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1. Introduction

Applications of Generalized Nash-Cournot equilibria concepts is increasing steadily in
the past 50 years. In general the objects of research are real-world applications or games
with some additional mathematical structure (Facchinei and Kanzow, 2007). In this paper
we propose new generalization of Nash-Cournot equilibrium which introduce an additional
criteria of security. We define the notion of threat and the notion of secure strategy which
are the basis of the model of cautious behavior. In many practical situations the security
considerations are indeed no less important than increasing profit. For example rational
players do not break the rules if the expected penalty exceeds the profit from breaking
the rules. In a similar way we assume that cautious player refuses from increasing his
profit if it creates threat to lose more. He would rather prefer the greatest possible secure
profit at a given strategies of other players. Taking into account this logic of behavior
one can discover equilibrium positions which sometimes can not be revealed by standard
logic of best responses. These equilibria positions we call Equilibria in Secure Strategies
(EinSS). The first formulation of EinSS was published in (Iskakov, 2005). In this paper
we present a reformulation of the concept and discuss all its aspects in detail. Generally
speaking, the EinSS is realized when all players maximize their profits under the condition
to avoid all threats from other players. We prove that any Nash-Cournot equilibrium is
an Equilibrium in Secure Strategies. However, the EinSS can exist in games that fail to
have Nash-Cournot equilibria as will be demonstrated by examples in this paper.

Our following step is to investigate the concept of the best secure response (BSR).
The Nash-Cournot equilibrium is the profile in which the strategy of each player is the
best response. In a similar way the strategy of each player in the EinSS turns out to be
the best secure response. However, the set of profiles of best secure responses (or BSR-
profiles) may be larger than the set of EinSS. An additional condition defined as stability
makes the two coincide. Thereby we prove that a BSR-profile is an Equilibrium in Secure
Strategies if and only if it is stable. This property provides a practical method for finding
the EinSS. First, all BSR-profiles are to be found, then the unstable BSR-profiles are to
be excluded.

The concept of the EinSS assumes that players make conjectures about the threats
of other players. Implicitly this implies that players may choose their actions non-
simultaneously. Therefore it would be interesting to find the game with minimal elements
of dynamics which would mimic the reasoning of the players in a similar way to the EinSS.
This investigation resulted in the concept of a game with an uncertain insider. Briefly it
can be formulated in the following way. All players simultaneously choose their strategies
in the original game and after that an ”insider” is chosen randomly among them and
has an opportunity to change his strategy. Nobody knows beforehand who is going to be
the insider (even the insider himself). We prove that the EinSS in the game is the Nash-
Cournot equilibrium of the corresponding game with an uncertain insider, if all players
resolve the uncertainty by the maximin criterion. However the set of equilibria in the
game with an uncertain insider is wider than the set of Equilibria in Secure Strategies.

In order to illustrate the practical value and adequacy of the proposed concept we
consider in this paper four classic games that fail to have Nash-Cournot equilibria without
using mixed strategies as was suggested by Dasgupta and Maskin (1986). The first one



is the Hotelling’s price game with a restricted reservation price and linear transportation
costs (1929) on an infinite line. We obtain solution in secure strategies for arbitrary
distance between two players. The second model is the Tullock Contest (Tullock 1967,
1980) of two players. The EinSS for arbitrary values of the power parameter can be found.
Depending on the power parameter there are three types of equilibria. Either it coincides
with the Nash-Cournot equilibrium found by Tullock (1980) or it corresponds to the
newly discovered monopolistic solution or it represents an intermediate case of equilibrium
of unequal or limited access. As the third example we consider the model of insurance
market suggested by Rothschild and Stiglitz (1976) and Wilson (1977). We prove that
the so-called ”Rothschild-Stiglitz-Wilson” contract pair is always an equilibrium in secure
strategies even when it is not a Nash-Cournot equilibrium. And finally we characterize
all equilibria in secure prices in the Bertrand-Edgeworth duopoly model. We find that in
those cases when Nash-Cournot equilibrium does not exist EinSS prices are lower than
the monopoly price.

The organization of the paper is as follows. In the next section the definitions of EinSS
are given. In Section 3 we introduce the concept of the best secure response profile and
investigate its relation to the EinSS. In Section 4 we discuss different ways of weakening of
the EinSS concept. Finally in Sections 5, 6, 7 and 8 we consider the Hotelling’s price game
on an infinite line, the Tullock Contest of two players, the model of insurance market of
Rothschild, Stiglitz and Wilson and the Bertrand-Edgeworth duopoly model.

2. Equilibrium in Secure Strategies

We consider n-person non-cooperative game in the normal form G = (i ∈ N, si ∈
Si, ui ∈ R). The concept of equilibria is based on the notion of threat and on the notion
of secure strategy.

Definition 1. A threat of player j to player i at strategy profile s is a pair of strategy
profiles {s, (s′j, s−j)} such that uj(s′j, s−j) > uj(s) and ui(s

′
j, s−j) < ui(s). The strategy

profile s is said to pose a threat from player j to player i.

Definition 2. A strategy si of player i is a secure strategy for player i at given
strategies s−i of all other players if profile s poses no threats to player i. A strategy profile
s is a secure profile if all strategies are secure.

In other words a threat means that it is profitable for one player to worsen the
situation of another. A secure profile is one where no one gains from worsening the
situation of other players.

Definition 3. A secure deviation of player i with respect to s is a strategy s′i such
that ui(s′i, s−i) > ui(s) and ui(s′i, s′j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of
player j 6= i to player i.

There are two conditions in the definition. In the first place a secure deviation
increases the profit of the player. In the second place his gain at a secure deviation covers
losses which could appear from retaliatory threats of other players. It is important to
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note that secure deviation does not necessarily mean deviation into secure profile. After
the deviation the profile (s′i, s−i) can pose threats to player i. However these threats can
not make his or her profit less than in the initial profile s. We assume that the player
with incentive to maximize his or her profit securely will look for secure deviations.

Definition 4. A secure strategy profile is an Equilibrium in Secure Strategies
(EinSS) if no player has a secure deviation.

There are two conditions in the definition of EiSS. There are no threats in the profile
and there are no profitable secure deviations2. The second condition implicitly implies
maximization over the set of secure strategies.

Let us now formulate the first important property of the EinSS concept.

Proposition 1. Any Nash equilibrium is an Equilibrium in Secure Strategies.

Proof. Since Nash equilibrium poses no threats so it is a secure profile. And no player in
Nash equilibrium can improve his or her profit using whatever deviation. Both conditions
of the EinSS are fulfilled. �

First this means that a Nash equilibrium is always secure profile in terms of the
proposed definitions. Second, the existence results can not be worse for EinSS than for
Nash equilibrium. Whenever a Nash equilibrium exists an EinSS also exists. However for
some practically important problems without Nash equilibrium (such as Hotelling’s model
and Tullock contest which will be considered in this paper) the EinSS exists and provides
an interesting interpretation.

Let us now consider a simple matrix game example having no Nash equilibrium in
order to illustrate the definitions introduced above:

t1 t2
s1 (1,1) (2,0)
s2 (2,2) (0,3)

One can find all threats in the game. First, the strategy profile (s2, t1) poses a threat
to player 1 as we move from payoffs (2, 2) to payoffs (0, 3). Second, the strategy profile
(s1, t2) poses a threat to player 1 as we move from payoffs (2, 0) to payoffs (1, 1). And
finally the profile (s2, t2) poses a threat from player 1 to player 2 as we move from payoffs
(0, 3) to payoffs (2, 0). In all three cases one player can make himself better off and
another player worse off. These threats in the game can be visualized graphically in the
following way:

(1,1) ← (2,0)
↑

(2,2) → (0,3)

2Some details on previously used form of definitions are included in the Appendix A for interested
readers.
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The only secure profile in the game (which is secure for both players) is the profile
(s1, t1) with payoffs (1, 1). If players were choosing best responses sequentially in the game
they would end up in an infinite cycle so that there is no Nash equilibrium. This situation
can change if we take into account the considerations of security. The profiles with payoffs
(2, 2), (0, 3) and (2, 0) can not be an equilibrium in secure strategies because they pose
threats. The profile (s1, t1) is the only secure profile in the game. The second player can
not increase his profit by any deviation from it. There is a profitable deviation for the
first player from this profile into the profile (s2, t1) with payoffs (2, 2). However it is not
a secure deviation since the first player can lose more after the response deviation of the
second player from the profile (s2, t1) with payoffs (2, 2) into the profile (s2, t2) with payoffs
(0, 3). Therefore no player has in the profile (s1, t1) a secure deviation and this profile is
an EinSS. This means that a cautious player would prefer the guaranteed payment of 1
in the (s1, t1) to the possibility of gaining 2 in (s2, t1) accompanied by a high-risk to get
zero in (s2, t2).

Let us now add additional row and column to the matrix of the previous game.

t1 t2 t3
s1 (1,1) (2,0) (-1,-1)
s2 (2,2) (0,3) (-1,-1)
s3 (-1,-1) (-1,-1) (0,0)

Now we have a Nash equilibrium with payoffs (0, 0) (perhaps, not a very good one!).
It is also an EinSS according to Proposition 1. Threats in this game are the same as in
the previous example. All newly added profiles are secure. Profiles with payoffs (−1,−1)
are secure only because they are the worst for both players, so they can not be EinSS.
Equilibtium (s3, t3) with payoffs (0, 0) is Pareto dominated by all other profiles of the
game. However there is a profile (s1, t1) which is still an EinSS and dominates (s3, t3).
This example shows that there may be games with Nash equilibrium which nevertheless
have another more reasonable solution given by an Equilibrium in Secure Strategies.

For some games the reverse of Proposition 1 is true. For instance for strictly
competitive games.

Proposition 2. Any Equilibrium in Secure Strategies in a strictly competitive game is
a Nash equilibrium.

Proof. Suppose there is an EinSS in a strictly competitive game which is not a Nash
equilibrium. Then there is at least one player who can increase his profit and there is at
least one player who will decrease his profit. Therefore the profile is not secure and can
not be EinSS. �

However this property may not hold if the condition of strict competitiveness is
weakened. For instance it does not hold for almost strictly competitive games introduced
by Aumann (1961) on the basis of the concept of twisted equilibrium. A twisted
equilibrium point in the two-player game is a pair of strategies at which neither player
can decrease the other player’s payoff by a unilateral change in strategy. A game is called
almost strictly competitive if (i) the set of payoffs vectors to Nash equilibrium strategy
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profiles is equal to the set of payoffs vectors to twisted equilibrium strategy profiles and
(ii) if the set of Nash equilibrium strategy profiles and the set of twisted equilibrium
strategy profiles intersect. Let us modify the previous matrix game in the following way:

t1 t2 t3
s1 (1,1) (2,0) (-1,1)
s2 (2,2) (0,3) (-1,1)
s3 (1,-1) (1,-1) (0,0)

It is an almost strictly competitive game. There is a unique Nash equilibrium profile
(s3, t3) with payoffs (0, 0) which at the same time is a unique twisted equilibrium. The
profile (s1, t1) with payoffs (1, 1) is still an EinSS. However it is not a Nash equilibrium.

