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1 Introduction

1 Introduction

Hypothesis testing is an essential part of building and evaluating nonlinear time series

models. Many nonlinear models such as the smooth transition regression or switching re-

gression model or their univariate counterparts nest a linear model and are not identified

if in fact the linear model has generated the observations. This is why testing linearity is

essential before fitting a nonlinear model. Evaluating any time series model before using

it, typically for forecasting, is important to ensure the relevance of the empirical results. In

this paper we consider testing a linear vector autoregressive (VAR) model against a non-

linear logistic vector smooth transition autoregressive (LVSTAR) or regression (LVSTR)

models. Furthermore, we derive various misspecification tests for estimated LVSTAR or

LVSTR models.

Eitrheim and Teräsvirta (1996) constructed misspecification tests for univariate STAR

models. They include the test of no error autocorrelation, based on considerations in

Godfrey (1988, Section 4.4), a test of the hypothesis of no additional nonlinearity, and

a third test against parameter nonconstancy. The last two tests contained the linearity

test and the parameter constancy test in the linear VAR model as special cases. They

build on the idea of circumventing the identification problem present in testing as in

Luukkonen et al. (1988). Camacho (2004) generalised the test of no error autocorrelation

to a bivariate STAR model.

In this paper we work further on linearity and misspecification tests in the LVSTR

framework. We allow the dimension of the model exceed two and, furthermore, do not

restrict the number of transitions to one. We focus on two cases. In the first one, the

LVSTR model only has one transition variable, that is, the same transition variable is

controlling nonlinearity in all equations. In the second case, the transition variable need

not be the same for all equations, but the set of transition variables is known. This means

that it is known which variable belongs to which smooth transition equation. In some

applications, there may exist underlying theory propositions determining these transition

variables and thus justifying this type of test.

When the LVSTR model is extended beyond the bivariate one considered by Camacho

(2004), the problem of size distortion emerges. The standard tests tend to be oversized

in small samples, sometimes very badly. This is a well known problem in testing vector

models, see for example Laitinen (1978), Meisner (1979), Bera et al. (1981), Edgerton and

Shukur (1999) and Shukur and Edgerton (2002). Edgerton and Shukur (1999) conducted

a large simulation study of tests of no error autocorrelation in linear regression models

and found that Rao’s F-test, see Rao (1951) and Rao (1965, Section 8c.5), designed to

correct the size, had the best performance. In Shukur and Edgerton (2002), the test was

the functional form specification test, RESET by Ramsey (1969), and the conclusion was
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2 The joint linearity tests

similar. In this work we simulate our tests and, like the previous authors, consider various

remedies to size distortion. This is important because some of our tests can have a large

number of parameters in the null hypothesis, and size problems are likely to emerge.

The asymptotic theory of our tests requires that the log-likelihood function is at least

twice continuously differentiable in a neighbourhood of the null hypothesis. Theoretically

this means that the tests are not valid for vector threshold autoregressive models such as

the model by Tsay (1998). In practice, our tests do have power even against threshold-

type alternatives, see Strikholm and Teräsvirta (2006) and Teräsvirta et al. (2010, Section

16.4) for a discussion of this in the univariate threshold autoregressive case. The tests

are designed and applied in the LVSTAR or LVSTR modelling framework of Teräsvirta

and Yang (2014). For a recent survey of Vector Threshold Autoregressive (VTAR) and

LVSTAR models, see Hubrich and Teräsvirta (2013).

The plan of the paper is as follows. In Section 2, we first introduce the LVSTAR

model developed in Teräsvirta and Yang (2014). We then develop linearity tests for two

cases. First, this is done when under the alternative a single transition variable controls

transitions. Second, tests are derived for a situation in which each equation has its own

transition function and transition variable. In Section 3, we discuss the size distortion

problem and propose test statistics that alleviate it. In Section 4, several misspecification

tests for model evaluation are derived. In Section 5, we carry out simulation experiments

to investigate the size properties of the tests and report the results. Section 6 concludes.

2 The joint linearity tests

2.1 The logistic vector smooth transition model

In Teräsvirta and Yang (2014), we define the Logistic Vector Smooth Transition AutoRe-

gressive (LVSTAR) model with k lags as follows:

yt = {
m
∑

i=1

(Gi−1
t −Gi

t)F
′

i}xt + εt, (2.1)

where yt is a p×1 column vector, xt = (y′

t−1, ...,y
′

t−k,d
′

t)
′ is a (kp+ q)×1 vector in which

dt is a q × 1 vector of intercept and any exogenous variables. Fi is a (kp+ q)× p matrix

of linear parameters: Fi = (A′

i1, ...,A
′

ik,Φ
′

i)
′, where each Aij, i = 1, ..., m, j = 1, ..., k, is

a p× p matrix, and each Φi, i = 1, ..., m, is a q × p matrix. The p× 1 error vector εt is

assumed i.i.d. N (0,Ω), where the covariance matrix Ω is positive definite.

Gi
t is a p× p diagonal matrix of transition functions which takes the form:

Gi
t = diag { g(s1t|γi1, ci1), ..., g(spt|γip, cip) } , (2.2)
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2 The joint linearity tests

for i = 1, ..., m − 1, and G0
t = Ip, G

m
t = 0. The diagonal elements of Gi

t in (2.2) are

logistic functions of their transition variables:

g(sjt|γij, cij) = (1 + exp{−γij (sjt − cij)})
−1, γij > 0, (2.3)

for i = 1, ..., m− 1 and j = 1, ..., p.

We consider the LVSTAR model (2.1) using the following reparametrization:

yt = (B′

1 +G1
tB

′

2 + ...+Gm−1
t B′

m)xt + εt = Ψ′

tB
′xt + εt, (2.4)

where Ψt =
(

Ip,G
1
t , ...,G

m−1
t

)

′

is an mp × p full rank matrix. Furthermore, B =

(B1,B2, ...,Bm) is a (kp+q)×mpmatrix, where B1 = F1, and Bi = Fi−Fi−1, i = 2, ..., m.

As εt ∼ i.i.d.N (0,Ω), the conditional log-likelihood function takes the form

logL(θ) = −(Tp/2) log 2π − (T/2) log |Ω|

−(1/2)
T
∑

t=1

(yt −Ψ′

tB
′xt)

′

Ω−1 (yt −Ψ′

tB
′xt) . (2.5)

The set of parameters to be estimated is θ = {B,Ω,Γ,C}, where Γ = [γij] and C = [cij ]

contain the parameters in the transition functions.

Moreover, we introduce the following regularity conditions given by Feigin (1976):

Assumption 2.1. The log-likelihood function logL(θ) is second-order differentiable with

respect to the parameters in θ.

Assumption 2.2. Both the first-order and second-order derivatives of the log-likelihood

function (2.5) with respect to the parameters θ ∈ Θ are LT -integrable.

Assumption 2.3. We assume that the following limiting information exists

lim
T→∞

T−1Eθ(iT (θ)) = i(θ) < ∞ (2.6)

where iT (θ) = −∂2 logL/∂θ2.

Assumptions 2.1-3 guarantee the existence of the moments of the score vector and the

information matrix, and are needed in proving asymptotic normality of the score.

2.2 Testing linearity against LVSTARwith single transition vari-

able

Throughout the paper, we only consider the case in which the diagonal elements of the

transition matrix Gi
t are logistic functions. In this section, we consider the special case

in which there is only one single transition variable, that is, s1t = s2t = ... = spt = st.

3



2 The joint linearity tests

In the more general case where each equation may have a different transition variable,

testing has to be first carried out equation by equation as in Luukkonen et al. (1988) and

Camacho (2004) and, if necessary, testing different combinations of transition variables

may be carried out.

As already indicated, testing linearity against STAR is complicated by the presence

of unidentified nuisance parameters under the null hypothesis. As a result, the asymp-

totic null distribution of the classical likelihood ratio, the Lagrange multiplier and the

Wald type tests remains unknown. The solution of Saikkonen and Luukkonen (1988) and

Luukkonen et al. (1988) to this problem is to replace the transition function by a suitable

Taylor series approximation. We generalise this approach to the multivariate case with

only a single transition function for the whole system.

Consider the p-dimensional single transition logistic VSTAR model in (2.4):

yt = B′

1xt +GtB
′

2xt + εt (2.7)

where the sequence {εt} is i.i.d. N (0,Ω). The null hypothesis of linearity can be written

as H0 : γj = 0, j = 1, ..., p. When the null holds, Gt ≡ (1/2)Ip and (2.7) becomes linear,

while the location parameters cj in the logistic functions and the parameters in the linear

combination B1 + (1/2)B2 are not identified. The alternative hypothesis is H1 : at least

one γj > 0, j = 1, ..., p.

