
Available at:
http://hdl.handle.net/2078.1/152135

[Downloaded 2019/04/19 at 10:15:01 ]

"Interpolation inequalities between Sobolev and
Morrey-Campanato spaces: A common gateway to

concentration-compactness and Gagliardo-Nirenberg"

Van Schaftingen, Jean

Abstract

We prove interpolation estimates between Morrey-Campanato spaces and
Sobolev spaces. These estimates give in particular concentration-compactness
inequalities in the translation-invariant and in the translation- and dilation-invariant
case. They also give in particular interpolation estimates between Sobolev spaces
and functions of bounded mean oscillation. The proofs rely on Sobolev integral
representation formulae and maximal function theory. Fractional Sobolev spaces
are also covered.

Document type : Article de périodique (Journal article)

Référence bibliographique

Van Schaftingen, Jean. Interpolation inequalities between Sobolev and Morrey-Campanato
spaces: A common gateway to concentration-compactness and Gagliardo-Nirenberg.  In:
Portugaliae Mathematica, Vol. 71, no.3, p. 159–175 (2014)

DOI : 10.4171/PM/1947

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34101689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ar
X

iv
:1

30
8.

17
94

v1
  [

m
at

h.
A

P]
  8

 A
ug

 2
01

3

INTERPOLATION INEQUALITIES BETWEEN SOBOLEV AND

MORREY–CAMPANATO SPACES:

A COMMON GATEWAY TO CONCENTRATION-COMPACTNESS

AND GAGLIARDO-NIRENBERG INTERPOLATION INEQUALITIES

JEAN VAN SCHAFTINGEN

Abstract. We prove interpolation estimates between Morrey–Campanato spaces and
Sobolev spaces. These estimates give in particular concentration-compactness inequal-
ities in the translation-invariant and in the translation- and dilation-invariant case.
They also give in particular interpolation estimates between Sobolev spaces and func-
tions of bounded mean oscillation. The proofs rely on Sobolev integral representation
formulae and maximal function theory. Fractional Sobolev spaces are also covered.

1. Introduction

The subcritical Sobolev embedding states that if 1 ≤ p ≤ q and 1
q > 1

p − 1
N , then for

every u in the Sobolev space W 1,p(RN ), u ∈ Lq(RN ) and

(1.1)
(

ˆ

RN

|u|q
)

p
q

≤ C

ˆ

RN

|Du|p + |u|p.

Because the norms in W 1,p(RN ) and Lq(RN ) are invariant under translation, this em-
bedding is not compact, that is, bounded sets in W 1,p(RN ) need not be precompact in
Lq(RN ).

This noncompactness is an obstacle to prove that the optimal constant in the estimate
(1.1) is achieved. One of the key observations in the concentration-compactness method
of P.-L. Lions which allows to overcome this problem [13] is that the elements of any
bounded sequence that does not converge to 0 in Lq(RN ) can be translated in space so
that the sequence of translations does not converge to 0 in Lq

loc(R
N ). This fact can be

deduced from the inequality [13, lemma I.1; 20, lemma 2.3; 32, lemma 1.21]:

(1.2)

ˆ

RN

|u|q ≤ C
(

sup
x∈RN

ˆ

B1(x)
|u|q

)1− p
q

ˆ

RN

|Du|p + |u|p.

When p ∈ (1, N) and q = Np
N−p , the limiting inequality for (1.1) is the critical Sobolev

inequality

(1.3)
(

ˆ

RN

|u|
Np

N−p

)1− p
N

≤ C

ˆ

RN

|Du|p.
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2 JEAN VAN SCHAFTINGEN

This inequality is now invariant under both translations and dilations. In particular,
there are bounded sequences that do not converge to 0 in LNp/(N−p)(RN ) and every
translation of which also converges to 0 in Lq

loc(R
N ). However, for every bounded se-

quence (un)n∈N in W 1,p(RN ), that does not converge to 0 in LNp/(N−p)(RN ), there exist
sequences (xn)n∈N in R

N and (rn)n∈N in (0, ∞) such that if

vn(y) = r(N−p)/p
n un(xn + rny),

then the sequence (vn)n∈N does not converge to 0 in Lp
loc(R

N ) [14]. This follows from

the inequality for every u ∈ W 1,p(RN )

(1.4)

ˆ

RN

|u|
Np

N−p ≤ C

(

sup
x∈R

N

r>0

1

rp

ˆ

Br(x)
|u|p

)

p
N−p ˆ

RN

|Du|p,

which follows by Hölder’s inequality from the interpolation estimate [23, theorem 1.2]

(1.5)

ˆ

RN

|u|
Np

N−p ≤ C‖u‖
p2/(N−p)

M1,(N−p)/p(RN )

ˆ

RN

|Du|p,

where the Morrey norm is defined by

‖u‖Mq,λ(RN ) = sup
x∈R

N

r>0

rλ
(

 

Br(x)
|u|q

)

1
q
.

