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Abstract

Glacial-interglacial cycles are large variations in continental ice mass and
greenhouse gases, which have dominated climate variability over the Qua-
ternary. The dominant periodicity of the cycles is ∼40 kyr before the so-
called middle Pleistocene transition between ∼1.2 and ∼0.7 Myr ago, and
it is ∼100 kyr after the transition. In this paper, the dynamics of glacial-
interglacial cycles are investigated using a phase oscillator model forced by
the time-varying incoming solar radiation (insolation). We analyze the bi-
furcations of the system and show that strange nonchaotic attractors appear
through nonsmooth saddle-node bifurcations of tori. The bifurcation analy-
sis indicates that mode-locking is likely to occur for the 41 kyr glacial cycles
but not likely for the 100 kyr glacial cycles. The sequence of mode-locked
41 kyr cycles is robust to small parameter changes. However, the sequence
of 100 kyr glacial cycles can be sensitive to parameter changes when the
system has a strange nonchaotic attractor.

Keywords: Glacial-interglacial cycles, ice age, quasiperiodically forced
dynamical systems, strange nonchaotic attractor, SNA, nonsmooth
saddle-node bifurcations, middle-Pleistocene transition

1. Introduction

The glacial-interglacial cycles or simply glacial cycles are alternations
between cold (glacial) and warm (interglacial) periods, which occurred over
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the last 3 million years (Myr). They are characterized by large fluctuations
in the continental ice volume, which can be estimated, among others, from
the oxygen isotope ratio δ18O of benthic foraminifera sampled in deep-sea
cores (see Fig. 1) [1–5]. A large value of δ18O indicates a large volume of ice
sheets. The dominant period of the glacial cycles is ∼40 kyr before ∼1.2 Myr
ago and ∼100 kyr after ∼0.7 Myr ago. This frequency change accompanying
an increase amplitude is called the middle-Pleistocene transition (MPT) (see
[6] and references therein).

There is abundant empirical evidence [1–10] that glacial cycles are con-
trolled by the changes in the parameters of Earth’s orbit (eccentricity e and
longitude of perihelion$) and its obliquity ε [11]. Milankovitch’s theory pro-
vides a physical mechanism for this control [12]: the orbital and obliquity
changes determine the seasonal and spatial distributions of insolation (this
is called the astronomical forcing), and, specifically, northern hemisphere
summer insolation controls the interannual accumulation of snow and the
subsequent growth of ice sheets. Milankovitch’s mechanism is nowadays
viewed as realistic, but it is considered to be only one element of a com-
plex nonlinear dynamical process. For example, the glacial cycles of the last
0.7 Myr have a dominant spectral power near 100 kyr, while the astronom-
ical forcing has negligible power near 100 kyr (so called the 100-kyr cycle
problem [3]). Thus, some nonlinear transformation mechanism must exist
from astronomical forcing to glacial cycles [7].

The glacial cycles have been investigated using various models rang-
ing from simple conceptual models to complex coupled general circulation
models (for example, [13]), between which there are Earth Systems Models
of Intermediate Complexity (EMICs) [14–16]. Among others, conceptual
models provide theoretical frameworks to identify the dynamics of glacial
cycles (for example, see [1, 17–29] and references therein). They are pre-
sented under the form of low-dimensional dynamical systems forced by a
measure of northern hemisphere insolation or, more generally, by a linear
combination of e sin$ (the climatic precession) and obliquity ε. Since these
quantities are well-approximated as quasiperiodic functions of time over the
past several million years [11], the models of glacial cycles may be viewed
as quasiperiodically forced dynamical systems.

Let TN = RN/(2πZ)N be an N -dimensional torus. Quasiperiodically
forced dynamical systems can be represented in a skew-product form:{

θ̇ = ω, θ ∈ TN ,
ẋ = f(x, θ), x ∈ RM ,

(1)
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where θ = (θ1, θ2, ..., θN )T is the phase of the drive system, x = (x1, x2, ..., xM )T

is the state of the response system, f(x, θ) is a periodic function in each phase
θi, and ω = (ω1, ω2, ..., ωN )T is a vector of incommensurate frequencies such
that k1ω1 + k2ω2 + · · ·+ kNωN = 0 does not hold for any set of integers, k1,
k2, ..., kN , except for the trivial solution k1 = k2 = · · · = kN = 0. In the
models of glacial cycles, θ(t) corresponds to the phase of the astronomical
forcing, and x(t) corresponds to the climate state.

