need the course contents in the public
Git service not to be publicly accessible by everyone, particularly students.
A private Git repository is best suited for this case as it provides a security
mechanism that limits unauthorized users to get access to contents inside
the repository. The repository owner should give access rights first to other
users and systems before they can access the private repository of the owner.
Public Git services, such as GitHub and GitLab, provide users with different
forms of authentication, such as password, personal access tokens, and SSH
keys [1]. The repository owner can utilize each type of authentication to give
access rights to other users.

There are three security requirements in the design of adding new courses:

• First, the authentication method should allow the repository owner to
grant limited access rights to avoid other users getting more access



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 32

rights more than needed.

• Second, the scope of access rights should be limited to a particular
repository to avoid authenticated users getting access to unrelated con-
tent in another private repository.

• Third, the secret for authentication purposes should be kept secret to
reduce the chance of being exposed by unauthorized users.

All users use password-based authentication when accessing their Git
account from browsers. Such authentication requires users to provide their
username and password for proving their identity before getting access to
their Git account. This type of authentication usually gives users account-
level access, which means each authenticated user obtains full access rights
to all repositories in a single Git account. The same authentication method
can be implemented to give access rights of a Git account to a web server.
The web server sends an access request with the credential over the Internet
to interact with the public Git service using a Git Application Programming
Interface (API).

A personal access token is an alternative method for validating a user’s
identity when accessing the Git account. Instead of giving the password, an
access token and an associated username are presented to the Git service over
the Internet. The access token provides better security property in terms of
giving access rights to other users than the password. In fact, it allows the
repository owner to create multiple access tokens and manage different scopes
of access for each token, such as read or write access. It also means that the
repository owner can assign different access rights to each authenticated user.
On the other hand, each authenticated user holds specific access rights that
apply to all repositories in the Git account. Moreover, the repository owner
can revoke access rights for a specific user at any time without affecting the
permissions of other users.

SSH key authentication does not require an access token and a password
to authenticate users when accessing their Git account. Such authentica-
tion leverages a pair of cryptographic keys (i.e., a public key and a private
key) to replace security credentials as in password-based or token-based au-
thentication. The pair of keys is generated explicitly for an individual user
employing mathematical algorithms. As a result, the private key can relate
a public key to a particular user, but it does not work the other way. This
security property allows users to prove their identity without supplying their
security credentials to the public Git service. Such an authentication method
can be implemented as public-key encryption [17] is performed for authenti-
cating users using cryptographic keys. Moreover, the repository owner can



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 33

give access rights to a web server without giving the security credential. SSH
key authentication is considerably more secure in authenticating a web server
when accessing a public Git service. The web server does not need to reveal
the private key over the network every time it interacts with the Git service.

Each authentication method has different security risks that are not di-
rectly suitable for the implementation of adding new courses. Password-based
authentication does not require users to generate cryptographic keys, so it
makes the configuration process is easier than using SSH keys. Token-based
authentication has a similar configuration process as the password-based op-
tion. However, it has more security benefits than the password-based method
as it allows the repository owner to provide different access rights for each
authenticated user. This security property of the access token applies the
least privilege concept [45], namely, limiting the access rights of authenti-
cated users to the minimum privileges they need to perform any actions.
Consequently, in the implementation of adding new courses, the web server
obtains minimum access rights to merely copy course contents from a Git
repository without getting access to modify course content in the repository.

Nevertheless, token-based authentication grants access rights for all repos-
itories in a Git account, including private repositories and public repositories.
This property results in a vulnerability: if a malicious user manages to obtain
the access token, then it obtains access to all repositories in a Git account. On
the other hand, the implementation of adding new courses requires the web
server to get access merely to private repositories that store course contents.
Furthermore, additional security should be provided in the communication
channel to secure the token, because the web server sends the token in every
request to the public Git service. Even though token-based authentication
allows the course owner to limit access rights granted to other users, but it
is not a feasible solution to authenticate the web server.