In order to solve the identification problem, we approximate the logistic function

g (st|γj, cj) with an n-order Taylor approximation around γj = 0 as proposed in Luukkonen

et al. (1988). This gives

g(st|γj, cj) =
n
∑

i=0

aj,n−is
n−i
t + rjt

where aj,0, ..., aj,n are the coefficients, and rjt is the remainder term of the Taylor expan-

sion. We rewrite Gt in (2.7) as follows:

Gt = diag

{

n
∑

i=0

a1,n−is
n−i
t + r1t, ...,

n
∑

i=0

ap,n−is
n−i
t + rpt

}

=

n
∑

i=0

An−is
n−i
t +Rt (2.8)

where An−i = diag(a1,n−i, ..., ap,n−i), and Rt = diag(r1t, ..., rpt)
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2 The joint linearity tests

Inserting (2.8) into (2.7) yields:

yt = B′

1xt +

(

n
∑

i=0

An−is
n−i
t +Rt

)

B′

2xt + εt

= (B′

1 +A0B
′

2)xt +

n
∑

i=1

AiB
′

2xts
i
t +RtB

′

2xt + εt

= Θ′

0xt +
n
∑

i=1

Θ′

ixts
i
t + ε∗t (2.9)

where Θ0 = B1 +B2A0, Θi = B2Ai, and ε∗t = RtB
′

2xt + εt. The null hypothesis implies

Ai = 0 for i = 1, ..., n, A0 =
1
2
Ip, and Rt = 0 in (2.8). Thus, under the null hypothesis,

the auxiliary VAR model (2.9) is linear, with Θ0 = B1 +
1
2
B2 and Θ1 = ... = Θn = 0.

The linearity hypothesis is therefore H0 : Θ1 = ... = Θn = 0 in (2.9). Moreover, due

to the fact that Rt = 0 under the null hypothesis, the error term ε∗t = εt. Since the

Lagrange multiplier test only requires estimating the model under the null hypothesis,

the remainder term does not affect the normality of the errors or the standard asymptotic

inference.

Denoting Y = (y1, ...,yT )
′, X = (x1, ...,xT )

′, E∗ = (ε∗1, ..., ε
∗

T )
′, Θn = (Θ′

1, ...,Θ
′

n)
′,

and

Zn =















x′

1s1 x′

1s
2
1 . . . x′

1s
n
1

x′

2s2 x′

2s
2
2 . . . x′

2s
n
2

...
...

. . .
...

x′

T sT x′

T s
2
T . . . x′

T s
n
T















,

(2.9) can be rewritten into matrix form:

Y = XΘ0 + ZnΘn + E∗. (2.10)

The null hypothesis is H0 : Θn = 0. The subscript in Z and Θ indicates the order of the

corresponding Taylor expansion of the transition function.

The Lagrange multiplier test under the null is derived from the score

∂ logL(θ̃)

∂Θn

= Z′

n

(

Y −XΘ̃0

)

Ω̃
−1

(2.11)

where Θ̃0 and Ω̃ are estimates from the restricted model (under the null hypothesis).

Under regularity conditions and assuming that EZ′

nZn exists, the score approaches a

matrix variate normal distribution with zero mean and variance Z′

n (IT −Px)Zn ⊗Ω−1,

where Px ≡ X(X′X)−1X′ is the limiting projection matrix as T → ∞.

Theorem 2.4. Consider the model (2.7) and its approximation (2.10). The LM test

statistic for testing the null hypothesis H0 : γj = 0, j = 1, ..., p in (2.7), or equivalently,

5



2 The joint linearity tests

H0 : Θn = 0 in (2.10), equals:

LMn = tr{Ω̃
−1
(Y −XΘ̃0)

′Zn [Z
′

n(IT −Px)Zn]
−1

Z′

n(Y −XΘ̃0)}. (2.12)

Under the null hypothesis, the test statistic has an asymptotic χ2 distribution with np(kp+

q) degrees of freedom.

Proof. See Appendix A.

The explanatory variable vector xt may contain the intercept, seasonal dummies, trend

and other deterministic terms. In the case that xt contains the intercept, and the transi-

tion variable st = yt−d,j for some 1 ≤ d ≤ k and 1 ≤ j ≤ p, the column vector (s1, ..., sT )
′

must be omitted from Zn to avoid perfect collinearity. The number of degrees of freedom

equals the number of restrictions, i.e., p multiplied by the column dimension of Z1.

The test can also be performed as follows:

1. Estimate the restricted model: regress Y on X. Collect the residuals Ẽ = (IT −

Px)Y, and the matrix residual sum of squares RSS0 = Ẽ′Ẽ.

2. Run an auxiliary regression of Ẽ on (X,Zn). Collect the residuals Ξ̃, and compute

the matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic

LMn = T tr{RSS−1
0 (RSS0 −RSS1)}

= T (p− tr{RSS−1
0 RSS1}). (2.13)

The joint test statistic defined in Theorem 2.4 collapses into the univariate LM-type

linearity test statistic when p = 1. This joint test can also be applied to any subset of

equations in the system, for instance, to check whether some equations in the system are

nonlinear with a common transition variable.

The choice of the order of the Taylor expansion n is somewhat arbitrary. A higher

order will increase the column dimension of Zn. But then, rejecting the null hypothesis

may become easier, since a higher order often increases the power of the test. On the

other hand, a lower order, for example n = 1, normally leads to a test with better size

properties, because it uses fewer parameters than a higher-order test. However, it may

suffer from the problem, pointed out by Luukkonen et al. (1988), that in the situations

where st = yt−d,j for some 1 ≤ d ≤ k, 1 ≤ j ≤ p (the self-exiting STAR model), and only

the intercept fluctuates across regimes, the LM1 statistic only has trivial power against

the alternative. They suggested to solve this problem by choosing n = 3 instead of n = 1.

Although the high-order test statistic LMn, for example n = 3, is mainly designed for

the particular case where only the intercept differs across regimes, it can be used for more

6



2 The joint linearity tests

general alternatives. A parsimonious version of the LMn statistic that only works for the

situation in which the intercept vector is the only nonlinear component of the model, can

be obtained by augmenting the first order test LM1 with regressors from s2t up to snt .

Thus, we have the parsimonious n-order LM test, which is denoted as LMe
n

LMe
n = tr{Ω̃

−1
(Y −XΘ̃0)

′Ze
n

[

Ze
n
′(IT −Px)Z

e
n
′
]

−1
Ze

n
′(Y −XΘ̃0)},

where

Ze
n =















x′

1s1 s21 . . . sn1

x′

2s2 s22 . . . sn2
...

...
. . .

...

x′

T sT s2T . . . snT















.

The test statistic has an asymptotic χ2 distribution and its number of degrees of freedom

under the null is p(kp + q + n − 1). The parsimonious test LMe
n reduces the column

dimension of Zn, and is likely to have better finite-sample properties than LMn.

2.3 Testing linearity against LVSTAR with different transition

variables

Now we turn to the LVSTAR model in which every equation can have its own transition

variable, sjt, j = 1, ..., p, and do not exclude the possibility that some equations in the

vector system are linear. Linearity testing will then be carried out equation by equation.

When the theory behind the model does not lead to a single potential transition

variable, linearity may be tested using a set of candidate variables. This is done by

testing against the alternative models defined by the candidate variables one by one.

The simple rule, discussed in Teräsvirta (1994) for the univariate STAR case, suggests

selecting the alternative with the transition variable that leads to the strongest rejection,

measured by the p-value, of the null hypothesis. This is, however, just a guideline. It

may well be that several transition variables lead to strong rejections with p-values of the

same magnitude. In that case it is advisable to fit all of these alternative models to the

data and leave the decision of selecting the final model to the model evaluation stage.

It may turn out that a linear combination of some of the candidate variables (preferably

with known weights) would make a reasonable transition variable. Model misspecification

tests useful in evaluating LVSTAR models are discussed in Section 4.

The solution of Saikkonen and Luukkonen (1988) and Luukkonen et al. (1988) is also

applicable here. We replace the transition function by Taylor expansion of order n, which

yields

yt = Θ′

0xt +

n
∑

i=1

Si
tΘ

′

ixt + ε∗t , (2.14)

7



2 The joint linearity tests

where St = diag(s1t, s2t, ..., spt), Θi for i = 0, ..., n, and ε∗t are defined as in (2.9). This

nests the case where skt = slt for k 6= l.

The null hypothesis of linearity, that is, γij = 0 for all i = 1, ..., m− 1 and j = 1, ..., p,

can be equivalently stated as H0 : Θ1 = ... = Θn = 0. Then we have an LM test similar

to that in (2.12), with

Zs
n =









vec(S1 ⊗ x1)
′ vec(S2

1 ⊗ x1)
′ . . . vec(Sn

1 ⊗ x1)
′

...
...

. . .
...

vec(ST ⊗ xT )
′ vec(S2

T ⊗ xT )
′ . . . vec(Sn

T ⊗ xT )
′









. (2.15)

One can carry out this test by applying the testing procedure in the previous section,

replacing Zn by Zs
n.

The test suffers from the drawback that the dimension of the null hypothesis grows

very fast, which has an adverse effect on the empirical size of the test. In practice we

set n = 1 and Zs
1 = (vec(S1 ⊗ x1), ..., vec(ST ⊗ xT ))

′ in most cases. The size distortion

caused by a large-dimensional null hypothesis will be discussed in Section 3.

