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Abstract

Automated Guided Vehicles (AGVs) need to localize themselves reliably in order to
perform their tasks efficiently. To that end, they rely on noisy sensor measurements
that potentially provide erroneous location estimates if they are used directly. To
prevent this issue, measurements from different kinds of sensors are generally used
together. This thesis presents a Kalman Filter based sensor fusion approach that is
able to function with asynchronous measurements from laser scanners, odometry and
Inertial Measurement Units (IMUs). The method uses general kinematic equations
for state prediction that work with any type of vehicle kinematics, and utilizes state
augmentation to estimate gyroscope and accelerometer biases.

The developed algorithm was tested with an open source multisensor navigation
dataset and real-time experiments with an AGV. In both sets of experiments, scenar-
ios in which the laser scanner was fully available, partially available or not available
were compared. It was found that using sensor fusion resulted in a smaller deviation
from the actual trajectory compared to using only a laser scanner. Furthermore, in
each experiment, using sensor fusion decreased the localization error in the time peri-
ods where the laser was unavailable, although the amount of improvement depended
on the duration of unavailability and motion characteristics.

Keywords Sensor fusion, Kalman Filter, Automated Guided Vehicle, Navigation
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Symbols and abbreviations

Symbols

ay,ay,a, Linear acceleration in three dimensions

c Speed of light in vacuum =~ 3 x 108 [m/s]
F State transition matrix

G Input transition matrix

H Observation matrix

P State covariance matrix

Px; Py, Pz Position in three dimensions

Q Process noise covariance matrix

R Measurement noise covariance matrix
Vi, Vy,V, Linear velocity in three dimensions
ob Measurement bias

0 Pitch

) Yaw

(0 Roll

wx, Wy, w,; Angular velocity in three dimensions

Abbreviations

AGV Automated Guided Vehicle

ATE Absolute Trajectory Error

EKF Extended Kalman Filter

GPS Global Positioning System

ICC Instantaneous Center of Curvature
ICP I[terative Closest Point

LiDAR Light Detection and Ranging
MSE Mean Squared Error

RMSE Root Mean Squared Error

RPE Relative Pose Error

SLAM  Simultaneous Localization and Mapping
UKF Unscented Kalman Filter

ZARU  Zero Angular Rotation Update
ZUPT  Zero Velocity Update



1 Introduction

In recent years, Automated Guided Vehicles (AGVs) have gained widespread usage in
many industries due to their ability to efficiently perform various tasks that increase
productivity and reduce associated costs. These tasks include material transportation,
loading and unloading, as well as product handling for warehouses, factories, paper
industry, hospitals and power plants. In order to perform their tasks efficiently, it
is important to reliably determine the position and orientation of AGVs in their
operational environment. This process is referred to as localization, which has been a
hot topic of research for many years, leading to improvement of many established and
proven techniques such as landmark based localization [1], as well as development
of novel ones utilizing neural networks [2], reinforcement learning [3] and computer
vision [4].

AGYV localization methods make use of different information sources to determine
the position of the vehicle. A common method used in most localization solutions
is odometry [5][6], also referred to as dead reckoning [7]. Odometry calculates the
distance travelled by the vehicle from a known starting position to estimate current
location. By using encoders on the wheels and the vehicle kinematic structure, the
speed of the vehicle can be calculated based on wheel movements and later integrated
to obtain the relative position. While this method can provide accurate information
for short time periods, even small errors become integrated and accumulate over
time due to the lack of absolute position measurements. This can eventually cause a
large drift, which in turn results in greater positioning errors in longer time periods.

As the majority of AGV tasks require robust localization for long time periods,
additional sensors are needed to correct the odometry errors. One of the most
commonly used sensors for correcting such errors is the laser range finder, often
called a laser scanner. With a laser scanner, the AGV can create a map of an
unknown environment by extracting features, such as walls, corners, trees or tables,
and then locate itself in the map by measuring the distance to those features [8][9].
This method provides an absolute position and orientation measurement in the map,
which can be used to cancel odometry drift [10].

In addition to odometry and laser scanners, many other types of sensors are
used for AGV localization. For example, inertial measurements obtained from an
Inertial Measurement Unit (IMU) can be used to enhance odometry for more accurate
orientation and position estimates, or Global Positioning System (GPS) measurements
can provide global position estimations.

However, most localization techniques need to utilize more than one source of
information. While some examples of successful localization have been developed
based on a single sensor [11], it is generally beneficial to combine data from multiple
sensors for situations when one of the sensors is unavailable or unreliable. Merging the
information from two or more sensors is called sensor fusion [12]. Various algorithms
have been developed to robustly fuse information from multiple sensors, with the
most common techniques for sensor fusion being the Kalman Filter and the Particle
Filter [13].

Since both Kalman and Particle filters are recursive Bayes estimators [14], they



attempt to estimate the state of a system in a certain time step using the state in the
previous time step and incoming measurements. The main difference between these
approaches is that the Kalman Filter works as an optimal estimator based on the
assumption that the system is linear and has Gaussian noise, while the Particle Filter
is not bound to such restrictions, though it is computationally expensive [15]. To
maintain the advantages of the Kalman Filter in nonlinear systems, several advanced
algorithms have been developed, including the Extended Kalman Filter (EKF) and
the Unscented Kalman Filter (UKF). Both have been successfully used for sensor
fusion in nonlinear systems [16][17]. Of these options, the best method depends
on the system conditions, available computational power, sensor types and desired
performance metrics.

Although many sensor fusion algorithms have successfully been developed based
on both Kalman and Particle Filters, the majority of these are limited to a specific
selection of sensors and AGV type. Moreover, most of the algorithms rely on periodic
sensor measurements that require readings to arrive at certain time intervals, and
few studies have focused on asynchronous measurements that can arrive at any time.

The aim of this thesis is to develop a working prototype of a sensor fusion based
localization method for an AGV in order to provide reliable and accurate estimates of
position and orientation using asynchronous measurements. To develop this solution,
the thesis will utilize a Kalman Filter based approach that is independent from the
vehicle kinematic structure and able to work with any combination of laser scanner,
odometry and IMU measurements. Furthermore, the non-zero mean bias present in
the IMU measurements will be considered and the Kalman Filter will utilize bias
estimation to deal with them. The viability of the developed solution will be tested
by using an open source multisensor navigation dataset and verifying this solution
with real-time experiments on an AGV. Particle Filter based solutions will not be
considered in this thesis, since Gaussian noise characteristics are assumed for the
system, making the Kalman Filter approach feasible. This assumption would not
hold if the initial position of the AGV was unknown. However, it can be reliably
determined in a known map using existing methods [18].

This thesis is divided into six chapters. Chapter 2 presents an overview of laser
scanners, odometry and IMUs, how they are used in localization, as well as their
output and noise characteristics. Chapter 3 explains the Kalman Filter and Extended
Kalman Filter methods. The developed localization system is presented in detail in
Chapter 4, while Chapter 5 analyzes the performance of the implementation using
the results from the experiments. Finally, conclusions drawn from the experiments
and possible ideas about further development are discussed in Chapter 6.
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2 Sensors

This chapter presents the sensors most commonly used for localization of an AGV,
including their output types, noise characteristics and working principles. Sensors
provide measurement in their own frame of reference. To use multiple sensors together,
measurements need to be transformed to a common reference frame. Next section
provides more information about reference frames and transformation between them.

2.1 Reference Frames and Rotation Matrices

Points and vectors in a 2D plane or a 3D space are always defined with respect to a
certain coordinate system. This coordinate system is called the reference frame, and
within the localization scope it is often used to express the reference of a vehicle’s
position, velocity or orientation. Depending on the application, there are several
coordinate frames of interest for localization algorithms [19]:

o True Inertial Frame: Sometimes also referred to as Earth Centered Inertial
Frame, this static frame has its origin at the center of mass of the earth.
Although not used directly when expressing position for AGV applications, all
inertial sensors will provide readings with respect to this frame.

o Earth Fixed Frame: Also called the World Frame, this frame also has its
origin at the center of mass of the earth, but it rotates together with the earth.
In large scale navigation applications spanning kilometers, such as aircraft
or marine applications, usually the position of interest is expressed in this
reference frame.

o Navigation Frame: This frame is defined according to the area the AGV is
expected to operate in, when it is smaller than the whole earth frame. This area
is most often a map with a known and fixed origin. In most AGV applications,
including the one studied in this thesis, this is the frame of interest when
expressing the vehicle’s position and orientation.

e Vehicle Frame: Also referred to as the Body Frame, this coordinate frame
has its origin at the navigation center of the vehicle, and it moves and rotates
with it. Odometry outputs are expressed with respect to this frame.

« Sensor Frame: The sensor frames are named after individual sensors (such
as laser frame or IMU frame), and have their origin at the exact position of
the sensor.

A representation of different reference frames of interest can be observed in Figure
1. In most cases, the sensors are rigidly placed on the vehicle, therefore, they are
stationary with respect to the vehicle frame as illustrated in the figure. It should be
noted that odometry outputs are generally obtained with respect to vehicle frame,
hence there is no separate reference frame for odometry, as described in more detail
in Chapter 2.2.
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Figure 1. Different reference coordinate frames in AGV navigation, adapted from
[20]. As in the original image, green lines represent the frame is stationary with
respect to the parent while red line represents a moving frame.

In sensor fusion, velocity and acceleration vectors expressed with respect to one
frame frequently have to be converted into other frames of reference, due to sensor
outputs being in different coordinate systems from the navigation frame. This is
achieved by rotation matrices that define how a frame is rotated with respect to
another. A vector that is defined according to reference frame A can be converted to
reference frame B with the following relation [21][22]:

Vp = RZVQ. (1>

Here, v, and v, represent the vector in a and b frames, while R? is the matrix
describing the rotation of frame b with respect to frame a. Rotation matrices follow
the relationship

R; = (R;)" = (R;)™ (2)

that states inverse of the rotation matrix, which is also equal to its transpose, can
be used to describe the reverse rotation between frames, in this case the rotation of
frame a with respect to frame b.

A common way to calculate the rotation matrix is using Fuler angles, that is, to
express the rotation in a combination of rotations around x, y and z axes [21]. A
rotation around z axis by 1 is given by the matrix

1 0 0
R.(4) = |0 cos(y) —sin(y) 3)
0 sin(v) cos(y)
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while a rotation around y axis by € is

cos(0) 0 sin(0)
R,(0) = 0 1 0 (4)
—sin(f) 0 cos(0)

and a rotation around z axis by ¢ is calculated with

cos(p) —sin(¢) O
R.(¢) = |sin(¢) cos(¢) Of. ()
0 0 1

When the rotation angles v, 8 and ¢ are used to define the orientation of the vehicle
frame with respect to navigation frame, they are referred to as roll, pitch and yaw
angles, respectively. These angles can be used in defining the rotation between
navigation and vehicle frames, hence, can be used to convert measurements obtained
from various sensors into quantities in navigation frame. The full rotation matrix
can be formed by the multiplication of those three matrices as

R(¢,0,9) = R.(¢)Ry ()R (V). (6)

Substituting the matrices and denoting cosine and sine operations with ¢() and s()
for brevity of notations, Equation 6 can be written as a single matrix [21] as

c(@)c(0) c(9)s(0)s(v) — s(P)c(v)  c(@)s(0)c(v) + s(¢)s(v)
R(9,0,¢) = Run = |5(0)c(0)  5(¢)s(0)s() + c(@)c()  s(d)s(0)c(v) — c(d)s(¥)
—s(0) c(6)s(¢) c(0)e(y)

(7)

It should be noted that as matrix multiplication is not commutative, the order of
rotations matters in the resulting rotation matrix. In Equation 7, the rotation is
first performed on the roll, then pitch and finally in yaw. In navigation of ground
vehicles, roll and pitch angles are expected to change much less than the yaw, so first
aligning the small differences in roll and pitch to the navigation frame is a commonly
used method.

With the matrix in Equation 7, sensor outputs in vector form such as linear
velocities or linear accelerations in vehicle frame can be converted to the navigation
frame. If the sensor outputs are not directly in vehicle frame but are in the sensor’s
own frame, those outputs need to be converted first to vehicle frame with a rotation
matrix in the same form. However, angular velocities obtained from a gyroscope are
converted differently, since each angular velocity also rotates its respective frame
which needs to be accounted for in Equation 6. Angular velocities are therefore
related to Euler Angle rates of change as follows [23]:
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Wy 0 0 (0
wy| =R@W)R(O) [0 +R(¥) 0] + |0
W, [0) 0 0
1 0 —sin(0) @D

=10 cos(¢) sin(¢)cos(0)| | 0] . (8)

0 —sin(y) cos(v)cos(8)] | ¢

In Equation 8, ¢, @ and ¢ represent roll, pitch and yaw rates in the navigation frame
while w,, w, and w, are the angular velocities around each axis in the vehicle frame.
Taking the inverse results in the angular velocity rotation matrix that can be used
to convert gyroscope outputs to Euler Angle rates as follows [24][25][26]:

1:ﬂ 1 tan(0)sin(v) tan(0)cos(v) | [we Wy
0| =10 cos(1) —sin(1) Wy | = Rang |wy] - (9)
0 0 sin(v)/cos(0) cos(v)/cos(0)| |w. W,

It can be seen from the cos(f) terms in the denominators in Equation 9 that
there is a singularity at pitch angle of 90 degrees [21]. Therefore, for applications
where such a situation is possible including aerial and marine navigation, other
representations for rotation such as quaternions are preferred. However, for many
land applications, the pitch does not approach 90 degrees in normal operational
conditions, so the Euler Angles are chosen as adequate representations for rotation
within the scope of this thesis. In the reminder of this work, transformation matrices
in Equations 7 and 9 are referred to as Ry, and Ry, respectively, to denote they
are used to transform linear velocities and accelerations, and angular velocities. It
is noted that even though the angular rotation matrix is denoted with the same R
symbol to indicate it can be used for rotations, it is actually not a rotation matrix
by itself as its inverse is not equal to its transpose.

2.2 Odometry

For AGV navigation, odometry is defined as using the data from actuators and
motion sensors on the vehicle, such as those on wheels or threads, to determine the
motion of the vehicle [21, p. 477-479]. It is commonly used in navigation applications,
thanks to being able to provide information independent of any external conditions
and resources.

The main working principle of this method is to convert velocities of the wheels
into linear and angular velocity of the vehicle. Therefore, depending on the locomotion
method of the vehicle, the conversion process is different. The following sections
introduce these processes for relevant locomotion methods, and finally the output
and possible errors in odometry readings are presented.

2.2.1 Differential Drive Odometry

A differential drive vehicle has two wheels mounted on a common axis, that are inde-
pendently controllable [27]. By controlling the wheels to turn forward or backwards,
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a rolling motion can be achieved around a point lying on the wheel’s common axis,
which is referred to as Instantaneous Center of Curvature (ICC) [21]. Differential
drive motion can be observed in Figure 2.

A\ 4
X

Figure 2: Motion of a differential drive vehicle.