The inequalities (1.2) and (1.4) seem at first hand quite different: the first is translation-
invariant whereas the second is dilation- and translation-invariant. A first question that
we address in this paper is to determine the relationship between the inequalities (1.2)
and (1.4). We answer this question by proving a family of inequalities of which both
(1.2) and (1.4) are direct consequences: if q > p > 1 and if λ ∈ [0, p/(q − p)), then for
every u ∈ W 1,p(RN ) ∩ M1,λ

ρ (RN ),

(1.6)

ˆ

RN

|u|q ≤ C
(

ρ−λ‖u‖
M1,λ

ρ (RN )

)q−p
ˆ

RN

ρp|Du|p + |u|p.

where the localized Morrey norm is defined as [30] (see also [3, 4])

‖u‖
Mq,λ

ρ (RN )
= sup

x∈R
N

r∈(0,ρ)

rλ
(

 

Br(x)
|u|q

)

1
q
;

the estimate (1.2) follows by the classical Hölder inequality from (1.6) with λ = N
q and

ρ = 1, whereas (1.5) is obtained by letting ρ → ∞ with λ = N−p
p .

Our proof of (1.6) is based on pointwise integral estimates of a function and the max-
imal function theorem. It covers higher-order derivatives (theorem 2.1) and fractional
derivatives (theorem 4.1). Our proof also provides an independent proof of the classical
Sobolev and Gagliardo–Nirenberg inequalities.

Finally, we would like to mention that the statements of theorems 2.1 and 4.1 allow
to prove an interpolation inequality between Sobolev spaces and functions of bounded
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mean oscillation: assuming that s > ℓ ∈ N, if s 6∈ N, and p ≥ 1, then for every

u ∈ W s,p(RN ) ∩ BMO(RN ), one has u ∈ W ℓ, sp
ℓ (RN ) and

(1.7) ‖Dℓu‖Lsp/ℓ(RN ) ≤ C|u|
1− s

ℓ

BMO(RN )
|u|

s
ℓ

W s,p(RN )
.

and if p > 1 and s ∈ N, then for every u ∈ W s,p(RN )∩BMO(RN ), one has Du ∈ L
sp
ℓ (RN )

and

(1.8) ‖Dℓu‖Lsp/ℓ(RN ) ≤ C|u|
1− s

ℓ

BMO(RN )
‖Dsu‖

s
ℓ

Lp(RN )
.

These inequalities were known when s ∈ N or p = 2 [11,19,28].

2. Statement of the result

In order to state our results we recall the definition of the Campanato semi-norm1

[2, 26]

|u|q
Lq,λ

k

= sup
x∈R

N

r>0

rλ inf
P ∈Pk−1(RN )

 

Br(x)
|u − P |q,

where Pk−1(RN ) denotes the space of polynomials on R
N of degree at most k − 1. We

define the localized Campanato semi-norm

|u|q
Lq,λ

k,ρ
(RN )

= sup
x∈RN

r∈(0,ρ)

rλ inf
P ∈Pk−1(RN )

 

Br(x)
|u − P |q.

If we use the convention that P−1(RN ) = {0}, then we observe that

|u|
Lq,λ

0,ρ (RN )
= ‖u‖

Mq,λ
0,ρ (RN )

.

It is clear from the definition that if ℓ ≤ k, then for every u ∈ Lq,λ
ℓ,ρ (RN ),

|u|q
Lq,λ

k,ρ
(RN )

≤ |u|q
Lq,λ

ℓ,ρ
(RN )

;

conversely [2, teorema 6.2],

|u|
Lq,λ

ℓ,ρ
(RN )

≤ C

(

|u|
Lq,λ

k,ρ
(RN )

+ sup
x∈R

N

ρλ inf
P ∈Pℓ−1(RN )

 

Bρ(x)
|u − P |q

)

;

that is, we only need to look at differences with low-degree polynomials only at the scale
ρ.

We now state our main interpolation estimate.

Theorem 2.1 (Interpolation estimate). Let N ∈ N, k ∈ N∗ and ℓ ∈ {0, . . . , k − 1},

1 < p < q < ∞ and −ℓ ≤ λ ≤ kp−ℓq
q−p . There exists a constant C such that for every

ρ > 0, if u ∈ W k,p(RN ) ∩ L1,λ
ℓ,ρ (RN ), then Dℓu ∈ Lq(RN ) and

ˆ

RN

ρℓq|Dℓu|q ≤ C
(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)q−p
ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)

.

