"GOW0 implementation using Lanczos algorithm and Sternheimer equation"

Laflamme Janssen, Jonathan ; Bérubé, Nicolas ; Antonius, Gabriel

Abstract

The GOWO approach is an accurate method to give a physical meaning to the eigenvalues obtained in adensity-functional theory (DFT) calculation.However, the calculation of such corrections with plane wave codes is currently prohibitive for systems with more than a few hundreds of electrons. What limits calculations to this system size is the need in current implementations to invert the dielectric matrix and the need to carry out summations over conduction bands. This talk presents a strategy to avoid both of these bottlenecks. In traditional plane wave implementations of GOWO, the dielectric matrix is expressed in a plane wave basis, which needs to be relatively big to properly describe the matrix. Here, we will explain how a Lanczos basis can be generated to substantially reduce the size of the matrix. Also, the number of conduction bands needed to reach convergence in the summations is usually an order of magnitude larger than the number of valence bands. Here, the calculation of t...

Document type : Communication à un colloque (Conference Paper)

Laflamme Janssen, Jonathan ; Bérubé, Nicolas ; Antonius, Gabriel. GOW0 implementation using Lanczos algorithm and Sternheimer equation.APS March Meeting 2012 (Boston, Massachusetts, USA, du 27/02/2012 au 02/03/2012).

$\mathrm{G}_{0} \mathrm{~W}_{0}$ implementation using Lanczos algorithm and

Sternheimer equation

By Jonathan Laflamme Janssen, Nicolas Bérubé, Gabriel Antonius and Michel Côté
Département de physique, Université de Montréal

Motivation : gap prediction

GAP : experiment vs DFT/ $\mathrm{G}_{0} \mathrm{~W}_{0}$

Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ computationally expensive?

$\Sigma=i G W$

$$
\begin{aligned}
& W=\epsilon^{-1} v \\
& \epsilon=1-v P
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1}^{\infty \sim N_{c}} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

$$
P=-i G G
$$

- $N_{C} \sim 10 N_{v}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow \mathrm{N}^{3}$ operation ($\mathrm{N}=$ basis size)

Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ computationally expensive?

$$
\Sigma=i \circlearrowleft(G)
$$

$$
W=\epsilon^{-1} v
$$

N_{c} : number of conduction states

$$
\epsilon=1-v P
$$

$$
G=\sum_{n=1} \frac{n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

$$
P=-i \overparen{G G}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow \mathrm{N}^{3}$ operation ($\mathrm{N}=$ basis size)

Why GoWo computationally expensive?

$$
\begin{aligned}
& \Sigma=i G W \\
& W=\epsilon^{-1} V \\
& \epsilon=1-v P \\
& P=-i G G
\end{aligned} \quad G=\sum_{n=1}^{\omega-\varepsilon_{n}} \frac{|n\rangle\langle n|}{\infty \sim N_{c}}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow \mathrm{N}^{3}$ operation ($\mathrm{N}=$ basis size)

The case of antracene

$$
N_{v}=33
$$

- $\mathrm{N}_{\mathrm{c}} \sim 300$ to 3000 and $\mathrm{N}_{\text {basis }} \sim 200000$ $\Rightarrow 1$ to 10 Gb of RAM usage to store $\{|c\rangle\}$
\Rightarrow 100's hours of CPU time to obtain $\{|c\rangle\}$
- ϵ matrix $\sim 7000 \times 7000$ planewaves
$\Rightarrow 1 \mathrm{~Gb}$ of RAM usage to store ϵ
\Rightarrow 10's hours of CPU time to ϵ^{-1}

Why GoWo computationally expensive?

$$
\begin{aligned}
& \Sigma=i G W \\
& W=\epsilon^{-1} v \\
& \epsilon=1-v P \\
& P=-i G G
\end{aligned} \quad G=\sum_{n=1}^{\omega-\varepsilon_{n}} \frac{|n\rangle\langle n|}{\infty \sim N_{c}}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow N^{3}$ operation ($N=$ basis size)

Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ computationally expensive?

$$
\begin{aligned}
& \Sigma=i G W \\
& W=\epsilon^{-1} v \\
& \epsilon=1-v P
\end{aligned}
$$

N_{c} : number of conduction states

$$
G=\sum_{n=1} \frac{n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

$$
\text { 1) } P=-i \overparen{G G}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow N^{3}$ operation ($N=$ basis size)

Why $\mathrm{G}_{0} \mathrm{~W}_{0}$ computationally expensive?

$\Sigma=i G W$

$$
\begin{aligned}
\text { 2) } \begin{array}{ll}
W & =\epsilon^{-1} v \\
\epsilon & =1-v P \\
\text { 1) } P & =-i G G
\end{array} \quad G=\sum_{n=1}^{\sum_{c}: \text { number of conduction states }} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}}
\end{aligned}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow N^{3}$ operation ($N=$ basis size)

Why GoWo computationally expensive?