Quasiperiodically forced systems can exhibit intermediate dynamics be-
tween quasiperiodicity and chaos, so-called strange nonchaotic attractors
(SNAs) [32, 33]. An SNA is a geometrically strange attractor for which typ-
ical Lyapunov exponents are nonpositive [32] (see [30, 31] for comprehensive
reviews). The system (1) is characterized by (N +M) Lyapunov exponents.
Among them, N Lyapunov exponents are trivially zero. They correspond to
the phase equations of the drive system. When the system has an SNA, the
nontrivial largest Lyapunov exponent is negative in general. Thus, under a
common quasiperiodic forcing, trajectories x(t), which start from different
initial conditions x(0), approach (or synchronize to) a unique, or one of a
finite number of possible trajectories as time elapses (this is a synchronizing
property) [34, 35]. However, related to the strange geometry of SNAs, tra-
jectories x(t) have nonexponential sensitivity on initial phases θ(0) [36–39]
or on parameter values of the systems [40]. SNAs have been observed in
many laboratory experiments [35, 41–46] but very rarely in nature so far.
Linder et al. show that the brightness changes of some RRc Lyrae stars
have nonchaotic and fractal properties of SNAs [47].

Recently, the authors of this paper showed that several models of glacial
cycles exhibit SNAs [27, 28]. This means that the relationship from the
phase of astronomical forcing θ to the climate state x is represented by a ge-
ometrically strange set. When a model of glacial cycles exhibits an SNA, the
sequences of glacial cycles synchronize under the same astronomical forcing,
but simultaneously they can be sensitive to parameter changes. Ivashchenko
et al. showed that the autocorrelation function of the benthic isotopic data
has self-simility characteristic of SNAs [48].

However, so far, the birth mechanism of SNAs has not been elucidated
in the models of glacial cycles. In this paper, we introduce a phase oscillator
model of glacial cycles, whose bifurcation analysis is easier than higher-
dimensional models, and show the birth mechanism of SNAs in this model.
Based on the bifurcation analysis of the phase model, we suggest that the
41-kyr cycles, typical before the MPT, are little sensitive to the parameters.
By contrast the sequence of 100-kyr cycles, which characterises climate after
the MPT, can be strongly sensitive to small parameter changes.
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The remainder of this article is organized as follows. In Section 2, a phase
oscillator model for glacial cycles is introduced. In Section 3, the bifurcations
exhibited by the model are analyzed for two types of external forcing: an
ideal two-frequency quasiperiodic forcing and the astronomical forcing. In
Section 4, we discuss parameter sensitivity of the phase model, and the
MPT. Section 5 summarizes this article. In Appendix, we characterize the
strangeness of attractors using the phase sensitivity exponent [36].

2. Model

Consistently with the above discussion, the astronomical forcing FA(t)
is calculated by the following formula [26]:

FA(t) =
1

a

35∑
i=1

(si sinωit+ ci cosωit), (2)

where we set a = 23.58 W/m2 so that FA(t) has unit variance. The fre-
quencies ωi and coefficients, si and ci, are based on [26], and they are listed
in [27] in descending order of power s2i + c2i . The first three periods corre-
spond to the climatic precession: 2π/ω1 ≈ 23.7 kyr, 2π/ω2 ≈ 22.4 kyr, and
2π/ω3 ≈ 19.0 kyr. The fourth period 2π/ω4 ≈ 41.0 kyr corresponds to the
obliquity change [11]. Unless mentioned otherwise, we use the time unit of
10 kyr and the angular unit of radian for the variables and parameters of
the model.

Glacial cycles are described here by a forced oscillator, as suggested by
some recent analyses [8–10]. Further, the global ice volume V (φ) is modeled
as a 2π-periodic function of the phase of the oscillator φ(t) ∈ T1 = R1/(2πZ),
i.e., V (φ) = V (φ + 2π). We express the ice volume V (φ) as a Fourier sine
series up to the second harmonic:

V (φ) = − sinφ− δ

2
sin 2φ, (3)

where δ is the modification parameter. For |δ| < 1, the ice volume V (φ) has
a unique minimum at φmin = cos−1[(

√
1 + 8δ2−1)/(4δ)] and a maximum at

φmax = 2π − φmin, as shown in Fig. 2(a).
In general, the phase motion of a limit-cycle oscillator under a weak

forcing p(t) is described by φ̇ = β + Z(φ) · p(t), where β is the natural
frequency of the oscillator, and Z(φ) is the sensitivity function with Z(φ) =
Z(φ+ 2π) [49]. Based on this general phase equation, we suppose the phase
motion of glacial cycles as follows:

φ̇ = β − αV ′(φ)[1 + γF (t)], (4)
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where V ′(φ) = dV (φ)
dφ is the gradient of the ice volume, F (t) is a forcing

function such as FA(t), and the parameters α, β, and γ are assumed to be
positive. The specific term, −αV ′(φ)[1 + γF (t)], provides a forcing to move
toward an ice volume minimum for a large astronomical forcing with F (t) >
−1/γ and to move toward an ice volume maximum for a small astronomical

forcing with F (t) < −1/γ. We can also write Eq. (4) as φ̇ = −∂U(φ,t)
∂φ using

a time-dependent potential U(φ, t) = −βφ + αV (φ)[1 + γF (t)] (Fig. 2(a)).
In this paper, we restrict ourselves to the simple case |δ| < 1/4, where the
number of local minima of U(φ, t) as a function of φ is at most one.

