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1. Introduction

Galor and Weil (2000) advanced a uni�ed growth model to explain the transition to modern
growth as the result of the interaction between population, technology, and output. In
their model, the authors show that the transition from stagnation to sustained growth is
an inevitable outcome when the driving forces for technological progress are the education
and size of the population. Speci�cally, in Galor and Weil (2000), technological progress is
assumed to appear even for zero education investments and arbitrarily small populations so
that, eventually, Malthusian stagnation vanishes endogenously, leaving the arena to modern
growth forces and letting thus the economy take o� and converge to a modern steady state
growth. In this paper we study conditions under which take-o� is not inevitable, but rather
stagnation is.

In order to understand how a society can be locked in stagnation it is useful to identify
what exactly drives a take-o� in Galor and Weil (2000). A key ingredient to the mechanism
proposed there and that takes the economy out of stagnation is the positive dependence
of technological progress on population. Still it is worth noting that this dependence is,
nevertheless, not indispensable for an explanation. In e�ect, for instance Galor and Moav
(2002) show that a society can still take o� without having to assume a positive e�ect of
population on technological progress. In this case, it is the composition of the population
(in terms of the households' preferences about quality vs. quantity of their o�spring) rather
than the size of the population that matters in order to spur technological progress. In e�ect,
the appearance of a fraction (even a tiny one) of �quality-loving mutant� households su�ces
for a society to take o� in the long-run, regardless of population size, by triggering a change
in the composition of the population. Still, if the population size does not matter in Galor
and Moav (2002) it is because of their explicit assumption according to which the costs (not
related to education) of rearing a child do not depend on the population size. Nevertheless,
population density is known to have an impact on the childrearing costs that are unrelated
to education. Speci�cally, evidence shows that when households have small dwellings, child
production is more costly and households have fewer children (see De la Croix and Gosseries
(2012), citing evidence from Goodsell (1937) and Thompson (1938)). It is precisely this kind
of interplay between a population and its environment �and its impact on growth� what
our model aims at capturing.3

In this paper, we build on Galor and Weil (2000), introducing geographical factors instead,
in order to show that, under some initial conditions, an economy may be locked in stagnation,
with a small population, a basic technology, and no education, even if population size has,
per se, a positive e�ect on technological progress (so that the economy should eventually
take o� instead according to Galor and Weil (2000)). In order to show this, we take into
account too the often overlooked role of technology losses in the determination (along with
education investments and population size) of the technological level of the society.4 The key

3Whether the Galor and Moav (2002) population-composition mechanism allows too for a stagnation trap when population
composition itself a�ects the childrearing costs remains an open question.

4Diamond (1997) provides evidence that some societies show no sign of escaping stagnation on their own due to losses of
technology and culture, in particular small and isolated societies. An extreme case, but by no means the only documented one
(see Aiyar et al. (2008) for technological losses driven by population shocks and, more generally, footnote 7 below), took place
on the Tasmania island. Aborigines in Tasmania were separated from mainland Australians due to rising sea level around 10.000
years ago. With a stable population of 4.000, Tasmanians had, at the time of arrival of Europeans, the simplest material culture
and technology of any people in the modern world. Like mainland Aborigines, they were hunter-gatherers but they lacked many
technologies and artifacts widespread on the mainland. Some technologies were brought to Tasmania when it was still a part
of the Australian mainland, and were subsequently lost in Tasmania's cultural isolation. For example, the disappearance of
�shing, and of awls, needles, and other bone tools, around 1500 BC (Diamond 1997, pp. 312�13). Diamond argues that a small
population of 4.000 was able to survive for 10.000 years, but was not enough to prevent signi�cant losses of technology and
culture, as well as the failure to invent new technology, leaving it with a uniquely simpli�ed material culture.
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mechanism is, in this case, that recurrent technology losses allow for technological progress
only if the population size is large enough to o�set them. When this is the case, the level of
technology will increase until it reaches a threshold beyond which the returns to education
are high enough to trigger investment in human capital, the tipping point where education
kicks in and from which sustained growth obtains. Nonetheless, societies whose geographical
factors cannot support a su�ciently large population never escape stagnation. This paper
therefore makes stand out clearly the role of geographical factors �such as the amount
of available land or, more generally, environmental resources, its suitability for living and
production, and its degree of isolation� in the creation of a stagnation trap.