3) $\Sigma=i G W$
N_{c} : number of conduction states
4) $W=\epsilon^{-1} v$

$$
\epsilon=1-v P
$$

$$
G=\sum_{n=1}^{\infty \sim N_{c}} \frac{|n\rangle\langle n|}{\omega-\varepsilon_{n}}
$$

$$
\text { 1) } P=-i \overparen{G G}
$$

- $\mathrm{N}_{\mathrm{c}} \sim 10 \mathrm{~N}_{\mathrm{v}}$ to $100 \mathrm{~N}_{\mathrm{v}}$ for ε_{i} at $\pm 0.05 \mathrm{eV}$
- inversion of $\epsilon \Rightarrow \mathrm{N}^{3}$ operation ($\mathrm{N}=$ basis size)

1) $P=-i G G \quad$ Sternheimer equation

$$
\text { - } P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{c}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle
$$

- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-H+\varepsilon_{v}} \mathcal{P}_{c}|\nu\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|\nu\rangle\langle\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\boldsymbol{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-H+\varepsilon_{v}} \mathcal{P}_{c}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\boldsymbol{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-H+\varepsilon_{v}} \mathcal{P}_{c}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\boldsymbol{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-H+\varepsilon_{v}} \mathcal{P}_{c}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

- $P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle$
- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{c}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

- $P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle$
- We define :

$$
\begin{aligned}
& \left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{\mathcal{P}_{\mathcal{P}}}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|\nu\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

$$
\text { - } P|\psi\rangle=\sum_{v}|v\rangle\left(\sum_{\boldsymbol{C}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle v|\right)|\psi\rangle
$$

- We define :

$$
\begin{aligned}
& \left.\uparrow \phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\left.\omega-\left(\varepsilon_{c}\right)-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{c}|v\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|v\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

1) $P=-i G G \quad$ Sternheimer equation

- $P|\psi\rangle=\sum_{v}|\nu\rangle\left(\sum_{\mathbb{O}}|c\rangle \frac{1}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}-\frac{1}{\omega+\left(\varepsilon_{c}-\varepsilon_{v}\right)}\langle c|\langle\nu|\right)|\psi\rangle$
- We define :

$$
\begin{aligned}
& \uparrow\left|\phi_{v}^{-}\right\rangle \equiv \sum_{c} \frac{|c\rangle\langle c|}{\omega-\left(\varepsilon_{c}-\varepsilon_{v}\right)}|v\rangle|\psi\rangle=\frac{1}{\omega-(H)+\varepsilon_{v}} \mathcal{P}_{\rho}|\nu\rangle|\psi\rangle \\
& \left(H-\varepsilon_{v}-\omega\right)\left|\phi_{v}^{-}\right\rangle=-\mathcal{P}_{c}|\nu\rangle|\psi\rangle \text { Sternheimer equation }
\end{aligned}
$$

\longrightarrow Solving $A|x\rangle=|b\rangle$

2) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

- $\epsilon^{-1}|\psi\rangle=(1-v P)^{-1}|\psi\rangle=\sum_{k=0}^{+\infty}(v P)^{k}|\psi\rangle$
- Lanczos algorithm...
- builds a basis spanning the same subspace as $\left\{(\nu P)^{k}|\psi\rangle\right\}$
- where ($v P$) is tridiagonal
- at the same cost as using the power serie expansion
- In Lanczos basis $\left\{\left|q_{k}\right\rangle\right\}: \sum_{k=0}^{+\infty}(v P)^{k}|\psi\rangle=\sum_{k=0}^{+\infty} T^{k}\left|q_{1}\right\rangle$

$$
=(1-T)^{-1}\left|q_{1}\right\rangle
$$

2) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

- $\epsilon^{-1}|\psi\rangle=(1-v P)^{-1}|\psi\rangle=\sum_{k=0}^{+\infty}(v P)^{k}|\psi\rangle$
- Lanczos algorithm...
- builds a basis spanning the same subspace as $\left\{(\nu P)^{k}|\psi\rangle\right\}$
- where ($v P$) is tridiagonal
- at the same cost as using the power serie expansion
- In Lanczos basis $\left\{\left|q_{k}\right\rangle\right\}: \sum_{k=0}^{+\infty}(\nu P)^{k}|\psi\rangle=\sum_{k=0}^{+\infty} T^{k}\left|q_{1}\right\rangle$

$$
=(1-T)^{-1}\left|q_{1}\right\rangle
$$

2) $W=\epsilon^{-1} v \quad$ Lanczos algorithm

Calculation of screened exchange for HOMO of silane

3) $\Sigma=i G W \quad$ Sternheimer's equation

- Same idea as for P :