Let us first consider the case of constant forcing F (t) = Fc is considered.
The bifurcation diagram of Eq. (4) for F (t) = Fc is shown in Fig 2(b). For

low insolation Fc < − 1
γ

(
β

α(1+δ) + 1
)

, a stable equilibrium point, or a stable

node, exists near the ice volume maximum φmax, and an unstable equilibrium
point, or a saddle, near the minimum φmin. Thus, the system approaches

a stable glacial state. For − 1
γ

(
β

α(1+δ) + 1
)
< Fc <

1
γ

(
β

α(1−δ) − 1
)

, there is

no equilibrium point, and glacial-interglacial oscillations emerge. For high

insolation Fc >
1
γ

(
β

α(1−δ) − 1
)

, a stable node exists near the ice volume

minimum φmin, and a saddle near the maximum φmax. Thus, the system
approaches a stable interglacial state.

Next, the case of astronomical forcing F (t) = FA(t) is studied. Unless
otherwise noted, differential equations are integrated by the Runge–Kutta
4th order method with a step size of 100 yr (namely h = 0.01). Figure 3
shows a simulated ice volume trajectory V (φ(t)) for α = γ = 1.0, β = 1.0006,
and δ = 0.24 with initial condition φ(t0) = 0 at t0 = −20 Myr. Here,
assuming α = γ = 1.0 and δ = 0.24, the value of β was tuned to maximize
the Pearson’s correlation coefficient r over the past 700 kyr between the
ice volume reconstruction [5] and a simulated ice volume trajectory V (φ(t))
with φ(t0) = 0 at t0 = −20 Myr. This yields r = 0.76 for β = 1.0006.

Generally, trajectories φ(t) can depend on initial conditions φ(t0). How-
ever, due to the astronomical forcing FA(t), trajectories starting from differ-
ent initial phases φ(t0) can converge to a single or some pieces of trajectories
after a certain transient time, as shown in Figs. 4(a) and 4(b). The transient
time can last for several million years for the case of 100-kyr cycles, but it
is only several cycles for the case of 41-kyr cycles.

It should be noted that the asymmetric sawtooth pattern of the ice
volume trajectory V (φ(t)) is not due to the subtle asymmetry of function
V (φ) caused by the second harmonic −(δ/2) sin 2φ but due to the specific
form of Eq. (4); the phase φ(t) increases slowly in glaciation phases and
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quickly in deglaciation phases, on average. The qualitative features of the
following bifurcation analysis do not change even if the second harmonic is
omitted or changed in the range |δ| < 1/4, but we keep the term because it
increases the agreement with data, for example, by about 10% from r = 0.64
for δ = 0 to r = 0.76 for δ = 0.24.

3. Bifurcation analysis

We study bifurcations of the model for the astronomical forcing FA(t)
and an ideal two-frequency quasiperiodic forcing described below. We set
γ = 1.0 and δ = 0.24, and regard α and β as control parameters.

3.1. The case of the ideal two-frequency quasiperiodic forcing

We start from the two-frequency quasiperiodic forcing

FG(t) = sinω1t+ sinωGt, (5)

where ω1 is the most prominent frequency of the climatic precession (2π/ω1 ≈
23.7 kyr), and ωG = ω1× (

√
5−1)/2 (2π/ωG ≈ 38.4 kyr) is a frequency near

the dominant frequency of obliquity change 2π/ω4 ≈ 41.0 kyr [11], which
was chosen to be most incommensurate with ω1. Defining phase variables,
θ1 = ω1t (mod 2π) and θG = ωGt (mod 2π), the model can be expressed in
the skew-product form

φ̇ = β + α(cosφ+ δ cos 2φ)[1 + γFG(θ1, θG)],

θ̇1 = ω1, ˙θG = ωG,
(6)

where FG(t) is redefined as FG(θ1, θG) = sin θ1 + sin θG, and the phase
space is T3. Similar pendulum-type systems but with additive quasiperiodic
forcing have been studied in [50–53]. The attractor of the system is obtained
by solving Eq. (6) forward for a long time. In the particular case of this
model, the unstable invariant set of the system is found by solving Eq. (6)
backward for a long time (this is called the repeller) [52]. We plot the
attractor and the repeller at a Poincaré surface of section (PS) at a certain
constant value of θ1(≈ 2.168184).1