3. Best Secure Response

The definition of EinSS implicitly implies maximization of payoff functions over the
set of secure strategies. We can therefore expect that the EinSS is an analogue of the
Nash equilibrium on a narrower set of strategies (the secure ones). In this case the EinSS
would be a profile in which the ”secure strategy” of each player is the best one in the
same way as the Nash equilibrium is a profile in which strategy of each player is the best
response. In order to clarify this question let us start with the rigorous definition of the
best secure response. Denote by Vi(s−i) the set of secure strategies of player i at given
strategies s−i of all other players. Notice that Vi(s−i) can be empty if all strategies of
player i are insecure at s−i.

Definition 5. A strategy s∗i of player i is a Best Secure Response to strategies s∗−i of
all other players if

s∗i ∈ Vi(s∗−i) and ui(s
∗) = max

si∈Vi(s∗−i)
ui(si, s

∗
−i).

A profile s∗ is the Best Secure Response profile (BSR-profile) if strategies of all
players are Best Secure Responses.

Let us now consider the following matrix game example.

t1 t2 t3
s1 (0,0) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

There are no Nash equilibria and no EinSS in the game. The profiles (s2, t1), (s2, t3),
(s3, t1), (s3, t2) are insecure for the first player. The profiles (s1, t2), (s1, t3), (s2, t2), (s3, t3)
are insecure for the second player. Therefore (s1, t1) is the only and the best secure profile
in the game. Are there any secure deviations from it? If the first player for example
deviates from the profile (s1, t1) with payoffs (0, 0) into profile (s2, t1) or (s3, t1) with
payoffs (2, 2) his new position will be subjected to threat of the second player. However
the expected loss from these threats (equal to 1) does not exceed the gain obtained at
deviation from (s1, t1) (equal to 2). Therefore deviations from (s1, t1) are secure for players
since no threats can make their payoffs less than zero payoffs in (s1, t1). Hence the profile
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(s1, t1) can not be stable situation in the game and it is not the EinSS. Based on this
example one can establish the following relationship between the BSR-profile and the
EinSS.

Proposition 3. Any Equilibrium in Secure Strategies is a BSR-profile. A BSR-profile
may not be an Equilibrium in Secure Strategies.

Proof. An EinSS is a secure profile by definition. And it must be the best secure response
for each player since otherwise there is a player who can increase his profit by secure
deviation. Therefore an EinSS is a BSR-profile. The reverse is not true. In the above
example the profile (s1, t1) is the BSR-profile. However it is not the EinSS. �

Corollary. Let MNE, MEinSS and MBSR be the sets of Nash Equilibria, Equilibria in
Secure Strategies and BSR-profiles respectively. Then MNE ⊆ MEinSS ⊆ MBSR. The
reverse inclusions generally do not hold.

Let us now take the previous matrix game example and increase payoffs in the profile
(s1, t1) and strengthen the threats:

t1 t2 t3
s1 (1,1) (2,2) (2,2)
s2 (2,2) (0,3) (3,0)
s3 (2,2) (3,0) (0,3)

Now the BSR-profile (s1, t1) with payoffs (1, 1) is an EinSS since deviations from it pose
threats to receive less payoffs than in the profile (s1, t1). These examples demonstrate the
property of BSR-profiles which makes the difference. In order to be EinSS the BSR-profile
has to satisfy an additional condition which we can define as stability. More precisely,

Definition 6. A BSR-profile is stable if there is no player i and deviation s′i such that
ui(s

′
i, s−i) > ui(s) and ui(s

′
i, s
′
j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of

player j 6= i to player i.

In the unstable BSR-profile at least one player has non-secure alternatives with threats
which in all cases are more profitable for him than staying in the initial BSR-profile. From
the above definitions 4, 8 and 9 it follows:

Proposition 4. A BSR-profile is an Equilibrium in Secure Strategies if and only if it is
stable.

Propositions 3 and 4 provide a practical method for finding EinSS. The BSR-profile is
a Generalized Nash Equilibrium concept and all the corresponding results and algorithms
of maximization can be applied to finding BSR-profiles. When all BSR-profiles are found,
then unstable BSR-profiles are to be excluded.
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4. Further Weakening of Equilibrium in Secure Strategies

4.1. Weak Equilibria in Secure Strategies

In the definition 3 we considered deviations with retaliatory threats bringing losses
which exactly cover the gain obtained at deviation as secure deviations. However these
deviations are intermediate as they lie on the boundary between secure and insecure
deviations. One can define them as a special class of secure deviations.

Definition 7. A secure deviation s′i of player i with respect to s is trivial if there is a
threat {(s′i, s−i), (s′i, s′j, s−ij)} of player j 6= i to player i such that ui(s′i, s′j, s−ij) = ui(s).

One can argue that profiles in which players can only make trivial secure deviations
could be still considered as weakly stable. If we consider these intermediate profiles as
weak equilibria we come to the concept of weak EinSS.

Definition 8. A secure strategy profile is a weak Equilibrium in Secure Strategies
if no player has a non-trivial secure deviation.

Obviously all EinSS are also weak EinSS. The following three matrix games illustrate
the concept of weak EinSS.

t1 t2 t3
s1 (0,0) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

t1 t2 t3
s1 (1,1) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

t1 t2 t3
s1 (1.5,1.5) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

The matrix game on the left has been already used as an example of the game without
EinSS. There is no weak EinSS either. In the matrix game on the right the payoffs for the
profile (s1, t1) are increased up to (1.5, 1.5) so that this profile becomes an EinSS. Let us
consider the matrix game in the middle which represents an intermediate case. Player 2
can deviate from profile (s1, t1) with payoffs (1, 1) into profile (s1, t2) with payoffs (2, 2).
However there is a retaliatory threat of player 1 to deviate into profile (s3, t2) with payoffs
(3, 1) which reduces payoff of player 2 back to 1, i.e. back to the same level as he had
in (s1, t1). Therefore the deviation of player 2 from (s1, t1) into (s1, t2) is a trivial secure
deviation according to Definition 7. One can see in a similar way that all deviations from
(s1, t1) are trivial secure deviations. Hence the profile (s1, t1) is not an EinSS because
there are secure deviations. At the same time it is a weak EinSS according to Definition
8 because all these secure deviations are trivial.

4.2. Game with Uncertain Insider

Players in the EinSS make conjectures about threats of other players. Implicitly it
implies that the players may choose their actions non-simultaneously. In Economics the
assumption of simultaneous and independent decision making by players is indeed a very
strong one. This raises natural questions about the relationship of the EinSS concept with
dynamic games (especially if there are more than two players). Let us try to find a game
with minimal elements of dynamics which would reproduce the reasoning of players in a

8



similar way as in the EinSS. Let us suppose that after the players simultaneously choose
their strategies an ”insider” is chosen randomly among them and has an opportunity to
change his strategy. Nobody knows beforehand who is going to be the insider (even the
insider himself). Let us suppose also that players adopt a cautious behavior with respect
to the actions of the insider.

Let us provide now a rigorous formulation. Take a non-cooperative game in the normal
form G = {N = {1, ..., n}, si ∈ Si, ui(s) ∈ R}. We define an associated sequential game.
During the first stage all players select simultaneously their strategies s = (s1, ..., sn). At
the second stage Nature chooses randomly the insider player number j0 ∈ N . Then finally
player j0 either keeps the same strategy sj0 or choose another one that would increase his
profit: s̃j0(s) ∈ Θj0(s) = {sj0} ∪ {s′j0 ∈ Sj0 : uj0(s

′
j0
, s−j0) > uj0(s)}. The final payoffs of

players are ui(s̃j0 , s−j0).
We assume further that all players adopt at the beginning a cautious behavior and

resolve uncertainty by the maximin criterion so that their payoff functions can be written
as ûi(s) = min

j∈N, j 6=i, s̃j∈Θj(s)
ui(s̃j, s−j) = min

j∈N, s̃j∈Θj(s)
ui(s̃j, s−j). This defines a game Ĝ =

{N, si ∈ Si, ûi ∈ R} that we call the game with an uncertain insider. The following
proposition establishes basic relationship between an EinSS and the corresponding game
with uncertain insider.

Proposition 5. An Equilibrium in Secure Strategies of the game G is a Nash equilibrium
of the corresponding game Ĝ with an uncertain insider.

Proof. Let s∗ be the EinSS of the game G. By the definition of EinSS there are no
threats in the profile s∗. Thus no deviation s̃j ∈ Θj(s

∗) of player j can decrease the
profit of other players, i.e. min

j∈N, s̃j∈Θj(s∗)
ui(s̃j, s

∗
−j) > ui(s

∗). Besides s∗j ∈ Θj(s
∗) and

min
j∈N, s̃j∈Θj(s∗)

ui(s̃j, s
∗
−j) 6 ui(s

∗). Therefore for all i we have ui(s∗) = ûi(s
∗).

Assume there is a deviation s′i of player i such that ûi(s
′
i, s
∗
−i) > ûi(s

∗), i.e.
min

j∈N,j 6=i,s′j∈Θj
ui(s

′
i, s
′
j, s
∗
−ij) > ûi(s

∗) = ui(s
∗). In particular this implies that

ui(s
′
i, s
∗
−i) > ui(s

∗) and ui(s
′
i, s
′
j, s
∗
−ij) > ui(s

∗) for any threat {(s′i, s∗−i), (s′i, s′j, s∗−ij)} of
player j 6= i to player i. According to the definitions 3 and 4 the player i can increase
his profit by secure deviation s′i and s∗ is not the EinSS. This is a contradiction, and
therefore our assumption was wrong. ûi(s′i, s∗−i) 6 ûi(s

∗) for all i and deviations s′i, i.e. s∗

is the Nash equilibrium of the game Ĝ with an uncertain insider. �

However the set of Nash equilibria in Ĝ is wider than the set of EinSS in G. This
can be seen if we come back to the matrix game from the previous section (without EinSS):

t1 t2 t3
s1 (0,0) (2,2) (2,2)
s2 (2,2) (1,3) (3,1)
s3 (2,2) (3,1) (1,3)

The profiles (s1, t2), (s1, t3), (s2, t1), (s3, t1) are Nash Equilibria in the corresponding
game Ĝ with uncertain insider but are not even secure in the original game G. The
following proposition characterize the set of Nash equilibria in Ĝ in case of secure profiles.
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Proposition 6. A secure profile in the game G is a Nash equilibrium of the game Ĝ if
and only if it is a weak Equilibrium in Secure Strategies in the original game G.

