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Abstract 

Up to now, the European natural gas trade was dominated by bilateral long-term upstream agreements 
between producers and midstreamers that fixed a minimum volume to be exchanged (Take Or Pay) and 
a price formula that was usually indexed on oil products prices. These arrangements were believed to 
allow: i) market risk sharing between the producer (who takes the price risk) and the midstreamer (who 
takes the volume risk) as well as ii) risk hedging since oil is considered as a trusted commodity by 
investors. The fall of the European demand combined with the increase of the oil price favored the 
emergence of a gas volume bubble that caused net losses for most of the European midstreamers who 
were bound by long-term agreements. As a result, some energy economists brought forward the idea of 
indexing contracts on gas spot prices. In this paper, we present an equilibrium model that endogenously 
captures the contracting behavior of both the producer and the midstreamer who strive to hedge their 
profit-related risk. The players choose between gas forward and oil-indexed contracts. Using the model 
we show that i) contracting can reduce the trade risk of both the producer and midstreamer, ii) oil-
indexed contracts should be signed only when oil and gas spot prices are well correlated, otherwise, 
these contracts hold less interest for risk mitigation, iii) contracts are more needed when the upstream 
cost structure is CAPEX driven and iv) a too risk-averse behavior of the midstreamer might deprive 
upstream investments and the downstream consumer surplus. 
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1 Introduction
Take or Pay (TOP) and price indexation (PI) clauses are the two pillars of the long- term con-
tracts that drove the development of the gas industry in various regional markets throughout
the world. Long-term term contracts are concluded between producers and "mid-streamers"
(we use this term throughout the paper as a generic name to refer to merchant, pipeline
company or LSE). TOP clauses obligate the mid-streamer to take some contracted gas vol-
ume or to pay for it. They guarantee the developer of the resource a certain volume of sales
for its production and hence provide some protection for its investment. Price clauses (with
or without indexation) are also part of the traditional long-term contract. They either fix
the price paid by the mid-streamer to the producer over some horizon or alternatively index
it to the prices of a bundle of "competing fuels" (in fact oil products)1. Price clauses are
meant to hedge both the producer and the mid-streamer: they grant the producer some vol-
ume and relative price stability and hence reduce the risk on its investment. The indexation
also reassures the mid-streamer that the gas sold through TOP will remain competitive and
hence marketable, at least as long as there exists something like a "competing fuel".

While long-term contracts can be found in other sectors, the early interest in gas con-
tracts probably stems from the unusual disclosure obligation that characterized the industry
at the time of its regulation in the USA. Access to these data was of considerable interest for
economists as reflected in early work ([23] and [24]). These authors rationalized the existence
of long-term gas contracts by the protection that these offered both against risk and exercise
of market power (the hold up phenomenon). These arguments were later often invoked in
general industrial economics literature (see [7], see also [9] for a later analysis still focusing
on the gas industry).

The gas industry has significantly evolved since those early days but long-term contracts
remain a subject of high interest, whether they still dominate the market or have almost
completely disappeared from it. Long-term contracts are today largely absent from the US,
the UK and Australian gas markets that are now driven by spot prices. "Long-term" essen-
tially means two to three years today in these markets and contracts are financial of different
types and maturities (see [28] for the US and [43] for the UK). But long-term contracts retain
a role in US and Australian LNG exports as well as in some LNG imports by the UK. In
contrast, Asia is still dominated by long-term contracts with some reflecting on when the
transition to spot hub markets will take place (see [40] and previous work by these authors,
see also [25]). Europe is in the middle of this transition with a significant fraction of its
supply still linked to long-term contracts and an important development of spot price based
hubs with in the mean time intense discussions on whether long-term contracts will remain
in the future, at least in their present form.

This paper concentrates on risk sharing between producers and mid-streamers; this was
one of the arguments put forward at the early days of the development of the gas contracts
and it remains important today. Uncertainty has increased dramatically in today economy,
including the energy sector. This contributed to a widespread application of the financial
portfolio approach that originally relied on the diversification of positions in financial assets
to manage risk. The works [18], [19] and [20] introduced this approach in gas economics at the
time the US industry was in the final phase of its restructuring. These authors transposed
the standard financial model to a physical portfolio of gas contracts with different matu-
rities and exposures. Multistage stochastic programming was the underling methodology,
reflecting that information on the different parameters influencing gas prices is progressively
resolved with time and the portfolio adapted accordingly.

The application of portfolio theory to physical assets is now common in the literature,

1Gas was largely competing with oil products or other energy forms and the indexation clause could reflect
that competition. This competition is contested today but those who advocate abandoning price clauses have so
far little alternative to propose except for the sole reliance on the spot market.
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particularly in the power sector. This paper extends that literature in two major steps. It
first generalizes the portfolio model originally considered in [19] by casting it in an equilib-
rium model encompassing producers and mid-streamers. In other words, the problem is no
longer to find the optimal portfolio of an agent exposed to risk but to find the equilibrium
portfolios of agents that trade gas and share the risk involved in this trading. This offers
the possibility to consider portfolios of both long and short-term contracts, combining tradi-
tional long term indexation and spot price exposure. As LNG development shows, producers
that undertake large fixed cost investment still appreciate the protection of long-term gas
contracts. The various crises that have taken place in the gas market since the eighties in the
US, the UK and in Europe show that the short to medium term market is subject to shocks
that cannot be managed through the sole traditional TOP and price indexation clauses. The
flexibility of short-term financial contracts is thus also necessary. In more abstract terms, the
energy market with its long-term commitment to physical assets and the long and short-term
vagaries of the economy is today very incomplete in terms of risk hedging. It thus makes
sense to call again on the portfolio approach to see the extent to which a mix of contracts
can best manage it in a world where not all risks can be hedged.

Our second contribution is to model the behavior of agents by a multistage risk function.
These functions have been extensively discussed in the financial and stochastic programming
literature. They have been introduced for modeling equilibrium in power markets in [12] and
later used in various other papers. We here extend a formulation of [11] and consider the
so called "good-deal risk measure that presents the interest of being both "coherent" and
"time consistent" in the sense of Artzner and coauthors (see [2] and [3]) . The use of the risk
measure combines the risky payoffs into what we refer to as a risk adjusted payoff. Needless
to say, standard indices used in portfolio theory, like expected payoff and standard deviation
can also be computed ex post from the results of the risk function based model.

The remainder of the paper is organized as follows: Section 2 presents our model. The
economic structure is described as well as the interaction between the producer and the
mid-streamer. The risk measure is introduced and the optimization programs are stated
and solved for both the producer and the mid-streamer. Section 3 gives the theoretical
results of our model. Existence and uniqueness results are proved and discussed. Section
4 details the scope and perimeter of our study as well as the data used. Section 5 applies
our model to a situation involving a producer with different production cost structure and
a mid-streamer facing a demand risk that induces a significant gas price risk. Three cases
are studied: the first one assumes that gas is only exchanged in the spot market; this case
serves as a counterfactual for comparing the risk adjusted profits of the producer and the
mid streamer evaluated in the other situations. The second case introduces a fixed price
contract (where the price is endogenously determined). The third case adds an oil-indexed
contract that can hedge part of the market risk. The results are presented in two versions
depending on whether oil and gas demands are well correlated or not. We then examine
the sensitivity of the optimal contract volumes with respect to the upstream cost structure
(fraction of the total cost that is fixed or variable) in order to understand if the difference
between the European conventional gas and the US shale gas production cost structures
can induce different contracting behaviors. Our last result shows how the mid-streamer’s
risk aversion modifies the contract characteristics, upstream investments and the consumer
surplus. The last section concludes the paper.

2 The model

2.1 The rationale for long-term contracts
Long-term contracts are still present in the European natural gas industry where they covered
more than 70% of gas trade in 2011[6]. Historically, LTCs were signed between producers
and mid-streamers for supplying the downstream, while at the same time supporting the
development of the gas market and its infrastructure. Several spot markets (NBP in the
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UK, the TTF in the Netherlands or the NCG in Germany) emerged after the massive 2007
liberalization of the European energy markets2, to ensure the fluidity of gas exchanges. Si-
multaneously LTCs became less important for the development of the industry, as most of
the European transport and storage infrastructure had been built and was already fully de-
preciated. Notwithstanding this constant increase of spot exchanges, which usually have a
short duration (e.g. day ahead), long-term contracts between the mid-streamers and the
producers, which usually last many years, remain regularly renewed [6]. It is thus important
to recall some of the rationale underpinning long-term contracts.

As explained in the introduction, this paper focusses on risk aversion against uncertain
payoffs as the main incentive motivating long term contracts between producers and mid-
streamers. LTC also efficiently deal with the so called hold-up problem [22]: absent the
contract the mid-streamer is in a strong position to extract high price concessions from a
producer that has already built an infrastructure and needs to fully utilize it. We do not
consider that problem in this paper. Uncertainty appears in almost all aspects of the gas
chain, whether exploration and production, spot prices, demand (which depends on environ-
mental conditions), oil price (which determine gas prices in LTCs) etc. Since contracts are
signed before starting production (but after the discovery of the gas fields) and are used to
hedge the market’s uncertainty, this study mainly focuses on risk arising from spot gas and
oil prices as well as downstream demand. The traditional interpretation of the long term gas
contracts is that the price risk is supported by the producers that benefit from a guaranteed
outlet for their infrastructure while the volume risk is supported by the mid-streamers that
need to find the market to sell that volume. We briefly elaborate on these ideas.

Contracts and producers

LTCs guarantee producers a certain revenue to recoup their investment cost. Invest-
ments in gas production and transportation infrastructure are very costly3. Because LTCs
constrain both the volume and the price of the gas exchange, they reduce the volatility of
the producers’ revenue that can then more easily trigger their investments [37]. [29] also
argues that the existence of long-term contracts may reduce the perception of insecurity of
supply by the consumers, which would increase their consumption (via investments in gas
consumption technologies) and, therefore, the producers’ payoff.

Contracts and mid-streamers

A gas mid-streamer is an intermediary between the producers and the consumers. It
faces several market uncertainties in supply (or insecurity of supply), downstream demand
as well as spot prices. Long-term contracts reduce the supply risk. Flexibility clauses4 also
guarantee the mid-streamer some leeway to meet with a fluctuating downstream demand,
even if it may also need to resort to the spot market in case of a very high or low demand.

As explained before, experience on both sides of the Atlantic shows that high or low
demand conditions happen and that contracts can themselves be at the origin of price and
volume risks for the mid-streamer. This started in Western Europe in 2008 when TOP vol-
umes became higher than downstream demand, forcing mid-streamers to take excess volumes
at high indexed prices to dump them on the spot market at a loss. The phenomenon is still
ongoing but it probably peaked in 2012, with the consequence that some producers then
agreed to introduce spot indexation in their contracts in order to render the contracts more
acceptable to mid-streamers.

2Starting from July 2007, energy markets have been opened to all consumers, including end-users.
3These costs can reach averages of 200 M$/Bcm/year and 120 M$/Bcm/year/1000km respectively.
4These are the terms of the contract that specify upper and lower bounds on the volume to be exchanged.
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Contracts and consumers

Because the upstream part of the gas chain is concentrated (more than 70% of the Eu-
ropean supply is provided by Russia, Norway and Algeria), the market can be subject to
market power. Long-term contracts, once signed, constitute an efficient way to mitigate the
impact of dominance. Indeed, producers can only exercise market power for the deliveries
that exceed the TOP volume, which can be very small in some European countries (such
as Italy). The argument does not apply to the behavior of the producers at the contracting
stage. [1] even shows that under some market conditions, long-term contracts can increase
competition in the upstream. This question has been at the origin of a considerable literature
that we very briefly mention here. The principle idea of that work is that two Cournot play-
ers in the spot market have an incentive to engage in contracts in the forward market even
though these contracts reduce their market power in the spot market. The authors suppose
that the two stage (forward and spot) game is sub game perfect and that there is no possible
arbitrage between the first and the second stage. Traders therefore anticipate the outcome
of the spot game given their position in the forward market. The proof is based on the fact
that the reaction functions in the forward market, taking into account the equilibrium in the
spot market, are more elastic than the reaction functions of the spot market. A consequence
of that property is that an infinite sequence of trading stages would result into more and
more elastic reaction functions, leading at the end to a perfect competition equilibrium. The
result has been extensively studied in the literature and it has been shown to be quite sen-
sitive to the underlying assumptions. In particular [35] have shown that the result vanishes
when extending the model to three stage games where traders can build capacities in the
first stage, conclude forward contracts in the second stage and go to the spot market in the
third stage. One could envisage applying the original Allaz Vila to a gas market with infinite
production capacities. The [35] result would apply if one were to take capacities into account
and specially in an investment problem as later treated in this paper. [30] demonstrated that
long-term contracts in the upstream may benefit consumers by the reduction of uncertainty
that they imply on consumption prices.