The system (6) has three Lyapunov exponents: one is the Lyapunov
exponent λφ in the direction of φ, and the other two are trivially zero,

1In numerical calculations for Fig. 5, a step size h = 2π/ω1 × 0.002 was used so that
θ1 takes a constant phase in every 500 steps.
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corresponding to θ̇1 = ω1 and ˙θG = ωG. The dynamics of Eq. (6) are
classified by the Lyapunov exponent λφ and the winding number W . The
winding number W is defined as

W = lim
t→∞

φ(t)− φ(0)

t

for the same Eq. (6) but with φ on the line R. The dynamics are referred to
as mode-locked if the winding number W is constant with respect to slight
changes of β [54]. When the dynamics are mode-locked, the model has a
two-frequency quasiperiodic attractor and a two-frequency quasiperiodic re-
peller, which are represented by a stable and an unstable invariant curve
in PS, respectively (Fig. 5(a) for example), and the winding number W is
rationally related to the forcing frequencies, i.e., W = (k/m)ω1 + (l/m)ωG
(k, l ∈ Z, m ∈ N) [54]. The denominator m corresponds to the multiplicity of
each invariant curve in the direction of φ [50]. The two-frequency quasiperi-
odic attractors are characterized by the negative Lyapunov exponent λφ < 0.
When the dynamics are non-mode-locked, we find three-frequency quasiperi-
odic motion when λφ = 0 and SNAs when λφ < 0, as is the case of the general
quasiperiodically forced circle map [55] (see Figs. 5(c) and 5(f)).

The regime diagram for FG(t) is shown in Fig. 6(a), which is obtained
by taking a grid size of ∆α = 0.01 and ∆β = 2.5× 10−3. The dynamics are
numerically regarded as mode-locked if the change of W is less than 10−4

when β is changed either by ±∆β (white regions). The non-mode-locked
regions are divided into regions with |λφ| < 5.0 × 10−4 (green) and regions
with λφ ≤ −5.0 × 10−4 (magenta). Under these numerical criteria, we find
typically the two-frequency quasiperiodic attractors in mode-locked regions
(white), three-frequency quasiperiodic motion in non-mode-locked regions
with |λφ| < 5.0× 10−4 (green), and SNAs in non-mode-locked regions with
λφ < −5.0× 10−4 (magenta). The boundaries of each regime depend on the
grid size and thresholds slightly,2 but the overall structure is fairly robust.

The strangeness of attractor in the non-mode-locked regions with neg-

2For the (N + 1)-frequency quasiperiodic motion with the Lyapunov exponent λφ of
zero, the order of the computed Lyapunov exponent converges to zero inversely propor-
tionally to the averaging time T of the local Lyapunov exponent. Typically, we have
|λφ| ∼ O(10−5) for T = 105. Thus, the threshold at λφ = −5.0 × 10−4 is effective to
distinguish the regimes with and without the Lyapunov exponent λφ of zero. The changes
in the threshold between −10−5 < λφ < −10−4 shift the boundaries between (N + 1)-
frequency quasiperiodic motion (green) and SNA (magenta) in the direction parallel to
nearby mode-locked regions. This uncertainty of the boundaries is typically less than 0.1
with respect to α and β. The choice of the threshold for the winding number W is also
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ative Lyapunov exponent (magenta) may also be assessed with the phase
sensitivity exponent [36], which characterizes the sensitivity of φ with re-
spect to the changes in θ1 or θG. The phase sensitivity exponent is computed
in the Appendix, and the results show that the attractor is smooth in the
mode-locked regions, and strange in the non-mode-locked regions with neg-
ative Lyapunov exponent.

The mode-locked regions form Arnol’d tongue-like structures in the pa-
rameter plane, but the width of each mode-locked region first increases and
then decreases to values close to zero. Such leaf-like Arnol’d tongues are
characteristic of mode-locking in quasiperiodically forced systems [37], and
they have been found in several models of glacial cycles [26, 28].

The system exhibits two types of bifurcations on the boundaries of mode-
locked regions. The smooth saddle-node bifurcation of tori occurs on the
boundaries where the Lyapunov exponent λφ changes from negative to zero
(between white and green regions). The nonsmooth saddle-node bifurcation
of tori [37, 55, 56] occurs on the boundaries where λφ remains negative
(between white and magenta regions). Here, “tori” means the quasiperiodic
attractor and repeller in the mode-locked regions (In higher-dimensional
systems, the latter need not be a repeller but an unstable quasiperiodic
torus of saddle type). In this paper, we focus on the bifurcations for the
mode-locked region with W = 0, but they occur in the other mode-locked
regions as well in the same manner.

