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Abstract 
 

A new formulation of the optimization problem implementing European market rules for non- 
convex day-ahead electricity markets is presented, that avoids the use of complementarity 
constraints to express market equilibrium conditions, and also avoids the introduction of auxiliary 
binary variables to linearise these constraints. Instead, we rely on strong duality theory for linear 
or convex quadratic optimization problems to recover equilibrium constraints imposed by most of 
European power exchanges facing indivisible orders. When only so-called stepwise preference 
curves are considered to describe continuous bids, the new formulation allows to take full 
advantage of state-of-the-art solvers, and in most cases, an optimal solution together with market 
clearing prices can be computed for large-scale instances without any further algorithmic work. 
The new formulation also suggests a very competitive Benders-like decomposition procedure, 
which helps to handle the case of interpolated preference curves that yield quadratic primal and 
dual objective functions, and consequently a dense quadratic constraint. This procedure 
essentially consists in strengthening classical Benders cuts locally. Computational experiments on 
real data kindly provided by main European power exchanges (Apx-Endex, Belpex and Epex 
spot) show that in the linear case, both approaches are very efficient, while for quadratic 
instances, only the decomposition procedure is tractable and shows very good results. Finally, 
when most orders are block orders, and instances are combinatorially very hard, the new MILP 
approach is substantially more efficient. 
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1 Introduction

Day-ahead electricity markets and European rules

The liberalization of electricity markets in developed countries has led to market design issues

addressed now for many years, that still provide with interesting research questions. In Europe,

efforts are currently made toward greater integration of electricity markets (e.g. the Price Coupling

of Region (PRC) project supported by Europex [6]).

Day-ahead electricity markets are designed as two-sided auctions in which participants submit

orders to buy or sell electricity power during some hours of the following day, in some given areas.

A market operator collecting these orders is in charge of defining an optimal matching, as well as

supporting prices. Order matching depends in particular on cross-boarder flows that are physically

admissible between areas that are part of the market, while computed prices should ideally support

a Walrasian equilibrium. Participants agree on a set of rules driving the clearing process, such

as rules for bid acceptance and price determination. The literature about spatio-temporal partial

equilibrium, thought in a different setting, dates back at least to the fifties ([5, 12]).

The most complicating feature is the fact that some orders may be non-convex, in the sense that

they yield, in the mathematical formulation of the market clearing problem, objects that don’t

have the convexity property (e.g. convex feasible sets, etc). For example, a participant can submit

a block order (or binary order) for which a ”fill-or-kill condition” must hold (the order can only be

fully accepted or fully rejected). These block orders allow participants to reflect more accurately

their production constraints and cost structures. This is mainly due to (a) non-convex production

sets (e.g. minimum and maximum output levels at which a plant can operate) and (b) fixed

(start-up) costs. With these convex and non-convex bids, the market operator who is in charge

of selecting an optimal allocation (execution levels of orders), together with related supporting

prices, is facing a mixed integer optimization problem that doesn’t possess all the nice features of

its continuous relaxation counterpart.

A primal program defining the optimal selection of bids ensures that the allocation is dispatchable,

i.e. respects network security constraints. Computed prices should ideally support a Walrasian

equilibrium (for price-taker participants, the market clears for these prices and no excess de-

mand/supply remains, see e.g. [11]). In a well-behaved context where there are no non-convexities

(e.g. no block orders), optimal dual variables (i.e. shadow prices) of the primal program provide

with supporting equilibrium prices, as expressed by complementarity constraints relating primal

and dual optimal variables, see for example [7, 15].

In a mixed integer context, classical strong duality fails, corresponding supporting prices cannot be

determined, and it is known that in most cases, strict linear equilibrium prices (also called uniform

prices) do not exist. With strict linear pricing, payments depend only and linearly on exchanged

quantities. In particular, this prevents the use of transfer payments for executed bids that would

otherwise incur a loss to the bidder. As a consequence, in the presence of indivisibilities, market

design choices must be made to deal with this issue.

A proposed solution [9] is to accept orders even if they incur a loss to the bidder, or to reject
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them, even if they would provide with a gain. Some side-payments are paid to participants in

one of these two situations, to implement a Walrasian equilibrium. Several approaches have been

proposed to compute market prices and corresponding compensations (so-called uplifts), see [15]

for a review. Due to these uplifts, this is not a strict linear pricing scheme.

In Europe, the common trend is to implement a strict linear pricing scheme. The chosen counter-

part is that some in-the-money block orders may be paradoxically rejected, and are not financially

compensated. On the other hand, all out-of-the money order are rejected, while at-the-money

orders may be rejected, or executed (potentially fractionally for continuous orders). This is for

example the solution adopted in coupled markets such as CWE (Central Western Europe market,

pooling Belgium, France, Germany, Luxembourg and the Netherlands), which will be extended

soon to the North Western Europe market (NWE), including Nordic-Baltic countries and Great-

Britain. The market clearing optimization problem of these markets is the main topic of this

article, see [1] for a full list of requirements.

The classical way to formulate common European market requirements in a mathematical model

is via the addition of dual and complementarity constraints to the primal program defining feasible

dispatches. These complementarity constraints form a subset of those that would be a consequence

of duality theory holding in a well-behaved convex situation (without block orders), see [1, 10, 15].

This is reviewed in section 2.

To handle these formulations, special purpose algorithms have been designed, see [15] for a review.

The two best algorithms so far have been developed independently [1, 10, 15], COSMOS being

used in practice in the CWE region since 2009. Both are decomposition-based branch-and-bound

algorithms solving a main optimization problem and adding cuts to exclude incumbents for which

no strict linear prices fulfilling auction requirements exist. The new algorithm Euphemia which

will be used in the NWE region is based on COSMOS [1].

Contribution and structure of this article

In this article, we provide with a non-trivial reformulation of the European Market Model (EMM)

that has several advantages.

Precisely, we show how EMM can be modelled as a mixed integer linear program without the

introduction of auxiliary binary variables to linearise complementarity constraints, when only

stepwise preference curves (see definitions below) are considered. When (linearly) interpolated

preference curves are considered, EMM can be formulated as a mixed integer quadratically con-

strained program (MIQCP) with only one non-linear convex quadratic constraint (with integer

variables).

In the linear case, the new formulation allows to take full advantage of the power of well-known

state-of-the-art solvers such as Cplex or Gurobi. In both cases, the new formulation allows the

use of a classical Benders decomposition. In particular, we derive in section 5 a Benders-like

decomposition procedure with cuts that are stronger than those proposed in [10]. The new cuts are

indeed obtained by strengthening classical Benders cuts derived from the new formulation locally

(i.e. in branch-and-bound subtrees). This decomposition algorithm is needed when interpolated

orders are considered, since today solvers are not able to deal with large-scale MIQCP problems
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of this kind.

The course of the paper is the following: in section 2, we recall the basic setting, fix the notations

and give the known MPCC formulation of EMM, as can be found in [15]. In section 3, we give the

new formulation and give the proof of its equivalence. For the sake of simplicity, both sections 2

and 3 are presented with stepwise preference curves, dealing with linear models only. The result

is adapted in section 4 when linearly interpolated preference curves are considered, using classical

Dorn’s quadratic duality results. In section 5, we show how to derive a powerful decomposition

procedure by the use of a Benders-like argument, in both the linear and quadratic cases. Finally,

Section 6 is devoted to computational experiments. The conclusion also points out some interesting

research questions to address further.

2 Day-ahead Electricity Markets and Linear Equilibrium

Prices

2.1 Basic Market Coupling

This first section describes the basic setting of market coupling, as it can be found, for example,

in [1, 7, 10, 15]. All of the results are well-known and recalled here with our notations. As

these results are of main importance for all new results presented later on, proofs are provided in

appendix.

2.1.1 Description and Notations

Indexing Sets: I is the set of hourly orders (i.e. continuous orders), J is the set of block orders,

and K is the set of network elements (e.g. high voltage power lines or nodes, depending on the

chosen network representation). The set of areas and periods are A and T , while N is a set

indexing network constraints.