2.2 Model description and structure
Taking stock of the above, we construct a model of the gas market with long-term contracts
featuring the following elements:

• A downstream consumer market and a spot market, both represented by stochastic
demand functions.

• Contracting possibilities between mid-streamers and producers and clearing of the spot
market in each period of the horizon (at least two periods or stages).

• Agents’ risk aversion described by a risk-adjusted payoff derived from a risk function.

• Different possible contractual clauses, including an LTC with indexation of gas on oil
price.

We simplify the model by considering a single producer and a single mid-streamer possibly
linked by a long-term contract over three stages. The mid-streamer serves a downstream
market and can buy from or sell to the spot market. The producer can also sell gas to the
spot market. Competition is supposed perfect (agents are price takers). Consumers in the
spot and downstream markets are modeled with linear inverse-demand functions. The LTC
market takes place in three stages: the contracts constituting the portfolio are concluded
in the first stage, the demand of the consumer market and the clearing of the spot market
appear in the second and third stages. Demand curves in the the spot and downstream
markets are random and correlated. Uncertainty is represented by a three states probability
law, conditional on the previous level of the demand (see Figure 1). Randomness is modeled
through the intercept of the inverse-demand functions (in the spot and downstream markets)
as follows: starting from a node ω in the tree that corresponds to time t, the intercept in
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t + 1 can either have a high, medium or low evolution with respect to the initial value in
node ω of period t. The possible future evolution of the markets’ demand can therefore be
summarized in the tree given in Figure 1. Node 0 is the tree’s root. The downstream and
spot markets’ intercepts of the demand function are supposed to be perfectly correlated with
the result that we know the state of one of them (high, low or medium), when we know the
state of the other. Imperfect correlation can be modeled at the cost of additional formulation
and computation.

0

time

0

ω Scenarios t

High
Low

Evolution of the spot and downstream markets’ inverse demand 

function’s intercept

p p p

Medium

1 3
1

2

4 5 6 7 8 9 10 11 12 2

High

Medium

Low High

Medium

Low High

Medium

Low

q

p

q

p

q

p

Figure 1:
The scenario tree

Each scenario node ω is weighted by a probability θω estimated similarly by the producer
and the mid-streamer (perfect information). Two nodes ω and ω′ are denoted ω′ ≤ ω if ω′ is
predecessor to ω in the tree. Scenario node ω’s father is denoted by ωf .
The players are rational, risk-averse and strive to optimize their risk-adjusted profit.

As a matter of notation and in order to avoid ambiguity we refer throughout the paper
to the physical trade of a commodity as an "exchange" and reserve the word "trade" to the
trading of financial products. We will also invariably call LTC any kind of direct exchange
between the producer and the mid-streamer that does not go through the spot market,
without any distinction on the duration of the contract. Two types of contracts will be
considered: the first one, indexed by 1, binds the producer and mid-streamer by a fixed
gas volume exchanged at a fixed price throughout the horizon of the contract. Both the
volume and the price are endogenous and the volume will be considered as the TOP. The
second kind of contract, indexed by 2, uses an exogenously given indexation formula to
determine the contract price and the players need to determine the volume exchanged with
that price indexation clause. We refer to oil as the underlying in the indexation clause in
order to simplify the language; oil is here taken as a surrogate or a competing fuel, which
was often a bundle of oil products, but could also include coal. The second case represents
the historical contract with a fixed TOP and an competing fuel-indexed price whereas the
first contract corresponds to the fixed price contracts that prevailed before the notion of the
competitive fuel developed on the market. We shall see that these contracts have a financial
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interpretation and that the first contract turns out to be a forward contract. In order to
keep the presentation short, we did not consider contracts directly indexed on the spot price
even though these could also mitigate the risk (depending on the clause such as for instance
through caps or floors). This would be straightforward to do in our set up. The oil price is
also assumed to be uncertain and will therefore be indexed by ω.

Figure 2 gives a schematic overview of the model.

Producer

Midstreamer

Spot 

market

q

p

LTC, formula 1 or 2.

Sales

Sales

Purchases
Random

Downstream

market

q

p

Sales

Random

Figure 2:
Overview of the model

2.3 Notation
The following array gives the notation used in the study
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Parameters
Ω set of all scenario nodes ω
T time
θω probability of node ω
aω, −bω intercept and slope of the inverse-demand curve in the downstream market, node ω
αω, −βω intercept and slope of the inverse-demand curve in the spot market, node ω
c marginal production cost
πω oil price at node ω, set exogenously.
λp expected profit’s weight in the producer’s optimization program
λt expected profit’s weight in the mid-streamer’s optimization program
Ap, At risk measure parameters (producer and mid-streamer)

Variables
xω gas volume sold or purchased (according to sign) by the producer in the spot market in node ω
up1 gas volume sold by the producer to the mid-streamer using contract type 1
up2 gas volume sold by the producer to the mid-streamer using contract type 2
ut1 gas volume purchased by the mid-streamer from the producer using contract type 1
ut2 gas volume purchased by the mid-streamer from the producer using contract type 2
hω gas volume sold or purchased (according to its sign) by the mid-streamer

in the spot market, at node ω
zω gas volume sold by the mid-streamer to the downstream market, node ω
π1 LTC price, contract type 1
π2 dual variable associated with the contract type 2 clearing constraint
pω spot market price, node ω
p′ω downstream market price, node ω
νpω proxy of the producer’s risk-neutral probability, node ω
νtω proxy of the mid-streamer’s risk-neutral probability, node ω

2.4 Formulation
Players’ decisions at period 0 (node 0) are the LTC volumes that will be used in the future
by the mid-streamer to satisfy the local demand. More precisely, we will consider the LTC
volumes up(t)1 and up(t)2 as first stage variables in the stochastic optimization programs
of the two agents. We will use the tree formulation to represent both randomness and time
using scenario nodes. This formulation dispenses with the writing of non-anticipativity con-
straints. The recourse actions are the sales/purchases in the spot market by the players.

We assume that the mid-steamer and the producer are both averse to the fluctuation of
their profits and represent this aversion by a risk measure that we take as both coherent
(see [2]) and time consistent (see [3]) since we are dealing with long-term incentives to
contract. Following [8], we will use the good-deal risk measure that satisfies these two
properties. Indeed, other standard coherent risk measures, such as the conditional value at
risk CVaR [39] lack time consistency. From a computational point of view, the good-deal can
be implemented in optimization models, via its dual formulation, as a Second-Order Cone
Program [11].

2.4.1 The good-deal risk measure

Consider an incomplete market with an exchanged commodity (natural gas) and a random
payoff denoted by Zω. Now we assume to simplify that we have two traded financial assets
whose prices are c1ω and c2ω (c1 will be a risk-free asset and c2 an oil price derivative) and
some contracts (constant or oil indexed price) that can be used to hedge part of the gas
market’s risk. The good-deal risk-measure calculates the maximum loss that can be suffered
when considering a stochastic dynamic discount factor that dynamically prices all traded
risky and non risky financial assets in such a way that no dynamic arbitrage is tolerated in
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the prices of these assets and the corresponding stochastic discount factor’s (price kernel)
variance is bounded.

The risk function we are about to present is dynamic. To ease the explanation, we assume
that randomness is captured by a scenario tree as the one that has been shown in Figure 1.
We recall that each scenario node ω is weighted by a probability θω. Two nodes ω and ω′ are
denoted ω′ ≤ ω if ω′ is predecessor to ω in the tree. Scenario node ω’s father is denoted by ωf .

The good-deal risk measure ρ is therefore defined as (with dual variables in parenthesis
at the right of the constraints):

Definition 1. The good-deal risk measure ρ:

ρ = Max −
∑
ω θωZω (Πω′≤ωζω′)

ζω
s.t. ∀ω, ζω ≥ 0

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζω′c1ω′ = c1ω (w1ω)

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζω′c2ω′ = c2ω (w2ω)

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζ2
ω′ ≤ A2

(1)

where

• The objective −
∑
ω θωZω (Πω′≤ωζω′) is the discounted expected loss.

• Constraints ∀ω, ζω ≥ 0 forbid dynamic arbitrage.

• Constraints ∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζω′c1ω′ = c1ω and ∀ω,

∑
ω′/ω′f=ω

θω′
θω
ζω′c2ω′ = c2ω bind

the discount factor to the traded assets’ prices, from period to period, so that the
discounted expectation of these prices remains constant in time (martingale property).

• Constraints ∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζ2
ω′ ≤ A2 bound the variance of the stochastic discount

factor.

• The parameter A is set exogenously and represents the risk-aversion level. The price
vectors c1 and c2 are also set exogenously. They are the prices of the other than gas
traded financial assets.

More details about the definition and utilization of the good-deal risk measure can be found
in [33] and [8].

The dual formulation of the good deal

As stated in Definition 1, the good-deal risk measure is not directly usable in an op-
timization program. Indeed, its nested formulation may lead to computational difficulties.
The dual formulation of Definition 1 solves this issue. This formulation is given below with
the Lagrange variables being written in parenthesis (we here recall that ωf designates the
father of node ω).

Theorem 1. The dual formulation of the good-deal risk measure is (see for instance [11] for
the calculation. We also provide a demonstration in Appendix 2):
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ρ = Min w10c10 + w20c20 +A

√ ∑
ω/ωf=0

θωη
2
ω

ηω ≥ 0, w1ω, w2ω

s.t. ∀ω,

ηω + Zω + c1ω(w1ωf
− w1ω) + c2ω(w2ωf

− w2ω)−A

√√√√ ∑
ω′/ω′f=ω

θω′
θω
η2
ω′

 ≥ 0 (νω)

(2)

We recall that 0 is the initial deterministic node of our scenario tree (see Figure 1); it
is the ancestor of all the other nodes. Theorem 1 does not contain a nested formulation
and hence leads to an implementation as a single conic program, which is therefore easier
than the primal formulation. The mathematical properties of the formulation are further
elaborated in Section 3
It is easy to demonstrate that the dual variables νω can be interpreted as risk-neutral prob-
abilities and that the following relation holds at the optimum:

ρ = −
∑
ω

νωZω (3)

2.4.2 The model’s formulation: the forward contract. Case 0

In this section, we assume that neither oil nor oil products based contracts are considered. We
also assume that agents do not hedge their position by trading oil or oil product derivatives.
Only forward contracts are modeled. Therefore, in the players’ good-deal definition, only a
risk-free asset is traded and the oil derivative is ignored: c1 = c2 = (1, 1, ...1). We refer to
this situation as Case 0. The equilibrium model consists of agents’ optimization problems
(one problem for each agent) and market clearing constraints at the different stages of the
market.

The producer’s optimization problem:

The problem is stated as:

Max λp
∑
ω θωpωxω

+λp
∑
ω θω

(
π1up1

)
−λp

∑
ω θωc(xω + up1)

−(1− λp)ρp
s.t.