Proof. Let s∗ be a weak EinSS. By definition s∗ is a secure profile. Like in the previous
proposition for the secure profile s∗ we can prove that for all i: ui(s∗) = ûi(s

∗). Let us
consider arbitrary player i and his arbitrary change of strategy s′i. Either ui(s′i, s∗−i) 6
ui(s

∗) and ûi(s′i, s∗−i) 6 ui(s
′
i, s
∗
−i) 6 ui(s

∗) = ûi(s
∗). Or ui(s′i, s∗−i) > ui(s

∗) and there is
a threat (s′i, s

∗
−i) → (s′j, s

′
i, s
∗
−ij) of player j 6= i such that ui(s′j, s′i, s∗−ij) 6 ui(s

∗). Notice
that s′j ∈ Θj(s

′
i, s
∗
−i) and ûi(s′i, s∗−i) = min

j∈N, j 6=i, s′j∈Θj(s′i,s
∗
−i)
ui(s

′
j, s
′
i, s
∗
−ij) 6 ui(s

′
j, s
′
i, s
∗
−ij) 6

ui(s
∗) = ûi(s

∗). We have proved that in both cases ûi(s′i, s∗−i) 6 ûi(s
∗), i.e. s∗ is a Nash

equilibrium of the game Ĝ.
Let now s∗ be a Nash equilibrium of the game Ĝ. If s∗ is secure profile in the game

G we have for all i: ui(s∗) = ûi(s
∗). Let us assume that player i has a non-trivial secure

deviation s′i. This implies that for any s′j ∈ Θj(s
′
i, s
∗
−i): ui(s′j, s′i, s∗−ij) > ui(s

∗). Therefore
û(s′i, s

∗
−i) = min

j∈N, j 6=i, s′j∈Θj(s′i,s
∗
−i)
ui(s

′
j, s
′
i, s
∗
−ij) > ui(s

∗) = ûi(s
∗) and profile s∗ can not be

Nash equilibrium of the game Ĝ. This is a contradiction, and therefore our assumption
was wrong. No player has a non-trivial secure deviation in s∗. Profile s∗ is a weak
Equilibrium in Secure Strategies. �

The model of the game with uncertain insider gives another (dynamic) approach to
the concept of EinSS. An EinSS is an equilibrium in the game of cautious players with the
minimal dynamics introduced by the possibility to change strategy of one random player,
unknown in advance.

4.3. Games with more than two players

Definitions 1-4 of EinSS are based on the analysis of pairwise interaction of players.
Nevertheless the threats in the game may take more complicated forms. This raises the
question if the EinSS can adequately describe the collective behavior of many players.
In this section we show how our concept can be weakened in order to take into account
simultaneous and independent actions of several players.

Let us first consider the following illustrative matrix game example. The first player
chooses the matrix (r1 or r2), the second chooses the row (s1 or s2) and the third chooses
the column (t1 or t2).

r1 :
t1 t2

s1 (1,0,0) (1,0,0)
s2 (1,0,0) (1,0,0)

r2 :
t1 t2

s1 (2,0,0) (2,0,1)
s2 (2,1,0) (-1,-1,-1)

To make this example more obvious we will call it ”the game with rescue boat at
shipwreck”. The first player (the boat captain) has two strategies: r1 - keep the boat for
himself and r2 - provide place in the rescue boat for other players. Players 2 and 3 have
two strategies: s1, t1 - avoid the rescue boat and s2, t2 - try to get place in the rescue
boat. The rescue boat sinks with all players at profile (r2, s2, t2) when all players get place
in the boat. There are no threats in the game according to an formal definition. There
are three EinSS: (r1, s2, t2), (r2, s1, t2), (r2, s2, t1) which are also Nash equilibria. If we
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assume that players 2 and 3 take their actions sequentially then the game will be set
either in the equilibrium profile (r2, s1, t2) or in the equilibrium profile (r2, s2, t1) which
implies two players on board and one player trying to save his life by himself. Let us
now consider deviation of the first player from (r1, s1, t1) into (r2, s1, t1) as we move from
payoffs (1, 0, 0) to payoffs (2, 0, 0). Formally it is a secure deviation for the first player
since there are no individual threats of other players to him in his new position. The
profile (r1, s1, t1) is not formally an EinSS. However if we assume that players 2 and 3
would take their actions simultaneously and independently (which is probably the case
at the shipwreck) they will end up in the profile (r2, s2, t2) and would not only do harm
to player 1 but also to themselves. Therefore if player 1 takes into account the possibility
of simultaneous and independent actions of players 2 and 3 then he would not consider
deviation (r1, s1, t1) → (r2, s1, t1) as a secure one. He would rather consider the profile
(r1, s1, t1) as an equilibrium in the generalized sense.

The concept of EinSS in our current formulation takes into account only individual
deviations and hence can not treat this effect properly. Perhaps in its current formulation
it also can not describe properly games with multiple players creating small threats which
can be ignored individually but taken together become crucial. However these threats
which arise as the result of simultaneous and independent actions of many players could
be taken into account by an appropriate extension of the concept of secure deviation.

Definition 3′. A secure deviation of player i with respect to s is a strategy s′i such
that ui(s′i, s−i) > ui(s) and, whenever ul(s′i, s′l, s−il) > ul(s

′
i, s−i) for all l in some set

N ′ = {j, ..., k}, i /∈ N ′, then ui(s′i, s′j, ..., s′k, s−ij...k) > ui(s).

The Definition 3′ sets more restrictive conditions for the secure deviation and
corresponds to a more cautious behavior. This modification reduces the number of secure
deviations for a given profile. All EinSS according to the Definitions 1− 4 would still be
EinSS after changing the Definition 3 for the Definition 3′. However some ”new” EinSS
appear which correspond to the possibility of threats from simultaneous and independent
actions of other players. It is important to notice that these other players according to
Definition 3′ do not take into account the behavior of each other. Therefore their behavior
represents rather the behavior of a crowd than a collusion in a group of players. Indeed
the crowd behavior plays an important role in many practical situations when analyzing
security which justifies our modification.

5. EinSS in the Hotelling’s Model

To illustrate the concept of EinSS we examine the classic model of spatial competition
between two players formulated by Hotelling (1929). The principal theoretical problem of
this model is that for a great variety of transportation cost functions no price equilibrium
exists. In particular, D’Aspremont et al. (1979) showed that in the original Hotelling’s
game with linear transportation costs there is no price equilibrium when duopolists
choose locations too close to each other. The following matrix game example can be
considered as an illustration for the Hotelling’s game:
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t1 t2 t3
s1 (2,2) (3,3) (8,0)
s2 (3,3) (4,4) (5,5)
s3 (0,8) (5,5) (6,6)

There is no Nash equilibrium in this matrix game as well. The incentive to maximize
profits impels players to choose strategies with a higher number. However if at least one
player chooses the third strategy it makes profitable for his competitor to choose the first
strategy and leave the first player with zero profit. The first player can in turn choose the
strategy with a lower number and get positive profit again. The highest possible secure
profits are reached at the profile with payoffs (4, 4) which is the EinSS.

This corresponds to the situation in the Hotelling’s price game when one player
can undercut his rival’s price and take away his entire business with profit to himself.
However the player pressed out of the market can decrease his price and regain some
positive profit. Although the Hotelling’s game has no Nash price equilibrium when players
choose locations too close to each other it does have just like the above matrix game an
equilibrium in secure strategies. The solution of the Hotelling’s price game in secure
strategies in the original setting was presented in M.Iskakov and A.Iskakov (2012). In the
particular case of the discrete Hotelling’s problem an equilibrium concept which coincides
with the EinSS was published in Shy (2002). In this paper we provide solution in secure
strategies of the Hotelling’s price game with a restricted reservation price on an infinite
line.

On an infinite line two sellers of a homogeneous product with zero production cost
are located at the distance δ from each other. The sellers maximize profits by setting
prices p1, p2 noncooperatively. Customers are evenly distributed with a unit density along
the line. When buying from one of the sellers the consumer bears a transportation cost
which is linear in the distance. The transportation rate is t. A customer purchases from
the seller who quotes the lower full price (including transportation). In contrast to the
original version of Hotelling’s model we assume that the customer refrains from buying if
the full price exceeds his reservation price v. The sold quantities are equal respectively to
the lengths of intervals with the customers choosing the corresponding seller. Therefore
the profit functions of the firms are:

(1)

ũ1(p̃1, p̃2) =


ũI1 = 2p̃1 (v − p̃1) /t, p̃1 < p̃2 − δt
ũII1 = p̃1(v − p̃1+

+ min{v − p̃1,
δt+p̃2−p̃1

2
})/t, |p̃1 − p̃2| 6 δt

0, p̃1 > p̃2 + δt

ũ2(p̃1, p̃2) =


ũI2 = 2p̃2 (v − p̃2) /t, p̃2 < p̃1 − δt
ũII2 = p̃2(v − p̃2+

+ min{v − p̃2,
δt+p̃1−p̃2

2
})/t, |p̃1 − p̃2| 6 δt

0, p̃2 > p̃1 + δt

These expressions can be simplified if we make the following change of variables:

(2) u = ũt/v2, p = p̃/v, d = δt/v

In this dimensionless form profit functions (1) can be written as:
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(3)

u1(p1, p2) =


uI1 = 2p1 (1− p1) , p1 < p2 − d
uII1 = p1(1− p1+

+ min{1− p1,
d+p2−p1

2
}), |p1 − p2| 6 d

0, p1 > p2 + d

u2(p1, p2) =


uI2 = 2p2 (1− p2) , p2 < p1 − d
uII2 = p2(1− p2+

+ min{1− p2,
d+p1−p2

2
}), |p1 − p2| 6 d

0, p2 > p1 + d

Dimensionless prices and payoffs depend upon only one free parameter d instead of
three parameters δ, v, t. In order to find equilibria in secure strategies in the dimensionless
Hotelling’s game (3) one can first analyze the threats and identify the secure profiles.
Then one can find the Best Secure Response functions, identify BSR-profiles and select
the stable ones. According to Propositions 3 and 4 they will correspond to the Equilibria
in Secure Strategies. The obtained result is summarized in the following proposition.