Here, the midpoint of the wheels is referred as the navigation point of the vehicle,
and is considered to be the origin of the vehicle frame explained in Section 2.1. It
is located at a distance of d from each wheel, and R from the ICC. The angular
velocity of the vehicle is denoted as w, and V; and V,. are the linear velocities of the
left and right wheels, respectively. The relationship between the angular velocity
and wheel velocities can be written as

wR+d)=V, (10)
w(R—d)=1V,. (11)
They can be solved for R and w as
d VitV f
r-dviw VAV (12)
0 otherwise
Vi—=V
= . 1
w 57 (13)

From the above equations, it can be deduced that if the wheels have the same velocity
in the same direction (V. = V}), the angular velocity is zero and the vehicle moves
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without turning. On the other hand, if the velocities are equal in the reverse direction
(V. = =V}), it follows that the ICC is at the midpoint and the vehicle rotates in place
[27]. The instantaneous velocity of the midpoint can later be calculated as
R V. #V,
v={ 7 L (14)
V. =V, otherwise

It should be noted that the linear velocity given in Equation 14 is obtained with
respect to the vehicle frame, in the longitudinal direction, which is the vehicle froward
direction. The latitudinal direction velocity, that is perpendicular to the vehicle
heading, is always zero in the differential drive case as the vehicle cannot move
(without an external force) perpendicularly to the wheel base axis. Therefore, the
linear velocity vector in the vehicle frame is given by

Vion vV
Voeh = %at =10]. ( 15)
V. 0

Similarly, the angular velocity w represents the angular velocity around the z axis in
the horizontal 2D plane, resulting in an angular velocity vector in vehicle frame as

Wy 0
Wyeh = |wy| = 0] . (16)
W, w

To find the linear rate of change in position and orientation in navigation frame,
those velocities are converted by using Equations 7 and 9 as follows:

Vaoav = Rlin Voyeh (17)

Wnav = Rang Wyeh,- (18>

It is noted here that if the analysis is constrained to a 2D frame and the tilt of the
vehicle is disregarded, Equation 17 reduces to a simple trigonometric multiplication
as v, = V cos(¢) and v, = V sin(¢) while Equation 18 becomes the identity equation.
Since odometry itself does not provide any 3D information, those simplified forms
could be used in an analysis considering only odometry, but 3D forms of conversion
are used in sensor fusion including IMU.

2.2.2 Omnidirectional Odometry

Similar to the differential drive AGV, an omnidirectional AGV also has independently
controllable wheels, but the number of wheels is at least three [5] to gain the ability
to follow any trajectory in a given plane. In other words, omnidirectional vehicles can
move in both longitudinal and latitudinal directions in the vehicle frame independent
of the heading of the vehicle in the navigation frame. Although four or more wheeled
configurations also exist [28], this section focuses on the kinematics of three wheeled
omnidirectional vehicles.
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Figure 3: Motion of a omnidirectional drive vehicle, adapted from [5] and [29].

A detailed analysis of omnidirectional drive kinematics is presented by [29] and
[5]. The wheel arrangement of a three wheeled omnidirectional drive vehicle can be
observed in Figure 3.

Unlike differential drive system, the omni-drive wheels are able to obtain induced
velocity, which is the velocity induced by the driving force in the other wheels in the
sliding direction of the wheel [29]. It is always perpendicular to the wheel velocity,
and is illustrated as Vj, in Figure 3. In the figure, the reference vector denotes the
x axis of the vehicle frame, and V}, is the velocity of the vehicle body while V,, is
the velocity of the wheel. The vehicle velocity is at an angle of a from the reference
vector, while the wheel angle is denoted by . It is common in a three wheeled
omnidirectional vehicle that wheel angles are 0°, 120°and 240°.

In such an arrangement, the relationship between the vehicle body velocity and
the wheel velocities are found by [29] as

Vi = Vi (cosp cosa + sinf sina) + Rw (19)

where w denotes the angular velocity of the vehicle body around z axis in the vehicle
frame. As in the differential drive case, the quantities of interest obtained from the
wheel odometry are the longitudinal and latitudinal velocities, that is, the linear
velocities in the direction of z and y axes of the vehicle frame. With a similar
projection of rotation to 2D plane with the differential drive case, they are given as

Vie = V3 cosa (20)

Viy = Vi sina. (21)
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Thus, writing Equation 19 for all three wheels and substituting the longitudinal and
latitudinal velocities of the body results in [29]

Vit cos(ay) sin(ay) R [Vie
Vwz| = |cos(az) sin(az) R| |Viy| . (22)
Vs cos(az) sin(az) R| | w

Finally, by inverting the matrix in Equation 22, the desired velocities can be obtained
from the wheel velocities. It should be noted that the described motion dynamics
are only valid in the simplified case of three wheels that are not rotating. Using N
wheels instead of three would increase the size of the matrix in Equation 22 to N x 3,
implying that the wheel velocities needed to obtain the desired motion of Vi, V4,
and w in the vehicle is not unique in this case. Furthermore, adding a rotational
motion to the wheels would change Equation 19. These other cases of omnidirectional
equations are presented in [29], but for the scope of sensor fusion, it is sufficient to
note that motion of the vehicle can be obtained from motion of the wheels by using
a similar relation to Equation 22.

Once the linear velocities are obtained with respect to vehicle frame, they can
be converted to the navigation frame by using the same rotation matrices as in
differential drive case, the main difference being that the latitudinal linear velocity
can take nonzero values in omnidirectional case.

2.2.3 Odometry Output and Errors

Regardless of the locomotion type of the vehicle, the odometry measurements are
in the form of linear and angular velocity of the vehicle. After transformation to
navigation frame, these measurements have to be integrated with respect to time to
obtain the vehicle’s relative position and orientation as follows:

x@z/%@ﬁ (23)

y() = [Vt (24)
Mw:/w@ﬁ. (25)

In an ideal system without any kind of noise or errors, the position can be accurately
obtained by adding the relative positions to a known initial position. However, that
is rarely the case in real-life applications, and the odometry readings include many
possible errors that can be grouped as follows [30][31]:

» Systematic errors: These errors depend on the AGV itself and are inde-
pendent of the environment. They include unequal wheel diameters, wheel
misalignment, encoder resolution and sampling rate limitations.

« Non-systematic errors: These errors depend on the environment the AGV
is operating at. They include traveling on uneven floor, unexpected items on
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the trajectory, slippage of wheels and external forces on the AGV. Unless the
operating environment is limited, it is not possible to avoid this category of
errors entirely, and they tend to be non-deterministic in general.

While the first category of errors can be avoided by precise modeling and other
errors are usually relatively small in each reading, the errors get integrated when
determining the position and orientation according to Equations 23 to 25, growing
larger with time. This is called the odometry drift. While there is a lot of research
dedicated to minimize this drift, it is not possible to eliminate it completely, particu-
larly due to non-deterministic error causes in the non-systematic errors. Therefore,
in localization, odometry is most often used together with absolute position and
orientation measurements to cancel the drift [32], as is the case in its usage for sensor
fusion.

To use odometry outputs in a Kalman Filter, as explained later in Chapters 3 and
4, the errors need to be approximated as Gaussian white noise. While approximating
the non-systematic errors in such a fashion is possible and yields accurate results [31],
systematic errors can induce a scaling factor to the odometry outputs that cannot
be modeled as white noise. Therefore, it is assumed in the scope of this thesis that
the odometry is properly calibrated and the resulting velocities do not need to be
scaled before being used in sensor fusion.
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2.3 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) consists of a combination of accelerometers,
gyroscopes and magnetometers that measure acceleration, angular velocity and orien-
tation, respectively. They are frequently used in AGV localization applications since
they are able to provide accurate measurements independent of external conditions,
which makes them a reliable and low cost solution to improve the vehicle odometry
together with the data from wheel encoders. Most IMUs have either 6 or 9 degrees
of freedom, the former group consisting of only an accelerometer and a gyroscope
while the latter group also including a magnetometer. Even though magnetometers
provide absolute heading data in contrast to relative measurements of accelerometers
and gyroscopes, they are prone to errors if strong external magnetic disturbances
are present [33], which is commonly the case in many AGV navigation areas such as
factories. Therefore, within the scope of this thesis, 6 degrees of freedom IMUs are
considered.

2.3.1 Gyroscope

A gyroscope provides angular velocity measurements in the IMU coordinate frame,
however, the measurements are corrupted with a slowly varying bias term and a
noise error term [34]. This results in a measurement equation of the following form

Wi (t) = w;(t) + b(t) + €(1). (26)

Here, w,,(t) denotes the measured angular velocity, w;(t) is the actual angular velocity
in the IMU coordinate frame, b(t) is the bias term and €(t) is the noise. While €(¢)
can be accurately approximated as white noise [34], the bias term has a nonzero
mean. It depends on many factors such as start-up currents and temperature, so
modeling it as a constant is also not an accurate approximation. Therefore, this
bias term has to be estimated and subtracted from the measurements to accurately
utilize gyroscope measurements. There is a lot of research dedicated for gyroscope
bias estimation [35][36][37] and a method of estimating it within sensor fusion is
presented in Chapter 4.

It should be noted that the true values of w;(t) are given in the IMU frame,
while the quantities of interest are the rate of changes in vehicle orientation in the
navigation frame, hence, Equation 9 is used to convert gyroscope outputs to desired
quantities. Unless the IMU and the vehicle frames are aligned, Equation 9 should be
preceded by a conversion from IMU to vehicle frame first, but in the implementation
described in Chapter 4, those frames are aligned with each other, hence the rotation
between them is just a multiplication with identity matrix.

2.3.2 Accelerometer

An accelerometer outputs the acceleration of the sensor by measuring the specific
force at each time instant [34]. This force includes the linear acceleration of the
sensor and the effect of gravity vector, such that

() = ai(t) - Rig. (27)
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Here, £;(¢) is the measured force in the IMU frame, a;(¢) is the linear acceleration in
the IMU frame, R/ is the rotation matrix between navigation and the IMU frame
and g, is the gravity vector in the navigation frame. In most land AGV applications,
the navigation frame is considered a perfectly horizontal one according to the earth

frame, such that
0

—9.81m/s>

It should be noted that depending on the convention of navigation frames, such as
whether z axis is pointing upwards or downwards, the minus sign in the gravity
vector and the subtraction operation in Equation 27 might be reversed. Furthermore,
if the IMU is positioned perfectly horizontally in the navigation frame, the effect of
gravity on accelerations in z and y axes would be reduced to zero. This is rarely
the case in many applications due to uneven terrain, and even small roll and pitch
angles can cause great errors in acceleration measurements due to gravity vector
having a much larger magnitude than typical accelerations of AGVs [38]. Therefore,
it is important that the gravity vector is removed before using the accelerometer
measurements.

In addition to the gravity effect, accelerometer measurements also exhibit a slow
moving bias and white noise similar to that of gyroscopes [34]. The measurement
model is therefore given by

am(t) = fi(t) + b(t) + €(t) (29)

where a,,(t) is the measurement, b(t) is the bias and €(t) is the white noise component.
Substituting Equation 27 yields

an(t) = a;(t) — Rygn + b(t) + €(t) (30)

as the full measurement equation. However, it is important to consider that the
measurement processed this way relates the measurements to the accelerations in
the IMU frame, while the actual quantities of interest are the accelerations in the
navigation frame that are related by the rotation matrix

a;(t) = Rla,(t). (31)
This transforms the measurement model into following form:
an(t) = Ry (a,(t) — g,) + b(t) + €(t). (32)

It should further be considered that the term a,(t), which is the acceleration in
the navigation frame, includes an implicit error due to rotation of the earth. However,
its magnitude is small enough to be absorbed in gravity and white noise vectors, so
that neglecting it does not have an effect on the reliability of the model in Equation
32 [34].

When there are no forces acting on the vehicle except for gravity, an accelerometer
can also be used as a tilt estimator [39]. In Equation 32, if the linear acceleration is
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zero and the gravity vector is known, the unbiased accelerometer measurements can
be used to deduce the terms in the rotation matrix as follows:

)= arctan(%) (33)

_ax

,/afﬂ—ag).

Here, a,, a, and a, are the acceleration in each axis while ¢ and ¢ denote the roll and
the pitch of the sensor. As the only other source of roll and pitch are the integrated
gyroscope measurements that are subject to drifting, these absolute measurements
can be used in sensor fusion to cancel that drift. It should be noted that in situations
where the linear acceleration of the vehicle is high, or in applications with more
force sources such as legged robot navigation, those measurements may have high
noise [40]. This has to be taken into account when using them for sensor fusion, as
demonstrated in Chapter 4.

(34)

0 = arctan(

2.4 Laser Scanner

All the sensors introduced until now provide relative measurements in the form of
position and orientation difference with the previous timestep. A positioning system
only relying on such measurements will inevitably drift away from the correct position
in time, therefore, a source of absolute measurements is necessary in localization
systems. In outdoor environments they can be provided by a GPS, but the signal is
generally too unreliable to use in indoor applications. Instead, due to their ease of
usage and ability to provide accurate measurements, laser scanners are extensively
used in indoor localization.

A laser scanner, also referred to as a laser range finder, measures the distance to
nearby objects [41]. It consists of a transmitter that emits laser beams, a receiver
that is able to detect reflected beams and a rotating mirror to enable scanning 360°
in the environment [42]. A representation of laser scanners can be observed in Figure
4.

Some of the most commonly used methods to determine the distance to an object
with laser scanners include time of flight and phase shift scanners [42]. The time of
flight sensors measure the distance D by calculating the time At it takes for a light
beam with speed of light ¢ ~ 3 x 10%m/s to travel to the object and back, as

D= C—At (35)
2
As the speed of light is very high, the time At in Equation 35 is extremely short
and can only be measured by expensive and very precise sensors [42]. Instead, phase
shift scanners calculate the more easily measurable phase difference 6 between the
transmitted and reflected lights. To that end, they emit a light beam with known
wavelength A and frequency f that obeys the equation

c=\f. (36)
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Figure 4: Laser scanner with rotating mirror, adapted from [42].

The measured phase difference can be written as
= 2w fAt. (37)
Substituting Equations 36 and 37 into Equation 35 yields

S A, (38)
nf 4w

With Equation 38, the distance to nearby objects can be calculated by measuring
the phase difference instead of time difference [42].

There are many methods to use the distance measurements of a laser scanner for
localization of AGVs. Some of them rely on artificial landmarks, such as reflectors,
installed in known locations in the operating environment. They measure the distance
between the scanner mounted on an AGV and those landmarks then determine the
location of the AGV with triangulation of those distances [43][44]. While such
methods have been proven to be effective, they have the disadvantage of requiring
an installation of these artificial landmarks, which is not always a viable option [43].

Instead, many indoor applications make use of natural features such as corners,
walls and objects to create a map of the environment with the laser scanner utilizing
mapping methods such as Simultaneous Localization and Mapping (SLAM) [45][46].
The resulting map consists of orientations and distances of natural features, and the
navigation frame introduced in Section 2.1 is aligned with the map. An example
map generated in an office environment can be seen in Figure 5.

Once the map of an environment is available, the problem of localization with a
laser reduces to determining the pose of the scanner in the map. One of the most
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Figure 5: An example map of an office environment, displaying the position of the
AGYV with the environment features. The scan points can be seen in green, while the
walls of the room are displayed with orange lines.

commonly used techniques for that is called map matching, which relies on creating
a local map denoted as m;,.; and looking for the orientation and position that has
the greatest fit between this local map and the global map m [41]. As the local map
is expressed in AGV frame while the global map is in the navigation frame, the first
step is to align them with a rotation matrix R, which in a 2D case only depends on
the yaw angle of the AGV as follows:

_ |cos(¢p) —sin(o)
R(¢) = L‘m(gb) cos(9) ] ' (39)

Once the local and global maps are aligned, the correlation between them can be
found by the following equation:

Zx,y<mx,y - 77_’L) X (mx,y,local(wt) - m)

B \/szy<mzvy - m)2 Zx,y<mm,y,local(xt) - m>2 ‘

(40)

pmvmlocal »Tt

Here, z; is the location of the AGV in the navigation frame, while my y joca(7t)
and m, ,(x;) are the grid cells corresponding to [z y]? in local and global maps,
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respectively. m denotes the average map value computed as

m = ﬁ o (mm,y + m:c,y,local) (41)

where N denotes the number of overlapping elements between m,,.,; and m. The main
goal of map matching method is therefore to find ¢ and z; such that the probability
of the local map conditioned on the global map, calculated as

p(mlecal | Tt, m) = mam(pm,mlocal,x“ 0) (42)

is maximized.