0 ≤ up1

∀ω, xω free

(4)

where

• The term
λp
∑
ω θωpωxω

+λp
∑
ω θω

(
π1up1

)
−λp

∑
ω θωc(xω + up1)

is the expected producer’s profit weighted by λp.

• The term: (1− λp)ρp

is the producer’s risk measure weighted by 1 − λp where the risky payoff is stated as
(the p index indicates that that this applies to the producer):
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Zpω = pωxω + π1up1 − c(xω + up1) (5)

We recall that the prices of the two traded assets are c1 = c2 = (1, 1, ...1).

The mid-streamer’s optimization problem:

The problem (with dual variables in parenthesis at the right of the constraints) is:

Max λt
∑
ω θωpωhω

+λt
∑
ω θωp′ωzω

−λt
∑
ω θωπ

1ut1

−(1− λt)ρt
s.t. ∀ω, zω + hω − ut1 = 0 (µω)

∀ω, 0 ≤ zω
0 ≤ ut1
∀ω, hω free

(6)

where

• The term:
λt
∑
ω θωpωhω

+λt
∑
ω θωp′ωzω

−λt
∑
ω θωπ

1ut1

is the expected mid-streamer’s profit weighted by λt.

• The term:

(1− λt)ρt

is the mid-streamer’s risk measure weighted by 1−λt with the risky payoff being stated
as (the t index indicates that that this applies to mid-streamers):

Ztω = pωhω + p′ωzω − π1ut1 (7)

We recall that the traded assets prices are c1 = c2 = (1, 1, ...1).

Conventionally hω ≥ 0 means that the mid-streamer sells gas in the spot market while
hω ≤ 0 indicates that it buys gas in the spot market.

Equation ∀ω, zω + hω − ut1 = 0 is a sales=purchase condition for the mid-streamer,
depending on whether this player buys or sells gas in the spot market.

The market clearing constraints.

The spot price pω is linked to the spot market demand by the inverse-demand function:

pω = αω − βω(xω + hω) (8)

The downstream price p′ω is linked to the downstream market consumption by the inverse-
demand function:

p′ω = aω − bωzω (9)

The LTC sales equal purchases condition between the producer and mid-streamer (the
corresponding dual variable is written between parenthesis):
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up1 − ut1 = 0 (π1) (10)

Since no market power is exerted in the LTC side of the market, the dual variable π1

associated with the LTC supply/demand constraint represents the LTC clearing price.

Both the mid-streamer and the producer’s objectives are concave functions of their de-
cision variables. Indeed, for each player, the objective is composed of a difference between
linear terms and the good-deal risk function which is convex (see Section 3).

2.4.3 Introducing oil indexation and derivatives. Case 1.

We now allow the players to hedge part of their risk on oil. This is referred to as Case 1.
The way risk is hedged is as follows: there is an oil market and both players can sign an
oil-indexed contract at a price linked to the oil price πω. At the same time they can also
hedge their corresponding oil dependence by trading financial oil derivatives. This latter
aspect is not necessary to the model: it is introduced to illustrate the flexibility offered by
the risk functions for enriching the contract problem: former justification are introduced to
justified the oil indexation clauses and more moderne hedging reasoning to mange the risk
residual oil risk introduced by these clauses. Whether we include oil derivative or not in the
good-deal risk function, the introduction of the indexation clause requires to specify that oil
is exchanged at its price πω in the the good-deal risk function of both players and to add
the corresponding oil-related contract payoff or cost. We also assume the existence of traded
non-risky asset (whose price is scenario-independent), which implies that: c1 = (1, 1, ..., 1)
and c2 = π.

The producer’s optimization problem

The producer’s problem is then stated as:

Max λp
∑
ω θωpωxω

+λp
∑
ω θω

(
π1up1

)
+λp

∑
ω θω

(
(π2 + πω)up2

)
−λp

∑
ω θωc(xω + up1)

−(1− λp)ρp
s.t.

0 ≤ up1, up2

∀ω, xω free

(11)

• The new term (π2 + πω)up2 is the oil-indexed contract payoff. π2 + πω can be viewed
as the indexation formula where πω is the oil price and π2 the marginal value of the
oil-indexed contracts clearing constraint between the producer and mid-streamer. The
producer’s risky payoff is now:

Zpω = pωxω + π1up1 + (π2 + πω)up2 − c(xω + up1) (12)

The mid-streamer’s optimization problem:

The problem (with dual variables in parenthesis at the right of the constraints) is:
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Max λt
∑
ω θωpωhω

+λt
∑
ω θωp′ωzω

−λt
∑
ω θωπ

1ut1

−λt
∑
ω θω

(
(π2 + πω)ut2

)
−(1− λt)ρt

s.t. ∀ω, zω + hω − ut1 = 0 (µω)
∀ω, 0 ≤ zω
0 ≤ ut1, ut2
∀ω, hω free

(13)

• The new term −(π2 +πω)ut2 is the oil-indexed contract cost. The mid-streamer’s risky
payoff is now:

Ztω = pωhω + p′ωzω − π1ut1 − (π2 + πω)up2 (14)

The market clearing constraints:

up1 − ut1 = 0 (π1) (15)
up2 − ut2 = 0 (π2) (16)

Both models (Case 0 and Case 1) are formulated as an equilibrium problem and solved
in their complementarity form. The KKT conditions of the agents’ problems together with
the market clearing conditions that form the models are given in Appendix 1.

Before applying the model, we first present a set of theorems that guarantee the existence
and/or uniqueness of the equilibrium.

3 Theoretical results

3.1 Main assumptions and notation
For the sake of simplicity and clarity of the demonstrations, we focus our attention through-
out Section 3 on Case 0 where only the forward contract in signed. However, our results are
still valid and can easily be generalized to Case 1. Since in that case, c1 = c2 (oil is ignored),
to ease the presentation, we will remove from our notation the variables w2p and w2t which
are redundant with w1p and w1t respectively and will call them wp and wt5.
In the following equations, we use the convention that the scenario nodes are numbered from
0 to m, where 0 is the root of our scenario tree. We denote by Ωl the subset of Ω constituted
by the leaves of the tree (i.e. the nodes that do not have children nodes). We recall that ωf
denotes node ω’s father in the tree. We will also denote by T the number of time periods:
T =

∑
ω θω.

To simplify our results’ presentation, we assume that there exists a risk free asset (whose
price is scenario independent), which implies writing c1 = (1, 1, ...1). This assumption is
necessary to ensure the existence of the risk-neutral probabilities for the players.

We construct the scenario tree so that the parameters αω and aω are pairwise distinct in
each time step and that starting from a scenario node ω, we will have in the coming period
either an increase, a stagnation or a decrease of αω and aω. This means that we impose
(with similar relations for aω):

5We can actually show that at the equilibrium, w2p = w1p and w2t = w1t.
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α4 > α1 = α5 > α6 (17)
α7 > α2 = α8 > α9 (18)

α10 > α3 = α11 > α12 (19)

Besides, we will assume that the slopes βω and bω are constant. Finally, the production
cost function is assumed to be strictly convex and increasing with respect to the quantity
produced.

One can then rewrite the objective functions of the players by including the formulation
of the good-deal directly in the optimization programs. Substituting expression (2) directly
in (4) and (6) one obtains:

The producer:

Max (20)

λp
∑
ω

θωpωxω

+ λp
∑
ω

θω
(
π1up1

)
− λp

∑
ω

θωc(xω + up1)

− (1− λp)

wp0c10 +Ap
√ ∑
ω/ωf=0

θωηp
2
ω


s.t.

∀ω, ηpω + Zpω + c1ω(wpωf
− wpω)−Ap

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp2
ω′ ≥ 0 (νpω) (21)

∀ω, xω free , 0 ≤ up1, 0 ≤ ηpω, free wpω (22)

where the producer’s profit Zpω is:

Zpω = pωxω + π1up1 − c(xω + up1) (23)

The mid-streamer:
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Max (24)

λt
∑
ω

θωpωhω

+ λt
∑
ω

θωp′ωzω

− λt
∑
ω

θωπ
1ut1

− (1− λt)

wt0c10 +At
√ ∑
ω/ωf=0

θωηt
2
ω


s.t.

∀ω, zω + hω − ut1 = 0 (25)

∀ω, ηtω + Ztω + c1ω(wtωf
− wtω)−At

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt2ω′ ≥ 0 (νtω) (26)

∀ω, 0 ≤ ut1, zω, free hω, wtω (27)

where the mid-streamer’s profit Ztω is:

Ztω = pωhω + p′ωzω − π1ut1 (28)

Market clearing constraints:

The contract clearing constraint is
up1 = ut1 (29)

the spot price pω is:

pω = αω − βω (xω + hω) (30)

and the downstream price p′ω is:

p′ω = aω − bωzω (31)

All proofs can be found in Appendix 2 .

3.2 Standard convexity (concavity) properties
We first prove the concavity of the producer and mid-streamer’s objective functions as well
as the convexity of their feasibility sets6. This is based on the following lemma:

Lemma 1. ∀(δ1, ..., δn) ∈ Rn such that ∀i, δi ≥ 0, the function f : Rn −→ R, (x1, ..., xn) −→√∑
i δix

2
i is convex.

Theorem 2. The players’ objective functions are concave and their feasibility sets convex.

6The convexity of the good-deal risk function is a well known property (see [8]). However, we present a
demonstration of this property because some results developed herein will be used later on in our uniqueness
result’s demonstration
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3.3 Preliminary assumptions and results

3.3.1 The complementarity formulation

It is important, before going further and for a proper interpretation of the contract model
to clearly specify the mathematical nature of our problem. The general formulation given
in expressions (20)-(31), is actually a Generalized Nash-Cournot problem because the objec-
tive function and the feasibility set of the producer depends on the mid-streamer’s decision
variables and conversely. Hence (since we have demonstrated the standard convexity prop-
erties), solving that model winds up to solving a QVI problem, for which there usually exist
an infinity of solutions [36]. A particular solution of this model is obtained by imposing that
the gas procurement contracts are actually traded in a market at a fixed price represented by
the Lagrange multiplier of each contract clearing constraint (the assumptions underpinning
the definition of the good-deal is that the finical contracts are traded). This implicitly states
that the producer and the mid-streamer’s Lagrange multipliers of their common constraints
are the same, which makes us then rather look for the particular VI solution of the QVI
problem (see for instance [17] and [14] for a better explanation of the link between Lagrange
multipliers and VI solutions). This is a restrictive interpretation at least considering that
these contracts were not effectively traded on markets even if the common wisdom was that
the corresponding gas prices were "competitive" in the sense that they did not depart too
much from being equal. The QVI formalism allows one to assess that conjecture by explor-
ing solutions where implicit prices of contracts (their dual variables) are close but not equal.
Different techniques exist for doing so and an illustration of their use in contracts (short term
electricity contracts) can be found in de Maere and Smeers [34]. We leave that development
for further work.