Proposition 7. The dimensionless Hotelling’s price-setting game {i ∈ {1, 2}, pi ∈
[0, 1], ui(p1, p2) ∈ R} on an infinite line with a restricted reservation price and the profit
functions (3) has the following solution in secure strategies depending on the distance d
between the sellers:

when d ∈

[
0,

10
√

10− 14

67

]
≈ [0, 0.263] :(4a)

p∗1 = p∗2 = p∗ =
2 + 7d−

√
17d2 − 4d+ 4

4
,

u∗1 = u∗2 = 2(p∗ − d)(1− p∗ + d);

when d ∈

[
10
√

10− 14

67
,
6

7

]
:(4b)

p∗1 = p∗2 = p∗ =
2 + d

5
, u∗1 = u∗2 =

3

2
p∗2;

when d ∈
[

6

7
, 1

]
- multiple solutions :(4c)

max

{
1

2
,
10

7
− d
}
6 p∗1 6 min

{
4

7
,
3

2
− d
}
,

p∗2 = 2− d− p∗1, u∗i = 2p∗i (1− p∗i ), i ∈ {1, 2};
when d > 1 : p∗i = u∗i = 0.5, i ∈ {1, 2}.(4d)

Proof. See Appendix B. �

Corollary. The Hotelling’s price-setting game {i ∈ {1, 2}, p̃i ∈ [0, v], ũi(p̃1, p̃2) ∈ R} on
an infinite line with a restricted reservation price v and the profit functions (1) has the
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Fig. 1: The equilibrium secure prices (P) and profits (U) in the price Hotelling’s game
on an infinite line depending on the distance d between the stores.

following solution in secure strategies depending on δ, v, t:

(5) ũ(δ, v, t) =
v2

t
u

(
δt

v

)
, p̃(δ, v, t) = vp

(
δt

v

)
where u(d) and p(d) is given by (4).

Proof is given by inverse change of variables in relation to (2). �

The dependence (4) of the equilibrium prices and profits from the distance between
the stores is shown in Fig.1 for dimensionless price game. The shaded area corresponds to
the multiple solutions. The analysis of the price competition on a line in secure strategies
allows to distinguish four qualitative cases of interaction between competitors. When
they are situated very close (the area BC in Fig.1) both players are limited by the threat
of mill-price undercutting. The corresponding Equilibrium in Secure Strategies (4a) can
be interpreted as the Bilateral Containment equilibrium (or BC-Equilibrium). Under the
threat of being driven out of the market by undercutting the equilibrium prices in the
BC area are much lower as compared Hotelling price equilibrium. In the second area (the
area H in Fig.1) the Nash equilibrium (4b) found by Hotelling is realized. One can call
it the Hotelling Equilibrium (or H-Equilibrium). In the third area (the area B in Fig.1)
the competition reaches the multiple Nash equilibria (4c). They can be called Borderline
Equilibria or B-Equilibria and interpreted as a division of spheres of influence on the
border of trade zones of players. And finally in the fourth area when d > 1 the local
monopoly (4d) is realized when trade zones of players are not intersected. One can call it
the Independent Price Equilibrium (or I-Equilibrium).

Let us consider multiple price equilibria in the area B. The full price on the border
of trade zones of players reaches in B-equilibrium exactly the reservation price. The
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equilibrium payoff function can be calculated through equilibrium price according to
(4c) as u∗ = 2p∗(1− p∗). It is not profitable for player to raise the price and break away
from trade zone of the rival when ∂u

∂p
|p=p∗+0 = 2(1 − 2p∗) < 0, i.e. when p∗ > 1

2
. It is

not profitable for player to lower the price and take market share from the rival when
∂u
∂p
|p=p∗−0 = 4−7p

2
> 0, i.e. when p∗ 6 4

7
. Hence inside the price interval 1

2
6 p∗ 6 4

7
we

obtain multiple price equilibrium solutions for both players.

6. EinSS in the Tullock Contest3

In the Tullock Contest n players compete for a prize and each player exerts effort xi
so as to increase his probability of winning xi/

∑n
j=1 xj (Tullock, 1967, 1980). Scaperdas

(1996) suggested a more generalized form of the game with the expected profits of players
xαi /

∑n
j=1 x

α
j − xi, α > 0. The detailed analysis of the game in terms of secure strategies

will be provided in our new publication (M.Iskakov, A.Iskakov, A.Zaharov, 2012). Here we
consider the Tullock Contest of two players to illustrate the EinSS concept. The players
exert efforts x1 and x2. The contest is supposed to be fair and the payoff functions of
players are taken as:

(6) u1 =
xα1

xα1 + xα2
− x1, u2 =

xα2
xα1 + xα2

− x2, α > 0

This game reaches the unique Nash equilibrium (α/4, α/4) when α 6 2 and there is no
equilibrium when α > 2.

The following matrix game example can be considered as an illustration for the
Tullock Contest of two players.

t1 t2 t3
s1 (0,0) (0,4) (0,3)
s2 (4,0) (2,2) (-1,-1)
s3 (3,0) (-1,-1) (-2,-2)

There is Nash equilibrium (s2, t2) in this game when players get equal payoffs (2, 2).
There are also two EinSS (s1, t3) and (s3, t1) in which one player gains 3 and the other
player has to be content with zero payoff to avoid losses. Formally the first player could
deviate from (s3, t1) into (s2, t1) increasing his payoff from 3 to 4. But he would prefer not
to do it since it is not secure deviation and the other player would in turn bring the game
into the Nash equilibrium (s2, t2) with equal payoffs (2, 2). This example shows that even
if there is a unique Nash equilibrium (which seems to complete the study of the game)
there may be additional equilibria in secure strategies which significantly alter the overall
picture. In the given case there are three stable profiles which have different values for
players. Which of them will be realized in the game is not predetermined and each player
is interested in the profile favorable to him (like in the game of battle of the sexes).

In the Tullock Contest the equilibria from the above matrix game correspond to the
EinSS of the two possible types. One of them coincides with the Nash equilibrium found
by Tullock (1980). The other two equilibria correspond to the monopolistic EinSS. In
these equilibria the winning monopolist fixes high enough payment for the rent to create

3The results of this section were obtained with participation of Alexey Zakharov.
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the entrance barrier for the other player making him unprofitable to participate in the
competition.

The general algorithm of finding solution in secure strategies is following. First the
set of secure profiles is found as well as the best secure responses of players. Then the
BSR-profiles are found as an intersection of the best secure responses of players plotted
in the plane of strategies (x1, x2). And finally the conditions of the EinSS are checked for
these BSR-profiles.

Secure profiles and BSR-profiles for two players in Tullock Contest are shown in the
plane of strategies (x1, x2) in Fig.2. The shaded (gray) area corresponds to secure profiles.
The solid points and curves represent BSR-profiles. The analysis of the Tullock Contest of
two players in terms of secure strategies can be summarized by the following proposition.

Proposition 8. When 0 < α < 1 the Tullock Contest (6) of two players reaches the
following unique equilibrium in secure strategies (which is also Nash equilibrium):

(7) {(α/4, α/4)}.

When 1 6 α 6 2 the Tullock Contest (6) reaches the following equilibria in secure
strategies (the first profile is a Nash equilibrium):

{(α/4, α/4)} ∪ {(0, x̄)} ∪ {(x̄, 0)} ,(8)

where x̄ =
1

α
(α− 1)

α−1
α , α > 1 and x̄ = 1, α = 1

and all other equilibria in secure strategies lie on the curve:{
(x1, ξ

+(x1)) :
α− 1

α
6 x1 6

α

4

}
∪
{

(ξ+(x2), x2) :
α− 1

α
6 x2 6

α

4

}
,(9)

where ξ+(xi) ≡
(
xα−1
i

2

(
α− 2xi +

√
α2 − 4αxi

))1/α

, max

{
0,
α2 − 1

4α

}
6 xi 6 α/4.

When α > 2 the Tullock Contest (6) reaches only two monopolistic equilibria in secure
strategies (which are not Nash equilibria):

(10) {(0, x̄)} ∪ {(x̄, 0)} .

Proof. For a sketch of the proof see Appendix C. Full proof see in (M.Iskakov, A.Iskakov,
A.Zaharov, 2012). �

Remark. Our numerical computations showed that all points on the curve (9) are in
fact multiple equilibria in secure strategies.

One can easily check that when 1 6 α / 1.08 all other EinSS are Pareto dominated by
the Nash equilibrium (α/4, α/4). When 1.08 / α < 2 the two monopolistic EinSS coexist
with (but are not dominated by) the symmetric Nash equilibrium in a similar way as
they coexist in the matrix game example considered before. The difference however with
the matrix game is the intermediate EinSS lying on the curve (9). One can easily verify
that when α / 1.22 all these equilibria are Pareto dominated by the Nash equilibrium
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Fig. 2: Secure profiles (gray area) and BSR-profiles (solid points and curves) for two
players in Tullock Contest depending on the parameter α: α < 1 (left), 1 6 α 6 2 (right)

and α > 2 (center). x̄ ≡ 1
α

(α− 1)
α−1
α , α > 1 and x̄ = 1, α = 1.
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(α/4, α/4). However when 1.22 / α 6 2 they can be interpreted as an intermediate
type of solutions when players participate in the contest non-symmetrically. One (the
”stronger”) player with larger level of effort chooses his strategy x and another (the
”weaker”) player adjust his strategy by choosing his best response (ξ+)−1(x) at a given x.
The weaker player always gains less than the stronger player and less than he would gain
in the symmetric Nash equilibrium. The payoff of weaker player monotonically decrease
from his payoff in the Nash equilibrium to zero with the increase of the effort of stronger
player. One can show that if α >

√
2 ≈ 1.41 the payoff of stronger player monotonically

increases along the curve (9) with the increase of his effort. Therefore the intermediate
EinSS lying on the curve (9) can be considered as positions which in terms of profitability
are in between the Nash equilibrium and the monopolistic EinSS. The stronger player
continuously increases his payoff and weak player continuously decreases his payoff up to
the point (α−1

α
, 1
α

(α−1)(α−1)/α) in which the weak player leaves the contest and the strong
player settles himself in the monopolistic EinSS.

The monopolistic EinSS is a new type of equilibria in the Tullock game of the rent-
seeking. In these equilibria the player prefer to fix his or her secure monopolistic position
rather than to participate in the competition. Moreover when power parameter α > 2 the
monopolistic situation is the only stable position in the game in terms of secure strategies.
The logic of the best responses can not reveal the possibility of such kind of equilibria
since it does not take into account the security considerations and assumes the player
would choose the most profitable but insecure and possibly eventually not-profitable for
him strategy.

The power parameter α can be interpreted as stiffness of competition in the rent-
seeking game. There is an egalitarian distribution of rent at α 6 1, i.e. the probability to
win for the player paying less is more than proportional to his contribution. Following the
classification of North, Wallis and Weingast (2009) we can interpret the corresponding
Nash equilibrium as an equilibrium of an open access. If α > 2 then the competition rules
are strongly differentiating. The chances to win for players contributing small payments
are much less than proportional to their contributions. The only possible equilibrium in
this case can be interpreted as an equilibrium of the privileged monopoly which fixes access
to resources or institutions to one player. In the intermediate case of 1 6 α 6 2 the rules of
competition are weakly differentiating and there are possibilities both for the equilibrium
of an open access and for the equilibrium of the privileged monopoly. Furthermore there
are also intermediate equilibria which could be interpreted as equilibria of unequal or
limited access.