Decision variables: The variables xi ∈ [0, 1], i ∈ I and yj ∈ {0, 1}, j ∈ J are decision variables

which define the level of execution of a given order (xi denotes a convex order, while yj denotes a

block order). The other variables nk are used to describe feasible dispatches (the network model,

see below).

Preference curves and Parameters of hourly orders

For hourly orders, participants submit points defining nodes of a preference curve stating what

quantity is accepted to be exchanged in relation to the price. For each time slot and each area,

aggregated supply and demand curves are computed, containing all the information needed for

the clearing process.

A preference curve is specified by a finite set of points {(Qs, Ps)}s∈S : the curve is obtained via a

linear interpolation in between these points.
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Each two consecutive points (Qs, Ps) and (Qs+1, Ps+1) correspond to an order of quantity

(Qs+1 −Qs).
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Stepwise preference curves are such that Ps = Ps+1 if Qs 6= Qs+1.

For (linearly) interpolated orders, one can have Ps 6= Ps+1 and Qs 6= Qs+1. The right diagram

corresponds to this situation. We deal with interpolated orders in section 4. The rest of this

section, as well as section 3, deals with the situation depicted on the left diagram.

For sell orders Ps ≤ Ps+1 (the curve is non-decreasing), while for buy orders Ps ≥ Ps+1 (the curve

is non-increasing).

An order i ∈ I always comes from a preference curve corresponding to a given area and a given

time slot. Nonetheless, we will denote its parameters by P i, Qi
l,t for step orders, and P i0, P i1, Qi

l,t

for interpolated orders, to ease the description of the model.

Instead of partitioning all orders into the sets of buy orders and sell orders, quantities for buy

orders are counted positively, and negatively for sell orders. This is convenient to derive economic

interpretations, to state network balance constraints, or the welfare maximizing objective.

Parameters of Block Orders

Let J denote the set of block orders. In today’s markets, a block order j ∈ J is related to a given

area and specified by a price P j and quantities Qj
t for several periods t ∈ T . However, in our

notations below, we will denote its parameters P j and Qj
l,t, allowing to consider quantities over

multiple areas. This also eases the description of the current market model. The binary decision

variable associated to the order is denoted yj , determining if the order is entirely accepted or

entirely rejected. Quantities Qj
t are counted positively for buy orders, and negatively for sell

orders, as for hourly orders, and for the same reasons.

Network Model

The network model is not central in this paper and the description provided here encompasses

the most general formulation of a network with linear constraints. The set K contains network

elements (inter-connectors or network nodes) and coefficients ekl,t in (3) describe, for a given market

(l, t), how these elements are related to the net export position of this market. Then, constraints

(4) describe the most general kind of linear constraints on these network elements. In particular, it

can be specialized into a network flow model (usually called in this context ”Available-to-Transfer
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Capacity” network model), or a flow-based network model (as described e.g. in [7]). For ATC

models, variables nk correspond to flows through cross-boarder lines, while for flow-based models,

they correspond to ’critical network elements’ [1]. Shadow prices of constraints (4) are typically

the prices computed when implicit auctions are used to determine congestion revenues of the

TSO.

Objective function: The market coupling problem is modelled as a welfare maximisation pro-

gram. This amounts to maximize the total seller and buyer surplus.

2.1.2 Primal Problem

max
xi,yj ,nk

∑
i

(
∑
l,t

Qi
l,tP

i)xi +
∑
j

(
∑
l,t

Qj
l,tP

j)yj

subject to:

xi ≤ 1 ∀i ∈ I [si] (1)

yj ≤ 1 ∀j ∈ J [sj ] (2)∑
i

Qi
l,txi +

∑
j

Qj
l,tyj =

∑
k

ekl,tnk, ∀(l, t) ∈ A× T [pl,t] (3)

∑
k

am,knk ≤ wm ∀m ∈ N [um] (4)

xi, yj ≥ 0, yj ∈ Z. (5)

2.1.3 Duality and Equilibrium prices

Solving the market coupling problem implies to find prices supporting, ideally, a Walrasian equi-

librium. In a convex situation where all orders are continuous orders, classical shadow prices

(pl,t, um here) are equilibrium prices for the optimal bid allocation. This equilibrium property is

a consequence of dual and complementarity constraints, as now recalled.

Definition 1. Let pl,t be a linear price system (unique price per period and per area). A step

order is said to be:

(i) in-the-money (ITM) if
∑
l,t

Qi
l,t(P

i−pl,t) > 0. For hourly orders, since an order has a precise

location and time slot, the sum has only one term Qi
l0,t0(P i − pl0,t0). So if Qi

l0,t0 < 0 (sell

order), then P i < pl0,t0 and if Qi
l0,t0 > 0, then P i > pl0,t0 . For block orders, this is true

globally (the clearing price is such that a surplus is granted when all periods are considered).

(ii) at-the-money if
∑
l,t

Qi
l,t(P

i− pl,t) = 0. For hourly orders, this means Qi
l0,t0(P i− pl0,t0) = 0,

and (assuming Qi
l0,t0 6= 0), P i = pl0,t0 : both bid and market prices are equal.

(iii) out-of-the-money if it is not ITM nor ATM (i.e. its execution would incur a loss):∑
l,t

Qi
l,t(P

i − pl,t) < 0.
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Definition 2 (Walrasian Equilibrium prices). Let (x∗i , y
∗
j , n
∗
k) be some dispatchable allocation

(i.e. satisfying (1)-(5)), and p∗l,t a (uniform) price system. Then (x∗i , y
∗
j , n
∗
k, p
∗
l,t) is a Walrasian

equilibrium if:

• Fully executed orders are ITM or ATM

• Fractionally executed orders are ATM

• Rejected orders are ATM or OTM

In such a situation, for a given order i: ∀xi ∈ [0, 1],
∑
l,t

Qi
l,t(P

i
l,t−p∗l,t)xi ≤

∑
l,t

Qi
l,t(P

i
l,t−p∗l,t)x

∗
i .

The inequality simply means that for these prices p∗l,t, no other level of execution could be more

profitable to the bidder.

Network equilibrium. Network resource prices um (shadow prices of constraints (4)) and elec-

tricity prices pl,t should also be coherent from an economic viewpoint. For two areas l and k, if

no constraint on network resources involved in the transport of electricity from l to k or k to l is

binding, then it should be considered they form but one market and have pl,t = pk,t. On another

hand, if pl,t < pk,t, then the price difference should be related to network resource prices in some

way. For ATC-based network representations (a network flow model), this price difference can only

occur when the line from the market with lower price to the market with higher price is congested,

in which case the price difference equals the congestion price. For flow-based representations, the

price difference is equal to a weighted sum of resource prices [1].

Assumption. As it is not of main importance here, and to be more general, we will not discuss

in details network equilibrium conditions that hold with the use of shadow prices (see e.g. [1, 7, 10]

for relevant details about ATC or Flow-based network representations). We will assume, as it is

well-known, that dual and complementarity constraints (8) and (14) below hold if and only if these

network equilibrium conditions are satisfied.

We now review the fact that pl,t are Walrasian equilibrium prices, when one considers continuous

orders only. We then show why strict linear pricing is in general impossible in the presence of

indivisible orders.