In order to write the KKT conditions of the game, we will need the objective functions
to be differentiable with respect to the decision variables. In particular, given the use of the
square root in the good-deal formulation, which is not differentiable in 0, we will add the
following constraints to the players’ feasibility sets:

The producer
∀ω, ηpω ≥ ε (32)

The mid-streamer
∀ω, ηtω ≥ ε (33)

Besides, to ensure the existence of the players’ optimal decision variables, we will first
bound all the variables as follows (M ≥ 0):

The producer
‖
(
x, up1, wp, ηp

)
‖ ≤M (34)

The mid-streamer
‖
(
h, z, ut1, wt, ηt

)
‖ ≤M (35)

In practice, ε is set to a very small value and M to a very big one so that we do not
perturb the model by adding constraints (32), (33), (34) and (35). However, we prove later
that our problem is naturally bounded, which implies that for a value of M big enough,
constraints (34) and (35) are not binding anymore. Constraints (34) and (35) make the
feasibility sets of the players bounded and therefore compact, since they are also closed.
Also, it is easy to check that the standard constraint qualification conditions hold for both
the producer and the mid-streamer’s feasibility sets. Therefore, we can conclude that the
KKT conditions are necessary and sufficient to characterize the equilibrium that can be for-
mulated as the solution of the Mixed Complementarity Problem (MCP) given in Appendix 1.
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3.3.2 The spot and the downstream markets prices

In this section, we will prove that at the equilibrium (if it exists), the spot and downstream
prices (as well as the marginal production cost) do not explicitly depend on the players’
decision variables. Indeed (see the KKT conditions of Appendix 1), using equations (52a),
(53a), (53h) and (54c), we will get ∀ω ∈ Ω:

c′(xω + up1) = αω − βω
(
xω + up1 − zω

)
(36)

αω − βω
(
xω + up1 − zω

)
= aω − bωzω (37)

Which implies, knowing that the production cost function is strictly convex, that at the
equilibrium, the net production xω + up1 and the downstream consumption zω depend only
on the production cost and the spot and downstream inverse demand function parameters.
Therefore, they are bounded. It also implies that the spot and downstream prices do not
depend on the player’s decision variables and are bounded. In the following, these prices can
hence be considered as exogenous or parameters and will just be denoted by pω and p′ω.

3.3.3 Further assumptions and compactness results

Following [34] and [38], we will make the important assumption that the producer and the
mid-streamer’s risk measures are sufficiently similar. This can be formulated as follows: if
we denote by

Rp = {νpω ∈ RΩ such that ∀Zpω ∈ Rm, ρp(Zp) < +∞}

Rt = {νtω ∈ RΩ such that ∀Ztω ∈ Rm, ρt(Zt) < +∞}

then the interior of the set R = Rp ∩ Rt is not empty. We recall that the vectors νp (for
the producer) and νt (for the mid-streamer) have been introduced in the dual formulation
of the good-deal and are associated with constraints (21) and (21). They will be linked
to the risk-neutral probabilities later on. This assumption is useful inasmuch as it ensures
that the contracted volume up1 = ut1 remains bounded. Indeed, an equilibrium such that
up1 = ut1 −→ +∞ would lead to a producer and mid-streamer’s risks −→ −∞, which implies
that the equilibrium cannot be a Nash equilibrium (since thanks to our assumption, we know
that both players can have risk measures that give a finite risk). Therefore, given that the
net production, the spot and downstream consumptions are bounded, we can already deduce
that the variables xω, up1, hω, zω, ut

1 are bounded. We focus our interest now on the contract
price.

Theorem 3. At the equilibrium (if it exists), the contract price is bounded

Hence, for a value of M big enough, constraints (34) and (35) are not binding anymore and
the initial problem is not perturbed.

3.4 Risk-neutral probabilities and the formation of the contract
price
If the players were risk-neutral, each scenario would have been weighted by θω in their
objectives. However, when considering the KKT conditions, one can notice that adding the
good-deal risk measure to the players’ objective leads to weighting each scenario node ω
differently: by λpθω − νpω for the producer and λtθω − νtω for the mid-streamer. Actually,
these new parameters represent the risk-neutral probabilities and will have a very important
role in understanding the formation of the contract price. Before defining them theoretically,
we first need to state two lemmas:

Lemma 2. At the equlibrium, ∀ω, νpω < 0, νtω < 0, ηpω > 0 and ηtω > 0.

Lemma 3. ω −→ λpθω − νpω and ω −→ λtθω − νtω are probability measures.

Definition 2. The producer’s risk-neutral probabilities are λpθω−νpω and the mid-streamer’s
risk-neutral probabilities are λtθω − νtω.
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The coming theorem is standard: it links the contract price to the spot prices so that at the
equilibrium, no arbitrage is possible between the contract and the spot markets.

Theorem 4. If a contract is signed, then the contract price is a risk-adjusted expectation of
the spot price.

Now, we will focus our interest on the solution set’s properties.

3.5 Existence and uniqueness properties
Existence of the equilibrium can be proved in a similar way as in [21] and [34]. The proof
introduces an additional player, the contract operator, whose role is to take care of the
contract clearing constraint and demonstrates that at the equilibrium, his decision variables
are bounded. To keep our paper’s size reasonable enough, we decided not to report such a
proof here and to leave it for a subsequent work, where we intend to focus on an existence
result for a more general contract equilibrium formulation using a general formulation of a
coherent and time-consistent risk function.
Hence, we rather focus here on a weak existence and uniqueness result.

3.5.1 The parametrized problem

The difficulty with proving uniqueness of the equilibrium is mainly related to convexity issues
when the problem is seen as a whole. Indeed, if we want to apply the standard uniqueness
results linked to the QVI/VI formulation, we need to guarantee the convexity of the whole
feasible set with respect to all the decision variables. However, when one looks at constraint
(21) for instance, one notices the presence of the profit Zp in the constraint, that contains the
product of two variables: π1 × up1, which makes the feasibility set non-convex. Therefore,
in the following, we will only demonstrate that if the contract price π1 is set by the players
exogenously, then the rest of the variables are unique.
In the rest of this section, we will assume that the contract price is set to a value π1 and
we will study the corresponding parametrized (by π1) equilibrium problem. For the sake of
clarity of the presentation, we will not index our problem by π1 but one should bear in mind
that the contract price is actually exogenous in this study. Besides, we will have to drop the
contract clearing constraint (29).

3.5.2 The VI formulation

To demonstrate the uniqueness of the parametrized equilibrium, we will use the Variational
Inequality (VI) type formulation of our Nash game. For that purpose, we will simplify our
notation as follows (with the convention that vectors are written in columns):

The producer
We will denote by Xp the vector:

Xp =t
(
xω,ω∈Ω, up

1, wpω,ω∈Ω, ηpω,ω∈Ω

)
∈ R3m+1

Πp(Xp, Xt) is the producer’s objective function and its gradient F p is:

F p(Xp, Xt) =


∇xω

Πp

∇up1Πp

∇wp
ω

Πp

∇ηpωΠp

(Xp, Xt
)

(38)

where Xt is the mid-streamer’s decision vector, as will be shown later. When the gradient
is explicitly calculated, we get:
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∇xωΠp =


λpθω (αω − βω (xω + hω))− λpθωc′(xω + up1)

...
ω ∈ Ω

...

 (39)

∇up1Πp =
(
λpTπ1 − λp

∑
ω θωc′(xω + up1)

)
(40)

∇wp
ω

Πp =


−(1− λp)c10

0
...
0

 (41)

and

∇ηpωΠp =



−(1− λp)Apθω ηpω√√√√√
∑

ω/ωf=0

θωηp
2
ω

...
ω/ωf = 0

...
0
...
0


(42)

The mid-streamer We will denote by Xt the vector:

Xt =t
(
hω,ω∈Ω, zω,ω∈Ω, ut

1, wtω,ω∈Ω, ηtω,ω∈Ω

)
∈ R4m+1

Πt(Xp, Xt) is the producer’s objective function and its gradient F t is:

F t(Xp, Xt) =


∇hω

Πt

∇zωΠt

∇ut1Πt

∇wt
ω

Πt

∇ηtωΠt

(Xp, Xt
)

(43)

where

∇hωΠt =


λtθω (αω − βω (xω + hω))

...
ω ∈ Ω

...

 (44)

∇zωΠt =


λtθω (aω − bωzω)

...
ω ∈ Ω

...

 (45)

∇ut1Πt =
(
−λtTπ1

)
(46)

∇wt
ω

Πt =


−(1− λt)c10

0
...
0

 (47)
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and

∇ηtωΠt =



−(1− λt)Atθω ηtω√√√√√
∑

ω/ωf=0

θωηt
2
ω

...
ω/ωf = 0

...
0
...
0


(48)

In a condensed notation, we will have:

X =

(
Xp

Xt

)
∈ R7m+2

and

F =

(
F p

F t

)
∈ R7m+2

Note that the contract price has not been added to decision variable vector X and has not
been considered in the calculation of the gradients.

As for the feasibility set, we will call K the set of variables X that verify both players’
feasibility constraints (without the contract clearing condition):

K = {X ∈ R7m+2 that verify (21), (22), (51), (26), (27), (32), (33), (34), (35), (29), (30) and (31)}

It is easy to check that K is compact and convex7. If we denote by p = min{pω, ω ∈ Ω} and
p = max{pω, ω ∈ Ω}, it is also easy to check that if p ≤ π1 ≤ p, K is non-empty: K 6= ∅.

Theorem 5. A vector X is a solution to our parametrized problem if and only if it is a
solution of VI(F,K):
X ∈ K and ∀X′ ∈ K, −tF (X)(X′ −X) ≥ 0

3.5.3 Existence of the parametrized problem equilibrium

Now, it is time to state our parametrized equilibrium existence theorem:

Theorem 6. ∀π1 ∈ [p, p], there exists at least one equilibrium to our parametrized problem.

3.5.4 Uniqueness of the parametrized problem equilibrium

Uniqueness properties are often linked to function F ’s monotonicity or strict monotonicity.
We will first demonstrate the following important lemmas:

Lemma 4. If λp = λt, function -F is monotone.

Remark 1. Note that imposing λp = λt is not very restrictive because it does not imply
that the players have the same risk aversion level. Indeed, the latter is mainly driven by the
coefficients Ap and At which may be different.

Lemma 5. If λp = λt, the parametrized equilibrium problem is integrable.

We state now our parametrized equilibrium uniqueness theorem

Theorem 7. If λp = λt ∈ (0, 1), the equilibrium of the parametrized problem is unique.

7This is due to the fact that the contract π1, the spot pω and the downstream p′ω prices are exogenous.
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4 Calibration and data
We have applied our model to a stylized hypothetical transaction between a gas producer
and a European gas mid-streamer serving the French gas demand, for which we could check
the results on the basis of public sources. We use the PEG Nord (Point d’Echange du Gaz
au Nord in France) price as a reference French market price. The NBP (National Balancing
Point in the UK) plays the role of the spot market. The time scope of our study is [2012-2021]
and each time-step corresponds to five years. The calibration of the inverse-demand func-
tions is done in scenario node 0 (year 2012) as in [32]: we estimate the intercept and slope of
an inverse-demand function using a reference (price, demand) point and an estimation of the
elasticity γ8. We use elasticities γNBP = 0.15 for the spot market and γPEG Nord = 0.05
for the downstream market. We thus assume the downstream demand to be quasi-inelastic
with respect to the price. The reference consumption and prices are taken from [5] and [26].

Results are presented in $/Mbtu for prices and marginal costs and Bcm for volumes. In
our reference case, the evolution of the inverse-demand function’s parameters, the probability
law and the risk function parameters are as follows:

ω α($/MBtu) β($/MBtu/Bcm) a($/MBtu) b($/MBtu/Bcm) θ Ap At λp λt

1 75.0 0.58 89.8 0.34 0.33 1.07 1.07 0 0
2 86.2 0.58 81.6 0.34 0.33
3 47.7 0.58 65.3 0.34 0.33
4 82.5 0.58 94.3 0.34 0.11
5 75.0 0.58 89.8 0.34 0.11
6 67.5 0.58 85.3 0.34 0.11
7 75.0 0.58 85.7 0.34 0.11
8 68.2 0.58 81.6 0.34 0.11
9 61.3 0.58 77.5 0.34 0.11
10 52.5 0.58 68.6 0.34 0.11
11 47.7 0.58 65.3 0.34 0.11
12 42.9 0.58 62.0 0.34 0.11

We remind that Ap and At are the risk-aversion parameters of the producer and the mid-
streamer.
The production cost function is quadratic: it has been calibrated on a typical Asian produc-
tion field (source [27]). This cost also includes the transportation cost to Europe.