7. EinSS in the model of insurance market

In this section we consider a model of insurance market suggested by Rothschild and
Stiglitz (1976) and Wilson (1977) and show that it always has an equilibrium in secure
strategies.

Two insurance companies sell insurance contracts to consumers which fall into two
classes: nH high risk consumers and nL low risk consumers. High risk consumers have
accidents with probability pH and low risk consumers with probability pL < pH . All
consumers have the same strictly positive initial endowment w = (w1, w2) ∈ R2

representing their income in the two states of nature: that of having an accident (w2)
and that of not (w1). Preferences of all consumers are represented by the same strictly
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concave utility function u. Each insurance contract is a vector c = (c1, c2) ∈ R2, where c1

is the insurance premium and c2 is the accident benefit net of premium. The endowment
of consumer with insurance contract becomes (w1−c1, w2 +c2). Consumers of a given risk
class j buy at most one insurance contract c (if they prefer it to their initial endowment
w) which maximizes their expected utility:

(11) Vj(c) = pju(w2 + c2) + (1− pj)u(w1 − c1), where j = H or L

Each insurance company offers a pair of contracts (cH , cL), where without loss of generality
one can assume that high risk consumers find cH at least as desirable as cL and low risk
consumers find cL at least as desirable as cH . The expected profit of the company from
the contract cj = (cj1, c

j
2) sold to a customer of class j,

(12) πj(c
j) = −pjcj2 + (1− pj)cj1, where j = H or L

Suppose that company 1 offers contracts (cH(1), cL(1)) and company 2 (cH(2), cL(2)).
Then the expected profit of company 1 is

(13) U1 =
∑
j=H,L


njπj(c

j(1)), if Vj(c
j(1)) > Vj(c

j(2))
1
2
njπj(c

j(1)), if Vj(c
j(1)) = Vj(c

j(2))

0, otherwise

And expected profit of company 2 is defined symmetrically.
The detailed interpretation and investigation of this model can be found in Rothschild

and Stiglitz (1976) and Wilson (1977). In particular it was proven that, if a pure strategy
equilibrium exists, both companies must offer the same contract pair c∗ = (c∗H , c∗L)
satisfying w2 + c∗H2 = w1− c∗H1 (i.e. high risks are perfectly insured), πH(c∗H) = πL(c∗L) =
0 (i.e. customers of each risk class generate zero expected profits for companies) and
VH(c∗H) = VH(c∗L) (i.e. high risk customers are indifferent between the low risk contract
and their own). Following Dasgupta and Maskin (1986) we will call contract pair c∗ a
”Rothschild-Stiglitz-Wilson” or RSW contract pair. However if there is a sufficiently high
proportion of low risk customers one company can deviate from c∗ and earn positive profit.
It can offer a ”pooling” contract c∗∗ that both high and low risk customers prefer to c∗.
It was proven that there is no Nash equilibrium in this case. We can show however that
contract pair c∗ in this situation is still an equilibrium in terms of secure strategies.

Proposition 9. A RSW contract pair c∗ is always an Equilibrium in Secure Strategies
in the insurance market game.

Proof. In our proof we will follow the graphical procedure introduced in Rothschild and
Stiglitz (1976). In Fig.3 the horizontal and vertical axis represent income of customers
in the states of no accident and accident respectively. The point E with coordinates
w = (w1, w2) is the uninsured state of customer. Purchasing the insurance contract c =
(c1, c2) moves the individual from E to the point (w1 − c1, w2 + c2). The set of insurance
contracts for low-risk customers that break even in the conditions of free entry and perfect
competition lies on the line EL. The set of contracts for high-risk customers lies on the
line EH respectively. If company offers a ”pooling” contract which is the same for both
groups (such that cH = cL) in case of equilibrium it shall lie on the market odds line EF .
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Fig. 3: Deviations from RSW solution (c∗H , c∗L) are not secure. Both ”pooling”
deviation γ (on the left) and separating deviation (c′H , c′L) (on the right) pose a threat

γ′ to receive negative payoff.

A pair of contracts (c∗H , c∗L) in Fig.3 represents a RSW solution of the insurance market
game. The indifference curves through c∗H and c∗L for high-risk and low-risk customers
UH and UL are shown by broken lines.

Let us consider position when both insurance companies offer the RSW contract c∗ and
obtain zero payoffs. If it is a Nash equilibrium it is also an EinSS according to Proposition
1. Consider the case when c∗ is not a Nash equilibrium. It is still a secure profile since
any change in the insurance policies of one company will not bring losses to the other
company. Its payoffs will still remain zero. Suppose one company can deviate by offering a
new insurance policy. It is either (A) a ”pooling” insurance contract or (B) a separating
insurance contract.

(A) If it is a pooling contract γ it must lie above the low-risk indifference curve UL
through c∗L in order to be profitable for both low- and high-risk customers (see Fig.3 on
the left). A deviating company can make a positive profit only if γ lies below the market
odds line EF in the shaded area. Let us draw the indifference curves U ′H and U ′L for low-
risk and high-risk customers through γ. Then the second company as a response to γ can
offer a pooling contract γ′ between curves U ′H and U ′L somewhere to the right from the γ
and below low-risk line EL. In this case all low-risk customers would choose γ′ and the
second company could make a profit. All high-risk customers would stay with γ contract
and the first company would lose money. Hence there is a retaliatory threat to deviate
into γ′ such that the deviating company loses more money than it gains at deviation γ.
Therefore offering pooling contract γ is not a secure deviation.

(B) Let us now assume that a deviating company offers a new separating contract
(c′H , c′L) which is more profitable than (c∗H , c∗L) (see Fig.3 on the right). If it is more
profitable for low-risk customers it also must be more profitable for high-risk customers
(since in this case they always prefer c′L to c∗H). In order to be more profitable for
high-risk customers c′H must lie above the high-risk indifference curve UH through
c∗H . Therefore c′H also lies above high-risk line EH and makes a loss for a deviating
company. Consequently c′L must lie below low-risk line EL and make a profit for a
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deviating company. In this case profits from c′L subsidize the losses of c′H and (c′H , c′L)
can be more profitable than the RSW solution (c∗H , c∗L). Let us draw the indifference
curves U ′H through c′H . Then the second company as a response to (c′H , c′L) can offer
a pooling contract γ′ at the intersection of U ′H with low-risk line EL. In this case all
low-risk customers would choose γ′ and the second company could make a profit. All
high-risk customers would stay with (c′H , c′L) contract and the deviating company would
lose money. Hence there is a retaliatory threat to deviate into γ′ such that the deviating
company loses more money than it gains at deviation into (c′H , c′L). Therefore offering
separating contract (c′H , c′L) is not a secure deviation either. No company can make a
secure deviation from (c∗H , c∗L). Therefore it is an EinSS. �

For the described model Wilson (1976) introduced and analyzed an equilibrium
concept based on the following assumption. Each insurance company believes that after
offering its contract, the other company would immediately withdraw any unprofitable
contract. Under this assumption an equilibrium in the insurance market game always
exists. In contrast to the Wilson approach we assume that companies take into account all
threats existing in the game, i.e. companies take into account the possibility of any change
of policy by the rival company and not only the possibility to withdraw the unprofitable
insurance contract. As a result our concept provides a different equilibrium solution which
corresponds to more cautious behavior.

8. EinSS in the Bertrand-Edgeworth duopoly model

In this section we consider a model of price setting duopolists with capacity constraints
originated in papers of Bertrand (1883) and Edgeworth (1925). We consider the market
for some homogeneous product with a continuous strictly decreasing consumer’s demand
function D(p). There are two firms in the industry i = 1, 2, each with a limited amount
of productive capacity Si such that D(0) > S1 + S2. Firms choose prices pi and play
non-cooperatively. The firm quoting the lower price serves the entire market up to its
capacity and the residual demand is met by the other firm. All consumers are identical
and choose the lower available price on a first-come-first-serve basis. Following Shubik
(1959) and Beckmann (1965) we assume in our analysis that the residual demand to the
firm quoting the higher price is a proportion of total demand at that price. If duopolists
set the same prices firms share the market in proportion to their capacities. Formally we
define the payoff functions of players to be:

(14)

u1(p1, p2) =


p1 min{S1, D(p1)}, p1 < p2

p1 min{S1,
S1

S1+S2
D(p1)}, p1 = p2

p1 min{S1,
D(p1)
D(p2)

max{0, D(p2)− S2}}, p1 > p2

u2(p1, p2) =


p2 min{S2, D(p2)}, p2 < p1

p2 min{S2,
S2

S1+S2
D(p2)}, p2 = p1

p2 min{S2,
D(p2)
D(p1)

max{0, D(p1)− S1}}, p2 > p1

It is well known that the model of Bertrand-Edgeworth may not posses a Nash
equilibrium (see e.g. d’Aspremont and Gabszewicz (1980)). We will show that in some of
these cases there is an Equilibrium in secure strategies. However for some (big enough)
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capacities EinSS does not exist either.

Proposition 10. Let the receipt function pD(p) be strictly concave and reach its
maximum at pM . Then in the game of Bertrand-Edgeworth with payoff functions (14)
there is an EinSS (p∗, p∗) where D(p∗) = S1 + S2 if and only if

(15)

arg max
p>0
{p(D(p)− S1)} 6 p∗

arg max
p>0
{p(D(p)− S2)} 6 p∗

If p∗ > pM it is a Nash equilibrium. There are no other EinSS in the game.

Proof. Since the receipt function pD(p) is strictly concave then the function p(D(p)−S)
at a given S is also strictly concave in p and reaches the unique maximum at p > 0.
Therefore arg max

p>0
{p(D(p) − S)} can be considered as a function of S. The proof see in

Appendix D. �

Corollary. If function pD(p) is differentiable the condition (15) is equivalent to

(15’)
d

dp

(
pD(p)

)∣∣∣
p=p∗
6 min{S1, S2}

Proof. One can easily check that p̂ = arg max
p>0
{p(D(p)− S)} <=> d

dp

(
pD(p)

)∣∣∣
p=p̂

= S.