In a public Git service such as GitHub, there is a feature to grant access
to a server for deploying projects from only a single repository using an SSH
key, which is called deploy keys [2]. By default, this feature limits the server
to get read-only access to the repository. Moreover, the configuration process
of this feature requires the repository owner to attach only the public key to
the repository, which means retaining the private key still in the server. The
implementation of deploy keys for each repository limits access of authenti-
cated users to a particular repository. In addition, granting read-only access
provides additional security for the course repository by limiting the access
rights for each authenticated user to a minimum privilege. Furthermore,
the implementation of public-key encryption in SSH authentication does not
require to transfer the private key. In conclusion, the SSH key’s implementa-
tion using deploy keys has adequate security properties to accommodate the



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 34

implementation of adding new courses.

(a)	Dashboard

(b)	Deploy	key	setting	page

1

2

4

4

.

.

Figure 4.1: Steps for adding a new course

We developed a dashboard that allows teachers to register new courses
based on the security considerations mentioned before. Figure 4.1 shows the
process of adding new courses. First, teachers provide the Git repository
URL of the new course to the web server through the dashboard. Second,
teachers can request the web server to generate a pair of keys using the
dashboard. Then, teachers collect the value of the public key displayed on
the dashboard, while the private key is still stored in a local directory of the



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 35

web server. Finally, once teachers store the value of the public key to the
deploy keys setting of the course repository, teachers can request the web
server to send a clone request to the public Git service via the dashboard.

The authentication process of both servers can be seen in Figure 4.2.
The web server sends a clone request which contains the target repository
URL and the authentication method for this request. The public Git service
receives the target repository URL and creates a challenge based on the
requested authentication method. In the case of SSH key authentication, the
Git service constructs a challenge based on the public key configured earlier
in the deploy keys setting of the target repository. Then, the Git service
sends the challenge to the web server. The web server receives the challenge
and constructs a key response based on the private key corresponding to
the public key that constructed the challenge. Then, the web server sends
the key response to the public Git service. Once the Git service receives
the key response, it validates the received key response before sending a Git
response back to the web server for the initial Git clone request. The creation
of the challenge and the key response in SSH authentication was detailed in
Section 2.4

Web	Server Git	Service

1.	Git	clone	+	authentication	request

2.	Challenge

3.	Key	response

4.	Git	clone	response

Figure 4.2: Authentication process in adding new courses

4.2.2 Updating course contents

In addition to registering multiple courses, each user who is assigned a teacher
role has a privilege to update the contents of each course that is associated
to their identity. To limit the number of access to the web server, teachers



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 36

should not send the update directly to the web server. Instead, teachers pro-
vide new content to the repository of the course in the public Git service. By
default, the web server does not get any information related to the update
that occurred in the public Git service. The web server requires a notifica-
tion sent from the Git service every time there is an updated content that
occurred on this site. The notification is used to trigger the web server to
copy the latest course’s content from the public Git service. To bridge the
gap of information between the web server and the public Git service, we
implemented webhooks for updating the course content.

The implementation of webhooks requires us to provide a public URL
endpoint on the web server. The public Git service sends a notification using
an HTTP POST request to the public URL. Then, a webhook handler is
prepared on the web server to send a response for each incoming request that
is received on the public URL. The public URL is supposed to receive only
the HTTP POST request from a legitimate public Git service. Nevertheless,
since the URL is public, every internet service could send an HTTP request
to this URL. Therefore, an authentication mechanism is required to limit the
number of access that the webhooks handler should manage.

In a public Git service such as GitHub, each repository allows the repos-
itory owner to add a secret when configuring webhooks. The public Git
service employs the secret to create an HMAC signature that is sent con-
currently with the notification to the web server. The web server uses the
HMAC signature to validate each incoming HTTP request before handling
the request to the webhooks handler. As a result, the combination of the
HMAC signature and the notification allows the web server to authenticate
each HTTP request originating from the legitimate Git service.