5 Results
We focus on three situations: the first reference case assumes that gas is only exchanged
in the spot market (no contract, up1 = up2 = 0). In the second case, we introduce the
possibility to sign a constant price and volume contract (market-indexed); we determine this
volume and study the inherent risk reduction, if any. The third case allows the actors to sign
a constant price and volume contract, as well as an oil-indexed by constant volume contract.
Two situations are then considered depending on the degree of correlation of oil price with
the intercept of the gas demand price function.

5.1 The reference case: the spot trade only (no contract) (Case -1)
Figure 3 shows the producer and the mid-streamer’s payoff in all possible market scenarios
{1, 2...12}9.

8Here we consider the elasticity of the demand over the price γ = dq

dp

p
q
.

9We recall that node 0 is the root node with known parameters. Since we are interested in randomness of the
payoffs, we do not show scenario 0’s payoff.
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Figure 3:
The actors’ payoff, Case -1. Only the spot market exchanges are allowed.

We notice that the producer’s payoff fluctuates, which is due to the fact that the spot
market price is random. Besides, the producer’s payoff is maximal in scenario node 4 where
the spot market inverse-demand function’s intercept is highest. The same observation can
be made for scenario nodes 10,11 and 12 and the minimum payoff and the lowest spot prices.
The mid-streamer does not exert any market power, no contract is signed and the down-
stream market’s price is sensitive to the volume. Hence, at the equilibrium, no arbitrage
is possible between the spot and the downstream market prices and these are equal, which
induces zero profit for the mid-streamer (the variable hω is free).
The producer’s profit fluctuation leads to a non-zero risk: ρp = −3.2 109 $. In other words,
the producer’s risk-adjusted profit expectation over all the time horizon is −ρp = 3.2 109 $.
The fact that the mid-streamer’s profit is not random results in a zero profit and zero risk:
ρt = 0 $.

Risk (B$) Producer Mid-streamer
−3.2 0

5.2 The spot market and constant price and volume contract (Case
0)
The following reports result from a market situation where the producer and mid-streamer
can conclude a contract. For that purpose, we use the reference case data set and allow for
endogenous contracting.

Figure 4 shows the producer and the mid-streamer’s payoff in all the possible market
scenarios {1, 2...12} for Case -1 (spot only) and Case 0 (spot + constant price and volume
contract). We also report the producer’s payoff due to LTC sales.
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Figure 4:
The actors’ payoff. Case -1 (100% spot) and Case 0 (spot market + constant price and volume

LTC exchanges).
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Both the producer and mid-streamer’s payoffs fluctuate in Case 0. This is due to the fact
that the fluctuation of the downstream price leads to an uncertain payoff because the LTC
price (which is a cost for the mid-streamer) is assumed constant. Furthermore, comparing
with Case -1, we notice that the contract reduces the fluctuations of the producer’s payoff.
In order to study the importance of the contract in the supply mix, we define the contract
share parameter by:

CR = 〈up
1

zω
〉ω (49)

where 〈〉ω is a notation for the expected value. In other words, CR is the expected share of
the contract in the total supply (from the mid-streamer’s point of view). We find CR = 85%
or an optimal contract volume of 35 Bcm, which is in line with what has been actually con-
tracted in France in the previous years [6]. The contract price is 5.4 $/Mbtu.

The following array summarizes the results of Case 0:

Risk (B$) Producer Mid-streamer
−3.4 −0.15

CR 85%

Comparing with the pure spot market case we observe that the producer and mid-
streamer enter a contract with the result that they both increase their risk adjusted payoff.
In order to do so the mid-streamer is willing to accept the risk of a large negative payoff in
several scenario nodes (like in scenario node 12)
.

5.3 Spot market, constant price and volume contract and oil price-
indexed contract (Case 1)
This case allows for oil price (πω) indexed contracts. The relevance of those contracts was
undisputed before restructuring but it has been seriously questioned during the gas bubble
and remains an open subject today. The important factor is the correlation between the oil
price and the gas market demand. Since the downstream and spot markets inverse-demand
functions are already perfectly correlated in our basic set up, we will mainly examine the
correlation between the oil and gas spot prices, which is at the core of the debate on price
indexation clauses. Let Corr10 be the correlation parameter defined by:

Corr = 1− 1

Card(Ω)

∑
ω

(πω − αω)2

〈π〉 〈α〉
(50)

where Card(Ω) is the number of elements of the scenario set Ω. A high correlation corre-
sponds to a high value of Corr (around 1) and vice-versa (≤ 50%).

5.3.1 Oil is highly correlated with gas (Case 1.a)

We first assume Corr ≈ 1 and allow for both oil indexed and constant price contracts. Fig-
ure 4 compares the producer and the mid-streamer’s payoffs in all possible market scenarios
{1, 2...12} for Case -1 (spot market only) and Case 1.a. (spot + constant price and volume
contract + oil-indexed contract, high correlation). We also report the producer’s payoff due
to LTC sales.

10We actually calculate the correlation between the oil price and the intercept of the spot market inverse-demand
function, which is a proxy of the gas spot price.
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The actors’ payoff. Case -1 (100% spot) and Case 1.a. (spot market + constant price and

volume + oil-indexed LTC exchanges). High correlation between oil and gas prices
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Both the producer’s and mid-streamer’s payoffs fluctuate. This is due to the uncertainty
of the oil price (which leads to a fluctuation of the oil-indexed contract) and the downstream
price. Comparing to Case -1, the contracts reduce the fluctuations of the producer’s payoff
but increase the fluctuations of the mid-streamer’s.
We find a CR = 85% (up1 + up2 = 35 Bcm) and calculate the respective shares of the
oil-indexed and constant price contracts in Figure 6 (endogenously determined).

16%

The contract share

Constant price/volume 

contract

84%
Oil-price indexed contract

Figure 6:
The contract mix, Case 1.a. Spot market + constant price and volume + oil-indexed LTC

exchanges. High correlation between oil and gas prices

The following array summarizes the results of Case 1.a:

Risk (B$) Producer Mid-streamer
−4.2 −0.6

CR 85%
Oil indexation share in the contract 16%

We find that, in comparison with Case 0 with the sole forward contract, the introduction
of the oil-indexed contract increases the risk adjusted payoffs of both the producer and mid-
streamer. This indicates that the oil-priced contract absorbs a part of the risk in the market,
due to its high correlation with the spot and downstream markets.

5.3.2 Oil is weakly correlated with gas (Case 1.b)

We now suppose Corr = 0.5 and redo the analysis with both the oil indexed and constant
price contracts. Figure 7 shows the producer and the mid-streamer’s payoff in all the possible
market scenarios {1, 2...12} for Case -1 (spot market only) and Case 1.b. (spot + constant
price and volume contract + oil-indexed contract, low correlation). We also report the pro-
ducer’s payoff due to LTC sales.

Both the producer and mid-streamer’s payoffs fluctuate in Case 1.b. This is due to the
uncertainty of the oil price (which leads to a fluctuation of the oil-indexed contract) and
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The actors’ payoff. Case -1 (100% spot) and Case 1.b. (spot market + constant price and

volume + oil-indexed LTC exchanges). Low correlation between oil and gas prices
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the downstream price. Comparing to Case -1, contracting reduces the fluctuations of the
producer’s payoff.
We again estimate CR = 85% (the total contracted volume is 35 Bcm) and calculate the
share of the oil-indexed contract in the total contract mix. Figure 8 shows how the total
contracted volume is allocated between the oil-indexed contract and the constant price and
volume contract but that the share of the former is reduced: the forward contract is now
much more effective, which is indeed what one should expect from the lower correlation
between oil price and gas demand.

2%

The contract share

Constant price/volume 

contract

98%
Oil-price indexed contract

Figure 8:
The contract mix, Case 1.b. Spot market + constant price and volume + oil-indexed LTC

exchanges. Low correlation between oil and gas prices

The following array summarizes the results of Case 1.b:

Risk (B$) Producer Mid-streamer
−3.4 −0.15

CR 85%
Oil indexation share in the contract 2%

As expected from what has just been said, the comparison with Case 0 with the sole
forward contract reveals that the oil-indexed contract does not improve the risk adjusted
payoff of the players. This is reflected in the small 2% share of the oil indexed gas contract
volume in the portfolio.

5.4 Endogenizing investment decisions

5.4.1 The link between investment and contracting decisions in gas mar-
kets

This last section explores the need for a producer to contract when confronted with capacity
expansion decisions. A standard argument of the gas industry is that LTCs trigger upstream
investments because they shield the producer from the threat of hold-up. [22]. We here
discuss the other standard argument namely the capability of the contract to mitigate the
revenue risk, inherent to the producer’s will of covering its cost, accruing from downstream
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uncertainties. We thus use our model in order to study the extent to which an investment
decision might influence the producer’s contracting behavior.

We consequently amend our model in order to introduce an investment decision inv. The
production capacity is therefore bounded by inv in each time period and in each scenario.
Like the contracting decisions, the investment inv can be considered as a first stage variable
independent of the scenarios. We assume that the total upstream cost cost is splitted between
capital cin and operations cp costs as follows:

cp = ε cost
cin = (1− ε) cost

where ε is a parameter such as ε ∈ [0, 1]. ε = 0 describes an industry where the production
capital cost represents most of the upstream costs. This mimics the conventional gas produc-
tion in Europe for instance, where operations costs might be negligible with respect to the
initial investment cost. On the contrary, ε = 1 occurs when the operational cost represents
most of the production cost. This situation describes the current unconventional shale gas
production in the US for instance, where the hydraulic fracking technique imposes a constant
liquid injection to progressively free gas from the shale rocks in order to maintain a constant
production rate.

The producer’s optimization program is now modified as follows:

Max λp
∑
ω θωpωxω

+λp
∑
ω θω

(
π1up1

)
−λp

∑
ω θωcp(xω + up1)

−λp
∑
ω θωcin(inv)

−(1− λp)ρp
s.t. ∀ω, 0 ≤ xω, up1, inv

∀ω, xω + up1 ≤ inv (υω)

where

• The new term: cin(inv) is the investment cost.

• The constraint ∀ω, xω+up1 ≤ inv is the production capacity constraint whose shadow
cost is the dual variable υω.

The following results are obtained from our standard data set (see Section 4).
The following figure gives the evolution of the contract volume up1 over the parameter ε. To
better understand the results, we concentrate on the sole forward contract formula up1 in
this study.

One observes that the contracted volume decreases with ε (-12% from ε = 0 to ε = 1).
This indicates that the more the CAPEX dominates the upstream cost, the more there is
an incentive to sign contracts in the gas trade. This result mimics the strategic behavior
of European conventional gas producers who have shown a strong willingness to engage in
long-term agreements before starting drilling. On the contrary, a producer which mainly
faces OPEX costs is less likely to engage in long-term contracts. This is what has indeed
been observed in the US shale gas revolution, where contract exchanges have shrinked in the
previous decade or so: currently, they account for less than 30% of the gas trade, the rest
being exchanged in the spot markets.

5.4.2 The impact of the mid-streamer’s risk aversion on the consumer
surplus in presence of investment decisions

As explained in the introduction, the recent gas bubble in Europe caused a net loss for
most European mid-streamers, which triggered the discussion on spot-indexation ([41] and
[42]). However, as seen in Section 5.2 and 5.3, despite the improvement of the risk adjusted
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The contract volume up1 over ε

payoff of the mid-streamer, the contracts might also cause net losses for the mid-streamer
(particularly in scenario nodes where the downstream demand is low such as 10, 11 or 12),
which is the situation that mid streamers complained about during the recent bubble. This
is mainly due to the fact that the forward contract price is a risk-adjusted expectation of the
spot prices (theorem 4) but not an option that could buy out very unfavorable outcomes. A
very risk averse mid-streamer with the sole opportunity to conclude forward type contracts
would then reduce its contract volume in order to mitigate these losses. Such a reaction
is actually currently being considered by some European mid-streamers. However, we have
also shown before that in a capacity expansion decision context, a contract volume reduction
would cause an upstream under-investment, that can lead to a strong increase of gas prices
when the downstream demand is too high. As a consequence, one expects the consumer
surplus to decrease if the mid-streamer becomes too risk-averse. The aim of this section is
to show this effect.