Besides d
dp

(
pD(p)

)
is strictly decreasing. Therefore p̂ 6 p∗ <=> d

dp

(
pD(p)

)∣∣∣
p=p∗

6

d
dp

(
pD(p)

)∣∣∣
p=p̂

= S. Hence the equivalence of (15) and (15’). �

As an example let us consider the demand functionD(p) = 1−p. Then p∗ = 1−S1−S2,
arg max

p>0
{p(D(p)− S)} = 1−S

2
and conditions (15) takes the form:

(16) S1 + 2S2 6 1 and S2 + 2S1 6 1

Equilibria in secure prices in the space of capacity parameters (S1, S2) are shown in Fig.4.
The profile (p∗, p∗) is a Nash equilibrium if S1+S2 6 1

2
(dark gray area). Under the weaker

conditions (16) it is an EinSS. The area of EinSS which are not Nash equilibria are shaded
by light gray in Fig.4. If conditions (16) do not hold this profile is no longer an EinSS and
corresponds to an unstable BSR-profile. The found solution can be compared with the
price which would maximize the joint profits in the industry pM = max{1−S1−S2,

1
2
}. If

Nash equilibrium exists (i.e. if S1+S2 6 1
2
) then both equilibrium prices coincide. However

if EinSS exists and Nash equilibrium does not exist (i.e. if S1 + S2 >
1
2
and (16) holds)

both EinSS prices p∗ = 1− S1 − S2 are lower than the monopoly price pM = 1
2
. One can

interpret the price difference S1 + S2 − 1
2
as an additional payment for the preservation

of security in the situation when players take into account mutual threats and behave
cautiously.
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Fig. 4: Equilibria in secure prices in the Bertrand-Edgeworth duopoly model with
D(p) = 1− p in the space of capacity parameters (S1, S2). Dark gray area: EinSS which
coincide with Nash equilibria. Light gray area: EinSS which are not Nash equilibria.

Conclusion

The article presents a new concept of equilibrium, that of Equilibrium in Secure
Strategies which provides a model of cautious behavior for non-cooperative games. It
is suitable for games in which threats of other players is an important factor in the
decision making. In the EinSS players refrain from using some strategies if they anticipate
retaliation threats. Generally speaking, it is defined by two conditions: (i) no one can
increase payoff by worsening the situation of other players and (ii) no one can increase
payoff without creating a threat to lose more than he gains. From one side our concept
is a generalization of Nash-Cournot equilibrium, i.e. any Nash-Cournot equilibrium is an
EinSS. From the other side the EinSS logic allows to reveal new equilibrium positions
which sometimes can not be revealed by standard logic of best responses. Therefore an
EinSS exists in many discontinuous games that fail to have Nash-Cournot equilibrium.

The basic concept of our model is the notion of a secure strategy. A strategy of player
is a secure strategy at given strategies of other players if none of them can decrease his
payoff by unilateral deviation. The most profitable secure strategy of a player at a given
strategies of other players is a best secure response of that player. In these terms EinSS
has an intuitive interpretation as a BSR-profile (i.e. a profile in which all strategies are
best secure responses). A BSR-profile is a Generalized Nash-Cournot Equilibrium in which
each player’s strategy set is the set of his secure strategies at given strategies of all other
players. The set of Nash-Cournot equilibria is a subset of EinSS which in turn is a subset
of BSR-profiles. This double inclusion of EinSS between Nash-Cournot equilibtia and
Generalized Nash-Cournot Equilibria provides a reliable algorithm of finding EinSS. First
all BSR-profiles can be found as a solution of the corresponding maximization problem.
Then the definition of EinSS shall be checked for these BSR-profiles.

An EinSS concept can be extended in two practically important ways. One weakening
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concept of EinSS is the game with ”uncertain insider”. Let us suppose that after the
players simultaneously choose their strategies an ”insider” is chosen randomly among
them and has an opportunity to change his strategy. In the game with uncertain insider
all players minimize the worst potential threats which may appear as a result of the
insider move. If players choose their strategies only among secure strategies then EinSS
in a slightly weakened modification (namely weak EinSS) coincides with Nash-Cournot
equilibrium in the game with uncertain insider. Hence a weak EinSS can be defined as a
secure strategy profile which is a solution of the corresponding maximin problem. This
provides another practical approach to finding EinSS. The second weakening of the EinSS
concept allows to take into account threats from simultaneous and independent actions
of several players. In particular it allows to take into account such effects as panic and
herd behavior which play an important role in many practical situations when analyzing
security.

In their seminal paper Dasgupta and Maskin (1986) obtained existence results for
mixed strategy Nash equilibrium in a family of games with discontinuous payoff functions.
Very often these discontinuities generate specific threats between players. Therefore it is
not surprising that proper consideration of these threats enables us to find an EinSS in
many discontinuous games. In contrast to the equilibrium in mixed strategies however
our approach provides an explicit solution which is easy to interpret in terms of cautious
behavior.

As a first example we consider the classic Hotelling’s model (1929) with the linear
transport costs. There is no price Nash-Cournot equilibrium in this game when duopolists
choose locations too close to each other (d’Aspremont et al., 1979). In these cases one
player can undercut his rival’s price and take away his entire business with profit to
himself. In order to restore the existence of a pseudo equilibrium in this situation Eaton
and Lipsey (1978) proposed that the players while choosing their prices assume that they
can never drive the competitors out of the market. In fact this assumption effectively
rules out the threat of pressing out of the market by undercutting and allows to find the
corresponding ’zero conjectural variation equilibrium’ solution. Another approach is an
equilibrium in mixed strategies which existence in the Hotelling’s price game was proved
by Dasgupta and Maskin (1986). These equilibria were studied in detail by Osborne
and Pitchik (1987). They found that at certain locations the support of the subgame
equilibrium price strategy is the union of two short intervals with most probability weight
in the upper interval. However they were unable to provide a complete characterization
of equilibria. The obtained results in terms of mixed strategies are difficult to interpret.
In this paper we provide solution in secure strategies of the Hotelling’s price game with a
restricted reservation price on an infinite line. It coincides with Nash-Cournot equilibrium
price whenever it exists. And there is a unique EinSS price if Nash-Cournot equilibrium
does not exist. In contrast to Eaton and Lipsey approach the EinSS concept takes into
account the mill-price undercutting as an essential factor of the game. In the EinSS
players do assume that they can be driven out of the market and therefore keep their
prices sufficiently low to secure themselves against such undercutting. In practice this
assumption results in lower equilibrium prices as compared with the solution based on
the assumption of Eaton and Lipsey (see M.Iskakov and A.Iskakov, 2012). In contrast to
the price solution in mixed strategies EinSS solution is obtained in explicit form and can
be easily interpreted as an equilibrium of bilateral containment.
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As a second example we consider a canonical example of a contest described by Tullock
(1969,1980). It is well known that a pure-strategy Nash-Cournot equilibrium does not exist
for a two-player contest when the contest success function parameter α is greater than
two. For a symmetric, two-player contest Baye, Kovenock and de Vries (1993) have shown
that for α > 2 rent dissipation in a mixed strategy equilibrium is complete. However the
equilibrium was not characterized analytically. We show however that EinSS always exist
in the contest of two-players. Our concept allows to discover a new type of equilibria in the
rent-seeking game, those for which one player prefer to fix his or her secure monopolistic
position rather than to participate in the competition. Moreover when power parameter
α > 2 the monopolistic situation is the only stable position in the game in terms of secure
strategies. The efficiency of equilibrium in the contest is characterized by rent dissipation
which is equal to the ratio of total effort of both players to the value of the prize. The
higher is the degree of rent dissipation, the lower is the efficiency of the equilibrium.
For α > 2 rent dissipation in mixed-startegy equilibria is equal to one. However for the
monopolistic EinSS it is significantly less than one. Hence the concept of EinSS provides
more efficient solution than the mixed-strategy Nash equilibrium. The obtained solution
has a straightforward interpretation for the rent-seeking game.

As the next example we consider a model of insurance market suggested by Rothschild
and Stiglitz (1976) and Wilson (1977). It was proven that if a Nash-Cournot equilibrium
exists both companies must offer the same ”Rothschild-Stiglitz-Wilson” (RSW) contract
pair. However if there is a sufficiently high proportion of low risk customers a single
pooling contract or a pair of cross-subsidizing contracts may be preferred by everyone
and will therefore upset the RSW equilibrium contract. One way to resolve this problem
of the non-existense of equilibrium in pure strategies is to allow insurance companies
to use mixed strategies. While equilibria in mixed strategies always exist (Dasgupta and
Maskin, 1986) to our knowledge they have not been characterized. Therefore the economic
interpretation of this solution is not clear. Alternatively several ad hoc equilibrium concept
have been proposed. For instance Wilson (1977) and Riley (1979) suggested two different
equilibrium concepts. A set of contracts is a Wilson equilibrium if no company has a
profitable deviation that remains profitable once existing contracts that lose money after
the deviation are withdrawn. A set of contracts is a Riley equilibrium, if no company has
a profitable deviation that remains profitable once new contracts that make money after
the deviation are added. Under either definitions equilibria always exist. However they
are different. In contrast to these concepts all companies in EinSS take into account all
threats existing in the game, i.e. any profitable change of policy by the rival company.
This would include both threats of ”Wilson-type” and threats of ”Riley-type” as well as
any combination of them. Therefore EinSS is a more cautious concept. We show that
RSW contract is always an EinSS. Even if RSW is not a Nash-Cournot equilibrium it is
still an equilibrium in our terms of security.

And finally we consider the Bertrand-Edgeworth duopoly model with capacity
constraints which may not possess a Nash-Cournot equilibrium. D’Aspremont and
Gabzewicz (1980) proposed the concept of quasi-monopoly which restores the existence of
pseudo equilibrium in some of these cases when one capacity is quite small compared to the
other. The existence of mixed-strategy equilibrium was demonstrated by Dasgupta and
Maskin (1986) and Huw Dixon (1984). However it proved not to be easy to characterize
what the equilibrium actually looks like. Allen and Hellwig (1986) were able to show that
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in a large market with many firms, the average price set would tend to the competitive
price. We show that in some cases when Nash-Cournot equilibrium does not exist there
is an EinSS with equilibrium prices lower than the monopoly price. The corresponding
difference in prices can be interpreted as an additional payment for the preservation of
security when duopolists behave cautiously and avoid mutual threats.

All of the above games without Nash-Cournot equilibrium can be approached
in two ways. Either one can use ad hod equilibrium concepts developed within the
framework of the given game and obtain an explicit solution with specific interpretation.
Or one can look for equilibria in mixed strategies which are usually not explicit and
difficult to interpret. In this paper we propose a third alternative, a general concept of
equilibrium which exists in many games without Nash-Cournot equilibrium. This concept
provides an explicit solution easy to interpret. The obtained results confirm the practical
value and adequacy of the proposed approach and lay a firm ground for the future research.
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APP END IX A

Comment on the definitions of EinSS

In order to keep consistency with the previously used form of definitions of EinSS we
prove here that the definitions of EinSS 1-4 are equivalent to the definitions published in
(M.Iskakov and A.Iskakov, 2012).