1We warn the reader of the variety of conventions for the parameters in the definition of the Cam-
panato seminorm.
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We first discuss the relationship between the estimate of theorem 2.1 and similar

estimates. If r ≥ 1, by the definition of the inhomogeneous Campanato space Lr,λ
ℓ,ρ(RN )

and by the classical Hölder inequality, for every u ∈ W k,p(RN )∩L1,λ
ℓ,ρ (RN ), the inequality

can be weakened to

(2.1)

ˆ

RN

ρℓq|Dℓu|q ≤ C
(

ρ−λ|u|
Lr,λ

ℓ,ρ
(RN )

)q−p
ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)

.

If λ ≤ N , by the classical Hölder inequality and by monotonicity of the integral

(2.2) |u|
L1,λ

ℓ,ρ
≤ sup

x∈RN

ρλ
(

 

Bρ(x)
|u|

N
λ

)

λ
N

,

so that theorem 2.1 gives in particular the estimate in the case where ℓq < kp and
N
λ ≥ max(N( q−p

kp−ℓq ), 1)

(2.3)

ˆ

RN

ρℓq|Dℓu|q ≤ C
(

sup
x∈RN

 

Bρ(x)
|u|

N
λ

)(q−p) λ
N

ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)

.

In particular, if 1
p − k

N ≤ 1
q ≤ 1

p and if we set λ = N
q , we obtain the inequality

(2.4)

ˆ

RN

ρℓq|u|q ≤ C
(

sup
x∈RN

 

Bρ(x)
|u|q

)1− p
q

ˆ

RN

(

ρkp|Dku|p + ρℓp|u|p
)

.

This inequality yields (1.2) in particular; the estimate (2.4) can be proved in the wider
range p ≥ 1 by the Gagliardo–Nirenberg interpolation inequality applied to balls and
then by integration over balls; this argument is well-known for k = 1 and p ≥ 1 [13,
lemma I.1; 20, lemma 2.3; 32, lemma 1.21].

The inequality (2.3) implies a subscale of the Gagliardo–Nirenberg interpolation in-
equalities[8, 21]: if ℓq ≤ kp and t = N

λ ≥ max(N q−p
kp−ℓq , 1), then

ˆ

RN

ρℓq|Dℓu|q ≤ C
( 1

ρN

ˆ

RN

|u|t
)

q−p
t

ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)

.

We have in particular, if 1
p − k

N ≤ 1
q ≤ 1

p , the classical Sobolev inequality

1

ρN

ˆ

RN

|u|q ≤ C
( 1

ρN

ˆ

RN

(

ρkp|Dku|p + |u|p
)

)

q
p
.

If ℓq ≤ kp and λ = 0, we have the interpolation inequality
ˆ

RN

ρℓq|Dℓu|q ≤ C‖u‖q−p
L∞(RN )

ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)

.

If ℓ ∈ {1, . . . , k−1} and λ = 0, the latter inequality can be improved by the isomorphism
between Campanato spaces and functions of bounded mean oscillation (BMO) [2, p. 159;
25; 26, theorem 4.3], the estimate of theorem 2.1: if ℓq ≤ kp, then

(2.5)

ˆ

RN

ρℓq|Dℓu|q ≤ C|u|q−p
BMOρ(RN )

ˆ

RN

(

ρkp|Dku|p + ρℓp|Dℓu|p
)
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where the local bounded mean oscillation seminorm is defined by

|u|BMOρ(RN ) = sup
x∈R

N

0<r<ρ

 

Br(x)

 

Br(x)
|u(y) − u(z)| dz dy.

We remark also, that when λ ∈ (−ℓ, 0) is not an integer, the inhomogeneous Campanato
seminorm is a Hölder seminorm [2, teorema 4.1; 10; 26, theorem 4.4].

As the proof of theorem 2.1 does not depend on any Sobolev or Gagliardo–Nirenberg
inequality, the proof of theorem 2.1 provides an alternative method to prove these inequal-
ities based essentially on the Sobolev integral representation and the maximal function
theorem.

In the homogeneous case λ = (kp − ℓq)/(q − p), if we let ρ → ∞, theorem 2.1 implies
an interpolation result between Morrey spaces and Sobolev spaces

(2.6)

ˆ

RN

|Dℓu|q ≤ C|u|
L

1,(kp−ℓq)/(q−p)
ℓ

(RN )q−p

ˆ

RN

|Dku|p.

In particular, when kp < N and 1
q = 1

p − k
N in (2.6), we obtain the generalization of

(1.5)

(2.7)

ˆ

RN

|Dℓu|
Np

N−(k−ℓ)p ≤ C‖u‖
(k−ℓ)p2

N−(k−ℓ)p
(RN )

M1,N/p−k

ˆ

RN

|Dku|p

which was known for ℓ = 1 and p = 2 or k = 2 [23, theorems 1.1 and 1.2].
If kp = qℓ, then the inequality (2.6) becomes, by the equivalence between the Cam-

panato space L1,0
ℓ (RN ) and the space of functions with bounded mean oscillation BMO(RN ),

(2.8)

ˆ

RN

|Dℓu|
kp
ℓ ≤ C|u|

( k
ℓ

−1)p

BMO(RN )

ˆ

RN

|Dku|p,

where the bounded mean oscillation semi-norm is defined by

|u|BMO(RN ) = sup
x∈RN

r>0

 

Br(x)

 

Br(x)
|u(y) − u(z)| dz dy.