In the smooth saddle-node bifurcation, the distance between stable and
unstable invariant curves decreases to zero for every value of θG, as shown in
Fig. 5(b). At the bifurcation point β = βc, the stable and unstable invariant
curves merge at every point in θG yielding three-frequency quasiperiodic
motion, as shown in Fig. 5(c). Specifically, define the distance d(θ1, θG)
between a point on attractor and a point on the repeller at the same (θ1, θG),
and consider its maximum dmax and its minimum dmin on (θ1, θG) ∈ T2 [57].
As shown in Fig. 7(a), they obey a scaling law dmin ' C1|βc − β|0.5 and
dmax ' C2|βc − β|0.5 (C1 ≤ C2). This scaling clearly holds with C1 = C2 in
the small forcing limit γ → 0, where the smooth saddle-node bifurcation of
tori degenerates into that of equilibrium points.

On the other hand, in the non-smooth saddle-node bifurcation, the colli-
sion of the stable invariant curves and unstable invariant curves occurs only
in a countable dense set of θG, as demonstrated in Fig. 5(e), and it creates

based on the numerical convergence speed. The above choice gives consistent results with
the analysis of the phase sensitivity exponent shown in Appendix.
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an SNA and a strange repeller. An SNA and a strange repeller for α = 2.2
and β = 1.4 are shown in Fig. 5(f). At the bifurcation point β = βc, the
minimal distance dmin decreases to zero, but the maximal distance dmax is
strictly positive, as shown in Fig. 7(b) [57]. In the nonsmooth saddle-node
bifurcation, the distances do not show the scaling low |βc − β|0.5, which
appears in the smooth saddle-node bifurcation.

3.2. The case of the astronomical forcing

We now consider the case of the astronomical forcing FA(t), where Eq. (6)
is defined using FA(θ1, ..., θ35) = 1

a

∑35
i=1(si sin θi + ci cos θi), θ̇i = ωi instead

of FG(θ1, θG). The regime diagram for FA(t) is shown in Fig. 6(b), which is
produced in the same manner as Fig. 6(a). As a natural extension from two-
frequency forcing, the system exhibits a 35-frequency quasiperiodic attractor
in each mode-locked region (white), 36-frequency quasiperiodic motion in
non-mode-locked regions with λφ = 0 (green), and an SNA in non-mode-
locked regions with λφ < 0 (magenta). The strangeness of attractor in
non-mode-locked regions with negative Lyapunov exponent is assessed by
the phase sensitivity exponent [37] in Appendix, which numerically shows
that the attractor is smooth in the mode-locked regions and strange in the
non-mode-locked regions with negative Lyapunov exponent.

As is the case of two-frequency forcing, smooth and nonsmooth saddle-
node bifurcations occur at the boundaries of mode-locked regions. Due
to high dimensionality, the attractor and repeller are not visible but we
can calculate the maximal distance dmax and the minimal distance dmin

between the attractor and the repeller. On the boundaries with zero Lya-
punov exponent, the smooth saddle-node bifurcation occurs creating 36-
frequency quasiperiodic motion, with the scaling law dmin ' C1|βc − β|0.5
and dmax ' C2|βc − β|0.5, as shown in Fig. 7(c). On the boundaries with
negative Lyapunov exponent, the nonsmooth saddle-node bifurcation occurs
creating an SNA and a strange repeller. At the bifurcation point β = βc,
the minimal distance dmin decreases to zero, but the maximal distance dmax

is strictly positive, as shown in Fig. 7(d). In the nonsmooth saddle-node
bifurcation, the distances do not show the scaling low |βc − β|0.5, which
appears in the smooth saddle-node bifurcation.

4. Discussions

4.1. Parameter sensitivity

A number of previous studies report parameter sensitivity of the se-
quence of glacial cycles generated by simulation models [1, 20, 21, 24, 27–
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29, 58]. In some models, parameter sensitivity is attributed to thresholds
with discontinuity [1], and in other models, it is attributed to a chaotic prop-
erty, that is, the exponential sensitivity to initial conditions [29]. However,
parameter sensitivity can appear even when the models are smooth dynam-
ical systems and nonchaotic. An example is Saltzman-Maasch (1990) model
[59] as pointed out in [28]. Our phase oscillator model also shows such a
parameter sensitivity.