Let consider the continuous relaxation of the primal problem above. Its dual problem is:

Dual Problem

min
si,sj ,pl,t,um

∑
i

si +
∑
j

sj +
∑
m

wmum
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subject to:

si +
∑
l,t

Qi
l,tpl,t ≥

∑
l,t

Qi
l,tP

i ∀i ∈ I [xi] (6)

sj +
∑
l,t

Qj
l,tpl,t ≥

∑
l,t

Qj
l,tP

j ∀j ∈ J [yj ] (7)

∑
m

am,kum −
∑
l,t

ekl,tpl,t = 0 ∀k ∈ K [nk] (8)

si, sj , um ≥ 0 (9)

And related complementarity constraints are:

si(1− xi) = 0 ∀i ∈ I (10)

sj(1− yj) = 0 ∀j ∈ J (11)

xi(si +
∑
l,t

Qi
l,tpl,t −

∑
l,t

Qi
l,tP

i) = 0 ∀i ∈ I (12)

yj(sj +
∑
l,t

Qj
l,tpl,t −

∑
l,t

Qj
l,tP

j) = 0 ∀j ∈ J (13)

um(
∑
k

am,knk − wm) = 0 ∀m ∈ N (14)

Complementarity constraints typically express equilibrium conditions:

Lemma 1. For an optimal solution (xi, yj , nk) of the continuous relaxation of the primal program,

take as linear prices pl,t, the optimal dual variables of constraints (3). For these prices: (i) fully

accepted orders are ITM or ATM, (ii) fractionally accepted orders are ATM and (iii) rejected

orders are ATM or OTM.

In particular, ITM orders are fully accepted and OTM orders are fully rejected.

Lemma 2. Let (xi, yj , nk) be a feasible point of the primal. If pl,t is a price system such that (i)−
(iii) of lemma 1 hold, then one can define auxiliary variables si, sj such that dual constraints (6)−
(7), (9) and complementarity conditions (10)− (13) hold as well (’network equilibrium conditions’

(8) and (14) are not considered).

These two lemmas together with our previous assumption about network equilibrium conditions

yield the following theorem and its direct corollary, recalling why strict linear pricing is in general

impossible in the presence of block orders.

Theorem 1. For a given bid selection (x∗i , y
∗
j , n
∗
k) satisfying (1) − (5) , strict linear equilibrium

prices exist if and only if there are dual variables s∗i , s
∗
j , p
∗
l,t, u

∗
m such that dual and complementarity

constraints (6)− (14) are satisfied, in which case (x∗i , y
∗
j , n
∗
k) is optimal for the welfare maximizing

objective function of the primal program, s∗i , s
∗
j , p
∗
l,t, u

∗
m is optimal for the dual, and both objective

values are equal.

Corollary 1. Consider the primal problem including integer constraints. There exists a solution

supported by strict linear equilibrium prices p∗l,t, u
∗
m if and only if the continuous relaxation of the

primal program admits an optimal solution (x∗i , y
∗
j , n
∗
k) with y∗j ∈ Z, ∀j ∈ J .
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This result shows that strict linear prices exist if and only if there is no duality gap caused by

integer constraints, which is not the case for most of real instances. Therefore, in general, strict

linear pricing is simply proven infeasible.

2.2 The European Market Model: MPCC formulation

We describe here the model used everyday in Europe to compute clearing prices [1] and recall its

MPCC formulation. Since strictly linear equilibrium pricing is proven infeasible, a solution is to

compute equilibrium prices for hourly orders together with some restrictions concerning other non-

convex orders. For example, one can allow block bids to be paradoxically executed (accepted while

OTM) or paradoxically rejected (rejected while ITM), and set transfer payments to participants

to reach an equilibrium situation.

In Europe, OTM orders are always rejected and paradoxically rejected ITM block orders are

allowed but not compensated, while ATM orders may be rejected or accepted (potentially frac-

tionally for continuous orders). This results in a suboptimal welfare (the pure welfare maximizing

solution is rejected if no prices exist that satisfy these conditions).

The main requirements of EMM are: (i) strict linear prices, (ii) OTM orders must be rejected

(block and hourly orders as well) and (iii) ITM hourly orders must be accepted.

The classical way to state this maximisation problem, that is to formulate European market rules,

is to write primal, dual and all complementarity constraints excepted those of type (11) (see e.g.

[15]). According to the interpretation given above, this corresponds to drop for block orders the

requirement that they should be accepted if they are ITM. This yields a mathematical program

with complementarity conditions (MPCC).

MPCC Formulation:

max
x,y,n,p,u

∑
i

(
∑
l,t

Qi
l,tP

i)xi +
∑
j

(
∑
l,t

Qj
l,tP

j)yj

subject to constraints: (1)− (10) (i.e. primal - dual constraints) and (12)− (14) (complemen-

tarity constraints) but not subject to complementarity constraints of type (11).

This formulation involves non-linear constraints, and instances (which are very large in practice)

would be hard or even impossible to solve with current MINLP solvers. For this reason, special

purpose algorithms have been designed (see above).

We now show how to replace these complementarity constraints using duality theory.

3 A New Formulation

The advantage of this new formulation is threefold. First, in the MILP case, it allows to solve rea-

sonably large-scale instances without any special purpose algorithm, by the use of state-of-the-art

solvers such as Cplex or Gurobi. Second, one can derive from the new formulation a (Benders-

like) decomposition algorithm that allows to deal with interpolated orders, in which case a MIQCP

9



must be solved. However, in the case of MILP instances, it turns out that the new formulation is

more efficient (especially on instances with more block orders) than the decomposition procedure.

Third, with a slight modification of the formulation, it could be allowed to consider the minimiza-

tion problem of opportunity costs of paradoxically rejected orders or results about the deviations

from perfect Walrasian equilibrium prices. How to use this in a interesting way is studied in more

details in a paper in preparation.

We first state the formulation and then prove its equivalence in theorem 2 thereafter.

3.1 EMM with step orders as a MILP

The new formulation involves all primal and dual constraints as well as equality of objective func-

tions condition (instead of a subset of complementarity constraints). To ensure the existence of

a solution and reflect the choice of allowing some ITM block orders to be rejected, dual con-

straints of type (7) are modified, yielding constraints of type (21) below, where the Mj are large

enough to deactivate the constraint when yj = 0. Let remember that these constraints (7) to-

gether with complementarity constraints of type (11) would mean that ITM block orders must be

accepted.

New MILP Formulation:

max
x,y,n,p,u

∑
i

(
∑
l,t

Qi
l,tP

i)xi +
∑
j

(
∑
l,t

Qj
l,tP

j)yj

subject to:

∑
i

(
∑
l,t

Qi
l,tP

i)xi +
∑
j

(
∑
l,t

Qj
l,tP

j)yj ≥∑
i

si +
∑
j

sj +
∑
m

wmum
(15)

xi ≤ 1 ∀i ∈ I (16)

yj ≤ 1 ∀j ∈ J (17)∑
i

Qi
l,txi +

∑
j

Qj
l,tyj =

∑
k

ekl,tnk, ∀(l, t) ∈ A× T (18)

∑
k

am,knk ≤ wm ∀m ∈ N (19)

si +
∑
l,t

Qi
l,tpl,t ≥

∑
l,t

Qi
l,tP

i ∀i ∈ I (20)

sj +
∑
l,t

Qj
l,tpl,t ≥

∑
l,t

Qj
l,tP

j −Mj(1− yj) ∀j ∈ J (21)

∑
m

am,kum −
∑
l,t

ekl,tpl,t = 0 ∀k ∈ K (22)

xi, yj , si, sj , um ≥ 0, yj ∈ Z ∀j ∈ J (23)
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Theorem 2. The MPCC and the New MILP formulations are equivalent. More precisely, the

projection of both feasible sets on the space of decision variables (xi, yj , nk, pl,t, um) are equal.

Therefore, EMM with step orders can be modelled as a mixed integer linear program without the

introduction of auxiliary binary variables.

The proof of theorem 2 is presented in next section.

3.2 Block Order Selections and proof of theorem 2

We start by partitioning the set J of block orders into two subsets J0 (rejected block orders)

and J1 (accepted block orders), corresponding to a block bid selection (block order variables yj

fixed to some values). Some of these selections admit linear prices fulfilling European market

rules and some do not. The cost of fixing integer variables is reflected in the dual. This point of

view helps to describe which of all possible bid selections are valid, according to European market

rules. Indeed, these selections must be such that it is possible to get a feasible solution with

dj1 = 0 ∀j1 ∈ J1.