The estimate (2.8) is also the limit when ρ → ∞ of (2.5). This estimate was proved by
embeddings in the Besov scale space [19, theorem 1.4] and by duality between BMO(RN )
and the real Hardy space H1(RN ) [28, theorem 1.2]. Similarly, when (ℓq − kp)/(p − q)
is positive and not an integer, we recover from (2.6) interpolation estimates with Hölder
continuous functions [21]

(2.9)

ˆ

RN

|Dℓu|q ≤ C|u|q−p
C(ℓq−kp)/(q−p)(RN )

ˆ

RN

|Dku|p;

the latter inequality still holds for integer (ℓq − kp)/(q − p) if one takes the semi-norm
in the corresponding homogeneous Zygmund space.

When k = 1, the inequality (2.6) also follows from the stronger interpolation inequality
[12, theorem 1]

ˆ

RN

|u|q ≤ C‖u‖q−p

Ḃ
−p/(q−p)
∞,∞ (RN )

ˆ

RN

|Du|p;
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by embeddings of the Morrey class M1,p/(q−p)(RN ) in the Besov space B
−p/(q−p)
∞,∞ (RN )

[12, §2.3; 23, lemma 3.4] (see also [33, corollary 3.3, proposition 2.4 and corollary 2.2])
the latter approach covers specifically the case p = 1 [5–7]. (For p = 2 and q = 4 see
also [19, theorem 2.6].)

If q > p(1 + k
N ), the Lorentz space LN(q−p)/(kp),∞(RN ) is continuously embedded in

M1,kp/(q−p)(RN ) and thus the estimate (2.6) implies

(2.10)

ˆ

RN

|u|q ≤ C‖u‖q−p
LN(q−p)/kp,∞(RN )

ˆ

RN

|Dku|p.

If p ∈ [1, N
k ), the inequality (2.10) can also be deduced from the embedding of the

Sobolev space W k,p(RN ) into the Lorentz space LNp/(N−kp),p(RN ) [1; 22; 24, théorème
7.1; 29] and by interpolation between Lorentz spaces. These inequalities imply the weaker
inequality [9]:

ˆ

RN

|u|q ≤ C|u|q−p
Bk

p,∞(RN )

ˆ

RN

|Dku|p

by the homogeneous embedding of Bk
p,∞(RN ) in Lp,q(RN ) which is a consequence of the

embeddings of Besov spaces into Lebesgue spaces and interpolation theorems [31].

3. Proof of the estimate

The proof of theorem 2.1 will use a pointwise estimate on the value of a function by
its derivatives.

Lemma 3.1 (Pointwise estimate of the value of a function). There exists a constant

C > 0 such that for every u ∈ W 1,k
loc (RN ), for almost every x ∈ R

N and for every R > 0,

Rℓ|Dℓu(x)| ≤ C
(

ˆ

BR(0)

|Dku(y)|

|x − y|N−k
dy +

 

BR(x)
|u|
)

.

When ℓ = 0 this estimate is a direct consequence of the Sobolev integral representation
formula [16, theorem 1.1.10/1]. It has appeared as an intermediate step of pointwise
interpolation for derivatives [17, (15)]. We provide here for the sake of completeness a
complete argument following that is a combination of these proofs [16, theorem 1.1.10/1;
17, theorem 1].

Proof of lemma 3.1. We fix η ∈ Ck
c (B1) such that

´

B1
η = 1 and we define for every

x ∈ R
N and w1, . . . , wk ∈ R

N , the function g : (0, ∞) → R for each r ∈ (0, ∞) by

g(r) =

ˆ

B1

Dℓu(x + rz)[w1, . . . , wℓ]η(z) dz =

ˆ

Br(x)
Dℓu(y)[w1, . . . , wℓ]ηr(y − x),

where we have set for every r > 0 and z ∈ R
N , ηr(z) = η(z/r)/rN . The function g is

k − j times continuously differentiable and for every j ∈ {0, . . . , k − ℓ} and r ∈ (0, ∞),

g(j)(r) =

ˆ

B1

Dℓ+ju(x + rz)[w1, . . . , wℓ, z, . . . , z]η(z) dz

=
1

rj

ˆ

Br(x)
Dℓu(y)[w1, . . . , wℓ, y − x, . . . , y − x]ηr(y − x) dy.
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By integration by parts, for every j ∈ {0, . . . , k − ℓ}, there exists a function ηj ∈
Ck−j