As already mentioned, some of the transition variables can still be the same, that is,

skt = slt for some k 6= l. This implies that the matrix Zs
1 has reduced rank and some

of its columns must be removed to avoid collinearity. In the following, we propose a

parsimonious ”algorithm” for carrying out the test:

1. Estimate the restricted model under the null hypothesis. Collect the residuals ε̃t =

yt − Θ̃′

0xt and form Ẽ = (ε̃1, ..., ε̃T )
′. Compute the matrix residual sum of squares

RSS0 = Ẽ′Ẽ.

2. Run an auxiliary regression for each column of Ẽ, that is, regress ε̃jt, j = 1, ..., p, on

xt and xtsjt, which yields the residual vectors ξ̃t = (ξ̃1t, ..., ξ̃pt)
′. Form the residual

matrix Ξ̃, and compute the matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic in (2.13).

Unfortunately, the limiting null distribution of this LM test statistic remains unknown,

and the empirical null distribution has to be obtained by simulation. This means in prac-

tice that the critical value is obtained using a standard bootstrap that is valid assuming

that the errors are independent and EZs′
nZ

s
n < ∞. This works as follows. First, estimate

the restricted model under the null hypothesis. Then generate yt using xt, the estimates

of the parameters from the restricted model and the bootstrapped residuals, and compute

the test statistic using the parsimonious algorithm suggested above. Repeat the sampling

procedure and the computation of the test statistic N times. This gives N values of

the test statistics generated under the null hypothesis. After ordering them, select the

relevant quantile to be the critical value for a given significance level.

8



3 Linearity test statistic with improved size

Table 1: The empirical size of the bootstrapping test.

ρ = 0.9 ρ = 0 ρ = −0.9

Nom. size 1% 5% 10% 1% 5% 10% 1% 5% 10%

T = 50 1.35% 5.90% 10.90% 0.90% 5.00% 9.65% 1.10% 4.50% 8.50%

T = 100 1.05% 5.15% 9.85% 1.25% 4.95% 10% 0.9% 5.35% 10.8%

T = 200 1.00% 5.25% 10.40% 0.80% 4.65% 9.55% 0.9% 4.95% 9.20%

T = 500 1.05% 5.60% 10.95% 1.35% 5.60% 9.85% 1.40% 5.25% 9.55%

To see how this works, we conduct a simple simulation-based size experiment. We

simulate the following bivariate data generating process:

yit = 0.8yi,t−1 + εit (2.16)

where i = 1, 2, and let T = 50, 100, 200, 500. The covariance matrix of the errors is

Ω =

(

1 ρ

ρ 1

)

(2.17)

where ρ = 0.9, 0, or −0.9. We choose N = 10000 and repeat the bootstrapped test 2000

times. The results are given in Table 1. We see that they are quite satisfactory, already

for T = 50.

3 Linearity test statistic with improved size

In small samples, the test introduced in Section 2.2 is likely to suffer from the problem that

the number of observations does not suffice for the asymptotic inference to be an adequate

approximation to the unknown finite sample null distribution. This leads to positive size

distortion: the empirical size of the test exceeds the corresponding asymptotic size. This

is the case in particular when p, the dimension of yt, is high compared to T . In single-

equation models, it is often recommended to use the F-version of the LM statistic, but

this idea is not applicable in the multivariate case.

Bartlett and Bartlett-type corrections have been widely used as a possible remedy to

the size problem of LM-type tests. We first mention the Laitinen-Meisner correction as

an approximation to the exact test. It consists of a degrees of freedom rescaling of the

form (pT − K)/(G · pT ), where p and T are as before, K is the number of parameters,

and G the number of restrictions, see Laitinen (1978) and Meisner (1979). The F-type

LM test statistic, or rescaled LM test statistic, can be computed as follows

F =
(pT −K)

G · pT
LM (3.1)

9



3 Linearity test statistic with improved size

where LM represents any of the three tests LM1, LM3 and LMe
3 designed in previous

sections. The rescaled test statistic is assumed to follow an F (G, pT −K) distribution.

In the following, it will be called the rescaled LM test.

The Monte Carlo results of Bera et al. (1981) showed that the Laitinen-Meisner cor-

rection is likely to overcorrect the size. We consider two improvements. The first one is

based on the so-called Wilks’s Λ-distribution, and we shall call it Wilks’s statistic. Before

introducing this statistic, we state the following result:

Theorem 3.1. Let RSSj, j = 0, 1, be the p × p residual sum of squares matrix from

the restricted regression (j = 0) and the auxiliary regression (j = 1). Furthermore, let

W1 = RSS0 −RSS1, and W2 = RSS1. Under the null hypothesis of linearity, W1 and

W2 are two independent Wishart distributed random matrices:

W1 ∼ Wp

(

Ω, cd(Z)
)

W2 ∼ Wp

(

Ω, T − cd(X)− cd(Z)
)

(3.2)

where cd(·) is the column dimension of a matrix.

Proof. See Appendix C.

Matrix Z in (3.2) can be any of the three matrices Z1, Z3 and Ze
3, and Ω is the

covariance matrix of errors under H0. It is worth stressing that, in the special case p = 1,

the two independent Wishart variables W1 and W2 become scalars and χ2-distributed,

which implies an F-test.

We define Wilks’s Λ-distribution as follows:

Definition 3.2. When A ∼ Wp(Σ, m) and B ∼ Wp(Σ, n) are independent, Σ is a p× p

positive definite matrix, m ≥ p,

Λ = |A|/|A+B| = |Ip +A−1B|−1 ∼ L(p,m, n) (3.3)

has a Wilks’s Λ-distribution with parameters p, m, and n.

The above definition is a variant of Definition 3.7.1 in Mardia et al. (1979). Anderson

(1958, Section 8.3) and Mardia et al. (1979) contain a detailed discussion of the Wilks’s

Λ distribution. The distribution is invariant under changes in the covariance matrix Σ.

Wilks’s Λ statistic has the following form:

Λ = |W2|/|W2 +W1| = |RSS1|/|RSS0|. (3.4)

It follows Wilks’s Λ-distribution L( p, T − cd(X)− cd(Z), cd(Z) ) under linearity. If T is

large, we may use Bartlett’s approximation

λ =
(1

2
(p+ cd(Z) + 1) + cd(X)− T

)

log Λ ∼ χ2
cd(Z)p, (3.5)

10
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see Bartlett (1954) and Anderson (1958, Section 8.3). The value of the test statistic can

be computed by performing steps 1 and 2 outlined in the algorithm in Section 2.2 but

computing the value of the test statistic defined in (3.4) and (3.5) instead of step 3.

Rao (1951; 1965, Section 8c.5) defined yet another test statistic. It provides a useful

approximation to the unknown null distribution in small samples, if it is used with critical

values from an F-distribution. The statistic is defined as follows:

FRao =

[

(

|RSS0|

|RSS1|

)1/s

− 1

]

Ns− (1/2)cd(Z)p + 1

cd(Z)p
(3.6)

where

s =

(

cd2(Z)p2 − 4

p2 + cd2(Z)− 5

)1/2

, N = T − cd(X)− (1/2) (p + cd(Z) + 1) .

The corresponding degrees of freedom of (3.6) are cd(Z)p and Ns − (1/2)cd(Z)p + 1.

Similarly to Wilks’s Λ, the test can be carried out by performing steps 1 and 2 outlined

in the algorithm in Section 2.2, and then computing the value (3.6). When p = 1 and

s = 1, (3.6) becomes the F-type LM test.

4 Evaluation tests

The evaluation stage of the LVSTARmodelling strategy designed and applied in Teräsvirta

and Yang (2014) makes use of misspecification tests of the estimated LVSTAR model. In

this section we consider three such tests that are either Lagrange multiplier or Lagrange

multiplier type tests. All of them are likely to suffer from the problem that the number

of observations does not suffice for the asymptotic inference, which can lead to significant

size distortion. Fortunately, Wilks’s Λ and Rao’s F statistic considered in Section 3, can

be applied even here to alleviate the size distortion problem.

4.1 Serial correlation in the error process

First, we extend the Lagrange multiplier test of no serial correlation of Eitrheim and

Teräsvirta (1996) to the multivariate case. Camacho (2004) considered this extension in

the bivariate STR model. Assume the p-dimensional m-regime nonlinear LVSTAR model

with autocorrelated errors:

yt = {
m
∑

i=1

(Gi−1
t −Gi

t)F
′

i}xt + ut = Ψ′

tB
′xt + ut, (4.1)

where

ut =

J
∑

i=1

P′

iut−i + εt = P(L)ut + εt. (4.2)

11
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In (4.2), Pi is a p×p matrix, P(L) =
∑J

i=1P
′

iL
i, L is the lag operator, J is the lag length,

and εt ∼ i.i.d.N (0,Ω) is a p × 1 vector. We assume that the roots of the polynomial

|Ip −
∑J

i=1P
′

iz
i| lie outside the unit circle. Furthermore, we assume that the sequence

of {yt} is stationary and ergodic such that the parameters can be estimated consistently

under the null hypothesis of no serial correlation {ut}, that is, when

H0 : P1 = P2 = ... = PJ = 0

holds. This is a high-level assumption, as general asymptotic theory for LVSTAR models

does not exist, for stability (but not consistency) results, see Saikkonen (2008). Left-

multiplying (4.1) by Ip −P(L) yields

yt = P(L)(yt −Ψ′

tB
′xt) +Ψ′

tB
′xt + εt

= P′zt +Ψ′

tB
′xt + εt, (4.3)

see Godfrey (1988, Section 4.4), where

P =















P1

P2

...