The configuration process of webhooks in a repository requires the repos-
itory owner to provide a public URL endpoint, a secret, and specify events
that trigger webhooks. Figure 4.3 displays the process of updating course
contents. The dashboard that is used by teachers to register a new course
has been designed to provide such information for the public URL endpoint
and the secret. In the case of update course contents, the repository owner
could only specify a push event. Once the configuration is complete, ev-
ery time teachers push an update to the course repository in the public Git
service, a notification and an HMAC signature are sent to the public URL
endpoint on the web server.

The process of updating course contents using webhooks is illustrated in
Figure 4.4. The update of a course starts once a push event occurred in the
public Git service. Then, the Git service creates an HTTP POST request
which contains relevant information such as an HMAC signature, a hash
method to generate the signature, a type of an event, and a notification.



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 37

(a)	Webhooks	setting	page

(b)	Dashboard

1.

2.

3

.

.

Figure 4.3: Steps for updating a course

The first three components are stored in the HTTP POST header while the
notification is stored in the HTTP POST body. The notification consists of
information about the repository (e.g., repository name, branch, repository
URL) where the specified event has been occurred in the public Git service.
Then, the public Git service sends the HTTP POST request to the public
URL on the web server. The web server receives the request and authenti-
cates the source of the HTTP request by performing a signature check. The
signature check starts by performing the same steps to generate the HMAC
signature and comparing the value of the generated signature with the re-
ceived HMAC signature from the incoming HTTP request. If both signatures
have the same value, then the webhooks handler sends a Git request to the



CHAPTER 4. AUTHENTICATION AND AUTHORIZATION ... 38

public Git service to update the course contents. The subsequent Git request
follows the same authentication process as in Figure 4.2.

Web	Server Git	Service

4.	Git	request

2.	HTTP	POST	request
1.	Event

3.	Check	Signature

Figure 4.4: Updating course contents using webhooks



Chapter 5

Conclusions

In this thesis, we developed an online learning platform to provides teachers
and students with an interface to interact with online labs in a public cloud
infrastructure. The online learning platform consists of components that run
as separate containers inside a Kubernetes cluster, including a web server, a
database, and a group of virtual laboratories. Another component is a public
Git service that mainly stores the contents of each course.

We developed the web server using the Django web framework. It con-
sists of two services that implement authentication and authorization to the
online learning platform, including a user service and a course service. The
user service supports the learning platform to authenticate users using two
schemes, either through Django built-in authentication or OpenID Connect.
Both schemes provide each logged-in user with a role representing a set of
access rights of each user in the online learning platform. Two roles are sup-
ported: teacher and student. Moreover, the user service provides each user
with role-based access control to apply access rights in the learning platform.

The course service provides the learning platform with system authen-
tication and authorization, primarily in accommodating teacher privileges.
Users with teacher privileges can register multiple courses and update the
contents of each course that is registered under their identity. In adding new
courses, we use SSH keys in authenticating the web server to the public Git
service. In addition, deploy keys based on SSH keys enable provision in the
minimum access rights to the web server for cloning the Git repository of
a new course. In updating course contents, webhooks enable content syn-
chronization by sending a notification from the Git service to the web server
every time teachers push an update. The web server generates an HMAC
signature based on the webhooks secret to authenticate each incoming re-
quest from the Git service. A dashboard is implemented to provide teachers
with an interface to configure courses.

39



CHAPTER 5. CONCLUSIONS 40

5.1 Future work

some future works:

• Add learning analytics features to the teacher dashboard.

• Study other alternatives of key storage for SSH keys.



Bibliography

[1] Authenticating to github. https://docs.github.com/en/github/

authenticating-to-github. Accessed: 22 July, 2020.

[2] Managing deploy keys. https://docs.github.com/en/developers/

overview/managing-deploy-keys. Accessed: 28 July, 2020.

[3] Passphrase. https://www.ssh.com/ssh/passphrase. Accessed: 8 August,
2020.