c (B1; Linℓ(RN )) such that
ˆ

B1

Dℓ+jv(z)[w1, . . . , wℓ, z, . . . , z]η(z) dz = (−1)j

ˆ

B1

v(z)ηj(z)[w1, . . . , wℓ] dz,

and hence

g(j)(r) =

ˆ

B1

Dℓ+ju(x + rz)[w1, . . . , wℓ, z, . . . , z]η(z) dz

=
(−1)j

rℓ+j

ˆ

B1

u(x + rz)ηj(z)[w1, . . . , wℓ] dz

=
(−1)j

rℓ+j

ˆ

Br(x)
u(y)ηj

r(y − x)[w1, . . . , wℓ] dy.

where we have set for every r > 0 and z ∈ R
N , ηj

r(z) = ηj(z/r)/rN .
If x is a Lebesgue point of the function Dℓu, then

lim
r→0

g(r) = u(x).

Moreover, since u ∈ W 1,k
loc (RN ), for almost every x ∈ R

N and for every R > 0,
ˆ

BR(a)

ˆ

BR(x)

|Dku(y)|

|x − y|N−k
dy dx ≤

(

ˆ

B2R(a)
|Dku|

)(

ˆ

BR

1

|z|N−k
dz
)

< ∞,

hence for almost every x ∈ R
N ,
ˆ

BR(x)

|Dku(y)|

|x − y|N−k
dy < ∞.

By the integral version of the Taylor expansion of g at R, we write

(3.1) Dℓu(x)[w1, . . . , wℓ] = lim
r→0

g(r) =
k−ℓ−1
∑

j=0

g(j)(R) (−R)j

j!
−

ˆ R

0

g(k)(r) (−r)k−1

(k − 1)!
dr

=
k−ℓ−1
∑

j=0

1

Rℓ

ˆ

BR(x)
u(y)η(j)

r (y − x)[w1, . . . , wℓ] dy

+

ˆ R

0

ˆ

Br(x)
Dku(y)[w1, . . . , wℓ, x − y, . . . , x − y]ηr(y − x) dy

1

(k − 1)!r
dr.

By Fubini’s theorem,
ˆ R

0

ˆ

Br(x)
Dku(y)[w1, . . . , wℓ, x − y, . . . , x − y]ηr(y − x) dy

1

(k − 1)!r
dr

=
1

(k − 1)!

ˆ

Br(x)
Dku(y)[w1, . . . , wℓ, x − y, . . . , x − y]Hr(y − x) dy dr,

where we have set for r > 0 and z ∈ b Hr(z) = H(z/r)/rN and

H(z) =

ˆ ∞

|z|

η(tz)

tN
dt.
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Since |Hr(z)| ≤ C|z|−N and |ηj
r(x)| ≤ Cr−N , we conclude that

Rℓ|Dℓu(x)| ≤ C
(

 

Br(x)
|u| +

ˆ

BR(x)

|Dku(y)|

|x − y|N−k
dy
)

. �

Proof of theorem 2.1. For almost every x ∈ R
N , for every R > 0 and every P ∈

Pℓ−1(RN ), we bound by the pointwise estimate (lemma 3.1), since DℓP = 0 on R
N ,

Rℓ|Dℓu(x)| = Rℓ|Dℓ(u − P )(x)|

≤ C
(

ˆ

BR(0)

|Dk(u − P )(y)|

|x − y|N−k
dy +

 

BR(x)
|u − P |

)

= C
(

ˆ

BR(0)

|Dku(y)|

|x − y|N−k
dy +

 

BR(x)
|u − P |

)

.

We observe that by Fubini’s theorem
ˆ

BR(x)

|Dku(y)|

|x − y|N−k
dy = (N − k)

ˆ R

0

( 1

rN

ˆ

Br(x)
|Dku|

)

rk−1 dr +
1

RN−k

ˆ

BR(x)
|Dku|.

We fix β > 0. Hence, if R ≤ ρ, in view of our previous computation and by definition of
the maximal function and the Morrey-Campanato norm,

(3.2) ρℓ|Dℓu(x)| ≤ Cρℓ+β(Rk−ℓ−βM(|Dku|)(x) + R−λ−ℓ−β|u|
L1,λ

ℓ,ρ
(RN )

)

.

If |u|
L1,λ

ℓ,ρ
(RN )

≤ M(|Dku|)(x)ρk+λ, we take

R =

( |u|
L1,λ

ℓ,ρ
(RN )

M(|Dku|)(x)

)

1
k+λ

.

and we obtain

ρℓ|Dℓu(x)| ≤ Cρℓ+β(M(|Dku|)(x)
)

λ+ℓ+β
λ+k |u|

k−ℓ−β
k+λ

L1,λ
ℓ,ρ

(RN )

≤ C
(

ρkM(|Dku|)(x)
)

λ+ℓ+β
λ+k

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k−ℓ−β
k+λ .