In the literature, there are many methods available to be utilized in map matching
[43]. One of the most commonly used methods is called Iterative Closest Point (ICP),
and it tries to iteratively find a rotation matrix R and a translation matrix t such
that the Euclidian distance between the global and local maps are minimized [43][47].

Whichever algorithm is used, the output of the map matching method is the
robot pose and orientation in the navigation frame, which can be denoted in matrix
form as

Tnav
Z = |Ynav | - (43)
¢

Similarly to the other sensors, this output is not free of noise. Possible causes of
the measurement noise are listed as follows:

o There is a Gaussian error present in laser scans, resulting from atmospheric
conditions and low resolution [41].

o Randomly appearing dynamic objects in the map, such as humans walking
around, cause an error term with an exponential distribution [41]. In the
literature, some methods for combating this kind of interference can be found
[48][49].

o In edges and corners, laser beam can hit more than one surface before being
reflected back to the receiver and erroneously output a mean value [50][51].

o Due to shiny and reflective surfaces in the environment, unreliable measurements
in the form of outliers can be observed [50]. On the other hand, due to black
or non-reflective materials, the scanner may fail to detect an object completely
[41].

As explained in Chapters 3 and 4, the usage of measurements in Kalman Filter
relies on noise components having a Gaussian distribution. Therefore, for sensor
fusion purposes, all other noises are assumed to be filtered out before being used as
an input to the algorithm.
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3 Kalman Filter

This chapter presents the Kalman Filter, which is the chosen method in this thesis
to merge the measurements from different sensors and provide a position estimate.

3.1 Introduction to Kalman Filter

Kalman filter is defined as an optimal and recursive linear estimator that provides
an estimate of a state that changes over time, based on periodic observations which
have a linear relation to the state [52][53]. Due to its success in efficiently providing
estimates with noisy observations, as well as its light computational power and
memory requirements, Kalman Filter has been extensively used in numerous areas
including navigation, economics, computer vision and object tracking [54].

A key aspect of the Kalman Filter is that it estimates the state, which is the
collection of variables that provide a complete representation of the status of a
system [15]. In navigation, the state usually includes the position, linear velocity,
acceleration, orientation and angular velocity of the vehicle at a given time, and it
can be reduced or expanded with additional variables depending on the application.
It is denoted by a n x 1 vector x, each element of which corresponds to a different
state variable.

The recursive nature of the Kalman Filter enables processing new measurements
as they arrive, meaning that the state estimation will be updated at a given time
according to the latest received measurement [53]. This makes the Kalman Filter
ideal to use in real-time navigation applications, where the navigation state must be
updated with each sensor reading. Furthermore, as an optimal estimator, Kalman
Filter is able to provide an estimate that minimizes the error as long as all noise can
be characterized as Gaussian white noise [53][15]. This property is explained further
in Section 3.2.

While Kalman Filter can be used with both discrete and continuous time systems,
in the scope of sensor fusion for localization, the quantity of interest is the state
of the vehicle at the time of sensor measurement, which is a discrete time process.
Furthermore, navigation equations can be easily formulated in a discrete time fashion.
Therefore, the remainder of this thesis will only focus on discrete time Kalman
Filters.

3.2 Linear Discrete Time System and Observation Models

A linear, discrete time system can be characterized with Equation 44.
x(k) =F(k)x(k — 1) + G(k)u(k) + w(k). (44)

Here, x(k) denotes the system state in sampling time instant & and u(k) is the known
control input. F(k) and G(k) are referred to as the state transition matriz and
control input model, respectively. Together, they characterize the linear process of
how the state transitions into x(k), given the previous state x(k — 1) and the control
input u(k). Finally, w(k) denotes the process noise. An important assumption
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of the Kalman filter is that w(k) is white noise, meaning it has zero mean. It is
characterized as follows [15]:

w(k) ~ N(0,Q(k))
E(w(k))=0
E(w(k)w(k)") = Q(k). (45)

Here, Q(k) is referred to as process noise covariance matriz. A covariance matrix
is a symmetric and positive semi-definite matrix, whose diagonal elements contain
the variances of the random variable, in this case of the noise vector w(k), and
off-diagonal elements represents correlations between variables [53]. The Q matrix
should be designed depending on the noise characteristics of the state transition
when applying a Kalman Filter algorithm. Its design is presented in Chapter 4 in
detail for sensor fusion in navigation applications case.

It is assumed that the states of the system are observed according to a linear
equation of the following form [52]:

2(k) = Hk)x(k) + v(k). (46)

Here, z(k) is referred to as the observation or measurement at time instant k and H(k)
is the observation matrix that maps the states of the system to the measurements.
Similarly to the process noise, v(k) is called the measurement noise and has white
noise characteristics as

v(k) ~ N(0,R(k))
E(v(k) =0
E (v(k)v(k)") = R(k). (47)

In sensor fusion, R(k) is the measurement noise matrix of each sensor providing
measurements to the system. It should be designed when applying the Kalman Filter
according to the known noise characteristics of sensor readings.

3.3 Kalman Filter Algorithm

The Kalman Filter estimates the state in time instant ¢ given the measurements
up to time instant j such that the Mean Squared Error (MSE) of the estimation is
minimized [52], which is represented in the following equation:

%(i| j) = argmin E[(x(i) — x(i | 7)) (x(i) — %(i] )" |2(1), .... 2(5)]. (48)

X(ilj)eR™

In Equation 48, X denotes the estimated state vector of the system. This Kalman
Filter estimation of the state is the expected value of the state that is conditioned
on the measurements [52][15], such that

X(i]j) = E (x(2) [2(1), ... 2(j)) (49)
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and the MSE of the estimate is

P(i|j) = E[(x(i) — %(i| 7)) (x(d) — x(i| 1))" | 2(1), ... 2())]. (50)
P matrix is called the state covariance matrixz of the Kalman Filter. Its diagonal
elements contain variances of corresponding state variable estimates.

As a recursive estimator, the Kalman Filter assumes an initial estimate of the
state with a known covariance matrix is available as a starting point at k£ = 0,
denoted as %X(0]0) and P(0]0). As measurements become available at sampling
times k = 1, 2...., the state estimation and the corresponding covariances are updated
iteratively with a prediction and measurement update cycle.

3.3.1 Prediction Step

In the prediction step, Kalman Filter provides an a priori estimate of the state taking
into account the state estimation and measurements up to previous sampling time,
such that

xX(k|k—1)=FE (x(k)|z(1), ...z(k — 1)). (51)
Substituting Equation 44 and taking into account the expected value of the white
noise is zero,

%(k|k—1) = E[F(k)x(k — 1) + G(k) u(k) + w(k) | z(1), ... z(k — 1)]

=Fk)x(k—1|k—=1)+ G(k)u(k). (52)
The covariance of this estimate is given by
P(k|k—1) = E[(x(k) = %(k |k - 1))(x(k) = x(k| k — 1))"]. (53)

Substituting Equations 44 and 52, it yields
x(k) —x(k|k—1)=F(k)x(k — 1)+ G(k)u(k) + w(k)
—Fk)x(k—1|k—1)— G(k)u(k)
x(k) —x(k|k—1)=F(k) (x(k—1)—%(k—1]k—1)) + w(k). (54)
Taking into account that the white noise is uncorrelated to the state, such that
E(x(k —1)w(k)) = 0 and denoting X(k — 1|k — 1) as X(k — 1) for ease of notation,
it follows that
P(k|k—1)=E[F(k)(x(k—1) —%(k —1))(x(k — 1) — %(k — 1))"F" (k)]
+ E(w(k)w' (k). (55)
Therefore,
Pk|k—1)=Fk)P(k -1k - 1DFT(k) + Q(k). (56)
Equations 52 and 56 constitutes the Kalman Filter prediction step, as they
describe how the state and covariance estimations are updated before taking into
account the latest available measurement. It should be noted that for these derivations,
the control input u(k) is assumed to be perfectly known and without inducing noise

by itself. This is not a necessary assumption for the Kalman Filter, but a control
input noise with a covariance matrix of C(k) would alter Equation 56 as

Pk|k—1)=Fk&)P(k—1|k—1DF" (k) + G(k)C(k)GT (k) + Q(k). (57)



28

3.3.2 Measurement Update Step

Once the a priori estimate of the state and the covariance matrix are found, the
next step of the Kalman Filter is the measurement update to obtain a posteriori
estimate utilizing the measurement z(k). The remainder of this chapter follows the
derivations presented in [52] and [15] with slight notation changes for consistency.

A linear posterior estimation of the state after an observation in the form of
Equation 46 can be written as [15]

%(k | k) = %(k |k — 1)+ K(k) (a(k) — H(k) (k| k — 1)). (58)

Here, K(k) is referred to as the Kalman Gain, which needs to be calculated for
minimizing the MSE of the estimation. It can be observed that Equation 58 displays
a predictor-corrector structure [52], such that the result is a weighted sum of the
prior prediction and a correction term by the measurement. The latter term is known
as the innovation, and sometimes denoted in the literature as

y(k) = z(k) — H(k)X(k [k - 1). (59)
The error term of this estimation is represented as
%(k| k) = %(k | k) — x(k). (60)
Substituting Equations 58 and 46, it can be rewritten as:

%(k | k) = %(k | k) — x(k)

x(

X(k |k —1) (I- K(k)H(k)) + K(k)z(k)

= (X(k |k = 1) = x(k)) (I = K(k)H(k)) + K(k)v(k)

= ([=K(FHE)x(k |k —1) + K(k)v(k). (61)

The covariance can then be calculated by taking the square of the error term and
getting the expected value as follows [52]:
P(k|k) = B[(x(k | k)X" (k| k) | (1), .., 2(k)]
= (I-K(k)H(k)) Ex(k |k — 1)5< (k|k—1)) I -K(k)H(E))"
+K(k)E(v(k)v' (k)K" (k)
+2(I - K(k)H(k)) Ex(k |k — 1)vI ()K" (k). (62)
Taking into account the identities of Equations 47 and 53 and the fact that the

measurement noise and the state are uncorrelated, the expression for the covariance
can be reduced to

Pk|k) =T -K(EHK)PE|L—1)1-KkHK)" + K(k)R(k)K" (k). (63)

The optimal estimation of K(k) should minimize the mean squared estimation error
denoted as J(k), which is the mean of squared estimation errors of each element of
x [15], given as
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+%;,(k | k)
( ! k))
| F)x(k|k)T))
)- (64)
In the minimum, the derivative of the error should be zero, hence,
0J(k)  O(trace(P(k|k)))
oK (k) oK (k)
The derivative of the trace of a matrix, for matrices in the form of (ABAT) where
A is any matrix and B is a symmetric matrix is given as [52]

O(trace(ABAT))

0A
Since the covariance matrices in Equation 63 are symmetric, the above identity can
be applied by substituting it to Equation 65, which yields

d(trace(P(k|k))) _

J(k) = B (k| k) +
= EB(x (k[k)

= trace( E(x(

|

= trace(P(k

X
k
k

— 0. (65)

— 2AB. (66)

(I K(k)H(K)) P(k | k — 1) HT (k) + 2K(k)R (k) = 0. (67)

K (k)
Solving for K(k), it can be obtained by
K(k)=P(k|k—1)H (k) [H(E)P(k|k - DH" (k) + R(k)] . (68)

The inverted term in this equation is denoted as S(k) and referred to as innovation
covariance. Therefore, the above equation can be written more compactly as

S(k) = H(k)P(k |k — 1)H" (k) + R(k) (69)

K(k)=P(k|k—1)H"(k)S™' (k). (70)
Equation 70 is the optimal solution by the linear estimator minimizing the MSE
given in Equation 64. Once the Kalman gain is computed, it can be substituted in
Equation 58 to complete the update step of the filter, hence providing a state estimate
and corresponding a covariance estimate taking all measurements into account.

After the computation of K(k), the covariance update given in Equation 63 can
be further simplified by substituting K(k) in as

P(k|k) = (I— K(k)HE) P(k|k — 1). (71)

Equations 58, 70 and 71 constitute the measurement update step of the Kalman
Filter by describing the calculation of the optimal Kalman gain and updating the
state and covariance estimations accordingly.

3.3.3 Summary

A summary of Kalman Filter algorithm is presented in Figure 6. When a new
measurement is available, first an a priori estimate of the state and covariance are
obtained in the prediction step. Then, the estimate is corrected with the received
measurement in the measurement update step.
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Time step kb — 1 Time step k : Timestepk + 1

Previous estimation of state and covariance : Prediction Step

f;((’;—_ ili: i)} &(k|k— 1) = Fk)&(k — 1|k — 1) + G(k) u(k)

P(klk— 1) = F(k)P(k— 1|k — )F(k)T + Q(k)

%(klk 1)
P(klk—1)

Measurement Update Step

¥(k) = z(k) — H(k)x(k[k — 1) Next estimation of state and covariance
S(k) = H(E)P (k|k — 1)H(E)T + R(k) ! %(k|k)
K(k) = P(k|k — 1) HT (k) S(k) ' : P(k|k)

%(k|k) — X(k|k — 1) + K(K)y (k) |

P(k|k) = (I - K(k)H(E))P(k|k 1)

Figure 6: Recursive Kalman Filter estimation algorithm.

3.4 Extended Kalman Filter

The Kalman Filter explained so far had the assumptions that the states of the system
are linearly related as in Equation 44 and the measurements are linearly related to
states described with Equation 46. In many real life applications, those assumptions
do not hold, and those relations are described with nonlinear functions f and h
instead, as

x(k) =f (x(k—1),u(k), k) + w(k) (72)

z(k) = h (x(k)) + v(k). (73)

As the linearity assumption is no longer valid, the optimal linear estimation techniques
cannot be directly used with such a system. Instead, Extended Kalman Filter (EKF)
attempts to linearize the f and h functions at the estimation point, and use the
Kalman Filter on the linearized system [55].

As in the linear case, the EKF starts from a known previous estimate
x(k— 1]k —1) and P(k — 1|k — 1). Equation 72 is then expanded with Taylor
Series approximation [52][55] as follows:

x(k)=f (x(k—1]k—1),u(k), k)+ Vi (k) (x(k—1)—%(k—1]k—1))+w(k)+H.O.T.

(74)
Here, H.O.T denotes the higher order terms that are discarded with the first order
Taylor Series approximation, and Vfy (k) is the Jacobian matrix of function f evaluated
at x(k —1) = x(k — 1]k — 1). Taking the expected value, the a priori estimate is
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found as
x(k|k—=1)=f(x(k—1|k—1),u(k), k). (75)

The error corresponding to the estimation in Equation 75 is given by

(/f|kr—1)—><(k> X(k|k—1)

£ (x(k— 1k —1),u(k),k) + VE (k) (x(k — 1) — %(k — 1|k — 1))
w(k) — £ (X(k = L[k —1),u(k), k)

_fo(k:)(( —1) = %k(k — 1|k — 1)) + w(k). (76)

Similarly to the linear case, the covariance of the estimation is found as

Pk|k—1)=Exk|k—-1)x"(k|k—1))
= VE(E)P(k — 1]k — D)VE (k) + Q(k). (77)

As seen, the prediction step of the regular and extended Kalman Filters are quite
similar. The only difference is replacing the linear F matrix with nonlinear f function
in the state prediction and substituting it with the gradient of f in the covariance
prediction.