Let J0, J1 be a block bid selection. The corresponding primal, dual and complementarity con-

straints are:

Primal problem with a block bid selection

max
xi,yj ,nk

∑
i

(
∑
l,t

Qi
l,tP

i)xi +
∑
j

(
∑
l,t

Qj
l,tP

j)yj

subject to:

xi ≤ 1 ∀i ∈ I [si] (24)

yj ≤ 1 ∀j ∈ J [sj ] (25)

yj0 ≤ 0 ∀j0 ∈ J0 [dj0 ] (26)

− yj1 ≤ −1 ∀j1 ∈ J1 [dj1 ] (27)∑
i

Qi
l,txi +

∑
j

Qj
l,tyj =

∑
k

ekl,tnk, ∀(l, t) ∈ A× T [pl,t] (28)

∑
k

am,knk ≤ wm ∀m ∈ N [um] (29)

xi, yj ≥ 0 (30)

Dual problem with a block bid selection

min
∑
i

si +
∑
j

sj −
∑
j1

dj1 +
∑
m

wmum

11



subject to:

si +
∑
l,t

Qi
l,tpl,t ≥

∑
l,t

Qi
l,tP

i ∀i ∈ I [xi] (31)

sj0 + dj0 +
∑
l,t

Qj0
l,tpl,t ≥

∑
l,t

Qj0
l,tP

j0 ∀j0 ∈ J0 [yj0 ] (32)

sj1 − dj1 +
∑
l,t

Qj1
l,tpl,t ≥

∑
l,t

Qj1
l,tP

j1 ∀j1 ∈ J1 [yj1 ] (33)

∑
m

am,kum −
∑
l,t

ekl,tpl,t = 0 ∀k ∈ K [nk] (34)

si, sj , dj0 , dj1 , um ≥ 0 (35)

Complementarity constraints

si(1− xi) = 0 ∀i ∈ I (36)

sj0(1− yj0) = 0 ∀j0 ∈ J0 (37)

sj1(1− yj1) = 0 ∀j1 ∈ J1 (38)

yj0dj0 = 0 ∀j0 ∈ J0 (39)

(1− yj1)dj1 = 0 ∀j1 ∈ J1 (40)

um(
∑
k

am,knk − wm) = 0 ∀m ∈ N (41)

xi(si +
∑
l,t

Qi
l,tpl,t −

∑
l,t

Qi
l,tP

i) = 0 ∀i ∈ I (42)

yj0(sj0 + dj0 +
∑
l,t

Qj0
l,tpl,t −

∑
l,t

Qj0
l,tP

j0) = 0 ∀j0 ∈ J0 (43)

yj1(sj1 − dj1 +
∑
l,t

Qj1
l,tpl,t −

∑
l,t

Qj1
l,tP

j1) = 0 ∀j1 ∈ J1 (44)

Proof of Theorem 2.

Proof. Let MPCCset and MILPset be the feasible sets of the MPCC and MILP formulations

respectively.

We show that Proj(x,y,n,p,u)(MPCCset) = Proj(x,y,n,p,u)(MILPset), where Proj(x,y,n,p,u)(∗) de-

notes the projection on the space of decision variables (x, y, n, p, u).

(i) Let (xi, yj , nk, pl,t, um, si, sj) be a feasible point of the MPCC formulation.

Let define J0 := {j|yj = 0}, J1 := {j|yj = 1}, dj1 := 0 ∀j1 ∈ J1 and dj0 := Mj0 ∀j0 ∈ J0. Since the

parameters Mj and thus dj0 have been chosen large enough, we can define new smodj0 = 0 such that

dual constraints of type (32) and complementarity constraints of type (37) above are satisfied. The

new point (xi, yj , nk, pl,t, um, si, s
mod
j , dj0 , dj1) satisfies constraints (24) - (44), that is all primal,

dual and complementarity constraints corresponding to the primal and dual optimization problems

where block order variables are fixed to some values. It is therefore optimal for the primal problem

12



with a block bid selection above. Moreover, by duality theory (implying equality of objective

functions), constraint (15) is satisfied as well

(dj1 = 0 ∀j1 ∈ J1 in the dual objective function above). Due to constraints (32) − (33) and the

given values of dj0 , dj1 , it is direct to check that the projection (xi, yj , nk, pl,t, um, si, s
mod
j ) satisfies

constraints (21). This shows that the projection (xi, yj , nk, pl,t, um, si, s
mod
j ) satisfies (15)− (23),

so is a feasible point of the new MILP formulation.

(ii) Now let (xi, yj , nk, pl,t, um, si, sj) be a feasible point of the MILP Formulation.

Let define J0, J1, dj0 , dj1 as above at (i). The point (xi, yj , nk, pl,t, um, si, sj , dj0 , dj1) satisfies all

primal and dual conditions, as well as equality of objective functions of the optimization problems

with a block bid selection presented above. By duality theory (implying related complementarity

constraints), it satisfies constraints (36)− (44). We can now define new smodj0 := sj0 +dj0 to satisfy

constraints (7). Constraints (37) (same as (11)) may not be satisfied any more but the projection

of the new point thus obtained, (xi, yj , nk, pl,t, um, si, s
mod
j ), satisfies (1) − (10) and (12) − (15),

and hence is a feasible point of the MPCC formulation.

4 Markets with interpolated preference curves

4.1 Primal Program, Dorn’s Dual and equilibrium prices

We now deal with interpolated (hourly) orders. Results are almost the same and a few minor

changes are needed. The new formulation is also based on strong duality (for convex quadratic

programs). We also recall the basic equilibrium conditions expressed by complementarity con-

straints in this different setting.

Consider the set of points {(Ps, Qs)}s∈S defining a given preference curve. In this situation, the

price Ps is the price at which the order of quantity (Qs+1 − Qs) starts to be accepted, and the

price Ps+1 is the price at which it is fully accepted. Intermediate marginal prices depend linearly

on the level of execution of the order, as specified by the (interpolated) preference curve. We may

have Ps 6= Ps+1 and Qs 6= Qs+1 for some s, but note that stepwise preference curves considered

earlier are just particular cases of linearly interpolated curves. For sell orders P i1 ≥ P i0 (the curve

is non-decreasing), while for buy orders P i1 ≤ P i0 (the curve is non-increasing).

Primal (Quadratic) Program

In the present case of linearly interpolated hourly orders, the objective function is:

max
xi,yj ,nk

∑
i

(
∑
l,t

Qi
l,tP

i
0xi +

∑
l,t

Qi
l,t(P

i
1 − P i0)

x2
i

2
) +

∑
j

(
∑
l,t

Qj
l,tP

j
l,t)yj

subject to (primal constraints remain unchanged):

13



xi ≤ 1 ∀i ∈ I [si] (45)

yj ≤ 1 ∀j ∈ J [sj ] (46)∑
i

Qi
l,txi +

∑
j

Qj
l,tyj =

∑
k

ekl,tnk, ∀(l, t) ∈ A× T [pl,t] (47)

∑
k

am,knk ≤ wm ∀m ∈ N [um] (48)

xi, yj ≥ 0, yj ∈ Z. (49)

Dual (Quadratic) Program

The objective function is trivially concave (factors Qi
l,t(P

i
1 − P i0) are non-positive).

Strong duality still holds for such convex quadratic programs (see e.g. [4, 8, 14]).