Proof. Below we provide the definitions of the EinSS published in M.Iskakov and
A.Iskakov (2012). The definition of threat and the definition of secure profile are the
same. The definitions 3 and 4 were formulated in the following form:

Definition 3*. A set Wi(s) of preferable strategies secured against threats is a set of
strategies s′i of player i at a given s such that ui(s′i, s−i) > ui(s) and provided that
ui(s

′
i, s
′
j, s−ij) > ui(s) for any threat {(s′i, s−i), (s′i, s′j, s−ij)} of playerj 6= i to player i.

Definition 4*. A strategy profile s∗ is an Equilibrium in Secure Strategies (EinSS) if and
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only if for all i we have that

Wi(s
∗) 6= ∅, s∗i ∈ arg max

si∈Wi(s∗)
ui(si, s

∗
−i).

Any strategy from the set Wi(s) of preferable strategies secured against threats
according to the definition 3* is either (a) a secure strategy s′i such that ui(s′i, s−i) = ui(s)
or (b) secure deviation according to the Definition 3. If s∗ is an EinSS according to 4*
then for all i s∗i ∈ Wi(s

∗). s∗i can not be (b) secure deviation according to the Definition
3. Therefore s∗i must be (a), i.e a secure strategy in the profile s∗. Since all strategies
s∗i are secure then the profile s∗ is a secure profile. If some player can increase his profit
by secure deviation then s∗i /∈ arg maxsi∈Wi(s∗) ui(si, s

∗
−i). Therefore no player in s∗ can

make a secure deviation (according to the Definition 3). s∗ is an EinSS according to the
Definition 4. Now let s∗ is the EinSS according to the Definition 4. As s∗ is a secure profile
so for all i s∗i ∈ Wi(s

∗) and Wi(s
∗) 6= ∅. As no player in s∗ can increase his profit by

secure deviation so s∗i ∈ arg maxsi∈Wi(s∗) ui(si, s
∗
−i). And s∗ is an EinSS according to the

definition 4*. �

APP END I X B

Proof of the Proposition 7

We will use below the following notation according to (3). As uIi (pi) we denote the
payoff function of player i in the domain pi < p−i − d where player i captures the whole
market and his payoff function depends only upon his own price. As uIIi (pi, p−i) we denote
the payoff function of player i in the domain |pi−p−i| 6 d where price competition between
two players takes place. In order to find equilibria in secure strategies in the dimensionless
Hotelling’s game (3) let us first identify the secure profiles and prove the following Lemma.

Lemma. The profile (p1, p2) in the dimensionless price-setting game {i ∈ {1, 2}, pi ∈
[0, 1], ui(p1, p2)} with the profit functions (3) is a secure strategy profile if and only if

1) when d < 1 :

(П.1a)
(П.1b)

(П.1c)


|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i), i ∈ {1, 2}

if p−i > d, uIi (p−i − d) 6 uIIi (pi, p−i), i ∈ {1, 2}

2) when d > 1 :

(П.2)

{
|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i), i ∈ {1, 2}

∪

{
|p1 − p2| 6 d− 1

p1 + p2 > 2− d

Proof of Lemma. When p1 < p2 − d player 2 gets zero profit and there is always a
threat to player 1 that player 2 will decrease his price till p̂2 < p1 and will get positive
profit. Since the trade zones of players are in contact then the market share and the
profit of player 1 will decrease. Therefore the profile (p1, p2) is not secure for player 1. In
a similar way when p2 < p1 − d the profile (p1, p2) is not secure for player 2. Hence all
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Fig. 5: The first player increases profit either by shifting price in area I or in area II.

secure profiles lie in the area |p1 − p2| 6 d. The condition (П.1a) and the first condition
in (П.2) are proven.

Let us consider the existing threats to player 2 when |p1 − p2| 6 d. According to (3)
the payoff function of the first player u1(p1) in each price area I (p1 < p2 − d) and II
(|p1− p2| 6 d) is concave and one-picked (see Fig.5). Player 1 can increase his profit only
in two ways: either by shifting price in the price area I or by moving closer to the pick
in the price area II. The first situation is possible when max

p∈(0,p2−d)
uI1(p) > uII1 (p1, p2) and

always produces a threat to player 2 to be driven out of the market. The corresponding
security condition is max

p∈(0,p2−d)
uI1(p) 6 uII1 (p1, p2). In the second situation player 2 keeps

his security in two cases. Either the first player can not increase his profit by reducing
price, i.e. p1 6 arg max

p
uII1 (p, p2). Or he can increase his profit by reducing price but even

at maximum reduction of his price profitable to him his trade zone will not get in contact
with the trade zone of player 2. For the profit functions (3) the last condition can be
written as 1/2 < p1 6 d−1+p2. Therefore the security condition of player 2 against both
types of threats can be written as:if p2 > d, max

p∈(0,p2−d)
uI1(p) 6 uII1 (p1, p2) (1∗)

p1 6 arg max
p
uII1 (p, p2) or 1/2 < p1 6 d− 1 + p2 (2∗)

According to (1) at |p1 − p2| 6 d we have uII1 (p1, p2) 6 uI1(p1) for all p2. Then it
follows from the (1∗) that max

p∈(0,p2−d)
uI1(p) 6 uI1(p1), i.e. the concave function uI1(p) reaches

maximum at p > p2−d and therefore max
p∈(0,p2−d)

uI1(p) = uI1(p2−d). Then the first condition

(1∗) can be written in a more convenient form as uI1(p2 − d) 6 uII1 (p1, p2). The security
condition for the profile (p1, p2) can be written then as:

|p1 − p2| 6 d

pi 6 arg max
p
uIIi (p, p−i) or 1/2 < pi 6 d− 1 + p−i, i ∈ {1, 2}

if p−i > d, uIi (p−i − d) 6 uIIi (pi, p−i), i ∈ {1, 2} (∗)

Now let us assume that for the secure profile (p1, p2) at least one of the conditions
1/2 < pi 6 d − 1 + p−i is satisfied. For example 1/2 < p1 6 d − 1 + p2 which implies
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p2 > 3/2− d and p1 + p2 > p2 + (1− p1) > 2− d.
If p2 6 1/2 then 3/2− d < p2 6 1/2 => d > 1.
If p2 > 1/2 and p1 + p2 > 2 − d => p2 must be on the descending part of the function
uII2 (p1, p), i.e. p2 > arg max

p
uII2 (p1, p) => the condition p2 6 d− 1 + p1 must be satisfied

=> p1 + p2 6 2d− 2 + p1 + p2 => d > 1.
Therefore it is proven that if d < 1 then neither of the conditions 1/2 < pi 6
d − 1 + p−i, i ∈ {1, 2} is satisfied for the secure profile (p1, p2). Therefore the formula
(П.1) is proven.

Let us prove that the (∗) is equivalent to (П.2) when d > 1. The conditions (П.1c)
and (1∗) together with the threat of mill-price undercutting disappear when d > 1 since
in this case we have pi 6 1 6 d, i ∈ {1, 2}.
For the profiles (p1, p2) which satisfy the condition p1 + p2 6 2 − d the conditions (П.2)
and (∗) are obviously equivalent (since for these profiles the second conditions in (2∗) are
not satisfied). For the profiles (p1, p2) which satisfy the condition p1 +p2 > 2−d we obtain
arg max

p
uIIi (p, p−i) = min

{2+d+p−i
6

,max{2 − d − p−i, 1/2}
}

= 1
2
and the conditions (П.2)

and (∗) take the following forms:

{(p1, p2) : p1 6 1/2, p2 6 1/2} ∪ {(p1, p2) : |p1 − p2| 6 d− 1}

and


|p1 − p2| 6 d

p1 6 1/2 or 1/2 < p1 6 d− 1 + p2

p2 6 1/2 or 1/2 < p2 6 d− 1 + p1

The equivalence of these conditions at d > 1 for the profiles satisfying p1 + p2 > 2 − d
can be proven by straightforward verification. �

Now we are ready to prove the Proposition.
According to Lemma the set of secure strategies in the price Hotelling’s game at d > 1 is
given by (П.2). Substituting into this system the expressions (3) for the payoff functions
we obtain: 

if p1 + p2 6 2− d, |p1 − p2| 6 d

if p1 + p2 > 2− d, |p1 − p2| 6 d− 1

p−i 6 min
{

2+d+pi
6

,max {2− d− pi, 1/2}
}
, i ∈ {1, 2}

The best secure responses of players at |p1 − p2| 6 d take the following form (i ∈ {1, 2}):

p−i = max

{
1− d+ pi,min

{
2 + d+ pi

6
,max {2− d− pi, 1/2}

}}
.

which has at d > 1 the unique solution (4d).

The set of secure strategies in the price Hotelling’s game at d < 1 according to Lemma
is given by the system (П.1). Substituting into this system the expressions (1) for the
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payoff functions we obtain:

|p1 − p2| 6 d (∗a)

p−i 6 min

{
2 + d+ pi

6
,max {2− d− pi, 1/2}

}
, i ∈ {1, 2} (∗b)

p−i 6 max

{
d, d+

4− pi
8
−

−

√(
d+

4− pi
8

)2

− pi
4

(2 + d− 3pi)− d(d+ 1)

}
(∗c)

In the last inequality we take into account that (∗b) => 5p−i 6 2 + d+ pi− p−i 6 2 + 2d
=> p−i 6 2+2d

5
< 4+7d

9
=> 8p−i < 4 + 8d− d− p−i 6 4 + 8d− pi => p−i < d+ 4−pi

8
=>

the second branch of the solution of the quadratic inequality (∗c) is not realized.

Under the found conditions (∗a, ∗b, ∗c) the function uIIi (pi, p−i) increases by pi and
hence the Best Secure Response (BSR) of players at |p1−p2| < d takes the following form
(i ∈ {1, 2}):

(∗) p−i = min

{
2 + d+ pi

6
,max {2− d− pi, 1/2} ,

max

{
d, d+

4− pi
8
−

√(
d+

4− pi
8

)2

− pi
4

(2 + d− 3pi)− d(d+ 1)

}}
.

These equations define the plots of the best secure responses of players in the plain
(p1, p2) at |p1 − p2| < d. The intersection of these plots is the point of the BSR-profile.
According to the Proposition 3 any EinSS is the BSR-profile, i.e. it must satisfy (∗).
From the other side any solution of (∗) is the EinSS. Indeed any deviation of player from
(∗) in the direction of lower price decreases his profit. And any deviation from (∗) in the
direction of higher price either decreases his profit or creates the threat of being undercut
throughout the whole market, i.e. no player can increase his profit by secure deviation.