It is interesting to note an alternative mechanism that De la Croix and Dottori (2008)
propose to explain the road to stagnation followed in Easter island in particular. In that
paper the authors argue that the population collapse in Easter island was the result of
a population race �that played the role of an arms race given the labor-intensive warring
technology� triggered by the non-cooperative bargaining between clans about the allocation
of the society's total output (in case of disagreement, a war would break out whose outcome
would be determined by relative population sizes of the belligerent clans, so that in order
to improve their bargaining power, each clan would increase its size to the point of jointly
depleting natural resources and leading eventually the society to collapse). Therefore, in
De la Croix and Dottori (2008) the con�ict-driven population race is the prime cause of
stagnation in an environment whose resources are bounded but not necessarily insu�cient
for sustaining take-o� in the absence of con�ict. On the contrary, in this paper, the cause of
stagnation is a geography unable to support a population large enough to o�set technology
losses.5

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 characterizes its equilibria. Geographical factors under which an economy is unable to
escape stagnation are studied in section 4. Speci�cally, we show that a society for which
(i) the population level guaranteeing technological progress, and (ii) the level of technology
guaranteeing education investment, imply a high enough e�ective population density, never
escapes stagnation, under some initial conditions. Section 5 makes a summary and concludes
the paper.

2. The model

2.1. Geographical factors

We refer by �land� to the set of geographical and environmental conditions supporting the
life and economic activity of a society (obviously, living and production conditions depend
on how suitable for that the ecosystem around us is). How much of this land can be put
to productive use depends on the interplay of its intrinsic suitability for that purpose and
the level of technology. The suitability of land captures its adequacy for people to live and
work in the ecosystem as a whole, such as temperature, humidity, orography, river density,
bio-diversity, etc. Typically, suitability and technological constraints prevent people to make
the most of their environment, i.e. the available land. For instance, people may just occupy
the part of their geographical territory that is most suitable for their lives, or may be unable

5Mariani et al. (2010) address a related topic noting the possibility of an environmental poverty trap in a set-up in which
environmental quality and life expectancy are jointly determined. In such a setup multiple equilibria are possible according
to which agents either invest in both environmental quality and longevity, or do not, which may lock an economy in an
environmental poverty trap in the latter case. However, the mechanism there is basically a coordination problem where
population growth and its interaction with the environment are abstracted.
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to tap certain resources with the current technology. We refer to the fraction Xt of the
available land X that is put to productive use at period t as �productive land� and its size
depends positively on its suitability θ and (moreover concavely) on the technological level
At ≥ 0, i.e.

Xt = χ(θ, At)X (1)

with χ(θ, At) ∈ (0, 1), χθ(θ, At) > 0, χA(θ, At) > 0, χAA(θ, At) < 0.

2.2. Production and technology

The productivity of each household in period t is determined by its human capital ht ≥ 0
and the technological level At, so that the output per household in period t is

yt = f(At)ht

where f(At) > 0, f ′(At) > 0.6

The technological level in period t+ 1 is

At+1 = [1− λ(ω)][1 + gt]At (2)

where gt is the rate of technological progress in t, and λ(ω) ∈ (0, 1) is a rate of loss of
technology that depends positively on the degree of isolation ω of the society, i.e. λ′(ω) > 0
(a higher ω corresponds to a higher isolation),7 so that [1 − λ(ω)][1 + gt] is technological
growth rate between periods t and t + 1. As in Galor and Weil (2000), we assume that
gt ≥ 0 depends positively on the average education et ≥ 0 and the size Lt ≥ 0 of the working
generation in period t, i.e.

gt = g(et, Lt) (3)
6In order to make stand out clearly the importance of the interplay between population, education, and environment, we

abstract from land as an input of the production function. Introducing land in the production function does not change the
qualitative analysis.

7Diamond (1997) addresses the role of geography in losses of technology. He argues that technologies must not only be
acquired but maintained too, which may depend on unpredictable factors, among them cultural prejudices and fads that see
economically useful technologies become devalued. A famous example (see Diamond (1997), pp. 257�258) is the loss of gun
production technologies in isolated Japan under the Shogunate, when the Samurai class worked against the acceptance of
�rearms because a cultural preference of swords as class symbols as well as works of art. Such a phenomenon could not happen
lastingly (for obvious reasons) in less isolated European countries, even though similar attitudes towards guns occasionally
happened. Another instance of technology losses due to isolationist attitudes is the abandonment of oceangoing navigation
techniques by the Chinese under the Ming after the explorations by Zheng He. A non isolated society that temporarily turns
against useful technology can reacquire it easily by di�usion from neighboring societies, while its chances to reacquire it are
increasingly hampered by higher degrees of isolation.
In this paper we make abstraction of the causes of technology losses and, for the sake of simplicity, assume a rate (not neces-