This is also the case in the measurement update part of the Kalman Filter. The
EKF equations can be obtained by similar substitutions, given as

y(k) = z(k) —h&x(k [k - 1)) (78)

S(k) = Vhy(k)P(k |k — 1)Vh," (k) + R(k) (79)
K(k) =P(k|k—1)Vh, (k) S™ (k) (80)
X(k | k) = %(k|k — 1) + K(k)y(k) (81)
P(k|k) = (I — K(k)Vhy (k) P(k |k —1). (82)

Even though KF and EKF operate with the same predict and update cycle with
similar equations, it should be noted that unlike KF, EKF is not an optimal estimator.
Due to the nonlinearity of the system, EKF estimates do not converge to the optimal
MMSE, or may diverge. Therefore, when using Extended Kalman Filter, it should
be verified that the first order Taylor series is a reasonable approximation of the
system dynamics, and the system and error models should be constructed carefully.
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4 Localization System

This chapter describes the localization system developed in this thesis. An Extended
Kalman Filter described in Chapter 3 is utilized as the sensor fusion method to make
use of different kinds of sensors.

4.1 Prerequisites and Assumptions

This section summarizes the prerequisite conditions for the developed localization
system. They include assumptions about sensor characteristics as well as existing
methods that complement sensor fusion for AGV localization.

As explained in Section 2.4, laser scanners provide distance measurements that are
converted into position and orientation measurements with scan matching methods.
For the developed sensor fusion, such a method is assumed to be existing and providing
the Kalman Filter with direct position and orientation outputs. Furthermore, the
noise characteristic of this output is assumed to be accurately approximated as
a Gaussian white noise, such that it does not contain outliers or colored noise
components.

Similarly, odometry is assumed to be calibrated such that there is no scaling
error in the measurements and only Gaussian white noise is present in its output.
However, for the IMU, the developed localization system takes into account that its
outputs are corrupted with biases and gravity effects in addition to white noise, so
there are no assumptions made about its outputs.

Finally, as the Kalman Filter needs an initial state estimate in the beginning of
the algorithm, an initial position and orientation estimate of the AGV is assumed
to be available. In addition, the vehicle is considered to be stationary in the start
of its motions, such that initializing all velocity and acceleration states to zero is a
reasonable approximation.

4.2 Kalman Filter Architecture

The general architecture of the implemented Kalman Filter can be observed in Figure
7. As seen there, each sensor provides measurements in their respective coordinate
frames, and those measurements are used in the update step of the Kalman Filter.
The prediction-update cycle of the filter is run every time a measurement arrives
with an identical prediction step but different update steps specific to each sensor,
which enables handling of asynchronous measurements. The prediction step is
handled with general kinematic equations which are presented in Section 4.4. It
should be noted that in the existing navigation system, laser scanner measurements
are converted to absolute position and orientation estimates using scan matching
techniques presented in Chapter 2 using odometry and its own outputs as shown
with red in Figure 7. Therefore, the output it provides is considered independent of
the solution implemented in this thesis, and the sensor fusion algorithm makes use
of the outputs of the existing system as laser measurements.
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Figure 7: The general architecture of Kalman Filter solution. The red color at the
left side indicates the existing scan matching method.

4.3 State Model

The localization system is designed to track the position and heading of the vehicle in
a 2D map. Therefore, the minimum state vector of the Kalman filter should include
those quantities as

Px
X = |py (83)
¢

where p, and p, denote the vehicle position in the navigation frame and ¢ is the
heading. The system includes velocity, angular velocity and acceleration measure-
ments from odometry and IMU, and to be able to utilize them in the update step of
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the filter without first integrating them, the state vector is extended as follows:

P
A%
x = |h (84)
w
a
Here, the state vectors are grouped for brevity of notation as p = [p, p,|7, v =

[v: v, )T, h=[¢Y 0 ¢]", w = [w, wy w,|]T and a = [a, a,]", which lets the state be
a 3D representation of orientation and angular velocities and 2D representation of
linear position, velocity and accelerations. The third axis of the latter is ignored
as it is assumed the vehicle cannot move in the z axis within the scope of AGV
applications considered in this thesis.

In the state vector, the position and orientation states p and h are defined in
the navigation frame, while the other states are defined in the vehicle frame. This
convention allows the usage of matrices in Equations 7 and 9 directly, and results in
a nonlinear prediction model but linear measurement models.

Furthermore, as introduced in Section 2.3, IMU sensor measurements have a
slowly varying bias which cannot be modelled as white noise as seen in Equations 26
and 29, rewritten here for convenience:

wm(t) = wi(t) + b(t) + €(t) (85)

an(t) = £i(t) + b(t) + (t). (86)

Kalman Filter will not provide optimal estimate if these biased measurements are
directly used as input to the filter. A common way of handling this bias is called state
augmentation that adds the bias terms for each measurement to the state vector, so
that the measurements can be expressed in a linear combination of state variables
and a white noise component [56][57]. This makes the final state model as

v E <D

where the bias vector is 6b = [da, da, dw, dw, dw,]”. Therefore, the state vector
becomes a 17 x 1 vector, which is a relatively large vector but not large enough
to cause computational speed problems with the available hardware presented in
Chapter 5.

It should be noted that the yaw, pitch and roll angles of the state are expressed in
Euler angles in radians, which have the equivalence relation ¢ = ¢+ 2kn for all k € Z.
Therefore, in each iteration of the filter, the yaw angle is clamped between 7 and
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—7 for convenience. While this is also true for roll and pitch angles, practically they
never come close to those boundaries in ground applications, so the same clamping
is not needed for them.

Once the state vector is chosen, and initial state x(0) and its respective covariance
matrix P(0) should be made available before the start of Kalman filter algorithm.
Their numerical values depend on the initial position of the robot and how much
confidence is given to the initialization system. However, one important thing to
note while designing P(0) matrix is that the bias state covariances should have a
higher initial value compared to their corresponding navigation states. That way, at
the start of the navigation where the AGV is in a stationary position, readings from
those biased sensors will change the bias estimations more than the state estimations,
resulting in both less bias drift and a more accurate bias estimation. The exact
numerical values used in each experimental case is presented later in Chapter 5.

4.4 Prediction Model

In the prediction step of the developed Kalman Filter, the highest order terms are
modelled as random walk processes, that is, they propagate to next time step with
equations in the form of

a(
wik) = wlk—1) +w,, (88)

where w is a white noise vector corresponding to each element of the state. For
the lower order terms, kinematic equations of the navigation are utilized to predict
their state in the next time instant. In some applications in the literature, equations
specific to vehicle type are used as they provide a more reliable prediction model [10],
but the solution developed in thesis is intended to work regardless of vehicle type, so
more general and basic kinematic equations are used, which are presented as follows:

v(k)=v(k—1)4+a(k—1)At
p(k) =pk—1)+v(k—1) At + a(k — 1) At?/2 (89)
h(k)=h(k —1)+w(k—1) At

where At is the time difference between the current and previous timesteps. It should
be noted that the above equations hold only in the case of all quantities being defined
in the same coordinate frame. However, in the state vector, linear and angular
velocities and linear accelerations are defined in the vehicle frame while position and
orientation are defined in the navigation frame. The true kinematic equations for
orientation in this case becomes

Bk Telk—1) walk = 1)
6(k) | = |00k = 1) | + Rang [, (k1) (90)
o(k)] [tk —1) w.(k = 1)
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where
1 tan(0(k —1))sin(v(k—1)) tan(0(k — 1))cos(v(k — 1))
Rony = |0 cos(i(k — 1) —sin(u(k — 1) (91)
0 sin(y(k—1))/cos(0(k —1)) cos(y(k—1))/cos(6(k —1))

The kinematic equation for the velocity will be unchanged as the acceleration and
velocity are defined in the same coordinate frame, but the position update equation
becomes

p(k) =pk—1)+ At (Ry, v(k — 1)) + At? (Ruyna(k —1))/2 (92)
where

~_ |cos(@)cos(0) cos(¢)sin(0)sin(y) — sin(p)cos(i))
Ry = sin(¢p)cos(0) sin(¢)sin(0)sin(y) + cos(¢p)cos(y) | (93)

To sum up all the prediction equations in the form of EKF equation as
x(k) =1 (x(k —1),u(k), k) + w(k), (94)

in the absence of any control input, the kinematic equations define the nonlinear
function f as follows:

p(k)] [Pk —1)+ At (Run v(k — 1)) + A Ry a(k — 1)) /2]
v(k) v(k—1)+ Ata(k —1)
x(k) = EEZ; _ h(k—1) —L(fzan_gf)tw(k—l) = wik).
a(k) a(k —1)
6b(k)] | db(k — 1) |
(95)

With that, the state update of predict step of the EKF equation can be performed

. x(k|k—1)=f &k —1]k—1),k). (96)

For the covariance update, the following equation that is defined in Chapter 3 is
used:

P(k|k—1)=F(k)P(k—1|k - 1)F" (k) + Q(k). (97)

Here, F (k) is the 17 x 17 Jacobian matrix that is obtained by taking the derivatives
of each row of f function with respect to each element of the state vector, as follows:

[of(y) of@) 9f(Q1) of() of(m) of) 7
Opz Opy vz e Dowy Odwy 0w
of(2) of(2) of(2) of(2) of(2) 09f(2)
Opz Opy vz te Oowyz Odwy 0w,
of(3) of@B) of@3) of(3) of@E)  9f(3)
Opz Opy Ovg e Odwy Odwy 00w,
of
F=5=|: : S : : (98)
X af(15)  9f(15) 9f(15) af(15)  9f(15) 9f(15)
Opz Opy vz e Dowy Odwy 0w,
af(16)  8f(16) af(16) af(16) af(16) af(16)
Opz Opy vz e Oowyz Odwy 0w,
af(iny  af(in)  af(i7) of(in)  9f(1n)  9f(17)
|l Opz Opy Ovg e 0wy Odwy ddw, |
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where f(n) denotes the n* row of function f.

To design the Q matrix, the piecewise white noise model presented in [58, p.243-
245] is used, where the highest order terms are assumed to stay constant in each
time step with an associated Gaussian white process noise, same as in Equation 88,
and the process noise of lower order terms have a relation with different orders of
time with them. This relation is expressed with with the noise gain matriz denoted
with I', such that

Q(k) = E(T(k)w(k)w" (k)T (k). (99)

To determine I, it is useful to break up the state in smaller parts. From Equation
95, position and velocity have the following relation with acceleration:

v| = v(k—1)+ Ata(k —1) . (100)
a a(k—1)

This follows that the noise w, = [wq, way]T in accelerations will affect these states
with
Ry, At?/2
I = At ) (101)
1

As the accelerations in different axes are considered independent, the following
relation will hold

2
E(WQWZ) = O’Z = [agx Og ] (102)
ay

where 02 and agy denote the variance of each noise component. Following Equation

99, and taking into account that o2 = agT, the Q matrix corresponding to those
states are calculated as

le 0'2 RT At4/4 le agAtg'/Q le O'gAtQ/Q

lin

Q, = EQw,w. T"(k)) = | o2R} At?)2 AN gl At
o2 R[] At?/2 o2 At o2
(103)
Similarly, for the orientation states, assuming the angular velocities have a variance
of

o2 0 0

oo=10 o2, 0 (104)
0 0 o2

the corresponding part of Q can be found as

ang

Q= o2 RI At o2

ang w

2T A2 2
R0 Ry, ALY Rang 0, At ' (105)
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Finally, as the biases are considered independent from other states, their process
noise matrix is a diagonal matrix with the variance of each element on the diagonal,
such that

0
0
0 (106)
0

o3

Combining all 3 matrices results in a Q matrix of the following form:

Q1 Ogx6 Opxs
Q= |06x6 Q2 Osxs (107)
Os5x6 Osx6 Q3

It should be noted that the Q matrix defined above holds when the states are
ordered as [p,v,a, h,w, db]T and elements should be reordered with the state matrix
defined in Equation 87.

Furthermore, Q defined this way is an approximation, as the rotation matrices
included are dependent on the states themselves, it implies there is a correlation
between the position and orientation as well. However, highly performing imple-
mentations have been achieved despite ignoring noise terms in Q matrix except for
highest order terms [58, p.246] and control inputs [26]. Therefore, this approximation
is decided to be reasonable within the scope of this thesis.

After all the matrices are designed, the prediction step of the EKF can be
performed with Equations 96 and 97.

4.5 Measurement Models

Each sensor has its own measurement model in the Kalman Filter implementation,
which are presented throughout this section.

4.5.1 Laser Measurement Model

The laser measurements consist of position and heading in the navigation frame,
such that

Pz
Zigser = |DPy (108)
¢
with a corresponding covariance matrix
O’fm 0 O
Riser =1 0 aiy 0 (109)

0 0035
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It is straightforward to derive the linear observation matrix as

1000000
Higser =0 1 0 0 0 0 0 O3y (110)
0000001

where 03410 is a 3 X 10 zero matrix. When a laser measurement arrives to the system,
update step of the Kalman Filter is performed with the following equations derived
in Chapter 3:

y(k) = z(k) —H(k) %(k |k —1)

S(k) = H(k)P(k |k — 1)H" (k) + R (k)

K(k) =P(k|k—1)H" (k) S™'(k) (111)
X(k|k)=%(k[k—1)+K(k)y(k)

P(k|k) = (I - K(k)H(K)) P(k [k - 1).

In the measurement update of the laser scanner, the update of the heading should
be specially noted. As explained in Section 4.3, the state variable for the heading is
clamped between —7 and 7 radians, or —180 to 180 degrees. Around those borders,
the state jumps by 360 degrees. For example, a change from 179 to —179 degrees is
actually a 2 degree turn in the positive direction, but is perceived by a 358 degrees
turn in the negative direction by Equation 111, which leads to incorrect measurement
correction by the filter. This is prevented by adjusting the innovation y(k) around
those borders as follows:

ys(k) <m = y3(k) = y3(k) + 27. (113)

Here, y3(k) denotes the third element of the innovation vector, which in this case
corresponds to heading innovation. 47 is chosen as the limit of correction, so that the
innovation will always be calculated as the smallest rotation between two timesteps.
As the only sensor providing absolute measurements of heading, this step is only
necessary in the laser measurement update.

4.5.2 Odometry Measurement Model

The odometry provides linear velocities in the vehicle frame, and angular velocity of
heading in the vehicle frame, such that

Vg
Zodom = | Uy (114)
W,
with a corresponding covariance matrix
o, 0 0
Rodomm = 1| 0 Ugy 0 (115)
0 0 o2,
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The linear observation matrix is obtained as

0010 0
Hogom = [0 0 0 1 0345 0 Osyr|. (116)
0000 1

The update step when an odometry measurement arrives is then performed with the
same equations presented in Equation 111.

4.5.3 Inertial Measurement Unit Measurement Model

The IMU provides linear acceleration and angular velocity measurements in the
sensor frame. Within the scope of this thesis, the IMU is considered to be aligned
with the vehicle, so that the IMU frame and the vehicle frame are related only with
a translation matrix. This lets the IMU measurements in the vehicle frame take the
form of

Zimu = | Wz | - (117)

Here, it should be noted that the 6* measurement a. is not included in the mea-
surement matrix as the linear movement is considered to be zero in the z axis. In
addition, the translation between the vehicle and IMU frames will result in the IMU
accelerating due to angular rotation of the vehicle that further affects the output of
the accelerometer. This effect is proportional to the distance between two frames, as
well as the magnitude of the angular acceleration. It is assumed within the normal
operating conditions of AGVs considered in this thesis, this effect will be minimal
compared to the white noise, bias and gravity effect of accelerometer, so that it is
approximated to zero.