To indicate “the region of 100 kyr cycles” in parameter space, we again
calculate the Pearson’s correlation coefficient r over the past 700 kyr between
the ice volume reconstruction [5] and a simulated ice volume trajectory with
φ(t0) = 0 at t0 = −20 Myr. The parameter points with high correlation
r > 0.7 are plotted by symbol “+” in Fig. 6(b).3 They are distributed in
a narrow region, where the winding number W is constrained between 0.58
and 0.66. Around the region of 100 kyr cycles, the mode-locked states are
unlikely to occur because they have little measure. Even if the mode-locked
states occurred, they would be fragile against small parameter changes.

If the 100 kyr cycles are non-mode-locked, the dynamics of SNA or the
dynamics of (N + 1)-frequency quasiperiodic motion with the Lyapunov ex-
ponent of zero are candidates for the 100 kyr cycles. The dynamics of SNAs
show the synchronizing property under the same astronomical forcing, as
shown in Fig. 4(a), which is often considered as an important feature for
the models of glacial cycles. However, in the SNA regime, the sequence of
glacial cycles can be highly sensitive to parameter changes. Two simulated
ice volume trajectories for two slightly different parameter values β = 1.0006
(red) and β = 1.0001 (blue) are shown in Fig. 8(a). The deviation of the
trajectories with nearby parameters is reminiscent of the well-known but-
terfly effect in chaotic systems but this system is nonchaotic and even has a
negative Lyapunov exponent λφ for these parameter values of β. Since SNAs
have strange geometrical structures as shown in Fig. 5(f), subtle changes of
parameter values can induce large shifts of the points in the attractors.

On the other hand, the 41 kyr cycles is caused by the mode-locking to
the 41 kyr component of astronomical forcing (due to obliquity motion) in
this model. The mode-locking region of the 41 kyr cycles is relatively wide
(see the white region labeled by W = ω4 in Fig. 6(b)). Thus, this mode-
locking is likely to occur. This is consistent with the previous study [22],

3High values of correlation coefficient r with r > 0.7 can be obtained in regions with
36-frequency quasiperiodic motion (green) or in mode-locked regions with m ≥ 2 (white)
by chance because trajectories depend on initial conditions over the past 700 kyr.
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which proposes that the phase of 41 kyr cycles is locked by the astronomical
forcing.

The sequence of the mode-locked 41 kyr cycles is relatively robust to
parameter changes. Figure 8(b) shows ice volume trajectories corresponding
to different values of β in the mode-locked region: β = 1.61, β = 1.65, and
β = 1.69. The other parameters are α = 0.8, γ = 1, and δ = 0.24.

4.2. Middle Pleistocene transition

The middle Pleistocene transition (MPT) began ∼1.2 Myr ago and was
complete by ∼0.7 Myr ago, through which the average period of glacial
cycles changed from ∼40 kyr to ∼100 kyr, accompanying an increase of
amplitude [6]. A full investigation of the causes and dynamics of the MPT
is beyond the scope of this paper. In particular, a phase model provides
no information on amplitude. Yet, we note that a frequency change similar
to the one observed during the MPT is obtained when the parameter β is
changed over the period of MPT, as shown in Fig. 1. The parameter β is
fixed at β = 1.65 in the model-locked region with W = ω4 until 1300 kyr
ago (see Fig. 6(b)). Then, β is decreased linearly until it reaches β = 0.9 at
600 kyr ago. After 600 kyr ago, β is kept at β = 0.9. The other parameters
are set at α = 0.8, γ = 1.0, and δ = 0.24. The sequence of the glacial cycles
in Fig. 1 is robust to changes in initial conditions because of the strong
synchronizing property of the 41-kyr cycles before the MPT (cf. Fig. 4(b)).

5. Summary

We introduced a phase oscillator model of glacial cycles and analyzed the
bifurcations of the model for the ideal two-frequency quasiperiodic forcing
and for the astronomical forcing. It was shown that SNAs appear through
nonsmooth saddle-node bifurcations of tori in the model. Based on the
results for the phase oscillator model, we conjecture that the bifurcations
from quasiperiodic attractors to SNAs found in oscillator models of glacial
cycles [28] are also nonsmooth saddle-node bifurcations. The regime diagram
in Fig. 6(b) indicates that mode-locking is likely to occur for the 41 kyr
glacial cycles but not likely for the 100 kyr glacial cycles. The sequence of
mode-locked 41 kyr cycles is robust to small parameter changes. However,
the sequence of 100 kyr glacial cycles can be sensitive to parameter changes
when the system has an SNA.