(3.3)

Otherwise, we observe that by (3.2) with R = ρ,

ρℓ|Dℓu(x)| ≤ Cρ−λ|u|
L1,λ

ℓ,ρ
(RN )

and thus if −λ − ℓ ≤ β ≤ k − ℓ

(3.4) ρℓ|Dℓu(x)| ≤ C
(

ρℓ|Dℓu(x)|
)

λ+ℓ+β
λ+k

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k−ℓ−β
λ+k .

Hence, we have in both cases in view of (3.3) and (3.4)

(3.5) ρℓ|Dℓu(x)| ≤ C
(

ρkM(|Dku|)(x) + ρℓ|Dℓu(x)|
)

λ+ℓ+β
λ+k

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k−ℓ−β
λ+k .

If we take β = p(k+λ)
q − λ − ℓ, we observe that by the assumption λ ≤ kp−ℓq

q−p , β ≥ 0 and

thus, since λ ≥ −ℓ, β ≥ −λ − ℓ. Moreover p ≤ q implies that β ≤ k − ℓ. We obtain thus

ρqℓ

ˆ

RN

|Dℓu|q ≤ C
(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)q−p
ˆ

RN

(

ρkM(|Dku|) + ρℓ|Dℓu|
)p
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By the maximal function theorem [27, theorem I.1], we deduce the desired estimate. �

Remark 3.1. The estimate (4.7) is a variant of the local pointwise interpolation estimate
by maximal functions [17, remark 3]

ρℓ|Dℓu(x)| ≤
(

Mρ(|Dku|)(x) + ρ−ℓMρ|u|(x)
)

ℓ
k
(

Mρ|u|(x)
)1− ℓ

k ,

where the localized maximal function operator is defined by Mρ(f) = sup0<r<ρ

ffl

Br(x)|f |.

4. The fractional case

In this section we study a fractional counterpart of theorem 4.1.

Theorem 4.1 (Interpolation estimate of the function). Let N ∈ N, k ∈ N∗ and ℓ ∈

{0, . . . , k − 1}, 1 ≤ p < q < ∞, 0 < σ < 1 and −ℓ ≤ λ ≤ (k+σ)p−ℓq
q−p . There exists a

constant C such that for every ρ > 0, if u ∈ W k+σ,p(RN )∩L1,λ
ℓ,ρ (RN ), then Dℓu ∈ Lq(RN )

and
ˆ

RN

ρℓq|Dℓu|q

≤ C
(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)q−p
(

ρp(k+σ)

ˆ

RN

ˆ

RN

|Dku(x) − Dku(y)|p

|x − y|N+σp
dx dy+

ˆ

RN

ρℓp|Dℓu|p
)

.

In contrast with theorem 2.1, the case p = 1 is covered. Theorem 4.1 has the same
consequences as its counterpart theorem 2.1. We mention here some of the most striking
consequences.

In the homogeneous case λ = (k+σ)p−ℓq
q−p , we obtain the fractional counterpart of (2.6):

if

(4.1)

ˆ

RN

|Dℓu|q ≤ C
(

|u|
L

1,((k+σ)p−ℓq)/(q−p)
ℓ,ρ

(RN )

)q−p
ˆ

RN

|Dku(x) − Dku(y)|p

|x − y|N+sp
dx dy.

In particular, if p(k + σ) < N , then

(4.2)

ˆ

RN

|u|
Np

N−(k+σ)p ≤ C
(

|u|
L

1,N/p−(k+σ)
ℓ,ρ

(RN )

)

(k+σ)p2

N−(k+σ)p

ˆ

RN

|Dku(x) − Dku(y)|p

|x − y|N+sp
dx dy.

The estimate (4.1) was known for p = 2 [23, theorem 1.1].
We also have the interpolation inequality for ℓ ≥ 1,

(4.3)

ˆ

RN

|Dℓu|
p(k+σ)

ℓ ≤ C
(

|u|BMO(RN )

)( k+σ
ℓ

−1)p
ˆ

RN

|Dku(x) − Dku(y)|p

|x − y|N+sp
dx dy;

this inequality is a consequence of interpolation inequalities between Besov spaces [15].

Lemma 4.2. There exists a constant C > 0 such that for every u ∈ W 1,k
loc (RN ), for

every x ∈ R
N and every R > 0,

|Dℓu(x)| ≤ C
(

ˆ

BR(x)

|Dku(y) − Dku(x)|

|x − y|N−k
dy +

 

BR(x)
|u|
)

.
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This inequality implies by Hölder’s inequality the fractional interpolation estimate
[17, (32); 18, appendix]

|Dℓu(x)| ≤ C
(

M|u|(x)
)1− ℓ

k+σ

(

ˆ

RN

|Dku(y) − Dku(x)|p

|x − y|N+σp

)

ℓ
p(k+σ)

;

the inequality of the lemma appears in fact in the proof of the latter inequality [17, (32)].
We give a proof of the lemma for the sake of completeness.