Furthermore, as explained in Section 2.3.2, the accelerometer can also be used to
estimate roll and pitch angles by using Equations 33 and 34, repeated below:

= @rctan(%) (118)

_ax

,/a§+a§).

This leads to the full IMU measurement vector in the form of

Gy
Qa

(119)

0 = arctan(

y
Wy
Zimu = | Wy (120)
We
Vrmu
O |
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where 17y and 07y are the results of Equations 118 and 119. The IMU has a
corresponding covariance matrix

o2, 0 0 0 0 0 0
0 o, 0 0 0 0 0
0 0 o2, 0 0 0 O
Ripu=]0 0 0 o2, 0 0 0 (121)
0 0 0 0 o2, 0 0
0O 0 0 0 0 o O
0 0 0 0 0 0 o

It should be noted here that the last two elements of this matrix o7, and o7 correspond
to the process noise of roll and pitch measurements, hence, they do not represent a
physical sensor noise variance, but the variance of the noise expected of Equations
118 and 119. As they are less reliable in situations with high linear acceleration, they
are generally set to comparatively higher values than other elements of the matrix.

As presented in the previous sections, IMU measurements include a bias term in
addition to the white noise components, which are also estimated with the Kalman
Filter. This leads to an observation matrix as follows:

0000001010000
0000000101000
0001000000100

Hypu = 0754 00001000000 1 0], (122)
0000010000001
1000000000000

| 010000000000 0

In addition to the white noise and bias, accelerometer measurements are further
corrupted with the affects of the gravity vector as presented in Equation 32, repeated
below:

a,(t) = R (a,(t) — gn) +b(t) +€(t). (123)

Therefore, before being used in the filter, the gravity component should be removed
from the measurements with the estimated orientation, such that

ay a,(measured)
Zoce = || = |a,(measured)| — R}, g (124)
a, a.(measured)

where g is the global gravity vector [0, 0, ~ 9.81m/s?*" and R] is the transpose of
the linear rotation matrix, which is used to transform the gravity into vehicle frame.

Once the measurement vector and observation matrix is determined, the mea-
surement update with the IMU is performed with the same equations as Equation
111.
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4.6 Additional Features

The Kalman Filter model presented so far constitutes the main method of implemented
sensor fusion. This section explains additional features that are implemented to be
optionally used depending on the operational needs of the AGV localization.

4.6.1 Robust Laser Measurement Model

While Kalman Filter is a powerful algorithm for sensor fusion that can reliably filter
Gaussian noise, it is vulnerable to presence of outlier measurements. These outliers
are especially likely to occur with laser scanner measurements, due to unaccounted
reflective surfaces in the environment as explained in Chapter 2. In the literature,
there are several methods of dealing with outliers in the Kalman Filter itself, most
of them relying on rejecting the measurements that are classified as outliers [53].
One of those methods is the recently developed IS-EKF by Fang et al. [59].
While specifically developed for EKF, the main working principles of their proposed
method is also applicable for linear measurements such as laser scanner, which relies
on clipping the innovation y such that the measurement update algorithm becomes

y(k) = z(k) —H(F)X(k [k - 1)
S(k) = H(k)P(k|k — 1)H" (k) + R(k)
K(k) =P(k|k—1)H' (k)S™ (k) (125)
X(k|k) =x(k[k = 1) + K(k) ¥sar
k)

P (k|

where y,,; is the saturated innovation vector. Each element of y,,; defined as

(I— KE)HE) Pk k- 1)

Ysat; = max{—o;(k),min{o;(k),y;}}. (126)

where o;(k) is the saturation limit for that measurement. Therefore, the core
idea of this robust version of Kalman Filter is that if the laser provides an outlier
measurement z such that for any element of y, y; > o; or y; < —o;, the innovation
of that corresponding element is limited to o;. This prevents outlier measurements
from diverging the Kalman Filter estimates. Furthermore, as explained in detail in
[59], the innovation bounds are not static, but they are updated in each time step as

Uz(k + 1) = )\li O'Z(k]) -+ Y14 €z<k) e_ei(k) (127)
ei(k+1) = Mgy ei(k) + 72, U7 (128)

where Ai, A9, v1, 72 are parameters that should be defined for each measurement. e is
a variable that affects how much the saturation boundary is changed in each time
step, which is updated in every cycle as well. This ensures that the filter adaptively
decides whether each measurement is an outlier, so in turn whether to saturate the
innovation in measurement update or not.

While this is an effective method to deal with outlier measurements occurring
in laser scanners, the parameters Ai, Ag, ¥1, 72 for each measurement and the initial
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values of ¢(0) and €(0) have to be defined properly for high performance of the
algorithm. With the guidelines presented in [59] and trial-and error in controlled
environments this is not a hard task, however, this is not always possible to accurately
estimate for an unknown AGV in an unknown working environment. Therefore,
this robust version of laser updates are optionally implemented in the sensor fusion
algorithm to be used if they can be tuned, or normal laser measurement updates can
be used otherwise.

4.6.2 Stationary Measurements

As presented in their relative sections, gyroscope and acceleration measurements are
subject to drift during longer time periods in the absence of absolute measurements
such as laser scanner. One way to reduce this drift is to use Zero Velocity Update
(ZUPT) and Zero Angular Rotation Update (ZARU) [60]. This method consists
of providing linear velocity and angular velocity updates of zero mean and a low
variance in time periods where the vehicle is known to be stationary, such that

Uy 0
Uy 0
z= |w,| = |0 (129)
Wy 0
Wy 0

This prevents the position and heading estimates of the vehicle from drifting when
stationary. However, in the literature, these updates are usually used for foot mounted
positioning tracking devices [61][62] rather than AGV localization. The main reason
for that is the odometry measurements can already provide updates in the form of
Equation 129 for heading and velocity and the accelerometer can prevent the drift of
roll and pitch estimates with Equation 33 in stationary time periods.

However, in some practical cases, odometry readings may not be reliable for either
linear or angular velocity, and if that is known, the corresponding R4, matrix is set
to larger values for sensor fusion to prevent it from affecting position or orientation
estimations negatively. In such a case, even though odometry itself would be providing
ZUPT and ZARU updates, they would be disregarded as unreliable. Hence, a separate
ZUPT and ZARU update cycle base on Equation 129 is implemented optionally to
be used for such cases.

4.6.3 Simplified 2D Model

In AGV applications where the operating surface is horizontal without ramps or
cliffs, roll and pitch angles of the AGV is expected to be quite small during normal
operation and can be considered zero all the time. This additional information about
AGYV orientation can be utilized to simplify state estimation to a 2D model which
was implemented as an alternative. While having the same working principle, it has
the following modifications:
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» The state vector is reduced to 12 x 1 as in the 2D model h(k) = ¢(k), w(k) =
w,(k), and 6b(k) = [da, da, dw,]".

o IMU measurements of roll and pitch rate are not considered, so the reduced
measurement vector becomes

Qg
ZiMU = | Ay - (130)
Wy

+ The angular velocity rotation matrix Ry, is reduced to identity equation, as
in the absence of roll and pitch ¢ = w.,.

o Similarly, linear rotation matrix Ry;, can be expressed in 2D as

_|cos(¢p) —sin(o)
Riin = [sm(qf)) cos(9) ] ' (131)

This results in a simpler and efficient model that can be used in place of the 3D
model in the environments where aforementioned assumptions about AGV orientation
are valid. However, in situations where 3D estimation is necessary, for example in
a navigation environment with slopes or ramps, it will not be as reliable as the 3D
model. Therefore, this 2D model is implemented optionally, together with the 3D
sensor fusion model.

4.7 Handling Asynchronous Measurements

Each sensor that is used for localization has different time intervals for providing
measurements. Generally, both odometry and IMU can provide readings in regular
time intervals, however, IMUs usually perform with a much higher frequency. Even
though lasers also scan the environment regularly, there might be situations where
the scans cannot provide a location estimate, such as due to lack of sufficient features,
that force laser scanner localization to be an irregular process. To be able to handle
both regular measurements with different frequencies and irregular measurements,
predict and update steps of the Kalman Filter are performed whenever a measurement
is available.

This method leads to a varying time interval between timesteps k& and k£ + 1 in
each KF cycle, hence, the At variable in Equation 95 has to be recalculated. This
leads to F and Q being interval dependent matrices that must also be recalculated
in each prediction step. Therefore, the developed Kalman Filter is run according to
Algorithm 1 presented below.
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Algorithm 1 Kalman Filter for Localization

x(0) : Initial state
P(0) : Initial covariance matrix
tprev < 0 @ Initial timestamp
k < 1 : Initial step counter
while true do
if measurement arrived then
At — tmeasurement - tprev

tprev <~ tmeasurement

F < caLcuLATE__F(At)
Q < CALCULATE__ Q(A?)
x(k —1), P(k—1) < PreEDICT(X(k — 1),P(k — 1), F, Q, At)
x(k), P(k) <~ SENSOR_UPDATE(x(k —1),P(k — 1), Rsensor)
kE<+—k+1

end if

end while
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5 Experiments and Results

This section describes the experiments conducted to evaluate the performance of the
localization solution developed in Chapter 4 and presents the obtained results.

5.1 Validation of Filter Estimation

This set of experiments was conducted to study if the developed algorithm is able
to provide correct position and heading estimates. To that end, an open source
multisensor dataset with timestamped sensor measurements was used to predict the
position of the AGV and compared against the provided ground truth position.

For this experiment, the Rawseeds Project multisensor datasets [63][64] were
used. Rawseeds project consists of indoor, mixed and outdoor datasets that include
measurements from many different sensors with associated timestamps. Furthermore,
a reliable ground truth position is provided to be able to compare the localization
results against it. From the available datasets, indoor datasets were preferred as the
scope of this thesis does not include the GPS measurements generally prominent in
outdoor datasets, but instead uses the laser scanners that are more reliable indoors.
Ultimately, the indoor dataset Bicocca-2009-02-25b was chosen among the available
indoor datasets. It includes the necessary IMU, odometry and laser measurements
as described below, together with additional sensor data such as sonar and camera
readings that are not used in this solution.

This sensor data was gathered during an indoor motion of the AGV in two
university buildings that include hallways, libraries and offices. The motion took
about 30 minutes from start to finish, and it includes many turns as well as straight
segments. As the horizontal nature of the movement satisfies the conditions for the
2D model presented in Section 4.6.3, both the simplified 2D model and full 3D model
of the developed localization algorithm were analyzed in each test in order to observe
the performance difference of adding a 3D orientation estimate.

For performance analysis in these experiments, visual plots of the trajectories
were compared with ground truth. Furthermore, Absolute Trajectory Error (ATE)
and Relative Pose Error (RPE) performance metrics were computed in relevant
experiments. ATE measures the linear difference between each point of ground truth
with the corresponding point of the estimated trajectory at the same time instant.
Mean and standard deviation values of ATE during the motion can indicate success
of localization algorithm, with lower values suggesting a better algorithm.

RPE compares the trajectory of the ground truth to the estimated trajectory by
calculating relative pose differences over a time period, therefore, a low RPE is an
indicator of a lower drift [65]. The RPE at each time step ¢ is computed as

E; = (Q;'Qisa) (P 'Piya) (132)

where P and Q are poses of the estimated trajectory and the ground truth and A is
a fixed time interval. The RPE of the motion in this time interval A can then be
calculated by taking the RMSE of translational and rotational components of these
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€Irors as

||trans(E2-)||2)1/2 (133)

WE
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Irot(E:)|[*)2. (134)

NE

RMSErot(El:n7 A) = (

3= 3=

s
I
—

To characterize the motion without being dependent on the chosen time interval A,
the RPE is finally computed as taking the average of the calculated RMSEs in all
possible A choices throughout the motion as

1 n
tRPE = =3 RMSEyans(Brn, A) (135)
ATy
1 n
PRPE = = 3 RMSE,u(Bin, A) (136)
A=1

where tRPFE and rRPFE denote translational and rotational RPE, respectively.

5.1.1 Hardware and Sensor Setup

The Robocom platform [64] illustrated in Figure 8 was used to gather the navigation
data in Rawseeds datasets. It is a differential drive AGV that is equipped with
ultrasound transducers, camera systems, an Inertial Measurement Unit and laser range
finders that provide timestamped data as the vehicle navigates in the environment.
The utilized sensors on Robocom platform in this thesis are the following [64]:

o XSense MTi Inertial Measurement Unit
o Two Hokuyo URG-04LX laser range finders
Sick LMS291 and LMS200 laser range finders

e An odometric system equipped with encoders in the wheel base
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Figure 8: The Robocom platform used in generating the datasets, taken from [64].

5.1.2 Dataset Structure and Data Acquisition

The IMU measurements are provided in the following format:

Timestamp [seconds.microseconds]
Sample counter (modulo 2'® -1) [unitless|
Acceleration along X [m/s?|
Acceleration along Y [m/s?|
Acceleration along 7 [m/s?]
Angular velocity around X [rad/s]
Angular velocity around Y [rad/s]
Angular velocity around Z [rad/s]
Earth’s magnetic field along X
Earth’s magnetic field along Y
Earth’s magnetic field along Z

|R1..R9 Orientation matrix, row after row [unitless]|

(137)

From these measurements, only the accelerometer and gyroscope measurements were
utilized. It is noted in the dataset that the IMU is aligned with the navigation
point of the vehicle such that there is only translation between IMU and vehicle
frames. Hence, measurements were used as explained in Section 4.5.3 to obtain the
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measurement vector in the form of

Zipu = | Wy | - (138)

Yrmu
O |

The odometry measurements are provided in the following format:

[ Timestamp [seconds.microseconds] |
Rolling Counter [signed 16bit integer]
Ticks Right [ticks]

z = Ticks Left [ticks] : (139)
X [m]
Y [m]
¢ [rad]

It is noted that the provided X, Y, ¢ are given in the navigation frame, and they are
the result of integration and rotation of pure odometry velocities in the vehicle frame.
The sensor fusion algorithm needs the odometry measurements as instantaneous
velocities in vehicle frame. Therefore, prior to using them in the sensor fusion as
inputs, instantaneous velocities in navigation frame were computed from consecutive
odometer measurements. Then, the obtained velocities were rotated back to the
vehicle frame by using the inverse of the 2D rotation matrix with the odometry
heading in each timestep, such that for i measurement the corresponding odometry
measurement vector Z,qgom (1) was obtained with the following steps:

At (i) = timestamp(i) — timestamp(i — 1) (140)

vanao )] [(0) — (i — 1)
Uynav(i) = y(Z) - y(Z - 1) /At(z> (141)
w(i) ¢(1) — (i — 1)

R;' =R, = [ cos(9

n lin —SZ’I’L(QZ)

(i) sin(6())
(i) cos(qb(z'))] (142)

[vaeh(i)l _gp! lvmav(z:)] (143)

Vyven (1) " [ Oynan (1)

Umnav@)
Zodom (Z) = | VYynav (l) . (144)
w(7)
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The laser measurements are provided in the following format for SICK Scanners

Timestamp [seconds.microseconds]
Number of ranges [unitless]

Z= Angular offset [1/4 degree] (145)
R1..R181 Ranges (zero padded to 181 ranges) [m]
and as follows for Hokuyo Scanners
| Timestamp [seconds.microseconds] (146)

R1..R681 Ranges [m)]

These raw measurements cannot be directly used in the developed sensor fusion
algorithm. Instead, as explained in Section 2.4, map matching techniques must be
applied in order to convert raw laser scanner range measurements into location and
orientation in the map. For this purpose, Benchmark Solutions provided alongside
sensor datasets by Rawseeds were used. Those solutions are results of map matching
methods in the form of

Timestamp [seconds.microseconds]
x [m]
y [m]
¢ [rad]

They are provided with the intention of providing a benchmark to test other map
matching methods against, or to be used in higher level algorithms. For all experiments
with Bicocca-2009-02-25b dataset described in this chapter, "GraphSLAM" benchmark
solution for this dataset was used as laser scanner measurements for sensor fusion.
This way, the same architecture presented in Figure 7 was achieved and performance
of the fusion can be analyzed.