Long transient dynamics of million-year scale can be observed for the
100-kyr glacial cycles though it can vanish quickly for the 41-kyr cycles
(Figs. 4(a) and 4(b)). Given that the Quaternary ice age is ∼3 Myr, and
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that there can be perturbations to the system, transient trajectories may be
important to understand the glacial cycles, not only just on the attractor.
This problem will be explored elsewhere [60].
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Appendix. Strangeness of attractors in the non-mode-locked re-
gions with the negative Lyapunov exponent

We present numerical support for the existence of SNAs in the non-
mode-locked regions with the negative Lyapunov exponent λφ < 0 (magenta
regions of Figs. 6(a) and (b)). Denote formally the phase equation of an
oscillator under an N -frequency forcing by{

θ̇ = ω,

φ̇ = f(φ, θ),
(7)

where θ = (θ1, θ2, ..., θN )T and ω = (ω1, ω2, ..., ωN )T. When the system (7)
has an N -frequency quasiperiodic attractor, it is represented by a certain
smooth function φ = H(θ). On the other hand, when the system (7) has an
SNA, the relationship between θ and φ is discontinuous.

The phase sensitivity function Γ(t) of variable φ with respect to variable
θi is defined as

Γ(t) = min
{φ(0), θ(0)}

{
max
0≤τ≤t

∣∣∣∣∂φ(τ)

∂θi

∣∣∣∣} . (8)

This derivative ∂φ(τ)/∂θi is obtained by integrating

d

dt

(
∂φ

∂θi

)
=
∂f(φ, θ)

∂φ

(
∂φ

∂θi

)
+
∂f(φ, θ)

∂θi
, (9)

along the solution of Eq. (7). When the system (7) has an N -frequency
quasiperiodic attractor, the state (θ(t), φ(t)) and the quantity ∂φ(t)/∂θi,
which started from some initial conditions, approach the attractor and its
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derivative H ′(θ(t)), respectively, as time t increases [36]. Thus, Γ(t) is
bounded for N -frequency quasiperiodic attractors. If we write the phase
sensitivity function formally as Γ(t) ' tµ for large t, the exponent µ is zero
for N -frequency quasiperiodic attractors. The exponent µ is called the phase
sensitivity exponent. On the other hand, SNAs do not have finite derivatives
by definition, but we can calculate the quantity ∂φ(t)/∂θi (and Γ(t)) along
orbits approaching an SNA. It is known that the phase sensitivity function
grows as Γ(t) ' tµ with µ > 0 for SNAs (see [31, 36] for detail).

For the case of two-frequency forcing FG(θ1, θG), we calculate the phase
sensitivity function Γ(t) with respect to θG, changing parameter β, where
the other parameters are set to α = 2.2, γ = 1, and δ = 0.24, as in Fig. 7(b).
For the case of astronomical forcing FA(θ1, ..., θ35), the phase sensitivity
function Γ(t) is calculated with respect to θ4, changing parameter β, where
the other parameters are set to α = 1.4, γ = 1, and δ = 0.24, as in Fig. 7(d).
The phase sensitivity exponent µ is measured from the growth of the phase
sensitivity function over the time interval [105, 107].

Figures 9(a) and 9(b) show the winding number W , the phase sensitiv-
ity function µ, and the value of phase sensitivity function Γ at t = 107 as
functions of β. Mode-locked regions and non mode-locked regions are shown
by thick points and thin points, respectively, in the graph of the winding
number W . The phase sensitivity exponent µ takes a positive value enough
away from zero in the non-mode-locked regions. This means that the at-
tractors in the non-mode-locked regions are typically strange. On the other
hand, the phase sensitivity exponent µ takes the value of zero in most of the
mode-locked regions, which indicates N -frequency quasiperiodic attractors.
In some regions (1.4075 . β . 1.41 and 1.4225 . β . 1.435 in Fig. 9(a)),
the numerical value of µ obtained with a simulation length of 107 can be
positive due to slow convergence. However, the value of the phase sensitivity
function Γ(107) itself is small when compared to non-mode-locked regions.
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Figure 1: (Color) Glacial cycles over the Quaternary: The global ice volume reconstructed
from the oxygen isotope ratio (black solid line) [5] and the simulated ice volume V (φ(t))
(red dashed line). The former is scaled as 1.3× δ18O − 4 for comparison. The parameter
β is fixed at β = 1.65 until −1300 kyr and fixed at β = 0.9 after −600 kyr, between which
β is decreased linearly interpolating the two values. The other parameters are α = 0.8,
γ = 1.0, and δ = 0.24. The sequence is robust to changes in initial conditions because
of the strong synchronizing property of the 41-kyr cycles before the middle-Pleistocene
transition.
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Figure 2: (Color) (a) Ice volume V (φ) (black solid line) and potential U(φ, t) as functions
of φ for F (t) = 3 (red solid line), F (t) = 0 (magenta dashed line), and F (t) = −3 (blue
dotted line). α = 1.0, β = 1.0006, γ = 1.0, and δ = 0.24. (b) Bifurcation diagram of
Eq. (4) for constant forcing F (t) = Fc. The positions of stable nodes and saddles are
presented by black solid lines and green dotted lines, respectively. The horizontal lines
are drawn at the ice volume maximum φ = φmax and minimum φ = φmin.