[4] User authentication in django. https://docs.djangoproject.com/en/

3.0/topics/auth/. Accessed: 1 August, 2020.

[5] Aboba, B., and Simon, D. Ppp eap tls authentication protocol, 1999.

[6] Akınoğlu, O., and Tandoğan, R. Ö. The effects of problem-based
active learning in science education on studentsâ academic achievement,
attitude and concept learning. Eurasia journal of mathematics, science
and technology education 3, 1 (2007), 71–81.

[7] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica,
I., et al. A view of cloud computing. Communications of the ACM
53, 4 (2010), 50–58.

[8] Auster, C. J. Blended learning as a potentially winning combination
of face-to-face and online learning: An exploratory study. Teaching
Sociology 44, 1 (2016), 39–48.

[9] Björkqvist, M., Cachin, C., Haas, R., Hu, X.-Y., Kurmus,
A., Pawlitzek, R., and Vukolić, M. Design and implementation
of a key-lifecycle management system. In International Conference on
Financial Cryptography and Data Security (2010), Springer, pp. 160–
174.

41

https://docs.github.com/en/github/authenticating-to-github
https://docs.github.com/en/github/authenticating-to-github
https://docs.github.com/en/developers/overview/managing-deploy-keys
https://docs.github.com/en/developers/overview/managing-deploy-keys
https://www.ssh.com/ssh/passphrase
https://docs.djangoproject.com/en/3.0/topics/auth/
https://docs.djangoproject.com/en/3.0/topics/auth/


BIBLIOGRAPHY 42

[10] Brusilovsky, P., Sosnovsky, S., Yudelson, M. V., Lee, D. H.,
Zadorozhny, V., and Zhou, X. Learning sql programming with in-
teractive tools: From integration to personalization. ACM Transactions
on Computing Education (TOCE) 9, 4 (2010), 1–15.

[11] Bruzual, D., Montoya Freire, M. L., and Di Francesco, M.
Automated assessment of android exercises with cloud-native technolo-
gies. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (2020), pp. 40–46.

[12] Chandra, S., Paira, S., Alam, S. S., and Sanyal, G. A compar-
ative survey of symmetric and asymmetric key cryptography. In 2014
International Conference on Electronics, Communication and Compu-
tational Engineering (ICECCE) (2014), IEEE, pp. 83–93.

[13] Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K.,
and Kestin, G. Measuring actual learning versus feeling of learning
in response to being actively engaged in the classroom. Proceedings of
the National Academy of Sciences 116, 39 (2019), 19251–19257.

[14] El Mhouti, A., Erradi, A. N. M., and Vasquèz, J. M. Cloud-
based vcle: A virtual collaborative learning environment based on a
cloud computing architecture. In 2016 Third International Conference
on Systems of Collaboration (SysCo) (2016), IEEE, pp. 1–6.

[15] Estriegana, R., Medina-Merodio, J.-A., and Barchino, R.
Student acceptance of virtual laboratory and practical work: An ex-
tension of the technology acceptance model. Computers & Education
135 (2019), 1–14.

[16] Ferraiolo, D., Kuhn, D. R., and Chandramouli, R. Role-based
access control. Artech House, 2003.

[17] Friedl, S. An illustrated guide to ssh agent forwarding. http:

//www.unixwiz.net/techtips/ssh-agent-forwarding.html. Accessed: 29
July, 2020.

[18] Garćıa-Valls, M., Cucinotta, T., and Lu, C. Challenges in real-
time virtualization and predictable cloud computing. Journal of Systems
Architecture 60, 9 (2014), 726–740.

[19] Garson, K., and Adams, C. Security and privacy system architec-
ture for an e-hospital environment. In Proceedings of the 7th symposium
on Identity and trust on the Internet (2008), pp. 122–130.

http://www.unixwiz.net/techtips/ssh-agent-forwarding.html
http://www.unixwiz.net/techtips/ssh-agent-forwarding.html


BIBLIOGRAPHY 43

[20] Goyal, S. Public vs private vs hybrid vs community-cloud comput-
ing: a critical review. International Journal of Computer Network and
Information Security 6, 3 (2014), 20.