Compared to the dual presented in section 2.1.3., the objective function is:

min
si,sj ,pl,t,um

∑
i

si +
∑
j

sj +
∑
m

wmum −
∑
i

(
∑
l,t

Qi
l,t(P

i
1 − P i0))

v2i
2

and feasibility inequalities of type (6) have an additional linear term:

si +
∑
l,t

Qi
l,tpl,t ≥

∑
l,t

Qi
l,tP

i
0 +

∑
l,t

Qi
l,t(P

i
1 − P i0)vi ∀i ∈ I [xi] (50)

sj +
∑
l,t

Qj
l,tpl,t ≥

∑
l,t

Qj
l,tP

j ∀j ∈ J [yj ] (51)

∑
m

am,kum −
∑
l,t

ekl,tpl,t = 0 ∀k ∈ K [nk] (52)

si, sj , um ≥ 0 (53)

Lemma 3. If (xi, yj , nk) is an optimal solution of the primal program, there exists a dual optimal

solution (si, sj , pl,t, um, vi) such that vi = xi ∀i ∈ I.

Proof. It is a direct application of Dorn’s quadratic duality theorem(see e.g. [4], [8] or [14]).

When stating primal, dual and complementarity constraints, or primal and dual constraints with

equality of objective functions, we will thus be allowed to replace vi with xi, since such a solution

of the dual program exists. This is indeed needed for the economic interpretations.

Complementarity Constraints

Compared to the previous case with stepwise preference curves and complementarity constraints

(10)− (14), one has just to replace complementarity constraints of type (12) by:

xi(si +
∑
l,t

Qi
l,tpl,t −

∑
l,t

Qi
l,tP

i
0 −

∑
l,t

Qi
l,t(P

i
1 − P i0)xi) = 0, (54)
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where lemma 3 has been used to replace vi by xi. With this taken into account, the Walrasian

equilibrium interpretation of (the new) complementarity conditions still holds:

• if xi = 1 (the order is fully accepted), equations of type (54) imply

si =
∑
l,t

Qi
l,tP

i
0 +

∑
l,t

Qi
l,t(P

i
1 − P i0)1−

∑
l,t

Qi
l,tpl,t ≥ 0, that is

∑
l,t

Qi
l,t(P

i
1 − pl,t) ≥ 0.

Recalling that there is in fact only one term in the sum and the sign convention for quantities,

this means that pl,t ≥ P1 for sell orders and pl,t ≤ P1 for buy orders, as expected (the

comparison of market price and P1 corresponds to the situation where the order is fully

executed).

• if 0 < xi < 1 (the order is partially accepted), equations of type (10) imply si = 0 and

equations of type (54) then imply
∑
l,t

Qi
l,tP

i
0 +

∑
l,t

Qi
l,t(P

i
1 − P i0)xi =

∑
l,t

Qi
l,tpl,t. In this

case, pl,t is equal to P i0 + (P i1 −P i0)xi, i.e. the marginal market price equals the interpolated

bid price for this level of execution.

• if xi = 0, equations (10) imply si = 0 and inequalities (50) (with vi = xi = 0) imply∑
l,t

Qi
l,tP

i
0 ≤

∑
l,t

Qi
l,tpl,t.

This means that pl,t ≤ P0 for sell orders and pl,t ≥ P0 for buy orders, as expected.

MPCC formulation in the quadratic case

As in the previous case, a first MPCC formulation can be given. One has just to replace in

the previous MPCC formulation the objective function, as well as dual and complementarity

constraints (6) by (50) and (12) by (54).

4.2 EMM with interpolated orders: new formulation

We give here the new formulation analogue to the one presented in section 3. For the sake of

clarity, we rewrite here all constraints in extenso, as they will be used in section 5.

MIQCP Formulation

max
∑
i

(
∑
l,t

Qi
l,tP

i
0xi +

∑
l,t

Qi
l,t(P

i
1 − P i0)

x2
i

2
) +

∑
j

(
∑
l,t

Qj
l,tP

j
l,t)yj

subject to:∑
i

(
∑
l,t

Qi
l,tP

i
0xi +

∑
l,t

Qi
l,t(P

i
1 − P i0)

x2
i

2
) +

∑
j

(
∑
l,t

Qj
l,tP

j
l,t)yj ≥

∑
i

si +
∑
j

sj +
∑
m

wmum −
∑
l,t

Qi
l,t(P

i
1 − P i0)

x2
i

2
) (55)

and: (16)− (19), (21)− (23), and (50) with vi = xi ∀i ∈ I instead of (20). Explicitly:
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xi ≤ 1 ∀i ∈ I (56)

yj ≤ 1 ∀j ∈ J (57)∑
i

Qi
l,txi +

∑
j

Qj
l,tyj =

∑
k

ekl,tnk, ∀(l, t) ∈ A× T (58)

∑
k

am,knk ≤ wm ∀m ∈ N (59)

si +
∑
l,t

Qi
l,tpl,t ≥

∑
l,t

Qi
l,tP

i +
∑
l,t

Qi
l,t(P

i
1 − P i0)xi ∀i ∈ I (60)

sj +
∑
l,t

Qj
l,tpl,t ≥

∑
l,t

Qj
l,tP

j −Mj(1− yj) ∀j ∈ J (61)

∑
m

am,kum −
∑
l,t

ekl,tpl,t = 0 ∀k ∈ K (62)

xi, yj , si, sj , um ≥ 0 yj ∈ Z ∀j ∈ J (63)

Theorem 3. Both formulations are equivalent. More precisely, the projection on the space of

main variables (xi, yj , nk, pl,t, um) of both feasible sets are equal.

Proof. The proof is very similar to the proof of theorem 2. It is just needed to adapt primal and

dual problems with a block bid selection to the quadratic setting, and to replace in the proof

constraint (15) by (55), constraints of type (6) or (31) by (50) and constraints of type (12) by

(54), taking into account lemma 3 according to which we can consider optimal dual variables

vi = xi ∀i ∈ I.

5 A Decomposition Method

Here, we derive from our new formulation a Benders-like decomposition algorithm, where cuts are

added when no prices exist for a given incumbent of the primal problem (dispatchable allocation).

It is in this sense similar to the two best algorithms [1, 10] mentioned earlier (the algorithm briefly

described in [1] is the proprietary algorithm in charge of solving CWE market instances on which

further technical developments for European market integration will rely). The cuts we propose

are stronger than the cuts proposed in [10]. Quadratic instances of the new formulation cannot be

solved with today solvers, and such an algorithm is needed to solve efficiently real life instances.

The derivation is in a first stage very close to [2], and in particular relies on the Farkas lemma

and the finiteness of the number of vertices of the polytope defining the feasible set of a slave

program.

To simplify notations, in all this section, only one market (one area and one period) is considered,

but all of what follows can be carried out with several areas and periods. We are sometimes refer-

ring to corresponding previous constraints involving the network structure, but the adaptations

needed are minor and direct.
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Exposition is made first in the linear case. It is shown hereafter how to handle the quadratic case

in a similar way.

5.1 The linear case

Consider the primal problem defined in section 2.1.2:

max obj :=
∑
i

QiP ixi +
∑
j

QjP jyj ,

subject to (1)− (5), with only one market (no network and only one period), i.e. with N empty

and
∑
k

ekl,tnk := 0, to simplify notations.

Consider now a branch-and-bound procedure and let (x∗i , y
∗
j , n
∗
k) be an incumbent of this primal

program. According to constraints (15), (20) − (23) of the new MILP formulation, supporting

prices exist if and only if there exist si, sj , pm (pm denoting the market price) such that:

− si −Qipm ≤ −QiP i0 ∀i ∈ I [ui] (64)

− sj −Qjpm ≤ −QjP j + Mj(1− y∗j ) ∀j ∈ J [uj ] (65)∑
i

si +
∑
j

sj ≤ obj∗ [uσ] (66)

si, sj ≥ 0 (67)

where obj∗ denotes the corresponding optimal value of the objective function for this incum-

bent.

According to the Farkas lemma[13], a solution to a linear system Ax ≤ b, x ≥ 0 exists if and only

if ∀y ≥ 0, yA ≥ 0⇒ yb ≥ 0. The existence of a supporting price is so equivalent to:∑
i

−QiP i0ui +
∑
j

−QjP juj +
∑
j

Mj(1− y∗j )uj + obj∗uσ ≥ 0

∀(ui, uj , uσ) such that:

− ui + uσ ≥ 0 (68)

− uj + uσ ≥ 0 (69)

−
∑
i

Qiui −
∑
j

Qjuj = 0 [pm] (70)

ui, uj , uσ ≥ 0, (71)

The condition being trivially satisfied if uσ = 0, we can assume uσ := 1 (normalization).