In this study, we assume that the producer faces a non-zero capital cost: ε = 0.4. Its
risk aversion parameter is set to Ap = 1.07. Figure 10 shows the evolution of the contracted
volume up1 (formula 1), the invested capacity inv, the downstream gas price in node "2"
p′(2)11, as well as the average consumer surplus 〈CS〉, with respect to the mid-streamer’s
risk aversion parameter At. The consumer surplus CS at node ω is defined by:

∀ω CSω =

∫ zω

0

(p′ω(t)− p′ω(zω)) dt

We recall that zω is the downstream consumption. In the case of a linear inverse-demand
curve, the consumer surplus will be expressed by:

CSω =
1

2
bωz

2
ω

and its average is12:

11We are interested in that price because node 2 is a medium scenario where the possible impact of under-
investment is not extreme.

12Here, the average is calculated using the real probabilities θω because the consumers are assumed to be
risk-neutral in our model.
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The contract volume up1, the investment inv, the downstream gas price in node "2" p′(2) and

the average consumer surplus 〈CS〉 over At

The contract volume decreases with the mid-streamer’s risk aversion. This is quite in-
tuitive because the more risk-averse mid-streamer will only tolerate few losses. As a conse-
quence, the producer invests less because contracts are not there to hedge its investment risk
(see Section 5.4.1). Under-investment leads to high prices, as is also observed, and hence to
a reduction of social welfare.

The conclusion of this section is straightforward. A very cautious mid-streamer limits its
losses but deprives the consumer’s welfare. Indeed, a very risk-averse mid-streamer prefers
not taking the risk of high losses in the low demand scenarios. It will then favor the short-
term spot purchase to satisfy the downstream demand. But the resulting lack of contract
will also induce the producer to reduce its upstream investment, leading to a reduction of
consumer surplus.
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6 Conclusion
Oil price-indexed long-term contracts signed between producers and mid-streamers still dom-
inate the gas supply activity in Europe. It is commonly argued that their objective is to
share the gas market risk between the producer and the mid-streamer, in such a way that
the producer takes the price risk and the mid-streamer the volume risk. Nevertheless, the
growing importance of spot exchanges and the emergence of a gas bubble in Europe triggered
the questioning of the relevance of these contracts in the gas trade.

The objective of this study is to model the optimal contracting behavior between the
producer and the mid-streamer. The market risk is measured by to the good-deal risk func-
tion because it satisfies standard mathematical and useful economic properties. Both the
producer and mid-streamer’s incentive to contract are captured thanks to an equilibrium
model, that has been solved in its complementarity form. In order to take into consideration
the possible evolution of the LTC context in Europe (the spot indexation and renegotiation
possibilities), two contract formulas are represented: the constant price and volume contract
endogenously calculated (forward contract) and the oil price-indexed contract.

• Without any oil price indexation, our results suggest that signing contracts can benefit
both the producers and mid-streamer because it reduces the market risk for both players
and the fluctuation of the producer’s payoff.

• Introducing the oil-indexation possibility may reduce even more the risk since part of
that risk is taken care of by the oil price’s fluctuation. However this risk reduction is
sensitive to the correlation between the oil and gas spot prices. When the correlation
is high, the optimal oil-indexed share of the contract is big and the risk reduction is
important. On the contrary, if the correlation is low, no oil-indexed contract should be
signed because such a contract does not reduce any risk in the gas market.

• A CAPEX driven production cost structure is more favorable to the signing of long-
term contracts than an OPEX driven structure. Therefore, this result highlights the
fact that the production of conventional gas, such as in Europe, is more likely to
generate long-term contracts in the market than the production of unconventional gas,
such as in the US.

• The more risk-averse the mid-streamer becomes, the fewer contracts are signed and
fewer upstream investments are carried out. Thus, the consumer surplus might suffer
from a lack of contracts in the market.
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7 Appendix 1
In this appendix, we write our equilibrium model in its complementarity form. For that
purpose, we will calculate the KKT conditions of both the producer and mid-streamer that
define the Nash equilibrium.

The producer’s risk function is:

ρp = Min wp0c10 +Ap
√ ∑
ω/ωf=0

θωηp
2
ω

ηpω ≥ 0, wpω

s.t. ∀ω,

ηpω + Zpω + c1ω(wpωf
− wpω)−Ap

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp2
ω′

 ≥ 0 (νpω)

where the producer’s payoff is:

Zpω = pωxω + π1up1 − c(xω + up1)

The mid-streamer’s risk function is:

ρt = Min wt0c10 +At
√ ∑
ω/ωf=0

θωηt
2
ω

ηtω ≥ 0, wtω

s.t. ∀ω,

ηtω + Ztω + c1ω(wtωf
− wtω)−At

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt2ω′

 ≥ 0 (νtω)

where the mid-streamer’s payoff is:

Ztω = pωhω + p′ωzω − π1ut1

In the following equations, we use the convention that the scenario nodes are numbered
from 0 to m, where 0 is the summit of our scenario tree. We will denote by Ωl the subset of
Ω constituted by the leaves of the tree (i.e. the nodes that do not have children nodes). We
recall that ωf denotes node ω’s father in the tree.

We first rewrite the objectives of the producer and the mid-streamer as in expressions
(20) and (24).
The producer’s maximization program:

Max

λp
∑
ω

θωpωxω

+ λp
∑
ω

θω
(
π1up1

)
− λp

∑
ω

θωc(xω + up1)

− (1− λp)

wp0c10 +Ap
√ ∑
ω/ωf=0

θωηp
2
ω


s.t.

∀ω, ηpω + Zpω + c1ω(wpωf
− wpω)−Ap

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp2
ω′ ≥ 0 (νpω)

∀ω, xω free , 0 ≤ up1, 0 ≤ ηpω, free wpω
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The mid-streamer’s maximization program:

Max

λt
∑
ω

θωpωhω

+ λt
∑
ω

θωp′ωzω

− λt
∑
ω

θωπ
1ut1

− (1− λt)

wt0c10 +At
√ ∑
ω/ωf=0

θωηt
2
ω


s.t.

∀ω, zω + hω − ut1 = 0 (51)

∀ω, ηtω + Ztω + c1ω(wtωf
− wtω)−At

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt2ω′ ≥ 0 (νtω)

∀ω, 0 ≤ ut1, zω, free hω, wtω
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The producer’s KKT conditions:

∀ω free xω ⊥
(
pω − c′

(
xω + up1

))
(λpθω − νpω) = 0 (52a)

0 ≤ up1 ⊥ π1
∑
ω

(λpθω − νpω) ≤ 0 (52b)

−
∑
ω

c′
(
xω + up1

)
(λpθω − νpω)

free wp0 ⊥ − (1− λp) c10 −
∑

ω/ωf=0

νpωc10 = 0 (52c)

∀ω /∈ Ωl free wpω ⊥ νpωc1ω −
∑

ω′/ω′f=ω

νpω′c1ω′ = 0 (52d)

∀ω/ωf = 0 0 ≤ ηpω ⊥ − νpω − (1− λp)Apθω
ηpω√ ∑

ω′/ω′f=0

θω′ηp
2
ω′

≤ 0 (52e)

∀ω/ωf > 0 0 ≤ ηpω ⊥ − νpω +Apνpωf

θω
θωf

ηpω√√√√ ∑
ω′/ω′f=ωf

θω′
θωf

ηp2
ω′

≤ 0 (52f)

∀ω 0 ≥ νpω ⊥ ηpω+ ≥ 0 (52g)(
pωxω + π1up1 − c(xω + up1)

)
+ c1ω

(
wpωf
− wpω

)
−Ap

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp2
ω′
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The mid-streamer’s KKT conditions:

∀ω free hω ⊥ pω.
(
λtθω − νtω

)
+ µω = 0

(53a)

∀ω 0 ≤ zω ⊥ p′ω.
(
λtθω − νtω

)
+ µω ≤ 0

(53b)

0 ≤ ut1 ⊥ − π1
∑
ω

(
λtθω − νtω

)
−
∑
ω

µω ≤ 0

(53c)

free wt0 ⊥ −
(
1− λt

)
c10 −

∑
ω/ωf=0

νtωc10 = 0

(53d)

∀ω /∈ Ωl free wtω ⊥ νtωc1ω −
∑

ω′/ω′f=ω

νtω′c1ω′ = 0

(53e)

∀ω / ωf = 0 0 ≤ ηtω ⊥ − νtω −
(
1− λt

)
Atθω

ηtω√ ∑
ω′/ω′f=0

θω′ηt
2
ω′

≤ 0

(53f)

∀ω / ωf > 0 0 ≤ ηtω ⊥ − νtω +Atνtωf

θω
θωf

ηtω√√√√ ∑
ω′/ω′f=ωf

θω′
θωf

ηt2ω′

≤ 0

(53g)

∀ω free µω ⊥ zω + hω − ut1 = 0
(53h)

∀ω 0 ≥ νtω ⊥ ηtω+ ≥ 0
(53i)(

pωhω + p′ωzω − π1ut1
)

+ c1ω

(
wtωf
− wtω

)
−At

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt2ω′
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The spot, downstream and contract markets clearing conditions are:

∀ω pω − (αω − βω (xω + hω)) = 0 (54a)

∀ω p′ω − (aω − bωzω) = 0 (54b)

free π1 ⊥ up1 − ut1 = 0 (54c)

8 Appendix 2
This appendix gives the proofs our out lemmas and theorems:

8.1 Proof of theorem 1
Proof. The primal formulation of the good-deal is as follows:

ρ = Max −
∑
ω θωZω (Πω′≤ωζω′)

ζω
s.t. ∀ω, ζω ≥ 0

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζω′c1ω′ = c1ω

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζω′c2ω′ = c2ω

∀ω,
∑

ω′/ω′f=ω

θω′
θω
ζ2
ω′ ≤ A2

(55)

First we get rid of the nested formulation by changing variables and introducing ξω such
that:

∀ω ∈ Ω, ξω = θωΠω′≤ωζω′

We obtain:

ρ = Max −
∑
ω Zωξω

ξω
s.t. ∀ω, ξω ≥ 0

∀ω,
∑

ω′/ω′f=ω

ξω′c1ω′ = ξωc1ω

∀ω,
∑

ω′/ω′f=ω

ξω′c2ω′ = ξωc2ω

∀ω,
∑

ω′/ω′f=ω

θω
θω′

ξ2
ω′ −A2ξ2

ω ≤ 0

(56)

Which is equivalent to (duals are written between parenthesis):
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ρ = Max −
∑
ω Zωξω

ξω
s.t. ∀ω, ξω ≥ 0

∀ω,
∑

ω′/ω′f=ω

ξω′c1ω′ = ξωc1ω (w1ω)

∀ω,
∑

ω′/ω′f=ω

ξω′c2ω′ = ξωc2ω (w2ω)

∀ω,

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ2
ω′ −Aξω ≤ 0 (φω)

(57)

It is easy to demonstrate that the objective function is concave, that the feasibility set is
convex and that standard constraints qualifications hold. The dual and primal problems are
therefore equivalent.
The dual problem is written below:

ρ = Inf Sup L(ξ, w1, w2, φ)
w1ω free ξω ≥ 0
w2ω free
φω ≥ 0

(58)

where the Lagrangian function is defined as follows:

L : Rm × Rm × Rm × Rm −→ R

L(ξ, w1, w2, φ) = −
∑
ω

Zωξω+
∑

i=1,2, ω

wiω

ξωciω − ∑
ω′/ω′f=ω

ξω′ciω′

−∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ2
ω′ −Aξω


(59)

Let us solve the right part of the optimization program (58):

Sup L(ξ, w1, w2, φ)
ξω ≥ 0 (60)