[21] Guerra, H., Cardoso, A., Sousa, V., and Gomes, L. M. Re-
mote experiments as an asset for learning programming in python. In-
ternational Journal of Online and Biomedical Engineering (iJOE) 12,
04 (2016), 71–73.

[22] Gupta, H., and Sharma, V. K. Role of multiple encryption in secure
electronic transaction. International Journal of Network Security & Its
Applications 3, 6 (2011), 89.

[23] Hardt, D., et al. The oauth 2.0 authorization framework. Tech.
rep., RFC 6749, October, 2012.

[24] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. Protection in
operating systems. Communications of the ACM 19, 8 (1976), 461–471.

[25] Ho, V.-T., Nakamori, Y., Ho, T.-B., and Lim, C. P. Blended
learning model on hands-on approach for in-service secondary school
teachers: Combination of e-learning and face-to-face discussion. Educa-
tion and Information Technologies 21, 1 (2016), 185–208.

[26] Hu, W., Lei, Z., Zhou, H., Liu, G.-P., Deng, Q., Zhou, D., and
Liu, Z.-W. Plug-in free web-based 3-d interactive laboratory for control
engineering education. IEEE Transactions on Industrial Electronics 64,
5 (2016), 3808–3818.

[27] Kabiri, M. N., and Wannous, M. An experimental evaluation of
a cloud-based virtual computer laboratory using openstack. In 2017
6th IIAI International Congress on Advanced Applied Informatics (IIAI-
AAI) (2017), IEEE, pp. 667–672.

[28] Kanimozhi, S., Kannan, A., Suganya Devi, K., and Selvamani,
K. Secure cloud-based e-learning system with access control and group
key mechanism. Concurrency and Computation: Practice and Experi-
ence 31, 12 (2019), e4841.

[29] King, M. Polling vs. webhooks. https://www.docusign.com/blog/

dsdev-polling-vs-webhooks. Accessed: 4 August, 2020.

[30] Ko, C. C., Chen, B. M., Hu, S., Ramakrishnan, V., Cheng,
C. D., Zhuang, Y., and Chen, J. A web-based virtual laboratory

https://www.docusign.com/blog/dsdev-polling-vs-webhooks
https://www.docusign.com/blog/dsdev-polling-vs-webhooks


BIBLIOGRAPHY 44

on a frequency modulation experiment. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 31, 3 (2001),
295–303.

[31] Krawczyk, H., Bellare, M., and Canetti, R. Hmac: Keyed-
hashing for message authentication, 1997.

[32] Krishnan, S., Varun, P., and Venkatasubramanian, B. Generic
and configurable technique for webhook validation with arbitrary appli-
cations, Apr. 26 2018. US Patent App. 15/335,274.

[33] Leggetter, P. What are webhooks and how do they enable a real-time
web? https://www.programmableweb.com/news/what-are-webhooks-

and-how-do-they-enable-real-time-web/2012/01/30, 2012. Accessed:
1 July, 2020.

[34] Linton, T. F., Resinski, M. L., Felix, M. R., and Christopher,
C. A. Systems and methods for utilizing webhooks integrated in paas
supported application development and deployment, Sept. 27 2018. US
Patent App. 15/465,475.

[35] Mazieres, D., Kaminsky, M., Kaashoek, M. F., and Witchel,
E. Separating key management from file system security. In Proceed-
ings of the seventeenth ACM symposium on Operating systems principles
(1999), pp. 124–139.

[36] McCollum, C. J., Messing, J. R., and Notargiacomo, L. Be-
yond the pale of mac and dac-defining new forms of access control. In
Proceedings. 1990 IEEE Computer Society Symposium on Research in
Security and Privacy (1990), IEEE, pp. 190–200.