Solving $A|x\rangle=|b\rangle$

- But requires $\left\{\left|q_{k}\right\rangle\right\}$

$$
\begin{gathered}
\left|g_{k}\right\rangle=\sum_{n} \frac{|n\rangle\langle n|}{\omega^{\prime}-\left(\varepsilon_{n}-\varepsilon_{i}\right)}|i\rangle\left|q_{k}\right\rangle \\
\left(H-\varepsilon_{i}-\omega^{\prime}\right)\left|g_{k}\right\rangle=-1\left|q_{k} i\right\rangle \text { Sternheimer equation } \\
\langle i| \Sigma\left(\varepsilon_{i}\right)|i\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega^{\prime} \sum_{k, k^{\prime}}(1-T)_{k, k^{\prime}}^{-1}\left\langle\left(v q_{k^{\prime}}\right) i \mid g_{k}\right\rangle
\end{gathered}
$$

3) $\Sigma=i G W \quad$ Sternheimer's equation

- Same idea as for P :

\longrightarrow
 Solving $\quad A|x\rangle=|b\rangle$

- But requires $\left\{\left|q_{k}\right\rangle\right\}$

$$
\begin{gathered}
\left|g_{k}\right\rangle=\sum_{n} \frac{n\rangle\langle n|}{\omega^{\prime}-\left(\varepsilon_{n}-\varepsilon_{i}\right)}|i\rangle\left|q_{k}\right\rangle \\
\left(H-\varepsilon_{i}-\omega^{\prime}\right)\left|g_{k}\right\rangle=-1\left|q_{k} i\right\rangle \text { Sternheimer equation } \\
\langle i| \Sigma\left(\varepsilon_{i}\right)|i\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega^{\prime} \sum_{k, k^{\prime}}(1-T)_{k, k^{\prime}}^{-1}\left\langle\left(v q_{k^{\prime}}\right) i \mid g_{k}\right\rangle
\end{gathered}
$$

3) $\Sigma=i G W \quad$ Sternheimer's equation

- Same idea as for P :

Solving $|A| x\rangle=|b\rangle$

- But requires $\left\{\left|q_{k}\right\rangle\right\}$

$$
\begin{gathered}
\left|g_{k}\right\rangle=\sum_{n} \frac{n\rangle\langle n|}{\left.\omega^{\prime}-\left(\varepsilon_{n}\right)-\varepsilon_{i}\right)}|i\rangle\left|q_{k}\right\rangle \\
\left(H-\varepsilon_{i}-\omega^{\prime}\right)\left|g_{k}\right\rangle=-1\left|q_{k} i\right\rangle \text { Sternheimer equation } \\
\langle i| \Sigma\left(\varepsilon_{i}\right)|i\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega^{\prime} \sum_{k, k^{\prime}}(1-T)_{k, k^{\prime}}^{-1}\left\langle\left(v q_{k^{\prime}}\right) i \mid g_{k}\right\rangle
\end{gathered}
$$

3) $\Sigma=i G W \quad$ Sternheimer's equation

- Same idea as for P :

Solving $|A| x\rangle=|b\rangle$

- But requires $\left\{\left|q_{k}\right\rangle\right\}$

$$
\begin{gathered}
\left|g_{k}\right\rangle=\sum_{n} \frac{n\rangle\langle n|}{\left.\omega^{\prime}-\left(\varepsilon_{n}\right)-\varepsilon_{i}\right)}|i\rangle\left|q_{k}\right\rangle \\
\left.(H)-\varepsilon_{i}-\omega^{\prime}\right)\left|g_{k}\right\rangle=-1\left|q_{k} i\right\rangle \text { Sternheimer equation } \\
\langle i| \Sigma\left(\varepsilon_{i}\right)|i\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega^{\prime} \sum_{k, k^{\prime}}(1-T)_{k, k^{\prime}}^{-1}\left\langle\left(v q_{k^{\prime}}\right) i \mid g_{k}\right\rangle
\end{gathered}
$$

3) $\Sigma=i G W \quad$ Sternheimer's equation

- Same idea as for P :

Solving $|A| x\rangle=|b\rangle$

- But requires $\left\{\left|q_{k}\right\rangle\right\}$

$$
\begin{gathered}
\left|g_{k}\right\rangle=\sum_{n} \frac{n\rangle\langle n|}{\left.\omega^{\prime}-\left(\varepsilon_{n}\right)-\varepsilon_{i}\right)}|i\rangle\left|q_{k}\right\rangle \\
\left.\left.(H)-\varepsilon_{i}-\omega^{\prime}\right)\left|g_{k}\right\rangle=-(1) q_{k} i\right\rangle \text { Sternheimer equation } \\
\langle i| \Sigma\left(\varepsilon_{i}\right)|i\rangle=\frac{i}{2 \pi} \int_{-\infty}^{+\infty} d \omega^{\prime} \sum_{k, k^{\prime}}(1-T)_{k, k^{\prime}}^{-1}\left\langle\left(v q_{k^{\prime}}\right) i \mid g_{k}\right\rangle
\end{gathered}
$$

Conclusion

- Bottleneck assessed :
- no knowledge of conduction states required
- no inversion of ϵ in cumbersome basis
- Implementation under way

Thank you!

Fonds de recherche sur la nature et les technologies

GRSNG
NSERG
GRSNG
NSERG

Université \cap n

 de Montréal