"Faster GOW0 implementation for more accurate material design"

Laflamme Janssen, Jonathan ; Rousseau, Bruno ; Côté, Michel

Abstract

Density-functional theory (DFT) is currently the ab initio method most widely used to predict electronic energy levels of new materials. However, approxima- tions intrinsic to the theory limit the accuracy of calculated energy levels to about 0.5 eV . The GOWO approach is an alternate ab initio method that provides an enhanced precision (about 0.05 eV). However, its computational cost is currently prohibitive for systems with more than a few tens of electrons, thus limiting its use in the simulation and design of technologically relevant materials. This limitation of current GOWO implementations can be traced to two bottle- necks : the need to invert a large matrix (the dielectric matrix) and the need to carry out summations over a large number of electronic states (conduction states). The first bottleneck is caused by the choice of the basis in which the dielectric matrix is represented : traditional GOW0 implementations use a plane wave basis, which needs to be relatively large to $\mathrm{p} .$.

Document type : Communication à un colloque (Conference Paper)

Laflamme Janssen, Jonathan ; Rousseau, Bruno ; Côté, Michel. Faster GOW0 implementation for more accurate material design.ABINIT Workshop 2013 (Dinard, France, du 15/04/2013 au 19/04/2013).

Faster $\mathrm{G}_{0} \mathrm{~W}_{0}$ implementation for more accurate material design

By Jonathan Laflamme Janssen
Département de physique, Université de Montréal

Design of polymers

Design of polymers

- Gap: optimal for solar spectrum

Design of polymers

- Gap: optimal for solar spectrum

- HOMO :

- higher than C_{60}
(for good charge transfer)

Design of polymers

- Gap: optimal for solar spectrum

- HOMO :

- higher than C_{60}
(for good charge transfer)
- low enough for good Voc and air stability

DFT to the rescue?

DFT to the rescue?

DFT to the rescue?

HOMO

- Allows to select the top 10-20\% candidates polymers

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: performance

$\mathrm{G}_{0} \mathrm{~W}_{0}$:

$\left(T+V_{e x t}+V_{H}+V_{x c}\right)\left|\phi_{n}\right\rangle=\varepsilon_{n}\left|\phi_{n}\right\rangle$
$G=\sum_{n=1}^{\infty} \frac{\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|}{\omega-\varepsilon_{n}}$
$P=-i G G$
$\epsilon=1-v P$
$W=\epsilon^{-1} v$

$\Sigma=i G W$

LDA and $\mathrm{G}_{0} \mathrm{~W}_{0}$: precision

$\epsilon_{n} \approx \varepsilon_{n}+\left\langle\phi_{n}\right| \Sigma-V_{x c}\left|\phi_{n}\right\rangle$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: performance

$\mathrm{G}_{0} \mathrm{~W}_{0}$:

$$
\begin{aligned}
& \left(T+V_{e x t}+V_{H}+V_{x c}\right)\left|\phi_{n}\right\rangle=\varepsilon_{n}\left|\phi_{n}\right\rangle \\
& G=\sum_{n=1}^{\infty} \frac{\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|}{\omega-\varepsilon_{n}} \\
& P=-i G G \\
& \epsilon=1-v P \\
& W=\epsilon^{-1} v \\
& \Sigma=i G W \\
& \epsilon_{n} \approx \varepsilon_{n}+\left\langle\phi_{n}\right| \Sigma-V_{x c}\left|\phi_{n}\right\rangle
\end{aligned}
$$

LDA and $\mathrm{G}_{0} \mathrm{~W}_{0}$: precision

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: performance

$\mathrm{G}_{0} \mathrm{~W}_{0}$:

$$
\begin{aligned}
& \left(T+V_{e x t}+V_{H}+V_{x c}\right)\left|\phi_{n}\right\rangle=\varepsilon_{n}\left|\phi_{n}\right\rangle \\
& G=\sum_{n=1}^{\infty} \frac{\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|}{\omega-\varepsilon_{n}} \\
& P=-i G G \\
& \epsilon=1-v P \\
& W=\epsilon^{-1} v \\
& \Sigma=i G W \\
& \epsilon_{n} \approx \varepsilon_{n}+\left\langle\phi_{n}\right| \Sigma-V_{x c}\left|\phi_{n}\right\rangle
\end{aligned}
$$

LDA and $\mathrm{G}_{0} \mathrm{~W}_{0}$: precision

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive ?

$$
\begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive ?