The solution of the system (∗) corresponds to the first three cases in the Proposition
7. Indeed this solution shall be symmetric about a line p1 = p2 and shall by of two types.
The multiple solutions of (∗) lie in the interval of the line p1 + p2 = 2 − d which is the
common place for the BSR of both players. Checking the limit conditions provides the
solution (4c). The solutions of (∗) of another type are located on line p1 = p2 ≡ p. When
d > 6/7 the solution is defined by the following equation:

p = min

{
2 + d+ p

6
,max {2− d− p, 1/2}

}
,

When 6/7 6 d 6 1 this solution takes the form p1 = p2 = 1− d/2 which is a special case
of the multiple solution (4c). Finally the solution at d 6 6/7 is defined by the equation:

p = min

{
2 + d+ p

6
,max

{
d, d+

4− p
8
−

√(
d+

4− p
8

)2

− p

4
(2 + d− 3p)− d(d+ 1)

}}
,

which gives solutions (4a) and (4b). The Proposition is proven. �
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APP END I X C

Sketch of the proof of the Proposition 8

Proof. (1). The profile {(α/4, α/4)} is an EinSS at α 6 2 according to Proposition 1
because it is a Nash equilibrium in the game (Tullock, 1980).

(2). Let us prove that profiles
{

(0, 1
α

(α− 1)
α−1
α )
}
and

{
( 1
α

(α− 1)
α−1
α , 0)

}
are EinSS

at α > 1. Consider for example the first one. Player 1 can not increase his payoff in it
by whatever deviation. Therefore the profile

{
(0, 1

α
(α− 1)

α−1
α )
}

satisfies the definition

of EinSS for player 1. Consider player 2. Any deviation into x2 > 1
α

(α− 1)
α−1
α is not

profitable for him. Let us prove that deviation of player 2 into x2 : 0 < x2 < xm2 ≡
1
α

(α− 1)
α−1
α < 1 is not a secure deviation either. Indeed, player 1 in response can deviate

into x1 > 0 : U1(x1, x2) = 0. Expressing x2 through x1 one gets x2 = x1

(
1−x1

x1

)1/α. Let us
prove that in this case U2(x1, x2)− Um

2 = xm2 − x1 − x2 < 0 for all x2 ∈ (0, xm2 ), or

1

α
(α− 1)

α−1
α < x1

(
1 +

(
1− x1

x1

)1/α
)
≡ f(x1) for all

α− 1

α
< x1 < 1 (∗)

One can easily check that f ′′(x1) = (1−α)
α2x1(1−x1)

(
1−x1

x1

)1/α
< 0 at α > 1. Therefore

min
α−1
α
<x1<1

f(x1) = min
{
f
(
α−1
α

)
, f(1)

}
= min

{
α−1
α

+ 1
α

(α− 1)
α−1
α , 1

}
and estimation (∗)

is true. The deviation of player 2 into 0 < x2 < xm2 is not a secure deviation. Thus no
player can make secure deviation in the profile (0, 1

α
(α− 1)

α−1
α ) and it is an EinSS by

definition. By symmetry the profile ( 1
α

(α− 1)
α−1
α , 0) is either an EinSS.

(3). Let us first consider the case of 0 < α 6 1. A pair of strategies is secure in the
rent-seeking contest if and only if no player can be made better off by increasing his or her
effort (which would always reduce the payoff of another player). The payoff functions of
players Ui at 0 < α 6 1 are concave and one peak in their strategies xi. Therefore no one
can increase his profit by increasing his effort if and only if x1 > BR1(x2), x2 > BR2(x1),
where BRi(x−i) are best responses of players. One can show that this set can be written
as {

x1 >
α

4
, x2 >

α

4

}
∪
{
x1 <

α

4
, x2 > ξ+(x1)

}
∪
{
x2 <

α

4
, x1 > ξ+(x2)

}
.

All EinSS profiles must lie on the boundary of this set of secure profiles (otherwise any
player can securely increase his payoff by arbitrarily small deviation). Let us choose any
profile on this boundary other than (α/4, α/4). It must be either (x1 < α/4, ξ+(x1)) or
(ξ+(x2), x2 < α/4). Consider for example the first case. Then there is a secure deviation of

player 1 into the profile (x1, ξ
−(x1)), where ξ−(xi) ≡

(
xα−1
i

2

(
α− 2xi −

√
α2 − 4αxi

))1/α

.
Indeed one can prove that U1(x1, ξ

−(x1)) > U1(x1, ξ
+(x1)) at α < 1 and profile

(x1, ξ
−(x1)) is secure for player 1 (since player 2 get in this profile his maximum payoff

and pose no threat to player 1). Therefore the profile (x1 < α/4, ξ+(x1)) is not an EinSS.
By symmetry the profile (ξ+(x2), x2 < α/4) is not an EinSS either. There are no EinSS
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profiles at α < 1 other than (α/4, α/4).

(4). When α > 1 all EinSS profiles must also lie on the boundary of the set of
secure profiles (otherwise any player can securely increase his payoff by arbitrarily small
deviation). From the other hand all EinSS must lie in the set {(x1, x2) : max(x1, x2) 6
1
α

(α− 1)
α−1
α } (otherwise at least one player gets negative payoff and can make a secure

deviation into zero strategy). From these two conditions it follows that at α > 1 all EinSS
other than

{
(0, 1

α
(α− 1)

α−1
α )
}

and
{

( 1
α

(α− 1)
α−1
α , 0)

}
must lie on the curve (9). In

particular it implies that there are no EinSS other that two monopolistic equilibria at
α > 2. �

APP END IX D

Proof of the Proposition 10

Proof. (1). Any EinSS in the game must be a BSR-profile with positive payoffs
(since any profile with zero payoffs always possesses a secure deviation into profiles
with positive payoffs). First, let us find all secure profiles in the game with positive
payoffs. Consider the case p∗ < p1 < p2. If D(p1) > S1 player 1 always threatens
player 2 by slight increasing his price p1. If D(p1) 6 S1 then according to (14):
u2(p1, p2) = 0. Symmetrically, if p∗ < p2 < p1 either player 2 threatens player 1 or
u1(p1, p2) = 0. If p∗ < p2 = p1 there is always threat of undercutting. If p1 6 p∗ < p2

player 1 always threatens player 2 by increasing his price till p∗ + 0 which exceeds
p∗ by an arbitrarily small amount. Indeed in this case D(p1) > D(p∗ + 0) > S1 and
u1(p1, p2) = p1S1 < (p∗ + 0)S1 = u1(p∗ + 0, p2). On the other hand, u2(p∗ + 0, p2) =

p2
D(p2)
S1+S2

S2 < p2S2 and u2(p∗ + 0, p2) = p2D(p2)
(

1− S1

D(p∗+0)

)
< p2D(p2)

(
1− S1

D(p1)

)
=> u2(p∗ + 0, p2) < u2(p1, p2). Symmetrically, if p2 6 p∗ < p1 player 2 always
threatens player 1. Therefore all secure profiles with positive payoffs must lie in the set
{(p1, p2) : 0 < pi 6 p∗, i = 1, 2}. From the other hand if p1 6 p∗: u1(p1, p2) = S1p1

linearly increases in p1 and does not depend on p2. Hence there are no threats for player
1. Symmetrically, if p2 6 p∗ there are no threats for player 2. Therefore (p1, p2) is a
secure profile with positive payoffs in the game (14) if and only if it lies in the set
M = {(p1, p2) : 0 < pi 6 p∗, i = 1, 2}.

(2). The payoff functions (14) u1 and u2 increase in the set M linearly in p1 and in
p2 respectively. Therefore there is only one BSR-profile (p∗, p∗) with positive payoffs in
the set M (otherwise one player can securely slightly increase his price). According to
Proposition 3 there are no other EinSS in the game except this profile.

(3). Let us consider profile (p∗, p∗) and prove the conditions (15). Suppose for
example that p∗ < p̂(S2) ≡ arg max

p>0
{p(D(p) − S2)}. Then player 1 can deviate

p∗1 → p̂. His payoff will increase since p∗ < p̂ 6 pM = arg max
p>0

pD(p) and

u1(p1, p2) is strictly increasing in p1 if p1 6 pM according to (14). Any retaliatory
threat of player 2 according to (14) can not make the payoff of player 1 less than
min
p2

u1(p̂, p2) = min
p2<p̂

u1(p̂, p2) = u1(p̂, p2)|p2=p̂−0 = p̂min{S1, D(p̂) − S2}. The payoff of
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player 1 in the initial profile does not exceed this value. Indeed p(D(p) − S2) is strictly
increasing at p < p̂ and we have u1(p∗, p∗) 6 p∗(D(p∗) − S2) < p̂(D(p̂) − S2) and
u1(p∗, p∗) = p∗S1 < p̂S1. Therefore the deviation of player 1 into p̂(S2) is always a secure
deviation according to Definition 3. Hence profile (p∗, p∗) is not an EinSS. Symmetrically
if p∗ < p̂(S1) then player 2 can make a secure deviation into p̂(S1) and profile (p∗, p∗) is
not an EinSS either. The necessity of (15) is proven.

(4). Let us now assume that (15) holds (i.e. p̂(S1) 6 p∗ and p̂(S2) 6 p∗).
Consider an arbitrary deviation p∗ → p1 of player 1. If p1 < p∗ it can not be a
profitable deviation for player 1. Therefore p1 > p∗. Player 1 increases the payoff
if and only if u1(p∗, p∗) = p∗S1 = p∗D(p∗)−S2

D(p∗)
D(p∗) < u1(p1, p

∗) = p1
D(p∗)−S2

D(p∗)
D(p1),

i.e. there must be p∗D(p∗) < p1D(p1). Then there is retaliatory threat of player
2 to deviate from profile (p1, p

∗
2) into profile arbitrarily close to (p1, p1 − 0).

From p∗S2 < p1S2 and p∗D(p∗) < p1D(p1) it follows that player 2 increases
the payoff at this deviation. The payoff of player 1 in this profile is arbitrarily
close to u1(p1, p1 − 0) = p1 min{S1, D(p1) − S2}|p∗<p1 = p1(D(p1) − S2). Since
p(D(p) − S2) is strictly decreasing at p > p̂(S2) and p1 > p∗ > p̂(S2) then
u1(p∗, p∗) = p∗(D(p∗) − S2) > p1(D(p1) − S2) = u1(p1, p1 − 0). Therefore the
deviation of player 1 into profile (p1, p

∗) is not a secure deviation. Symmetrically an
arbitrary deviation of player 2 is not a secure deviation either. No player can make secure
deviation in the profile (p∗, p∗). By definition it is an EinSS. The sufficiency of (15) is
proven.

(5). One can easily check that pM 6 p∗ is the maximum condition of functions
u1(p1) = u1(p1, p

∗) and u2(p2) = u2(p∗, p2) in the points p1 = p∗ and p2 = p∗ respectively.
In other words it is a condition of Nash equilibrium for the profile (p∗, p∗). �
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