sarily large) of recurrent technology losses λ(ω) that depends positively on the degree ω of isolation of the society (alternatively
this losses cane made, more realistically, random, but this would not change qualitatively the results). This rate may also de-
pend on the society's population size, education level, technological level, etc. Indeed, a larger and better educated population
may be better at maintaining technological knowledge due to dissemination scale and interaction of people. These e�ects can
however be captured in technological progress factor g(e, L) in (3). A high technological level itself may help a society from
losing technologies in two ways: (i) through better storage devices in which to save technologies, and (ii) better communications
and transportation to o�set isolation. This paper, however, focuses on societies in very early stages of development without
widespread literacy and modern communications.
Aiyar et al. (2008) focus on a di�erent phenomenon of technology regress based on external shocks reducing the population

in societies in which the transmission of technology is embodied in the human capital instead of recorded. They argue that,
when the population shrinks, aggregate demand falls, leading to some technologies to become unpro�table at the margin. As
a consequence, those out-of-use technologies are not transmitted to the next generation, and hence lost until rediscovered by
chance.
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with ge(et, Lt), gL(et, Lt) > 0, as well as g(0, Lt) > 0 and lim
Lt→0+

g(0, Lt) = 0, so that techno-

logical progress (before losses) is positive as long as population is too.
From (2) and (3) we know that if the education of the working generation t is zero, then

the economy has positive technological growth if, and only if, the population size is large
enough, i.e.

[1− λ(ω)][1 + g(0, Lt)] > 1 ⇔ g(0, Lt) >
λ(ω)

1− λ(ω)
which implies that for positive technological growth to exist it must hold Lt > L, where L
is the smallest population able to sustain technological progress given ω, i.e. satisfying

g(0, L) =
λ(ω)

1− λ(ω)
(4)

Applying the implicit function theorem to (4), L is implicitly de�ned to be a function L
of ω, i.e.

L = L(ω) such that L′(ω) = λ′(ω)

[1− λ(ω)]2gL(0, L)
> 0.

In other words, the more isolated a society is, the bigger the population needed to o�set
technology losses and generate technological growth. For less isolated societies a smaller pop-
ulation su�ces to o�set technology losses because the latter are partially o�set by technology
di�usion from neighboring societies too.

An illustration of the e�ect of population size in o�setting technology losses is provided
by the divergence in technological level between Easter island and Hawaii at the time of
the arrival of Europeans in 1770s. Both islands are extremely isolated and had the same
cultural background of Polynesian colonizers, but Hawaii had a bigger population (due to
more resources available for living and production), which had resulted in a more advanced
technology than Easter island by the time Europeans arrived.

2.3. Households

In each period t there is a generation of Lt identical working households. Each household
lives for two periods. In the �rst period (say childhood) t − 1 it uses up a fraction of its
parent's time. In the second period (say parental) t it is endowed with one unit of time
which it allocates between child-rearing and production. The preferences of the household
born in period t − 1 are de�ned over the number and quality (i.e. human capital) of its
(household-)children, nt and ht+1 respectively, as well as from its consumption ct in period
t as follows

ut = γ ln(ntht+1) + (1− γ) ln ct (5)

Each household chooses a number and quality of children under the constraint of the unit
of time available for child-rearing and production. The only input required to produce both
child quantity and quality is time. We assume that the time to raise children physically,
regardless of education investment, is decreasing in per household resources Xt/Lt.8 For

8This idea is introduced in Goodsell (1937) and Thompson (1938), recently cited by de la Croix and Gosseries (2012) to take
into account that when households have small dwellings, child production is more costly and households have fewer children.

5



simplicity, we assume that the cost in time for raising nt children physically is ( Lt

Xt
)βnt, where

β ∈ (0, 1). We de�ne Lt

Xt
as the e�ective population density, i.e. the density of the population

with respect to productive land only. So the opportunity cost of raising nt children with
education et+1 is ytnt[( Lt

Xt
)β + et+1]. Hence, the agent born at date t− 1 maximizes at date

t its utility (5) under the following budget constraint

ytnt[(
Lt
Xt

)β + et+1] + ct ≤ yt (6)

Galor and Weil (2000) assume that human capital formation of children born at date t,
ht+1, depends positively on education investment et+1 they receive, and negatively on the
growth rate of technological progress gt from period t to period t + 1, their rationale being
that education lessens the obsolescence of human capital due to a changing technology. As
a consequence, households have incentives to invest in education whenever technological
progress is high enough, regardless the level of technology. It can be argued, however, that
the incentives to educate their o�spring depend not on technological progress, i.e. the rate
of change gt of the technological level, but on the level of technology At+1 itself. In e�ect,
in an economy with a high enough level of technology agents have incentives to educate
their o�spring in order to able them to make use of the technology, even in the absence
of technological progress. Hence, we assume that human capital at t + 1 is eroded by an
increasing technology At+1, but it increases with education et+1 with a return that is higher
the higher the level of technology, i.e.