PJ















, zt =















yt−1 −Ψ′

t−1B
′xt−1

yt−2 −Ψ′

t−2B
′xt−2

...

yt−J −Ψ′

t−JB
′xt−J















=















ut−1

ut−2

...

ut−J















.

We have the following log-likelihood function:

logL = −((T − J)p/2) log 2π − ((T − J)/2) log |Ω|

−(1/2)

T
∑

t=J+1

(yt −P′zt −Ψ′

tB
′xt)

′

Ω−1 (yt −P′zt −Ψ′

tB
′xt)

= −((T − J)p/2) log 2π − ((T − J)/2) log |Ω|

−(1/2)
T
∑

t=J+1

(ut −P′zt)
′

Ω−1 (ut −P′zt) .

The Lagrange multiplier test is based on the score evaluated under the null hypothesis:

∂ logL(θ̃)

∂P
=

T
∑

t=J+1

[

z̃tũ
′

tΩ̃
−1
]

= Z̃′ŨΩ̃
−1
, (4.4)

where

Z̃ =















z̃′J+1

z̃′J+2
...

z̃′T















, Ũ =















ũ′

J+1

ũ′

J+2
...

ũ′

T















,

and z̃t, ũt and Ω̃ are estimates under the null hypothesis. Notice that the subscripts of

Z̃ and Ũ begin from J + 1, because usually ũ0, ũ−1, ..., ũ1−J are not available. We have

the following theorem:
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Theorem 4.1. Consider the model (4.1) and assume that the parameter estimates are

consistent. Under the null hypothesis P1 = P2 = ... = PJ = 0, the LM test statistic

LM = tr{Ω̃
−1
Ũ′Z̃[Z̃′(IT−J − K̃(K̃′K̃)−1K̃′)Z̃]−1Z̃′Ũ}, (4.5)

where

K̃ =















vec[∂(Ψ̃
′

J+1B̃
′xJ+1)/∂θ]

′

vec[∂(Ψ̃
′

J+2B̃
′xJ+2)/∂θ]

′

...

vec[∂(Ψ̃
′

T B̃
′xT )/∂θ]

′















. (4.6)

has an asymptotic χ2 distribution with Jp2 degrees of freedom.

Proof. See Appendix B.

The vectorised first order derivatives of Ψ′

tB
′xt w.r.t. parameters θ can be easily

found in both univariate and multivariate cases, see Eitrheim and Teräsvirta (1996). We

summarize them in Appendix D. However, in the multivariate case, the column dimension

of the K̃ matrix is [(pk+ q)m+ 2(m− 1)]p2, which grows very rapidly as a function of m

and p. It is seen that T − J ≥ [(pk+ q)m+ 2(m− 1)]p2 is a necessary condition for K̃′K̃

to have full rank, and consequently, the existence of the LM statistic. If either p or m

or both are large, inverting K̃′K̃ requires care. The matrix may be near-singular and the

inversion slow. This is bound to restrict the dimension of the null hypothesis, in practice

the lag length J , in small and moderate samples, unless p, the dimension of the model, is

sufficiently low.

The test can also be performed using the two-step auxiliary regression algorithm given

in Section 2.2 by replacing X by K̃ and Z1 by Z̃. It contains the following steps:

1. Estimate the LVSTAR model under the null hypothesis of no serial correlation.

Choose the lag length J , and collect the residual vectors. Form the matrix residual

sum of squares RSS0 = Ũ′Ũ, where Ũ = (ũJ+1, ..., ũT )
′.

2. Run the auxiliary regression of Ũ on (K̃, Z̃) from t = J + 1 to T . Collect the

residuals Ξ̃ and form the matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic

LM = (T − J) tr{RSS−1
0 (RSS0 −RSS1)}

= (T − J)(p− tr{RSS−1
0 RSS1}). (4.7)

After obtaining RSS0 and RSS1, we can apply the tests with improved size suggested

in Section 3. Nevertheless, there may be positive size distortion even in the tests with
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improved empirical size. This is due to the fact that in practice Ũ may not be completely

orthogonal to the gradient matrix K̃. This is because the LM statistic obtained from the

two-step auxiliary regression is equivalent to (4.5) only when Ũ′K̃ = 0. To remedy the

situation in univariate case, Eitrheim and Teräsvirta (1996) suggested to replace Ũ by

its orthogonal part to the space spanned by K̃, i.e. to use Ṽ = (I − K̃(K̃′K̃)−1K̃′)Ũ.

In the multivariate case, following Eitrheim and Teräsvirta (1996) leads to the following

procedure:

1. Estimate the LVSTAR model under the null hypothesis of no serial correlation.

Choose a lag length J of the serial correlation in residuals. Regress the residuals Ũ

on K̃ from t = J +1 to T . Collect the residuals Ṽ and compute the matrix residual

sum of squares RSS0 = Ṽ′Ṽ.

2. Run the auxiliary regression of Ṽ on (K̃, Z̃) from t = J + 1 to T . Collect the

residuals Ξ̃, and form the matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the value of the test statistic (4.7).

It may be noted that this test as well as the subsequent ones is also valid when the

estimated model is a VTAR model. The reason is that the threshold parameter in these

models is estimated super consistently and can be assumed known in the tests. The test

of no error autocorrelation thus becomes analogous to the corresponding test in linear

VAR model, see Strikholm and Teräsvirta (2006) for discussion. A similar argument is

valid for the test of no additive nonlinearity and parameter constancy.

4.2 Additive nonlinearity

We shall now consider the alternative hypothesis that after fitting a LVSTAR model, there

is still nonlinearity left unmodelled. For simplicity, following Eitrheim and Teräsvirta

(1996), it is specified as another logistic smooth transition component that enters the

model additively. When the null hypothesis of no additive nonlinearity is rejected, there

are at least two alternatives exist. First, one may accept the alternative and estimate

a VSTAR model with two transitions. Since the reasons for a rejection usually remain

unknown, it is also possible to conclude that the model does not fit the data well and

either respecify the whole model or switch to another family of models.

In order to derive the test statistic, consider the additive LVSTAR model

yt = B′

1xt +G1
tB

′

2xt+, ...,+Gm−1
t B′

mxt + εt +Gm
t B

′

m+1xt + εt

= Ψ′

tB
′xt + εt +Gm

t B
′

m+1xt + εt, (4.8)
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where εt is i.i.d. N(0,Ω). We estimate them-regime LVSTAR model without the additive

nonlinear term Gm
t B

′

m+1xt and test H0 : γmj = 0, j = 1, ..., p, against the alternative H1 :

at least one γmj > 0.

In order to carry out the test, we have to form the set of the potential transition

variables. If there is no theory available for doing that, the set used in testing linearity

can be re-employed. Similarly, there are two ways of doing this. First, if the theory

behind the model does not suggest a single transition variable, we carry out the test of no

additive nonlinearity equation by equation as in Teräsvirta (1998). But then, should the

system have a single transition variable, a joint test of no additive nonlinearity test would

be appropriate. We shall now develop such a test. As in Section 2, this joint test can also

be applied to a subset of equations and it will be identical to a univariate LM-type test

when p = 1.

Analogously to the situation in Section 2.2, the alternative model is not identified

under the null hypothesis. We again employ the Taylor approximation of the transition

function to deal with the problem. The model is reparameterised and approximated using

either the first-order Taylor expansion around the null hypothesis, which gives

yt = Ψ′

tB
′xt +Θ′

1xtst + ε∗t , (4.9)

or the third-order one, leading to

yt = Ψ′

tB
′xt +Θ′

1xtst +Θ′

2xts
2
t +Θ′

3xts
3
t + ε∗t . (4.10)

The error vector ε∗t contains the remainder term of the Taylor expansion. The corre-

sponding null hypotheses are:

H0 : Θ1 = 0 (4.11)

for (4.9), and

H0 : Θ1 = Θ2 = Θ3 = 0 (4.12)

for (4.10). Let again

X =















x′

1

x′

2
...

x′

T















, ZN =















x′

1s1 · · · x′

1s
N
1

x′

2s2 · · · x′

2s
N
2

...
...

x′

T sT · · · x′

T s
N
T















,

Without loss of generality, we only consider testing the null hypothesis (4.11) in equation

(4.9). The corresponding score evaluated under the null hypothesis is

∂ logL(θ̃)

∂Θ1

=
T
∑

t=1

[

xtst

(

yt − Ψ̃
′

tB̃
′xt

)

′

Ω̃
−1
]

,
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where Ψ̃, B̃, and Ω̃ are estimates under the null hypothesis. Denote ε̃t = yt − Ψ̃
′

tB̃
′xt,

and Ẽ = (ε̃1, ε̃2, ..., ε̃T )
′. Following Luukkonen et al. (1988), the LM-type statistic for

testing (4.9) or (4.10) can be written as

LM = tr{Ω̃
−1
Ẽ′ZN [Z

′

N (IT − K̃(K̃′K̃)−1K̃′)ZN ]
−1Z′

N Ẽ}, (4.13)

where K̃ has been defined in (4.6) with J = 0 and N is the order of the Taylor expansion.