The solution of problem (60) satisfies (assuming that ∀ω ∈ Ω, φω > 0):

∀ω ∈ Ω, ξ∗ω =

(
−Zω +

∑
i ciω(wiω − wiωf

) +Aφω
)+

φωf

θω
θωf

√√√√ ∑
ω′/ω′f=ωf

θωf

θω′
ξ∗2ω′ (61)

where x+ designates the positive part of x: x+ = max(x, 0). By putting expression (61)
to the square and summing over all the ω′ such that ω′ and ω have the same ancestor, we
obtain:

∀ω ∈ Ω, φ2
ω =

∑
ω′/ω′f=ω

(−Zω′ +∑
i

ciω′(wiω′ − wiω) +Aφω′

)+
2

θω′
θω

(62)

We can calculate the value of L at the optimum when ξ = ξ∗
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L(ξ∗, w1, w2, φ) =

−
∑
ω

Zωξ ∗ω +
∑

i=1,2, ω

wiω

ξ ∗ω ciω − ∑
ω′/ω′f=ω

ξ ∗ω′ ciω′

−∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′ −Aξ∗ω

 =

∑
i

wi0ci0 + φ0A+
∑
ω 6=0

−Zω +
∑
i=1,2

(wiωciω − wiωf
ciω) +Aφω

 ξ ∗ω −
∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′

and using (61) with the following property: ∀x ∈ R, x.x+ = (x+)2 , we get:

L(ξ∗, w1, w2, φ) =
∑
i wi0ci0 + φ0A+

∑
ω 6=0

((
−Zω +

∑
i=1,2(wiωciω − wiωf

ciω) +Aφω

)+
)2

φω

θω
θωf

√√√√ ∑
ω′/ω′f=ωf

θωf

θω′
ξ∗2ω′ −

∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′

and

L(ξ∗, w1, w2, φ) =
∑
i wi0ci0 + φ0A+

∑
ω 6=0

((
−Zω +

∑
i=1,2 wiωciω − wiωf

ciω +Aφω

)+
)2

φω

θω
θωf

√√√√ ∑
ω′/ω′f=ωf

θωf

θω′
ξ∗2ω′ −

∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′

Now using expression (62) we can deduce that:

L(ξ∗, w1, w2, φ) =
∑
i wi0ci0 + φ0A+∑

ω

φ2
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′ −
∑
ω

φω

√√√√ ∑
ω′/ω′f=ω

θω
θω′

ξ∗2ω′

And finally:

L(ξ∗, w1, w2, φ) =
∑
i

wi0ci0 + φ0A (63)

Now, getting back to expression (58) and adding equation (62), we have:

ρ = Inf
∑
i wi0ci0 + φ0A

w1ω free
w2ω free
φω ≥ 0

φ2
ω =

∑
ω′/ω′f=ω

(−Zω′ +∑
i

ciω′(wiω′ − wiω) +Aφω′

)+
2

θω′
θω

(64)

Now, we introduce a new variable ηω ≥ 0, ω ∈ Ω such that:

∀ω ∈ Ω ηω =

(
−Zω +

∑
i

ciω(wiω − wiωf
) +Aφω

)+

(65)

And we can rewrite the optimization program (64) as follows:
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ρ = Inf
∑
i wi0ci0 +A

√ ∑
ω/ωf=0

θωη
2
ω

w1ω free
w2ω free
ηω ≥ 0

ηω + Zω + c1ω(w1ωf
− w1ω) + c2ω(w2ωf

− w2ω)−A

√√√√ ∑
ω′/ω′f=ω

θω′
θω
η2
ω′ ≥ 0

(66)

8.2 Proof of lemma 1
Proof. Let us consider x = (x1, ..., xn) and y = (y1, ..., yn) ∈ Rn and s ∈ [0, 1]. We have:

f(sx+ (1− s)y) =

√∑
i

δi (sxi + (1− s)yi)2

=

√∑
i

δi (s2x2
i + (1− s)2y2

i + 2s(1− s)xiyi)

Using the Cauchy Schwarz inequality, we have:

∑
i

δixiyi ≤
√∑

i

δix2
i

√∑
i

δiy2
i

Hence

f(sx+ (1− s)y)

≤

√√√√s2
∑
i

δix2
i + (1− s)2

∑
i

δiy2
i + 2s(1− s)

√∑
i

δix2
i

√∑
i

δiy2
i

=

√√√√√s√∑
i

δix2
i + (1− s)

√∑
i

δiy2
i

2

= sf(x) + (1− s)f(y)

8.3 Proof of theorem 2
Proof. This is a straightforward consequence of Lemma 1.

8.4 Proof of theorem 3
Proof. Using equations (see Apendix 1) (52b), (53a) and (53c), we can deduce that:

1

T

∑
ω

(
λtθω − νtω

)
pω ≤ π1 ≤ 1

T

∑
ω

(λpθω − νpω) c′(xω + up1) (67)

We will demonstrate later on (see Proof of lemma 3) that λtθω − νtω and λpθω − νpω are
probability measures, which implies that they are bounded. Thus, π1 is bounded since the
spot price pω and the marginal production cost c′(xω + up1) are also bounded.
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8.5 Proof of lemma 2
Proof. ∀ω, ηpω > 0 and ηtω > 0 is straightforward from (32) and (33).
We already have ∀ω/ωf = 0, νpω < 0. Indeed, if ∃ω/ωf = 0, νpω = 0, then using the
slackness condition of equation (52e), we would have ηpω = 0, which is impossible. Let us
now assume that ∃ω/ωf 6= 0 and νpω = 0. If νpωf

< 0, then using the slackness condition of
equation (52f), we will have ηpω = 0, which is impossible. If νpωf

= 0 we make the previous
reasoning by replacing ω by ωf .
∀ω, νtω < 0 can be demonstrated in a similar way.

8.6 Proof of lemma 3
Proof. We know that ∀ω, νp(t) < 0, which means that ∀ω, λpθω − νpω ≥ 0.
We have ∑

ω/ωf=0

λpθω − νpω = λp −
∑

ω/ωf=0

νpω (68)

Using equation (52c), we can deduce that
∑
ω/ωf=0 λ

pθω − νpω = 1.
Now, using (52d), we can easily calculate:

∀ω,
∑

ω′/ω′f=ω

λpθω′ − νpω′ = λpθω − νpω (69)

The demonstration is similar for ω −→ λtθω − νtω.

8.7 Proof of theorem 4
Proof. The proof is straightforward, given equations (52b), (53a) and (53c):

up1 = ut1 > 0⇒ π1 =
1

T

∑
ω

(λpθω − νpω) pω =
1

T

∑
ω

(
λtθω − νtω

)
pω (70)

8.8 Proof of theorem 5
Proof. The proof is straightforward, because of the concavity of the players’ objective func-
tions and the convexity of their feasibility sets. See for instance [17] and [13] for a clear pre-
sentation of the equivalence between complementarity problems and the VI formulation.

8.9 Proof of theorem 6
Proof. ∀π1 ∈ [p, p], K is non-empty, convex and compact. F is continuous over K. The
existence of a solution to the VI is a consequence of [36]’s theorem 1 (which applies one of
Brouwer’s fixed point theorem).

8.10 Proof of lemma 4
Proof. Let λ be such that λ = λp = λt.
Let X and X′ be two vectors in K and let us calculate (−tF (X) +t F (X′)) (X −X′).
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(−tF (X) +t F (X′)) (X −X′) =
λ
∑
ω θωβω (xω + hω − x′ω − h′ω) (xω − x′ω) +

λ
∑
ω θω

(
c(xω + up1)− c(x′ω + up′1)

)
(xω − x′ω) +

λ
∑
ω θω

(
c(xω + up1)− c(x′ω + up′1)

) (
up1 − up′1

)
+

(1− λ)Ap
∑
ω/ωf=0 θω

 ηpω√√√√√
∑

ω/ωf=0

θωηp
2
ω

− ηp′ω√√√√√
∑

ω/ωf=0

θωηp′2ω

 (ηpω − ηp′ω) +

λ
∑
ω θωβω (xω + hω − x′ω − h′ω) (hω − h′ω) +

λ
∑
ω θωbω (zω − z′ω)

2
+

(1− λ)At
∑
ω/ωf=0 θω

 ηtω√√√√√
∑

ω/ωf=0

θωηt
2
ω

− ηt′ω√√√√√
∑

ω/ωf=0

θωηt′2ω

 (ηtω − ηt′ω) +

(71)

and after some algebra:

(−tF (X) +t F (X′)) (X −X′) =

λ
∑
ω θωβω (xω + hω − x′ω − h′ω)

2
+

λ
∑
ω θω

(
c(xω + up1)− c(x′ω + up′1)

) (
xω + up1 − x′ω − up′1

)
+

(1− λ)Ap


√√√√√
∑

ω/ωf=0

θωηp
2
ω+

√√√√√
∑

ω/ωf=0

θωηp′2ω


√√√√√
∑

ω/ωf=0

θωηp
2
ω

√√√√√
∑

ω/ωf=0

θωηp′2ω

√ ∑
ω/ωf=0

θωηp
2
ω

√ ∑
ω/ωf=0

θωηp′2ω −
∑

ω/ωf=0

θωηpωηp′ω

+

λ
∑
ω θωbω (zω − z′ω)

2
+

(1− λ)At


√√√√√
∑

ω/ωf=0

θωηt
2
ω+

√√√√√
∑

ω/ωf=0

θωηt′2ω


√√√√√
∑

ω/ωf=0

θωηt
2
ω

√√√√√
∑

ω/ωf=0

θωηt′2ω

√ ∑
ω/ωf=0

θωηt
2
ω

√ ∑
ω/ωf=0

θωηt′2ω −
∑

ω/ωf=0

θωηtωηt′ω


(72)

Using again the Cauchy Schwarz inequality, we have:√ ∑
ω/ωf=0

θωηp
2
ω

√ ∑
ω/ωf=0

θωηp′2ω −
∑

ω/ωf=0

θωηpωηp′ω ≥ 0 (73)

and √ ∑
ω/ωf=0

θωηt
2
ω

√ ∑
ω/ωf=0

θωηt′2ω −
∑

ω/ωf=0

θωηtωηt′ω ≥ 0 (74)

Therefore:

∀X and X′ ∈ K,
(
−tF (X) +t F (X′)

)
(X −X′) ≥ 0 (75)

8.11 Proof of lemma 5
Proof. In this proof, we will use the equations issued from the KKT conditions given in
Appendix 1 and their numbers.

44



If λp = λt, it is easy to derive that the Jacobian matrix of the KKT conditions is symmetric.
Therefore, the problem is integrable and is equivalent to maximizing over the convex set K
the following concave and continuous function:

W : K −→ R
X −→ λ

∑
ω θω

(
αω(xω + hω)− βω

2 (xω + hω)2 + aωzω − bω
2 z

2
ω

)
−λ
∑
ω θωc(xω + up1)

+λ
∑
ω θωπ

1(up1 − ut1)

−(1− λ)

wp0c10 +Ap
√ ∑
ω/ωf=0

θωηp
2
ω + wt0c10 +At

√ ∑
ω/ωf=0

θωηt
2
ω


This result has a simple interpretation: when the players give the same weight to the profit in
their objectives, the equilibrium is reached when the risk adjusted social welfare is maximized.
Indeed, the expression of W can be splitted into five components:

W = Wspot +Wdown +Wproducer +Wmid−streamer −Risk (76)

where

Wspot =
∑
ω

θω

(
αω(xω + hω)− βω

2
(xω + hω)2 − pω(xω + hω)

)
is the expected spot market consumer surplus. The term

Wdown =
∑
ω

θω

(
aωzω −

bω
2
z2
ω − p′ωzω

)
is the downstream market expected consumer surplus. The term

Wproducer =
∑
ω

θω
(
π1up1 + pωxω − c(xω + up)

)
is the producer’s net profit. The term

Wmid−streamer =
∑
ω

θω
(
−π1ut1 + pωhω + p′ωzω

)
is the mid-streamer’s net profit and the term

Risk = wp0c10 +Ap
√ ∑
ω/ωf=0

θωηp
2
ω + wt0c10 +At

√ ∑
ω/ωf=0

θωηt
2
ω

is the sum of the players’ risks (under constraints (21) and (26)).