ht+1 = h(et+1, At+1) (7)

with he(e, A) > 0, hA(e, A) < 0, and heA(e, A) > 0 at interior points. It is moreover assumed
that households are endowed with some human capital even in the absence of education and
any technological sophistication, i.e. h(0, 0) > 0, so that production can take place. Also it
is assumed (i) he(0, 0) = 0, i.e. education does not increase human capital in the absence of
technology, (ii) lim

A→+∞
h(0, A) = 0 so that an unbounded increase in the level of technology

wipes out human capital in the limit, and (iii) the return to education remains bounded
away from zero as technology grows unboundedly, i.e. lim

A→+∞
he(0, A) > 0.

Household's optimization

Each household t chooses the quantity nt and quality ht+1 of its o�spring, as well as con-
sumption ct, so as to maximize its utility. From (5), (6), and (7), the optimization problem
is

max
nt,et+1

γ ln [nth(et+1, At+1)] + (1− γ) ln
[
(1− nt[(

Lt
Xt

)β + et+1])yt

]
The �rst-order condition (FOC) with respect to nt gives us

nt =
γ

( Lt

Xt
)β + et+1

(8)

And the FOC with respect to et+1 requires the following relationship between et+1 and
At+1, Lt

Xt
to hold:
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G

(
et+1, At+1,

Lt
Xt

)
≡ he(et+1, At+1)[(

Lt
Xt

)β + et+1]− h(et+1, At+1)


= 0 if et+1 > 0

≤ 0 if et+1 = 0

(9)

Proposition 1: In the economy set up above, there exists, for each e�ective pop-

ulation density, a technological level Ât+1 = Â
(
Lt

Xt

)
> 0, such that households

educate their o�spring if, and only if, technology exceeds that level, i.e.

et+1 = e

(
At+1,

Lt
Xt

) 
= 0 if At+1 ≤ Â

(
Lt

Xt

)
> 0 if At+1 > Â

(
Lt

Xt

)
Moreover, Â′

(
Lt

Xt

)
< 0.

Proof: We prove that, for each Lt

Xt
there exists a unique Ât+1 such that G(0, Ât+1,

Lt

Xt
) = 0.

From the assumptions on h(et+1, At+1) and the equation (9), we �nd that G(0, At+1,
Lt

Xt
) is

monotonically increasing in At+1,

∂G(0, At+1,
Lt

Xt
)

∂At+1

= heA(0, At+1)(
Lt
Xt

)β − hA(0, At+1) > 0

Furthermore, from the assumptions made on h it follows that G(0, 0, Lt

Xt
) < 0 while

lim
At+1→+∞

G(0, At+1,
Lt

Xt
) > 0. So, there exists a unique Ât+1 > 0, given Lt

Xt
, such that

G(0, Ât+1,
Lt

Xt
) = 0, and therefore, as it follows from (9), et+1 = 0 for At+1 ≤ Ât+1.

Applying the implicit function theorem to G(0, Ât+1,
Lt

Xt
) = 0, we get Ât+1 = Â( Lt

Xt
), and

Â′(
Lt
Xt

) =
−βhe(0, Ât+1)(

Lt

Xt
)β−1

heA(0, Ât+1)(
Lt

Xt
)β − hA(0, Ât+1)

< 0.

Q.E.D.

3. Equilibria

We look for the initial conditions and geographical factors preventing a given economy to
escape stagnation, that is to say, such that the technological level stays always below the
threshold triggering education investment. The corresponding equilibria are therefore char-
acterized by et = 0, for all t, on top of (i) the households' utility maximization under
constraints, (ii) the determination of output, (iii) the population dynamics, (iv) the tech-
nological progress dynamics, and (v) the determination of productive land. Therefore, a
competitive equilibrium is fully determined by the following system of equations (10)-(15),
given β, γ, θ, ω, X, L0, and A0:
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FOCs : nt = γ

(
Xt

Lt

)β
(10)

et+1 = 0 (11)

Production : yt = f(At)ht (12)

Population : Lt+1 = ntLt (13)

Technology : At+1 = [1− λ(ω)][1 + g(0, Lt)]At (14)

Land : Xt = χ(θ, At)X (15)

The competitive equilibrium system above are characterized by the reduced equilibrium
dynamics of the population Lt and technology At:

Lt+1 = γ (χ(θ, At)X)β L1−β
t (16)

At+1 = [1− λ(ω)][1 + g(0, Lt)]At (17)

for a given initial conditions L0, A0 (and e0 = 0).