Rearranging terms, prices exist if and only if :
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∑
i

QiP iui +
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj ≤
∑
i

QiP ix∗i +
∑
j

QjP jy∗j

∀(ui, uj) ∈ P with P defined by the constraints:

ui ≤ 1 (72)

uj ≤ 1 (73)∑
i

Qiui +
∑
j

Qjuj = 0 (74)

ui, uj ≥ 0, (75)

This yields:

Lemma 4. For a given incumbent (x∗i , y
∗
j ) , an equilibrium price exist if and only if:

max
(ui,uj)∈P

∑
i

QiP iui +
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj ≤ obj∗. (76)

Lemma 5. Let (u∗i , u
∗
j ) denotes an optimal solution to the optimization problem stated in Lemma

4. Then y∗j = 0⇒ u∗j = 0.

Proof. Because the numbers Mj are very (arbitrarily) large fixed numbers, if y∗j = 0, the objective

could not be optimal for any vertex of P with uj 6= 0. Accordingly, this could also be shown by

noting that constraints of the dual of the left-hand side program are constraints (20)− (23) with

yj = y∗j fixed, and that uj are the shadow prices of constraints (21). If y∗j = 0, the corresponding

constraint (21) is not binding because of the choice of the Mj (sj ≥ 0 is binding instead), and

uj = 0.

Note that the numbers Mj are used here only in proofs, and will be avoided in the final procedure

described below.

The criterion of Lemma 4 admits a nice interpretation. Indeed, let consider the continuous relax-

ation of the primal problem with the additional constraints that all blocks at 0 in the incumbent

are held at 0 in this relaxation. From the two previous lemmas, it follows that the value of the

objective function for this relaxation cannot be greater than the value for the current incumbent.

Formally:

Theorem 4. For an incumbent (x∗i , y
∗
j ), consider the polytope

PF
∗

:= P ∩ {(ui, uj)| uj = 0 if y∗j = 0}. Then an equilibrium price exist if and only if

max
(ui,uj)∈PF

∑
i

QiP iui +
∑
j

QjP juj ≤ obj∗,

where obj∗ denotes the optimal value associated with the incumbent of the objective function , in

which case equality holds as well.

Proof. It is a direct corollary of lemma 4 and lemma 5. Also, since (x∗i , y
∗
j ) is feasible for the

left-hand side, if the inequality holds, equality holds as well.
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Now suppose there are no prices for the feasible dispatch, then:

max
(ui,uj)∈P

∑
i

QiP iui +
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj > obj∗,

and using lemma (5), we even have:

max
(ui,uj)∈P

∑
i

QiP iui +
∑
j

QjP juj > obj∗.

We then add the following valid inequality (see lemma (4)), with (u∗i , u
∗
j ) optimal for the relaxed

problem:

∑
i

QiP iu∗i +
∑
j

QjP ju∗j −
∑
j

Mj(1− yj)u
∗
j ≤

∑
i

QiP ixi +
∑
j

QjP jyj . (77)

At this stage, we can already note that there is a finite number of such inequalities to add, which

is bounded by the number of vertices of the bounded polyhedron P .

These cuts are not strong as such because of the Mj (a small change in the variables allows to

satisfy the new constraint when LP relaxations are considered), but it is possible to strengthen

them:

Theorem 5. For each new incumbent in the branch-and-bound for which no supporting price

exists, the inequality
∑
j|y∗j=1

(1− yj) ≥ 1 is valid in the subtree.

Proof. Consider a new incumbent (xi, yj) in the subtree originating from the current incumbent

(x∗i , y
∗
j ) for which no equilibrium price exists, that is for which:∑

i

QiP ix∗i +
∑
j

QjP jy∗j <
∑
i

QiP iu∗i +
∑
j

QjP ju∗j .

If
∑
j|y∗j=1

(1−yj) = 0, using lemma 5,
∑
j

Mj(1−yj)u
∗
j = 0 and the valid inequality (77) for (xi, yj)

reduces to: ∑
i

QiP iu∗i +
∑
j

QjP ju∗j ≤
∑
i

QiP ixi +
∑
j

QjP jyj .

But for a new incumbent (xi, yj) in the subtree originating from (x∗, y∗),∑
i

QiP ixi +
∑
j

QjP jyj = obj ≤ obj∗ <
∑
i

QiP iu∗i +
∑
j

QjP ju∗j ,

and no such solution can admit an (European) equilibrium price.

Note that this improves on the ”no-good” cuts proposed in [10]:
∑
j|y∗j=1

(1 − yj) +
∑
j|y∗j=0

yj ≥ 1

which essentially correspond to valid inequalities (77) we have locally strengthened.
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5.2 The quadratic case

Again, for an incumbent (x∗i , y
∗
j ) in a branch-and-bound solving the primal problem, we apply the

Farkas lemma to constraints (55) and (60) − (63) of the new formulation to test the existence of

linear prices. This yields the equivalent condition (again neglecting network details):

∀(ui, uj) ∈ P,
∑
i

QiP i0ui +
∑
i

Qi(P i1 − P i0)x∗i ui +
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj

≤
∑
i

QiP i0x
∗
i +

∑
i

Qi(P i1 − P i0)(x∗i )
2 +

∑
j

QjP jy∗j
(78)

where P is the polytope defined above in the linear case.

Note that we can only apply the Farkas Lemma to the new formulation after having chosen the dual

solution vi = xi ∀i ∈ I: if we consider inequality (55) with unknown vi instead of vi = x∗i ∀i ∈ I

fixed to the given values, the inequality is not linear any more in the unknown ’dual variables’ and

the Farkas lemma doesn’t apply.

Mainly two things should be noted concerning this condition. First, it is a linear condition which

relates two ’quadratic quantities’ (with fixed values) which are close to the original quadratic

objective function of the primal program.

But, and this is the second point, contrary to condition (76), both right and left-hand sides do

not correspond to the objective function of the initial primal program (with additional terms

involving Mj for the left-hand side). This last point was used in the preceding arguments to

derive the decomposition procedure with our locally valid cuts.

Nonetheless, though it is not direct, it is possible to recover the analogue result:

Lemma 6. For a given incumbent (x∗i , y
∗
j ) , an equilibrium price exist if and only if:

max
(ui,uj)∈P

∑
i

QiP iui +
∑
i

Qi(P i1 − P i0)
u2
i

2
+

∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj ≤ obj∗, (79)

where obj∗ denotes the optimal value of the quadratic objective function associated with the current

incumbent.

Proof. See appendix for details.

Observe however that condition (78) asks to solve a linear program and is more efficient as a tester

for the existence of equilibrium prices than condition (79).

We can now adapt to the quadratic case the decomposition algorithm with exactly the same

cuts:
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Theorem 6. In the quadratic case also, for each new incumbent in the branch-and-bound for

which no supporting price exists, cuts of the form
∑
j|y∗j=1

(1− yj) ≥ 1 are valid in the subtree.

Proof. The proof is exactly the same as in Theorem 5. Just replace condition (77) by its counter-

part derived from (79) (i.e. with quadratic terms).

Note also that like in the previous linear case, a consequence of lemma 6 is:

Theorem 7. For an incumbent (x∗i , y
∗
j ), consider the polytope

PF := P ∩ {(ui, uj)| uj = 0 if y∗j = 0}. Then an equilibrium price exists if and only if

max
(ui,uj)∈PF

∑
i

QiP i0ui +
∑
i

Qi(P i1 − P i0)
u2
i

2
+
∑
j

QjP juj ≤ obj∗, (80)

where obj∗ denotes the optimal value of the quadratic objective function associated with the in-

cumbent, in which case equality holds as well.