$$
\begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive ?

$$
\begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1} \frac{n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive?

$$
\begin{array}{rlrl}
P & =-i G G & \\
\epsilon & =1-v P & \\
W & =\epsilon^{-1} v & G=\sum_{n=1} \frac{N_{c} \text { number of conduction states }}{\sigma \sim N_{c}}|n\rangle\langle r \\
\Sigma & =i G W &
\end{array}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ϵ_{n} at $\pm 0.05 \mathrm{eV}$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive?

$$
\begin{array}{rlr}
P & =-i G G \\
\epsilon & =1-v P & \quad \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W & \\
\text { No: number of conduction states } \\
\sigma_{\sim} N_{c}|n\rangle\langle n| \\
\omega-\varepsilon_{n}
\end{array}
$$

- $N_{c} \sim 10 N_{v}$ to $100 N_{v}$ for ϵ_{n} at $\pm 0.05 \mathrm{eV}$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive?

$$
\begin{array}{rlrl}
P & =-i G G & \\
\epsilon & =1-v P & \quad \text { No: number of conduction states } \\
W & =\epsilon^{-1} v & G=\sum_{n=1}^{\sigma \sim N_{c}} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}} \\
\Sigma & =i G W &
\end{array}
$$

- $N_{c} \sim 10 N_{v}$ to $100 N_{v}$ for ϵ_{n} at $\pm 0.05 \mathrm{eV}$

The $\mathrm{G}_{0} \mathrm{~W}_{0}$: bottlenecks

- Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ so expensive?

$$
\begin{array}{rlr}
P & =-i G G & \\
\epsilon & =1-v P & \\
W & =\epsilon^{-1} v & \\
\Sigma & =i G W &
\end{array}
$$

- $N_{c} \sim 10 N_{v}$ to $100 N_{v}$ for ϵ_{n} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow N^{3}$ operation ($N=$ basis size)

The case of antracene

The case of antracene

$$
N_{v}=33
$$

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$
$\Rightarrow 10 \mathrm{~Gb}$ of RAM usage to store $\{|c\rangle\}$

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$
$\Rightarrow 10 \mathrm{~Gb}$ of RAM usage to store $\{|c\rangle\}$
\Rightarrow 100's hours of CPU time to obtain $\{|c\rangle\}$

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$ $\Rightarrow 10 \mathrm{~Gb}$ of RAM usage to store $\{|c\rangle\}$
\Rightarrow 100's hours of CPU time to obtain $\{|c\rangle\}$
- ϵ matrix $\sim 7000 \times 7000$ planewaves

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$ $\Rightarrow 10 \mathrm{~Gb}$ of RAM usage to store $\{|c\rangle\}$
\Rightarrow 100's hours of CPU time to obtain $\{|c\rangle\}$
- ϵ matrix $\sim 7000 \times 7000$ planewaves
$\Rightarrow 1 \mathrm{~Gb}$ of RAM usage to store ϵ

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 3000$ and $\mathrm{N}_{\text {basis }} \sim 200000$
$\Rightarrow 10 \mathrm{~Gb}$ of RAM usage to store $\{|c\rangle\}$
\Rightarrow 100's hours of CPU time to obtain $\{|c\rangle\}$
- ϵ matrix $\sim 7000 \times 7000$ planewaves
$\Rightarrow 1 \mathrm{~Gb}$ of RAM usage to store ϵ
\Rightarrow 10's hours of CPU time to ϵ^{-1}

The plan

$$
\begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1}^{m-v_{0}} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

The plan

$$
\begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

- summations \rightarrow Sternheimer's equations

The plan

$$
\text { 1) } \begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1} v \\
\Sigma & =i G W
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1} \frac{n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

- summations \rightarrow Sternheimer's equations

The plan

$$
\begin{array}{rlrl}
\text { 1) } P & =-i G G \\
\epsilon & =1-v P \\
W & =\epsilon^{-1}, & G=\sum_{n=1} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}} \\
\text { 2) } \begin{aligned}
& \text { number of conduction states } \\
& \sigma_{\sim} \sim N_{c} \\
&=i G W
\end{aligned} &
\end{array}
$$

- summations \rightarrow Sternheimer's equations

The plan

$$
\begin{aligned}
\text { 1) } \begin{aligned}
P & =-i G G \\
\epsilon & =1-v P \\
\text { 3) } W & =\epsilon^{-1} v \\
\text { 2) } \Sigma & =i G W
\end{aligned} \quad G=\sum_{n=1} \frac{}{\text { No : number of conduction states }} \\
\omega-\varepsilon_{n}
\end{aligned}
$$