(147)

5.1.3 State Initialization and Parameter Selection

For all tests with the Rawseeds dataset, the initial state x(0) was determined as
follows:

p(0)
02><1
h(0)
= 148
03><1 ( )
02><1

_05><1_

Ty E T

where the initial linear velocities, angular velocities, accelerations and bias estimates
are set to zero. The initial position

p(0) = [g;ggggj (149)
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corresponded to the first measurement of the ground truth, while the initial tilt is
estimated from the first IMU measurement and initial yaw is obtained from the first
ground truth as

»(0) arctan( Zyggg )
= = =) 150)
h(0) 6((()]) arctan( a§(0)+a§(0)> . (
¢(0) (0,

For the corresponding initial covariance matrix P(0), the values in Table 1 were used
for each state, converted to a diagonal matrix.

Table 1: Initial variances of the state vector

State Initial Variance
Pa, Dy 0.1
Vg, Uy 0.1
U, 0, ¢ 0.1
Wy, Wy, Wy 0.01
gy Ay 0.01
dag, day, 5
Oy, 0wy, 0w, 5

The initial variances for position, velocity, orientation and acceleration were
manually chosen and tuned by trial and error. However, it is important to note that
the initial bias variances are comparatively larger than that of their corresponding
state variables. This ensures an initially faster moving bias, so that the erroneous
and biased measurements at the beginning of the motion will adjust the bias values
rather than the actual state values.

For the Q matrix, the variances listed in Table 2 were used for the highest order
terms, then (Q matrix was constructed as explained in Section 4.4.

Table 2: Process noise variances

Process Noise Variance | Value
o2, agy 0.02
a2, O'iy 107°

o2, 0.175
o3 agay 106
O'ng, Ugwy, ang 10712

It can be seen in Table 2 that the process noise variance of bias states were
configured much lower compared to those of their corresponding navigation states.
This configuration ensured that after the initial step where the biases are estimated
at the beginning of the motion, they would be slowly moving. Therefore, when larger
measurements arrive, the navigation states moved more rapidly and biases moved
slowly.
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Furthermore, as shown in Table 2, variance of x and y axis angular velocities were
configured much lower compared to z axis, as the vehicle was expected to change
its heading a lot, while in a horizontal surface very little tilt was expected. Also,
acceleration biases were assigned a larger variance compared to gyroscope biases;
this allowed them to move at a faster rate, which was useful to also absorb the effects
of gravity in estimation, especially for the 2D model.

For the variances of sensor measurements to be used in R matrix of each sensor,
the values in Table 3 were used.

Table 3: Sensor noise variances

Sensor | Sensor Noise Variance Value
Laser T Ony 0.16
Laser o3 (0.5 - 7/180)?
IMU o2, ng 0.25
IMU 020 00y (0.5 - 7/180)?
IMU o2, (0.5 - 7/180)?
IMU 07, 0} (10 - 7/180)2

Odometry Oy Ooy 0.016
Odometry 02, (7/180)?

All of the values in Table 3 were tuned with trial and error method, and the
values of tilt measurements were kept especially large as those measurements are
usually corrupted by the acceleration of the vehicle itself and should be filtered.

5.1.4 Estimation with Fully Available Absolute Positioning

In the first experiment with Rawseeds datasets, all the available measurements from
laser, odometry and IMU were used throughout the navigation, and the estimated
trajectory was compared with the trajectories obtained from ground truth, only the
laser and only the odometry measurements. As the ground truth was available only
as the 2D position and heading, tilt estimation of the vehicle was not considered in
the analysis. Both the full 3D implementation of the developed localization method
and simplified 2D implementation were tested.

In this test, ATE was used as a performance indicator since a successful algorithm
should provide close results to the ground truth trajectory when all measurements are
always available. However, in this test case, there was a fusion between relative and
absolute measurements. In situations where the laser is providing incorrect results
but the other sensors are more reliable, the estimation is expected to suddenly jump
due to correction, which worsens the RPE of the result, even though those jumps
bring the estimate closer to the ground truth than pure laser. Therefore, RPE was
not used as a performance metric in this experiment.

The histogram of the ATE of pure laser benchmark solution was provided by
Rawseeds, illustrated below in Figure 9, which was later compared to sensor fusion
implementations.
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Figure 9: ATE histogram of laser scanner benchmark solution, obtained by functions
and results provided by Rawseeds.

The trajectory obtained with 3D sensor fusion implementation can be seen in
Figure 10, together with ground truth, pure laser and pure odometry trajectories. As
seen, pure odometry drifted away from the ground truth considerably, as expected
from a long navigation without absolute measurements, while the other trajectories
were very close to each other.
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Figure 10: Resulting trajectory of 3D implementation in 2D map.

The corresponding histogram of the ATE of the fusion method is presented in
Figure 11. For comparison, the ATE histogram obtained from the simplified 2D
algorithm is presented in Figure 12. As the trajectory is almost identical to the one
obtained from 3D implementation, the trajectory plot is not presented again to avoid
redundancy.

The means and standard deviations of the resulting ATE from both implementa-
tions, together with that of the pure laser solution provided by Rawseeds are given
in Table 4.

Figure 13 presents the translation and rotation errors with respect to time of both
2D and 3D algorithms, together with the benchmark laser scan matching solution. It
is seen in this figure that although the sensor fusion trajectories seem similar to pure
laser trajectory with the scale in Figure 10, there are in fact significant differences in
their deviation from the ground truth.
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Figure 11: Histogram of position errors of 3D implementation.
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Figure 12: Histogram of position errors of 2D implementation.

Table 4: ATE means and standard deviations

Method ATE Mean (m) | ATE Standard Deviation (m)
Pure Laser 0.3858 0.3201
2D Sensor Fusion 0.3920 0.1925
3D Sensor Fusion 0.3923 0.1924
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Figure 13: Translation and rotation errors of trajectories obtained with 2D sensor
fusion, 3D sensor fusion and only laser scan matching, with respect to time.

As seen by comparing the trajectories and ATE results, for this motion there
was no notable difference between a simplified 2D sensor fusion and a full 3D one
including tilt estimation. Even though the ATE mean has slightly increased by 6
mm from benchmark solution, there was significant improvement in standard ATE
deviation by 13 cm. Comparing the histograms at Figures 9, 11 and 12, and observing
the error profile in Figure 13, it is seen that using sensor fusion prevented the highest
deviations from the ground truth more than 1 meters that were present in the pure
laser navigation, which in turn reduced the standard deviation by a considerable
margin.
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5.1.5 Estimation with Partially Available Absolute Positioning

The second group of experiments on the Rawseeds dataset was conducted to demon-
strate the robustness of fusion algorithm when subject to laser outages; a common
scenario for AGV in environments with low amount of natural features or a poor
navigation map. This was achieved by ignoring the laser measurements provided
in the dataset in certain time intervals, and using all three measurement sources
during the rest of the motion. As with the previous experiment case, both 2D and
3D implementations of the developed sensor fusion were tested.

In addition, the effect of IMU in reducing the drift in time periods lacking laser
measurements was demonstrated in this experiment. To that end, a third version of
the sensor fusion model where all IMU measurements are ignored was also tested as
well. It is noted that as IMU was the only information source for 3D orientation, 2D
and 3D models are equivalent in this test case.

The simulated laser outage time periods were arbitrarily chosen, but always
kept the same through the different tests. Those time periods were between the
timestamps listed below in the rows of L matrix, their units being in seconds since
the start of the motion

(10 130]

132 250

252 400

410 600

615 700

L=1750 sn0 | (151)

901 1000

1105 1300

1400 1550

1600 1782]

This means that if the timestamp of the laser measurement is between the values of
any row of L, that measurement is ignored. As seen, the laser outage times were
chosen such that the laser was used for a few seconds, then it was ignored for a
period of time ranging between a minute to three minutes.

To analyse the results, both visual trajectories and ATE for each motion are
presented. In absence of absolute positioning, the drift increases over time, therefore,
ATE is expected to grow with time. However, as the motion itself and the time
periods with and without laser are the same in all 3 cases, ATE is a meaningful
performance indicator when used in comparing these cases with each other.

The estimated location with the 3D implementation can be seen in Figure 14 and
the corresponding ATE histogram of the motion can be seen in Figure 15. Similarly,
ATE histogram and trajectory over time of 2D motion is presented in Figures 16 and
17.
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Figure 14: Resulting trajectory of 3D implementation. The periods where the laser
is ignored is marked in green.
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Figure 15: Histogram of position errors of 3D implementation with laser outage.
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Figure 16: Histogram of position errors of 2D implementation with laser outage.
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Figure 17: Resulting trajectory of 2D implementation. The periods where the laser
is ignored is marked in green.
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The resulting trajectory of the implementation without IMU can be seen in Figure

18 and the corresponding ATE histogram in Figure 19.
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Figure 18: Resulting trajectory of implementation without IMU over time. The

periods where the laser is ignored is marked in green.
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Figure 19: Histogram of position errors of implementation without IMU.

The means and standard deviations of the resulting ATE from all implementations
are given in Table 5. In addition, the trajectory errors over time with all three
configurations can be seen in Figure 20.

Table 5: ATE means and standard deviations

Method ATE Mean (m) | ATE Standard Deviation (m)
2D Implementation with IMU 0.7416 0.4789
3D Implementation with IMU 0.7352 0.4791
Implementation without IMU 1.2039 1.0610

Similarly to the case with all sensors, it is seen that there is no meaningful differ-
ence between full 3D and simplified 2D implementations of sensor fusion. However,
the advantage of both methods over relying on only odometry during the periods
without laser scanners is clear with 50 cm improvement in ATE mean and 60 cm
improvement in standard deviation with both methods. It is also seen that the
amount of drift varies in different laser outage periods in all different configurations.
It can be concluded that although in certain outage periods using IMU has resulted
in an increasing drift, such as the first outage period in the motion, using IMU is
beneficial overall as it has prevented the largest drifts.
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Figure 20: Position and heading errors of all three implementations in laser outage
scenario.
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5.1.6 Estimation in Absence of Absolute Positioning

The final group of tests with Rawseeds dataset were conducted to demonstrate that
the developed algorithm is effective in reducing the drift in absence of absolute
positioning sensors throughout the whole motion. To that end, localization was
performed without using the laser at all, except for the initialization of the very
first position. In this test, sensor fusion of IMU and odometry was compared to
the pure odometry solution provided by Rawseeds. Since this test included a long
motion without any absolute positioning measurements, a large deviation from the
ground truth trajectory is expected in every case, and ATE will not be a meaningful
performance indicator. Instead, RPE was used to characterize the amount of drift to
assess the success of the algorithm.

The translational and rotational relative pose error in each time step from the
pure odometry trajectory can be observed in Figure 21.
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Figure 21: Relative Pose Error of pure odometry trajectory.

For comparison, the same RPE plot for the 3D implementation of sensor fusion
between IMU and odometry is shown in Figure 22. The corresponding RMSE values
are given in Table 6.

It is seen that sensor fusion of odometry and IMU clearly reduced the drift
throughout the motion, resulting in close to 43 cm less tRPE and 0.6 degrees less
rRPE. However, it should be noted that while the position estimate has improved, it
is still not usable for AGV applications. This can be observed in Figure 23, where
the position estimate is more than 20 meters away from the ground truth in some
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Figure 22: Relative Pose Error of 3D sensor fusion trajectory.

Table 6: Relative Pose Errors

Method tRPE (m) | rRPE (deg)
Pure Odometry 2.7453 3.3688
3D Implementation with IMU 2.3156 2.7550

places. This is an expected result as with a long motion such as this, the drift will
always be very large without using any absolute measurements.
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5.2 Real-Time Performance Analysis

In these experiments, the performance of the sensor fusion was analyzed using an
AGYV while the localization algorithm was run real-time. Unlike the experiments
with Rawseeds datasets, there was no universal ground truth available in these
experiments. Therefore, instead of quantitative performance indicators like ATE and
RPE, the results were analyzed visually. The main purpose of these experiments
were to assess the real-time performance of the fusion and to demonstrate whether it
could be used as a reliable localization algorithm. Compared to the long motion in
Rawseeds experiments, these real-time experiments were focused on motions spanning
shorter time periods but with more turns and velocity changes to assess the ability
of the algorithm to follow these changes in real-time.

5.2.1 Experiment and Parameter Setup

All of the experiments in real-time were conducted using Navitrol software, which
is a navigation solution for AGVs developed by Navitec Systems [66]. The existing
software is capable of collecting the relevant data from IMU and odometry in the
same way as Rawseeds datasets. Similarly, the laser scanner measurements are used
in map matching methods to provide vehicle positions in the form of =, y, ¢ as
needed for the Kalman Filter as explained in Section 4.5.1. For the purpose of these
experiments, the sensor fusion localization solution was implemented as a parallel
method to the existing Navitrol localization in C programming language. This was
achieved such that every time an IMU, laser or odometry measurement arrived,
Navitrol sent this timestamped measurement to the implemented sensor fusion, and
the algorithm produced a localization estimate. This achieved the same architecture
presented in Figure 7, such that the map matching was performed based on the
output of the existing localization system and not on sensor fusion outputs.

Navitrol software was readily installed and integrated with several demo AGVs
with different kinematic configurations. An omnidirectional vehicle was chosen among
them to conduct these experiments, to enable maximum freedom in movement.
The vehicle was equipped with a Pepperl Fuchs OMD30M-R2000 laser scanner
that was used in the existing map matching algorithm together with the odometry
measurements to provide the laser location estimates. Futhermore, a low cost MEMS
LPMS CU2 IMU provided the necessary accelerometer and gyroscope measurements.
For the experiments, all of the noise suppressing methods present in both Navitrol
and individual sensors were disabled, such as the low pass filter in gyroscopes and
odometry auto-calibration feature of Navitrol, to get raw data from sensors and let
the sensor fusion algorithm work with noisy inputs.

The noise variances used in the fusion algorithm for these tests are summarized
in Table 7. It is noted that with the notable exception of odometry angular velocity
variance and all laser variances, all of the parameters are similar to the ones used for
Rawseeds experiments, but they were tuned with further trial and error for higher
performance. Most of the smaller changes were done to accommodate the overall
slightly more noisy measurements. However, as it was known that the scan matching
performed in Navitrol is quite reliable and the scanner installed on the demo AGV
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is able to provide high quality measurements, all laser variances were set to much
lower values compared to the previous experiment.

On the other hand, it was known that this particular hardware produces less
accurate odometry measurements for angular velocity compared to IMU measure-
ments. Therefore, the odometry angular velocity measurement was given quite a high
value for its variance and was practically ignored compared to the high confidence
measurements from the IMU.