Appendix D contains the details. The inequality T ≥ [(pk + q)m + 2(m − 1)]p2 is a

necessary condition for K̃′K̃ to have full rank, and consequently, for the existence of the

LM test. We have the following theorem:

Theorem 4.2. Consider the model in (4.8) and assume that the parameter estimators

of the null model are consistent. Under the null hypothesis (4.11) or (4.12), the LM test

statistic

LM = tr{Ω̃
−1
Ẽ′ZN [Z

′

N(IT − K̃(K̃′K̃)−1K̃′)ZN ]
−1Z′

N Ẽ} (4.14)

has an asymptotic χ2 distribution with pN(kp + q) degrees of freedom.

Proof. See Appendix B.

Note that if G1
t = ... = Gm−1

t = 0 in (4.8), the test collapses into the linearity test

discussed in Section 3.

The test can also be performed using the two-step auxiliary regression algorithm given

in Section 2.2 by replacing X by K̃. However, it also suffers from the empirical size

distortion problem due to the non-orthogonality between Ẽ and K̃. Taking this into

account, we have the following algorithm:

1. Estimate the LVSTAR model under the null hypothesis of no additional nonlinearity.

Regress the residuals Ẽ on K̃. Collect the residuals Ṽ, and compute the matrix

residual sum of squares RSS0 = Ṽ′Ṽ.

2. Run the auxiliary regression of Ṽ on (K̃, Z̃N). Collect the residuals Ξ̃ and form the

matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic (2.13).

4.3 Parameter constancy

One of the central assumptions of the linear VAR as well the LVSTAR models is that the

parameters of the model are constant over time. Since the estimation of parameters is

based on this assumption it must be tested, and this holds for both linear and nonlinear

models. In this section we shall discuss testing parameter constancy of the LVSTAR
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model. As in the univariate case, considered in Eitrheim and Teräsvirta (1996), a useful

alternative is that the parameters change smoothly over time. In the alternative model

the parameter change is characterised using a logistic function. In this case, we have a

single transition variable for all equations, τ = t/T . Consider the following LVSTAR

model:

yt = Ψ′

tB(τ)′xt + εt, (4.15)

where B(τ) = Ba + Bbλ(τ |γ, c) is a function of rescaled (normalized) time τ = t/T . In

this work, λ(τ |γ, c) may take one of the three forms below

λ1(τ |γ, c) = (1 + exp (−γ (τ − c)))−1 − 1/2, (4.16)

λ2(τ |γ, c) = (1 + exp(−γ(τ − c1)(τ − c2)))
−1 − 1/2, (4.17)

λ3(τ |γ, c) =

(

1 + exp

(

−γ

3
∏

j=1

(τ − cj)

))−1

− 1/2. (4.18)

The null hypothesis of parameter constancy is H0 : λj(τ |γ, c) = 0, j = 1, 2, or 3.

Function (4.16) postulates a smooth monotonic parameters change and function (4.17)

a nonmonotonic change that is symmetric around (c1 + c2)/2. Function (4.18) describes

an even more flexible parameter change which is generally nonmonotonic, but monotonic

change appears as a special case when c1 = c2 = c3.

When γ → ∞ in (4.16), the alternative becomes a single structural break. When the

same occurs in (4.17), one obtains a special case of a double break if c1 6= c2, whereas

(4.18) implies a triple break but only two extreme regimes if c1 6= c2 6= c3.

For notational simplicity, we only consider the function (4.16) here. The first order

Taylor expansion of (4.16) becomes

λ1(τ |γ, c) = (γ/4)(τ − c) + rt, (4.19)

where rt is the remainder. The model (4.15) is approximated and reparameterised as

follows:

yt = Ψ′

tB
′

axt +Ψ′

tB
′

bxtτ + ε∗t , (4.20)

where ε∗t also contains the remainder rt from the Taylor expansion (4.19). Note, however,

that under H0, ε
∗

t = εt. The new null hypothesis is

H0 : Bb = 0. (4.21)

The Lagrange multiplier test is derived from the score evaluated under the null hypothesis

∂ logL(θ̃)

∂Bb
=

T
∑

t=1

[

xtτ ·
(

yt − Ψ̃
′

tB̃
′

axt

)

′

Ω̃
−1
Ψ̃

′

t

]

,
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where Ψ̃, B̃a, and Ω̃ are estimates under the null. Denote ε̃t = yt − Ψ̃
′

tB̃
′

axt, and

Ẽ = (ε̃1, ε̃2, ..., ε̃T )
′. Let

Z̃ =















vec(Ψ̃1 ⊗ x1τ1)
′

vec(Ψ̃2 ⊗ x2τ2)
′

...

vec(Ψ̃T ⊗ xT τT )
′















, K̃ =















vec[(∂Ψ̃
′

1B̃
′

ax1/∂θ)]
′

vec[(∂Ψ̃
′

2B̃
′

ax2/∂θ)]
′

...

vec[(∂Ψ̃
′

T B̃
′

axT/∂θ)]
′















,

where τi = i/T , i = 1, ..., T . We have

Theorem 4.3. Consider the model in (4.15) with λ1(τ |γ, c) and assume that the param-

eter estimators of the null model are consistent. Under the null hypothesis λ1(τ) = 0

expressed as in (4.21), the LM-type statistic

LM = tr{Ω̃
−1
Ẽ′Z̃[Z̃′(IT − K̃(K̃′K̃)−1K̃′)Z̃]−1Z̃′Ẽ} (4.22)

has an asymptotic χ2 distribution with mp2(kp+ q) degrees of freedom.

Proof. See Appendix B.

Similarly to the test in the previous section, T ≥ [(pk + q)m + 2(m − 1)]p2 is a

necessary condition for K̃′K̃ to have full rank, and consequently, for the existence of the

LM statistic.

The test can also be performed using the two-step auxiliary regression algorithm given

in Section 2.2 by replacing X by K̃ and Z1 by Z̃. In order to alleviate the empirical

size distortion problem due to the non-orthogonality between Ẽ and K̃, we propose the

following algorithm:

1. Estimate the LVSTAR model under the null hypothesis of constant parameters over

time. Regress the residuals Ẽ on K̃. Collect the residuals Ṽ, and compute the

matrix residual sum of squares RSS0 = Ṽ′Ṽ.

2. Run the auxiliary regression of Ṽ on (K̃, Z̃). Collect the residuals Ξ̃, and the matrix

residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic (2.13).

This test can also be applied to subsets, which does not only mean subsets of equa-

tions or even single equations. It is often useful to focus on certain types of coefficients.

For example, in a single equation it may be useful to test the constancy of the intercepts

or other linear or nonlinear parameters separately, see Teräsvirta (1998) for discussion.

This helps the modeller to locate possible weaknesses in the specification of the estimated

model. This is particularly useful when the joint test rejects parameter constancy. More-

over, when the conditional mean (4.15) is linear, the test collapses into the corresponding

parameter constancy test in a linear VAR model, see He et al. (2009).
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4.4 Curse of dimensionality

All three tests introduced in previous sections suffer from the ”curse of dimensionality”.

This happens when the combination of the number of equations p, the number of regimes

m, and the number of lags k are sufficiently large. The necessary conditions for the

existence of these tests are: T − J ≥ cd(K̃) for the test of no serial correlation test and

T ≥ cd(K̃) for the other two joint tests, where cd(K̃) is the column dimension of the

matrix K̃. The closer cd(K̃) is to T − J , the more the size of the standard LM test will

be distorted. A partial solution to this problem is to carry out the tests equation by

equation. This way the modeller does not control the overall significance level of the test

but is nevertheless able to gather information about the validity of the model.

5 Simulation study

5.1 P-value plot and p-value discrepancy plot

As already noted, the LM or LM-type test statistic has the advantage that estimation

of the alternative model is avoided. This makes the statistic relatively easy to simulate.

In reporting results, we make use of the graphical methods by Davidson and MacKinnon

(1998). These authors suggested p-value and p-value discrepancy plots for the purpose.

Consider a Monte Carlo experiment in which N realizations of some test statistic τ are

generated using a data-generating process (DGP) that is a special case of the null hy-

pothesis (size experiments), or of the alternative (power experiments). Let pj = p(τj)

denote the p-value evaluated using the jth test statistic τj , j = 1, ..., N , in the nominal

distribution, which can be the asymptotic null distribution of τ , or an approximation to

the finite sample null distribution of τ .