[37] McConnell, J. J. Active learning and its use in computer science. In
Proceedings of the 1st conference on Integrating technology into computer
science education (1996), pp. 52–54.

[38] Moore, J. L., Dickson-Deane, C., and Galyen, K. e-learning,
online learning, and distance learning environments: Are they the same?
The Internet and Higher Education 14, 2 (2011), 129–135.

[39] Navrat, P., and Tvarozek, J. Online programming exercises for
summative assessment in university courses. In Proceedings of the
15th International Conference on Computer Systems and Technologies
(2014), pp. 341–348.

https://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30
https://www.programmableweb.com/news/what-are-webhooks-and-how-do-they-enable-real-time-web/2012/01/30


BIBLIOGRAPHY 45

[40] Rada, J. F. S., Iglesias, C. A., and Coronado, M. Maia:
an event-based modular architecture for intelligent agents. In 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT) (2014), vol. 3, IEEE,
pp. 87–94.

[41] Rebholz, S., Libbrecht, P., and Müller, W. Learning analytics
as an investigation tool for teaching practicioners. In Proceedings of
the Workshop on Towards Theory and Practice of Teaching Analytics
(2012).

[42] Sakimura, N., Bradley, J., Jones, M., De Medeiros, B., and
Mortimore, C. Openid connect core 1.0. The OpenID Foundation
(2014), S3.

[43] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. Role-based access control models. Computer 29, 2 (1996), 38–47.

[44] Sandhu, R. S., and Samarati, P. Access control: principle and
practice. IEEE communications magazine 32, 9 (1994), 40–48.

[45] Schneider, F. B. Least privilege and more [computer security]. IEEE
Security & Privacy 1, 5 (2003), 55–59.

[46] Van Popta, E., Kral, M., Camp, G., Martens, R. L., and Si-
mons, P. R.-J. Exploring the value of peer feedback in online learning
for the provider. Educational Research Review 20 (2017), 24–34.

[47] Xu, L., Huang, D., and Tsai, W.-T. Cloud-based virtual laboratory
for network security education. IEEE Transactions on Education 57, 3
(2013), 145–150.

[48] Yassein, M. B., Aljawarneh, S., Qawasmeh, E., Mardini, W.,
and Khamayseh, Y. Comprehensive study of symmetric key and
asymmetric key encryption algorithms. In 2017 international conference
on engineering and technology (ICET) (2017), IEEE, pp. 1–7.

[49] Ylonen, T., and Lonvick, C. The secure shell (ssh) authentication
protocol. Tech. rep., RFC 4252, January, 2006.

[50] Zhao, J., and Forouraghi, B. An interactive and personalized
cloud-based virtual learning system to teach computer science. In Inter-
national Conference on Web-Based Learning (2013), Springer, pp. 101–
110.



BIBLIOGRAPHY 46

[51] Zhou, R.-g., Li, W., Huan, T.-t., Shen, C.-y., and Li, H.-s. An
online banking system based on quantum cryptography communication.
International Journal of Theoretical Physics 53, 7 (2014), 2177–2190.

[52] Zhu, J., Chu, B., and Lipford, H. Detecting privilege escalation
attacks through instrumenting web application source code. In Pro-
ceedings of the 21st ACM on Symposium on Access Control Models and
Technologies (2016), pp. 73–80.


	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research topic and goals
	1.2 Structure

	2 Background
	2.1 Online learning
	2.1.1 Cloud-based interactive labs

	2.2 Access control
	2.2.1 Role-based access control

	2.3 Public key management
	2.4 Webhooks

	3 Online platform for interactive tutorials
	3.1 Overview
	3.2 System architecture

	4 Authentication and authorization in OnPIT
	4.1 User service
	4.1.1 User authentication
	4.1.2 User authorization

	4.2 Course service
	4.2.1 Adding new courses
	4.2.2 Updating course contents


	5 Conclusions
	5.1 Future work