- summations \rightarrow Sternheimer's equations
- planewaves basis \rightarrow Lanczos basis

1) $P=-i G G$
 Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{c}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

1) $P=-i G G$
 Sternheimer's equation

- $P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\mathcal{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathfrak{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\mathbb{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\mathbb{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{(|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{(|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|\nu\rangle|\psi\rangle=\frac{1}{\omega-H+\varepsilon_{v}} \mathcal{P}_{c}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{| | c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{c}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{| | c\rangle\langle c|}{\omega-\left(\varepsilon_{0}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \text { P }|v\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\left.\omega-\left(\varepsilon_{c}\right)-\varepsilon_{v}\right)}|\nu\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}^{2}|\nu\rangle|\psi\rangle
$$

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\mathcal{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
{ }_{\uparrow}\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \widehat{P}|v\rangle|\psi\rangle
$$

$\left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle$ Sternheimer equation

1) $P=-i G G \quad$ Sternheimer's equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\mathcal{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
{ }_{\uparrow}\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{0}|v\rangle|\psi\rangle
$$

$\left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle$ Sternheimer equation

$$
\longrightarrow \text { Solving } A|x\rangle=|b\rangle
$$

Sternheimer's equation

2) $\Sigma=i G W$

 .\qquad

2 , -2

2）$\Sigma=i G W$
 Sternheimer＇s equation

－We want：$\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

都
號 1

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{n} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{(n)} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
&\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{\underset{\infty}{0}}^{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle} \\
& \omega-\left(\varepsilon_{n}-\varepsilon_{m}\right) \\
&=(\ldots) \sum_{n q} \frac{\left\langle n^{*}\right| \Phi_{m}^{*}|q\rangle\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle & =\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{(0)} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
& =(\ldots) \sum_{\text {(1) }} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q)\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle & =\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{-\infty}^{(0)} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
& =(\ldots) \sum_{n} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q)\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
& =(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}|n\rangle\langle n| \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle & =\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{-\infty}^{(0)} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
& =(\ldots) \sum_{n} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q)\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
& =(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}(n\rangle\langle n) \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
& \langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{(\widehat{\infty}} \frac{\left\langle n^{*}\right| \Phi_{m}^{*}\left[\epsilon^{-1}-1\right] \nu \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}|n\rangle\langle n| \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\omega-\left(\varepsilon_{0}\right)^{\left.-\varepsilon_{m}\right)}}
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want : $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
&\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{\omega}^{D} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{(9)}^{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q|\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle} \\
& \omega-\left(\varepsilon_{n}-\varepsilon_{m}\right) \\
&=(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}(n\rangle\langle n) \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\left.\omega-\left(\mathcal{E}_{n}\right)-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{q}\left\langle q^{*}\right| \Phi_{m}^{\dagger} \frac{1}{\omega-\left(H-\varepsilon_{m}\right)} \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want : $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
&\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{\omega}^{(} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{(9)}^{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q|\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle} \\
& \omega-\left(\varepsilon_{n}-\varepsilon_{m}\right) \\
&=(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}(n\rangle\langle n) \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\left.\omega-\left(\mathcal{E}_{n}\right)-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{q}\left\langle q^{*}\right| \Phi_{m}^{\dagger} \frac{1}{\left.\omega-(H)-\varepsilon_{m}\right)} \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

- We want: $\epsilon_{m} \approx \varepsilon_{m}+\langle m| \Sigma_{x}+\Sigma_{c}-V_{x c}|m\rangle$

$$
\begin{aligned}
&\langle m| \Sigma_{c}|m\rangle=\langle m| i G W_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{(\mathbb{D}} \frac{\left\langle n^{*}\right| \Phi_{m}^{\dagger}\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle}{\omega-\left(\varepsilon_{n}-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{(9)}^{\left\langle n^{*}\right| \Phi_{m}^{\dagger}(q\rangle\langle Q|\left[\epsilon^{-1}-1\right] v \Phi_{m}\left|n^{*}\right\rangle} \\
& \omega-\left(\varepsilon_{n}-\varepsilon_{m}\right) \\
&=(\ldots) \sum_{n q} \frac{\left\langle q^{*}\right| \Phi_{m}^{\dagger}(n\rangle\langle n) \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle}{\left.\omega-\left(\varepsilon_{n}\right)-\varepsilon_{m}\right)} \\
&=(\ldots) \sum_{q}\left\langle q^{*}\right| \Phi_{m}^{\dagger} \frac{1}{\left.\omega-(H)-\varepsilon_{m}\right)} \Phi_{m} v^{T}\left[\epsilon^{-T}-1\right](\omega)\left|q^{*}\right\rangle
\end{aligned}
$$