Table 7: Sensor noise variances

Variance Type Navigation State Value
Initial State Variance Dy Dy 0.1
Initial State Variance Vg, Uy 0.1
Initial State Variance W0, 0, ¢ 0.1
Initial State Variance Way Wy, Wy 0.01
Initial State Variance Ay, Qy 0.01
Initial State Variance day, day, 5
Initial State Variance dwg, 0wy, 0w, 5

Process Noise Variance O Oy 0.04
Process Noise Variance 020 00y 1072
Process Noise Variance o2 0.0175
Process Noise Variance T3us Tony 1076
Process Noise Variance | o , 03 , 05 1076
Laser Noise Variance O s agy 0.0004
Laser Noise Variance o3 (0.1-7/180)2
IMU Noise Variance o2, ng 0.25
IMU Noise Variance 020 00y (0.3 - 7/180)*
IMU Noise Variance o2, (0.3 - /180)>
IMU Noise Variance 07, 0} (10 - 7/180)>
Odometry Noise Variance o2, ng 0.016
Odometry Noise Variance 02, (50 - /180)2
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5.2.2 Estimation with Fully Available Absolute Positioning

The first test to assess the real-time performance of the algorithm was conducted by
using data from all three types of sensors throughout the whole motion. The AGV
was navigated in a 3 x 4 meters indoor space with a horizontal surface following a
trajectory with many turns. The estimated trajectory by sensor fusion compared to
the trajectory obtained from pure laser measurements can be observed in Figures 24
and 25.
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Figure 24: Vehicle position in 2D plane.

It is clearly seen that the fusion result closely follows the laser output, as expected
with the low values assigned to laser measurement noise variances, whereas the pure
odometry is drifting away. At a glance, it seems like there is no difference between
pure laser and fusion trajectories. However, a zoomed in version to the trajectory
displayed in Figure 26 demonstrates the advantage of using sensor fusion instead of
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Figure 25: Vehicle position and orientation over time.

pure laser in this setup. It is seen that at the zoomed-in area, the laser was slightly
off for a few measurements, which is deduced from the fact that the motion itself was
a smooth one as evident from odometry profile. With the addition of measurements
from IMU and odometry, the fusion result was able to smoothly follow the motion
unlike the purely laser based navigation solution. It is noted that both the scale of
the error and the correction is quite small in this case, which are contained within less
than 2 c¢m, but it can still be significant depending on the application requirements.
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Figure 26: Zoom in on vehicle position in the 2D plane.

71



72

5.2.3 Estimation with Partially Available Absolute Positioning

Similar to the Rawseeds experiments, the performance was also tested on real-time
for the situations where the laser scanner was unavailable for a certain period of time.
The AGYV followed a similar motion to the previous experiment, such that it was
contained in a 3 x 4 office room on a horizontal surface. The sensor fusion algorithm
was run in this experiment by ignoring the laser measurements in arbitrarily chosen
time intervals. Those intervals are listed in the elements of L matrix below, such
that laser measurements with timestamps between the elements in each row of L
matrix were not used. It should be noted that their units are seconds since the time
of the first laser measurement in the motion, not the actual timestamp

20 30
L=|31 70]. (152)
70.25 100

With the intervals chosen this way, the laser measurements were available for 20
seconds at the beginning of the motion, most of which were spent in the stationary
stance. Then, three periods of laser outage about 10, 30 and 40 seconds were
simulated with very short periods of laser availability between them. The estimated
trajectory can be observed in Figures 27 and 28. It is seen that while there is some
drift from the laser trajectory, it is quite minimal. Furthermore, the improvement
over the trajectory predicted by pure odometry is clearly seen.
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Figure 28: Vehicle position and orientation over time.
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Another motion with the same conditions as the previous ones can be seen in
Figure 29. It can be observed that the drift from the laser trajectory is a bit higher
compared to the previous motion, but still much lower than using only odometry.
Therefore, it can be concluded that while using sensor fusion between IMU and
odometry in the periods of laser outage is certainly beneficial, the amount of drift
during the same time period depends on the motion itself.

Vehicle Position in 2D Map

O Pure Laser
Ignored Laser
s Fusion Estimate
Pure Odometry

051

-05 -

Position in Y direction (m)

25 | I I | | J
-4 3 -2 1 0 1 2

Position in X direction (m)

Figure 29: Vehicle position in 2D plane for a different motion.

Figure 30 shows the process of angular velocity and corresponding gyroscope bias
estimation. All of IMU, laser and odometry provide measurements about the heading
angle. Therefore, angular velocity bias estimation for gyroscope can be best studied
for this component. On the top plot of Figure 30, it can be seen that the estimated
angular velocity closely followed that of the gyroscope measurements because of the
low variance assigned as shown in Table 7. Furthermore, the estimated bias was very
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small and very slowly moving, which accurately reflects the real case of a gyroscope.

In the bottom figure, the bias can be observed more closely. It is seen that at
the start of the motion, it varied quite fast due to high initial assigned variance.
Furthermore, in the presence of laser it moved much faster and exhibited sudden
jumps when laser is first introduced after an outage period. This is resulting from the
fact that the only other available unbiased information about angular velocity was
odometry, but due to high variance in odometry measurement of angular velocity, it
was essentially ignored. The laser provided a reliable and unbiased information source,
so that the filter could differentiate between the actual angular velocity and the bias
component from gyroscope, that enabled a much faster moving bias estimation.

It is also seen here that due to bias being modeled as constant in the prediction
model presented in Section 4.4 and the low variance configuration, the Kalman Filter
expected it to move slowly and not suddenly change. This caused oscillations when
the laser was causing the aforementioned jumps in the estimation as can be best
observed towards the 160-180 second range. It can be argued that this might cause
problems when the laser did not have enough time to settle these oscillations as seen
in the two middle sections, but is should be considered that the magnitude of these
oscillations were so small that they were essentially invisible compared to the real
angular velocity, and it is seen that there was no visible negative effect on the motion
itself.

Another motion with the same laser conditions and parameters can be observed
in Figure 31. It is seen that the estimation results in absence of laser positioning
were much worse than earlier case, even though the time period of simulated laser
outage was the same. The difference of this motion to the previous ones was that
it included very high speed heading changes up to 57 degrees per second while the
vehicle is stationary, which can be seen in the steep changes in the Heading vs. Time
graph in Figure 32 around timestamps 5000 and 5040. It stands to reason that in
such high speed conditions, the small difference in angular velocity estimate will
integrate faster as heading error. This in turn causes a much higher error in the
position estimation. Nevertheless, it is seen that sensor fusion was still beneficial
over pure odometry estimation, reducing the drift by a considerable margin.
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Figure 31: Vehicle position in 2D plane.



Heading {degrees)

X Position Over Time

E O Pure Laser
=t lgnored Laser
.2 Fusion Estimate
E Pure Odometry
=
>
£
c
p=]
=
=]
'R
1 I 1 i I 1 1 1 1 1
4960 4980 5000 5020 5040 5060 5080 5100 5120 5140
Time (sec)
Y Position Over Time
-7
c O Pure Laser
: 6k lgnored Laser
=] Fusion Estimate
E N Pure Odometry
£5
-
c4r
c
i=]
Z 3
=]
'R
2 I I I I I I I I I I
4960 4980 5000 5020 5040 5060 5080 5100 5120 5140
Time (sec)
Vehicle Heading Over Time
200
V ' O Pure Laser
Pure Odometry
100 2 lgnored Laser
*  Fusion Estimate
ok
=100 -
| —
200 | | | | | | | | |
4960 4980 5000 5020 5040 5060 5080 5100 5120 5140

Time (sec)

Figure 32: Vehicle position and orientation over time.

79



30

5.2.4 Estimation in Absence of Absolute Positioning

The final real-time test was conducted to assess the performance of the sensor fusion
by not using the laser scanner at all during the motion, except for state initialization
at the start. Unlike the long motion spanning a wide area in Rawseeds tests, the
motion in real-time test was constrained to a much smaller timespan and area to
assess the short-term performance by comparing the fusion trajectory to laser scanner
trajectory. However, this comparison is limited to relative error in absence of a
ground truth and RPE was not computed, since the scanner trajectory was not a
high enough quality ground truth as can be observed in Figure 26, which might lead
to a misleading indication of performance.

Throughout this experiment, the AGV was moved inside a 3 x 4 meters indoor
space for about 90 seconds on a horizontal ground. The motion was intentionally
made with high acceleration values with abrupt changes in speed and a nonlinear
trajectory with many turns in order to make position, heading and tilt estimations
more challenging. The estimated trajectory of the fusion without laser positioning
compared to pure laser trajectory and pure odometry trajectory can be observed in
Figures 33 and 34.

As seen, there was a drift in position that was increasing over time, but the
scale of the drift was much smaller than that of odometry position estimate. This
clearly demonstrates the advantage of using a fusion between odometry and IMU
over relying on just a single source of information in the situations where absolute
measurements are not available.
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Figure 33: Vehicle position in 2D plane, obtained without using the laser measure-
ments.



82

X Position Over Time

£ 18 O Pure Laser
-~ w— Fusion Estimate
c 19
£ Pure Odometry
3 185
=
> 18
£
_5 17.56
2 a7t
o
1651 1 1 1 1 1 1 1 1
1480 1480 1500 1510 1520 1530 1540 1550 1560
Time (sec)
Y Position Over Time
g 251 O Punla Laserl
= m— Fusion Estimate
.g 2 Pure Odometry
g
5 205
-
£ 2y
[
21951
3
o 19r
1 1 1 1 1 1 1 1 1
1480 1480 1500 1510 1520 1530 1540 1550 1560
Time (sec)
Vehicle Heading Over Time
200
O Pure Laser
o *  Fusion Estimate
D 100 Pure Odometry
=)
i)
=]
= pt
@
=
E
@ 100 -
T
2000 | | | | | | | |
1480 1480 1500 1510 1520 1530 1540 1550 1560

Time (sec)

Figure 34: Vehicle position and orientation over time, obtained without using the
laser measurements.

In addition to position and heading estimates, the estimated roll and pitch of the
AGYV during the same motion, which was performed on a horizontal ground, can be
observed in Figure 35. As mentioned earlier, this motion included high acceleration
values, which made the tilt calculation using Equations 33 and 34 noisy. Even
though all of the navigation was performed on a horizontal surface, those equations
indicated a tilt angle up to 10 degrees. However, with a correct choice of parameters
that include high noise variance for them as shown in Table 7, the tilt estimate was
confined to 1 degrees as expected from a horizontal movement with slight oscillation
due to uneven ground.
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Figure 35: Vehicle roll and pitch estimation over time. The pure roll and pitch
displayed in red refer to the results of Equations 33 and 34 obtained from accelerometer
measurements.

5.3 Results and Discussion

The experiments consisted of two main groups. The first group utilized an open
source multisensor dataset with an associated ground truth, while the second group
consisted of real-time experiments performed with an AGV. In both groups of
experiments, three scenarios of laser scanner measurements were considered: always
available, partially available and not available during the motion.

In the first scenario, it was observed that using sensor fusion instead of a pure
scan matching method had no noticeable effect on the mean translational error,
but it greatly reduced the translational error variance by eliminating the greatest
deviations from the ground truth. Furthermore, sensor fusion was observed to be
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useful in smoothing the estimated trajectory by eliminating minor deviations in the
laser measurements from the true trajectory.

In the second scenario, the laser scanner was partially available during the motion.
It was observed that in laser outage periods the results were different depending on
motion characteristics. It was observed that while using sensor fusion had variable
effects on individual outage periods, it had a better overall performance than relying
purely on odometry. Furthermore, in real-time experiments, the amount of drift was
reduced to very low values in shorter time periods by sensor fusion such that the
estimate could be considered a safe trajectory to follow depending on operational
needs.

The final experiment scenario simulated a situation in which the laser scanner
was only available for state initialization. It was seen that the relative pose error of a
fusion between IMU and odometry was much lower than that of using only odometry.
However, the drift from the ground truth trajectory was still significant for both
methods with long drive trajectories.

It was observed that in all these scenarios, the results from both experiment
groups were consistent with each other. Different experiment cases included long
and short motions, differential and omnidirectional vehicle kinematics, high and low
speed motions, straight paths, curves and sharp turns. It can therefore be concluded
that the experiment results are generalizable to a broad range of motion and vehicle
kinematic types.

Both the full 3D algorithm with tilt estimation and a simplified 2D algorithm
were tested, and their position and heading estimations were very similar in all
experiments. However, it should be noted that in all test cases the AGV moved on a
horizontal surface, so a 3D motion type was not tested.

The developed algorithm included a bias estimation method for IMU measure-
ments. While a ground truth value of bias was not available to compare the results,
the estimated bias value was in the expected range. In addition, the bias estimate
was of slow varying nature, which is consistent with gyroscope bias characteristics.
However, the estimation also included small scale jumps and oscillations when the
laser measurements were made available after an outage period. While this did not
have an adverse affect on the trajectory in the performed experiments, the estimated
bias value might be wrong in a situation where the laser was available for a very short
time and the oscillations did not have time to settle before another outage period.
Even though this is an extremely unlikely situation in common AGV use cases, the
potential negative effect from this remains as an open issue in the developed solution.
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6 Conclusion and Future Work

In this thesis, a Kalman Filter based sensor fusion algorithm was developed that
is capable of working with asynchronous laser scanner, odometry and IMU mea-
surements. Some of these measurements included nonlinearities due to coordinate
transformations and error terms with nonzero means due to inherent biases. The
state vector in the Kalman Filter was chosen such that the prediction step of the
algorithm was nonlinear but all three measurement update steps were linear. An
Extended Kalman Filter was used to handle the nonlinearity in state transition
while state augmentation was utilized to incorporate non-zero mean noises in the
measurements.

The developed method was analyzed with an open source dataset with an asso-
ciated ground truth, as well as real-time experiments performed with an AGV. It
was shown that using sensor fusion was advantageous over relying only on the laser
scanner measurements. Furthermore, it was observed that sensor fusion between
odometry and IMU resulted in a less drift in time periods where absolute positioning
is not available, compared to relying only on odometry. However, it was also seen
that the effects of sensor fusion was different in each outage period, and during long
time periods without absolute positioning the error between real trajectory and the
estimated one was still very large. Therefore, it can be concluded that while using
sensor fusion is generally beneficial over relying on a single sensor, but it does not
guarantee a reliable position estimate in absence of an absolute positioning sensor.

Both a full 3D sensor fusion with tilt estimation and a simplified 2D sensor
fusion with reduced states and simplified calculations were developed and tested,
and no meaningful difference was observed between their localization performance.
However, it should be noted that in all experiments conducted in this work, navigation
took place on a horizontal and smooth surface. If the algorithm is used on a 3D
motion, further experimental evaluation is needed to determine the performance of
the simplified model.

It was also observed during the experiments that correct choice of parameters were
necessary to achieve a high performance sensor fusion. Assigning low noise variance
values to low-performance sensor readings or utilizing an unsuitable motion model
depending on motion characteristics greatly reduced the localization performance.
This makes it very challenging tune the algorithm for high performance with different
sensors and vehicles. Utilizing adapting noise parameters that mitigates this issue is
left for future work.

Additional future work can include further testing of this solution on navigation on
inclined surfaces in order to further assess the tilt estimation. Furthermore, although
Euler angles are sufficient to represent orientation in movements taking place on
mainly horizontal surfaces, other representations such as quaternions are generally
regarded superior in 3D navigation. Therefore, alternative state representations may
be beneficial for navigation on inclined surfaces. In addition, different Kalman Filter
variants such as Unscented Kalman Filter or Error State Kalman Filter can be tested
to analyze whether they can provide better performance.



36

References

[1]

2]

[10]

[11]

Margrit Betke and Leonid Gurvits. Mobile robot localization using landmarks.
IEEE Transactions on Robotics and Automation, 13(2):251-263, 1997.

A. Azenha and A. Carvalho. A neural network approach for agv localization using
trilateration. In 2009 35th Annual Conference of IEEE Industrial Electronics,
pages 2699-2702, Nov 2009.