Both of the p-value and the p-value discrepancy plot are based on the empirical dis-

tribution function (EDF) of the p-values of the test statistic

F̂ (xi) =
1

N

N
∑

j=1

I(pj ≤ xi), (5.1)

where I(pj ≤ xi) is an indicator function that takes the value 1 if its argument is true

and 0 otherwise. The value xi belongs to the (0,1) interval. The EDF is a function of

xi, given N realizations of τ . We construct a discrete grid {xi}Mi=1 in advance in order to

cover a reasonable sub interval of the (0,1) interval. In this work we focus on the (0, 0.2)

interval, because it contains the most commonly applied significance levels and set

{xi}
M
i=1 = {0.001, 0.002, ..., 0.010, 0.015, ..., 0.195, 0.200},
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where M = 68. This grid is not equidistant as the distance between two neighbouring

elements for xi < 0.01 is 0.001, otherwise it equals 0.005. The denser grid makes it less

likely to miss any unusual behaviour in the left tail of the EDF.

The p-value plot is a scatterplot of F̂ (xi) against xi, and the p-value discrepancy plot

is a scatter plot of F̂ (xi)−xi against xi. If the actual distribution of the test statistic under

the null hypothesis is very close to the nominal distribution, the p-value plot should be

an approximately 45◦ straight line, and in the p-value discrepancy plot the points should

stay close to zero, given a large number of realizations N . The latter plot is suitable for

reporting results of size experiments.

The p-value plot and the p-value discrepancy plot are continuous but nondifferentiable

everywhere. For extreme cases in which the number of realizations N is not large, David-

son and MacKinnon (1998) suggested to smoothen the graphs. This will not be necessary

here, as N = 5000 in our experiments.

We have to consider the experimental randomness caused by finite N in the p-value

discrepancy plot. Davidson and MacKinnon (1998) employed the Kolmogorov-Smirnov

(KS) test statistic for the purpose. In practice this choice implies drawing a sample of

realizations from the nominal distribution and plotting two horizontal lines calculated

using the formula above on the p-value discrepancy plot. The KS statistic tends to be

rather conservative, however, and as such may sometimes mislead us to think that there

is no under- or over-rejection when xi is close to zero, although the truth is different.

Instead, we employ a 95% two-sided asymptotic normal confidence band assuming for

the nominal distribution of the test statistic. Under this assumption, for each j = 1, ..., N ,

the value of the indicator function I(pj ≤ xi) is a realization of a Bernoulli distributed

random variable with parameter xi. By applying the central limit theorem, for large

number of realizations N , the distribution of the p-value discrepancy F̂ (xi) − xi can be

approximated by a normal distribution with zero mean and variance N−1xi(1− xi).

5.2 Size experiments of linearity tests and misspecification tests

of the evaluation

In this section we shall investigate the finite sample size behaviour of our test statistics.

We conduct Monte Carlo experiments in which 5000 realizations of a test statistic are

generated using a DGP that is a special case of the null hypothesis which is a member

of the family of linear VAR models. We shall focus on the size comparison between four

different types of test statistics: the LM test in Theorem 2.4, the rescaled LM test in

(3.1), Wilks’s Λ-test in (3.5) and Rao’s F-test in (3.6). The first two tests are included

mainly to demonstrate the magnitude of size distortion, whereas the last two are serious

20



5 Simulation study

contenders for use in applications with i.i.d. errors. For simplicity we mainly focus on

the first-order Taylor expansion based tests, but some results of the third-order variants

will be presented as well.

5.2.1 Linearity tests

The basic DGP is a p-dimensional vector autoregressive time series yt of lag order k

without additional nonlinearity. The linear parameters are chosen to keep the dynamics

asymptotically stationary. We test linearity using the transition variable st = t/T to

check whether the coefficients of the model is time-varying. The true DGP is as follows:

yi,t =
k
∑

j=1

ρiyi,t−j + εi,t, (5.2)

where ρ = 0.4. Different combinations of the values below will be considered:

p ∈ {2, 5, 10}, k ∈ {1, 2, 5}, T ∈ {30, 50, 100}. (5.3)

We investigate three cases: the bivariate case (p = 2), a high-dimensional one (p = 5)

and an extremely high-dimensional case (p = 10). The lag length k also matters, because

it determines the column dimension of the matrix Z, or in other words, the degrees of

freedom of the nominal distribution. The following designs will be studied and the results

plotted:

Design 1: p = 2, k = 1 and T = 30;

Design 2: p = 2, k = 1 and T = 100;

Design 3: p = 2, k = 2 and T = 30;

Design 4: p = 2, k = 5 and T = 30;

Design 5: p = 5, k = 1 and T = 50;

Design 6: p = 10, k = 1 and T = 50.

The p-value discrepancy plots for Designs 1 and 2 appear in Figures 1 and 2, respec-

tively. Both designs are bivariate, and k = 1. The only difference between them is the

sample size T .

As for Design 1, both the LM test and the rescaled test, denoted by F in all graphs,

are size-distorted. The former one over-rejects, whereas the latter under-rejects. This

agrees with previous results. The empirical size of Wilks’s Λ test is very close to that of

Rao’s F-test, and neither is size-distorted. It seems that these two tests work well even

for the smaller sample size T = 30.

Given this result, it is not surprising that when T = 100, Wilks’s Λ and Rao’s F-test

have a very similar performance. The LM test now works well, which accords with the

21
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theoretical result that the LM statistic converges in distribution to the χ2 distribution.

The rescaled test still under-rejects. This suggests that the Monte Carlo results of Bera

et al. (1981) for univariate models also hold in multivariate models.

The p-value discrepancy plots for Designs 3 and 4 can be found in Figures 3 and 4,

respectively. Both designs are bivariate and T = 30. The lag lengths are different, two

and five.

In comparing the results we notice that the lag length has a strong impact on results.

While the rescaled test and the LM test behave badly in both cases, Rao’s F-test is the

only one that still has no size distortion when k = 5. Wilks’s Λ, a good performer in the

first three experiments, is now rather strongly oversized.

In designs 5 and 6 the main object of interest is the dimension of the vector system p.

In Design 5, p = 5, whereas it doubles to ten in Design 6, other things equal. Again, while

the behaviour of Wilks’s Λ is acceptable for the shorter lag length, the test over-rejects

when p = 10. The empirical size of Rao’s F-test is practically unaffected by the change in

the lag length from 2 to 10. Our conclusion is that among the tests inspected we should

always choose Rao’s F-test. This accords with the results in Edgerton and Shukur (1999)

who considered testing autocorrelation in a linear vector system.

5.2.2 Misspecification tests

The basic DGP is a p-dimensional vector autoregressive time series yt of lag order k

with one additive logistic nonlinear component, i.e., LVSTAR. The linear parameters are

chosen to exclude unstable processes. The true transition variable sit = yi,t−1, i = 1, ..., p,

so each equation has its own transition variable. We choose c = 0 to be the location

parameter vector, and set γ = 1. The data generating process is as follows:

yi,t =

(

k
∑

j=1

ρi1yi,t−j

)

(1− g(sit)) +

(

k
∑

j=1

ρi2yi,t−j

)

g(sit) + εi,t, (5.4)

where ρ1 = 0.4, ρ2 = 0.2.

We generate 5000 realizations from our DGP. For each realization, we estimate the

LVSTAR model (5.4). We compute the residual vector for each realization, and following

the three algorithms in Section 4, we obtain the p-values of the three misspecification

tests. The test statistics are the same as before: the LM test, the rescaled test, Wilks’s

Λ test and Rao’s F-test.

We consider the size distortion of the four tests. The performance of the misspecifi-

cation tests depends on how accurate the parameter estimates are. In order to achieve

reasonable accuracy, we choose T = 200 and T = 500.

P -value discrepancy plots of the test of no serial correlation is given in Figure 7. As

can be expected, the LM test over-rejects, whereas the rescaled test under-rejects. The
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empirical size of Wilks’s Λ test is very close to that of Rao’s F-test, and neither test is

size-distorted. With the increase of sample size from T = 200 to T = 500, the performance

of both the LM test and the rescaled test improves. However, the improvement is not

very large. The rescaled test seems to outperform the LM test at both sample sizes in

the sense that the absolute size distortion is smaller in the former than in the latter.

Figure 8 shows the p-value discrepancy plots for test of no additive nonlinearity. Both

Wilks’s Λ test and Rao’s F-test work have a satisfactory empirical size. The rescaled test

performs better than the LM test and shows no size distortion for T = 500.

Figure 9 shows the p-value discrepancy plots for the test of parameter constancy. For

T = 200, Wilks’s Λ test is slightly oversized, while Rao’s F-test shows hardly any size

distortion. The rescaled test and the LM test perform even worse.

Recall that the computation of the three misspecification tests requires construction

of the matrices Z and K. The column dimensions of the matrices Z and K affect the

empirical size of the corresponding test statistic. In the three tests, K has the same

column dimension, whereas those of Z are different. Choosing a large lag length J for

testing serial correlation slows down the convergence of the standard LM test statistic

to its limiting distribution. The column dimension of the matrix Z of the parameter

constancy test is the squared size of a Kronecker product, and the test thus has the worst

small sample performance. For certain sample size T , the LM test and the rescaled test

of the three misspecification tests perform differently. This can be explained by different

column dimension of the matrix Z. However, Rao’s F-test and the Wilks’s Λ test are still

performing well.