Sternheimer's equation

\square

2) $\Sigma=i G W$

\qquad
\qquad
-
年

2) $\Sigma=i G W$
 Sternheimer's equation

$$
\langle m| \Sigma_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle
$$

2) $\Sigma=i G W$
 Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle & =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \boldsymbol{\Phi}_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \boldsymbol{\Phi}_{m}^{+T}|q\rangle \\
& =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T}\left|x_{q}\right\rangle
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle & =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \boldsymbol{\Phi}_{m}^{i T}|q\rangle \\
& =\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T}(\mathbb{Q})
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{gathered}
\langle m| \Sigma_{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle \\
=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T}|Q\rangle \\
\left|x_{q}\right\rangle \equiv \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle
\end{gathered}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle= & \frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{\leftarrow T}|q\rangle \\
= & \left.\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \right\rvert\,(Q) \\
& \uparrow \quad\left|x_{q}\right\rangle \equiv \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle= & \frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle \\
= & \left.\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T} \right\rvert\,(Q) \\
& \uparrow \quad\left|x_{q}\right\rangle \equiv \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle
\end{aligned}
$$

$$
\left(\omega-H^{T}+\varepsilon_{m}\right)\left|x_{q}\right\rangle=\Phi_{m}^{\dagger T}|q\rangle \quad \text { Sternheimer equation }
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle= & \frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{\dagger T}|q\rangle \\
= & \left.\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T} \right\rvert\,(Q) \\
& \uparrow \quad\left|x_{q}\right\rangle \equiv \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{\dagger T}|q\rangle
\end{aligned}
$$

$$
\left(\omega-H^{T}+\varepsilon_{m}\right)\left|x_{q}\right\rangle=\Phi_{m}^{\dagger T}|q\rangle \quad \text { Sternheimer equation }
$$

2) $\Sigma=i G W \quad$ Sternheimer's equation

$$
\begin{aligned}
\langle m| \Sigma_{c}|m\rangle= & \frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] v \Phi_{m}^{T} \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle \\
= & \left.\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right] \nu \Phi_{m}^{T} \right\rvert\,(Q) \\
& \uparrow \quad\left|x_{q}\right\rangle \equiv \frac{1}{\omega-H^{T}+\varepsilon_{m}} \Phi_{m}^{+T}|q\rangle
\end{aligned}
$$

$$
\left(\omega-H^{T}+\varepsilon_{m}\right)\left|x_{q}\right\rangle=\Phi_{m}^{\dagger T}|q\rangle \quad \text { Sternheimer equation }
$$

 Solving $A|x\rangle=|b\rangle$

2）$\Sigma=i G W \quad$ Lanczos algorithm

艮4i

$$
\square
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \langle m| \Sigma|m\rangle=\frac{i}{2 \pi} \oint^{*} d \omega \sum_{q}\left\langle q \mid\left[E^{-1}-1\right](\ldots) q\right\rangle \\
& \text { 號 } \\
& \square
\end{aligned}
$$

2) $\Sigma=i G W \quad$ Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)|q\rangle
$$

- Need a basis: $\{|q\rangle\}$

2) $\Sigma=i G W \quad$ Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)|q\rangle
$$

- Need a basis: $\{|q\rangle\}$
- The ideal basis:

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)|q\rangle
$$

- Need a basis: $\{|q\rangle\}$
- The ideal basis:
- Is small, e.g.
\Rightarrow NOT planewaves

2) $\Sigma=i G W$

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)|q\rangle
$$

- Need a basis: $\{|q\rangle\}$
- The ideal basis:
- Is small, e.g.
\Rightarrow NOT planewaves
- Is easy to compute
\Rightarrow NOT $\{|n\rangle\}$

2) $\Sigma=i G W$

Lanczos algorithm

5
2) $\Sigma=i G W$

Lanczos algorithm

- Idea :

2) $\Sigma=i G W$

- Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$

2) $\Sigma=i G W$

-Idea :

- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$

2) $\Sigma=i G W$

- Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$
- Build : $\left\{|\psi\rangle,(v P)|\psi\rangle,(v P)^{2}|\psi\rangle, \ldots\right\}$
\rightarrow biggest eigenvalues pop out
-Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$
- Build : $\left\{|\psi\rangle,(v P)|\psi\rangle,(v P)^{2}|\psi\rangle, \ldots\right\}$
\rightarrow biggest eigenvalues pop out
- Orthonormalize : $\{|q\rangle\}$
- Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$
- Build : $\left\{|\psi\rangle,(v P)|\psi\rangle,(v P)^{2}|\psi\rangle, \ldots\right\}$
\rightarrow biggest eigenvalues pop out
- Orthonormalize : $\{|q\rangle\}$
- Lanczos procedure: same $\{|q\rangle\}$
- Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$
- Build : $\left\{|\psi\rangle,(v P)|\psi\rangle,(v P)^{2}|\psi\rangle, \ldots\right\}$
\rightarrow biggest eigenvalues pop out
- Orthonormalize : $\{|q\rangle\}$
- Lanczos procedure: same $\{|q\rangle\}$
- Don't pay all orthogonalization
-Idea :
- efficient sampling of big eigenvalues of : $\epsilon^{-1}-1 \approx 1-\epsilon=v P$
-Take (any) vector: $|\psi\rangle$
- Build : $\left\{|\psi\rangle,(v P)|\psi\rangle,(v P)^{2}|\psi\rangle, \ldots\right\}$
\rightarrow biggest eigenvalues pop out
- Orthonormalize : $\{|q\rangle\}$
- Lanczos procedure: same $\{|q\rangle\}$
- Don't pay all orthogonalization
- Obtain ϵ for free

3) $W=\epsilon^{-1} v$
 Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)|q\rangle
$$

3) $W=\epsilon^{-1} v$
 Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|\left[\epsilon^{-1}-1\right](\ldots)
$$

3) $W=\epsilon^{-1} v$
 Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}(q)\left[e^{\Theta 1}-1\right](\ldots)(q)
$$

3) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

$$
\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\left(q \mid\left[e^{\Theta}-1\right](\ldots)(q)\right.
$$

- We have a small $\{|q\rangle\}$

3) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

$\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}(q)\left[\right.$ e- $\left.^{(1)}-1\right](\ldots)(q)$ Benzene

3) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

$$
\left.\langle m| \Sigma^{c}|m\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega \sum_{q}\langle q|[-1]-1\right](\ldots) \text { Benzene }
$$

Performance

Performance

$$
A|x\rangle=|b\rangle
$$

$A|x\rangle=|b\rangle$
[197]

$$
A|x\rangle=|b\rangle
$$

$$
\{|q\rangle\}
$$

Faster?

Performance

Performance

Performance

Preliminary results

Preliminary results

- Working in reals systems?

Preliminary results

- Working in reals systems?

> | > | HOMO (eV) | | |
| :--- | :---: | :---: | :---: |
| > | LDA | GoW0 | Exp. |
| > Benzene | -6.51 | -9.22 | -9.30 |
| > Thiophene | -6.05 | -8.94 | -8.85 > |

Conclusion

Conclusion

- Bottleneck assessed :

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required
- no inversion of ϵ in cumbersome basis

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required
- no inversion of ϵ in cumbersome basis
- Future work :

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required
- no inversion of ϵ in cumbersome basis
- Future work :
- refine DFT calculations for candidate polymers

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required
- no inversion of ϵ in cumbersome basis
- Future work :
- refine DFT calculations for candidate polymers
- interface states: what do they look like?

Thank you!

Université M n de Montréal

Acknowledgments

Michel Côté's group

Thank you!

Gabriel Antonius

Simon Blackburn Hélène Antaya Vincent Gosselin

Acknowledgments

Michel Côté's group

Bruno Rousseau

Calcul Québec

compute * calcul
CANADA

©

[^0]
Thank you!

Nicolas Bérubé

Gabriel Antonius

Simon Blackburn Hélène Antaya Vincent Gosselin

Université m ! de Montréal

Acknowledgments

Michel Côté's group

Bruno Rousseau

Calcul Q̨uébec

compute * calcul
C A N A D A

©
a

Thank you!

Nicolas Bérubé

Fonds de recherche sur la nature et les technologies Québec

Gabriel Antonius

Simon Blackburn Hélène Antaya
Vincent Gosselin

Photovoltaic ${ }^{\circ}$ Innovation Network We get the Sun

Université \cap n de Montréal

[^0]: A A A