Lwis Garrote, Miguel Torres, Tiago Barros, Joao Perdiz, Cristiano Premebida,
and Urbano J Nunes. Mobile robot localization with reinforcement learning map
update decision aided by an absolute indoor positioning system. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019.

Leandro B Marinho, Pedro P Reboucas Filho, Jefferson S Almeida, Joao Welling-
ton M Souza, Amauri H Souza Junior, and Victor Hugo C de Albuquerque. A
novel mobile robot localization approach based on classification with rejection

option using computer vision. Computers & Electrical Engineering, 68:26—43,
2018.

Jiraphan Inthiam and Chirdpong Deelertpaiboon. Self-localization and navi-
gation of holonomic mobile robot using omni-directional wheel odometry. In
TENCON 2014-2014 IEEE Region 10 Conference, pages 1-5. IEEE, 2014.

Nakju Lett Doh, Howie Choset, and Wan Kyun Chung. Relative localization
using path odometry information. Autonomous Robots, 21(2):143-154, 2006.

H-J Von Der Hardt, Didier Wolf, and René Husson. The dead reckoning local-
ization system of the wheeled mobile robot romane. In 1996 IEEE/SICE/RSJ

International Conference on Multisensor Fusion and Integration for Intelligent
Systems (Cat. No. 96THS8242), pages 603-610. IEEE, 1996.

Patric Jensfelt. Approaches to Mobile Robot Localization in Indoor Environments.
PhD thesis, KTH, 2001.

Fabjan Kallasi, Dario Lodi Rizzini, and Stefano Caselli. Fast keypoint features
from laser scanner for robot localization and mapping. [IEFEE Robotics and
Automation Letters, 1(1):176-183, 2016.

Felipe Espinosa, Carlos Santos, Marta Marréon-Romera, Daniel Pizarro, Fernando
Valdés, and Javier Dongil. Odometry and laser scanner fusion based on a discrete
extended kalman filter for robotic platooning guidance. Sensors, 11(9):8339-
8357, 2011.

Davide Ronzoni, Roberto Olmi, Cristian Secchi, and Cesare Fantuzzi. Agv
global localization using indistinguishable artificial landmarks. In 2011 IEFEFE
International Conference on Robotics and Automation, pages 287-292. IEEE,
2011.



87

[12] Fredrik Gustafsson. Statistical Sensor Fusion. Studentlitteratur AB, 2010.

[13] Gerasimos G. Rigatos. Sensor fusion-based dynamic positioning of ships using
extended kalman and particle filtering. Robotica, 31(3):389-403, 2013.

[14] Zhe Chen et al. Bayesian filtering: From kalman filters to particle filters, and
beyond. Statistics, 182(1):1-69, 2003.

[15] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. John Wiley & Sons, 2006.

[16] Jungmin Kim, Yountae Kim, and Sungshin Kim. An accurate localization for
mobile robot using extended kalman filter and sensor fusion. In 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 2928-2933. IEEE, 2008.

[17) Muhammad Latif Anjum, Jaehong Park, Wonsang Hwang, Hyun-il Kwon,
Jong-hyeon Kim, Changhun Lee, Kwang-soo Kim, et al. Sensor data fusion
using unscented kalman filter for accurate localization of mobile robots. In
International Conference on Control, Automation and Systems 2010, pages
947-952. TIEEE, 2010.

[18] Mohamed M Atia, Shifei Liu, Heba Nematallah, Tashfeen B Karamat, and
Aboelmagd Noureldin. Integrated indoor navigation system for ground vehicles

with automatic 3-d alignment and position initialization. IFEE Transactions
on Vehicular Technology, 64(4):1279-1292, 2015.

[19] Aboelmagd Noureldin, Tashfeen B Karamat, and Jacques Georgy. Basic naviga-
tional mathematics, reference frames and the earth’s geometry. In Fundamentals
of Inertial Navigation, Satellite-based Positioning and their Integration, pages
21-63. Springer, 2013.

[20] Mengxiao Chen, Shaowu Yang, Xiaodong Yi, and Dan Wu. Real-time 3d
mapping using a 2d laser scanner and imu-aided visual slam. In 2017 IFEE

International Conference on Real-time Computing and Robotics (RCAR), pages
297-302. IEEE, 2017.

[21] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Springer,
2016.

[22] Sheila Widnall. Lecture 13-vectors, matrices and coordinate transformations.
Dynamics, pages 1-15, 01 2009.

[23] Michael S Triantafyllou and Franz S Hover. Maneuvering and Control of Marine
Vehicles. MIT, Cambridge, MA, 2003.

[24] Thor I Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, 2011.



[25]

[34]

[35]

[36]

[37]

38

Anthony Kim and MF Golnaraghi. A quaternion-based orientation estimation
algorithm using an inertial measurement unit. In PLANS 2004. Position
Location and Navigation Symposium (IEEE Cat. No. 04CHS37556), pages
268-272. IEEE, 2004.

Nicholas Carlevaris-Bianco, Arash K Ushani, and Ryan M Eustice. University
of michigan north campus long-term vision and lidar dataset. The International
Journal of Robotics Research, 35(9):1023-1035, 2016.

Gregory Dudek and Michael Jenkin. Computational principles of mobile robotics.
Cambridge university press, 2010.

Kyung-Seok Byun, Sung-Jae Kim, and Jae-Bok Song. Design of a four-wheeled
omnidirectional mobile robot with variable wheel arrangement mechanism. In
Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No. 02CHS37292), volume 1, pages 720-725. IEEE, 2002.

Mark Ashmore and Nick Barnes. Omni-drive robot motion on curved paths:
The fastest path between two points is not a straight-line. In Australian Joint
Conference on Artificial Intelligence, pages 225-236. Springer, 2002.

Thomas Epton. Odometry correction of a mobile robot using a range-finding
laser. All Theses, 2007.

Kok Seng Chong and Lindsay Kleeman. Accurate odometry and error modelling
for a mobile robot. In Proceedings of International Conference on Robotics and
Automation, volume 4, pages 2783-2788. IEEE, 1997.

Nuwan Ganganath and Henry Leung. Mobile robot localization using odometry
and kinect sensor. In 2012 IEEE International Conference on Emerging Signal
Processing Applications, pages 91-94. IEEE, 2012.

Halil Soken and Shin-Ichiro Sakai. Magnetometer calibration for advanced small
satellite missions. In 30th International Symposium on Space Technology and
Science, 2015.

Manon Kok, Jeroen D Hol, and Thomas B Schon. Using inertial sensors for
position and orientation estimation. arXiv Preprint arXiv:1704.06053, 2017.

Martti Kirkko-Jaakkola, Jussi Collin, and Jarmo Takala. Bias prediction for
mems gyroscopes. [EEE Sensors Journal, 12(6):2157-2163, 2012.

Zhi-hua Lu, Meng-yao Zhu, Qing-wei Ye, and Yu Zhou. Performance analysis
of two em-based measurement bias estimation processes for tracking systems.
Frontiers of Information Technology € Electronic Engineering, 19(9):1151-1165,
2018.

Inchara Lakshminarayan and Divya Rao. Kalman filter based estimation of
constant angular rate bias for mems gyroscope. In Proceedings of IEEE TechSym
2014 Satellite Conference, VIT University, 03 2014.



[38]

[39]

[40]

[41]

[49]

[50]

39

Jonathan R Nistler and Majura F Selekwa. Gravity compensation in accelerom-
eter measurements for robot navigation on inclined surfaces. Procedia Computer
Science, 6:413-418, 2011.

Mark Pedley. Tilt sensing using a three-axis accelerometer. Freescale Semicon-
ductor Application Note, 1:2012-2013, 2013.

Heikki Hyyti and Arto Visala. A dem based attitude estimation algorithm for
low-cost mems imus. International Journal of Navigation € Observation, 2015.

Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52—
27, 2002.

Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction
to Autonomous Mobile Robots. MIT Press, 2011.

Héber Sobreira, Carlos M Costa, Ivo Sousa, Luis Rocha, José Lima, PCMA
Farias, Paulo Costa, and A Paulo Moreira. Map-matching algorithms for robot
self-localization: a comparison between perfect match, iterative closest point

and normal distributions transform. Journal of Intelligent € Robotic Systems,
93(3-4):533-546, 2019.

Jihoon Seong, Jiwoong Kim, and Woojin Chung. Mobile robot localization using
indistinguishable artificial landmarks. In 2013 10th International Conference
on Ubiquitous Robots and Ambient Intelligence (URAI), pages 222-224. IEEE,
2013.

Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics € Automation Magazine, 13(2):99-110, 2006.

Denis F Wolf and Gaurav S Sukhatme. Mobile robot simultaneous localization
and mapping in dynamic environments. Autonomous Robots, 19(1):53-65, 2005.

Jaromir Konecny, Michal Prauzek, and Jakub Hlavica. Icp algorithm in mobile
robot navigation: Analysis of computational demands in embedded solutions.
IFAC-PapersOnLine, 49(25):396-400, 2016.

Dirk Hahnel, Rudolph Triebel, Wolfram Burgard, and Sebastian Thrun. Map
building with mobile robots in dynamic environments. In 2003 IEEE In-
ternational Conference on Robotics and Automation (Cat. No. 03CH37/22),
volume 2, pages 1557-1563. IEEE, 2003.

Mina Henein, Gerard Kennedy, Viorela Ila, and Robert Mahony. Simulta-
neous localization and mapping with dynamic rigid objects. arXiv Preprint
arXiv:1805.03800, 2018.

Andress Nuchter, Hartmut Surmann, Kai Lingemann, Joachim Hertzberg, and
Sebastian Thrun. 6d slam with an application in autonomous mine mapping. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004, volume 2, pages 1998-2003. IEEE, 2004.



[51]

[52]

[53]

[54]

90

Jin Liang Li and You Xia Sun. Mapping of rescue environment based on ndt
scan matching. In Advanced Materials Research, volume 760, pages 928-933.
Trans Tech Publ, 2013.

Hugh Durrant-Whyte et al. Introduction to estimation and the kalman filter.
Australian Centre for Field Robotics, 28(3):65-94, 2001.

Lindsay Kleeman. Understanding and applying kalman filtering. In Proceedings
of the Second Workshop on Perceptive Systems, Curtin University of Technology,
Perth Western Australia (25-26 January 1996), 1996.

Francois Auger, Mickael Hilairet, Josep M Guerrero, Eric Monmasson, Teresa
Orlowska-Kowalska, and Seiichiro Katsura. Industrial applications of the kalman
filter: A review. IEEE Transactions on Industrial Electronics, 60(12):5458-5471,
2013.

Gabriel A Terejanu. Extended Kalman Filter Tutorial, Department of Computer
Science and Engineering, University at Buffalo. http://users.ices.utexas.
edu/~terejanu/files/tutorialEKF.pdf, 2008. [Online; accessed 16-July-
2020].

Joan Sola. Quaternion kinematics for the error-state kf. Laboratoire dAnalyse
et dArchitecture des Systemes-Centre National de la Recherche Scientifique
(LAAS-CNRS), Toulouse, France, Tech. Rep, 2012.

Mingyang Li and Anastasios I Mourikis. Improving the accuracy of ekf-based
visual-inertial odometry. In 2012 IEEFE International Conference on Robotics
and Automation, pages 828-835. IEEE, 2012.

Roger Labbe. Kalman and bayesian filters in python. https://github.com/
rlabbe/Kalman-and-Bayesian-Filters-in-Python, 2019. [Book Published
in Web, accessed 29-Jul-2020].

Huazhen Fang, Mulugeta A Haile, and Yebin Wang. Robust extended kalman fil-
tering for systems with measurement outliers. arXiv Preprint arXiv:1904.00335,
2019.

Antonio Ramoén Jiménez, Fernando Seco, José Carlos Prieto, and Jorge Guevara.
Indoor pedestrian navigation using an ins/ekf framework for yaw drift reduction
and a foot-mounted imu. In 7th Workshop on Positioning, Navigation and
Communication, pages 135-143. TEEE, 2010.

Hamza Benzerrouk, Alexander Nebylov, Hassen Salhi, and Pau Closas. Mems
imu/zupt based cubature kalman filter applied to pedestrian navigation sys-
tem. In Proceedings of International Electronic Conference on Sensors and
Applications, pages 1-7, 2014.


http://users.ices.utexas.edu/~terejanu/files/tutorialEKF.pdf
http://users.ices.utexas.edu/~terejanu/files/tutorialEKF.pdf
https://github. com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github. com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

[62]

[64]

91

Wenchao Zhang, Xianghong Li, Dongyan Wei, Xinchun Ji, and Hong Yuan. A
foot-mounted pdr system based on imu/ekf+ hmm+ zupt+ zaru+ hdr+ compass
algorithm. In 2017 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), pages 1-5. IEEE, 2017.

Andrea Bonarini, Wolfram Burgard, Giulio Fontana, Matteo Matteucci,
Domenico Giorgio Sorrenti, and Juan Domingo Tardos. Rawseeds: Robotics
advancement through web-publishing of sensorial and elaborated extensive data
sets. In Proceedings of IROS’06 Workshop on Benchmarks in Robotics Research,
2006.

Simone Ceriani, Giulio Fontana, Alessandro Giusti, Daniele Marzorati, Matteo
Matteucci, Davide Migliore, Davide Rizzi, Domenico G Sorrenti, and Pierluigi
Taddei. Rawseeds ground truth collection systems for indoor self-localization
and mapping. Autonomous Robots, 27(4):353-371, 2009.

Jiirgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of rgh-d slam systems. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
573-580. IEEE, 2012.

Navitec Systems. https://www.navitecsystems.com/. [Online; accessed
25-May-2020].


https://www.navitecsystems.com/

	Abstract 
	Preface
	Contents
	Symbols and abbreviations
	1 Introduction
	2 Sensors
	2.1 Reference Frames and Rotation Matrices
	2.2 Odometry
	2.2.1 Differential Drive Odometry
	2.2.2 Omnidirectional Odometry
	2.2.3 Odometry Output and Errors

	2.3 Inertial Measurement Unit
	2.3.1 Gyroscope
	2.3.2 Accelerometer

	2.4 Laser Scanner

	3 Kalman Filter
	3.1 Introduction to Kalman Filter
	3.2 Linear Discrete Time System and Observation Models
	3.3 Kalman Filter Algorithm
	3.3.1 Prediction Step
	3.3.2 Measurement Update Step
	3.3.3 Summary

	3.4 Extended Kalman Filter

	4 Localization System
	4.1 Prerequisites and Assumptions
	4.2 Kalman Filter Architecture
	4.3 State Model
	4.4 Prediction Model
	4.5 Measurement Models
	4.5.1 Laser Measurement Model
	4.5.2 Odometry Measurement Model
	4.5.3 Inertial Measurement Unit Measurement Model

	4.6 Additional Features
	4.6.1 Robust Laser Measurement Model
	4.6.2 Stationary Measurements
	4.6.3 Simplified 2D Model

	4.7 Handling Asynchronous Measurements

	5 Experiments and Results
	5.1 Validation of Filter Estimation
	5.1.1 Hardware and Sensor Setup
	5.1.2 Dataset Structure and Data Acquisition
	5.1.3 State Initialization and Parameter Selection
	5.1.4 Estimation with Fully Available Absolute Positioning
	5.1.5 Estimation with Partially Available Absolute Positioning
	5.1.6 Estimation in Absence of Absolute Positioning

	5.2 Real-Time Performance Analysis
	5.2.1 Experiment and Parameter Setup
	5.2.2 Estimation with Fully Available Absolute Positioning
	5.2.3 Estimation with Partially Available Absolute Positioning
	5.2.4 Estimation in Absence of Absolute Positioning

	5.3 Results and Discussion

	6 Conclusion and Future Work
	References