If the errors of the LVSTAR model are not iid, even Rao’s F-test can be size-distorted.

In Teräsvirta and Yang (2014), the authors corrected the size of the LM test using the wild

bootstrap, proposed originally by Wu (1986), because the errors in their applications were

likely to contain conditional heteroskedasticity. This is a valid procedure if the appropriate

conditions, see Gonçalves and Kilian (2004), are satisfied when the null hypothesis holds.

We do not simulate this variant of the LM test here because the wild bootstrap effectively

corrects the size of the original LM test.

6 Concluding remarks

In this paper, we propose Lagrange-multiplier type linearity and misspecification tests in

the LVSTR framework. We allow the dimension of the model exceed two and, furthermore,

do not restrict the number of transitions to one. We consider both the case in which the

LVSTR model only has a single transition variable, and the case in which every equation

has its own (known) transition variable.
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We consider three misspecification tests for possible model extensions: the test of no

serial correlation, the test of no additive nonlinearity and the parameter constancy test.

They are either Lagrange multiplier or Lagrange multiplier type tests. We generalize the

univariate misspecification tests in Eitrheim and Teräsvirta (1996) to multivariate joint

tests.

Small-sample properties of the tests are of interest because they are affected by the

dimension of the model. We report the results of simulation studies in which the size

and power of the proposed tests are investigated in high-dimensional systems. We find

that the standard LM tests are severely size-distorted when the dimension of the system

increases. Wilks’s Λ statistic and Rao’s F statistic that have satisfying size properties are

recommended for empirical use. Nevertheless, the size of the LM test can be corrected by

an appropriate bootstrapped version. If the errors are suspected to contain conditional

heteroskedasticity, the bootstrap to be used is the wild bootstrap.
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A Proof of Theorem 2.4

Proof. The Lagrange multiplier test under the null is derived from the score matrix

∂ logL(θ̃)

∂Θ1
=

T
∑

t=1

{

xtst

(

yt − Θ̃
′

0xt

)

′

Ω̃
−1
}

= Z′

(

Y −XB̃1

)

Ω̃
−1
, (A.1)

where

Y =















y′

1

y′

2
...

y′

T















, X =















x′

1

x′

2
...

x′

T















, Z =















x′

1s1

x′

2s2
...

x′

T sT















,

and θ̃, Θ̃0 = B̃1 and Ω̃ are estimates under the null hypothesis H0. The score converges in

probability to a matrix-normal distribution with zero mean and variance Z′ (I−Px)Z⊗

Ω−1 conditional on X and Z, where Px ≡ X(X′X)−1X′ is the projection matrix.

To see this, we write (A.1) as follows

Q ≡
∂ logL(θ̃)

∂Θ1

= Z′

(

Y −XB̃1

)

Ω̃
−1

= Z′(Y −X(XX)−1X′Y)Ω̃
−1

= Z′(I−Px)(XB1 + E)Ω̃
−1

= Z′(I−Px)EΩ̃
−1
.

Under the null hypothesis, Y = XB1 + E, where E = (ε1, ..., εT )
′ and vec(E′) follows a

N (0, IT ⊗Ω) distribution. Under the null hypothesis, Ω̃ will converge to Ω in probability.

Set

S = (Z′(I−Px)Z)
−

1

2 Q, Ω̃
1

2
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which will asymptotically converge to a matrix-normal distribution with zero mean and

variance I⊗ I. Thus we have the chi-square version LM test statistic

LM = tr{S′S} = tr{Ω̃
−1
(Y −XB̃1)

′Z [Z′(IT −Px)Z]
−1

Z′(Y −XB̃1)},

which converges to the χ2(p(kp+ q)) distribution when the null hypothesis is valid.

B LM test statistic against an additive component

Now consider the p-dimensional system of equations with an additive component to be

tested:

yt = f(xt, st|Θ0) +A′

tΘ
′

1zt + εt (B.1)

where f is a vector of linear or nonlinear functions, in which xt and st are vectors of

independent variables, st may be referred to as the vector of transition variables, At

is a time-varying matrix which contains some nuisance parameters, and zt is a vector

of independent variables in the additive component. In many cases, zt = xt, see, for

example, the joint test of linearity against the LVSTAR alternative in Section 2, but

zt 6= xt is allowed as well. The test of no error serial correlation test in Section 4.1 serves

as an example.

The corresponding set of parameters in the model (B.1) is θ = {Θ0,Θ1,Ω} where Θ0

is a parameter matrix in f , Θ1 is a parameter matrix in the additive component, and

Ω is the positive definite covariance matrix of the errors. The existence of the additive

component A′

tΘ
′

1zt is going to be tested, and then the null hypothesis is H0 : Θ1 = 0.

B.1 The case when At = Ip

Consider the special case when At = Ip, for example, the error serial correlation test in

Section 4.1, the joint test of no additive nonlinearity in Section 4.2, and the joint test of

linearity against the LVSTAR alternative with a single transition variable in Section 2.

The corresponding block of the score matrix takes the form

∂ logL(θ̃)

∂Θ1

=
T
∑

t=1

{

ztε̃
′

tΩ̃
−1
}

= Z′ẼΩ̃
−1
, (B.2)

where ε̃t = yt− f(xt, st|Θ̃0), Z = (z1, z2, ..., zT )
′ and Ẽ = (ε̃1, ε̃2, ..., ε̃T )

′. The tilde means

estimates under the null hypothesis.

The vectorized LM test statistic is

LM = vec(Ẽ′Z)′
(

(Z′(I−PK)Z)⊗ Ω̃
)

−1

vec(ẼZ)′, (B.3)
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where PK = K(K′K)−1K′ and

K =

















vec
(

∂f(x1, s1|Θ̃0)/∂Θ0

)

′

vec
(

∂f(x2, s2|Θ̃0)/∂Θ0

)

′

...

vec
(

∂f(xT , sT |Θ̃0)/∂Θ0

)

′

















. (B.4)

This is the general expression of LM test statistic in Luukkonen et al. (1988) written using

the notation in Lütkepohl (2004, Chapter 4). Under Assumptions 2.1-3, the vectorized

score matrix is asymptotically normally distributed with p cd(Z) degrees of freedom, i.e.

the number of elements in vec(Ẽ′Z), or the number of restrictions. See for example

Breusch and Pagan (1980).

The statistic (B.3) can be written as follows:

LM = vec(Ẽ′Z)′
(

(Z′(I−PK)Z)⊗ Ω̃
)

−1

vec(Ẽ′Z)

= vec(Ẽ′Z)′
(

(Z′(I−PK)Z)
−1 ⊗ Ω̃

−1
)

vec(Ẽ′Z)

= vec(Ẽ′Z)′vec
(

Ω̃
−1
Ẽ′Z (Z′(I−PK)Z)

−1
)

= tr
{

Z′ẼΩ̃
−1
Ẽ′Z (Z′(I−PK)Z)

−1
}

= tr
{

Ω̃
−1
Ẽ′Z (Z′(I−PK)Z)

−1
Z′Ẽ

}

. (B.5)

Note that (B.5) avoids vectorization and Kronecker products. Furthermore, the value of

(B.5) can be obtained by applying the following auxiliary regression:

1. Estimate the restricted model under the null hypothesis. Collect the residuals ε̃t =

yt − f(xt, st|Θ̃0) and form Ẽ. Compute the matrix residual sum of squares RSS0 =

Ẽ′Ẽ.

2. Run an auxiliary regression of Ẽ on (K,Z). Collect the residuals Ξ̃, and form the

matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic

LM = T tr{RSS−1
0 (RSS0 −RSS1)}

= T (p− tr{RSS−1
0 RSS1}). (B.6)

B.2 The case when At 6= Ip

Consider the case whenAt 6= Ip, for example the joint test of linearity against the LVSTAR

alternative with different transition variables in Section 2 in which At = St, and the test
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of parameter constancy in Section 4.3 in which At = Ψ̃t. The corresponding block of the

score matrix takes the form

∂ logL(θ̃)

∂Θ1
=

T
∑

t=1

{

ztε̃
′

tΩ̃
−1
A′

t

}

, (B.7)

where ε̃t has been defined in (B.2).

The LM statistic (B.3) is still valid for testing Θ1 = 0, when

Z = (vec(A1 ⊗ z1), vec(A2 ⊗ z2), ..., vec(AT ⊗ zT ))
′ . (B.8)

To see this, write

A′

tΘ
′

1zt = vec(z′tΘ1At) = (At ⊗ zt)
′vec(Θ1) = vec (vec(Θ1)

′(At ⊗ zt))

= (Ip ⊗ vec(Θ1))
′ vec (At ⊗ zt) = Θ̆

′

1z̆t, (B.9)

where Θ̆1 = Ip⊗vec(Θ1) and z̆t = vec (At ⊗ zt). Note that Θ̆1 contains the same elements

as Θ1, the remaining ones being equal to zero. The corresponding number of degrees of

freedom should thus be equal to the number of nonzero parameters in Θ̆1, that is, the

number of parameters in Θ1, as only these parameters can vary freely.