Figure 3: (Color) Global ice volume reconstructed from benthic oxygen isotopic ratio
(dashed line) [5] and the simulated ice volume V (blue line) using Eqs. (2) and (4).
α = 1.0, β = 1.0006, γ = 1.0, and δ = 0.24. Both curves are normalized.
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Figure 4: (Color) Synchronization of ice volume trajectories V (φ(t)) started from different
initial conditions φ(t0) = 2πk/5 (k = 0, 1, 2, 3, 4) at time t0 = −10 Myr under the
astronomical forcing FA(t). (a) The case of 100-kyr cycles for α = 1.0, β = 1.0006,
γ = 1.0, and δ = 0.24. (b) The case of 41-kyr cycles for α = 0.80, β = 1.65, γ = 1.0, and
δ = 0.24.
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Figure 5: (Color) Poincaré surface of section plots at a certain constant value of θ1(≈
2.168184) obtained by integrating Eq. (6) forward (red) and backward (blue) for a long
time, respectively. Each panel corresponds to different values of parameters α and β:
(a) in two-frequency quasiperiodic regime, (b) same but just before the smooth saddle-
node bifurcation occurring at α = 0.4, βc ≈ 0.303754, (c) in three-frequency quasiperiodic
regime, (d) in two-frequency quasiperiodic regime, (e) same but just before the nonsmooth
saddle-node bifurcation occurring at α = 2.2, βc ≈ 1.3964061, and (f) in the SNA regime.
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Figure 6: (Color) (a) Regime diagram for the two-frequency forcing FG(t) (N = 2) and
(b) regime diagram for the astronomical forcing FA(t) (N = 35): the mode-locked regions
corresponding to N -frequency quasiperiodic attractors (invariant curves in PS) (white),
the regions with |λφ| < 5.0×10−4 typically corresponding to (N +1)-frequency quasiperi-
odic motion (green), and the regions with λφ ≤ −5.0 × 10−4 typically corresponding to
SNAs (magenta). Prominent mode-locked regions are shown with their rotation numbers.
The parameter points corresponding to correlation coefficient r larger than 0.7 are marked
by symbol “+” (see text for the details of the calculation of r).
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Figure 7: (color) The minimal distance dmin and the maximal distance dmax between the
attractor and the repeller as functions of β: (a) a smooth saddle-node bifurcation along
α = 0.4 for the two-frequency forcing FG(t). Inset is a log-log plot showing the scaling
∝ |βc − β|0.5 just before the bifurcation occurring at β = βc. (b) a nonsmooth saddle-
node bifurcation along α = 2.2 for FG(t). (c) a smooth saddle-node bifurcation along
α = 0.4 for the astronomical forcing FA(t). (d) a nonsmooth saddle-node bifurcation
along α = 1.4 for FA(t). The panels (a) and (c) show the results only for the region with
attractor β < βc.

Figure 8: (Color) (a) Simulated ice volume trajectories for two slightly different values
in SNA regime: β = 1.0006 (red solid line) and β = 1.0001 (blue dashed line) (α = 1.0,
γ = 1, and δ = 0.24). (b) Simulated ice volume trajectories for three different values
in 41-kyr mode-locked region : β = 1.61 (red solid line), β = 1.65 (green dashed), and
β = 1.69 (blue dotted line) (α = 0.8, γ = 1, and δ = 0.24).
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Figure 9: The winding number W , the phase sensitivity exponent µ, and the value of
the phase sensitivity function Γ at t = 107 as functions of parameter β, respectively.
(a) The case for the two-frequency forcing FG(t) with parameters α = 2.2, γ = 1, and
δ = 0.24. The phase sensitivity function is calculated with respect to θG. (b) The case for
the astronomical forcing FA(t) for with parameters α = 1.0, γ = 1, and δ = 0.24. Mode-
locked regions and non mode-locked regions are shown by thick points and thin points,
respectively, in the graph of the winding number W . The phase sensitivity function is
calculated with respect to θ4. The exponent µ is calculated from the growth of the phase
sensitivity function over the time interval [105, 107]. The phase sensitivity function is
minimized for 10 initial conditions.
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