Proof of lemma 4.2. The proof begins as the proof of lemma 3.1. Instead of (3.1), we
write

Dℓu(x)[w1, . . . , wℓ] = lim
r→0

g(r) =
k−ℓ
∑

j=0

g(j)(R) (−R)j

j!
−

ˆ R

0

g(k)(r) − g(k)(R)

(k − 1)!
(−r)k−1 dr.

We first have as previously

k−ℓ
∑

j=0

g(j)(R) (−R)j

j!
=

k−ℓ
∑

j=0

1

Rℓ

ˆ

BR(x)
u(y)η(j)

r (y − x)[w1, . . . , wk] dy.

Next, we have

ˆ R

0

1

rk

g(k)(r) − g(k)(R)

(k − 1)!
(−r)k−1 dr

= −

ˆ R

0

ˆ

B1

Dku(x + rz)[w1, . . . , wk, z, . . . , z] − Dku(x)[w1, . . . , wk, z, . . . , z]

+ Dku(x)[w1, . . . , wk, z, . . . , z] − Dku(x + Rz)[w1, . . . , wk, z, . . . , z])

ηr(y − x) dy
(−r)k−ℓ−1

(k − ℓ − 1)!
dr.

and we conclude by changes of variable and Fubini’s theorem. �

Proof of theorem 4.1. For almost every x ∈ R
N , for every R > 0 and every P ∈

Pℓ−1(RN ), we bound by the pointwise estimate (lemma 3.1), since DℓP = 0,

Rℓ|Dℓu(x)| ≤ C
(

ˆ

BR(0)

|Dku(y) − Dku(x)|

|x − y|N−k
dy +

 

BR(x)
|u − P |

)

.

We fix β > 0. By Hölder’s inequality and by definition of the Campanato norm, if R ≤ ρ,

(4.4) ρℓ|Dℓu(x)| ≤ Cρℓ+β(Rk+σ−ℓ−βDσ,p(Dku)(x) + R−λ−ℓ−β|u|
L1,λ

ℓ,ρ
(RN )

)

,

where we use the notation

Dσ,p(Dku)(x) =
(

ˆ

RN

|Dku(y) − Dku(x)|

|x − y|N+σp

)

1
p
.

If |u|
L1,λ

ℓ,ρ
(RN )

≤ Dσ,p(Dku)(x)ρk+σ+λ, we take

R =

( |u|
L1,λ

ℓ,ρ
(RN )

Dσ,p(Dku)(x)

)

1
k+σ+λ

.
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and we obtain

ρℓ|Dℓu(x)| ≤ Cρℓ+β(Dσ,p(Dku)(x)
)

λ+ℓ+β
λ+k+σ |u|

k−ℓ−β
k+σ+λ

L1,λ
ℓ,ρ

(RN )

≤ C
(

ρk+σDσ,p(Dku)(x)
)

λ+ℓ+β
λ+k+σ

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k+σ−ℓ−β
k+σ+λ .

(4.5)

Otherwise, we observe that by (4.4) with R = ρ,

ρℓ|Dℓu(x)| ≤ Cρ−λ|u|
L1,λ

ℓ,ρ
(RN )

and thus if −λ − ℓ ≤ β ≤ k + σ − ℓ

(4.6) ρℓ|Dℓu(x)| ≤ C
(

ρℓ|Dℓu(x)|
)

λ+ℓ+β
λ+k+σ

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k+σ−ℓ−β
λ+k+σ .

Hence, we have in both cases, in view of (4.5) and (4.6),

(4.7) ρℓ|Dℓu(x)| ≤ C
(

ρk+σDσ,p(Dku)(x) + ρℓ|Dℓu(x)|
)

λ+ℓ+β
λ+k+σ

(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)

k+σ−ℓ−β
λ+k+σ .

We take β = p(k+σ+λ)
q − λ − ℓ and we conclude with

ρqℓ

ˆ

RN

|Dℓu|q ≤ C
(

ρ−λ|u|
L1,λ

ℓ,ρ
(RN )

)q−p
ˆ

RN

(

ρk+σDσ,p(Dku)(x) + ρℓ|Dℓu|
)p

. �

The above proof allows to recover in particular the unpublished elementary proof of
fractional Sobolev embeddings of H. Brezis.

References

[1] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977),
no. 1, 148–156.