8.12 Proof of theorem 7
Proof. In this proof, we will also use the equations issued from the KKT conditions given in
Appendix 1 and their numbers.
If X and X′ ∈ K are two solutions of V I(F,K), then using lemma 4 we have:(

−tF (X) +t F (X′)
)

(X −X′) = 0 (77)

Using expression (72), the fact that 0 < λ < 1 and the fact that function c is strictly
increasing, we can deduce that:

∀ω, xω + hω = x′ω + h′ω (78)
∀ω, xω + up1 = x′ω + up′1 (79)

∀ω, zω = z′ω (80)
∃γp0 ∈ R, such that ∀ω/ωf = 0, ηpω = γp0 ηp′ω (81)
∃γt0 ∈ R, such that ∀ω/ωf = 0, ηtω = γt0 ηt′ω (82)
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Note that equations (81) and (82) are deduced from the equality case of the general Cauchy
Schwarz inequality.
It is easy to demonstrate that proposition (81) is equivalent to:

∀ω/ωf = 0,
ηpω√ ∑

ω/ωf=0

θωηp
2
ω

=
ηp′ω√ ∑

ω/ωf=0

θωηp′2ω
(83)

and proposition (82) is equivalent to:

∀ω/ωf = 0,
ηtω√ ∑

ω/ωf=0

θωηt
2
ω

=
ηt′ω√ ∑

ω/ωf=0

θωηt′2ω
(84)

Therefore, so far, we have demonstrated that ifX andX′ are two equilibria, then ∃κ, γp0 and γt0 ∈
R such that:

∀ω, x′ω = xω − κ (85)
∀ω, h′ω = hω + κ (86)
∀ω, up′1 = up1 + κ (87)
∀ω, ut′1 = ut1 + κ (88)
∀ω, zω = z′ω (89)

∀ω/ωf = 0, ηpω = γp0 ηp′ω (90)
∀ω/ωf = 0, ηtω = γt0 ηt′ω (91)

We will demonstrate that κ = 0.
We already know that X and X′ maximize the continuous concave functionW , which implies
that any convex combination of X and X′ also maximizes W .

We will calculate W ((1− ξ)X + ξX′) and we will consider it as a function of ξ ∈ [0, 1]:

∀ξ ∈ [0, 1], (1− ξ)X + ξX′ maximizes W

W ((1− ξ)X + ξX′) =

λ
∑
ω θω

(
αω(xω + hω)− βω

2 ((xω − κξ)2 + (hω + κξ)2)− βω(xω − κξ)(hω + κξ) + aωzω − bω
2 z

2
ω

)
−λ
∑
ω θωc(xω + up1)

−(1− λ)

(wp0 + ξ(wp′0 − wp0))c10 +Ap
√ ∑
ω/ωf=0

θω(ηpω + ξ(ηp′ω − ηpω))2


−(1− λ)

(wt0 + ξ(wt′0 − wt0))c10 +At
√ ∑
ω/ωf=0

θω(ηtω + ξ(ηt′ω − ηpω))2


And after some algebraic developments, we have:

W ((1− ξ)X + ξX′) =
Constant(with respect to ξ)

−(1− λ)

ξ(wp′0 − wp0)c10 +Ap
√ ∑
ω/ωf=0

θω(ηpω + ξ(ηp′ω − ηpω))2


−(1− λ)

ξ(wt′0 − wt0)c10 +At
√ ∑
ω/ωf=0

θω(ηtω + ξ(ηt′ω − ηtω))2


which is supposed to be constant with respect to ξ. This is possible if and only if:
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∀ω/ωf = 0, ηpω = ηp′ω (92)

and

∀ω/ωf = 0, ηtω = ηt′ω (93)

and

wp′0 + wt′0 = wp0 + wt0 (94)

Besides, we must also have:

∀ξ ∈ [0, 1], (1− ξ)X + ξX′ ∈ K (95)

and in particular (using constraints (21) and (26) that are binding thanks to lemma 2):
∀ξ ∈ [0, 1], ∀ω,

(1− ξ)ηpω + ξηp′ω + (1− ξ)Zpω + ξZp′ω
+c1ω((1− ξ)wpωf

+ ξwp′ωf
− (1− ξ)wpω − ξwp′ω)

−Ap
√√√√ ∑
ω′/ω′f=ω

θω′
θω

((1− ξ)ηpω′ + ξηp′ω′)2
= 0

∀ξ ∈ [0, 1], ∀ω,

(1− ξ)ηtω + ξηt′ω + (1− ξ)Ztω + ξZt′ω
+c1ω((1− ξ)wtωf

+ ξwt′ωf
− (1− ξ)wtω − ξwt′ω)

−At
√√√√ ∑
ω′/ω′f=ω

θω′
θω

((1− ξ)ηtω′ + ξηt′ω′)2
= 0

given that:

∀ω,

ηp(t)ω + Z
p(t)
ω + c1ω(w

p(t)
ωf − w

p(t)
ω )

−Ap(t)
√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp(t)2

ω′ = 0

η′p(t)ω + Z′p(t)ω + c1ω(w′p(t)ωf − w′
p(t)
ω )

−Ap(t)
√√√√ ∑
ω′/ω′f=ω

θω′
θω
η′p(t)2

ω′ = 0

we have:

∀ξ ∈ [0, 1], ∀ω,√√√√ ∑
ω′/ω′f=ω

θω′
θω

((1− ξ)ηpω′ + ξηp′ω′)2
= (1− ξ)

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp2
ω′ + ξ

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηp′2ω′

∀ξ ∈ [0, 1], ∀ω,√√√√ ∑
ω′/ω′f=ω

θω′
θω

((1− ξ)ηtω′ + ξηt′ω′)2
= (1− ξ)

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt2ω′ + ξ

√√√√ ∑
ω′/ω′f=ω

θω′
θω
ηt′2ω′

which is possible if and only if:
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∀ω, ∃γpω ∈ R, such that ∀ω′/ω′f = ω, ηpω′ = γpω ηp′ω′ (96)
∀ω, ∃γtω ∈ R, such that ∀ω′/ω′f = ω, ηtω′ = γtω ηt′ω′ (97)

Given equations (52e), (52f), (53f) and (53g), we can directly deduce that the risk-neutral
probabilities are the same for the two equilibria:

νp=νp′ (98)
νt=νt′ (99)

To finish the demonstration, we need to focus on some particular nodes of the scenario tree.
To simplify the presentation, we will use the notation of the tree presented in Figure 1.
However, our demonstration is more general and can be applied to any scenario tree.
Using constraints (21) and (26) for scenario nodes 4, 5 and 6, we have:
∀ω ∈ {4, 5, 6}
ηpω = γp1ηp′ω
and
ηpω = −Zpω + c1ωw

p
1

ηp′ω = −Zp′ω + c1ωw
p′1

which means that (given that c14 = c15 = c16):

Zp4 − γp1Z
p′4 = Zp5 − γp1Z

p′5 = Zp6 − γp1Z
p′6 (100)

Similarly, we can write the same equation for the mid-streamer:

Zt4 − γt1Zt′4 = Zt5 − γt1Zt′5 = Zt6 − γt1Zt′6 (101)

After some calculations, we will have (by combining equations (85)-(91), (100) and (101))13:

(1− γp1)Zp4 − κp4 = (1− γp1)Zp5 − κp5 = (1− γp1)Zp6 − κp6 (102)
(1− γt1)Zt4 + κp4 = (1− γt1)Zt5 + κp5 = (1− γt1)Zt6 + κp6 (103)

and14

κ =
(1− γp1)(Zp4 − Z

p
5 )

p4 − p5
=

(1− γp1)(Zp5 − Z
p
6 )

p5 − p6
(104)

κ =
(1− γt1)(Zt5 − Zt4)

p4 − p5
=

(1− γt1)(Zt6 − Zt5)

p5 − p6
(105)

Using equations (104) and (105), we have:

(1− γp1)(Zp4 − Z
p
5 ) = (1− γt1)(Zt5 − Zt4) (106)

It is easy to demonstrate that if scenario node 4 is the one which has the highest intercept
of the spot and downstream markets inverse demand function, then the producer and the
mid-streamer’s profits are the highest in this node, which implies that: Zp(t)4 − Zp(t)5 ≥ 015.
Using equation (106), this means that (1− γp1)(1− γt1) ≤ 0. Without any loss of generality
we will assume that (1 − γp1) ≤ 0 (otherwise, we will apply the coming reasoning to the
mid-streamer).

13We recall that pω is the spot price at node ω.
14We recall that p4 > p5 > p6.
15This is in particular implied by the fact that the contract price, which is a risk-adjusted expectation of the

spot price (see equation (70)), is smaller than p4.
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Using equation (104), we have:

(1− γp1) ≤ 0 =⇒ κ ≤ 0

Now, let us write constraint (21) for scenario node 1 and for vectors X and X′:

ηp1 + Zp1 + c11(wp0 − w
p
1)−Ap

√ ∑
ω/ωf=1

θωηp
2
ω = 0 (107)

ηp′1 + Zp′1 + c11(wp′0 − wp′1)−Ap
√ ∑
ω/ωf=1

θωηp′2ω = 0 (108)

which gives by subtracting (given that c11 = 1 and γp1 = γp′1):

Zp1 − Zp′1 = (wp1 − wp′1)− (wp0 − wp′0)−Ap(1− γp1)

√ ∑
ω/ωf=1

θωηp′2ω (109)

If we write constraint (21) for scenario node 4 and for X and X′, we would have:

wp1 − wp′1 = ηp4 − ηp′4 + Zp4 − Zp′4 (110)

and combining equations (109) and (110), we will have:

(
(p1 − π1)− (p4 − π1)

)
κ = −(1−γp1)ηp′4−(wp0−wp′0)−Ap(1−γp1)

√ ∑
ω/ωf=1

θωηp′2ω (111)

Similarly, for nodes 5 and 6 we will have:

(
(p1 − π1)− (p5 − π1)

)
κ = −(1− γp1)ηp′5 − (wp0 − wp′0)−Ap(1− γp1)

√ ∑
ω/ωf=1

θωηp′2ω(112)

(
(p1 − π1)− (p6 − π1)

)
κ = −(1− γp1)ηp′6 − (wp0 − wp′0)−Ap(1− γp1)

√ ∑
ω/ωf=1

θωηp′2ω(113)

and by subtracting node 4 from node 5’s relations:

(p5 − p4)κ = −(1− γp1)(ηp′4 − ηp′5) (114)

Since ηp′4 − ηp′5 = Z′p4 − Z′
p
5, we have ηp′4 − ηp′5 ≤ 0. We already have p5 − p4 < 0 and

κ ≤ 0. Since 1 − γp1 ≤ 0, we can deduce that relation (114) is only possible if kappa = 0
and 1− γp1 = 0.
κ = 0 implies directly (from (85)-(91)) that:

∀ω, x′ω = xω (115)
∀ω, h′ω = hω (116)
∀ω, up′1 = up1 (117)
∀ω, ut′1 = ut1 (118)
∀ω, z′ω = zω (119)
∀ω, νp′ω = νpω (120)
∀ω, νt′ω = νtω (121)

which implies that the market variables are unique and therefore, the players’ profits in all
the scenarios are also unique. As a consequence, the good-deal risk variables are also unique
([8]):
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∀ω, ηp′ω = ηpω (122)
∀ω, ηt′ω = ηtω (123)
∀ω, wp′ω = wpω (124)
∀ω, wt′ω = wtω (125)
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