The null hypothesis can be rewritten as H0 : Θ̆1 = 0. The corresponding block of the

score matrix is (B.2), with Z is defined as in (B.8).

Suppose that At is an a × p matrix, Θ̆1 is a b × a matrix and zt is a b × 1 vector.

Moreover, write At = (a1t, ..., apt), where ajt, j = 1, ..., p, is an a× 1 vector. We have

Θ̆
′

1z̆t =















vec(Θ1)
′ (a1t ⊗ zt)

vec(Θ1)
′ (a2t ⊗ zt)
...

vec(Θ1)
′ (apt ⊗ zt)















p×1

and Zj =















(aj1 ⊗ z1)
′

(aj2 ⊗ z2)
′

...

(ajT ⊗ zT )
′















. (B.10)

If At = St, where St is a diagonal matrix of p transition variables s1t, ..., spt, the

statistic (B.3) is used for testing linearity against the LVSTAR model with these transition

variables (sjt for the jth equation). A special case of this is s1t = ... = spt or At = stIp,

i.e., system has a single transition variable. Then (B.10) simplifies to

Θ̆
′

1z̆t =















θ′

1 · (zts1t)

θ′

2 · (zts2t)
...

θ′

p · (ztspt)















p×1

and Zj =















(z1sj1)
′

(z2sj2)
′

...

(zT sjT )
′















, (B.11)

where θj, j = 1, ..., p, is a b× 1 column vector.

We can still use the auxiliary regression to compute the value of (B.5). However, from

(B.10) we see that the auxiliary regression should be carried out equation by equation.

This leads to the following procedure:
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C Proof of Theorem 3.1

1. Estimate the restricted model under the null hypothesis. Collect the residuals ε̃t =

yt − f(xt, st|Θ̃0) and form Ẽ. Compute the matrix residual sum of squares RSS0 =

Ẽ′Ẽ.

2. Run an auxiliary regression for each column of Ẽ, that is, regress column j of Ẽ,

j = 1, ..., p, on (K,Zj) where Zj defined in (B.10) or in (B.11) if At = St. Collect

the residuals Ξ̃, and form the matrix residual sum of squares RSS1 = Ξ̃
′

Ξ̃.

3. Compute the test statistic in (B.6).

C Proof of Theorem 3.1

Proof. The score matrix evaluated under the null hypothesis has the general form

∂ logL(θ̃)

∂Θ1
= Z′

(

Y −XB̃1

)

Ω̃
−1
. (C.1)

Use of the auxiliary regression approach for computing the test statistic produces two

residual sums of squares, RSS0 and RSS1. The first one, RSS0, is the residual sum of

squares matrix from the restricted regression, i.e., RSS0 = Ẽ′Ẽ, Ẽ = (I−Px)Y, where Px

is the projection matrix of X. Notice that under the null hypothesis, Y = XB1+E, where

E = (ε1, ..., εT )
′, and vec(E′) ∼ N (0, IT ⊗Ω). Consequently, Ẽ = (I−Px)Y = (I−Px)E.

RSS1 is the residual sum of squares matrix from the auxiliary regression, i.e., RSS1 =

Ξ̃
′

Ξ̃ with Ξ̃ = (I−Pxz)Ẽ, where Pxz is the projection matrix of the matrix [ X,Z ], i.e.,

Pxz =
[

X Z

]

[

X′X X′Z

Z′X Z′Z

]−1 [

X′

Z′

]

.

Let the p× p matrix W1 = RSS0 −RSS1 and the p× p matrix W2 = RSS1.

For W1, it follows that

W1 = RSS0 −RSS1 = Ẽ′Ẽ− Ξ̃
′

Ξ̃

= Ẽ′PxzẼ = Ẽ′Z(Z′(IT −Px)Z)
−1Z′Ẽ

= E′(IT −Px)Z(Z
′(IT −Px)Z)

−1Z′(IT −Px)E.

Let IT −Px = RR′, where R ⊥ X and R′R = IT−cd(X). Then

W1 = E′RR′Z(Z′RR′Z)−1Z′RR′E.

Set V1 = Z′RR′E. So V1 ∼ N (0,Z′RR′Z ⊗ Ω). It is seen that W1 follows a Wishart

distribution generated by V1:

W1 = V′

1(Z
′RR′Z)−1V1 ∼ Wp(Ω, cd(Z))
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D The first-order partial derivatives of Ψ′

tB
′xt

For W2, we obtain

W2 = RSS1 = Ξ̃
′

Ξ̃ = Ẽ′(I−Pxz)Ẽ = Ẽ′Ẽ− Ẽ′PxzẼ

= Ẽ′Ẽ− Ẽ′Z(Z′(I−Px)Z)
−1Z′Ẽ

= E′(I−Px)(I− Z(Z′(I−Px)Z)
−1Z′)(I−Px)E

= E′RR′(I− Z(Z′RR′Z)−1Z′)RR′E

= E′R(I−R′Z(Z′RR′Z)−1Z′R)R′E.

We have IT−cd(X)−R′Z(Z′RR′Z)−1Z′R = QQ′, whereQ ⊥ R′Z andQ′Q = IT−cd(X)−cd(Z).

Using this, W2 = E′RQQ′R′E. Set V2 = Q′R′E, so we have V2 ∼ N (0, I ⊗ Ω). It is

seen that W2 follows a Wishart distribution generated by V2:

W2 = V′

2V2 ∼ Wp(Ω, T − cd(X)− cd(Z)).

Stacking the columns of V1 and V2 yields the random matrix

U =

(

V1

V2

)

=

(

Z′R

Q′

)

R′E

It follows that U ∼ N (0,Σ⊗Ω), where the row covariance matrix

Σ =

(

Z′R

Q′

)

R′R (R′Z, Q) =

(

Z′RR′Z Z′RQ

Q′R′Z Q′Q

)

=

(

Z′RR′Z 0

0 I

)

because Q ⊥ R′Z. We conclude that V1 and V2 are uncorrelated, and independent due

to normality. It follows that W1 and W2 are independent as desired.

D The first-order partial derivatives of Ψ′
tB

′xt

The vectorized first order derivative of Ψ′

tB
′xt w.r.t. parameters θ can be easily found

in both univariate and multivariate cases, see Eitrheim and Teräsvirta (1996). The set of

parameters θ consists of B, Ω, Γ and C, where B = [bij ], Γ = [γij] and C = [cij ].

For parameter B = [bij ], we have

∂Ψ′

tB
′xt

∂bij
= Ψ′

tH
′

ijxt, (D.1)

where Hij = [hkl] is a matrix in which hij = 1 and hkl = 0 for k 6= i and l 6= j. Vector

(D.1) is the directional derivative of the vector Ψ′

tB
′xt with respect to the unit length

matrix Hij.

For the parameter matrices Γ = [γij] and C = [cij], letting δij = γij, cij, we have

∂Ψ′

tB
′xt

∂δij
=

(

0p , ... ,
∂Gi

t

∂δij
, ... 0p

)

B′xt =
∂Gi

t

∂δij
B′

i+1xt, (D.2)
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for i = 1, ..., m− 1, where

∂Gi
t

∂δij
= diag

{

0 , ... ,
∂gijt
∂δij

, ... , 0

}

, (D.3)

for j = 1, ..., p. When δij = γij,

∂gijt
∂γij

= (gijt )
2 exp{−γij(st − cij)}(st − cij) = (st − cij) g

ij
t (1− gijt ), (D.4)

and when δij = cij,

∂gijt
∂cij

= −(gijt )
2 exp{−γij(st − cij)}γij = −γij g

ij
t (1− gijt ). (D.5)

Finally,
∂Ψ′

tB
′xt

∂Ω
= 0. (D.6)

The dimension of the first-order derivative of Ψ′

tB
′xt with respect to θ is p× [(kp+q)mp+

2(m− 1)p].
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Figure 1: The size discrepancy plot for Design 1: p = 2, k = 1 and T = 30. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).
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Figure 2: The size discrepancy plot for Design 2: p = 2, k = 1 and T = 100. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).
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Figure 3: The size discrepancy plot for Design 3: p = 2, k = 2 and T = 30. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).

0.00 0.05 0.10 0.15 0.20

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

Nominal size

Si
ze

 d
is

cr
ep

an
cy

LM
F
Wilks
Rao

Figure 4: The size discrepancy plot for Design 4: p = 2, k = 5 and T = 30. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).
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Figure 5: The size discrepancy plot for Design 5: p = 5, k = 1 and T = 50. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).
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Figure 6: The size discrepancy plot for Design 6: p = 10, k = 1 and T = 50. The dotted lines represent

the upper 95% confidence bound (top), zero line (middle) and the lower 95% confidence bound (bottom).
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Figure 7: Size discrepancy plot for tests of no serial correlation: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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Figure 8: Size discrepancy plot for tests of no additive nonlinearity: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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Figure 9: Size discrepancy plot for tests of parameter constancy: p = 2, k = 2 and T = 200 (Top);

T = 500 (Bottom). The dotted lines represent the upper 95% confidence bound (top), zero line (middle)

and the lower 95% confidence bound (bottom).
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