[2] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa (3) 18

(1964), 137–160.
[3] A. Canale, P. Di Gironimo, and A. Vitolo, Functions with derivatives in spaces of Morrey type and

elliptic equations in unbounded domains, Studia Math. 128 (1998), no. 3, 199–218.
[4] L. Caso, R. D’Ambrosio, and S. Monsurrò, Some remarks on spaces of Morrey type, Abstr. Appl.

Anal. (2010), Art. ID 242079, 22.
[5] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis of the space BV, Rev.

Mat. Iberoamericana 19 (2003), no. 1, 235–263.
[6] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the space BV(R2),

Amer. J. Math. 121 (1999), no. 3, 587–628.
[7] A. Cohen, Y. Meyer, and F. Oru, Improved Sobolev embedding theorem, Séminaire sur les Équations

aux Dérivées Partielles, 1997–1998, École Polytech., Palaiseau, 1998. XVI.
[8] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102–137.
[9] P. Gérard, Description du défaut de compacité de l’injection de Sobolev, ESAIM Control Optim.

Calc. Var. 3 (1998), 213–233.
[10] S. Janson, M. Taibleson, and G. Weiss, Elementary characterizations of the Morrey-Campanato

spaces, Harmonic analysis (Cortona, 1982), Lecture Notes in Math., vol. 992, Springer, Berlin, 1983,
pp. 101–114.

[11] H. Kozono and H. Wadade, Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev

space and BMO, Math. Z. 259 (2008), no. 4, 935–950, DOI 10.1007/s00209-007-0258-5.
[12] M. Ledoux, On improved Sobolev embedding theorems, Math. Res. Lett. 10 (2003), no. 5-6, 659–669.
[13] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally com-

pact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283.



12 JEAN VAN SCHAFTINGEN

[14] , The concentration-compactness principle in the calculus of variations. The limit case. I,
Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201, DOI 10.4171/RMI/6.

[15] S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math. Soc. 131

(2003), no. 5, 1553–1556.
[16] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, 2nd ed.,

Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, Heidelberg, 2011.
[17] V. Maz′ya and T. Shaposhnikova, On pointwise interpolation inequalities for derivatives, Math.

Bohem. 124 (1999), no. 2-3, 131–148.
[18] V. Maz′ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning

limiting embeddings of fractional Sobolev spaces, J. Funct. Anal. 195 (2002), no. 2, 230–238.
[19] Y. Meyer and T. Rivière, A partial regularity result for a class of stationary Yang-Mills fields in

high dimension, Rev. Mat. Iberoamericana 19 (2003), no. 1, 195–219.
[20] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, quali-

tative properties and decay asymptotics, J. Funct. Anal. 265 (2013), no. 2, 153–184.
[21] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959),

115–162.
[22] R. O’Neil, Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129–142.
[23] G. Patalucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-

compactness for fractional sobolev spaces, available at arXiv:1302.5923.
[24] J. Peetre, Espaces d’interpolation et théorème de Soboleff, Ann. Inst. Fourier (Grenoble) 16 (1966),

no. 1, 279–317.
[25] , On the theory of Lp,λ spaces, J. Functional Analysis 4 (1969), 71–87.
[26] H. Rafeiro, N. Samko, and S. Samko, Morrey-Campanato Spaces: an Overview, Operator Theory,

Pseudo-Differential Equations, and Mathematical Physics: The Vladimir Rabinovich Anniversary
Volume (Y. I. Karlovich, L. Rodino, B. Silbermann, and I. M. Spitkovsky, eds.), Operator Theory:
Advances and Applications, vol. 228, Springer, Basel, 2013, pp. 293–323.

[27] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical
Series, vol. no. 30, Princeton University Press, Princeton, N.J., 1970.

[28] P. Strzelecki, Gagliardo–Nirenberg inequalities with a BMO term, Bull. London Math. Soc. 38 (2006),
no. 2, 294–300.

[29] L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital. Sez. B
Artic. Ric. Mat. (8) 1 (1998), no. 3, 479–500.

[30] M. Transirico, M. Troisi, and A. Vitolo, Spaces of Morrey type and elliptic equations in divergence

form on unbounded domains, Boll. Un. Mat. Ital. B (7) 9 (1995), no. 1, 153–174.
[31] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical

Library, vol. 18, North-Holland, Amsterdam, 1978.
[32] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications,

24, Birkhäuser Boston Inc., Boston, Mass., 1996.
[33] W. Yuan, W. Sickel, and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture

Notes in Mathematics, vol. 2005, Springer, Berlin, 2010.

Université catholique de Louvain, Institut de Recherche en Mathématique et Physique
(IRMP), Chemin du Cyclotron 2 bte L7.01.01, 1348 Louvain-la-Neuve, Belgium

E-mail address: Jean.VanSchaftingen@uclouvain.be

arXiv:1302.5923

	1. Introduction
	2. Statement of the result
	3. Proof of the estimate
	4. The fractional case
	References