6 Computational Results

In this section, we mainly address three questions related to the new formulation. First, how

state-of-the-art solvers behave on real instances, when the whole model (15)-(23) is provided ?

Second, how the Benders-like algorithm behaves in comparison to the first approach ? Third, how

both approaches behave on very combinatorial linear instances ? We present here answers to these

three questions. Apx-Endex kindly provided us with real data from 2011. Statistics computed over

the whole year 2011 (i.e. 365 instances) are presented. In appendix, we present in more details

results for randomly chosen instances. The sample is very representative of the whole year.

Computational experiments have been carried out with AIMMS [3] (with Cplex 12.5), on a com-

puter running Windows 7 64 bits, with a four cores CPU i5 @ 3.10 Ghz, and 4 GB of RAM. Even

with such a modest platform, results turn out to be very positive. The decomposition procedure

has been implemented using lazy constraint callbacks (available in Cplex since version 12.3, which

also allows for locally valid lazy constraints).

Concerning practical requirements for an algorithm, main European power exchanges ask for a

time limit of ten minutes, and we have adopted this stopping criterion for all tests below.

For both approaches (the new formulation and the decomposition procedure), we have computed

the number of instances solved up to optimality, the (geometric) average time needed to find

these optimal solutions, and the (geometric) average of the final absolute MIP gap when only a

suboptimal solution is available in time. To provide with a more robust insight, we also provide

with the number of visited nodes for the new MILP approach, and the number of cuts generated

in the decomposition approach.
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6.1 Historical instances with stepwise preference curves

Piecewise linear preference curves have been transformed into stepwise preference curves to get

MILP instances. To do this, for each two consecutive points of the preference curve such that

Qi 6= Qi+1 and Pi 6= Pi+1, a point (Q∗, P ∗) has been inserted in between, with Q∗ = Qi and

P ∗ = Pi+1.

A particular attention has been devoted to numerical issues. One drawback of the new formulation

is the so-called big-M constants involved in the constraints. As it is well-known, this may result

in numerically ill-conditioned instances. It appeared that very tight tolerance parameters must be

set to obtain correct solutions.

Instances contain orders for 4 areas (Belgium, France, Germany and the Netherlands), and span

the whole day (24 hours, excepted twice per year, 23 and 25 hours respectively). There are

approximatively 50 000 hourly orders (preference curve segments) and 600 block orders per in-

stance.

Solved instances Running time Final abs. gap Nodes Cuts

(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

New MILP formulation 84% 104.42 418.16 43 - 33584 /

Decomposition Procedure 72.78% 6.47 402.05 16 - 1430 8 - 3492

The new MILP formulation allows to solve most of the instances without any algorithmic work

and to obtain very good suboptimal solutions when the instance cannot be solved up to optimality.

The decomposition procedure is much faster on most instances but most of the time doesn’t help

to solve hard instances that the MILP approach cannot solve. The fact that the new MILP

formulation approach takes in average more time for solved instances is mainly due to the time

needed to solve the root node relaxation. However, for quadratic instances (with interpolated

orders), the decomposition procedure is the only tractable approach.

Comparing runs with and without solver’s cut generation procedures, it turned out that they were

not useful and were indeed slowing down the process in both the decomposition procedure and the

full model approaches. In fact, for the full model approach, this may be explained by the presence

of big-M’s and the fact that most of the cuts generated may be very weak in practice. Concerning

the decomposition procedure, in most cases, many good solutions to the primal program are easily

found and cuts are not of main interest, the main part of the procedure (from a running time

point of view) consisting in rejecting incumbents when no European prices exist.

6.2 Historical instances with interpolated orders

When interpolated orders are considered, the resulting new MIQCP optimization problem cannot

be solved with today’s solvers (e.g. Cplex or Gurobi), and only the decomposition procedure can

be relevantly assessed.

To check for the existence of prices for a given new incumbent, the linear condition (78) has been

used, and the locally valid local cut of theorem 6 is added when no equilibrium prices exist.
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Solved instances Running time Final abs. gap Nodes Cuts

(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

Decomposition Procedure 70.41% 16.70 370.91 11 - 619 7 - 1382

As it can be seen, most of instances are solved up to optimality, and a very small gap remains

when only a suboptimal solution is found within ten minutes.

6.3 Instances with (almost) only block orders

We have built 50 instances where orders are almost all block orders in the following way. Starting

from historical instances, all block orders have been relocated to one area only and are spanning

only one hour of the day. Two small continuous orders (one buy order and one sell order) have

been added for the sole purpose to have an instance with at least one feasible solution (a matching

of orders is possible). The difference between both approaches in this case is remarkable:

Solved instances Running time Final abs. gap Nodes Cuts

(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

New MILP formulation 100% 4.17 / 40797 - / -

Decomposition Procedure 78% 13.82 9303.16 64564 / 937172 1662 / 82497

In this case, the new MILP formulation approach is much more powerful. One possible explanation

is the high number of block order selections for which no prices exist, which are enumerated by the

decomposition. On another hand, with the full model approach, the solver may be able to branch

more efficiently. The difference of performances between the two approaches was more impressive

on a less powerful platform. This difference would therefore be more important for instances with

more block orders.

7 Conclusions

We have proposed a new formulation for European day-ahead electricity markets that turns out to

be (a) tractable and (b) very competitive as long as stepwise preference curves describing hourly

orders are considered. More than 80 % of the historical instances of 2011 can be solved up to

optimality, and for the other ones, the final gap is very small. We have also compared this approach

with a decomposition procedure derived directly from the new formulation, which appeared to solve

most instances faster but was not helpful on hard instances that the new formulation approach

was not able to solve. Unfortunately, the simple use of the analogue new formulation is no longer

successful when piecewise linear preference curves are considered. Today’s state-of-the-art MIQCP

solvers are not able to deal with large-scale programs with this structure. On the other hand, the

Benders-like decomposition approach derived from the new formulation allows managing these

cases in an efficient way. Finally, the new MILP formulation performs much better than the

decomposition approach on small very combinatorial linear instances, and this could be exploited

in auctions with more block orders. Another interesting point is that an approach similar to the

new formulation allows considering other objective functions over the set of constraints defining

European market rules. In particular, with a similar modelling technique, it would be possible to

consider, for example, an objective function whose aim is to minimize the total opportunity costs
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of paradoxically rejected block orders. In a article in preparation, we study how this modelling

technique can be used from a market design analysis point of view.
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A Proofs of section 1

Proof of lemma 1.

Proof. Let consider a hourly order i:

(i) if xi = 1 (the order is fully accepted), complementarity constraints of type (12) imply

si =
∑
l,t

Qi
l,t(P

i − pl,t) ≥ 0, i.e. the order is in-the-money or at-the-money.

(ii) if 0 < xi < 1 (the order is partially accepted), complementarity constraints of type (10) imply

si = 0 and those of type (12) then imply
∑
l,t

Qi
l,tP

i =
∑
l,t

Qi
l,tpl,t, i.e. the order is ATM.

(iii) if xi = 0, complementarity constraints (10) imply si = 0 and then dual constraints (6) imply∑
l,t

Qi
l,tP

i ≤
∑
l,t

Qi
l,tpl,t, i.e. the order is ATM or OTM.

Proof of lemma 2.

Proof. Assume pl,t are prices satisfying (i)− (iii) of Lemma 1. Let define si, sj ≥ 0 as follows:

(a) si =
∑
l,t

Qi
l,t(P

i − pl,t) ≥ 0 if xi = 1 and likewise for sj ,

(b) si =
∑
l,t

Qi
l,t(P

i − pl,t) = 0 if 0 < xi < 1 and likewise for sj ,

(c) si = 0 ≥
∑
l,t

Qi
l,t(P

i − pl,t) if xi = 0 and likewise sj .