4. Stagnation trap

This section studies the conditions on geographical factors (X, θ, ω), i.e. the amount of
�land� available, its suitability, and its degree of isolation, under which an economy starting
from speci�c initial conditions never escapes stagnation. Speci�cally we characterize the
set of geographical factors that do not allow an economy to reach the critical population
size L(ω) guaranteeing technological growth. As a consequence, the technological level will
remain below the take-o� threshold, locking the economy at zero-education. Zero-education
associated with small population cannot guarantee a technological progress able to o�set
the losses of technology, so that the economy cannot expand its productive land to enhance
fertility and reach a bigger population. This negative feedback loop prevents the economy
from escaping stagnation.

Proposition 2: An economy with land X, a given suitability θ for it, and a degree
of isolation ω such that

L(ω)
χ(θ, Â(L(ω)/X))X

≥ γ1/β,

i.e. with too high e�ective population density (speci�cally above γ1/β) �at the pop-
ulation level L(ω) guaranteeing technological progress, and the level of technology

triggering education investment Â(L(ω)/X)� will be locked in a stable steady state
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with ẽ = 0, i.e. no education investment, the lowest level of technology Ã = 0, and
a small population L̃, with

L̃ = γ1/βχ(θ, 0)X < L(ω)

for initial conditions L0 < L(ω), e0 = 0, and A0 ≤ Â
(
L(ω)

χ(θ,0)X

)
, i.e. for an initial

population not big enough to guarantee technological progress, no initial education
investment, and a level of technology smaller than the one triggering education
investment under zero technology.

Proof: The claim follows from the fact that, starting from e0 = 0 and L0 < L(ω), if
Lt < L(ω), then Lt+1 < L(ω), for all t. In e�ect, assume Lt < L(ω). Given that χ is
increasing in A, Lt < L(ω), and Â′ < 0,

At ≤ Â

(
L(ω)

χ(θ, 0)X

)
implies

At < min

{
Â

(
Lt

χ(θ, At)X

)
, Â

(
L(ω)
X

)}
Moreover Lt < L(ω) implies

At+1 = [1− λ(ω)][1 + g(0, Lt)]At < At

and hence

At+1 < Â

(
Lt

χ(θ, At)X

)
so that et+1 = 0 and

Lt+1 = γ

(
χ(θ, At)X

Lt

)β
Lt < γ

(
χ(θ, Â(L(ω)/X))X

L(ω)

)β

L(ω) ≤ L(ω)

(where the last inequality comes from the assumed excessive e�ective population density).
As a consequence, Lt+1 < L(ω) and et = 0, for all t = 0, 1, 2, . . . . Moreover

At+1 = [1− λ(ω)]t+1

t∏
i=0

[1 + g(0, Li)]A0

with [1 − λ(ω)][1 + g(0, Lt)] < 1, for all t, so that the technological level converges mono-
tonically to Ã = 0, and the population converges, according to (16), to the level L̃ solution
to

γ

(
χ(θ, 0)X

L

)β
= 1

that is to say
L̃ = γ1/βχ(θ, 0)X

The economy will, therefore, be locked in the stable steady state characterized by

(L̃, Ã, ẽ) =
(
γ1/βχ(θ, 0)X, 0, 0

)
.

Q.E.D.
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5. Conclusion

In early stages of development, i.e. with a small population and a low technological level
giving households no incentive to educate their children (as in the �rst case in Proposition 1),
if the geographical factors (X, θ, ω) �i.e. land, its suitability, and its degree of isolation�
do not allow for a su�ciently large population (i.e. L < L(ω)), there will be no technological
growth in the long run, as well as no education investment to enhance technological progress.
As a consequence, the economy will be locked in stagnation (as stated in Proposition 2).

If, on the contrary, the geographical factors allow for a su�ciently large population able
to o�set losses of technology, then the mechanism for the economy to take o� is similar
to the one in Galor and Weil (2000): for a large enough population, technological growth
appears, the increase in the level of technology over time increases the returns to education,
households educate their children, and this triggers sustained technological progress and
growth, forcing the economy to take o� and leave Malthusian stagnation.

By showing how in a set up close to Galor and Weil (2000) �complemented with ge-
ographical factors and the possibility of technology losses� an economy can get trapped
in Malthusian stagnation, this paper makes stand out the role of some geographical and
environmental conditions for the development process.
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