Conditions (i) − (iii) of lemma 1 ensure that in cases (a) and (b), si =
∑
l,t

Qi
l,t(P

i − pl,t) is non

negative (well defined), and that in case (c) si = 0 is greater or equal to
∑
l,t

Qi
l,t(P

i − pl,t). It is

then direct to check that constraints (6)− (7), (9) and (10)− (13) are satisfied.

Proof of theorem 1.
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Proof. (i) Let (x∗i , y
∗
j , n
∗
k) be a point satisfying (1) − (5) and suppose there exist s∗i , s

∗
j , p
∗
l,t, u

∗
m

satisfying (6) − (9) such that (10) − (14) are satisfied as well. Lemma 1 shows that pl,t are

Walrasian equilibrium prices. As stated above, we assume that network dual and complementarity

conditions (8) and (14) represent network equilibrium related to the chosen network model. In

this case, strict linear prices exist.

(ii) To show the converse, assume pl,t satisfy (i)− (iii) of lemma 1 and that pl,t, um are network

equilibrium prices. As stated before, we can then assume that pl,t, um satisfy (8) and (14) (network

dual and complementarity conditions). Lemma 2 shows that it is also possible to assign values to

si, sj such that all constraints (6)− (14) are satisfied.

(iii) Assume (xi, yj , nk) and (si, sj , um) are primal and dual feasible respectively. By duality

theory, they satisfy complementarity conditions if and only if equality of objective functions holds,

in which case both are optimal for their respective problem.

Proof of Corollary 1.

Proof. Theorem 1 shows that for a given feasible solution of the primal (x∗i , y
∗
j , n
∗
k), strict linear

equilibrium prices exist if and only if this solution is optimal for the continuous relaxation.

B Proof of lemma 6

Proof. (i) If (European) equilibrium prices exist, condition (78) holds, and necessarily:

∀(ui, uj) ∈ P ,∑
i

QiP i0ui +
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj

≤
∑
i

QiP i0x
∗
i +

∑
i

Qi(P i1 − P i0)[(x∗i )
2 − x∗i ui] +

∑
j

QjP jy∗j

≤
∑
i

QiP i0x
∗
i +

∑
i

Qi(P i1 − P i0)[
(x∗i )

2

2
− u2

i

2
] +

∑
j

QjP jy∗j ,

where the first inequality is condition (78) rearranged, and where for the last inequality, we use

the fact that if cij are coefficients of a negative semi-definite matrix, then:

∑
ij

cijxi(xj − uj) ≤
1

2
(
∑
ij

cijxixj −
∑
ij

cijuiuj).

Rearranging, we now get the necessary condition (79):

max
(ui,uj)∈P

∑
i

QiP i0ui +
∑
i

Qi(P i1 − P i0)
(ui)

2

2
+
∑
j

QjP juj −
∑
j

Mj(1− y∗j )uj ≤ obj∗,

where obj∗ is the value of the quadratic objective function of the model for the current incumbent.

26



(ii) Let prove that this condition is also sufficiant and let obj∗ correspond to the optimal value

associated to a new incumbent (x∗i , y
∗
j ). The left-hand side QP of inequation (79) is the continuous

relaxation of the primal QP of section 4.1 with an additional term −
∑
j

M(1 − y∗j )uj in the

objective function (taking into account the minor adaptations needed if one wants to consider a

network representation).

The incumbant (x∗i , y
∗
j ) ∈ P , so is feasible for this left-hand side QP and is therefore optimal for

it (terms with the Mj cancel if uj = y∗j , so the expression is exactly the same on both sides).

By lemma 3, for this QP, there exist dual optimal variables (si, sj , pl,t, vi) such that vi = x∗i .

Constraints of the dual are exactly constraints (60) − (63) (mutatis mutandis to take a network

representation into account), and by strong duality for quadratic programs [4], we have:∑
i

si +
∑
j

sj −
∑
i

Qi(P i1 − P i0)
(x∗i )

2

2

=
∑
i

QiP i0x
∗
i +

∑
i

Qi(P i1 − P i0)
(x∗i )

2

2
+

∑
j

QjP jy∗j −
∑
j

Mj(1− y∗j )y∗j

≤ obj∗ =
∑
i

QiP i0x
∗
i +

∑
i

Qi(P i1 − P i0)
(x∗i )

2

2
+

∑
j

QjP jy∗j ,

so, rearranging, constraint (55) (equality of objective functions) is satisfied as well. This shows

that for our incumbent (x∗i , y
∗
j ), we can define (si, sj , pl,t) such that all constraints (55) − (63)

are satisfied. Therefore, an equilibrium price (or equilibrium prices when several areas or time

slots are considered) satisfying EMM conditions exists for the solution (x∗i , y
∗
j ): one just needs to

consider the dual optimal solution of the left-hand side QP for which vi = x∗i .
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C Tables

C.1 Linear Instances

New MILP formulation Decomposition approach

Instance # Block orders Run. Time Final Gap Nodes Run. Time Final Gap Nodes Cuts

1 766 600.37 495.89 27478 600.276 1463.35 842 3442

2 477 64.912 2.106 0

3 731 277.042 18331 600.401 106.75 2204 3594

4 566 64.819 12 2.527 17 2

5 683 57.097 2.168 0

6 513 47.283 84 6.537 46 27

7 658 79.577 473 99.7 458 706

8 604 51.028 3 2.371 0

9 571 36.348 2 1.685 2 0

10 655 136.891 5292 600.651 179.12 993 3625

11 686 54.335 77 6.708 85 29

12 692 69.156 2 2.73 2 0

13 640 93.773 9 3.369 21 3

14 618 85.692 7 3.635 6 5

15 550 92.368 57 6.567 75 16

16 591 59.857 9 3.885 7 7

17 685 117.781 91 3.37 15 4

18 699 600.339 252.83 27679 600.588 268.65 1408 3042

19 578 71.32 10 122.27 133 570

20 703 600.308 235.22 39225 600.604 517.47 1046 3173

C.2 Quadratic Instances (decomposition approach)

Instance # Block orders Run. Time Final Gap Nodes Cuts

1 766 600.21 1160.50 565 1343

2 477 5.27 0

3 731 600.51 145.21 961 1382

4 566 8.47 13 2

5 683 8.30 1 0

6 513 10.95 32 7

7 658 13.01 59 16

8 604 5.82 0

9 571 4.31 1 0

10 655 601.10 256.69 357 1478

11 686 14.12 63 15

12 692 7.66 0

13 640 20.03 34 21

14 618 600.48 202.48 388 1291

15 550 180.29 247 366

16 591 42.67 40 58

17 685 44.43 82 66

18 699 600.56 204.42 753 1138

19 578 15.23 7 7

20 703 600.42 1740.25 457 1280
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C.3 Instances with (almost) only block orders

New MILP Formulation Decomposition approach

Instance Block orders Run. Time Final Gap Nodes Run. Time Final Gap Nodes Cuts

1 526 7.18 75561 600.14 28497.24 493464 132118

2 508 12.18 168467 540.00 1777391 121336

3 612 1.34 15348 2.32 8784 367

4 594 9.95 114400 15.41 81721 2756

5 671 4.74 53026 4.88 18312 847

6 766 8.80 90938 129.04 1156506 17312

7 714 1.82 17111 10.25 70038 1517

8 497 1.16 16210 459.08 1090631 106874

9 460 0.53 6216 0.56 4219 84

10 579 0.31 2474 1.01 2437 199

11 668 0.16 725 0.19 473 15

12 684 0.70 6733 2.45 29995 310

13 650 1.84 19433 7.58 71328 988

14 682 1.48 13224 2.43 10835 374

15 487 14.68 192265 600.01 6099.59 794340 142957

16 477 1.09 15481 302.75 699328 69114

17 597 0.16 792 0.47 5716 20

18 740 3.12 28904 28.44 105697 4312

19 794 5.91 57537 113.37 366836 14008

20 823 1.01 9677 600.03 209922.61 155204 63899
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